![albertvillanova's picture](https://cdn-avatars.huggingface.co/v1/production/uploads/1606406298765-noauth.jpeg)
albertvillanova
HF staff
Pass file object instead of non-supported URL string to np.load
784a4da
verified
"""Corrupted Fashion-Mnist Data Set. | |
This module contains the huggingface dataset adaptation of | |
the Corrupted Fashion-Mnist Data Set. | |
Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`.""" | |
import struct | |
import datasets | |
import numpy as np | |
from datasets.tasks import ImageClassification | |
_CITATION = """\ | |
@inproceedings{Weiss2022SimpleTechniques, | |
title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning}, | |
author={Weiss, Michael and Tonella, Paolo}, | |
booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis}, | |
year={2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset. | |
This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist | |
dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al. | |
""" | |
CONFIG = datasets.BuilderConfig( | |
name="fashion_mnist_corrupted", | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
) | |
_HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c" | |
_LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE" | |
if CONFIG.version == datasets.Version("1.0.0"): | |
tag = "v1.0.0" | |
else: | |
raise ValueError("Unsupported version.") | |
_URL = ( | |
f"https://raw.githubusercontent.com/testingautomated-usi/fashion-mnist-c/{tag}/generated/npy/" | |
) | |
_URLS = { | |
"train_images": "fmnist-c-train.npy", | |
"train_labels": "fmnist-c-train-labels.npy", | |
"test_images": "fmnist-c-test.npy", | |
"test_labels": "fmnist-c-test-labels.npy", | |
} | |
_NAMES = [ | |
"T - shirt / top", | |
"Trouser", | |
"Pullover", | |
"Dress", | |
"Coat", | |
"Sandal", | |
"Shirt", | |
"Sneaker", | |
"Bag", | |
"Ankle boot", | |
] | |
class FashionMnistCorrupted(datasets.GeneratorBasedBuilder): | |
"""FashionMNIST-Corrupted Data Set""" | |
BUILDER_CONFIGS = [CONFIG] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"label": datasets.features.ClassLabel(names=_NAMES), | |
} | |
), | |
supervised_keys=("image", "label"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
task_templates=[ | |
ImageClassification(image_column="image", label_column="label") | |
], | |
) | |
def _split_generators(self, dl_manager): | |
urls_to_download = { | |
key: _URL + fname for key, fname in _URLS.items() | |
} | |
downloaded_files = dl_manager.download(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": [ | |
downloaded_files["train_images"], | |
downloaded_files["train_labels"], | |
], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": [ | |
downloaded_files["test_images"], | |
downloaded_files["test_labels"], | |
], | |
"split": "test", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""This function returns the examples in the raw form.""" | |
# Images | |
with open(filepath[0], "rb") as f: | |
images = np.load(f) | |
with open(filepath[1], "rb") as f: | |
labels = np.load(f) | |
if images.shape[0] != labels.shape[0]: | |
raise ValueError( | |
f"Number of images {images.shape[0]} and labels {labels.shape[0]} do not match." | |
) | |
for idx in range(images.shape[0]): | |
yield idx, {"image": images[idx], "label": int(labels[idx])} | |