Datasets:
Commit
·
11762d9
1
Parent(s):
9236b36
Delete loading script
Browse files
glue.py
DELETED
@@ -1,628 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
18 |
-
|
19 |
-
|
20 |
-
import csv
|
21 |
-
import os
|
22 |
-
import textwrap
|
23 |
-
|
24 |
-
import numpy as np
|
25 |
-
|
26 |
-
import datasets
|
27 |
-
|
28 |
-
|
29 |
-
_GLUE_CITATION = """\
|
30 |
-
@inproceedings{wang2019glue,
|
31 |
-
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
|
32 |
-
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
|
33 |
-
note={In the Proceedings of ICLR.},
|
34 |
-
year={2019}
|
35 |
-
}
|
36 |
-
"""
|
37 |
-
|
38 |
-
_GLUE_DESCRIPTION = """\
|
39 |
-
GLUE, the General Language Understanding Evaluation benchmark
|
40 |
-
(https://gluebenchmark.com/) is a collection of resources for training,
|
41 |
-
evaluating, and analyzing natural language understanding systems.
|
42 |
-
|
43 |
-
"""
|
44 |
-
|
45 |
-
_MRPC_DEV_IDS = "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv"
|
46 |
-
_MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
|
47 |
-
_MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
|
48 |
-
|
49 |
-
_MNLI_BASE_KWARGS = dict(
|
50 |
-
text_features={
|
51 |
-
"premise": "sentence1",
|
52 |
-
"hypothesis": "sentence2",
|
53 |
-
},
|
54 |
-
label_classes=["entailment", "neutral", "contradiction"],
|
55 |
-
label_column="gold_label",
|
56 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
|
57 |
-
data_dir="MNLI",
|
58 |
-
citation=textwrap.dedent(
|
59 |
-
"""\
|
60 |
-
@InProceedings{N18-1101,
|
61 |
-
author = "Williams, Adina
|
62 |
-
and Nangia, Nikita
|
63 |
-
and Bowman, Samuel",
|
64 |
-
title = "A Broad-Coverage Challenge Corpus for
|
65 |
-
Sentence Understanding through Inference",
|
66 |
-
booktitle = "Proceedings of the 2018 Conference of
|
67 |
-
the North American Chapter of the
|
68 |
-
Association for Computational Linguistics:
|
69 |
-
Human Language Technologies, Volume 1 (Long
|
70 |
-
Papers)",
|
71 |
-
year = "2018",
|
72 |
-
publisher = "Association for Computational Linguistics",
|
73 |
-
pages = "1112--1122",
|
74 |
-
location = "New Orleans, Louisiana",
|
75 |
-
url = "http://aclweb.org/anthology/N18-1101"
|
76 |
-
}
|
77 |
-
@article{bowman2015large,
|
78 |
-
title={A large annotated corpus for learning natural language inference},
|
79 |
-
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
|
80 |
-
journal={arXiv preprint arXiv:1508.05326},
|
81 |
-
year={2015}
|
82 |
-
}"""
|
83 |
-
),
|
84 |
-
url="http://www.nyu.edu/projects/bowman/multinli/",
|
85 |
-
)
|
86 |
-
|
87 |
-
|
88 |
-
class GlueConfig(datasets.BuilderConfig):
|
89 |
-
"""BuilderConfig for GLUE."""
|
90 |
-
|
91 |
-
def __init__(
|
92 |
-
self,
|
93 |
-
text_features,
|
94 |
-
label_column,
|
95 |
-
data_url,
|
96 |
-
data_dir,
|
97 |
-
citation,
|
98 |
-
url,
|
99 |
-
label_classes=None,
|
100 |
-
process_label=lambda x: x,
|
101 |
-
**kwargs,
|
102 |
-
):
|
103 |
-
"""BuilderConfig for GLUE.
