Datasets:

ArXiv:
License:
ankurk017 commited on
Commit
491b661
·
verified ·
1 Parent(s): 757f3ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -170
README.md CHANGED
@@ -2,213 +2,118 @@
2
  license: mit
3
  ---
4
 
 
5
  # Dataset Card for WxC-Bench
6
 
7
- WxC-Bench is the Weather Insights and Novel Data for Systematic Evaluation and Testing dataset.
8
- WxC-Bench's goal is to provide a simple standard for evaluating the performance of Atmospheric and Earth Science AI over a range of tasks.
9
 
10
  ## Dataset Details
11
- WxC-Bench contains data for 6 tasks:
12
- - Nonlocal paramterization of gravity wave momentum flux
13
- - Prediction of aviation turbulence
14
- - Identifying weather analogs
15
- - Generating natural language forecasts
16
- - Long-term precipitation forecasting
17
- - Hurricane track and intensity prediction
18
-
19
- ### Dataset Description
20
-
21
- <!-- Provide a longer summary of what this dataset is. -->
22
- #### Nonlocal parameterization of gravity wave momentum flux
23
- The input variables contain three dynamical variables concatenated along the vertical dimension: zonal and meridional winds and potential temperature, and the output variables comprise of the zonal and meridional components of the vertical momentum fluxes due to gravity waves.
24
-
25
-
26
- - **Curated by:** [Aman Gupta](github.com/amangupta2)
27
- <!--- **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]-->
30
- - **License:** MIT License
31
-
32
- #### Generation of Natural Language-based Weather Forecast Reports
33
- Input contains HRRR re-analysis dataset with corresponding NOAA Storm Prediction Center Reports on a daily basis for January 2017 (1 month).
34
-
35
- - **Curated by:** [NASA IMPACT](github.com/nasa-impact)
36
- <!--- **Funded by [optional]:** [More Information Needed]
37
- - **Shared by [optional]:** [More Information Needed]
38
- - **Language(s) (NLP):** [More Information Needed]-->
39
- - **License:** MIT License
40
-
41
- #### Long-term precipitation forecast
42
-
43
- The long-term precipitation forecast datasets consists of global daily rainfall accumulations and corresponding global
44
- satellite observations derived from multiple sensors. The aim of the task is to predict the daily rainfall accumulations
45
- up to 28 days into the future.
46
-
47
-
48
- - **Curated by:** [Simon Pfreundschuh](github.com/simonpf) (Colorado State University)
49
 
50
- #### Aviation Turbulence Detection
 
 
 
 
 
 
51
 
52
- - **Curated by:** [NASA IMPACT](github.com/nasa-impact)
53
- <!--- **Funded by [optional]:** [More Information Needed]
54
- - **Shared by [optional]:** [More Information Needed]
55
- - **Language(s) (NLP):** [More Information Needed]-->
56
- - **License:** MIT License
57
-
58
- #### Hurricane Prediction and Intensity Estimation
59
-
60
- - **Curated by:** [NASA IMPACT](github.com/nasa-impact)
61
- <!--- **Funded by [optional]:** [More Information Needed]
62
- - **Shared by [optional]:** [More Information Needed]
63
- - **Language(s) (NLP):** [More Information Needed]-->
64
- - **License:** MIT License
65
-
66
- #### Weather Analog Search
67
-
68
- - **Curated by:** [NASA IMPACT](github.com/nasa-impact)
69
- <!--- **Funded by [optional]:** [More Information Needed]
70
- - **Shared by [optional]:** [More Information Needed]
71
- - **Language(s) (NLP):** [More Information Needed]-->
72
- - **License:** MIT License
73
-
74
-
75
- ### Dataset Sources [optional]
76
-
77
- <!-- Provide the basic links for the dataset. -->
78
-
79
- #### Nonlocal parameterization of gravity wave momentum flux
80
- The dataset was prepared using four years of ERA5 reanalysis data on model pressure levels. The top 15 levels (above 1 hPa) were discarded due to artificial damping by the mesospheric sponge.
81
- The input variables were obtained by conservatively coarsegraining the winds and temperature from the 0.3 deg uniform grid. The output variables
82
 
