File size: 8,724 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Cache this result has it's a C FFI call which can be pretty time-consuming
_torch_distributed_available = torch.distributed.is_available()
def _is_package_available(pkg_name):
    # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
    package_exists = importlib.util.find_spec(pkg_name) is not None
    if package_exists:
        try:
            _ = importlib.metadata.metadata(pkg_name)
            return True
        except importlib.metadata.PackageNotFoundError:
            return False
def is_torch_distributed_available() -> bool:
    return _torch_distributed_available
def is_ccl_available():
    try:
        pass
    except ImportError:
        print(
            "Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not"
            " detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL"
            " Bindings for PyTorch*."
        )
    return (
        importlib.util.find_spec("torch_ccl") is not None
        or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
    )
def get_ccl_version():
    return importlib.metadata.version("oneccl_bind_pt")
def is_msamp_available():
    package_exists = importlib.util.find_spec("msamp") is not None
    if package_exists:
        try:
            # MS-AMP has a different metadata name
            _ = importlib.metadata.metadata("ms-amp")
            return True
        except importlib.metadata.PackageNotFoundError:
            return False
    return False
def is_transformer_engine_available():
    return _is_package_available("transformer_engine")
def is_fp8_available():
    return is_msamp_available() or is_transformer_engine_available()
def is_cuda_available():
    """
    Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda
    uninitialized.
    """
    try:
        os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = str(1)
        available = torch.cuda.is_available()
    finally:
        os.environ.pop("PYTORCH_NVML_BASED_CUDA_CHECK", None)
    return available
@lru_cache
def is_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
    # Due to bugs on the amp series GPUs, we disable torch-xla on them
    if is_cuda_available():
        return False
    if check_device:
        if _tpu_available:
            try:
                # Will raise a RuntimeError if no XLA configuration is found
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
    return _tpu_available
def is_deepspeed_available():
    return _is_package_available("deepspeed")
def is_bf16_available(ignore_tpu=False):
    "Checks if bf16 is supported, optionally ignoring the TPU"
    if is_tpu_available():
        return not ignore_tpu
    if is_cuda_available():
        return torch.cuda.is_bf16_supported()
    return True
def is_4bit_bnb_available():
    package_exists = _is_package_available("bitsandbytes")
    if package_exists:
        bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
        return compare_versions(bnb_version, ">=", "0.39.0")
    return False
def is_8bit_bnb_available():
    package_exists = _is_package_available("bitsandbytes")
    if package_exists:
        bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
        return compare_versions(bnb_version, ">=", "0.37.2")
    return False
def is_bnb_available():
    return _is_package_available("bitsandbytes")
def is_megatron_lm_available():
    if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1:
        package_exists = importlib.util.find_spec("megatron") is not None
        if package_exists:
            try:
                megatron_version = parse(importlib.metadata.version("megatron-lm"))
                return compare_versions(megatron_version, ">=", "2.2.0")
            except Exception as e:
                warnings.warn(f"Parse Megatron version failed. Exception:{e}")
                return False
def is_transformers_available():
    return _is_package_available("transformers")
def is_datasets_available():
    return _is_package_available("datasets")
def is_timm_available():
    return _is_package_available("timm")
def is_aim_available():
    package_exists = _is_package_available("aim")
    if package_exists:
        aim_version = version.parse(importlib.metadata.version("aim"))
        return compare_versions(aim_version, "<", "4.0.0")
    return False
def is_tensorboard_available():
    return _is_package_available("tensorboard") or _is_package_available("tensorboardX")
def is_wandb_available():
    return _is_package_available("wandb")
def is_comet_ml_available():
    return _is_package_available("comet_ml")
def is_boto3_available():
    return _is_package_available("boto3")
def is_rich_available():
    if _is_package_available("rich"):
        if "ACCELERATE_DISABLE_RICH" in os.environ:
            warnings.warn(
                "`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`."
            )
            return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False)
        return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False)
    return False
def is_sagemaker_available():
    return _is_package_available("sagemaker")
def is_tqdm_available():
    return _is_package_available("tqdm")
def is_clearml_available():
    return _is_package_available("clearml")
def is_pandas_available():
    return _is_package_available("pandas")
def is_mlflow_available():
    if _is_package_available("mlflow"):
        return True
    if importlib.util.find_spec("mlflow") is not None:
        try:
            _ = importlib.metadata.metadata("mlflow-skinny")
            return True
        except importlib.metadata.PackageNotFoundError:
            return False
    return False
def is_mps_available():
    return is_torch_version(">=", "1.12") and torch.backends.mps.is_available() and torch.backends.mps.is_built()
def is_ipex_available():

    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
    _torch_version = importlib.metadata.version("torch")
    if importlib.util.find_spec("intel_extension_for_pytorch") is None:
        return False
    _ipex_version = "N/A"
    try:
        _ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
    except importlib.metadata.PackageNotFoundError:
        return False
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        warnings.warn(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
@lru_cache
def is_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None:
        return False
    import torch
    import torch_npu  # noqa: F401
    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()
@lru_cache
def is_xpu_available(check_device=False):
    "check if user disables it explicitly"
    if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True):
        return False
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if is_ipex_available():
        import torch
        if is_torch_version("<=", "1.12"):
            return False
    else:
        return False
    import intel_extension_for_pytorch  # noqa: F401
    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()
def is_dvclive_available():
    return _is_package_available("dvclive")