|
104 |
-
|
105 |
-
Args:
|
106 |
-
text_features: `dict[string, string]`, map from the name of the feature
|
107 |
-
dict for each text field to the name of the column in the tsv file
|
108 |
-
label_column: `string`, name of the column in the tsv file corresponding
|
109 |
-
to the label
|
110 |
-
data_url: `string`, url to download the zip file from
|
111 |
-
data_dir: `string`, the path to the folder containing the tsv files in the
|
112 |
-
downloaded zip
|
113 |
-
citation: `string`, citation for the data set
|
114 |
-
url: `string`, url for information about the data set
|
115 |
-
label_classes: `list[string]`, the list of classes if the label is
|
116 |
-
categorical. If not provided, then the label will be of type
|
117 |
-
`datasets.Value('float32')`.
|
118 |
-
process_label: `Function[string, any]`, function taking in the raw value
|
119 |
-
of the label and processing it to the form required by the label feature
|
120 |
-
**kwargs: keyword arguments forwarded to super.
|
121 |
-
"""
|
122 |
-
super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
123 |
-
self.text_features = text_features
|
124 |
-
self.label_column = label_column
|
125 |
-
self.label_classes = label_classes
|
126 |
-
self.data_url = data_url
|
127 |
-
self.data_dir = data_dir
|
128 |
-
self.citation = citation
|
129 |
-
self.url = url
|
130 |
-
self.process_label = process_label
|
131 |
-
|
132 |
-
|
133 |
-
class Glue(datasets.GeneratorBasedBuilder):
|
134 |
-
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
135 |
-
|
136 |
-
BUILDER_CONFIGS = [
|
137 |
-
GlueConfig(
|
138 |
-
name="cola",
|
139 |
-
description=textwrap.dedent(
|
140 |
-
"""\
|
141 |
-
The Corpus of Linguistic Acceptability consists of English
|
142 |
-
acceptability judgments drawn from books and journal articles on
|
143 |
-
linguistic theory. Each example is a sequence of words annotated
|
144 |
-
with whether it is a grammatical English sentence."""
|
145 |
-
),
|
146 |
-
text_features={"sentence": "sentence"},
|
147 |
-
label_classes=["unacceptable", "acceptable"],
|
148 |
-
label_column="is_acceptable",
|
149 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
|
150 |
-
data_dir="CoLA",
|
151 |
-
citation=textwrap.dedent(
|
152 |
-
"""\
|
153 |
-
@article{warstadt2018neural,
|
154 |
-
title={Neural Network Acceptability Judgments},
|
155 |
-
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
|
156 |
-
journal={arXiv preprint arXiv:1805.12471},
|
157 |
-
year={2018}
|
158 |
-
}"""
|
159 |
-
),
|
160 |
-
url="https://nyu-mll.github.io/CoLA/",
|
161 |
-
),
|
162 |
-
GlueConfig(
|
163 |
-
name="sst2",
|
164 |
-
description=textwrap.dedent(
|
165 |
-
"""\
|
166 |
-
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
167 |
-
human annotations of their sentiment. The task is to predict the sentiment of a
|
168 |
-
given sentence. We use the two-way (positive/negative) class split, and use only
|
169 |
-
sentence-level labels."""
|
170 |
-
),
|
171 |
-
text_features={"sentence": "sentence"},
|
172 |
-
label_classes=["negative", "positive"],
|
173 |
-
label_column="label",
|
174 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/SST-2.zip",
|
175 |
-
data_dir="SST-2",
|
176 |
-
citation=textwrap.dedent(
|
177 |
-
"""\
|
178 |
-
@inproceedings{socher2013recursive,
|
179 |
-
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
180 |
-
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
181 |
-
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
182 |
-
pages={1631--1642},
|
183 |
-
year={2013}
|
184 |
-
}"""
|
185 |
-
),
|
186 |
-
url="https://datasets.stanford.edu/sentiment/index.html",
|
187 |
-
),
|
188 |
-
GlueConfig(
|
189 |
-
name="mrpc",
|
190 |
-
description=textwrap.dedent(
|
191 |
-
"""\
|
192 |
-
The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
|
193 |
-
sentence pairs automatically extracted from online news sources, with human annotations
|
194 |
-
for whether the sentences in the pair are semantically equivalent."""