83
- - **Repository:** [More Information Needed]
84
- - **Paper [optional]:** [More Information Needed]
85
- - **Demo [optional]:** [More Information Needed]
86
 
87
- #### Long-term precipitation forecast
 
88
 
89
- The daily precipitation accumulations are derived from the PERSIANN CDR dataset up until June 2020 and from the
90
- IMERG final daily product.
91
 
92
- - Sorooshian, Soroosh; Hsu, Kuolin; Braithwaite, Dan; Ashouri, Hamed; and NOAA CDR Program (2014): NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1. NOAA National Centers for Environmental Information. doi:10.7289/V51V5BWQ, Accessed: 2023/12/01.
93
- - Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: 2023/12/01, 10.5067/GPM/IMERGDF/DAY/06
94
 
95
- The satellite observations are derived from the PATMOS-x, GridSat-B1, and the SSMI(S) brightness temperatures CDRs.
 
96
 
97
- - Foster, Michael J.; Phillips, Coda; Heidinger, Andrew K.; and NOAA CDR Program (2021): NOAA Climate Data Record (CDR) of Advanced Very High Resolution Radiometer (AVHRR) and High-resolution Infra-Red Sounder (HIRS) Reflectance, Brightness Temperature, and Cloud Products from Pathfinder Atmospheres - Extended (PATMOS-x), Version 6.0. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5X9287S, Accessed: 2023/12/01.
98
- - Kummerow, Christian D., Wesley K. Berg, Mathew R. P. Sapiano, and NOAA CDR Program (2013): NOAA Climate Data Record (CDR) of SSM/I and SSMIS Microwave Brightness Temperatures, CSU Version 1. NOAA National Climatic Data Center. doi:10.7289/V5CC0XMJ, Accessed 2023/12/01.
99
- Knapp, Kenneth R.; NOAA CDR Program; (2014): NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2. NOAA National Centers for Environmental Information. doi:10.7289/V59P2ZKR, Accessed: 2023/12/01.
100
 
101
- Finally, baseline forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office (UKMO) were downloaded from the S2S database.
 
102
 
103
- - Vitart et al.,The Sub-seasonal to Seasonal (S2S) Prediction Project Database. Bull. Amer. Meteor. Soc., 98(1), 163-176. doi: http://dx.doi.org/10.1175/BAMS-D-16-0017.1.
104
-
105
 
106
- <!-- ## Uses -->
 
107
 
108
- <!-- Address questions around how the dataset is intended to be used. -->
 
109
 
110
- <!-- ### Direct Use -->
 
111
 
112
- <!-- This section describes suitable use cases for the dataset. -->
 
113
 
114
- <!-- ### Out-of-Scope Use -->
115
 
116
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
 
117
 
 
 
118
 
119
  ## Dataset Structure
120
 
121
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
 
 
 
 
 
 
 
 
 
122
 
123
- Refer to individual directories for a corresponding downstream task.
124
-
125
- | WxC-Bench
126
- - | aviation_turbulence
127
- - | nonlocal_parameterization
128
- - | weather_analogs
129
- - | hurricane
130
- - | precipitation_forecast
131
- - | weather_forecast_discussion
132
- - | long_term_precipitation_forecast
133
 
134
  ## Dataset Creation
135
 
136
- <!-- ### Curation Rationale -->
137
-
138
- <!-- Motivation for the creation of this dataset. -->
139
 
