metadata
dict
text
stringlengths
60
3.49M
{ "source": "jhonasn/templatizator", "score": 3 }
#### File: templatizator/domain/container.py ```python from templatizator.domain.repository import ConfigurationRepository, \ VariableRepository, TemplateRepository, TemplateFileRepository, \ ConfigurableRepository, ConfigurableFileRepository from templatizator.domain.service import ProjectService, \ ConfigurationService, VariableService, TemplateService, ConfigurableService from templatizator.domain.application import ProjectApplication, \ VariableApplication, TemplateApplication, ConfigurableFileApplication from templatizator.domain.helper import Event # pylint: disable=too-few-public-methods class Container: '''Static container class that holds the important instances available for presentation layer ''' def __init__(self): raise Exception('Static class is not instantiable') @staticmethod def configure(): '''Instantiate events, and DDD layers''' # events project_changed_event = Event() configuration_changed_event = Event() # repository layer configuration_repository = ConfigurationRepository() variable_repository = VariableRepository() template_repository = TemplateRepository() template_file_repository = TemplateFileRepository() configurable_repository = ConfigurableRepository() configurable_file_repository = ConfigurableFileRepository() # service layer # the order affects the event subscribe and publish into the services variable_service = VariableService( variable_repository, project_changed_event ) template_service = TemplateService( template_repository, template_file_repository, project_changed_event ) configurable_service = ConfigurableService( configurable_repository, configurable_file_repository, project_changed_event ) project_service = ProjectService( configuration_repository, variable_repository, template_repository, configurable_repository, template_file_repository, configurable_file_repository, configuration_changed_event, project_changed_event ) configuration_service = ConfigurationService( configuration_repository, configuration_changed_event ) # application layer Container.project_application = ProjectApplication( project_service, configuration_service ) Container.variable_application = VariableApplication(variable_service) Container.template_application = TemplateApplication(template_service) Container.configurable_file_application = ConfigurableFileApplication( configurable_service ) ``` #### File: templatizator/domain/domain.py ```python from abc import ABC, abstractmethod # Just one method contract required # pylint: disable=too-few-public-methods class Serializable(ABC): '''Base class for serializable classes (all domains must be)''' @abstractmethod def serialize(self): '''Contract method to serialize object''' raise NotImplementedError('Object serialize method not implemented') class Node(Serializable): '''Base class for node graph. Commonly used as a file tree in this project ''' def __init__(self, path=None, name=None): self.path = path self.name = name self.children = [] self.parent = None def add_child(self, child): '''Add child to this node and set parent to the child''' self.children.append(child) child.parent = self def remove_child(self, child): '''Remove child from this node''' self.children.remove(child) def remove(self): '''Remove itself from its parent''' self.parent.remove_child(self) del self def serialize(self): '''Serialize relevant node attributes''' return {'path': self.path} class Directory(Node): '''Represents a directory into a file tree''' def __init__(self, path=None, name=None, opened=False): super().__init__(path, name) self.open = opened def serialize(self): '''Serialize relevant attributes''' obj = super().serialize() obj['open'] = self.open return obj class File(Node): '''Represents a file into a file tree''' def __init__(self, path=None, name=None, save=True): super().__init__(path, name) self.save = save def serialize(self): obj = super().serialize() obj['save'] = self.save return obj class Template(File): '''Represents a template file into a file tree''' pass class ConfigurableFile(File): '''Represents a configurable file into a file tree. Samples of configurables files can be xml or json files but any file can be a configurable, the configurable will receive the templates in placeholders in any way desired through the placeholder template lines ''' pass class Project(Directory): '''Represents the project directory into the file tree''' def __init__(self, path=None, name=None, path_name=None, selected=False): super().__init__(path, name, True) # friendly project name self.path_name = path_name self.selected = selected def serialize(self): '''Serialize relevant attributes''' obj = super().serialize() del obj['open'] obj['path_name'] = self.path_name obj['selected'] = self.selected return obj class Variable(Serializable): '''Project variables that will be replacing placeholders in file names or file contents ''' def __init__(self, name=None, value=None): self.name = name self.value = value def serialize(self): '''Serialize relevant attributes''' return {'name': self.name, 'value': self.value} ``` #### File: templatizator/domain/service.py ```python from abc import ABC from templatizator.domain.domain import Variable from templatizator.domain.infrastructure import ProjectNotSet from templatizator.domain.helper import OS class ConfigurationService: '''Handle configuration rules''' def __init__(self, repository, configuration_changed_event): self.repository = repository self.event = configuration_changed_event def change_path(self, path): '''Changes repository path and notify it through event''' # save configuration path self.repository.change_path(path) self.event.publish(path) def get_path(self): '''Returns configuration path''' return self.repository.path class ProjectService: '''Handle project rules''' # Project has no repository so its not necessary to call base class # pylint: disable=super-init-not-called,too-many-arguments def __init__(self, configuration_repository, variable_repository, template_repository, configurable_repository, template_file_repository, configurable_file_repository, configuration_changed_event, project_change_event): self.configuration_repository = configuration_repository self.variable_repository = variable_repository self.template_repository = template_repository self.configurable_repository = configurable_repository self.template_file_repository = template_file_repository self.configurable_file_repository = configurable_file_repository self.event = project_change_event configuration_changed_event.subscribe(self.configuration_changed) path = self.configuration_repository.get_project_path() if path: self.event.publish(path) def get_home_path(self): '''Get home path''' return self.configuration_repository.get_home_path() def change_path(self, path): '''Changes repository path and notify it through event''' project_path = self.configuration_repository.change_project(path) self.event.publish(project_path) def configuration_changed(self, path): '''Configuration path change listener, change path when receives a notification from configuration and notify other services through event ''' self.configuration_repository.path = path path = self.configuration_repository.get_project_path() self.event.publish(path) def find_node(self, filetree, path): '''Find node instance of informed path into the filetree''' return self.configuration_repository.find_node(filetree, path) def get_filetree(self): '''Get filetree graph and fills it with templates and configurables''' filetree = self.configuration_repository.get_filetree() templates = self.template_repository.get() configurables = self.configurable_repository.get() for template in templates: parent = self.find_node( filetree, self.configuration_repository.get_parent_path(template.path) ) if parent: parent.add_child(template) for configurable in configurables: parent = self.find_node( filetree, self.configuration_repository.get_parent_path( configurable.path ) ) if parent: parent.add_child(configurable) return filetree def replace_variables(self, text): '''Replaces placeholders in the passed text with recorded application variables ''' new_text = text for var in self.variable_repository.get(): new_text = new_text.replace(f'[{var.name}]', var.value) return new_text def save_into_project(self): '''Save configured templates and configurables into the project folder ''' local_path = self.configuration_repository.get_project_path() if not local_path: raise ProjectNotSet from re import sub, findall # save templates into the project prev_name = self.template_file_repository.name for template in self.template_repository.get(): if template.save: self.template_file_repository.path = local_path self.template_file_repository.name = template.name content = self.template_file_repository.get() content = self.replace_variables(content) self.template_file_repository.path = \ self.configuration_repository.get_parent_path( template.path) self.template_file_repository.name = \ self.replace_variables(template.name) self.template_file_repository.save(content) self.template_file_repository.path = local_path self.template_file_repository.name = prev_name # save configurable files into the project prev_name = self.configurable_file_repository.name for configurable in self.configurable_repository.get(): if configurable.save: self.configurable_file_repository.path = local_path self.configurable_file_repository.name = configurable.name content = self.configurable_file_repository.get() templates = self.template_repository.get() # first remount content replacing template.All placeholders # by each template template_all_props = ['name', 'path', 'relative_path'] template_all_props = list(map( lambda p: {'prop': p, 'template': f'[template.All.{p}]'}, template_all_props)) found_templates = [{'found': f, 'inline': True} for f in findall(r'\<\[.*?\]\>', content)] found_templates.extend([{'found': f, 'inline': False} for f in list(filter( lambda s: '<[' not in s and ']>' not in s, findall(r'.*\[.*\].*', content)))]) # create templates with relative_path project_path = self.get_filetree().path def map_template(template): template.name = self.replace_variables(template.name) template.path = self.replace_variables(OS.get_default_path( template.path)) template = template.