|
195 |
-
), # pylint: disable=line-too-long
|
196 |
-
text_features={"sentence1": "", "sentence2": ""},
|
197 |
-
label_classes=["not_equivalent", "equivalent"],
|
198 |
-
label_column="Quality",
|
199 |
-
data_url="", # MRPC isn't hosted by GLUE.
|
200 |
-
data_dir="MRPC",
|
201 |
-
citation=textwrap.dedent(
|
202 |
-
"""\
|
203 |
-
@inproceedings{dolan2005automatically,
|
204 |
-
title={Automatically constructing a corpus of sentential paraphrases},
|
205 |
-
author={Dolan, William B and Brockett, Chris},
|
206 |
-
booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
|
207 |
-
year={2005}
|
208 |
-
}"""
|
209 |
-
),
|
210 |
-
url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
|
211 |
-
),
|
212 |
-
GlueConfig(
|
213 |
-
name="qqp",
|
214 |
-
description=textwrap.dedent(
|
215 |
-
"""\
|
216 |
-
The Quora Question Pairs2 dataset is a collection of question pairs from the
|
217 |
-
community question-answering website Quora. The task is to determine whether a
|
218 |
-
pair of questions are semantically equivalent."""
|
219 |
-
),
|
220 |
-
text_features={
|
221 |
-
"question1": "question1",
|
222 |
-
"question2": "question2",
|
223 |
-
},
|
224 |
-
label_classes=["not_duplicate", "duplicate"],
|
225 |
-
label_column="is_duplicate",
|
226 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip",
|
227 |
-
data_dir="QQP",
|
228 |
-
citation=textwrap.dedent(
|
229 |
-
"""\
|
230 |
-
@online{WinNT,
|
231 |
-
author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
|
232 |
-
title = {First Quora Dataset Release: Question Pairs},
|
233 |
-
year = {2017},
|
234 |
-
url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
|
235 |
-
urldate = {2019-04-03}
|
236 |
-
}"""
|
237 |
-
),
|
238 |
-
url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
|
239 |
-
),
|
240 |
-
GlueConfig(
|
241 |
-
name="stsb",
|
242 |
-
description=textwrap.dedent(
|
243 |
-
"""\
|
244 |
-
The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
|
245 |
-
sentence pairs drawn from news headlines, video and image captions, and natural
|
246 |
-
language inference data. Each pair is human-annotated with a similarity score
|
247 |
-
from 1 to 5."""
|
248 |
-
),
|
249 |
-
text_features={
|
250 |
-
"sentence1": "sentence1",
|
251 |
-
"sentence2": "sentence2",
|
252 |
-
},
|
253 |
-
label_column="score",
|
254 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/STS-B.zip",
|
255 |
-
data_dir="STS-B",
|
256 |
-
citation=textwrap.dedent(
|
257 |
-
"""\
|
258 |
-
@article{cer2017semeval,
|
259 |
-
title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
|
260 |
-
author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
|
261 |
-
journal={arXiv preprint arXiv:1708.00055},
|
262 |
-
year={2017}
|
263 |
-
}"""
|
264 |
-
),
|
265 |
-
url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
|
266 |
-
process_label=np.float32,
|
267 |
-
),
|
268 |
-
GlueConfig(
|
269 |
-
name="mnli",
|
270 |
-
description=textwrap.dedent(
|
271 |
-
"""\
|
272 |
-
The Multi-Genre Natural Language Inference Corpus is a crowdsourced
|
273 |
-
collection of sentence pairs with textual entailment annotations. Given a premise sentence
|
274 |
-
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
|
275 |
-
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
|
276 |
-
gathered from ten different sources, including transcribed speech, fiction, and government reports.
|
277 |
-
We use the standard test set, for which we obtained private labels from the authors, and evaluate
|
278 |
-
on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
|
279 |
-
the SNLI corpus as 550k examples of auxiliary training data."""
