mwalmsley commited on
Commit
0f4eabb
1 Parent(s): 0ac0e91

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +147 -246
README.md CHANGED
@@ -1,301 +1,202 @@
1
  ---
2
- dataset_info:
3
- - config_name: all
4
- features:
5
- - name: image
6
- dtype: image
7
- - name: smooth-or-featured-gz2_smooth
8
- dtype: int32
9
- - name: smooth-or-featured-gz2_featured-or-disk
10
- dtype: int32
11
- - name: smooth-or-featured-gz2_artifact
12
- dtype: int32
13
- - name: disk-edge-on-gz2_yes
14
- dtype: int32
15
- - name: disk-edge-on-gz2_no
16
- dtype: int32
17
- - name: has-spiral-arms-gz2_yes
18
- dtype: int32
19
- - name: has-spiral-arms-gz2_no
20
- dtype: int32
21
- - name: bar-gz2_yes
22
- dtype: int32
23
- - name: bar-gz2_no
24
- dtype: int32
25
- - name: bulge-size-gz2_dominant
26
- dtype: int32
27
- - name: bulge-size-gz2_obvious
28
- dtype: int32
29
- - name: bulge-size-gz2_just-noticeable
30
- dtype: int32
31
- - name: bulge-size-gz2_no
32
- dtype: int32
33
- - name: something-odd-gz2_yes
34
- dtype: int32
35
- - name: something-odd-gz2_no
36
- dtype: int32
37
- - name: how-rounded-gz2_round
38
- dtype: int32
39
- - name: how-rounded-gz2_in-between
40
- dtype: int32
41
- - name: how-rounded-gz2_cigar
42
- dtype: int32
43
- - name: bulge-shape-gz2_round
44
- dtype: int32
45
- - name: bulge-shape-gz2_boxy
46
- dtype: int32
47
- - name: bulge-shape-gz2_no-bulge
48
- dtype: int32
49
- - name: spiral-winding-gz2_tight
50
- dtype: int32
51
- - name: spiral-winding-gz2_medium
52
- dtype: int32
53
- - name: spiral-winding-gz2_loose
54
- dtype: int32
55
- - name: spiral-arm-count-gz2_1
56
- dtype: int32
57
- - name: spiral-arm-count-gz2_2
58
- dtype: int32
59
- - name: spiral-arm-count-gz2_3
60
- dtype: int32
61
- - name: spiral-arm-count-gz2_4
62
- dtype: int32
63
- - name: spiral-arm-count-gz2_more-than-4
64
- dtype: int32
65
- - name: spiral-arm-count-gz2_cant-tell
66
- dtype: int32
67
- splits:
68
- - name: train
69
- num_bytes: 2256229125.75
70
- num_examples: 166850
71
- - name: test
72
- num_bytes: 569483438.048
73
- num_examples: 41713
74
- download_size: 2837900425
75
- dataset_size: 2825712563.798
76
- - config_name: evo
77
- features:
78
- - name: image
79
- dtype: image
80
- - name: smooth-or-featured-gz2_smooth
81
- dtype: int32
82
- - name: smooth-or-featured-gz2_featured-or-disk
83
- dtype: int32
84
- - name: smooth-or-featured-gz2_artifact
85
- dtype: int32
86
- - name: disk-edge-on-gz2_yes
87
- dtype: int32
88
- - name: disk-edge-on-gz2_no
89
- dtype: int32
90
- - name: has-spiral-arms-gz2_yes
91
- dtype: int32
92
- - name: has-spiral-arms-gz2_no
93
- dtype: int32
94
- - name: bar-gz2_yes
95
- dtype: int32
96
- - name: bar-gz2_no
97
- dtype: int32
98
- - name: bulge-size-gz2_dominant
99
- dtype: int32
100
- - name: bulge-size-gz2_obvious
101
- dtype: int32
102
- - name: bulge-size-gz2_just-noticeable
103
- dtype: int32
104
- - name: bulge-size-gz2_no
105
- dtype: int32
106
- - name: something-odd-gz2_yes
107
- dtype: int32
108
- - name: something-odd-gz2_no
109
- dtype: int32
110
- - name: how-rounded-gz2_round
111
- dtype: int32
112
- - name: how-rounded-gz2_in-between
113
- dtype: int32
114
- - name: how-rounded-gz2_cigar
115
- dtype: int32
116
- - name: bulge-shape-gz2_round
117
- dtype: int32
118
- - name: bulge-shape-gz2_boxy
119
- dtype: int32
120
- - name: bulge-shape-gz2_no-bulge
121
- dtype: int32
122
- - name: spiral-winding-gz2_tight
123
- dtype: int32
124
- - name: spiral-winding-gz2_medium
125
- dtype: int32
126
- - name: spiral-winding-gz2_loose
127
- dtype: int32
128
- - name: spiral-arm-count-gz2_1
129
- dtype: int32
130
- - name: spiral-arm-count-gz2_2
131
- dtype: int32
132
- - name: spiral-arm-count-gz2_3
133
- dtype: int32
134
- - name: spiral-arm-count-gz2_4
135
- dtype: int32
136
- - name: spiral-arm-count-gz2_more-than-4
137
- dtype: int32
138
- - name: spiral-arm-count-gz2_cant-tell
139
- dtype: int32
140
- splits:
141
- - name: train
142
- num_bytes: 2315617466.771
143
- num_examples: 172377
144
- - name: test
145
- num_bytes: 257291889.006
146
- num_examples: 18797
147
- download_size: 2589561260
148
- dataset_size: 2572909355.777
149
- configs:
150
- - config_name: all
151
- data_files:
152
- - split: train
153
- path: all/train-*
154
- - split: test
155
- path: all/test-*
156
- - config_name: evo
157
- default: true
158
- data_files:
159
- - split: train
160
- path: evo/train-*
161
- - split: test
162
- path: evo/test-*
163
  ---
164
 
