Datasets:
File size: 4,108 Bytes
e99a7c1 a27493a e99a7c1 6d6272d e99a7c1 6d6272d e99a7c1 aa5a052 6d6272d aa5a052 6d6272d aa5a052 e99a7c1 6d6272d e99a7c1 aa5a052 e99a7c1 aa5a052 6d6272d aa5a052 6d6272d aa5a052 6d6272d e99a7c1 a27493a 6d6272d b152953 e99a7c1 a1e0e30 6d6272d e105af5 e99a7c1 aa5a052 e99a7c1 92f521e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import json
import datasets
from pathlib import Path
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{multipl-e,
doi = {10.48550/ARXIV.2208.08227},
url = {https://arxiv.org/abs/2208.08227},
author = {Cassano, Federico and Gouwar, John and Nguyen, Daniel and
Nguyen, Sydney and Phipps-Costin, Luna and Pinckney, Donald and
Yee, Ming-Ho and Zi, Yangtian and Anderson, Carolyn Jane and
Feldman, Molly Q and Guha, Arjun and
Greenberg, Michael and Jangda, Abhinav},
title = {A Scalable and Extensible Approach to Benchmarking NL2Code for 18
Programming Languages},
publisher = {arXiv},
year = {2022},
}
"""
_DESCRIPTION = """\
MultiPL-E is a dataset for evaluating large language models for code \
generation that supports 18 programming languages. It takes the OpenAI \
"HumanEval" and the MBPP Python benchmarks and uses little compilers to \
translate them to other languages. It is easy to add support for new languages \
and benchmarks.
"""
_SRCDATA = [ "humaneval", "mbpp" ]
_LANGUAGES = [
"cpp", "cs", "d", "go", "java", "jl", "js", "lua", "php", "pl", "py", "r",
"rb", "rkt", "rs", "scala", "sh", "swift", "ts"
]
_VARIATIONS = [ "keep", "transform", "reworded", "remove" ]
class MultiPLEBuilderConfig(datasets.BuilderConfig):
"""BuilderConfig for MultiPLEBuilderConfig."""
def __init__(
self,
srcdata,
language,
variation,
**kwargs,
):
self.language = language
self.variation = variation
self.srcdata = srcdata
name = f"{srcdata}-{language}"
if variation != "reworded":
name = f"{name}-{variation}"
kwargs["name"] = name
super(MultiPLEBuilderConfig, self).__init__(**kwargs)
def _is_interesting(srcdata: str, variation: str):
if srcdata == "humaneval":
return True
if srcdata == "mbpp":
# MBPP does not have doctests, so these are the only interesting
# variations
return variation in [ "keep", "reworded" ]
class MultiPLE(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = MultiPLEBuilderConfig
BUILDER_CONFIGS = [
MultiPLEBuilderConfig(
srcdata=srcdata,
language=language,
variation=variation,
version=datasets.Version("2.0.0"))
for srcdata in _SRCDATA
for language in _LANGUAGES
for variation in _VARIATIONS
if _is_interesting(srcdata, variation)
]
DEFAULT_CONFIG_NAME = "humaneval-cpp"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
license="MIT",
features=datasets.Features({
"name": datasets.Value("string"),
"language": datasets.Value("string"),
"prompt": datasets.Value("string"),
"doctests": datasets.Value("string"),
"original": datasets.Value("string"),
"prompt_terminology": datasets.Value("string"),
"tests": datasets.Value("string"),
"stop_tokens": datasets.features.Sequence(datasets.Value("string")),
}),
supervised_keys=None,
homepage="https://nuprl.github.io/MultiPL-E/",
citation=_CITATION,
task_templates=[]
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
files = dl_manager.download(
f"https://raw.githubusercontent.com/nuprl/MultiPL-E/1f21818a0f3265fd0a41c3954e30aab47f34063a/prompts/{self.config.srcdata}-{self.config.language}-{self.config.variation}.json"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": files,
}
)
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for id_, row in enumerate(data):
yield id_, row
|