Delete fashion_mnist_c.py
Browse files- fashion_mnist_c.py +0 -127
fashion_mnist_c.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
"""Corrupted Fashion-Mnist Data Set.
|
2 |
-
|
3 |
-
This module contains the huggingface dataset adaptation of
|
4 |
-
the Corrupted Fashion-Mnist Data Set.
|
5 |
-
Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`."""
|
6 |
-
import struct
|
7 |
-
|
8 |
-
import datasets
|
9 |
-
import numpy as np
|
10 |
-
from datasets.tasks import ImageClassification
|
11 |
-
|
12 |
-
_CITATION = """\
|
13 |
-
@inproceedings{Weiss2022SimpleTechniques,
|
14 |
-
title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning},
|
15 |
-
author={Weiss, Michael and Tonella, Paolo},
|
16 |
-
booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis},
|
17 |
-
year={2022}
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
|
21 |
-
_DESCRIPTION = """\
|
22 |
-
Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset.
|
23 |
-
This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist
|
24 |
-
dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al.
|
25 |
-
"""
|
26 |
-
|
27 |
-
CONFIG = datasets.BuilderConfig(name="fashion_mnist_corrupted",
|
28 |
-
version=datasets.Version("1.0.0"),
|
29 |
-
description=_DESCRIPTION, )
|
30 |
-
|
31 |
-
_HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c"
|
32 |
-
_LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE"
|
33 |
-
|
34 |
-
if CONFIG.version == datasets.Version("1.0.0"):
|
35 |
-
_CURRENT_VERSION_TAG = "e31d36a102cdd8c5e2690533eb2aaec7c296fcb6"
|
36 |
-
else:
|
37 |
-
raise ValueError("Unsupported version.")
|
38 |
-
|
39 |
-
_URL = f"https://github.com/testingautomated-usi/fashion-mnist-c/blob/{_CURRENT_VERSION_TAG}/generated/ubyte/"
|
40 |
-
|
41 |
-
_URLS = {
|
42 |
-
"train_images": "fmnist-c-train-ubyte.gz",
|
43 |
-
"train_labels": "fmnist-c-train-labels-ubyte.gz",
|
44 |
-
"test_images": "fmnist-c-test-ubyte.gz",
|
45 |
-
"test_labels": "fmnist-c-test-labels-ubyte.gz",
|
46 |
-
}
|
47 |
-
|
48 |
-
_NAMES = [
|
49 |
-
"T - shirt / top",
|
50 |
-
"Trouser",
|
51 |
-
"Pullover",
|
52 |
-
"Dress",
|
53 |
-
"Coat",
|
54 |
-
"Sandal",
|
55 |
-
"Shirt",
|
56 |
-
"Sneaker",
|
57 |
-
"Bag",
|
58 |
-
"Ankle boot",
|
59 |
-
]
|
60 |
-
|
61 |
-
|
62 |
-
class FashionMnistCorrupted(datasets.GeneratorBasedBuilder):
|
63 |
-
"""FashionMNIST-Corrupted Data Set"""
|
64 |
-
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
CONFIG
|
67 |
-
]
|
68 |
-
|
69 |
-
def _info(self):
|
70 |
-
return datasets.DatasetInfo(
|
71 |
-
description=_DESCRIPTION,
|
72 |
-
features=datasets.Features(
|
73 |
-
{
|
74 |
-
"image": datasets.Image(),
|
75 |
-
"label": datasets.features.ClassLabel(names=_NAMES),
|
76 |
-
}
|
77 |
-
),
|
78 |
-
supervised_keys=("image", "label"),
|
79 |
-
homepage=_HOMEPAGE,
|
80 |
-
citation=_CITATION,
|
81 |
-
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
82 |
-
)
|
83 |
-
|
84 |
-
def _split_generators(self, dl_manager):
|
85 |
-
urls_to_download = {key: _URL + fname + "?raw=true" for key, fname in _URLS.items()}
|
86 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
87 |
-
|
88 |
-
return [
|
89 |
-
datasets.SplitGenerator(
|
90 |
-
name=datasets.Split.TRAIN,
|
91 |
-
gen_kwargs={
|
92 |
-
"filepath": [downloaded_files["train_images"], downloaded_files["train_labels"]],
|
93 |
-
"split": "train",
|
94 |
-
},
|
95 |
-
),
|
96 |
-
datasets.SplitGenerator(
|
97 |
-
name=datasets.Split.TEST,
|
98 |
-
gen_kwargs={
|
99 |
-
"filepath": [downloaded_files["test_images"], downloaded_files["test_labels"]],
|
100 |
-
"split": "test",
|
101 |
-
},
|
102 |
-
),
|
103 |
-
]
|
104 |
-
|
105 |
-
def _generate_examples(self, filepath, split):
|
106 |
-
"""This function returns the examples in the raw form."""
|
107 |
-
# Images
|
108 |
-
with open(filepath[0], "rb") as f:
|
109 |
-
# First 16 bytes contain some metadata
|
110 |
-
_ = f.read(4)
|
111 |
-
size = struct.unpack(">I", f.read(4))[0]
|
112 |
-
_ = f.read(8)
|
113 |
-
images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
|
114 |
-
|
115 |
-
# Labels
|
116 |
-
with open(filepath[1], "rb") as f:
|
117 |
-
# First 8 bytes contain some metadata
|
118 |
-
_ = f.read(8)
|
119 |
-
labels = np.frombuffer(f.read(), dtype=np.uint8)
|
120 |
-
|
121 |
-
for idx in range(size):
|
122 |
-
yield idx, {"image": images[idx], "label": int(labels[idx])}
|
123 |
-
|
124 |
-
|
125 |
-
# For local development / debugger support only
|
126 |
-
if __name__ == '__main__':
|
127 |
-
FashionMnistCorrupted().download_and_prepare()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|