165
- # Dataset Card for Dataset Name
166
 
167
- <!-- Provide a quick summary of the dataset. -->
168
 
169
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
 
170
 
171
- ## Dataset Details
 
172
 
173
- ### Dataset Description
174
 
175
- <!-- Provide a longer summary of what this dataset is. -->
176
 
 
177
 
 
178
 
179
- - **Curated by:** [More Information Needed]
180
- - **Funded by [optional]:** [More Information Needed]
181
- - **Shared by [optional]:** [More Information Needed]
182
- - **Language(s) (NLP):** [More Information Needed]
183
- - **License:** [More Information Needed]
184
 
185
- ### Dataset Sources [optional]
 
186
 
187
- <!-- Provide the basic links for the dataset. -->
188
 
189
- - **Repository:** [More Information Needed]
190
- - **Paper [optional]:** [More Information Needed]
191
- - **Demo [optional]:** [More Information Needed]
192
 
193
- ## Uses
 
194
 
195
- <!-- Address questions around how the dataset is intended to be used. -->
 
 
 
 
 
 
 
 
196
 
197
- ### Direct Use
198
 
199
- <!-- This section describes suitable use cases for the dataset. -->
 
200
 
201
- [More Information Needed]
 
 
 
 
 
 
 
202
 
203
- ### Out-of-Scope Use
 
 
 
204
 
205
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
206
-
207
- [More Information Needed]
208
 
209
  ## Dataset Structure
210
 
211
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
212
-
213
- [More Information Needed]
214
-
215
- ## Dataset Creation
216
-
217
- ### Curation Rationale
218
-
219
- <!-- Motivation for the creation of this dataset. -->
220
-
221
- [More Information Needed]
222
-
223
- ### Source Data
224
-
225
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
226
-
227
- #### Data Collection and Processing
228
-
229
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
230
-
231
- [More Information Needed]
232
-
233
- #### Who are the source data producers?
234
-
235
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
236
-
237
- [More Information Needed]
238
-
239
- ### Annotations [optional]
240
 
241
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
 
 
 
 
 
 
 
 
 
242
 
243
- #### Annotation process
244
 
245
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
246
 
247
- [More Information Needed]
248
 
249
- #### Who are the annotators?
250
 
251
- <!-- This section describes the people or systems who created the annotations. -->
252
 
