|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Beans leaf dataset with images of diseased and health leaves.""" |
|
|
|
from pathlib import Path |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_HOMEPAGE = "https://github.com/AI-Lab-Makerere/ibean/" |
|
|
|
_CITATION = """\ |
|
@ONLINE {beansdata, |
|
author="Makerere AI Lab", |
|
title="Bean disease dataset", |
|
month="January", |
|
year="2020", |
|
url="https://github.com/AI-Lab-Makerere/ibean/" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Beans is a dataset of images of beans taken in the field using smartphone |
|
cameras. It consists of 3 classes: 2 disease classes and the healthy class. |
|
Diseases depicted include Angular Leaf Spot and Bean Rust. Data was annotated |
|
by experts from the National Crops Resources Research Institute (NaCRRI) in |
|
Uganda and collected by the Makerere AI research lab. |
|
""" |
|
|
|
_URLS = { |
|
"train": "https://storage.googleapis.com/ibeans/train.zip", |
|
"validation": "https://storage.googleapis.com/ibeans/validation.zip", |
|
"test": "https://storage.googleapis.com/ibeans/test.zip", |
|
} |
|
|
|
_NAMES = ["angular_leaf_spot", "bean_rust", "healthy"] |
|
|
|
|
|
class Beans(datasets.GeneratorBasedBuilder): |
|
"""Beans plant leaf images dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image_file_path": datasets.Value("string"), |
|
"labels": datasets.features.ClassLabel(names=sorted(tuple(_NAMES))), |
|
} |
|
), |
|
supervised_keys=("image_file_path", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ |
|
ImageClassification( |
|
image_file_path_column="image_file_path", label_column="labels", labels=sorted(tuple(_NAMES)) |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive": data_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive": data_files["validation"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"archive": data_files["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive): |
|
labels = self.info.features["labels"] |
|
for i, path in enumerate(Path(archive).glob("**/*")): |
|
if path.suffix == ".jpg": |
|
yield i, dict(image_file_path=str(path), labels=labels.encode_example(path.parent.name.lower())) |
|
|