|
280 |
-
),
|
281 |
-
**_MNLI_BASE_KWARGS,
|
282 |
-
),
|
283 |
-
GlueConfig(
|
284 |
-
name="mnli_mismatched",
|
285 |
-
description=textwrap.dedent(
|
286 |
-
"""\
|
287 |
-
The mismatched validation and test splits from MNLI.
|
288 |
-
See the "mnli" BuilderConfig for additional information."""
|
289 |
-
),
|
290 |
-
**_MNLI_BASE_KWARGS,
|
291 |
-
),
|
292 |
-
GlueConfig(
|
293 |
-
name="mnli_matched",
|
294 |
-
description=textwrap.dedent(
|
295 |
-
"""\
|
296 |
-
The matched validation and test splits from MNLI.
|
297 |
-
See the "mnli" BuilderConfig for additional information."""
|
298 |
-
),
|
299 |
-
**_MNLI_BASE_KWARGS,
|
300 |
-
),
|
301 |
-
GlueConfig(
|
302 |
-
name="qnli",
|
303 |
-
description=textwrap.dedent(
|
304 |
-
"""\
|
305 |
-
The Stanford Question Answering Dataset is a question-answering
|
306 |
-
dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
|
307 |
-
from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
|
308 |
-
convert the task into sentence pair classification by forming a pair between each question and each
|
309 |
-
sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
|
310 |
-
question and the context sentence. The task is to determine whether the context sentence contains
|
311 |
-
the answer to the question. This modified version of the original task removes the requirement that
|
312 |
-
the model select the exact answer, but also removes the simplifying assumptions that the answer
|
313 |
-
is always present in the input and that lexical overlap is a reliable cue."""
|
314 |
-
), # pylint: disable=line-too-long
|
315 |
-
text_features={
|
316 |
-
"question": "question",
|
317 |
-
"sentence": "sentence",
|
318 |
-
},
|
319 |
-
label_classes=["entailment", "not_entailment"],
|
320 |
-
label_column="label",
|
321 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip",
|
322 |
-
data_dir="QNLI",
|
323 |
-
citation=textwrap.dedent(
|
324 |
-
"""\
|
325 |
-
@article{rajpurkar2016squad,
|
326 |
-
title={Squad: 100,000+ questions for machine comprehension of text},
|
327 |
-
author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
|
328 |
-
journal={arXiv preprint arXiv:1606.05250},
|
329 |
-
year={2016}
|
330 |
-
}"""
|
331 |
-
),
|
332 |
-
url="https://rajpurkar.github.io/SQuAD-explorer/",
|
333 |
-
),
|
334 |
-
GlueConfig(
|
335 |
-
name="rte",
|
336 |
-
description=textwrap.dedent(
|
337 |
-
"""\
|
338 |
-
The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
|
339 |
-
entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
|
340 |
-
et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
|
341 |
-
constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
|
342 |
-
for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
|
343 |
-
), # pylint: disable=line-too-long
|
344 |
-
text_features={
|
345 |
-
"sentence1": "sentence1",
|
346 |
-
"sentence2": "sentence2",
|
347 |
-
},
|
348 |
-
label_classes=["entailment", "not_entailment"],
|
349 |
-
label_column="label",
|
350 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/RTE.zip",
|
351 |
-
data_dir="RTE",
|
352 |
-
citation=textwrap.dedent(
|
353 |
-
"""\
|
354 |
-
@inproceedings{dagan2005pascal,
|
355 |
-
title={The PASCAL recognising textual entailment challenge},
|
356 |
-
author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
|
357 |
-
booktitle={Machine Learning Challenges Workshop},
|
358 |
-
pages={177--190},
|
359 |
-
year={2005},
|
360 |
-
organization={Springer}
|
361 |
-
}
|
362 |
-
@inproceedings{bar2006second,
|
363 |
-
title={The second pascal recognising textual entailment challenge},
|
364 |
-
author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
|
365 |
-
booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
|
366 |
-
volume={6},
|
367 |
-
number={1},
|
368 |
-
pages={6--4},
|
369 |
-
year={2006},
|
370 |
-
organization={Venice}
|
371 |
-
}
|
372 |
-
@inproceedings{giampiccolo2007third,
|
373 |
-
title={The third pascal recognizing textual entailment challenge},
|
374 |
-
author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
|
375 |
-
booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
|
376 |
-
pages={1--9},
|
377 |
-
year={2007},
|
378 |
-
organization={Association for Computational Linguistics}
|
379 |
-
}
|
380 |
-
@inproceedings{bentivogli2009fifth,
|
381 |
-
title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
|
382 |
-
author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
|
383 |
-
booktitle={TAC},
|
384 |
-
year={2009}
|
385 |
-
}"""
|
386 |
-
),
|
387 |
-
url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
|
388 |
-
),
|
389 |
-
GlueConfig(
|
390 |
-
name="wnli",
|
391 |
-
description=textwrap.dedent(
|
392 |
-
"""\
|
393 |
-
The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
|
394 |
-
in which a system must read a sentence with a pronoun and select the referent of that pronoun from
|
395 |
-
a list of choices. The examples are manually constructed to foil simple statistical methods: Each
|
396 |
-
one is contingent on contextual information provided by a single word or phrase in the sentence.