253
- [More Information Needed]
254
 
255
- #### Personal and Sensitive Information
256
 
257
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
258
 
259
- [More Information Needed]
 
 
260
 
261
- ## Bias, Risks, and Limitations
262
 
263
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
264
 
265
- [More Information Needed]
266
 
267
- ### Recommendations
268
 
269
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
270
 
271
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
 
272
 
273
- ## Citation [optional]
274
 
275
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
 
276
 
277
- **BibTeX:**
278
 
279
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
280
 
281
- **APA:**
282
 
283
- [More Information Needed]
284
 
285
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
286
 
287
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
288
 
289
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
290
 
291
- ## More Information [optional]
292
 
293
- [More Information Needed]
294
 
295
- ## Dataset Card Authors [optional]
296
 
297
- [More Information Needed]
298
 
299
- ## Dataset Card Contact
300
 
301
- [More Information Needed]
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ license: cc-by-nc-sa-4.0
5
+ size_categories:
6
+ - 10K<n<100K
7
+ task_categories:
8
+ - image-classification
9
+ - image-feature-extraction
10
+ pretty_name: Galaxy Zoo 2
11
+ arxiv: 2404.02973
12
+ tags:
13
+ - galaxy zoo
14
+ - physics
15
+ - astronomy
16
+ - galaxies
17
+ - citizen science
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ---
19
 
20
+ # GZ Campaign Datasets
21
 
22
+ ## Dataset Summary
23
 
24
+ [Galaxy Zoo](www.galaxyzoo.org) volunteers label telescope images of galaxies according to their visible features: spiral arms, galaxy-galaxy collisions, and so on.
25
+ These datasets share the galaxy images and volunteer labels in a machine-learning-friendly format. We use these datasets to train [our foundation models](https://arxiv.org/abs/2404.02973). We hope they'll help you too.
26
 
27
+ - **Curated by:** [Mike Walmsley](https://walmsley.dev/)
28
+ - **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). We specifically require **all models trained on these datasets to be released as source code by publication**.
29
 
30
+ ## Downloading
31
 
32
+ Install the Datasets library
33
 
34
+ pip install datasets
35
 
36
+ and then log in to your HuggingFace account
37
 
38
+ huggingface-cli login
 
 
 
 
39
 
40
+ All unpublished* datasets are temporarily "gated" i.e. you must have requested and been approved for access. Galaxy Zoo team members should go to https://huggingface.co/mwalmsley/datasets/gz2, click "request access", ping Mike, then wait for approval.
41
+ Gating will be removed on publication.
42
 
43
+ *Currently: the `gz_h2o` and `gz_ukidss` datasets
44
 
45
+ ## Usage
 
 
46
 
47
+ ```python
48
+ from datasets import load_dataset
49
 
50
+ # . split='train' picks which split to load
51
+ dataset = load_dataset(
52
+ 'mwalmsley/gz2', # each dataset has a random fixed train/test split
53
+ split='train'
54
+ # some datasets also allow name=subset (e.g. name="tiny" for gz_evo). see the viewer for subset options
55
+ )
56
+ dataset.set_format('torch') # your framework of choice e.g. numpy, tensorflow, jax, etc
57
+ print(dataset_name, dataset[0]['image'].shape)
58
+ ```
59
 
60
+ Then use the `dataset` object as with any other HuggingFace dataset, e.g.,
61
 
62
+ ```python
63
+ from torch.utils.data import DataLoader
64
 
65
+ dataloader = DataLoader(ds, batch_size=4, num_workers=1)
66
+ for batch in dataloader:
67
+ print(batch.keys())
68
+ # the image key, plus a key counting the volunteer votes for each answer
69
+ # (e.g. smooth-or-featured-gz2_smooth)
70
+ print(batch['image'].shape)
71
+ break
72
+ ```
73
 
74
+ You may find these HuggingFace docs useful:
75
+ - [PyTorch loading options](https://huggingface.co/docs/datasets/en/use_with_pytorch#data-loading).
76
+ - [Applying transforms/augmentations](https://huggingface.co/docs/datasets/en/image_process#apply-transforms).
77
+ - [Frameworks supported](https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes#datasets.Dataset.set_format) by `set_format`.
78
 