140
- <!-- [More Information Needed] -->
141
 
142
- <!-- ### Source Data -->
143
 
144
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
145
-
146
- <!-- #### Data Collection and Processing -->
147
-
148
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
149
-
150
- <!-- #### Who are the source data producers? -->
151
-
152
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
153
-
154
-
155
- <!-- ### Annotations [optional] -->
156
-
157
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
158
-
159
- <!-- #### Annotation process -->
160
-
161
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
162
-
163
- <!-- #### Who are the annotators? -->
164
-
165
- <!-- This section describes the people or systems who created the annotations. -->
166
-
167
- <!-- #### Personal and Sensitive Information -->
168
-
169
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
170
-
171
-
172
- <!-- ## Bias, Risks, and Limitations (check inside folders) -->
173
-
174
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
175
-
176
- [More Information Needed]
177
-
178
- <!-- ### Recommendations -->
179
-
180
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
181
-
182
- <!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->
183
-
184
- ## Citation [optional]
185
-
186
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
187
 
188
  **BibTeX:**
189
 
190
- [More Information Needed]
191
 
192
  ## Dataset Card Authors
193
 
194
- - Rajat Shinde,
195
- - Christopher E. Phillips,
196
- - Sujit Roy,
197
- - Ankur Kumar,
198
- - Aman Gupta,
199
- - Simon Pfreundschuh,
200
- - Sheyenne Kirkland,
201
- - Vishal Gaur,
202
- - Amy Lin,
203
- - Aditi Sheshadri,
204
- - Manil Maskey, and
205
  - Rahul Ramachandran
206
 
207
- ## Dataset Card Contact
 
 
208
 
209
- - Nonlocal paramterization of gravity wave momentum flux - [Aman Gupta](https://www.github.com/amangupta2)
210
- - Prediction of aviation turbulence - [Christopher E. Phillips](https://www.github.com/sodoesaburningbus)
211
- - Identifying weather analogs - [Christopher E. Phillips], Rajat Shinde
212
- - Generating natural language forecasts - [Rajat Shinde](https://www.github.com/omshinde), Sujit Roy
213
- - Long-term precipitation forecasting - [Simon Pfreundschuh](https://www.github.com/simonpf)
214
- - Hurricane track and intensity prediction - [Ankur Kumar](https://www.github.com/ankurk017)
 
2
  license: mit
3
  ---
4
 
5
+
6
  # Dataset Card for WxC-Bench
7
 
8
+ **WxC-Bench** primary goal is to provide a standardized benchmark for evaluating the performance of AI models in Atmospheric and Earth Sciences across various tasks.
 
9
 
10
  ## Dataset Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ WxC-Bench contains datasets for six key tasks:
13
+ 1. **Nonlocal Parameterization of Gravity Wave Momentum Flux**
14
+ 2. **Prediction of Aviation Turbulence**
15
+ 3. **Identifying Weather Analogs**
16
+ 4. **Generation of Natural Language Weather Forecasts**
17
+ 5. **Long-Term Precipitation Forecasting**
18
+ 6. **Hurricane Track and Intensity Prediction**
19
 
20
+ ### Dataset Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ #### 1. Nonlocal Parameterization of Gravity Wave Momentum Flux
23
+ The input variables consist of three dynamic atmospheric variables (zonal and meridional winds and potential temperature), concatenated along the vertical dimension. The output variables are the zonal and meridional components of vertical momentum flux due to gravity waves.
 
24
 
25
+ - **Curated by:** [Aman Gupta](https://www.github.com/amangupta2)
26
+ <!-- - **License:** MIT License -->
27
 
28
+ #### 2. Generation of Natural Language Weather Forecasts
29
+ The dataset includes the HRRR re-analysis data paired with NOAA Storm Prediction Center daily reports for January 2017. This task aims to generate human-readable weather forecasts.
30
 
31
+ - **Curated by:** [NASA IMPACT](https://www.github.com/nasa-impact)
32
+ <!-- - **License:** MIT License -->
33
 
34
+ #### 3. Long-Term Precipitation Forecasting
35
+ This dataset contains daily global rainfall accumulation records and corresponding satellite observations. The goal is to predict rainfall up to 28 days in advance.
36
 
37
+ - **Curated by:** [Simon Pfreundschuh](https://www.github.com/simonpf) (Colorado State University)
 
 
38
 
39
+ #### 4. Aviation Turbulence Prediction
40
+ Aimed at detecting turbulence conditions that impact aviation safety.
41
 