__dict__ template['relative_path'] = \ template['path'].replace(project_path, '') # remove first slash template['relative_path'] = template['relative_path'][1:] return template templates = list(map(map_template, templates)) for template_found in found_templates: found, is_inline = template_found.values() templates_in = list(filter( lambda p: p['template'] in found, template_all_props)) replacement = '' for prop in templates_in: for template in templates: result = found[2:-2] if is_inline else found prp, templ = prop.values() template = template[prp] replacement += result.replace(templ, template) replacement += '\n' if not is_inline else '' replacement += found index = content.index(found) content = content[:index] + replacement + \ content[index + len(found):] # save new content into the template self.configurable_file_repository.name = configurable.name self.configurable_file_repository.save(content) # save new content to the configurable in project # removing the template.All placeholders self.configurable_file_repository.path = \ self.configuration_repository.get_parent_path( configurable.path) content = sub(r'\<\[.*?\]\>', lambda m: '', content) content = sub(r'(?<=\n).*\[template\.All\.(\w+)\].*\n', lambda m: '', content) self.configurable_file_repository.save(content) self.configurable_file_repository.path = local_path self.configurable_file_repository.name = prev_name class VariableService: '''Handle variable rules''' def __init__(self, repository, project_change_event): self.repository = repository project_change_event.subscribe(self.project_changed) def get(self): '''Get project variables''' return self.repository.get() @staticmethod def get_defaults(): '''Returns default application variables''' return [Variable('ext', 'py')] def save_defaults(self): '''Saves default variables if them aren\'t deleted before and project is set ''' if not self.repository.exists() and self.repository.path: for var in VariableService.get_defaults(): self.add(var) def add(self, variable): '''Add variable''' if not self.repository.path: raise ProjectNotSet self.repository.add(variable) def change(self, old_name, variable): '''Updates variable''' variables = self.repository.get() db_variable = self.repository.first(lambda v: v.name == old_name, variables) if isinstance(db_variable, Variable): db_variable.name = variable.name db_variable.value = variable.value self.repository.save(variables) def remove(self, name): '''Removes variable by name''' self.repository.remove(lambda v: v.name == name) def project_changed(self, path): '''Project path change listener that change repository path when project path is changed ''' self.repository.path = path self.save_defaults() class FileService(ABC): '''Base service class for file model handlers''' def __init__(self, repository, file_repository): self.repository = repository self.file_repository = file_repository def create_child(self, parent, name): '''Add child node into the parent and get correct child path''' return self.repository.create_child(parent, name) def add(self, file_node, content): '''Add file node with content in the hard disk''' self.repository.add(file_node) self.file_repository.name = file_node.name self.file_repository.save(content) def save(self, file_node): '''Save file node state''' self.repository.update(file_node, file_node.name) def save_file(self, file_node, new_name, content): '''Write file node in the hard disk and rename if necessary''' if not new_name: new_name = file_node.name self.repository.update(file_node, new_name) self.file_repository.save_file(file_node.name, new_name, content) def remove(self, template): '''Removes file node from collection and its file''' self.repository.remove_node(template) self.file_repository.name = template.name self.file_repository.drop() class TemplateService(FileService): '''Handle template rules''' def __init__(self, repository, file_repository, project_change_event): super().__init__(repository, file_repository) project_change_event.subscribe(self.project_changed) def get(self, template): '''Get file content''' self.file_repository.name = template.name return self.file_repository.get() def get_all(self): '''Get all templates''' return self.repository.get() def project_changed(self, path): '''Project path change listener that change repository path when project path is changed ''' self.file_repository.path = path self.repository.path = path def get_path(self, template): '''Get template file path''' self.repository.name = template.name path = OS.get_default_path(self.repository.full_path) # reset repository name del self.repository.name return path class ConfigurableService(FileService): '''Handle configurable rules''' def __init__(self, repository, file_repository, project_change_event): super().__init__(repository, file_repository) project_change_event.subscribe(self.project_changed) def get(self, configurable): '''Get file content''' previous_path = self.file_repository.path is_new = not self.repository.filter( lambda c: c.path == configurable.path ) if is_new: self.file_repository.path = configurable.path else: self.file_repository.name = configurable.name content = self.file_repository.get() self.file_repository.path = previous_path return content def project_changed(self, path): '''Project path change listener that change repository path when project path is changed ''' self.repository.path = path self.file_repository.path = path def get_filename(self, path): '''Get filename from entire path''' return self.repository.get_basename(path) def is_child(self, parent_path, filename): '''Verify if filename is a existent file into the parent_path folder''' return self.repository.is_child(parent_path, filename) ``` #### File: templatizator/presentation/helper.py ```python import re from templatizator.domain.helper import OS _NONBMP = re.compile(r'[\U00010000-\U0010FFFF]') def _surrogatepair(match): char = match.group() assert ord(char) > 0xffff encoded = char.encode('utf-16-le') return ( chr(int.from_bytes(encoded[:2], 'little')) + chr(int.from_bytes(encoded[2:], 'little'))) def get_tkinter_unicode(text): '''Convert unicode icon to unicode pair that is readable to tkinter''' return _NONBMP.sub(_surrogatepair, text.upper()) def is_unicode_available(text): '''Verify if unicode passed text is available to use in this os''' if OS.is_windows: return True try: print(_NONBMP.sub(_surrogatepair, text.upper())) except UnicodeError: return False return True ``` #### File: templatizator/presentation/widgets.py ```python import tkinter as tk class Tooltip: ''' Create a tooltip for a given widget. Inform col to add tooltip to a treeview column ''' def __init__(self, widget, text='widget info', col=None, before=None): self.widget = widget self.text = text self.tooltip_window = None self.col = col self.before = before if col: self.widget.bind('<Motion>', self.enter) else: self.widget.bind("<Enter>", self.enter) self.widget.bind("<Leave>", self.close) def enter(self, event=None): '''Shows the tooltip when mouse enter''' point = {'x': 0, 'y': 0} point['x'] += self.widget.winfo_rootx() + 25 point['y'] += self.widget.winfo_rooty() + 20 if self.col: self.close(event) col = self.widget.identify_column(event.x) iid = self.widget.identify('item', event.x, event.y) if (col != self.col and self.col != '#') or not iid: # do not show tooltip return if self.before: show = self.before(col, iid, self) if not show: return point['x'] += event.x point['x'] -= 15 point['y'] += event.y point['y'] -= 10 # creates a toplevel window self.tooltip_window = tk.Toplevel(self.widget) # Leaves only the label and removes the app window self.tooltip_window.wm_overrideredirect(True) self.tooltip_window.wm_geometry("+%d+%d" % (point['x'], point['y'])) label = tk.Label(self.tooltip_window, text=self.text, justify='left', background='#f7f7da', relief='solid', borderwidth=1, font=("times", "8", "normal")) label.pack(ipadx=1) # pylint: disable=unused-argument def close(self, event=None): '''Closes tooltip when mouse leaves''' if self.tooltip_window: self.tooltip_window.destroy() ``` #### File: templatizator/tests/test_configurable_application.py ```python from os.path import join, basename, dirname, exists, normpath from json import dumps from pytest import fixture from templatizator.domain.container import Container from tests import configuration_path, project_path, configure_paths, \ delete_configuration_folders from tests.file_application_test_helper import FileApplicationTestHelper from tests.test_variable_application import add_variables from tests.test_template_application import add_templates, templates_add class TestConfigurableApplication: initial_configurable_content_object = {'name': 'Test project', 'version': '1.0.0'} configurable_content_object = {'name': 'Test project', 'version': '1.0.0', 'files': ['[template.All.name]'], 'paths': ['[template.All.path]'], 'relative_paths': ['[template.All.relative_path]']} @classmethod def setup_method(cls): delete_configuration_folders() @staticmethod def get_configurables(): from templatizator.domain.domain import ConfigurableFile path = join(project_path, 'package.json') path2 = join(project_path, 'multiline_package.json') return [ConfigurableFile(path), ConfigurableFile(path2)] @fixture def application(self): configure_paths() add_variables() add_templates() return Container.configurable_file_application @fixture def repository(self): from templatizator.domain.repository import ConfigurableRepository repository = ConfigurableRepository() repository.path = join(Container.project_application.configuration_path, basename(project_path)) return repository @fixture def configurables(self, application, repository): obj = TestConfigurableApplication.configurable_content_object configurables = TestConfigurableApplication.get_configurables() for configurable in configurables: configurable.name = application.get_filename(configurable.path) content = dumps(obj, indent=2 \ if configurable.name == 'multiline_package.json' else None) # apply inline template # and add comma at the end of template lines on multiline_package sufix = ',' prefix = '' template = '{}"[template.All.{}]"{}' replace = lambda prop: content.replace( template.format('', prop, ''), template.format(prefix, prop, sufix)) if configurable.name == 'package.json': sufix = ', ]>' prefix = '<[' content = replace('name') content = replace('path') content = replace('relative_path') application.add(configurable, content) return repository.get() def test_get(self, application): for configurable in TestConfigurableApplication.get_configurables(): content = application.get(configurable) obj = TestConfigurableApplication.