|
397 |
-
To convert the problem into sentence pair classification, we construct sentence pairs by replacing
|
398 |
-
the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
|
399 |
-
pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
|
400 |
-
new examples derived from fiction books that was shared privately by the authors of the original
|
401 |
-
corpus. While the included training set is balanced between two classes, the test set is imbalanced
|
402 |
-
between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
|
403 |
-
hypotheses are sometimes shared between training and development examples, so if a model memorizes the
|
404 |
-
training examples, they will predict the wrong label on corresponding development set
|
405 |
-
example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
|
406 |
-
between a model's score on this task and its score on the unconverted original task. We
|
407 |
-
call converted dataset WNLI (Winograd NLI)."""
|
408 |
-
),
|
409 |
-
text_features={
|
410 |
-
"sentence1": "sentence1",
|
411 |
-
"sentence2": "sentence2",
|
412 |
-
},
|
413 |
-
label_classes=["not_entailment", "entailment"],
|
414 |
-
label_column="label",
|
415 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/WNLI.zip",
|
416 |
-
data_dir="WNLI",
|
417 |
-
citation=textwrap.dedent(
|
418 |
-
"""\
|
419 |
-
@inproceedings{levesque2012winograd,
|
420 |
-
title={The winograd schema challenge},
|
421 |
-
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
|
422 |
-
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
|
423 |
-
year={2012}
|
424 |
-
}"""
|
425 |
-
),
|
426 |
-
url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
|
427 |
-
),
|
428 |
-
GlueConfig(
|
429 |
-
name="ax",
|
430 |
-
description=textwrap.dedent(
|
431 |
-
"""\
|
432 |
-
A manually-curated evaluation dataset for fine-grained analysis of
|
433 |
-
system performance on a broad range of linguistic phenomena. This
|
434 |
-
dataset evaluates sentence understanding through Natural Language
|
435 |
-
Inference (NLI) problems. Use a model trained on MulitNLI to produce
|
436 |
-
predictions for this dataset."""
|
437 |
-
),
|
438 |
-
text_features={
|
439 |
-
"premise": "sentence1",
|
440 |
-
"hypothesis": "sentence2",
|
441 |
-
},
|
442 |
-
label_classes=["entailment", "neutral", "contradiction"],
|
443 |
-
label_column="", # No label since we only have test set.
|
444 |
-
# We must use a URL shortener since the URL from GLUE is very long and
|
445 |
-
# causes issues in TFDS.
|
446 |
-
data_url="https://dl.fbaipublicfiles.com/glue/data/AX.tsv",
|
447 |
-
data_dir="", # We are downloading a tsv.
|
448 |
-
citation="", # The GLUE citation is sufficient.
