Datasets:
File size: 20,550 Bytes
605bdce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from evaluation_utils import *
from itertools import combinations
def no_common_word(s1,s2):
if is_float(s1) and is_float(s2):
if float(s1) == float(s2):
return False
else:
return True
if s1 in s2 or s2 in s1:
return False
def split_words(a):
if '/' in a:
a = a.split('/')
else:
a = [a]
tmp_a_list = []
for tmp_a in a:
tmp_a_list += tmp_a.split()
return tmp_a_list
s1 = split_words(s1)
s2 = split_words(s2)
if set(s1) & set(s2):
return False
else:
return True
def another_similar_term(question,answers,word,country1,country2):
if isinstance(answers,str):
answers = [answers]
simple_flag = False
all_floatortimeordate = True
for c in answers:
if is_float(c) and is_float(word):
if float(c) == float(word):
simple_flag = True
break
elif (is_date_format(c) and is_date_format(word)) or (is_time_format(c) and is_time_format(word)):
if c in word or word in c:
simple_flag=True
break
else:
all_floatortimeordate = False
if simple_flag:
return True
if all_floatortimeordate:
return False
prompt = """Determine if a 'target' word is the same in meaning(e.g., football & soccer or soccer & football) to at least one of the 'answer' words, or one is a subset to another(e.g., fruit & apple or apple & fruit). If so, the 'result' for 'target' word is 'O'. However, if the two simply falls into the same level of hierarchy, the 'result' is 'X' (banana & apple, rose & carnation).
Note that the 'answer' list is from 'answer_country,' and the 'target' word is from 'target_country,' as written by a person.
Write down your reasoning first. Do not write any other JSON formatted object in your answer except for the result JSON object, formatted as {"result":"O"} or {"result":"X"}.
"""
json_dict = {'answer':answers,'answer_country':country1,'target':word,'target_country':country2}
json_str = json.dumps(json_dict)
print(json_str)
prompt += json_str
prompt += '\n\nReasoning:'
res = inference_azure(prompt,model_name=MODEL_PATHS['gpt-4-1106-preview'])
res = res.replace('{result:','{"result":')
print(res)
json_res = get_json_str(res)
if type(json_res) == dict and 'result' in json_res:
if json_res['result'] == 'O':
return True
else:
return False
return True
def filter_mc_questions(original_questions_df,en_annotations,en_annotation_key,mc_dir):
filtered_questions_df = original_questions_df.copy()
for i,row in original_questions_df.iterrows():
qid = row['ID']
has_idk = False
small_max_vote = False
for country in en_annotations.keys():
country_annotation = en_annotations[country]
if qid in country_annotation:
country_annotation_qid = country_annotation[qid]
if ('not-applicable' in country_annotation_qid['idks'] and country_annotation_qid['idks']['not-applicable']>0) or sum(country_annotation_qid['idks'].values()) > 2:
print('idks:',country_annotation_qid['idks'])
has_idk = True
elif country_annotation_qid['aggregated_answers'] and country_annotation_qid['aggregated_answers'][0][en_annotation_key] and country_annotation_qid['aggregated_answers'][0]['count'] < 2:
small_max_vote = True
if has_idk or small_max_vote:
filtered_questions_df = filtered_questions_df.drop(i)
print(qid,country,has_idk,small_max_vote)
break
print('Leftover questions:',len(filtered_questions_df))
filtered_questions_df.to_csv(os.path.join(mc_dir,'filtered_questions.csv'),index=False,encoding='utf-8')
return filtered_questions_df
def generate_answer_choices(country_list,annotation_data_dir,annotation_data_template,question_dir,question_data_template,id_col,question_col,en_annotation_key,mc_dir,output_filename='unique_answer_choice.json'):
country_unique_answer_choice = dict()
if os.path.exists(os.path.join(mc_dir,output_filename)):
with open(os.path.join(mc_dir,output_filename),'r') as f:
country_unique_answer_choice = json.load(f)
final_questions = get_questions(data_dir=question_dir,country=country_list[0],template=question_data_template)
english_annotations = {country:get_annotations(data_dir=annotation_data_dir,country=country,template=annotation_data_template) for country in country_list}
filtered_questions = filter_mc_questions(final_questions,english_annotations,en_annotation_key,mc_dir)
same_dict = defaultdict(dict)
if os.path.exists(os.path.join(mc_dir,'dictionary.json')):
with open(os.path.join(mc_dir,'dictionary.json'),'r') as f:
_same_dict = json.load(f)
for k,v in _same_dict.items():
same_dict[k] = v
for i,row in tqdm(filtered_questions.iterrows(),total=len(filtered_questions)):
qid = row[id_col]
if qid in country_unique_answer_choice and country_list[-1] in country_unique_answer_choice[qid]['annotations']:
continue
print(row[question_col])
each_qid_dict = dict()
each_qid_dict['question'] = row[question_col]
each_qid_dict['annotations'] = dict()
for country in country_list:
each_country_dict = dict()
annotations = {data[en_annotation_key][0]:data['count'] for data in english_annotations[country][qid]['aggregated_answers'] if len(data[en_annotation_key]) > 0}