\ initial_configurable_content_object content_result = dumps(obj, indent=2 \ if basename(configurable.path) == 'multiline_package.json' \ else None) assert content == content_result def test_get_created(self, application, configurables): for configurable in configurables: content = application.get(configurable) init_obj = TestConfigurableApplication.\ initial_configurable_content_object content_result = dumps(init_obj, indent=2 \ if configurable.name == 'multiline_package.json' else None) assert content != content_result def test_create_child(self, application, configurables): FileApplicationTestHelper.test_create_child(application, configurables) def test_save(self, application, repository, configurables): FileApplicationTestHelper.test_save(application, configurables, repository.get) def test_save_file(self, application, repository, configurables): FileApplicationTestHelper.test_save_file(application, configurables, repository.get) def test_remove(self, application, repository, configurables): FileApplicationTestHelper.test_remove(application, configurables, repository.get) def test_get_filename(self, application, configurables): assert configurables[0].name == 'package.json' assert configurables[1].name == 'multiline_package.json' def test_is_child(self, application, configurables): for configurable in configurables: assert exists(configurable.path) assert exists(join(project_path, configurable.name)) assert application.is_child(project_path, configurable.path) assert not application.is_child(dirname(project_path), configurable.path) assert not application.is_child(join(project_path, 'application'), configurable.path) def test_save_into_project(self, application, configurables): Container.project_application.save_into_project() expected_content = f'''{{ "name": "[pname]", "version": "1.0.0", "files": [ [files] <["[template.All.name]", ]> ], "paths": [ [paths] <["[template.All.path]", ]> ], "relative_paths": [ [relative_paths] <["[template.All.relative_path]", ]> ] }}''' indentation = ' ' files = {'files': '', 'paths': '', 'relative_paths': ''} for template_info in templates_add: directory, name = template_info.values() name = name.replace('[name]', 'person').replace('[ext]', 'py') path = normpath(join(project_path, directory, name)) rpath = normpath(join(directory, name)) files['files'] += f'{indentation}"{name}",\n' files['paths'] += f'{indentation}"{path}",\n' files['relative_paths'] += f'{indentation}"{rpath}",\n' def replace_content(content, files, is_inline=False): if is_inline: files = {k: v.replace(' ', '').replace('\n', ' ') for k, v in files.items()} content = content.replace('[pname]', 'Test project') content = content.replace('[files]', files['files'])\ .replace('[paths]', files['paths'])\ .replace('[relative_paths]', files['relative_paths']) return content expected_content_inline = expected_content.replace('\n', '')\ .replace(' ', '').replace(':', ': ').replace(',', ', ') expected_content = expected_content.replace('<[', '').replace(' ]>', '') expected_content = replace_content(expected_content, files) expected_content_inline = replace_content(expected_content_inline, files, True) from re import sub for configurable in configurables: path = join(project_path, configurable.name) assert exists(path) is_inline = configurable.name == 'package.json' content = application.get(configurable) content_result = expected_content_inline if is_inline \ else expected_content # test configurable template content assert content == content_result with open(path) as f: content = f.read() # remove inline template regex = r'\<\[.*?\]\>' if is_inline else r'\n.*?\[.*?\].*?\n' replacement = '' if is_inline else '\n' content_result = sub(regex, lambda m: replacement, content_result) # test configurable content result in project assert content == content_result def test_not_save_into_project(self, application, configurables): variables = Container.variable_application.get() FileApplicationTestHelper.test_not_save_into_project(application, configurables, variables, Container.project_application.save_into_project) # def test_add(self): # already tested on configurables fixture ``` #### File: templatizator/tests/test_presentation_window.py ```python from unittest.mock import Mock, MagicMock from templatizator.presentation.container import Container from tests import container namespace = 'templatizator.presentation.window' def test_initialization(container): win = Container.window assert bool(win.application) assert bool(win.template_application) assert bool(win.configurable_application) assert bool(win.variables) assert bool(win.editor) assert bool(win.window) assert bool(win.treeview) def test_icons(container, monkeypatch): '''Test methods get_filetree_icon, get_filetree_action_icon and get_filetree_checkbox ''' from templatizator.presentation.window import ICONS, ICONS_UGLY, ICON_ADD,\ ICON_REMOVE, ICON_CHECKED, ICON_UNCHECKED from templatizator.domain.domain import Directory, Template, \ ConfigurableFile win = Container.window # do not use helper to convert unicode icon monkeypatch.setattr(f'{namespace}.get_tkinter_unicode', lambda i: i) win.pretty_icons = True node = Directory(opened=True) assert node.open == True icon = win.get_filetree_icon(node) assert icon == ICONS.folderopened win.pretty_icons = False icon = win.get_filetree_icon(node) assert icon == ICONS_UGLY.folderopened assert icon != ICONS.folderopened icon = win.get_filetree_action_icon(node) assert icon == ICON_ADD icon = win.get_filetree_checkbox(node) assert icon == '' win.pretty_icons = True node = Directory(opened=False) assert node.open == False icon = win.get_filetree_icon(node) assert icon == ICONS.folderclosed win.pretty_icons = False icon = win.get_filetree_icon(node) assert icon == ICONS_UGLY.folderclosed assert icon != ICONS.folderclosed icon = win.get_filetree_action_icon(node) assert icon == ICON_ADD icon = win.get_filetree_checkbox(node) assert icon == '' win.pretty_icons = True node = Template(save=True) assert node.save == True icon = win.get_filetree_icon(node) assert icon == ICONS.template win.pretty_icons = False icon = win.get_filetree_icon(node) assert icon == ICONS_UGLY.template assert icon != ICONS.template icon = win.get_filetree_action_icon(node) assert icon == ICON_REMOVE icon = win.get_filetree_checkbox(node) assert icon == ICON_CHECKED node = Template(save=False) assert node.save == False icon = win.get_filetree_checkbox(node) assert icon == ICON_UNCHECKED assert icon != ICON_CHECKED win.pretty_icons = True node = ConfigurableFile(save=True) assert node.save == True icon = win.get_filetree_icon(node) assert icon == ICONS.configurable win.pretty_icons = False icon = win.get_filetree_icon(node) assert icon == ICONS_UGLY.configurable assert icon != ICONS.configurable icon = win.get_filetree_action_icon(node) assert icon == ICON_REMOVE icon = win.get_filetree_checkbox(node) assert icon == ICON_CHECKED node = ConfigurableFile(save=False) assert node.save == False icon = win.get_filetree_checkbox(node) assert icon == ICON_UNCHECKED assert icon != ICON_CHECKED def test_render_treeview(container): from tkinter.ttk import Treeview from templatizator.domain.domain import Project from templatizator.presentation.window import Window win = Container.window tv = win.treeview mock_win = Mock(spec=Window) mock_win.treeview = MagicMock(spec=Treeview) mock_win.filetree = Mock(spec=Project) Window.render_treeview(mock_win) mock_win.treeview.delete.assert_called_once() mock_win.fill_treeview.assert_called_once() mock_win.filetree = None mock_win.reset_mock() Window.render_treeview(mock_win) mock_win.fill_treeview.assert_not_called() #def test_fill_treeview(container): #def test_select_project(container): #def test_project_selected(container): #def test_select_configuration(container): #def test_configuration_selected(container): #def test_add_template(container): #def test_add_configurable(container): #def test_open_file(container): #def test_open_with(container): #def test_remove_file(container): #def test_row_popup_selected(container): #def test_row_selected(container): #def test_row_opened(container): #def test_row_closed(container): #def test_before_show_tooltip(container): #def test_save_templates(container): #def test_center(container): ```
{ "source": "jhonata-antunes/basic-compiler", "score": 3 }
#### File: basic-compiler/modules/file_system.py ```python class FileSystem: def __init__(self, file_name): self.file = open(file_name, 'rb') def read_line(self): if not self.file: return 'EOF' line = self.file.readline() if not line: self.file.close() self.file = None return 'EOF' return line ``` #### File: basic-compiler/modules/lexical_classifier.py ```python from recognizers.lexical import Lexical from tkn import Token class LexicalClassifier: def __init__(self, ascii_classifier): self.ascii_classifier = ascii_classifier self.lexical = Lexical() self.current_token = None def get_token(self): token_value = '' try: while True: if not self.current_token: self.current_token = self.ascii_classifier.get_categorized_char() if self.current_token.value == 'EOF': raise ValueError self.lexical.process_atom(self.current_token) token_value += self.current_token.value self.current_token = None except ValueError: token = Token(token_class=self.lexical.get_class(), value=token_value.strip(' \n').rstrip(' \n')) self.lexical.reset() return token ``` #### File: basic-compiler/recognizers/lexical.py ```python from recognizers.automaton import Automaton from tkn import Token class Lexical(Automaton): def __init__(self): super().__init__([1, 2, 3, 4, 5, 6, 7, 8]) def get_class(self): class_map = { Token.INT: [1], Token.ID: [2], Token.SPECIAL: [3, 4, 5, 6, 7, 8] } if self.get_state() in class_map[Token.INT]: return Token.INT elif self.get_state() in class_map[Token.ID]: return Token.ID elif self.get_state() in class_map[Token.SPECIAL]: return Token.SPECIAL def process_atom(self, token): ve = False if self.state == 0: if token.is_digit(): self.state = 1 elif token.is_letter(): self.state = 2 elif token.is_special(): if token.value == '>': self.state = 3 elif token.value == '<': self.state = 5 elif token.value == ' ' or token.value == '\n': pass else: self.state = 8 else: ve = True elif self.state == 1: if token.is_digit(): pass else: ve = True elif self.state == 2: if token.is_letter() or token.is_digit(): pass else: ve = True elif self.state == 3: if token.value == '=': self.state = 4 else: ve = True elif self.state == 4: ve = True elif self.state == 5: if token.value == '=': self.state = 6 elif token.value == '>': self.state = 7 else: ve = True elif self.state == 6: ve = True elif self.state == 7: ve = True elif self.state == 8: ve = True else: raise AttributeError("Current state '{}' does not exist".format(self.state)) if ve: raise ValueError("{}: Invalid input '{}' to state '{}'" .format(self.