Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
8663a53
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a\ncrowd-sourced collection of 433k sentence pairs annotated with textual\nentailment information. The corpus is modeled on the SNLI corpus, but differs in\nthat covers a range of genres of spoken and written text, and supports a\ndistinctive cross-genre generalization evaluation. The corpus served as the\nbasis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n", "homepage": "https://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": null, "builder_name": "multi_nli", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 73245222, "num_examples": 392702, "dataset_name": "multi_nli"}, "validation_matched": {"name": "validation_matched", "num_bytes": 1799439, "num_examples": 9815, "dataset_name": "multi_nli"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 1914827, "num_examples": 9832, "dataset_name": "multi_nli"}}, "download_checksums": {"http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip": {"num_bytes": 226850426, "checksum": "049f507b9e36b1fcb756cfd5aeb3b7a0cfcb84bf023793652987f7e7e0957822"}}, "download_size": 226850426, "dataset_size": 76959488, "size_in_bytes": 303809914}}
dummy/plain_text/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fa7aca81ea7db5408b84d967c291a89f721e82e0b4eef3563e48ec8edf347e8
3
+ size 1276
multi_nli.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The Multi-Genre NLI Corpus."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @InProceedings{N18-1101,
28
+ author = {Williams, Adina
29
+ and Nangia, Nikita
30
+ and Bowman, Samuel},
31
+ title = {A Broad-Coverage Challenge Corpus for
32
+ Sentence Understanding through Inference},
33
+ booktitle = {Proceedings of the 2018 Conference of
34
+ the North American Chapter of the
35
+ Association for Computational Linguistics:
36
+ Human Language Technologies, Volume 1 (Long
37
+ Papers)},
38
+ year = {2018},
39
+ publisher = {Association for Computational Linguistics},
40
+ pages = {1112--1122},
41
+ location = {New Orleans, Louisiana},
42
+ url = {http://aclweb.org/anthology/N18-1101}
43
+ }
44
+ """
45
+
46
+ _DESCRIPTION = """\
47
+ The Multi-Genre Natural Language Inference (MultiNLI) corpus is a
48
+ crowd-sourced collection of 433k sentence pairs annotated with textual
49
+ entailment information. The corpus is modeled on the SNLI corpus, but differs in
50
+ that covers a range of genres of spoken and written text, and supports a
51
+ distinctive cross-genre generalization evaluation. The corpus served as the
52
+ basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
53
+ """
54
+
55
+
56
+ class MultiNLIConfig(datasets.BuilderConfig):
57
+ """BuilderConfig for MultiNLI."""
58
+
59
+ def __init__(self, **kwargs):
60
+ """BuilderConfig for MultiNLI.
61
+
62
+ Args:
63
+ .
64
+ **kwargs: keyword arguments forwarded to super.
65
+ """
66
+ super(MultiNLIConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
67
+
68
+
69
+ class MultiNli(datasets.GeneratorBasedBuilder):
70
+ """MultiNLI: The Stanford Question Answering Dataset. Version 1.1."""
71
+
72
+ BUILDER_CONFIGS = [
73
+ MultiNLIConfig(
74
+ name="plain_text",
75
+ description="Plain text",
76
+ ),
77
+ ]
78
+
79
+ def _info(self):
80
+ return datasets.DatasetInfo(
81
+ description=_DESCRIPTION,
82
+ features=datasets.Features(
83
+ {
84
+ "premise": datasets.Value("string"),
85
+ "hypothesis": datasets.Value("string"),
86
+ "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
87
+ }
88
+ ),
89
+ # No default supervised_keys (as we have to pass both premise
90
+ # and hypothesis as input).
91
+ supervised_keys=None,
92
+ homepage="https://www.nyu.edu/projects/bowman/multinli/",
93
+ citation=_CITATION,
94
+ )
95
+
96
+ def _vocab_text_gen(self, filepath):
97
+ for _, ex in self._generate_examples(filepath):
98
+ yield " ".join([ex["premise"], ex["hypothesis"]])
99
+
100
+ def _split_generators(self, dl_manager):
101
+
102
+ downloaded_dir = dl_manager.download_and_extract(
103
+ "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip"
104
+ )
105
+ mnli_path = os.path.join(downloaded_dir, "multinli_1.0")
106
+ train_path = os.path.join(mnli_path, "multinli_1.0_train.txt")
107
+ matched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_matched.txt")
108
+ mismatched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_mismatched.txt")
109
+
110
+ return [
111
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
112
+ datasets.SplitGenerator(name="validation_matched", gen_kwargs={"filepath": matched_validation_path}),
113
+ datasets.SplitGenerator(name="validation_mismatched", gen_kwargs={"filepath": mismatched_validation_path}),
114
+ ]
115
+
116
+ def _generate_examples(self, filepath):
117
+ """Generate mnli examples.
118
+
119
+ Args:
120
+ filepath: a string
121
+
122
+ Yields:
123
+ dictionaries containing "premise", "hypothesis" and "label" strings
124
+ """
125
+ for idx, line in enumerate(open(filepath, "rb")):
126
+ if idx == 0:
127
+ continue # skip header
128
+ line = line.strip().decode("utf-8")
129
+ split_line = line.split("\t")
130
+ # Examples not marked with a three out of five consensus are marked with
131
+ # "-" and should not be used in standard evaluations.
132
+ if split_line[0] == "-":
133
+ continue
134
+ # Works for both splits even though dev has some extra human labels.
135
+ yield idx, {"premise": split_line[5], "hypothesis": split_line[6], "label": split_line[0]}