Datasets:
nick-leland
commited on
Commit
•
2a6e33b
1
Parent(s):
8195934
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,108 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- tabular-regression
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- physics,
|
9 |
+
- scientific,
|
10 |
+
- pin,
|
11 |
+
- physics-informed-network,
|
12 |
+
- pde,
|
13 |
+
- partial-differential-equations,
|
14 |
+
- heat-equation,
|
15 |
+
- heat,
|
16 |
+
- equation,
|
17 |
+
pretty_name: 1D Heat Equation PDE Dataset
|
18 |
+
size_categories:
|
19 |
+
- 1K<n<10K
|
20 |
+
---
|
21 |
+
# heat1d-pde-dataset
|
22 |
+
|
23 |
+
This dataset contains numerical solutions of the 1D heat equation with cooling terms, designed for machine learning applications in scientific computing and physics-informed neural networks.
|
24 |
+
|
25 |
+
## Dataset Description
|
26 |
+
|
27 |
+
### Dataset Summary
|
28 |
+
|
29 |
+
The dataset consists of spatiotemporal solutions to the 1D heat equation with boundary conditions and a cooling term. Each sample includes initial states, final states (with and without noise), simulation parameters, and elapsed times.
|
30 |
+
|
31 |
+
### Supported Tasks
|
32 |
+
|
33 |
+
- PDE Solution Prediction
|
34 |
+
- Parameter Inference
|
35 |
+
- Physics-Informed Machine Learning
|
36 |
+
- Scientific Machine Learning Benchmarking
|
37 |
+
|
38 |
+
### Dataset Structure
|
39 |
+
|
40 |
+
```
|
41 |
+
{
|
42 |
+
'initial_states': [N, 200], # Initial temperature distribution
|
43 |
+
'final_states': [N, 200], # Final temperature distribution (with noise)
|
44 |
+
'clean_initial_states': [N, 200], # Initial states without noise
|
45 |
+
'clean_final_states': [N, 200], # Final states without noise
|
46 |
+
'parameters': [N, 3], # [alpha, k, t_env]
|
47 |
+
'elapsed_times': [N], # Time between initial and final states
|
48 |
+
}
|
49 |
+
```
|
50 |
+
|
51 |
+
### Data Fields
|
52 |
+
|
53 |
+
- `initial_states`: Temperature distribution at t=0
|
54 |
+
- `final_states`: Temperature distribution at t=elapsed_time
|
55 |
+
- `clean_initial_states`: Noise-free initial states
|
56 |
+
- `clean_final_states`: Noise-free final states
|
57 |
+
- `parameters`:
|
58 |
+
- `alpha`: Thermal diffusivity [1e-5, 1e-4]
|
59 |
+
- `k`: Cooling coefficient [0.01, 0.1]
|
60 |
+
- `t_env`: Environmental temperature [15, 35]
|
61 |
+
- `elapsed_times`: Time difference between states
|
62 |
+
|
63 |
+
### Data Splits
|
64 |
+
|
65 |
+
All data is provided in the training set. Users should create their own validation/test splits.
|
66 |
+
|
67 |
+
### Source Code
|
68 |
+
|
69 |
+
The dataset was generated using a finite difference solver for the heat equation:
|
70 |
+
|
71 |
+
∂T/∂t = α∂²T/∂x² - k(T - T_env)
|
72 |
+
|
73 |
+
with boundary conditions:
|
74 |
+
- T(x=0, t) = temp1
|
75 |
+
- T(x=L, t) = temp2
|
76 |
+
|
77 |
+
### Noise Levels
|
78 |
+
|
79 |
+
- Input states: 1% of temperature range
|
80 |
+
- Output states: 0.5% of temperature range
|
81 |
+
- Parameters: 1% of parameter values
|
82 |
+
|
83 |
+
## Usage
|
84 |
+
|
85 |
+
Install the datasets library:
|
86 |
+
```bash
|
87 |
+
pip install datasets
|
88 |
+
```
|
89 |
+
|
90 |
+
Load the dataset:
|
91 |
+
```python
|
92 |
+
from datasets import load_dataset
|
93 |
+
|
94 |
+
dataset = load_dataset("nicholasleland/heat1d-pde-dataset")
|
95 |
+
|
96 |
+
# Access the data
|
97 |
+
initial_states = dataset['train']['initial_states']
|
98 |
+
final_states = dataset['train']['final_states']
|
99 |
+
parameters = dataset['train']['parameters']
|
100 |
+
```
|
101 |
+
|
102 |
+
### Dataset Creator
|
103 |
+
|
104 |
+
Nicholas Leland
|
105 |
+
|
106 |
+
### Licensing Information
|
107 |
+
|
108 |
+
license: mit
|