__class__.__name__, token.value, self.state)) ``` #### File: test/test_lexical_classifier/test_lexical_classifier.py ```python import os import sys sys.path.insert(0, '{}/../../'.format(os.path.dirname(os.path.abspath(__file__)))) from modules.ascii_classifier import AsciiClassifier from modules.ascii_filter import AsciiFilter from modules.file_system import FileSystem from modules.lexical_classifier import LexicalClassifier def test_lexical_classifier(): path = os.path.dirname(os.path.abspath(__file__)) + '/' fn_in = path + 'test_lexical_classifier_in.txt' fn_out = path + 'test_lexical_classifier_out.txt' fs = FileSystem(file_name=fn_in) af = AsciiFilter(file_system=fs) ac = AsciiClassifier(ascii_filter=af) lc = LexicalClassifier(ascii_classifier=ac) fs = None af = None ac = None with open(fn_out, 'r') as f: while True: token = lc.get_token() if token.value == 'EOF': break token_class, value = f.readline().rstrip('\n').split(',') assert token_class == token.token_class assert value == token.value assert lc.get_token().value == 'EOF' assert lc.get_token().value == 'EOF' assert lc.get_token().value == 'EOF' assert lc.get_token().value == 'EOF' ```
{ "source": "jhonata-antunes/python-live-video-straming", "score": 3 }
#### File: jhonata-antunes/python-live-video-straming/server.py ```python import argparse import socket import time import cv2 import numpy as np def arg_parse(): parser = argparse.ArgumentParser(description='Client') parser.add_argument('--save', default=False, help='Save video', action='store_true') parser.add_argument("--ip", help="Client IP address", default="localhost") parser.add_argument("--port", help="UDP port number", type=int, default=60444) return parser.parse_args() def get_video_writer(frame): w, h = frame.shape[1], frame.shape[0] is_color = True try: frame.shape[2] except IndexError: is_color = False fourcc = cv2.VideoWriter_fourcc(*'MJPG') vr = cv2.VideoWriter('video.avi', fourcc, 10, (w, h), is_color) return vr def main(args): data = b'' buffer_size = 65536 window = 'video streaming' out = None sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((args.ip, args.port)) if not args.save: cv2.namedWindow(window, cv2.WINDOW_NORMAL) cv2.resizeWindow(window, 600, 600) try: start = time.time() while True: data += sock.recv(buffer_size) a = data.find(b'\xff\xd8') b = data.find(b'\xff\xd9') if a != -1 and b != -1: jpg = data[a:b + 2] vt = data[b + 2: b + 2 + 8] data = data[b + 2 + 8:] # decode frame and video time frame = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8), cv2.IMREAD_COLOR) vt = np.fromstring(vt, dtype=np.float64)[0] if args.save: if out is None: out = get_video_writer(frame) out.write(frame) else: cv2.imshow(window, frame) if cv2.waitKey(1) & 0xFF == ord('q'): break end = time.time() print('FPS: {0:0.2f}'.format(1 / (end - start))) start = time.time() except KeyboardInterrupt: cv2.destroyAllWindows() sock.close() if args.save: out.release() cv2.destroyAllWindows() sock.close() if args.save: out.release() if __name__ == '__main__': arguments = arg_parse() main(arguments) ```
{ "source": "JhonataAugust0/Analise-nucleotideos", "score": 4 }
#### File: JhonataAugust0/Analise-nucleotideos/__init__.py ```python cont_bac = dict() cont_human = dict() lista_bac = list() lista_human = list() entrada_bac = open("bacteria.fasta").read() saida_bac = open("bacteria.html","w") entrada_human = open("human.fasta").read() saida_human = open("human.html","w") entrada_bac = entrada_bac.replace("\n","") entrada_human = entrada_human.replace("\n","") def formacao_nucleotideos(codificacao): """ Essa função realiza as operações de codificação e atribuição dos pares de nucleotídeos existentes no DNA humano e bacterial para dicionários, que serão de suma importância para a geração das páginas HTML. """ for i in codificacao: for j in codificacao: cont_bac[i+j] = 0 cont_human[i+j] = 0 #Ciclos de repetição que contam a quantia de pares de nucleotídeos nos DNA's. for a in range(len(entrada_bac)-1): cont_bac[entrada_bac[a]+entrada_bac[a+1]] += 1 for b in range(len(entrada_human )-1): cont_human[entrada_human [b]+entrada_human[b+1]] += 1 #Ciclos de repetição que atribuem os pares ao dicionário return cont_bac, cont_human def formacao_html(): """ Essa função realiza as operações que constroem as páginas em html que permitem a visualização da representação dos nucle- otídeos do DNA humano e bacterial. """ i = 1 for a in cont_bac: transparencia_bac = cont_bac[a]/max(cont_bac.values()) saida_bac.write("<div style='width:100px; border:1px solid #111; color:#fff; heigth:100px; float:left; background-color:rgba(0, 0, 0, "+str(transparencia_bac)+"')>"+a+"</div>") if i % 4 == 0: saida_bac.write("<div style='clear:both'></div>") i+=1 for b in cont_human: transparencia_human = cont_human[b]/max(cont_human.values()) saida_human.write("<div style='width:100px; border:1px solid #111; color:#fff; heigth:100px; float:left; background-color:rgba(0, 0, 0, "+str(transparencia_human)+"')>"+b+"</div>") if i % 4 == 0: saida_human.write("<div style='clear:both'></div>") i+=1 lista_bac.append(cont_bac.values()) lista_human.append(cont_human.values()) return lista_bac, lista_human saida_bac.close() saida_human.close() ```
{ "source": "JhonataAugust0/Python", "score": 3 }
#### File: Aulas/Aula04/Buscas_e_navegacao.py ```python from selenium import webdriver from selenium.webdriver.common.keys import Keys import time from pprint import pprint from urllib.parse import urlparse class Buscas_e_navagacao: def __init__(self): self.driver = webdriver.Chrome(executable_path="/run/media/jhonata/_home/Programação/Python/Selenium/chromedriver") def entrar_no_site(self, url): driver = self.driver driver.get(url) time.sleep(2) def buscar_lnks_da_pagina(self): resultado01 = dict() driver = self.driver aside = driver.find_element_by_tag_name('aside') aside_ancoras = aside.find_elements_by_tag_name('a') for ancora in aside_ancoras: resultado01[ancora.text] = ancora.get_attribute('href') pprint(resultado01) teste01 = Buscas_e_navagacao() teste01.entrar_no_site('https://selenium.dunossauro.live/aula_04.html') teste01.buscar_lnks_da_pagina() ``` #### File: exercicios/tabela verdade/tabela_logica.py ```python def e(a, b): if a and b: return True else: return False def ou(a, b): if (not a) and (not b): return False else: return True A = [True, True, False, False] B = [True, False, True, False] for a, b in zip(A, B): print("{} V {} = {}".format(a, b, ou(a, b))) ```
{ "source": "jhonatacaiob/Bootcamp-Data-Science", "score": 4 }
#### File: Bootcamp-Data-Science/Secao-4/exemplo 1.py ```python import matplotlib.pyplot as plt import numpy as np def f(x): return x**2 + x + 1 def df(x): return 2*x + 1 x = np.linspace(start = -3, stop = 3, num = 500) x_novo = 3 x_anterior = 0 taxa_de_aprendizado = 0.1 precisao = 0.00001 x_novos = [] for i in range(50000): x_anterior = x_novo gradiente = df(x_anterior) x_novo = x_anterior - gradiente * taxa_de_aprendizado if(abs(x_anterior - x_novo) < precisao): print("Numero de tentativas:", i) break x_novos.append(x_novo) print("Valor minimo:", x_novo) print("Inclinaçao, ou o valor de df(x) neste ponto:", df(x_novo)) print("Custo neste ponto:", f(x_novo)) x_novos = np.array(x_novos) plt.figure(figsize=[20,5]) plt.subplot(1, 3, 1) plt.title("Função de custo") plt.xlim(-3, 3) plt.ylim(0, 8) plt.xlabel("x") plt.ylabel("f(x)") plt.plot(x, f(x), color = "blue", linewidth = 5, alpha = 0.8) plt.scatter(x_novos, f(x_novos), color = "red", s = 100, alpha = 0.6) plt.subplot(1, 3, 2) plt.title("Derivada da funçao de custo") plt.xlim(-2, 3) plt.ylim(-3, 6) plt.grid("True") plt.xlabel("x") plt.ylabel("df(x)") plt.plot(x, df(x), color = "skyblue", linewidth = 5, alpha = 0.8) plt.scatter(x_novos, df(x_novos), color = "red", s = 100, alpha = 0.6) plt.subplot(1, 3, 3) plt.title("Gradiente (Zoom)") plt.xlim(-0.55, 0.2) plt.ylim(-0.3, 0.8) plt.grid("True") plt.xlabel("x") plt.ylabel("df(x)") plt.plot(x, df(x), color = "skyblue", linewidth = 5, alpha = 0.8) plt.scatter(x_novos, df(x_novos), color = "red", s = 100, alpha = 0.6) #plt.show() #plt.savefig("Aula 05.jpg") ``` #### File: Bootcamp-Data-Science/Secao-4/exemplo 2.py ```python import matplotlib.pyplot as plt import numpy as np def g(x): return x**4 - 4*(x**2) + 5 def dg(x): return 4*(x**3) - 8*x def gradient_descent(derivative_func, initial_guess, taxa_de_aprendizado = 0.01, precisao = 0.000001): x_novo = initial_guess lista_x = [] lista_inc = [] for i in range(500): x_anterior = x_novo gradiente = derivative_func(x_anterior) x_novo = x_anterior - gradiente * taxa_de_aprendizado lista_x.append(x_novo) lista_inc.append(derivative_func(x_novo)) if(abs(x_anterior - x_novo) < precisao): break return x_novo, lista_x, lista_inc x = np.linspace(start = -2, stop = 2, num = 1000) minimo, lista_x, lista_deriv = gradient_descent(derivative_func = dg,initial_guess=3) print("Valor minimo local:", minimo) print("Passos dados:", len(lista_x)) plt.subplot(1, 2, 1) plt.title("Função de custo") plt.xlim(-2, 2) plt.ylim(0.5, 5.5) plt.xlabel("x") plt.ylabel("g(x)") plt.plot(x, g(x), color = "blue", linewidth = 5, alpha = 0.8) plt.scatter(lista_x, g(np.array(lista_x)), color = "red", s = 100, alpha = 0.6) plt.subplot(1, 2, 2) plt.title("Derivada da funçao de custo") plt.xlim(-2, 2) plt.ylim(-6, 8) plt.grid("True") plt.xlabel("x") plt.ylabel("dg(x)") plt.plot(x, dg(x), color = "skyblue", linewidth = 5, alpha = 0.8) plt.scatter(lista_x, lista_deriv, color = "red", s = 100, alpha = 0.6) plt.savefig("Aula 06.jpg") ```
{ "source": "jhonatan612/Projeto-exemplo", "score": 3 }
#### File: jhonatan612/Projeto-exemplo/principal.py ```python def somar(x,y): return x+ y def subtrair(x,y): return x- y #Comentário ```
{ "source": "JHONATAN9A/Algritmo_num_narcisistas", "score": 4 }
