Datasets:
File size: 8,027 Bytes
3b8b8ff 819c229 3b8b8ff 15d82f4 3b8b8ff 93140de 3b8b8ff 4582ca3 3b8b8ff b638970 3b8b8ff 0dab569 3b8b8ff 819c229 3b8b8ff 42fc434 3b8b8ff 93140de 819c229 3b8b8ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HumSetBias"""
import json
import datasets
_CITATION = """"""
#@misc{https://doi.org/10.48550/arxiv.2210.04573,
# doi = {10.48550/ARXIV.2210.04573},
# url = {https://arxiv.org/abs/2210.04573},
# author = {Fekih, Selim and Tamagnone, Nicolò and Minixhofer, Benjamin and Shrestha, Ranjan and Contla, Ximena and Oglethorpe, Ewan and Rekabsaz, Navid},
# keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
# title = {HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response},
# publisher = {arXiv},
# year = {2022},
# copyright = {arXiv.org perpetual, non-exclusive license}
#}
#"""
_DESCRIPTION_BIAS = """\
HUMSETBIAS is a subset of the English part of the HumSet dataset, created by searching for specific sensitive English keywords related to genders and countries within the annotated text. In addition, we extended this
subset by incorporating targeted counterfactual samples, generated by modifying the original entries in order to create the altered versions of each text with gender/country information. The purpose of HUMSETBIAS is to provide a more targeted resource for analyzing and addressing potential biases in humanitarian data and to enable the development of accurate and bias-aware NLP applications in the humanitarian sector.
"""
_HOMEPAGE = "https://huggingface.co/datasets/nlp-thedeep/humsetbias"
_LICENSE = "The GitHub repository which houses this dataset has an Apache License 2.0."
_URLs = {
"1.0.0": {
"train": "data/humset_bias_train.jsonl",
"dev": "data/humset_bias_val.jsonl",
#"gender": "data/test_gender.jsonl",
#"country": "data/test_country.jsonl"
}
}
_SUPPORTED_VERSIONS = [
# First version
datasets.Version("1.0.0", "Gender and Country bias extension of HumSet")
]
"""
from: https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/main_classes#datasets.Sequence
a python list or a Sequence specifies that the field contains a list of objects.
The python list or Sequence should be provided with a single sub-feature as an example of the feature type hosted in this list.
"""
HUMSETBIAS_FEATURES = datasets.Features(
{
"entry_id": datasets.Value("string"),
"excerpt": datasets.Value("string"),
"lang": datasets.Value("string"),
"keywords": datasets.Sequence(datasets.Value("string"), length=-1),
"kword_type": datasets.Sequence(datasets.Value("string"), length=-1),
"gender_keywords": datasets.Sequence(datasets.Value("string"), length=-1),
"country_keywords": datasets.Sequence(datasets.Value("string"), length=-1),
"gender_kword_type": datasets.Sequence(datasets.Value("string"), length=-1),
"country_kword_type": datasets.Sequence(datasets.Value("string"), length=-1),
"gender_context_falsing_kw": datasets.Sequence(datasets.Value("string"), length=-1),
"country_context_falsing_kw": datasets.Sequence(datasets.Value("string"), length=-1),
"excerpt_type": datasets.Value("string"),
"sectors": datasets.Sequence(datasets.Value("string"), length=-1),
"pillars_1d": datasets.Sequence(datasets.Value("string"), length=-1),
"pillars_2d": datasets.Sequence(datasets.Value("string"), length=-1),
"subpillars_1d": datasets.Sequence(datasets.Value("string"), length=-1),
"subpillars_2d": datasets.Sequence(datasets.Value("string"), length=-1),
}
)
HUMSETBIAS_GENERAL = [
'entry_id',
'excerpt',
"lang",
'excerpt_type',
"gender_keywords",
"country_keywords",
"gender_kword_type",
"country_kword_type",
'gender_context_falsing_kw',
"country_context_falsing_kw",
"sectors",
"pillars_1d",
"pillars_2d",
"subpillars_1d",
"subpillars_2d"
]
HUMSETBIAS_FEATURES_GENDER = [
'entry_id',
'excerpt',
"lang",
'keywords',
'kword_type',
'excerpt_type',
'gender_context_falsing_kw',
"sectors",
"pillars_1d",
"pillars_2d",
"subpillars_1d",
"subpillars_2d"
]
HUMSETBIAS_FEATURES_COUNTRY = [
'entry_id',
'excerpt',
"lang",
'keywords',
'kword_type',
'excerpt_type',
'country_context_falsing_kw',
"sectors",
"pillars_1d",
"pillars_2d",
"subpillars_1d",
"subpillars_2d"
]
class HumsetConfig(datasets.BuilderConfig):
"""BuilderConfig for HumsetBias."""
def __init__(self, **kwargs):
"""BuilderConfig for HumsetBias SelfRC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(HumsetConfig, self).__init__(**kwargs)
class Humset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
HumsetConfig(
name=str(version),
description=f"version {str(version)}",
version=version
)
for version in _SUPPORTED_VERSIONS
]
DEFAULT_CONFIG_NAME = "1.0.0"
def _info(self):
if self.config.name == "1.0.0":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION_BIAS,
# This defines the different columns of the dataset and their types
features=HUMSETBIAS_FEATURES,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
downloaded_files = dl_manager.download_and_extract(my_urls)
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["dev"]
},
),
#datasets.SplitGenerator(
# name="test_gender",
# gen_kwargs={
# "filepath": downloaded_files["gender"]
# },
#),
#datasets.SplitGenerator(
# name="test_country",
# gen_kwargs={
# "filepath": downloaded_files["country"]
# }
#),
]
return splits
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
with open(filepath, encoding="utf-8") as f:
data = list(f)
idx = 0
for line in data:
row = json.loads(line)
#if "train" in filepath:
# row = {k: v for k, v in row.items() if k in HUMSETBIAS_GENERAL}
#elif "gender" in filepath:
# row = {k: v for k, v in row.items() if k in HUMSETBIAS_FEATURES_GENDER}
#elif "country" in filepath:
# row = {k: v for k, v in row.items() if k in HUMSETBIAS_FEATURES_COUNTRY}
#if self.config.name == "1.0.0":
yield idx, row
idx+=1
|