Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
Thai
Size:
100K - 1M
Tags:
word-tokenization
License:
from __future__ import absolute_import, division, print_function | |
import os | |
from functools import reduce | |
from pathlib import Path | |
import datasets | |
_CITATION = """\ | |
@inproceedings{kosawat2009best, | |
title={BEST 2009: Thai word segmentation software contest}, | |
author={Kosawat, Krit and Boriboon, Monthika and Chootrakool, Patcharika and Chotimongkol, Ananlada and Klaithin, Supon and Kongyoung, Sarawoot and Kriengket, Kanyanut and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and others}, | |
booktitle={2009 Eighth International Symposium on Natural Language Processing}, | |
pages={83--88}, | |
year={2009}, | |
organization={IEEE} | |
} | |
@inproceedings{boriboon2009best, | |
title={Best corpus development and analysis}, | |
author={Boriboon, Monthika and Kriengket, Kanyanut and Chootrakool, Patcharika and Phaholphinyo, Sitthaa and Purodakananda, Sumonmas and Thanakulwarapas, Tipraporn and Kosawat, Krit}, | |
booktitle={2009 International Conference on Asian Language Processing}, | |
pages={322--327}, | |
year={2009}, | |
organization={IEEE} | |
} | |
""" | |
_LICENSE = "CC-BY-NC-SA 3.0" | |
_DESCRIPTION = """\ | |
`best2009` is a Thai word-tokenization dataset from encyclopedia, novels, news and articles by | |
[NECTEC](https://www.nectec.or.th/) (148,995/2,252 lines of train/test). It was created for | |
[BEST 2010: Word Tokenization Competition](https://thailang.nectec.or.th/archive/indexa290.html?q=node/10). | |
The test set answers are not provided publicly. | |
""" | |
class Best2009Config(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
"""BuilderConfig | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(Best2009Config, self).__init__(**kwargs) | |
class Best2009(datasets.GeneratorBasedBuilder): | |
_DOWNLOAD_URL = "https://archive.org/download/best_dataset/data.zip" | |
_TRAIN_FOLDER = "train" | |
_TEST_FOLDER = "test" | |
_USELESS_TAGS = {"<NE>": "", "</NE>": "", "<AB>": "", "</AB>": ""} | |
# character type mapping from https://github.com/rkcosmos/deepcut/blob/master/deepcut/utils.py | |
_CHAR_TYPES_DICT = { | |
"กขฃคฆงจชซญฎฏฐฑฒณดตถทธนบปพฟภมยรลวศษสฬอ": "c", | |
"ฅฉผฟฌหฮ": "n", | |
"ะาำิีืึุู": "v", # า ะ ำ ิ ี ึ ื ั ู ุ | |
"เแโใไ": "w", | |
"่้๊๋": "t", # วรรณยุกต์ ่ ้ ๊ ๋ | |
"์ๆฯ.": "s", # ์ ๆ ฯ . | |
"0123456789๑๒๓๔๕๖๗๘๙": "d", | |
'"': "q", | |
"‘": "q", | |
"’": "q", | |
"'": "q", | |
" ": "p", | |
"abcdefghijklmnopqrstuvwxyz": "s_e", | |
"ABCDEFGHIJKLMNOPQRSTUVWXYZ": "b_e", | |
} | |
_CHAR_TYPE_FLATTEN = {} | |
for ks, v in _CHAR_TYPES_DICT.items(): | |
for k in ks: | |
_CHAR_TYPE_FLATTEN[k] = v | |
_CHAR_TYPES = ["b_e", "c", "d", "n", "o", "p", "q", "s", "s_e", "t", "v", "w"] | |
BUILDER_CONFIGS = [ | |
Best2009Config( | |
name="best2009", | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"fname": datasets.Value("string"), | |
"char": datasets.Sequence(datasets.Value("string")), | |
"char_type": datasets.Sequence(datasets.features.ClassLabel(names=self._CHAR_TYPES)), | |
"is_beginning": datasets.Sequence(datasets.features.ClassLabel(names=["neg", "pos"])), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://aiforthai.in.th/", | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL) | |
data_dir = os.path.join(arch_path, "data") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FOLDER), "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FOLDER), "split": "train"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
for fname in sorted(Path(filepath).rglob("*.txt")): | |
with open(fname, encoding="utf-8") as f: | |
for _id, line in enumerate(f): | |
chars = [] | |
char_types = [] | |
is_beginnings = [] | |
# replace useless tokens | |
line = reduce(lambda a, kv: a.replace(*kv), self._USELESS_TAGS.items(), line) | |
# tokens are pipe separated | |
splits = line.split("|") | |
for token in splits: | |
for i in range(len(token)): | |
chars.append(token[i]) | |
char_types.append(self._CHAR_TYPE_FLATTEN.get(token[i], "o")) | |
is_beginning = 1 if i == 0 else 0 | |
is_beginnings.append(is_beginning) | |
yield _id, { | |
"fname": fname.name, | |
"char": chars, | |
"char_type": char_types, | |
"is_beginning": is_beginnings if split == "train" else [0 for i in range(len(chars))], | |
} | |