 
 
 
79
 
80
  ## Dataset Structure
81
 
82
+ Each dataset is structured like:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ ```json
85
+ {
86
+ 'image': ..., # image of a galaxy
87
+ 'smooth-or-featured-[campaign]_smooth': 4,
88
+ 'smooth-or-featured-[campaign]_featured-or-disk': 12,
89
+ ... # and so on for many questions and answers
90
+ }
91
+ ```
92
+
93
+ Images are loaded according to your `set_format` choice above. For example, ```set_format("torch")``` gives a (3, 424, 424) CHW `Torch.Tensor`.
94
 
95
+ The other keys are formatted like `[question]_[answer]`, where `question` is what the volunteers were asked (e.g. "smooth or featured?" and `answer` is the choice selected (e.g. "smooth"). **The values are the count of volunteers who selected each answer.**
96
 
97
+ `question` is appended with a string noting in which Galaxy Zoo campaign this question was asked e.g. `smooth-or-featured-gz2`. For most datasets, all questions were asked during the same campaign. For GZ DESI, there are three campaigns (`dr12`, `dr5`, and `dr8`) with very similar questions.
98
 
99
+ GZ Evo combines all the published datasets (currently GZ2, GZ DESI, GZ CANDELS, GZ Hubble, and GZ UKIDSS) into a single dataset aimed at multi-task learning. This is helpful for [building models that adapt to new tasks and new telescopes]((https://arxiv.org/abs/2404.02973)).
100
 
101
+ (we will shortly add keys for the astronomical identifiers i.e. the sky coordinates and telescope source unique ids)
102
 
 
103
 
104
+ ## Key Limitations
105
 
106
+ Because the volunteers are answering a decision tree, the questions asked depend on the previous answers, and so each galaxy and each question can have very different total numbers of votes. This interferes with typical metrics that use aggregated labels (e.g. classification of the most voted, regression on the mean vote fraction, etc.) because we have different levels of confidence in the aggregated labels for each galaxy. We suggest a custom loss to handle this. Please see the Datasets and Benchmarks paper for more details (under review, sorry).
107
 
 
108
 
109
+ All labels are imperfect. The vote counts may not always reflect the true appearance of each galaxy. Additionally,
110
+ the true appearance of each galaxy may be uncertain - even to expert astronomers.
111
+ We therefore caution against over-interpreting small changes in performance to indicate a method is "superior". **These datasets should not be used as a precise performance benchmark.**
112
 
 
113
 
114
+ ## Citation Information
115
 
116
+ The machine-learning friendly versions of each dataset are described in a recently-submitted paper. Citation information will be added if accepted.
117
 
118
+ For each specific dataset you use, please also cite the original Galaxy Zoo data release paper (listed below) and the telescope description paper (cited therein).
119
 
120
+ ### Galaxy Zoo 2
121
 
122
+ @article{10.1093/mnras/stt1458,
123
+ author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
124
+ title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
125
+ journal = {Monthly Notices of the Royal Astronomical Society},
126
+ volume = {435},
127
+ number = {4},
128
+ pages = {2835-2860},
129
+ year = {2013},
130
+ month = {09},
131
+ issn = {0035-8711},
132
+ doi = {10.1093/mnras/stt1458},
133
+ }
134
 
135
+ ### Galaxy Zoo Hubble
136
 
137
+ @article{2017MNRAS.464.4176W,
138
