File size: 8,984 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
logger = get_logger(__name__)
if is_tpu_available(check_device=False):
    import torch_xla.core.xla_model as xm
def is_compiled_module(module):
    """
    Check whether the module was compiled with torch.compile()
    """
    if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"):
        return False
    return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True):
    """
    Extract a model from its distributed containers.
    Args:
        model (`torch.nn.Module`):
            The model to extract.
        keep_fp32_wrapper (`bool`, *optional*):
            Whether to remove mixed precision hooks from the model.
    Returns:
        `torch.nn.Module`: The extracted model.
    """
    options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
    is_compiled = is_compiled_module(model)
    if is_compiled:
        compiled_model = model
        model = model._orig_mod
    if is_deepspeed_available():
        from deepspeed import DeepSpeedEngine
        options += (DeepSpeedEngine,)
    if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
        from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
        options += (FSDP,)
    while isinstance(model, options):
        model = model.module
    if not keep_fp32_wrapper:
        forward = getattr(model, "forward")
        original_forward = model.__dict__.pop("_original_forward", None)
        if original_forward is not None:
            while hasattr(forward, "__wrapped__"):
                forward = forward.__wrapped__
                if forward == original_forward:
                    break
            model.forward = MethodType(forward, model)
        if getattr(model, "_converted_to_transformer_engine", False):
            convert_model(model, to_transformer_engine=False)
    if is_compiled:
        compiled_model._orig_mod = model
        model = compiled_model
    return model
def wait_for_everyone():
    """
    Introduces a blocking point in the script, making sure all processes have reached this point before continuing.
    <Tip warning={true}>
    Make sure all processes will reach this instruction otherwise one of your processes will hang forever.
    </Tip>
    """
    PartialState().wait_for_everyone()
def clean_state_dict_for_safetensors(state_dict: dict):
    """
    Cleans the state dictionary from a model and removes tensor aliasing if present.
    Args:
        state_dict (`dict`):
            The state dictionary from a model
    """
    ptrs = collections.defaultdict(list)
    # When bnb serialization is used, weights in state dict can be strings
    for name, tensor in state_dict.items():
        if not isinstance(tensor, str):
            ptrs[id_tensor_storage(tensor)].append(name)
    # These are all pointers of tensors with shared memory
    shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
    warn_names = set()
    for names in shared_ptrs.values():
        # When not all duplicates have been cleaned, we still remove those keys but put a clear warning.
        # If the link between tensors was done at runtime then `from_pretrained` will not get
        # the key back leading to random tensor. A proper warning will be shown
        # during reload (if applicable), but since the file is not necessarily compatible with
        # the config, better show a proper warning.
        found_names = [name for name in names if name in state_dict]
        warn_names.update(found_names[1:])
        for name in found_names[1:]:
            del state_dict[name]
    if len(warn_names) > 0:
        logger.warning(
            f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
        )
    state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()}
    return state_dict
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False):
    """
    Save the data to disk. Use in place of `torch.save()`.
    Args:
        obj:
            The data to save
        f:
            The file (or file-like object) to use to save the data
        save_on_each_node (`bool`, *optional*, defaults to `False`):
            Whether to only save on the global main process
        safe_serialization (`bool`, *optional*, defaults to `False`):
            Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`).
    """
    # Check if it's a model and remove duplicates
    if safe_serialization:
        save_func = partial(safe_save_file, metadata={"format": "pt"})
        if isinstance(obj, OrderedDict):
            obj = clean_state_dict_for_safetensors(obj)
    else:
        save_func = torch.save
    if PartialState().distributed_type == DistributedType.TPU:
        xm.save(obj, f)
    elif PartialState().is_main_process and not save_on_each_node:
        save_func(obj, f)
    elif PartialState().is_local_main_process and save_on_each_node:
        save_func(obj, f)
@contextmanager
def clear_environment():
    """
    A context manager that will cache origin `os.environ` and replace it with a empty dictionary in this context.
    When this context exits, the cached `os.environ` will be back.
    Example:
    ```python
    >>> import os
    >>> from accelerate.utils import clear_environment
    >>> os.environ["FOO"] = "bar"
    >>> with clear_environment():
    ...     print(os.environ)
    ...     os.environ["FOO"] = "new_bar"
    ...     print(os.environ["FOO"])
    {}
    new_bar
    >>> print(os.environ["FOO"])
    bar
    ```
    """
    _old_os_environ = os.environ
    os.environ = dict()
    yield
    os.environ = _old_os_environ
@contextmanager
def patch_environment(**kwargs):
    """
    A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
    Will convert the values in `kwargs` to strings and upper-case all the keys.
    Example:
    ```python
    >>> import os
    >>> from accelerate.utils import patch_environment
    >>> with patch_environment(FOO="bar"):
    ...     print(os.environ["FOO"])  # prints "bar"
    >>> print(os.environ["FOO"])  # raises KeyError
    ```
    """
    existing_vars = {}
    for key, value in kwargs.items():
        key = key.upper()
        if key in os.environ:
            existing_vars[key] = os.environ[key]
        os.environ[key] = str(value)
    yield
    for key in kwargs:
        key = key.upper()
        if key in existing_vars:
            # restore previous value
            os.environ[key] = existing_vars[key]
        else:
            os.environ.pop(key, None)
def get_pretty_name(obj):
    """
    Gets a pretty name from `obj`.
    """
    if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"):
        obj = getattr(obj, "__class__", obj)
    if hasattr(obj, "__qualname__"):
        return obj.__qualname__
    if hasattr(obj, "__name__"):
        return obj.__name__
    return str(obj)
def merge_dicts(source, destination):
    """
    Recursively merges two dictionaries.
    Args:
        source (`dict`): The dictionary to merge into `destination`.
        destination (`dict`): The dictionary to merge `source` into.
    """
    for key, value in source.items():
        if isinstance(value, dict):
            node = destination.setdefault(key, {})
            merge_dicts(value, node)
        else:
            destination[key] = value
    return destination
def is_port_in_use(port: int = None) -> bool:
    """
    Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been
    run and need to see if the port is already in use.
    """
    if port is None:
        port = 29500
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        return s.connect_ex(("localhost", port)) == 0
def convert_bytes(size):
    "Converts `size` from bytes to the largest possible unit"
    for x in ["bytes", "KB", "MB", "GB", "TB"]:
        if size < 1024.0:
            return f"{round(size, 2)} {x}"
        size /= 1024.0
    return f"{round(size, 2)} PB"
def check_os_kernel():
    """Warns if the kernel version is below the recommended minimum on Linux."""
    # see issue #1929
    info = platform.uname()
    system = info.system
    if system != "Linux":
        return
    _, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release)
    min_version = "5.5.0"
    if Version(version) < Version(min_version):
        msg = (
            f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can "
            "cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher."
        )
        logger.warning(msg, main_process_only=True)