File size: 1,467 Bytes
0cb7bc6 df55653 0cb7bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
task_categories:
- text-generation
- text2text-generation
language:
- en
tags:
- keyword-generation
- Science
- Research
- Academia
- Innovation
- Technology
pretty_name: scientific papers with their author keywords
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: title
dtype: string
- name: abstract
dtype: string
- name: keywords
dtype: string
- name: source_name
dtype: string
splits:
- name: train
num_bytes: 2771926367
num_examples: 2640662
download_size: 1603171250
dataset_size: 2771926367
---
# SciDocs Keywords exKEYliWORD
## Dataset Description
`SciDocs2Keywords` is a dataset consisting of scientific papers (title and abstract) and their associated author-provided keywords. It is designed for use in task of keyword extraction or abstraction.
Each entry in the dataset includes:
- Title: The title of the scientific paper.
- Abstract: A brief summary of the paper.
- Author Keywords: Keywords provided by the authors to highlight the main topics or concepts of the paper.
- Source: Paper provider source API.
## Associated Model
soon...
## How to Use
To use this dataset for model training or evaluation, you can load it using the Hugging Face `datasets` library as follows:
```python
from datasets import load_dataset
dataset = load_dataset("nicolauduran45/scidocs-keywords-exkeyliword")
print(dataset[0])
``` |