42
+ - **Curated by:** [NASA IMPACT](https://www.github.com/nasa-impact)
43
+ <!-- - **License:** MIT License -->
44
 
45
+ #### 5. Hurricane Track and Intensity Prediction
46
+ Provides HURDAT2 data for predicting hurricane paths and intensity changes.
47
 
48
+ - **Curated by:** [NASA IMPACT](https://www.github.com/nasa-impact)
49
+ <!-- - **License:** MIT License -->
50
 
51
+ #### 6. Weather Analog Search
52
+ Data to identify analog weather patterns for improved forecasting.
53
 
54
+ - **Curated by:** [NASA IMPACT](https://www.github.com/nasa-impact)
55
+ <!-- - **License:** MIT License -->
56
 
57
+ ### Dataset Sources
58
 
59
+ #### Nonlocal Parameterization of Gravity Wave Momentum Flux
60
+ Developed using ERA5 reanalysis data (top 15 pressure levels above 1 hPa are excluded). Inputs were coarsely grained from winds and temperatures on a 0.3° grid.
61
 
62
+ #### Long-Term Precipitation Forecasting
63
+ Precipitation data sources include the PERSIANN CDR dataset (until June 2020) and IMERG final daily product. Satellite observations are sourced from PATMOS-x, GridSat-B1, and SSMI(S) brightness temperatures CDRs, with baseline forecasts from ECMWF and the UK Met Office S2S database.
64
 
65
  ## Dataset Structure
66
 
67
+ WxC-Bench datasets are organized by task directories:
68
+ | WxC-Bench |
69
+ |---------------------|
70
+ | aviation_turbulence |
71
+ | nonlocal_parameterization |
72
+ | weather_analogs |
73
+ | hurricane |
74
+ | precipitation_forecast |
75
+ | weather_forecast_discussion |
76
+ | long_term_precipitation_forecast |
77
 
78
+ Each directory contains datasets specific to the respective downstream tasks.
 
 
 
 
 
 
 
 
 
79
 
80
  ## Dataset Creation
81
 
82
+ ### Curation Rationale
83
+ The WxC-Bench dataset aims to create a unified standard for assessing AI models applied to complex meteorological and atmospheric science tasks.
 
84
 
85
+ ### Source Data
86
 
87
+ The datasets were created using multiple authoritative data sources, such as ERA5 reanalysis data, NOAA Storm Prediction Center reports, PERSIANN CDR, and IMERG products. Data processing involved spatial and temporal alignment, quality control, and variable normalization.
88
 
89
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  **BibTeX:**
92
 
93
+ *To be provided upon publication of the dataset.*
94
 
95
  ## Dataset Card Authors
96
 
97
+ - Rajat Shinde
98
+ - Christopher E. Phillips
99
+ - Sujit Roy
100
+ - Ankur Kumar
101
+ - Aman Gupta
102
+ - Simon Pfreundschuh
103
+ - Sheyenne Kirkland
104
+ - Vishal Gaur
105
+ - Amy Lin
106
+ - Aditi Sheshadri
107
+ - Manil Maskey
108
  - Rahul Ramachandran
109
 
110
+ ## Dataset Card Contact
111
+
112
+ For each task, please contact:
113
 
114
+ - **Nonlocal Parameterization of Gravity Wave Momentum Flux:** [Aman Gupta](https://www.github.com/amangupta2)
115
+ - **Aviation Turbulence Prediction:** [Christopher E. Phillips](https://www.github.com/sodoesaburningbus)
116
+ - **Identifying Weather Analogs:** Christopher E. Phillips, Rajat Shinde
117
+ - **Natural Language Weather Forecasts:** [Rajat Shinde](https://www.github.com/omshinde), Sujit Roy
118
+ - **Long-Term Precipitation Forecasting:** [Simon Pfreundschuh](https://www.github.com/simonpf)
119
+ - **Hurricane Track and Intensity Prediction:** [Ankur Kumar](https://www.github.com/ankurk017)