File size: 2,121 Bytes
a2a0fc9
b39b460
 
 
 
 
 
6cfe425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a0fc9
 
b39b460
 
 
 
0426148
b39b460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cfe425
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- fr
multilinguality:
- monolingual
task_categories:
- token-classification
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: ner_tags_niv1
    sequence: string
  - name: ner_tags_niv2
    sequence: string
  - name: input_ids
    sequence: int32
  - name: attention_mask
    sequence: int8
  - name: labels_niv1
    sequence: int64
  - name: labels_niv2
    sequence: int64
  splits:
  - name: train
    num_bytes: 5034023
    num_examples: 6084
  - name: dev
    num_bytes: 552733
    num_examples: 676
  - name: test
    num_bytes: 1343029
    num_examples: 1685
  download_size: 1000353
  dataset_size: 6929785
---

# m1_fine_tuning_ref_ptrn_cmbert_io

## Introduction

This dataset was used to perform **qualitative analysis** of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on **nested NER task** using Independant NER layers approach [M1]. 
It contains Paris trade directories entries from the 19th century.

## Dataset parameters

* Approach : M1
* Dataset type : ground-truth
* Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained)
* Tagging format : IO
* Counts : 
    * Train : 6084
    * Dev : 676
    * Test : 1685
* Associated fine-tuned models :
    * Level-1 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_1)
    * Level 2 : [nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2](https://huggingface.co/nlpso/m1_ind_layers_ref_ptrn_cmbert_io_level_2)
    
## Entity types

Abbreviation|Entity group (level)|Description
-|-|-
O |1 & 2|Outside of a named entity
PER |1|Person or company name
ACT |1 & 2|Person or company professional activity
TITREH |2|Military or civil distinction
DESC |1|Entry full description
TITREP |2|Professionnal reward
SPAT |1|Address
LOC |2|Street name
CARDINAL |2|Street number
FT |2|Geographical feature

## How to use this dataset

```python
from datasets import load_dataset

train_dev_test = load_dataset("nlpso/m1_fine_tuning_ref_ptrn_cmbert_io")