+ author = {Willett, Kyle W. and Galloway, Melanie A. and Bamford, Steven P. and Lintott, Chris J. and Masters, Karen L. and Scarlata, Claudia and Simmons, B.~D. and Beck, Melanie and {Cardamone}, Carolin N. and Cheung, Edmond and Edmondson, Edward M. and Fortson, Lucy F. and Griffith, Roger L. and H{\"a}u{\ss}ler, Boris and Han, Anna and Hart, Ross and Melvin, Thomas and Parrish, Michael and Schawinski, Kevin and Smethurst, R.~J. and {Smith}, Arfon M.},
139
+ title = "{Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging}",
140
+ journal = {Monthly Notices of the Royal Astronomical Society},
141
+ year = 2017,
142
+ month = feb,
143
+ volume = {464},
144
+ number = {4},
145
+ pages = {4176-4203},
146
+ doi = {10.1093/mnras/stw2568}
147
+ }
148
 
149
+ ### Galaxy Zoo CANDELS
150
 
151
+ @article{10.1093/mnras/stw2587,
152
+ author = {Simmons, B. D. and Lintott, Chris and Willett, Kyle W. and Masters, Karen L. and Kartaltepe, Jeyhan S. and Häußler, Boris and Kaviraj, Sugata and Krawczyk, Coleman and Kruk, S. J. and McIntosh, Daniel H. and Smethurst, R. J. and Nichol, Robert C. and Scarlata, Claudia and Schawinski, Kevin and Conselice, Christopher J. and Almaini, Omar and Ferguson, Henry C. and Fortson, Lucy and Hartley, William and Kocevski, Dale and Koekemoer, Anton M. and Mortlock, Alice and Newman, Jeffrey A. and Bamford, Steven P. and Grogin, N. A. and Lucas, Ray A. and Hathi, Nimish P. and McGrath, Elizabeth and Peth, Michael and Pforr, Janine and Rizer, Zachary and Wuyts, Stijn and Barro, Guillermo and Bell, Eric F. and Castellano, Marco and Dahlen, Tomas and Dekel, Avishai and Ownsworth, Jamie and Faber, Sandra M. and Finkelstein, Steven L. and Fontana, Adriano and Galametz, Audrey and Grützbauch, Ruth and Koo, David and Lotz, Jennifer and Mobasher, Bahram and Mozena, Mark and Salvato, Mara and Wiklind, Tommy},
153
+ title = "{Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS★}",
154
+ journal = {Monthly Notices of the Royal Astronomical Society},
155
+ volume = {464},
156
+ number = {4},
157
+ pages = {4420-4447},
158
+ year = {2016},
159
+ month = {10},
160
+ doi = {10.1093/mnras/stw2587}
161
+ }
162
 
163
+ ### Galaxy Zoo DESI
164
 
165
+ (two citations due to being released over two papers)
166
 
167
+ @article{10.1093/mnras/stab2093,
168
+ author = {Walmsley, Mike and Lintott, Chris and Géron, Tobias and Kruk, Sandor and Krawczyk, Coleman and Willett, Kyle W and Bamford, Steven and Kelvin, Lee S and Fortson, Lucy and Gal, Yarin and Keel, William and Masters, Karen L and Mehta, Vihang and Simmons, Brooke D and Smethurst, Rebecca and Smith, Lewis and Baeten, Elisabeth M and Macmillan, Christine},
169
+ title = "{Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies}",
170
+ journal = {Monthly Notices of the Royal Astronomical Society},
171
+ volume = {509},
172
+ number = {3},
173
+ pages = {3966-3988},
174
+ year = {2021},
175
+ month = {09},
176
+ issn = {0035-8711},
177
+ doi = {10.1093/mnras/stab2093}
178
+ }
179
 
 
180
 
181
+ @article{10.1093/mnras/stad2919,
182
+ author = {Walmsley, Mike and Géron, Tobias and Kruk, Sandor and Scaife, Anna M M and Lintott, Chris and Masters, Karen L and Dawson, James M and Dickinson, Hugh and Fortson, Lucy and Garland, Izzy L and Mantha, Kameswara and O’Ryan, David and Popp, Jürgen and Simmons, Brooke and Baeten, Elisabeth M and Macmillan, Christine},
183
+ title = "{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}",
184
+ journal = {Monthly Notices of the Royal Astronomical Society},
185
+ volume = {526},
186
+ number = {3},
187
+ pages = {4768-4786},
188
+ year = {2023},
189
+ month = {09},
190
+ issn = {0035-8711},
191
+ doi = {10.1093/mnras/stad2919}
192
+ }
193
 
 
194
 
195
+ ### Galaxy Zoo UKIDSS
196
 
197
+ Not yet published.
198
 
199
+ ### Galaxy Zoo Cosmic Dawn (a.k.a. H2O)
200
 
 
201
 
202
+ Not yet published.