yonatanbitton commited on
Commit
dc25053
·
1 Parent(s): b641d79

Create miap.py

Browse files
Files changed (1) hide show
  1. miap.py +77 -0
miap.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+ import pandas as pd
18
+ import datasets
19
+ import json
20
+ from huggingface_hub import hf_hub_url
21
+
22
+ _INPUT_CSV = "open_images_extended_miap_boxes_test_labeled.csv"
23
+ _INPUT_IMAGES = "images_miap"
24
+ _REPO_ID = "nlphuji/open_images_dataset_v7"
25
+ _IMAGE_EXTENSION = 'jpg'
26
+
27
+ class Dataset(datasets.GeneratorBasedBuilder):
28
+ VERSION = datasets.Version("1.1.0")
29
+ BUILDER_CONFIGS = [
30
+ datasets.BuilderConfig(name="TEST", version=VERSION, description="test"),
31
+ ]
32
+
33
+ def _info(self):
34
+ return datasets.DatasetInfo(
35
+ features=datasets.Features(
36
+ {
37
+ "ImageID": datasets.Value('string'),
38
+ "LabelName": datasets.Value('string'),
39
+ "Confidence": datasets.Value('float32'),
40
+ "XMin": datasets.Value('float32'),
41
+ "XMax": datasets.Value('float32'),
42
+ "YMin": datasets.Value('float32'),
43
+ "YMax": datasets.Value('float32'),
44
+ "IsOccluded": datasets.Value('int64'),
45
+ "IsTruncated": datasets.Value('int64'),
46
+ "IsGroupOf": datasets.Value('int64'),
47
+ "IsDepictionOf": datasets.Value('int64'),
48
+ "IsInsideOf": datasets.Value('int64'),
49
+ "GenderPresentation": datasets.Value('string'),
50
+ "AgePresentation": datasets.Value('string'),
51
+ "label": datasets.Value('string')
52
+ }
53
+ ),
54
+ task_templates=[],
55
+ )
56
+
57
+ def _split_generators(self, dl_manager):
58
+ """Returns SplitGenerators."""
59
+
60
+ repo_id = _REPO_ID
61
+ data_dir = dl_manager.download_and_extract({
62
+ "examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV),
63
+ "images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip")
64
+ })
65
+
66
+ return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)]
67
+
68
+
69
+ def _generate_examples(self, examples_csv, images_dir):
70
+ """Yields examples."""
71
+ df = pd.read_csv(examples_csv)
72
+
73
+ for r_idx, r in df.iterrows():
74
+ r_dict = r.to_dict()
75
+ image_path = os.path.join(images_dir, _INPUT_IMAGES, f"{r_dict['ImageID']}.{_IMAGE_EXTENSION}")
76
+ r_dict['image'] = image_path
77
+ yield r_idx, r_dict