mweiss commited on
Commit
2fb8c19
·
1 Parent(s): a55035b

Delete fashion_mnist_c.py

Browse files
Files changed (1) hide show
  1. fashion_mnist_c.py +0 -127
fashion_mnist_c.py DELETED
@@ -1,127 +0,0 @@
1
- """Corrupted Fashion-Mnist Data Set.
2
-
3
- This module contains the huggingface dataset adaptation of
4
- the Corrupted Fashion-Mnist Data Set.
5
- Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`."""
6
- import struct
7
-
8
- import datasets
9
- import numpy as np
10
- from datasets.tasks import ImageClassification
11
-
12
- _CITATION = """\
13
- @inproceedings{Weiss2022SimpleTechniques,
14
- title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning},
15
- author={Weiss, Michael and Tonella, Paolo},
16
- booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis},
17
- year={2022}
18
- }
19
- """
20
-
21
- _DESCRIPTION = """\
22
- Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset.
23
- This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist
24
- dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al.
25
- """
26
-
27
- CONFIG = datasets.BuilderConfig(name="fashion_mnist_corrupted",
28
- version=datasets.Version("1.0.0"),
29
- description=_DESCRIPTION, )
30
-
31
- _HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c"
32
- _LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE"
33
-
34
- if CONFIG.version == datasets.Version("1.0.0"):
35
- _CURRENT_VERSION_TAG = "e31d36a102cdd8c5e2690533eb2aaec7c296fcb6"
36
- else:
37
- raise ValueError("Unsupported version.")
38
-
39
- _URL = f"https://github.com/testingautomated-usi/fashion-mnist-c/blob/{_CURRENT_VERSION_TAG}/generated/ubyte/"
40
-
41
- _URLS = {
42
- "train_images": "fmnist-c-train-ubyte.gz",
43
- "train_labels": "fmnist-c-train-labels-ubyte.gz",
44
- "test_images": "fmnist-c-test-ubyte.gz",
45
- "test_labels": "fmnist-c-test-labels-ubyte.gz",
46
- }
47
-
48
- _NAMES = [
49
- "T - shirt / top",
50
- "Trouser",
51
- "Pullover",
52
- "Dress",
53
- "Coat",
54
- "Sandal",
55
- "Shirt",
56
- "Sneaker",
57
- "Bag",
58
- "Ankle boot",
59
- ]
60
-
61
-
62
- class FashionMnistCorrupted(datasets.GeneratorBasedBuilder):
63
- """FashionMNIST-Corrupted Data Set"""
64
-
65
- BUILDER_CONFIGS = [
66
- CONFIG
67
- ]
68
-
69
- def _info(self):
70
- return datasets.DatasetInfo(
71
- description=_DESCRIPTION,
72
- features=datasets.Features(
73
- {
74
- "image": datasets.Image(),
75
- "label": datasets.features.ClassLabel(names=_NAMES),
76
- }
77
- ),
78
- supervised_keys=("image", "label"),
79
- homepage=_HOMEPAGE,
80
- citation=_CITATION,
81
- task_templates=[ImageClassification(image_column="image", label_column="label")],
82
- )
83
-
84
- def _split_generators(self, dl_manager):
85
- urls_to_download = {key: _URL + fname + "?raw=true" for key, fname in _URLS.items()}
86
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
87
-
88
- return [
89
- datasets.SplitGenerator(
90
- name=datasets.Split.TRAIN,
91
- gen_kwargs={
92
- "filepath": [downloaded_files["train_images"], downloaded_files["train_labels"]],
93
- "split": "train",
94
- },
95
- ),
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TEST,
98
- gen_kwargs={
99
- "filepath": [downloaded_files["test_images"], downloaded_files["test_labels"]],
100
- "split": "test",
101
- },
102
- ),
103
- ]
104
-
105
- def _generate_examples(self, filepath, split):
106
- """This function returns the examples in the raw form."""
107
- # Images
108
- with open(filepath[0], "rb") as f:
109
- # First 16 bytes contain some metadata
110
- _ = f.read(4)
111
- size = struct.unpack(">I", f.read(4))[0]
112
- _ = f.read(8)
113
- images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
114
-
115
- # Labels
116
- with open(filepath[1], "rb") as f:
117
- # First 8 bytes contain some metadata
118
- _ = f.read(8)
119
- labels = np.frombuffer(f.read(), dtype=np.uint8)
120
-
121
- for idx in range(size):
122
- yield idx, {"image": images[idx], "label": int(labels[idx])}
123
-
124
-
125
- # For local development / debugger support only
126
- if __name__ == '__main__':
127
- FashionMnistCorrupted().download_and_prepare()