|
449 |
-
url="https://gluebenchmark.com/diagnostics",
|
450 |
-
),
|
451 |
-
]
|
452 |
-
|
453 |
-
def _info(self):
|
454 |
-
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
455 |
-
if self.config.label_classes:
|
456 |
-
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
457 |
-
else:
|
458 |
-
features["label"] = datasets.Value("float32")
|
459 |
-
features["idx"] = datasets.Value("int32")
|
460 |
-
return datasets.DatasetInfo(
|
461 |
-
description=_GLUE_DESCRIPTION,
|
462 |
-
features=datasets.Features(features),
|
463 |
-
homepage=self.config.url,
|
464 |
-
citation=self.config.citation + "\n" + _GLUE_CITATION,
|
465 |
-
)
|
466 |
-
|
467 |
-
def _split_generators(self, dl_manager):
|
468 |
-
if self.config.name == "ax":
|
469 |
-
data_file = dl_manager.download(self.config.data_url)
|
470 |
-
return [
|
471 |
-
datasets.SplitGenerator(
|
472 |
-
name=datasets.Split.TEST,
|
473 |
-
gen_kwargs={
|
474 |
-
"data_file": data_file,
|
475 |
-
"split": "test",
|
476 |
-
},
|
477 |
-
)
|
478 |
-
]
|
479 |
-
|
480 |
-
if self.config.name == "mrpc":
|
481 |
-
data_dir = None
|
482 |
-
mrpc_files = dl_manager.download(
|
483 |
-
{
|
484 |
-
"dev_ids": _MRPC_DEV_IDS,
|
485 |
-
"train": _MRPC_TRAIN,
|
486 |
-
"test": _MRPC_TEST,
|
487 |
-
}
|
488 |
-
)
|
489 |
-
else:
|
490 |
-
dl_dir = dl_manager.download_and_extract(self.config.data_url)
|
491 |
-
data_dir = os.path.join(dl_dir, self.config.data_dir)
|
492 |
-
mrpc_files = None
|
493 |
-
train_split = datasets.SplitGenerator(
|
494 |
-
name=datasets.Split.TRAIN,
|
495 |
-
gen_kwargs={
|
496 |
-
"data_file": os.path.join(data_dir or "", "train.tsv"),
|
497 |
-
"split": "train",
|
498 |
-
"mrpc_files": mrpc_files,
|
499 |
-
},
|
500 |
-
)
|
501 |
-
if self.config.name == "mnli":
|
502 |
-
return [
|
503 |
-
train_split,
|
504 |
-
_mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
|
505 |
-
_mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
|
506 |
-
_mnli_split_generator("test_matched", data_dir, "test", matched=True),
|
507 |
-
_mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
|
508 |
-
]
|
509 |
-
elif self.config.name == "mnli_matched":
|
510 |
-
return [
|
511 |
-
_mnli_split_generator("validation", data_dir, "dev", matched=True),
|
512 |
-
_mnli_split_generator("test", data_dir, "test", matched=True),
|
513 |
-
]
|
514 |
-
elif self.config.name == "mnli_mismatched":
|
515 |
-
return [
|
516 |
-
_mnli_split_generator("validation", data_dir, "dev", matched=False),
|
517 |
-
_mnli_split_generator("test", data_dir, "test", matched=False),
|
518 |
-
]
|
519 |
-
else:
|
520 |
-
return [
|
521 |
-
train_split,
|
522 |
-
datasets.SplitGenerator(
|
523 |
-
name=datasets.Split.VALIDATION,
|
524 |
-
gen_kwargs={
|
525 |
-
"data_file": os.path.join(data_dir or "", "dev.tsv"),
|
526 |
-
"split": "dev",
|
527 |
-
"mrpc_files": mrpc_files,
|
528 |
-
},
|
529 |
-
),
|
530 |
-
datasets.SplitGenerator(
|
531 |
-
name=datasets.Split.TEST,
|
532 |
-
gen_kwargs={
|
533 |
-
"data_file": os.path.join(data_dir or "", "test.tsv"),
|
534 |
-
"split": "test",
|
535 |
-
"mrpc_files": mrpc_files,
|
536 |
-
},
|
537 |
-
),
|
538 |
-
]
|
539 |
-
|
540 |
-
def _generate_examples(self, data_file, split, mrpc_files=None):
|
541 |
-
if self.config.name == "mrpc":
