from trafilatura import fetch_url, extract, extract_metadata from datasets import load_dataset, Features, Value, Sequence from typing import Dict, List, Any from trafilatura.settings import DEFAULT_CONFIG from copy import deepcopy my_config = deepcopy(DEFAULT_CONFIG) my_config["DEFAULT"]["DOWNLOAD_TIMEOUT"] = "3" my_config["DEFAULT"]["SLEEP_TIME"] = "0" def is_target(batch: Dict[str, List]) -> List[bool]: result = [] for tpe, dead, deleted, url in zip( batch["type"], batch["dead"], batch["deleted"], batch["url"] ): if ( tpe == "story" and dead is None and deleted is None and url is not None and len(url) > 0 ): result.append(True) else: result.append(False) return result def fetch_one(doc: Dict[str, Any]) -> Dict[str, Any]: downloaded = fetch_url(doc["url"], config=my_config) result = { "id": doc["id"], "title": None, "author": None, "markdown": None, "downloaded": False, "meta_extracted": False, "parsed": False, "description": None, "filedate": None, "date": None, "image": None, "pagetype": None, "hostname": None, "sitename": None, "categories": None, "tags": None, } if downloaded: result["downloaded"] = True try: raw_meta = extract_metadata(downloaded) if raw_meta: result["meta_extracted"] = True meta = raw_meta.as_dict() result["title"] = meta.get("title", None) result["author"] = meta.get("author", None) result["description"] = meta.get("description", None) result["filedate"] = meta.get("filedate", None) result["date"] = meta.get("date", None) result["image"] = meta.get("image", None) result["pagetype"] = meta.get("pagetype", None) result["hostname"] = meta.get("hostname", None) result["sitename"] = meta.get("sitename", None) md = extract(downloaded, output_format="markdown", with_metadata=False) if md: result["parsed"] = True result["markdown"] = md except Exception: print("failed to extract metadata") return result if __name__ == "__main__": ds = load_dataset("nixiesearch/hackernews-comments", split="train", num_proc=16) ds = ds.filter(is_target, num_proc=32, batched=True, desc="selecting stories") ds = ds.select_columns(["id", "url"]).shuffle() schema = Features( { "id": Value("int64"), "url": Value("string"), "title": Value("string"), "author": Value("string"), "markdown": Value("string"), "downloaded": Value("bool"), "meta_extracted": Value("bool"), "parsed": Value("bool"), "description": Value("string"), "filedate": Value("string"), "date": Value("string"), "image": Value("string"), "pagetype": Value("string"), "hostname": Value("string"), "sitename": Value("string"), "categories": Sequence(Value("string")), "tags": Sequence(Value("string")), } ) ds = ds.map(fetch_one, num_proc=128, desc="downloading", features=schema) ds.save_to_disk("/tmp/hnstories")