#### File: JHONATAN9A/Algritmo_num_narcisistas/ArmstrongN.py ```python def proceso(num, suma=0): numero = [] for i in str(num): exp = int(i) ** len(str(num)) numero.append(exp) if len(numero) == len(str(num)): total = sum(numero) return num, total numero.clear() entrada = input() datos = [] for i in range(int(entrada)): entrada2 = input() datos.append(entrada2) for n in datos: resul1, resul2 = proceso(int(n)) if resul1 == resul2: print("Armstrong") elif resul1 != resul2: print("Not Armstrong") ```
{ "source": "JHONATAN9A/Pagina_Web_Django", "score": 2 }
#### File: website/siteapp/views.py ```python from django.shortcuts import render from django.http import HttpResponse # Create your views here. def covid19(request): dic ={'etiqueta':"Esto se introdujo deste django"} return render(request,"Covid19.html",context=dic) ```
{ "source": "jhonatancasale/appointment-system", "score": 2 }
#### File: scheduling_system/appointment/models.py ```python from django.db import models from django.contrib.auth.models import User from django.db.models import TextField class Appointment(models.Model): date = models.DateField() start_at = models.TimeField() end_at = models.TimeField() patient = models.ForeignKey(User, on_delete=models.PROTECT) procedure: TextField = models.TextField() def __str__(self): return '{date!r}, [{start_at!r} - {end_at!r}] - {patient!r}'.format( date=str(self.date), start_at=self.start_at.strftime("%H:%M"), end_at=self.end_at.strftime("%H:%M"), patient=self.patient.username ) ```
{ "source": "jhonatancasale/learning-python", "score": 4 }
#### File: learning-python/snippets/defaultdict.function.py ```python from collections import defaultdict def default() -> str: return "Maybe I missed something?" def main() -> None: print() default_dict = defaultdict(default) default_dict['a'] = 1 default_dict['b'] = 2 print(default_dict['a']) print(default_dict['b']) print(default_dict['c']) if __name__ == '__main__': main() ``` #### File: learning-python/snippets/defaultdict.lambda.py ```python from collections import defaultdict def main() -> None: print() default_dict = defaultdict(lambda: "Maybe I missed something?") default_dict['a'] = 1 default_dict['b'] = 2 print(default_dict['a']) print(default_dict['b']) print(default_dict['c']) if __name__ == '__main__': main() ``` #### File: learning-python/snippets/global.py ```python print() name = 'abc'.upper() def get_name(): name = 'def'.upper() print(f"inside: {name}") get_name() print(f"Outside: {name}") print() def get_name(): global name name = 'def'.upper() print(f"inside: {name}") get_name() print(f"Outside: {name}") def get_name(): global name #but #name: str = 'gHi'.upper() # SyntaxError: annotated name 'name' can't be global #and #global name = 'gHi'.upper() # ^ #SyntaxError: invalid syntax print(f"inside: {name}") get_name() print(f"Outside: {name}") ``` #### File: learning-python/snippets/set.difference.py ```python def main() -> None: s = set("Test") print(s.difference("Another")) print(s.difference(set(['a', 'b', 'c', 'd']))) print(s.difference(['a', 'b', 'c', 'd'])) print(s.difference(enumerate(['a', 'b', 'c', 'd']))) print(s.difference({"Another":1})) print(s - set("Another")) if __name__ == '__main__': main() ``` #### File: learning-python/snippets/set.union.py ```python def main() -> None: s = set("Test") print(s.union("Another")) #{'n', 'r', 'o', 'h', 's', 'T', 'A', 'e', 't'} print(s.union(set(['T', 'e', 's', 't']))) #{'s', 'T', 'e', 't'} print(s.union(['T', 'E', 'S', 'B'])) #{'B', 's', 'S', 'T', 'E', 'e', 't'} # immutable! print(s.union("Another")) #{'n', 'r', 'o', 'h', 's', 'T', 'A', 'e', 't'} print(s.union(enumerate(['T', 'e', 's', 't']))) #{(1, 'e'), (2, 's'), (3, 't'), (0, 'T'), 's', 'T', 'e', 't'} print(s.union({"Test":1})) #{'s', 'T', 'Test', 'e', 't'} print(s | set("Test")) #{'s', 'T', 'e', 't'} if __name__ == '__main__': print() main() ```
{ "source": "jhonatancasale/ML-T3", "score": 3 }
#### File: dev/get.data.from.web/get.data.from.web.py ```python import logging import sys import requests import os.path logging.basicConfig(filename='history.log', level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(message)s' ) BASE_YEAR = 2016 def main(): '''Retrieve some data from http://www.fuvest.br''' range_years = int(sys.argv[1]) if len(sys.argv) > 1 else 10 years = list(range(BASE_YEAR, BASE_YEAR - range_years, -1)) logging.debug('Trying to get data of the last %d years', range_years) for year in years: if year >= 2014: # For some magical reason the url changes in this year common_url = 'http://www.fuvest.br/vest{0}/download/FUVEST_{0}_qase_{1}_car_fuvest_{0}.pdf' else: common_url = 'http://www.fuvest.br/vest{0}/download/qase_{1}_car.pdf' for phase in ['inscr', 'conv', '1matr']: url = common_url.format(year, phase) filename = 'FUVEST_{0}_qase_{1}_car_fuvest_{0}.pdf'.format(year, phase) logging.debug('Request year: %d to server', year) if os.path.isfile(filename): logging.debug('Skiping this, file already exists') continue try: data = requests.get(url, stream=True) except FileNotFoundError as e: logging.debug('Fails because of %s', e) else: logging.debug('Done!') logging.debug('Saving data on file %s', filename) try: f = open(filename, 'wb') f.write(data.content) f.close() except IOError as e: logging.debug('Fails because of %s', e) else: logging.debug('Done!') logging.debug('Finished') if __name__ == '__main__': main() ``` #### File: dev/questionnaire/main.py ```python import pandas as pd import numpy as np from parse import * from question import * import sys def main(): data = pd.read_csv("../../../dataset/inscr_db.csv") print 'You can choose one of these options:' # best so we can use 2 more correlation between variables plus new careears have been created. print '\t1 - use 3 last years of data.' #more data! print '\t2 - using all 10 last years of data.' print '\t3 - specify year.' year = raw_input() print 'You can choose one of these options:' print '\t1 - answer questionary' print '\t2 - pass filename' opt = raw_input() if opt == 1: query = getInstance() else: query = pd.read_csv( filename ) main() ```
{ "source": "JhonatanGuilherme/GraphTheory", "score": 2 }
#### File: GraphTheory/Roteiro 6/grafo_test.py ```python import unittest from meu_grafo_matriz_adjacencia_nao_dir import * from bibgrafo.grafo_exceptions import * class TestGrafo(unittest.TestCase): def setUp(self): # Grafo da Paraíba self.g_p = MeuGrafo(['J', 'C', 'E', 'P', 'M', 'T', 'Z']) self.g_p.adicionaAresta('a1', 'J', 'C') self.g_p.adicionaAresta('a2', 'C', 'E') self.g_p.adicionaAresta('a3', 'C', 'E') self.g_p.adicionaAresta('a4', 'P', 'C') self.g_p.adicionaAresta('a5', 'P', 'C') self.g_p.adicionaAresta('a6', 'T', 'C') self.g_p.adicionaAresta('a7', 'M', 'C') self.g_p.adicionaAresta('a8', 'M', 'T') self.g_p.adicionaAresta('a9', 'T', 'Z') # Grafo da Paraíba sem arestas paralelas self.g_p_sem_paralelas = MeuGrafo(['J', 'C', 'E', 'P', 'M', 'T', 'Z']) self.g_p_sem_paralelas.adicionaAresta('a1', 'J', 'C') self.g_p_sem_paralelas.adicionaAresta('a2', 'C', 'E') self.g_p_sem_paralelas.adicionaAresta('a3', 'P', 'C') self.g_p_sem_paralelas.adicionaAresta('a4', 'T', 'C') self.g_p_sem_paralelas.adicionaAresta('a5', 'M', 'C') self.g_p_sem_paralelas.adicionaAresta('a6', 'M', 'T') self.g_p_sem_paralelas.adicionaAresta('a7', 'T', 'Z') # Grafos completos self.g_c = MeuGrafo(['J', 'C', 'E', 'P']) self.g_c.adicionaAresta('a1','J','C') self.g_c.adicionaAresta('a2', 'J', 'E') self.g_c.adicionaAresta('a3', 'J', 'P') self.g_c.adicionaAresta('a4', 'E', 'C') self.g_c.adicionaAresta('a5', 'P', 'C') self.g_c.adicionaAresta('a6', 'P', 'E') self.g_c2 = MeuGrafo(['Nina', 'Maria']) self.g_c2.adicionaAresta('amiga', 'Nina', 'Maria') self.g_c3 = MeuGrafo(['J']) # Grafos com laco self.g_l1 = MeuGrafo(['A', 'B', 'C', 'D']) self.g_l1.adicionaAresta('a1', 'A', 'A') self.g_l1.adicionaAresta('a2', 'A', 'B') self.g_l1.adicionaAresta('a3', 'A', 'A') self.g_l2 = MeuGrafo(['A', 'B', 'C', 'D']) self.g_l2.adicionaAresta('a1', 'A', 'B') self.g_l2.adicionaAresta('a2', 'B', 'B') self.g_l2.adicionaAresta('a3', 'B', 'A') self.g_l3 = MeuGrafo(['A', 'B', 'C', 'D']) self.g_l3.adicionaAresta('a1', 'C', 'A') self.g_l3.adicionaAresta('a2', 'C', 'C') self.g_l3.adicionaAresta('a3', 'D', 'D') self.g_l3.adicionaAresta('a4', 'D', 'D') self.g_l4 = MeuGrafo(['D']) self.g_l4.adicionaAresta('a1', 'D', 'D') self.g_l5 = MeuGrafo(['C', 'D']) self.g_l5.adicionaAresta('a1', 'D', 'C') self.g_l5.adicionaAresta('a2', 'C', 'C') # Grafos desconexos self.g_d = MeuGrafo(['A', 'B', 'C', 'D']) self.g_d.adicionaAresta('asd', 'A', 'B') # Grafos não direcionados self.g_nd = MeuGrafo(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']) self.g_nd.adicionaAresta('a1', 'A', 'B') self.g_nd.adicionaAresta('a2', 'A', 'G') self.g_nd.adicionaAresta('a3', 'A', 'J') self.g_nd.adicionaAresta('a4', 'G', 'K') self.g_nd.adicionaAresta('a5', 'J', 'K') self.g_nd.adicionaAresta('a6', 'G', 'J') self.g_nd.adicionaAresta('a7', 'I', 'J') self.g_nd.adicionaAresta('a8', 'G', 'I') self.g_nd.adicionaAresta('a9', 'G', 'H') self.g_nd.adicionaAresta('a10', 'F', 'H') self.g_nd.adicionaAresta('a11', 'B', 'F') self.g_nd.adicionaAresta('a12', 'B', 'G') self.g_nd.adicionaAresta('a13', 'B', 'C') self.g_nd.adicionaAresta('a14', 'C', 'D') self.g_nd.adicionaAresta('a15', 'D', 'E') self.g_nd.adicionaAresta('a16', 'B', 'D') self.g_nd.adicionaAresta('a17', 'B', 'E') def test_adiciona_aresta(self): self.assertTrue(self.g_p.adicionaAresta('a10', 'J', 'C')) with self.assertRaises(ArestaInvalidaException): self.assertTrue(self.g_p.adicionaAresta('b1', '', 'C')) with self.assertRaises(ArestaInvalidaException): self.assertTrue(self.g_p.adicionaAresta('b1', 'A', 'C')) with self.assertRaises(ArestaInvalidaException): self.g_p.adicionaAresta('') with self.assertRaises(ArestaInvalidaException): self.g_p.adicionaAresta('aa-bb') with self.assertRaises(ArestaInvalidaException): self.g_p.adicionaAresta('x', 'J', 'V') with self.assertRaises(ArestaInvalidaException): self.g_p.adicionaAresta('a1', 'J', 'C') def test_vertices_nao_adjacentes(self): self.assertEqual(self.g_p.vertices_nao_adjacentes(), ['J-E', 'J-P', 'J-M', 'J-T', 'J-Z', 'C-Z', 'E-P', 'E-M', 'E-T', 'E-Z', 'P-M', 'P-T', 'P-Z', 'M-Z']) self.assertEqual(self.g_p_sem_paralelas.vertices_nao_adjacentes(), ['J-E', 'J-P', 'J-M', 'J-T', 'J-Z', 'C-Z', 'E-P', 'E-M', 'E-T', 'E-Z', 'P-M', 'P-T', 'P-Z', 'M-Z']) self.assertEqual(self.g_c.vertices_nao_adjacentes(), []) self.assertEqual(self.g_l1.vertices_nao_adjacentes(), ['A-C', 'A-D', 'B-C', 'B-D', 'C-D']) self.assertEqual(self.g_l2.vertices_nao_adjacentes(), ['A-C', 'A-D', 'B-C', 'B-D', 'C-D']) self.assertEqual(self.g_l3.vertices_nao_adjacentes(), ['A-B', 'A-D', 