nick-leland commited on
Commit
2a6e33b
1 Parent(s): 8195934

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - tabular-regression
5
+ language:
6
+ - en
7
+ tags:
8
+ - physics,
9
+ - scientific,
10
+ - pin,
11
+ - physics-informed-network,
12
+ - pde,
13
+ - partial-differential-equations,
14
+ - heat-equation,
15
+ - heat,
16
+ - equation,
17
+ pretty_name: 1D Heat Equation PDE Dataset
18
+ size_categories:
19
+ - 1K<n<10K
20
+ ---
21
+ # heat1d-pde-dataset
22
+
23
+ This dataset contains numerical solutions of the 1D heat equation with cooling terms, designed for machine learning applications in scientific computing and physics-informed neural networks.
24
+
25
+ ## Dataset Description
26
+
27
+ ### Dataset Summary
28
+
29
+ The dataset consists of spatiotemporal solutions to the 1D heat equation with boundary conditions and a cooling term. Each sample includes initial states, final states (with and without noise), simulation parameters, and elapsed times.
30
+
31
+ ### Supported Tasks
32
+
33
+ - PDE Solution Prediction
34
+ - Parameter Inference
35
+ - Physics-Informed Machine Learning
36
+ - Scientific Machine Learning Benchmarking
37
+
38
+ ### Dataset Structure
39
+
40
+ ```
41
+ {
42
+ 'initial_states': [N, 200], # Initial temperature distribution
43
+ 'final_states': [N, 200], # Final temperature distribution (with noise)
44
+ 'clean_initial_states': [N, 200], # Initial states without noise
45
+ 'clean_final_states': [N, 200], # Final states without noise
46
+ 'parameters': [N, 3], # [alpha, k, t_env]
47
+ 'elapsed_times': [N], # Time between initial and final states
48
+ }
49
+ ```
50
+
51
+ ### Data Fields
52
+
53
+ - `initial_states`: Temperature distribution at t=0
54
+ - `final_states`: Temperature distribution at t=elapsed_time
55
+ - `clean_initial_states`: Noise-free initial states
56
+ - `clean_final_states`: Noise-free final states
57
+ - `parameters`:
58
+ - `alpha`: Thermal diffusivity [1e-5, 1e-4]
59
+ - `k`: Cooling coefficient [0.01, 0.1]
60
+ - `t_env`: Environmental temperature [15, 35]
61
+ - `elapsed_times`: Time difference between states
62
+
63
+ ### Data Splits
64
+
65
+ All data is provided in the training set. Users should create their own validation/test splits.
66
+
67
+ ### Source Code
68
+
69
+ The dataset was generated using a finite difference solver for the heat equation:
70
+
71
+ ∂T/∂t = α∂²T/∂x² - k(T - T_env)
72
+
73
+ with boundary conditions:
74
+ - T(x=0, t) = temp1
75
+ - T(x=L, t) = temp2
76
+
77
+ ### Noise Levels
78
+
79
+ - Input states: 1% of temperature range
80
+ - Output states: 0.5% of temperature range
81
+ - Parameters: 1% of parameter values
82
+
83
+ ## Usage
84
+
85
+ Install the datasets library:
86
+ ```bash
87
+ pip install datasets
88
+ ```
89
+
90
+ Load the dataset:
91
+ ```python
92
+ from datasets import load_dataset
93
+
94
+ dataset = load_dataset("nicholasleland/heat1d-pde-dataset")
95
+
96
+ # Access the data
97
+ initial_states = dataset['train']['initial_states']
98
+ final_states = dataset['train']['final_states']
99
+ parameters = dataset['train']['parameters']
100
+ ```
101
+
102
+ ### Dataset Creator
103
+
104
+ Nicholas Leland
105
+
106
+ ### Licensing Information
107
+
108
+ license: mit