print(annotations)
blocked = set()
if annotations:
max_vote = max(list(annotations.values()))
if 'HH:MM' in row[question_col]:
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_time_format(k)]
tmp = {k:v for k,v in annotations.items() if is_time_format(k)}
annotations = tmp
elif 'MM/DD' in row[question_col]:
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_date_format(k)]
tmp = {k:v for k,v in annotations.items() if is_date_format(k)}
annotations = tmp
elif 'Arabic' in row[question_col]:
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_float(k)]
tmp = {k:v for k,v in annotations.items() if is_float(k)}
annotations = tmp
else:
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote]
choices = dict()
other_countries_annotations = {
other_country: {data[en_annotation_key][0]:data['count'] for data in english_annotations[other_country][qid]['aggregated_answers'] if len(data[en_annotation_key]) > 0}
for other_country in country_list if other_country != country
}
print(other_countries_annotations)
all_answer_choices = sorted(
[(vote_count, answer, other_country)
for other_country, other_annotations in other_countries_annotations.items()
for answer, vote_count in other_annotations.items()
if vote_count >= 2],
key=lambda x: x[0], reverse=True
)
print(all_answer_choices)
for vote_count, answer, other_country in all_answer_choices:
if other_country in choices:
continue
if answer in blocked:
continue
if 'HH:MM' in row[question_col] and not is_time_format(answer):
continue
elif 'MM/DD' in row[question_col] and not is_date_format(answer):
continue
elif 'Arabic' in row[question_col] and not is_float(answer):
continue
flag = True
for candidate in annotations.keys():
if candidate in same_dict and answer in same_dict[candidate] and same_dict[candidate][answer]:
flag = False
break
flag = no_common_word(answer,candidate)
if not flag:
same_dict[candidate][answer] = not flag
same_dict[answer][candidate] = not flag
blocked.add(answer)
break
if flag:
final_flag = True
for k,c in choices.items():
if c in same_dict and answer in same_dict[c]:
if same_dict[c][answer]:
blocked.add(answer)
final_flag=False
break
else:
continue
if not no_common_word(c,answer) or another_similar_term(each_qid_dict['question'],c,answer,k,other_country):
final_flag=False
same_dict[answer][c] = True
same_dict[c][answer] = True
blocked.add(answer)
else:
same_dict[answer][c] = False
same_dict[c][answer] = False
if not final_flag:
break
if final_flag:
all_checked = True
at_least_one = False
for candidate in annotations.keys():
if not (candidate in same_dict and answer in same_dict[candidate]):
all_checked = False
if candidate in same_dict and answer in same_dict[candidate] and same_dict[candidate][answer]:
at_least_one = True
if not all_checked or at_least_one:
break
print('all_checked',all_checked)
print('at_least_one',at_least_one)
if answer in same_dict:
print(same_dict[answer])
if at_least_one:
blocked.add(answer)
continue
elif all_checked or not another_similar_term(each_qid_dict['question'],list(annotations.keys()),answer,country,other_country):
choices[other_country] = answer
if not all_checked:
for candidate in annotations.keys():
same_dict[candidate][answer] = False
same_dict[answer][candidate] = False
else:
blocked.add(answer)
each_country_dict['choices'] = choices
with open(os.path.join(mc_dir,'dictionary.json'),'w') as f:
json.dump(same_dict,f,indent=4,ensure_ascii=False)
each_qid_dict[country] = each_country_dict
each_qid_dict['annotations'][country] = annotations
print(each_qid_dict)
country_unique_answer_choice[qid] = each_qid_dict
with open(os.path.join(mc_dir,output_filename),'w') as f:
json.dump(country_unique_answer_choice,f,indent=4,ensure_ascii=False)
def generate_prompt_mc(question,country,answers,choices,min_choice,dummy_choices):
res = []
for answer in answers:
if country in ['US','UK']:
prompt = question.replace('your country',f'the {country}')
else:
prompt = question.replace('your country',country.replace('_',' '))
prompt += ' Without any explanation, choose only one from the given alphabet choices(e.g., A, B, C). Provide as JSON format: {"answer_choice":""}\n\n'
for chosen_choices in combinations(choices.items(),min_choice):
all_choices = sorted([(v,k) for k,v in chosen_choices]+[(answer,country)]+[(dummy,'dummy') for dummy in dummy_choices])
all_choices_idx = dict()
all_choices_country = dict()
answer_idx = -1
this_prompt = prompt
for i,(a,a_country) in enumerate(all_choices):
if a == answer:
answer_idx = chr(ord('A')+i)
all_choices_idx[chr(ord('A')+i)] = a
all_choices_country[chr(ord('A')+i)] = a_country
this_prompt += f'{chr(ord("A")+i)}. {a}\n'
this_prompt += '\nAnswer:'
res.append((this_prompt,all_choices_idx,all_choices_country,answer_idx))
return res
def get_dummy_choices(question,annotations,num):
prompt = 'Provide '+str(num)+' dummy option(s) that makes sense to be the answer(s) of the given "question", and has to exist in real-life (non-fiction), but is totally different from the given "answers" without any explanation. Make sure that the options are different from each other, and cannot be an answer from any country. Provide as JSON format: {"dummy_options":[]}\n\n'