'B-C', 'B-D', 'C-D']) self.assertEqual(self.g_nd.vertices_nao_adjacentes(), ['A-C', 'A-D', 'A-E', 'A-F', 'A-H', 'A-I', 'A-K', 'B-H', 'B-I', 'B-J', 'B-K', 'C-E', 'C-F', 'C-G', 'C-H', 'C-I', 'C-J', 'C-K', 'D-F', 'D-G', 'D-H', 'D-I', 'D-J', 'D-K', 'E-F', 'E-G', 'E-H', 'E-I', 'E-J', 'E-K', 'F-G', 'F-I', 'F-J', 'F-K', 'H-I', 'H-J', 'H-K', 'I-K']) def test_ha_laco(self): self.assertFalse(self.g_p.ha_laco()) self.assertFalse(self.g_p_sem_paralelas.ha_laco()) self.assertFalse(self.g_c2.ha_laco()) self.assertTrue(self.g_l1.ha_laco()) self.assertTrue(self.g_l2.ha_laco()) self.assertTrue(self.g_l3.ha_laco()) self.assertTrue(self.g_l4.ha_laco()) self.assertTrue(self.g_l5.ha_laco()) def test_grau(self): # Paraíba self.assertEqual(self.g_p.grau('J'), 1) self.assertEqual(self.g_p.grau('C'), 7) self.assertEqual(self.g_p.grau('E'), 2) self.assertEqual(self.g_p.grau('P'), 2) self.assertEqual(self.g_p.grau('M'), 2) self.assertEqual(self.g_p.grau('T'), 3) self.assertEqual(self.g_p.grau('Z'), 1) with self.assertRaises(VerticeInvalidoException): self.assertEqual(self.g_p.grau('G'), 5) self.assertEqual(self.g_d.grau('A'), 1) self.assertEqual(self.g_d.grau('C'), 0) self.assertNotEqual(self.g_d.grau('D'), 2) # Completos self.assertEqual(self.g_c.grau('J'), 3) self.assertEqual(self.g_c.grau('C'), 3) self.assertEqual(self.g_c.grau('E'), 3) self.assertEqual(self.g_c.grau('P'), 3) # Com laço. Lembrando que cada laço conta uma única vez por vértice para cálculo do grau self.assertEqual(self.g_l1.grau('A'), 5) self.assertEqual(self.g_l2.grau('B'), 4) self.assertEqual(self.g_l4.grau('D'), 2) def test_ha_paralelas(self): self.assertTrue(self.g_p.ha_paralelas()) self.assertFalse(self.g_p_sem_paralelas.ha_paralelas()) self.assertFalse(self.g_c.ha_paralelas()) self.assertFalse(self.g_c2.ha_paralelas()) self.assertFalse(self.g_c3.ha_paralelas()) self.assertTrue(self.g_l1.ha_paralelas()) def test_arestas_sobre_vertice(self): self.assertEqual(set(self.g_p.arestas_sobre_vertice('J')), set(['a1'])) self.assertEqual(set(self.g_p.arestas_sobre_vertice('C')), set(['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7'])) self.assertEqual(set(self.g_p.arestas_sobre_vertice('M')), set(['a7', 'a8'])) self.assertEqual(set(self.g_l2.arestas_sobre_vertice('B')), set(['a1', 'a2', 'a3'])) self.assertEqual(set(self.g_d.arestas_sobre_vertice('C')), set()) self.assertEqual(set(self.g_d.arestas_sobre_vertice('A')), set(['asd'])) with self.assertRaises(VerticeInvalidoException): self.g_p.arestas_sobre_vertice('A') def test_eh_completo(self): self.assertFalse(self.g_p.eh_completo()) self.assertFalse((self.g_p_sem_paralelas.eh_completo())) self.assertTrue((self.g_c.eh_completo())) self.assertTrue((self.g_c2.eh_completo())) self.assertTrue((self.g_c3.eh_completo())) self.assertFalse((self.g_l1.eh_completo())) self.assertFalse((self.g_l2.eh_completo())) self.assertFalse((self.g_l3.eh_completo())) self.assertFalse((self.g_l4.eh_completo())) self.assertFalse((self.g_l5.eh_completo())) if __name__ == '__main__': unittest.main() ```
{ "source": "jhonatan-lopes/alive-progress", "score": 3 }
#### File: utils/terminal/jupyter.py ```python from types import SimpleNamespace from . import tty def get(original): def cols(): # it seems both `jupyter notebook` and `jupyter-lab` do not return cols, only 80 default. return 120 def clear_line(): write(_clear_line) flush() def clear_end_line(available=None): for _ in range(available or 0): write(' ') flush() clear_end_screen = clear_end_line # it seems spaces are appropriately handled to not wrap lines. _clear_line = f'\r{" " * cols()}\r' from .void import factory_cursor_up, hide_cursor, show_cursor # noqa flush, write, carriage_return = original.flush, original.write, original.carriage_return return SimpleNamespace(**locals()) BASE = get(tty.BASE) # support for jupyter notebooks. ``` #### File: utils/terminal/void.py ```python def write(_text): return 0 def flush(): pass def _ansi_escape_sequence(_=''): def inner(_available=None): pass return inner clear_line = _ansi_escape_sequence() clear_end_line = _ansi_escape_sequence() clear_end_screen = _ansi_escape_sequence() hide_cursor = _ansi_escape_sequence() show_cursor = _ansi_escape_sequence() factory_cursor_up = lambda _: _ansi_escape_sequence() def cols(): return 0 # more details in `alive_progress.tools.sampling#overhead`. carriage_return = '' ``` #### File: tests/animations/test_spinners.py ```python import pytest from alive_progress.animations.spinners import alongside_spinner_factory, \ bouncing_spinner_factory, delayed_spinner_factory, frame_spinner_factory, \ scrolling_spinner_factory, sequential_spinner_factory from alive_progress.utils.cells import join_cells @pytest.mark.parametrize('frames, expected', [ ('a\nb', (('a', ' ', 'b'),)), ('abc', (('a', 'b', 'c'),)), (('a\nb', '\nc '), (('a b', ' c '),)), (('a ', ' b ', ' c'), (('a ', ' b ', ' c'),)), (('a', '(a)', ' (*) '), (('aaaaa', '(a)(a', ' (*) '),)), (('ok', '😺😺'), (('okok', '😺😺'),)), ]) def test_frame_spinner(frames, expected): spinner_factory = frame_spinner_factory(frames) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('length, block, background, right, hide, expected', [ (None, None, ' ', True, True, ((' ', 'c ', 'bc ', 'abc', ' ab', ' a'),)), (None, None, ' ', False, True, ((' ', ' a', ' ab', 'abc', 'bc ', 'c '),)), (None, None, ' ', True, False, (('abc', 'cab', 'bca'),)), (None, None, ' ', False, False, (('abc', 'bca', 'cab'),)), (2, None, '~', True, True, (('~~', 'c~', 'bc', 'ab', '~a'),)), (2, None, '~', True, False, (('bc', 'ab', 'ca'),)), (2, None, '~', False, True, (('~~', '~a', 'ab', 'bc', 'c~'),)), (2, None, '~', False, False, (('ab', 'bc', 'ca'),)), (3, None, '~', True, True, (('~~~', 'c~~', 'bc~', 'abc', '~ab', '~~a'),)), (3, None, '~', True, False, (('abc', 'cab', 'bca'),)), (3, None, '~', False, True, (('~~~', '~~a', '~ab', 'abc', 'bc~', 'c~~'),)), (3, None, '~', False, False, (('abc', 'bca', 'cab'),)), (4, None, ' ', True, True, ((' ', 'c ', 'bc ', 'abc ', ' abc', ' ab', ' a'),)), (4, None, ' ', True, False, (('abc ', ' abc', 'c ab', 'bc a'),)), (4, None, ' ', False, True, ((' ', ' a', ' ab', ' abc', 'abc ', 'bc ', 'c '),)), (4, None, ' ', False, False, ((' abc', 'abc ', 'bc a', 'c ab'),)), (4, 1, '_', True, True, (('____', 'a___', '_a__', '__a_', '___a'), ('____', 'b___', '_b__', '__b_', '___b'), ('____', 'c___', '_c__', '__c_', '___c'))), (4, 2, '_', True, False, (('aa__', '_aa_', '__aa', 'b__a'), ('bb__', '_bb_', '__bb', 'c__b'), ('cc__', '_cc_', '__cc', 'a__c'))), ]) def test_scrolling_spinner(length, block, background, right, hide, expected): spinner_factory = scrolling_spinner_factory('abc', length, block, background, right=right, hide=hide) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('length, block, background, hide, expected', [ (None, None, None, True, ((' ', 'c ', 'bc ', 'abc', ' ab', ' a'), (' ', ' d', ' de', 'def', 'ef ', 'f '),)), (None, None, None, False, (('abc',), ('def',),)), (2, None, '~', True, (('~~', 'c~', 'bc', 'ab', '~a'), ('~~', '~d', 'de', 'ef', 'f~'),)), (2, None, '~', False, (('bc', 'ab'), ('de', 'ef'),)), (3, None, '+', True, (('+++', 'c++', 'bc+', 'abc', '+ab', '++a'), ('+++', '++d', '+de', 'def', 'ef+', 'f++'),)), (3, None, '+', False, (('abc',), ('def',),)), (4, None, ' ', True, ((' ', 'c ', 'bc ', 'abc ', ' abc', ' ab', ' a'), (' ', ' d', ' de', ' def', 'def ', 'ef ', 'f '),)), (4, None, ' ', False, (('abc ', ' abc'), (' def', 'def '),)), (3, 1, '_', True, (('___', 'a__', '_a_', '__a'), ('___', '__d', '_d_', 'd__'), ('___', 'b__', '_b_', '__b'), ('___', '__e', '_e_', 'e__'), ('___', 'c__', '_c_', '__c'), ('___', '__f', '_f_', 'f__'))), (5, 2, '_', False, (('aa___', '_aa__', '__aa_', '___aa'), ('___dd', '__dd_', '_dd__', 'dd___'), ('bb___', '_bb__', '__bb_', '___bb'), ('___ee', '__ee_', '_ee__', 'ee___'), ('cc___', '_cc__', '__cc_', '___cc'), ('___ff', '__ff_', '_ff__', 'ff___'))), ]) def test_bouncing_spinner(length, block, background, hide, expected): spinner_factory = bouncing_spinner_factory(('abc', 'def'), length, block, background, right=True, hide=hide) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('inputs, expected', [ (('123', 'abc'), (('1a', '2b', '3c'),)), (('12', 'abc'), (('1a', '2b', '1c', '2a', '1b', '2c'),)), ((('12', '34', '56'), 'ab'), (('12a', '34b', '56a', '12b', '34a', '56b'),)), ]) def test_alongside_spinner(inputs, expected, spinner_test): spinner_factory = alongside_spinner_factory(*(spinner_test(x) for x in inputs)) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('inputs, expected', [ (('123', 'abc'), (('1a', '2b', '3c'),)), (('12', 'abc'), (('1a', '2b'), ('1c', '2a'), ('1b', '2c'))), ((('12', '34', '56'), 'ab'), (('12a', '34b', '56a'), ('12b', '34a', '56b'))), ]) def test_alongside_spinner_with_pivot(inputs, expected, spinner_test): spinner_factory = alongside_spinner_factory(*(spinner_test(x) for x in inputs), pivot=0) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('inputs, expected', [ (('123', 'abc'), (('11a', '22b', '33c'),)), (('12', 'abc'), (('11a', '22b', '11c', '22a', '11b', '22c'),)), ((('12', '34', '56'), 'ab'), (('12a', '34b', '56a', '12b', '34a', '56b'),)), ]) def test_alongside_spinner_custom(inputs, expected, spinner_test): spinner_factory = alongside_spinner_factory(*(spinner_test(x) for x in inputs)) spinner = spinner_factory(3) # custom spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('inputs, expected', [ (('123', 'abc'), (('1',), ('a',), ('2',), ('b',), ('3',), ('c',))), (('12', 'abc'), (('1',), ('a',), ('2',), ('b',), ('1',), ('c',), ('2',), ('a',), ('1',), ('b',), ('2',), ('c',))), ((('12', '34', '56'), 'ab'), (('1', '2'), ('a',), ('3', '4'), ('b',), ('5', '6'), ('a',), ('1', '2'), ('b',), ('3', '4'), ('a',), ('5', '6'), ('b',))), ]) def test_sequential_spinner(inputs, expected, spinner_test): spinner_factory = sequential_spinner_factory(*(spinner_test(*x) for x in inputs)) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('inputs, expected', [ (('123', 'abc'), (('1',), ('2',), ('3',), ('a',), ('b',), ('c',))), (('12', 'abc'), (('1',), ('2',), ('a',), ('b',), ('c',))), ((('12', '34', '56'), 'ab'), (('1', '2'), ('3', '4'), ('5', '6'), ('a',), ('b',))), ]) def test_sequential_spinner_no_intermix(inputs, expected, spinner_test): spinner_factory = sequential_spinner_factory(*(spinner_test(*x) for x in inputs), intermix=False) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected @pytest.mark.parametrize('copies, offset, expected', [ (3, 1, (('123', '234', '345', '451', '512'),)), (4, 2, (('1352', '2413', '3524', '4135', '5241'),)), ]) def test_delayed_spinner(copies, offset, expected, spinner_test): spinner_factory = delayed_spinner_factory(spinner_test('12345'), copies, offset) spinner = spinner_factory() # natural spinner size. assert tuple(tuple(join_cells(f) for f in spinner()) for _ in expected) == expected ```
{ "source": "jhonatanlteodoro/ecommerce-django", "score": 2 }
