File size: 6,085 Bytes
f0b7f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Russian Literary Dataset from late 19th century up to early 20th century."""

import json
import os
import warnings
from typing import Dict, List, Tuple

import datasets
import numpy as np
from transformers import PreTrainedTokenizerBase

_DESCRIPTION = """Third level categorization of Russian articles."""

_HOMEPAGE = ""

_LICENSE = ""

_NAMES = [
    "identity_type",
    "literature_movement",
    "modernization_subject",
    "philosophy_subject",
    "subject_genre"
]

# Label information as `(num_labels, is_multi_label)` tuples
_LABELS: Dict[str, Tuple[int, bool]] = {
    "identity_type": (2, True),
    "literature_movement": (3, True),
    "modernization_subject": (4, True),
    "philosophy_subject": (5, True),
    "subject_genre": (3, True),
}


def generate_urls(name: str) -> Dict[str, str]:
    return {
        "train": os.path.join(name, "train.json"),
        "val": os.path.join(name, "val.json"),
        "test": os.path.join(name, "test.json"),
    }


class NonwestlitThirdLevelConfig(datasets.BuilderConfig):
    """BuilderConfig for Dataset."""

    def __init__(
        self, tokenizer: PreTrainedTokenizerBase = None, max_sequence_length: int = None, **kwargs
    ):
        """BuilderConfig for Dataset.

        Args:
            **kwargs: keyword arguments forwarded to super.
        """
        super(NonwestlitThirdLevelConfig, self).__init__(**kwargs)
        self.tokenizer = tokenizer
        self.max_sequence_length = max_sequence_length

    @property
    def features(self):
        if self.name == "literary_text_type":
            labels = datasets.Value("uint8")
        else:
            labels = datasets.Sequence(datasets.Value("uint8"))
        return {
            "labels": labels,
            "input_ids": datasets.Value("string"),
            "title": datasets.Value("string"),
            "iid": datasets.Value("uint32"),
            "chunk_id": datasets.Value("uint32"),
        }


class NonwestlitThirdLevelDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        NonwestlitThirdLevelConfig(name=name, version=version, description=name)
        for name, version in zip(_NAMES, [VERSION] * len(_NAMES))
    ]
    BUILDER_CONFIG_CLASS = NonwestlitThirdLevelConfig
    __current_id = 1
    __current_chunk_id = 1

    @property
    def __next_id(self):
        cid = self.__current_id
        self.__current_id += 1
        return cid

    @property
    def __next_chunk_id(self):
        cid = self.__current_chunk_id
        self.__current_chunk_id += 1
        return cid

    @property
    def label_info(self) -> Tuple[int, bool]:
        return _LABELS[self.config.name]

    def __reset_chunk_id(self):
        self.__current_chunk_id = 1

    def _info(self):
        if self.config.tokenizer is None:
            raise RuntimeError(
                "For HF Datasets and for chunking to be carried out, 'tokenizer' must be given."
            )
        if "llama" in self.config.tokenizer.name_or_path:
            warnings.warn(
                "It is suggested to pass 'max_sequence_length' argument for Llama-2 model family. There "
                "might be errors for the data processing parts as `model_max_len` attributes are set to"
                "MAX_INT64 (?)."
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(self.config.features),
        )

    def _split_generators(self, dl_manager):
        urls = generate_urls(self.config.name)
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir["val"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"]}
            ),
        ]

    def prepare_articles(self, article: str) -> List[str]:
        tokenizer = self.config.tokenizer
        model_inputs = tokenizer(
            article,
            truncation=True,
            padding=True,
            max_length=self.config.max_sequence_length,
            return_overflowing_tokens=True,
        )
        return tokenizer.batch_decode(model_inputs["input_ids"], skip_special_tokens=True)

    def _to_one_hot(self, labels: List[int], num_labels: int) -> List[int]:
        x = np.zeros(num_labels, dtype=np.float16)
        x[labels] = 1.0
        return x.tolist()

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath: str):
        with open(filepath, encoding="utf-8") as f:
            dataset = json.load(f)

        num_labels, multi_label = self.label_info
        chunk_id = 0
        for instance in dataset:
            iid = instance.get("id", self.__next_id)
            label = instance.get("label")
            if label is None:
                if not multi_label:
                    continue
                else:
                    label = self._to_one_hot(labels=[], num_labels=num_labels)
            elif isinstance(label, int):
                label = int(label) - 1
            elif isinstance(label, str):
                if multi_label:
                    label = [int(l) - 1 for l in label.split(",")]
                    label = self._to_one_hot(label, num_labels)
                else:
                    label = int(label) - 1

            article = self.prepare_articles(instance["article"])
            self.__reset_chunk_id()
            for chunk in article:
                chunk_inputs = {
                    "iid": iid,
                    "chunk_id": self.__next_chunk_id,
                    "title": instance["title"],
                    "input_ids": chunk,
                    "labels": label,
                }
                yield chunk_id, chunk_inputs
                chunk_id += 1