#!/usr/bin/env python hf_cache_home = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) cache_dir = os.path.join(hf_cache_home, "accelerate") default_json_config_file = os.path.join(cache_dir, "default_config.yaml") default_yaml_config_file = os.path.join(cache_dir, "default_config.yaml") # For backward compatibility: the default config is the json one if it's the only existing file. if os.path.isfile(default_yaml_config_file) or not os.path.isfile(default_json_config_file): default_config_file = default_yaml_config_file else: default_config_file = default_json_config_file def load_config_from_file(config_file): if config_file is not None: if not os.path.isfile(config_file): raise FileNotFoundError( f"The passed configuration file `{config_file}` does not exist. " "Please pass an existing file to `accelerate launch`, or use the the default one " "created through `accelerate config` and run `accelerate launch` " "without the `--config_file` argument." ) else: config_file = default_config_file with open(config_file, "r", encoding="utf-8") as f: if config_file.endswith(".json"): if ( json.load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE ): config_class = ClusterConfig else: config_class = SageMakerConfig return config_class.from_json_file(json_file=config_file) else: if ( yaml.safe_load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE ): config_class = ClusterConfig else: config_class = SageMakerConfig return config_class.from_yaml_file(yaml_file=config_file) @dataclass class BaseConfig: compute_environment: ComputeEnvironment distributed_type: Union[DistributedType, SageMakerDistributedType] mixed_precision: str use_cpu: bool debug: bool def to_dict(self): result = self.__dict__ # For serialization, it's best to convert Enums to strings (or their underlying value type). for key, value in result.items(): if isinstance(value, Enum): result[key] = value.value if isinstance(value, dict) and not bool(value): result[key] = None result = {k: v for k, v in result.items() if v is not None} return result @classmethod def from_json_file(cls, json_file=None): json_file = default_json_config_file if json_file is None else json_file with open(json_file, "r", encoding="utf-8") as f: config_dict = json.load(f) if "compute_environment" not in config_dict: config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE if "mixed_precision" not in config_dict: config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None if "fp16" in config_dict: # Convert the config to the new format. del config_dict["fp16"] if "dynamo_backend" in config_dict: # Convert the config to the new format. dynamo_backend = config_dict.pop("dynamo_backend") config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend} if "use_cpu" not in config_dict: config_dict["use_cpu"] = False if "debug" not in config_dict: config_dict["debug"] = False extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) if len(extra_keys) > 0: raise ValueError( f"The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" " version or fix (and potentially remove) these keys from your config file." ) return cls(**config_dict) def to_json_file(self, json_file): with open(json_file, "w", encoding="utf-8") as f: content = json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" f.write(content) @classmethod def from_yaml_file(cls, yaml_file=None): yaml_file = default_yaml_config_file if yaml_file is None else yaml_file with open(yaml_file, "r", encoding="utf-8") as f: config_dict = yaml.safe_load(f) if "compute_environment" not in config_dict: config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE if "mixed_precision" not in config_dict: config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None if isinstance(config_dict["mixed_precision"], bool) and not config_dict["mixed_precision"]: config_dict["mixed_precision"] = "no" if "fp16" in config_dict: # Convert the config to the new format. del config_dict["fp16"] if "dynamo_backend" in config_dict: # Convert the config to the new format. dynamo_backend = config_dict.pop("dynamo_backend") config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend} if "use_cpu" not in config_dict: config_dict["use_cpu"] = False if "debug" not in config_dict: config_dict["debug"] = False extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) if len(extra_keys) > 0: raise ValueError( f"The config file at {yaml_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" " version or fix (and potentially remove) these keys from your config file." ) return cls(**config_dict) def to_yaml_file(self, yaml_file): with open(yaml_file, "w", encoding="utf-8") as f: yaml.safe_dump(self.to_dict(), f) def __post_init__(self): if isinstance(self.compute_environment, str): self.compute_environment = ComputeEnvironment(self.compute_environment) if isinstance(self.distributed_type, str): if self.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: self.distributed_type = SageMakerDistributedType(self.distributed_type) else: self.distributed_type = DistributedType(self.distributed_type) if self.dynamo_config is None: self.dynamo_config = {} @dataclass class ClusterConfig(BaseConfig): num_processes: int machine_rank: int = 0 num_machines: int = 1 gpu_ids: Optional[str] = None main_process_ip: Optional[str] = None main_process_port: Optional[int] = None rdzv_backend: Optional[str] = "static" same_network: Optional[bool] = False main_training_function: str = "main" # args for deepspeed_plugin deepspeed_config: dict = None # args for fsdp fsdp_config: dict = None # args for megatron_lm megatron_lm_config: dict = None # args for ipex ipex_config: dict = None # args for TPU downcast_bf16: bool = False # args for TPU pods tpu_name: str = None tpu_zone: str = None tpu_use_cluster: bool = False tpu_use_sudo: bool = False command_file: str = None commands: List[str] = None tpu_vm: List[str] = None tpu_env: List[str] = None # args for dynamo dynamo_config: dict = None def __post_init__(self): if self.deepspeed_config is None: self.deepspeed_config = {} if self.fsdp_config is None: self.fsdp_config = {} if self.megatron_lm_config is None: self.megatron_lm_config = {} if self.ipex_config is None: self.ipex_config = {} return super().__post_init__() @dataclass class SageMakerConfig(BaseConfig): ec2_instance_type: str iam_role_name: str image_uri: Optional[str] = None profile: Optional[str] = None region: str = "us-east-1" num_machines: int = 1 gpu_ids: str = "all" base_job_name: str = f"accelerate-sagemaker-{num_machines}" pytorch_version: str = SAGEMAKER_PYTORCH_VERSION transformers_version: str = SAGEMAKER_TRANSFORMERS_VERSION py_version: str = SAGEMAKER_PYTHON_VERSION sagemaker_inputs_file: str = None sagemaker_metrics_file: str = None additional_args: dict = None dynamo_config: dict = None