import pyttsx3 from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer # Load pre-trained model and tokenizer from Hugging Face model_name = "decapoda-research/llama-7b-hf" # Placeholder, replace with actual model if available model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize text-to-speech engine tts_engine = pyttsx3.init() def generate_text(prompt): # Use the model to generate text based on the prompt inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=50) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text def text_to_speech(text): # Use the TTS engine to convert text to speech tts_engine.say(text) tts_engine.runAndWait() def main(): prompt = "Once upon a time" # Replace with your desired prompt generated_text = generate_text(prompt) print(f"Generated Text: {generated_text}") text_to_speech(generated_text) if __name__ == "__main__": main()