--- language: - en dataset_info: features: - name: id dtype: int64 - name: query dtype: string - name: product_title dtype: string - name: product_description dtype: string - name: median_relevance dtype: float64 - name: relevance_variance dtype: float64 - name: split dtype: string splits: - name: train num_bytes: 5156813 num_examples: 10158 - name: test num_bytes: 14636826 num_examples: 22513 download_size: 10796818 dataset_size: 19793639 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Crowdflower Search Results Relevance * Original source: https://www.kaggle.com/c/crowdflower-search-relevance/overview * More detailed version: https://data.world/crowdflower/ecommerce-search-relevance ## Citation ``` @misc{crowdflower-search-relevance, author = {AaronZukoff, Anna Montoya, JustinTenuto, Wendy Kan}, title = {Crowdflower Search Results Relevance}, publisher = {Kaggle}, year = {2015}, url = {https://kaggle.com/competitions/crowdflower-search-relevance} } ``` ## Code for generating data ```python # ! unzip train.csv.zip # ! unzip test.csv.zip df_comp = pd.concat([ pd.read_csv("./train.csv").assign(split="train"), pd.read_csv("./test.csv").assign(split="test"), ]) dataset = DatasetDict( train=Dataset.from_pandas(df_comp[df_comp["split"] == "train"].reset_index(drop=True)), test=Dataset.from_pandas(df_comp[df_comp["split"] == "test"].reset_index(drop=True)), ) dataset.push_to_hub("napsternxg/kaggle_crowdflower_ecommerce_search_relevance") ```