#### File: accounts/tests/test_views.py ```python from django.test import Client from django.test import TestCase from django.urls import reverse from django.contrib.auth import get_user_model from model_mommy import mommy from django.conf import settings User = get_user_model() class RegisterViewTestCase(TestCase): def setUp(self): self.client = Client() self.register_url = reverse('accounts:register') def test_register_ok(self): data = { 'username': 'jhowuserteste', 'email': '<EMAIL>', 'password1': '<PASSWORD>','password2': '<PASSWORD>', } response = self.client.post(self.register_url, data) login_url = reverse('login') self.assertRedirects(response, login_url) self.assertEquals(User.objects.count(), 1) def test_register_fail(self): data = { 'username': 'jhowuserteste', 'password1': '<PASSWORD>', 'password2': '<PASSWORD>', } response = self.client.post(self.register_url, data) self.assertFormError(response, 'form', 'email', 'Este campo é obrigatório.') class UpdateUserTestCase(TestCase): def setUp(self): self.client = Client() self.url = reverse('accounts:update_user') self.user = mommy.prepare(settings.AUTH_USER_MODEL) self.user.set_password('<PASSWORD>') self.user.save() def tearDown(self): self.user.delete() def test_update_user_ok(self): data = {'name': 'humbree', 'email':'<EMAIL>'} response = self.client.get(self.url) self.assertEquals(response.status_code, 302) self.client.login(username=self.user.username, password='<PASSWORD>') response = self.client.post(self.url, data) accounst_index_url = reverse('accounts:index') self.assertRedirects(response, accounst_index_url) #user = User.objects.get(username=self.user.username) self.user.refresh_from_db() self.assertEquals(self.user.email, '<EMAIL>') self.assertEquals(self.user.name, 'humbree') def test_update_user_error(self): data = {} self.client.login(username=self.user.username, password='<PASSWORD>') response = self.client.post(self.url, data) self.assertFormError(response, 'form', 'email', 'Este campo é obrigatório.') class UpdatePasswordTestCase(TestCase): def setUp(self): self.client = Client() self.url = reverse('accounts:update_password') self.user = mommy.prepare(settings.AUTH_USER_MODEL) self.user.set_password('<PASSWORD>') self.user.save() def tearDown(self): self.user.delete() def test_update_password_ok(self): data = { 'old_password': '<PASSWORD>', 'new_password1':'<PASSWORD>', 'new_password2':'<PASSWORD>', } self.client.login(username=self.user.username, password='<PASSWORD>') response = self.client.post(self.url, data) self.user.refresh_from_db() #user = User.objects.get(username=self.user.username) self.assertTrue(self.user.check_password('<PASSWORD>')) ``` #### File: ecommerce-django/accounts/views.py ```python from django.shortcuts import render from django.urls import reverse_lazy from .models import User from .forms import UserAdminCreationForm from django.views.generic import CreateView from django.views.generic import TemplateView from django.views.generic import UpdateView from django.views.generic import FormView from django.contrib.auth.forms import PasswordChangeForm from django.contrib.auth.mixins import LoginRequiredMixin class IndexView(LoginRequiredMixin, TemplateView): template_name = 'accounts/index.html' class RegisterView(CreateView): model = User template_name = 'accounts/register.html' form_class = UserAdminCreationForm success_url = reverse_lazy('login') class UpdateUserView(LoginRequiredMixin, UpdateView): model = User template_name = 'accounts/update_user.html' fields = ['name', 'email'] success_url = reverse_lazy('accounts:index') def get_object(self): return self.request.user class UpdatePasswordView(LoginRequiredMixin, FormView): template_name = 'accounts/update_password.html' success_url = reverse_lazy('accounts:index') form_class = PasswordChangeForm def get_form_kwargs(self): kwargs = super(UpdatePasswordView, self).get_form_kwargs() kwargs['user'] = self.request.user return kwargs def form_valid(self, form): form.save() return super(UpdatePasswordView, self).form_valid(form) ```
{ "source": "jhonatanmaia/python", "score": 4 }
#### File: curso-em-video/exercises/099.py ```python def maior(* num): print('-='*30) print('Analisando os valroes passados...') maior_numero=max(num[0]) tamanho=len(num[0]) for i in num[0]: print(f'{i} ',end='') print(f'Foram informados {tamanho} valores ao todo.') print(f'O maior valor informado foi {maior_numero}') print('-='*30) lista=[] while True: lista.append(int(input('Digite um valor: '))) sair=str(input('Deseja sair? [S/N] ')).upper() while sair != 'S' and sair != 'N': sair=str(input('Erro, digite novamente [S/N] ')).upper() if sair == 'S': break maior(lista) ``` #### File: curso-em-video/exercises/101 - Data.py ```python def voto(ano_nascimento): from datetime import date ano_atual=date.today().year r=ano_atual-ano_nascimento if 16 <= r < 18 or r>65: return 'OPCIONAL' elif r<18: return 'NÃO VOTA' else: return 'OBRIGATÓRIO' ano=int(input('Digite o seu ano de nascimento: ')) print(f'O seu voto é {voto(ano)}') ``` #### File: curso-em-video/exercises/104.py ```python def leiaInt(n): j=input(f'{n}') while True: try: int(j) float(j) return j break except ValueError: j=input('Erro, digite novamente: ') n=leiaInt('Digite um número: ') print(f'Você acabou de digitar o número {n}') ``` #### File: curso-em-video/exercises/105.py ```python def notas(* n, sit=False): """ -> Função para analisar notas e situação de vários alunos. :paran n: uma ou mais notas dos alunos (aceita várias) :param sit: valor opcional, indicando se deve ou não adicionar a situação. :return: dicionário com várias informações sobre a situação da turma. """ total=len(n) maior=max(n) media=sum(n)/len(n) if sit==False: return {'total':total,'maior':maior,'media':media} elif sit==True: if media>7: return {'total':total,'maior':maior, 'media':media,'situacao':'BOA'} elif 7<media<5: return {'total':total,'maior':maior, 'media':media,'situacao':'RAZOÁVEL'} else: return {'total':total,'maior':maior, 'media':media,'situacao':'RUIM'} resp = notas(10,4,5.6,3,6.9,sit=True) print(resp) ``` #### File: udemy/python-basic-to-advanced/Class - 01 - pep8.py ```python import this print('something') ``` #### File: udemy/python-basic-to-advanced/Class - 16 - Debugging and Handling Errors.py ```python import pdb pdb.set_trace() # or import pdb; pdb.set_trace() def division(a,b): try: return int(a)/int(b) except (ValueError,ZeroDivisionError) as err: print(err) num1=input('First number: ') num2=input('Second number: ') print(division(num1,num2)) ```
{ "source": "JhonatanPatrocinio/GLAB", "score": 2 }
#### File: base/forms/request.py ```python from django import forms from django.contrib.auth import get_user_model from base.models import Requester User = get_user_model() class RequesterForm(forms.ModelForm): user = forms.ModelChoiceField(queryset=User.objects.all(), required=False) class Meta: model = Requester fields = ('user', 'department', 'registry') widgets = { 'registry': forms.TextInput(attrs={'class': 'form-control'}), 'department': forms.Select(attrs={'class': 'form-control'}), 'user': forms.HiddenInput() } def save(self, commit=True, user=None): self.instance.user = user return super().save(commit) ``` #### File: base/models/reservation.py ```python from django.utils import timezone from django.core.validators import MinValueValidator from django.db import models from django.utils.translation import ugettext_lazy as _ from django.core.validators import ValidationError from django.contrib.auth import get_user_model from django.urls import reverse User = get_user_model() class Reservation(models.Model): RESPONSE_WAITING = 1 RESPONSE_DENIED = 2 RESPONSE_ACCEPTED = 3 RESPONSE_CANCELED = 4 STATUS_RESERVE_CHOICES = [ (RESPONSE_WAITING, _('Aguardando Resposta')), (RESPONSE_DENIED, _('Utilização Negada')), (RESPONSE_ACCEPTED, _('Utilização Aceita')), (RESPONSE_CANCELED, _('Cancelado pelo usuário')) ] place = models.ForeignKey('base.Place', on_delete=models.PROTECT, verbose_name=_('Nome do Espaço')) user = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, verbose_name=_('Solicitante')) phone = models.CharField(_('Telefone'), max_length=16, help_text=_('Informe um telefone para contato')) date = models.DateField(_('Data')) initial_time = models.TimeField(_('Hora Inicio')) end_time = models.TimeField(_('Hora Término')) status = models.IntegerField(_('Status'), choices=STATUS_RESERVE_CHOICES, default=1) reason = models.TextField(_('Motivo'), max_length=400) obs = models.TextField(_('Observações'), max_length=355, blank=True) # About OBJ created_at = models.DateTimeField(auto_now_add=True, editable=False) update_at = models.DateTimeField(null=True, blank=True) class Meta: ordering = ['date'] verbose_name = _('Reserva') verbose_name_plural = _('Reservas') def __str__(self): return f'{self.user} - {self.place.name}' def save(self, *args, **kwargs): if self.created_at: self.update_at = timezone.now() return super().save(*args, **kwargs) def clean(self): if self.id and Reservation.objects.filter( date=self.date, initial_time__range=([self.initial_time, self.end_time]), status=self.RESPONSE_ACCEPTED).exclude(id=self.id).exists(): raise ValidationError(_('Já existe uma reserva confirmada neste horário')) return super().clean() @property def get_start_date(self): return timezone.datetime( self.date.year, self.date.month, self.date.day, self.initial_time.hour, self.initial_time.minute ) @property def get_end_date(self): return timezone.datetime( self.date.year, self.date.month, self.date.day, self.end_time.hour, self.end_time.minute ) @property def get_date_display(self): return f'{self.date.strftime("%d/%m/%Y")} ' \ f'{self.initial_time.strftime("%H:%M")} - {self.end_time.strftime("%H:%M")}' @property def get_text_status_color(self): if self.status == Reservation.RESPONSE_WAITING: return 'text-warning' elif self.status == Reservation.RESPONSE_ACCEPTED: return 'text-success' elif self.status == Reservation.RESPONSE_DENIED: return 'text-danger' elif self.status == Reservation.RESPONSE_CANCELED: return 'text-danger' else: return '' @property def get_absolute_url(self): return reverse("view_reservation", kwargs={"pk": self.pk}) ``` #### File: base/templatetags/get_verbose_name.py ```python from django import template register = template.Library() @register.simple_tag def get_verbose_field_name(instance, field_name): """ Returns verbose_name for a field. """ return instance._meta.get_field(field_name).verbose_name.title() ```
{ "source": "JhonatanRSantos/CBERS-to-GEE", "score": 2 }