json_str = json.dumps({'question':question,'answers':list(set([v for k in annotations for v in annotations[k] ]))},ensure_ascii=False, indent=4)
prompt += json_str
print(prompt)
while True:
res = inference_azure(prompt,temperature=1,top_p=1,model_name=MODEL_PATHS['gpt-4-1106-preview'])
res = res.replace('{dummy_options:','{"dummy_options":')
json_res = get_json_str(res)
print(json_res)
if type(json_res) == dict and 'dummy_options' in json_res and type(json_res['dummy_options']) == list and len(json_res['dummy_options']) == num and len(set(json_res['dummy_options']))==num and len(set(json_res['dummy_options'])&set([v for k in annotations for v in annotations[k]])) == 0:
return [s.lower() for s in json_res['dummy_options']]
def generate_multiple_choice(country_list,mc_dir,answer_choice_file,questions_file,generate_dummy=True):
with open(os.path.join(mc_dir,answer_choice_file),'r') as f:
answer_choices = json.load(f)
if os.path.exists(os.path.join(mc_dir,questions_file)):
os.remove(os.path.join(mc_dir,questions_file))
write_csv_row(['MCQID','ID','country','prompt','choices','choice_countries','answer_idx'],os.path.join(mc_dir,questions_file))
pb = tqdm(answer_choices,total=len(answer_choices))
for qid in pb:
pb.set_description(qid)
question = answer_choices[qid]['question']
cnt = 0
# check the minimum number of answer_choices[qid][country]['choices']
min_choice = min([len(answer_choices[qid][country]['choices']) for country in country_list])
dummy_choices = []
if min_choice < 3:
if generate_dummy and 'dummy_choices' not in answer_choices[qid][country]:
dummy_choices = get_dummy_choices(question,answer_choices[qid]['annotations'],3-min_choice)
answer_choices[qid][country]['dummy_choices'] = dummy_choices
with open(os.path.join(mc_dir,answer_choice_file),'w') as f:
json.dump(answer_choices,f,indent=4,ensure_ascii=False)
elif 'dummy_choices' in answer_choices[qid][country]:
dummy_choices = answer_choices[qid][country]['dummy_choices']
else:
print('ERROR: No dummy choices for',qid,'in',country,'and min_choice:',min_choice)
continue
for country in country_list:
pb.set_postfix({'country':country})
prompt_questions = generate_prompt_mc(question,country,answer_choices[qid][country]['answer'],answer_choices[qid][country]['choices'],min(min_choice,3),dummy_choices)
if prompt_questions:
for q,choices,choice_countries,answer_idx in prompt_questions:
write_csv_row([f'{qid}_{cnt}',qid,country,q,json.dumps(choices,indent=4,ensure_ascii=False),json.dumps(choice_countries,indent=4,ensure_ascii=False),answer_idx],os.path.join(mc_dir,questions_file))
cnt += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Choose your model(s) & language(s)')
parser.add_argument('--id_col',type=str,default='ID',
help='Provide the column name from the final question file name with question IDs.')
parser.add_argument('--question_col',type=str,default='Question',
help='Provide the column name from the final question file name with questions.')
parser.add_argument('--question_dir',type=str,default='../data/questions/',
help='Provide the directory for the output files to be saved.')
parser.add_argument('--question_data_template',type=str,default='{country}_questions.csv',
help='Provide the filename template of the question data file.')
parser.add_argument('--annotation_dir',type=str,default='../data/annotations/',
help='Provide the directory for the data files from the human annotators.')
parser.add_argument('--annotation_data_template',type=str,default='{country}_data.json',)
parser.add_argument('--mc_dir',type=str,default='./mc_data',
help='Provide the directory for the data files from the human annotators.')
parser.add_argument('--answer_choice_file',type=str,default='unique_answer_choice.json',
help='Provide the directory for the data files from the human annotators.')
parser.add_argument('--mc_questions_file',type=str,default='mc_questions_file.csv',
help='Provide the directory for the data files from the human annotators.')
parser.add_argument('--en_annotation_key',type=str,default='en_answers',
help='Provide the directory for the data files from the human annotators.')
args = parser.parse_args()
if not os.path.exists(args.mc_dir):
os.mkdir(args.mc_dir)
country_list = list(COUNTRY_LANG.keys())
print(country_list)
generate_answer_choices(country_list=country_list,
annotation_data_dir=args.annotation_dir,
annotation_data_template=args.annotation_data_template,
question_dir=args.question_dir,
question_data_template=args.question_data_template,
id_col=args.id_col,
question_col=args.question_col,
en_annotation_key=args.en_annotation_key,
mc_dir=args.mc_dir,
output_filename=args.answer_choice_file)
generate_multiple_choice(country_list=country_list,
mc_dir=args.mc_dir,
answer_choice_file=args.answer_choice_file,
questions_file=args.mc_questions_file) |