File size: 6,085 Bytes
f0b7f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
"""Russian Literary Dataset from late 19th century up to early 20th century."""
import json
import os
import warnings
from typing import Dict, List, Tuple
import datasets
import numpy as np
from transformers import PreTrainedTokenizerBase
_DESCRIPTION = """Third level categorization of Russian articles."""
_HOMEPAGE = ""
_LICENSE = ""
_NAMES = [
"identity_type",
"literature_movement",
"modernization_subject",
"philosophy_subject",
"subject_genre"
]
# Label information as `(num_labels, is_multi_label)` tuples
_LABELS: Dict[str, Tuple[int, bool]] = {
"identity_type": (2, True),
"literature_movement": (3, True),
"modernization_subject": (4, True),
"philosophy_subject": (5, True),
"subject_genre": (3, True),
}
def generate_urls(name: str) -> Dict[str, str]:
return {
"train": os.path.join(name, "train.json"),
"val": os.path.join(name, "val.json"),
"test": os.path.join(name, "test.json"),
}
class NonwestlitThirdLevelConfig(datasets.BuilderConfig):
"""BuilderConfig for Dataset."""
def __init__(
self, tokenizer: PreTrainedTokenizerBase = None, max_sequence_length: int = None, **kwargs
):
"""BuilderConfig for Dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NonwestlitThirdLevelConfig, self).__init__(**kwargs)
self.tokenizer = tokenizer
self.max_sequence_length = max_sequence_length
@property
def features(self):
if self.name == "literary_text_type":
labels = datasets.Value("uint8")
else:
labels = datasets.Sequence(datasets.Value("uint8"))
return {
"labels": labels,
"input_ids": datasets.Value("string"),
"title": datasets.Value("string"),
"iid": datasets.Value("uint32"),
"chunk_id": datasets.Value("uint32"),
}
class NonwestlitThirdLevelDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
NonwestlitThirdLevelConfig(name=name, version=version, description=name)
for name, version in zip(_NAMES, [VERSION] * len(_NAMES))
]
BUILDER_CONFIG_CLASS = NonwestlitThirdLevelConfig
__current_id = 1
__current_chunk_id = 1
@property
def __next_id(self):
cid = self.__current_id
self.__current_id += 1
return cid
@property
def __next_chunk_id(self):
cid = self.__current_chunk_id
self.__current_chunk_id += 1
return cid
@property
def label_info(self) -> Tuple[int, bool]:
return _LABELS[self.config.name]
def __reset_chunk_id(self):
self.__current_chunk_id = 1
def _info(self):
if self.config.tokenizer is None:
raise RuntimeError(
"For HF Datasets and for chunking to be carried out, 'tokenizer' must be given."
)
if "llama" in self.config.tokenizer.name_or_path:
warnings.warn(
"It is suggested to pass 'max_sequence_length' argument for Llama-2 model family. There "
"might be errors for the data processing parts as `model_max_len` attributes are set to"
"MAX_INT64 (?)."
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(self.config.features),
)
def _split_generators(self, dl_manager):
urls = generate_urls(self.config.name)
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"]}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir["val"]}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"]}
),
]
def prepare_articles(self, article: str) -> List[str]:
tokenizer = self.config.tokenizer
model_inputs = tokenizer(
article,
truncation=True,
padding=True,
max_length=self.config.max_sequence_length,
return_overflowing_tokens=True,
)
return tokenizer.batch_decode(model_inputs["input_ids"], skip_special_tokens=True)
def _to_one_hot(self, labels: List[int], num_labels: int) -> List[int]:
x = np.zeros(num_labels, dtype=np.float16)
x[labels] = 1.0
return x.tolist()
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath: str):
with open(filepath, encoding="utf-8") as f:
dataset = json.load(f)
num_labels, multi_label = self.label_info
chunk_id = 0
for instance in dataset:
iid = instance.get("id", self.__next_id)
label = instance.get("label")
if label is None:
if not multi_label:
continue
else:
label = self._to_one_hot(labels=[], num_labels=num_labels)
elif isinstance(label, int):
label = int(label) - 1
elif isinstance(label, str):
if multi_label:
label = [int(l) - 1 for l in label.split(",")]
label = self._to_one_hot(label, num_labels)
else:
label = int(label) - 1
article = self.prepare_articles(instance["article"])
self.__reset_chunk_id()
for chunk in article:
chunk_inputs = {
"iid": iid,
"chunk_id": self.__next_chunk_id,
"title": instance["title"],
"input_ids": chunk,
"labels": label,
}
yield chunk_id, chunk_inputs
chunk_id += 1
|