|
542 |
-
# We have to prepare the MRPC dataset from the original sources ourselves.
|
543 |
-
examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
|
544 |
-
for example in examples:
|
545 |
-
yield example["idx"], example
|
546 |
-
else:
|
547 |
-
process_label = self.config.process_label
|
548 |
-
label_classes = self.config.label_classes
|
549 |
-
|
550 |
-
# The train and dev files for CoLA are the only tsv files without a
|
551 |
-
# header.
|
552 |
-
is_cola_non_test = self.config.name == "cola" and split != "test"
|
553 |
-
|
554 |
-
with open(data_file, encoding="utf8") as f:
|
555 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
556 |
-
if is_cola_non_test:
|
557 |
-
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
558 |
-
|
559 |
-
for n, row in enumerate(reader):
|
560 |
-
if is_cola_non_test:
|
561 |
-
row = {
|
562 |
-
"sentence": row[3],
|
563 |
-
"is_acceptable": row[1],
|
564 |
-
}
|
565 |
-
|
566 |
-
example = {feat: row[col] for feat, col in self.config.text_features.items()}
|
567 |
-
example["idx"] = n
|
568 |
-
|
569 |
-
if self.config.label_column in row:
|
570 |
-
label = row[self.config.label_column]
|
571 |
-
# For some tasks, the label is represented as 0 and 1 in the tsv
|
572 |
-
# files and needs to be cast to integer to work with the feature.
|
573 |
-
if label_classes and label not in label_classes:
|
574 |
-
label = int(label) if label else None
|
575 |
-
example["label"] = process_label(label)
|
576 |
-
else:
|
577 |
-
example["label"] = process_label(-1)
|
578 |
-
|
579 |
-
# Filter out corrupted rows.
|
580 |
-
for value in example.values():
|
581 |
-
if value is None:
|
582 |
-
break
|
583 |
-
else:
|
584 |
-
yield example["idx"], example
|
585 |
-
|
586 |
-
def _generate_example_mrpc_files(self, mrpc_files, split):
|
587 |
-
if split == "test":
|
588 |
-
with open(mrpc_files["test"], encoding="utf8") as f:
|
589 |
-
# The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
|
590 |
-
# the Quality key.
|
591 |
-
f.seek(3)
|
592 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
593 |
-
for n, row in enumerate(reader):
|
594 |
-
yield {
|
595 |
-
"sentence1": row["#1 String"],
|
596 |
-
"sentence2": row["#2 String"],
|
597 |
-
"label": int(row["Quality"]),
|
598 |
-
"idx": n,
|
599 |
-
}
|
600 |
-
else:
|
601 |
-
with open(mrpc_files["dev_ids"], encoding="utf8") as f:
|
602 |
-
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
603 |
-
dev_ids = [[row[0], row[1]] for row in reader]
|
604 |
-
with open(mrpc_files["train"], encoding="utf8") as f:
|
605 |
-
# The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
|
606 |
-
# the Quality key.
|
607 |
-
f.seek(3)
|
608 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
609 |
-
for n, row in enumerate(reader):
|
610 |
-
is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
|
611 |
-
if is_row_in_dev == (split == "dev"):
|
612 |
-
yield {
|
613 |
-
"sentence1": row["#1 String"],
|
614 |
-
"sentence2": row["#2 String"],
|
615 |
-
"label": int(row["Quality"]),
|
616 |
-
"idx": n,
|
617 |
-
}
|
618 |
-
|
619 |
-
|
620 |
-
def _mnli_split_generator(name, data_dir, split, matched):
|
621 |
-
return datasets.SplitGenerator(
|
622 |
-
name=name,
|
623 |
-
gen_kwargs={
|
624 |
-
"data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
|
625 |
-
"split": split,
|
626 |
-
"mrpc_files": None,
|
627 |
-
},
|
628 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|