File size: 1,539 Bytes
2b673f5
b5b6c9b
 
 
 
 
 
2b673f5
 
b5b6c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language:
- fr
multilinguality:
- monolingual
task_categories:
- token-classification
---

# m2m3_fine_tuning_ocr_ptrn_cmbert_iob2

## Introduction

This dataset was used to fine-tuned [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for **nested NER task** using Independant NER layers approach [M1]. 
It contains Paris trade directories entries from the 19th century.

## Dataset parameters

* Approachrd : M2 and M3
* Dataset type : noisy (Pero OCR)
* Tokenizer : [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained)
* Tagging format : IOB2
* Counts : 
    * Train : 6084
    * Dev : 676
    * Test : 1685
* Associated fine-tuned models :
    * M2 : [nlpso/m2_joint_label_ocr_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m2_joint_label_ocr_ptrn_cmbert_iob2)
    * M3 : [nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_ptrn_cmbert_iob2)
    
## Entity types

Abbreviation|Entity group (level)|Description
-|-|-
O |1 & 2|Outside of a named entity
PER |1|Person or company name
ACT |1 & 2|Person or company professional activity
TITREH |2|Military or civil distinction
DESC |1|Entry full description
TITREP |2|Professionnal reward
SPAT |1|Address
LOC |2|Street name
CARDINAL |2|Street number
FT |2|Geographical feature

## How to use this dataset

```python
from datasets import load_dataset

train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_ptrn_cmbert_iob2")