Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,467 Bytes
605bdce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import sys
import os

parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)

from utils import *

import matplotlib.pyplot as plt
import numpy as np

COUNTRY_ISO = {
    "UK": "GB", 
    "US": "US", 
    "South_Korea": "KR",
    "Algeria": "DZ",
    "China": "CN",
    "Indonesia": "ID",
    "Spain": "ES",
    "Iran": "IR",
    "Mexico":"MX",
    "Assam":"AS",
    "Greece":"GR",
    "Ethiopia":"ET",
    "Northern_Nigeria":"NG",
    "Azerbaijan":"AZ",
    "North_Korea":"KP",
    "West_Java":"JB"
}

LANG_CODE = {
    'English':'en',
    'Chinese':'zh',
    'Spanish':'es',
    'Indonesian':'id',
    'Greek':'el',
    'Sundanese':'su',
    'Azerbaijani':'az',
    'Korean':'ko',
    'Arabic':'ar',
    'Persian':'fa',
    'Assamese':'as',
    'Amharic':'am',
    'Hausa':'ha',
}

def get_questions(
    filename=None,
    data_dir=None,
    country=None,
    template='{country}_final_questions.csv'
):
    
    if filename == None:
        filename = template.replace('{country}',country.replace(' ','_'))
        
    if data_dir == None:
        assert 'ERROR: No data directory given'
        
    df = pd.read_csv(os.path.join(data_dir,filename),encoding='utf-8')
    
    return df

def get_annotations(
    filename=None,
    data_dir=None,
    country=None,
    template='{country}_data_aggregated.json'
    ):
    
    if filename == None:
        filename = template.replace('{country}',country.replace(' ','_'))
        
    if data_dir == None:
        assert 'ERROR: No data directory given'
    
    with open(os.path.join(data_dir,filename),'r') as f:
        country_data = json.load(f)
        
    return country_data

def get_model_response_file(
    filename=None,
    data_dir=None,
    model=None,
    country=None,
    language=None,
    prompt_no=None,
    template='{model}-{country}_{language}_{prompt_no}_result.csv'
    ):
    
    if filename == None:
        filename = template.replace('{model}',model).replace('{country}',country.replace(' ','_')).replace('{language}',language).replace('{prompt_no}',prompt_no)
        print(filename)
    if data_dir == None:
        assert 'ERROR: No data directory given' 
        
    model_res_df = pd.read_csv(os.path.join(data_dir,filename),encoding='utf-8')
    
    return model_res_df

def delete_prompt_from_answer(text,prompt):
    """
    The function `delete_prompt_from_answer` aims to remove 'Answer:' part from the LLM response if there is any.
    
    :param text: LLM response
    :return: LLM response with 'Answer:' part removed
    """
    
    # Regular expression to find a word followed by a colon, capturing the word before the last colon
    text =  text.replace(prompt,'').replace(':',':').replace('、',',').replace(',',',').replace('。','.').lower()
    prompt = prompt.replace(':',':').replace('、',',').replace(',',',').replace('。','.').lower()
    
    match = re.findall(r'^(\w+:)\s', text)
    extracted = ''
    for m in match:
        if len(m) > len(extracted) and m.replace(':','') in prompt:
            extracted = m
    
    if match:
        return text.replace(extracted,'').strip()  # Return the captured word
    else:
        return text.strip()  # Return an empty string if no pattern is found

def get_llm_response_by_id(res_df,qid,id_col,r_col):
    
    if qid not in set(res_df[id_col]):
        print(qid,'not in LLM response df')
        return None
    
    try:
        llm_response = res_df[res_df[id_col]==qid][r_col].values[-1]
        prompt = res_df[res_df[id_col]==qid]['prompt'].values[-1]

        llm_response = delete_prompt_from_answer(llm_response,prompt)
        llm_response = llm_response.strip('.').lower()

    except:
        print(res_df[res_df[id_col]==qid])
        llm_response = None
    return llm_response 

def get_nested_json_str(response):
    """Extract json object from LLM response

    Args:
        response (str): LLM response with JSON format included

    Returns:
        dict: Extracted json (dict) object
    """
    
    try:
        response = response.replace('\n','')
        if "{" not in response:
            print(response)
            return response
        
        response = response.replace('```json','').replace('`','').replace(',}','}')
        
        jsons = re.findall(r'{.+}',response)

        response = jsons[-1]
        json_object = json.loads(response)
    except:
        return response 


    return json_object