#### File: JhonatanRSantos/CBERS-to-GEE/CBERSTOGEE.py ```python from tkinter import * import json import os import time import zipfile from tkinter import Toplevel import requests from bs4 import BeautifulSoup import wget import shutil from PIL import Image, ImageTk import threading import multiprocessing task = None # Para gerar o executavel, digitar no terminal: # pyinstaller <nome do script>.py # pyinstaller.exe --icon=favicon.ico CBERSTOGEE.py // para ter icone fileConfigName = "config.json" # ALTERAR DEPOIS DOS TESTES PARA config.json configJson = json.loads(open(fileConfigName).read()) if configJson["installDependencies"]: print("Instalando dependencias.") result = os.system("pip install -r dependencies.txt") if result == 1: print("Erro ao instalar dependencias do Python.") exit() result = os.system("earthengine ls") if result == 1: os.system("cls") print("Para continuar voce deve fazer sua autenticacao\n") os.system("earthengine authenticate") os.system("cls") currentTime = None result = 1 while result == 1: currentTime = str(time.time()).replace(".", "") result = os.system("gsutil mb gs://bk{}".format(currentTime)) result = os.system( "gsutil iam ch allUsers:objectViewer gs://bk{}".format(currentTime)) os.system("cls") with open(fileConfigName, "w") as configFile: configJson["bucketName"] = "bk" + currentTime configJson["installDependencies"] = False json.dump(configJson, configFile) configJson = json.loads(open(fileConfigName).read()) nomeDoUsuarioINPE = configJson["nomeDoUsuarioINPE"].strip() senhaINPE = configJson["senhaINPE"].strip() geeUserName = configJson["geeUserName"].strip() bucketName = configJson["bucketName"].strip() startDate = configJson["startDate"].strip() endDate = configJson["endDate"].strip() startOrbit = configJson["startOrbit"].strip() endOrbit = configJson["endOrbit"].strip() startPoint = configJson["startPoint"].strip() endPoint = configJson["endPoint"].strip() # ---------------------Execução do programa apos click no botão--------------------- def Carregando(): textoProgresso = "Carregando...\n" print(textoProgresso) text_box_Progress.insert(INSERT, textoProgresso) # ,senhaINPE,geeUserName,bucketName,startDate,endDate,startOrbit,endOrbit,startPoint,endPoint): def executeCrawler(): Carregando() # print('teste', entry_1.get()) nomeDoUsuarioINPE = entry_1.get() senhaINPE = entry_2.get() geeUserName = entry_3.get() startDate = entry_4.get() endDate = entry_5.get() startOrbit = entry_6.get() endOrbit = entry_7.get() startPoint = entry_8.get() endPoint = entry_9.get() with open(fileConfigName, "w") as configFile: configJson["nomeDoUsuarioINPE"] = nomeDoUsuarioINPE configJson["senhaINPE"] = senhaINPE configJson["geeUserName"] = geeUserName configJson["startDate"] = startDate configJson["endDate"] = endDate configJson["startOrbit"] = startOrbit configJson["endOrbit"] = endOrbit configJson["startPoint"] = startPoint configJson["endPoint"] = endPoint json.dump(configJson, configFile) # ---Inicio do Crawller # Post de autenticação do usuário nomeDoUsuarioINPE = configJson["nomeDoUsuarioINPE"] senhaINPE = configJson["<PASSWORD>haINPE"] s = requests.session() p = s.post('http://www.dgi.inpe.br/catalogo/login.php', {'enviar': 'Realizar+acesso', 'name': nomeDoUsuarioINPE, 'pwd': <PASSWORD>, 'submitted': '1'}) phpSessID = p.cookies['PHPSESSID'] # Definindo as variaveis de busca de imagens. startPage = '1' startDate = configJson["startDate"] endDate = configJson["endDate"] startOrbit = configJson["startOrbit"] endOrbit = configJson["endOrbit"] startPoint = configJson["startPoint"] endPoint = configJson["endPoint"] imagesPath = configJson["imagesPath"] pageSize = '20' # Quantidade de itens maximo encontrados por pagina web zipFolder = 'tempZip' # --------- # Primeiro link utilizado para obter as infirmações iniciais do processo link1 = f'http://www.dgi.inpe.br/catalogo/buscarimagens.php?p=1&pg={startPage}&TRIGGER=BTNOPTODOS&CQA=CA&SATELITE=CB4&SENSOR=MUX&DATAINI={startDate}&DATAFIM={endDate}&Q1=&Q2=&Q3=&Q4=&ORBITAINI={startOrbit}&ORBITAFIM={endOrbit}&PONTOINI={startPoint}&PONTOFIM={endPoint}&TAMPAGINA={pageSize}' L1 = s.get(link1) html = L1.content html = str(html) # Codigo html da primeira pagina requisitada site = BeautifulSoup(html, 'lxml') # Quantidade de paginas. totalPages = site.find(id="pgatualtopo").get('max') # tag que possui os indices das imagens ref = site.find_all(class_="icon-shopping-cart") # Fazer loop para obter todos os indices das imagens e adicionar no carrinho. for i in ref: tagBtn = i.previous_element IndiceImg = str(tagBtn).split("chamaAdicionarAoCarrinho")[ 1].split(",")[1].replace("\\'", "").replace("\\'", "") IndiceImg = IndiceImg.strip() link2 = f'http://www.dgi.inpe.br/catalogo/addtocart.php?ACTION=CART&INDICE={IndiceImg}' L2 = s.get(link2) if (int(totalPages) > 1): for pagina in range(2, int(totalPages) + 1): link1 = f'http://www.dgi.inpe.br/catalogo/buscarimagens.php?p=1&pg={str(pagina)}&TRIGGER=BTNOPTODOS&CQA=CA&SATELITE=CB4&SENSOR=MUX&DATAINI={startDate}&DATAFIM={endDate}&Q1=&Q2=&Q3=&Q4=&ORBITAINI={startOrbit}&ORBITAFIM={endOrbit}&PONTOINI={startPoint}&PONTOFIM={endPoint}&TAMPAGINA={pageSize}' L1 = s.get(link1) html = L1.content html = str(html) site = BeautifulSoup(html, 'lxml') ref = site.find_all(class_="icon-shopping-cart") for i in ref: tagBtn = i.previous_element IndiceImg = str(tagBtn).split("chamaAdicionarAoCarrinho")[1].split(",")[1].replace("\\'", "").replace( "\\'", "") IndiceImg = IndiceImg.strip() link2 = f'http://www.dgi.inpe.br/catalogo/addtocart.php?ACTION=CART&INDICE={IndiceImg}' L2 = s.get(link2) # Obter a quantidade de itens/imagens adicionadas no carrinho link3 = 'http://www.dgi.inpe.br/catalogo/numeroitenscarrinho.php' L3 = s.get(link3) strNumItensNoCarrinho = str(L3.content) quantDeItensNoCarrinho = strNumItensNoCarrinho.split("\\")[ 0].split("'")[1] # Fechar o pedido de imagens link4 = 'http://www.dgi.inpe.br/catalogo/cart.php' L4 = s.get(link4) link5 = 'http://www.dgi.inpe.br/catalogo/cartAddress.php' L5 = s.post(link5, {'action': 'Prosseguir', 'sesskey': phpSessID, 'userid': nomeDoUsuarioINPE}) link6 = f'http://www.dgi.inpe.br/catalogo/cartAddress.php?userid={nomeDoUsuarioINPE}&nItens={quantDeItensNoCarrinho}&sesskey={phpSessID}&mediaCD=&total=0&action=Prosseguir' L6 = s.get(link6) link7 = 'http://www.dgi.inpe.br/catalogo/cartAddress.php' p = s.post(link7, {'action': 'Fechar+Pedido', 'mediaCD': None, 'nItens': quantDeItensNoCarrinho, 'sesskey': phpSessID, 'total': '0', 'userid': nomeDoUsuarioINPE}) link8 = f'http://www.dgi.inpe.br/catalogo/cartAddress.php?action=Fechar+Pedido&mediaCD=&nItens={quantDeItensNoCarrinho}&sesskey={phpSessID}&total=0&userid={nomeDoUsuarioINPE}' L8 = s.get(link8) # Obter o número do pedido atribuido ao id do usuario logado pagWebPedido = L8.content pagWebPedido = BeautifulSoup(str(pagWebPedido), 'lxml') numeroDoPedido = pagWebPedido.find( class_='icon-thumbs-up').previous_element.text numeroDoPedido = str(numeroDoPedido).split( " foi aceito ")[0].split("número ")[1] print( f'Número de imagens que serão baixadas: {quantDeItensNoCarrinho} \n') # Espera um determinado tempo para o processamento das imagens no servidor time.sleep(60) # Preparar links das imagens link9 = f'http://imagens.dgi.inpe.br/cdsr/{nomeDoUsuarioINPE}{numeroDoPedido}' L9 = s.get(link9) pagWebLinks = BeautifulSoup(str(L9.content), 'lxml') linksImagens = [] for link in pagWebLinks.find_all('a'): strLink = str(link.get('href')) if strLink.endswith('.zip'): linksImagens.append( f'http://imagens.dgi.inpe.br/cdsr/{nomeDoUsuarioINPE}{numeroDoPedido}/{strLink}') # Baixar as imagens e dezipar o arquivo .zip os.mkdir(imagesPath + zipFolder) time.sleep(1) def BaixarExtrairImagens(location): try: filename = wget.download(location, imagesPath + zipFolder) zip_ref = zipfile.ZipFile(filename, 'r') zip_ref.extractall(imagesPath) zip_ref.close() except Exception as error: print("Não foi possível baixar os arquivos. Verifique sua conexão.") exit() auxPercenBaixado = 100 / (int(quantDeItensNoCarrinho) * 4) for linkImg in linksImagens: BaixarExtrairImagens(str(linkImg)) print(f" Baixando arquivos: {auxPercenBaixado}% \n") auxPercenBaixado = auxPercenBaixado + \ (100 / (int(quantDeItensNoCarrinho) * 4)) # Mensagem de termino do download das imagens print( f'Download terminado. Voce baixou: {quantDeItensNoCarrinho} imagens para o seu computador.') print(f'Cada imagem possui 4 arquivos .tiff e 4 arquivos .xml.') print( f'Cada arquivo .tiff corresponde a uma banda da imagem, e cada arquivo .xml corresponde aos metadados de cada banda.') # Delata pasta zipada time.sleep(1) # result = os.system("gsutil rm gs://{}/*".format(configJson["bucketName"])) print("Enviando arquivos para o GEE.\n") # ADICIONAR AQUI O NOME DE TODAS AS TASKS CRIADAS PELO SISTEMA!!!!!GILBERTO taskIDs = [] for root, dirs, files in os.walk("images"): print('iniciando') for filename in files: print('preparando envio de dados...') currentFile = str(filename) if currentFile.endswith(".tif"): result = os.system( "gsutil cp {} gs://{}".format("images\\" + currentFile, configJson["bucketName"])) if result == 0: try: result = os.popen( "earthengine upload image --asset_id=users/{}/{} --pyramiding_policy=sample gs://{}/{}".format( configJson["geeUserName"], currentFile.replace( ".tif", ""), configJson["bucketName"], currentFile) ).readlines() taskIDs.append(result[0].split('ID: ')[ 1].replace("\n'", '')) print('Id adicionado com sucesso.') except: result = 1 if result == 1: print("Error ao baixar a imagem {} para o GEE.".format( currentFile)) else: print("Erro ao enviar o arquivo {}".format(currentFile)) print() shutil.rmtree(imagesPath + zipFolder) shutil.rmtree(imagesPath) print('Ids ', taskIDs) textoProgresso = "Imagens transferidas para o GEE com sucesso!\n" print(textoProgresso) text_box_Progress.insert(INSERT, textoProgresso) # CODIGO QUE APAGA AS IMAGENS DO BUCKET --- TESTAR!!!!! import re tasksCompleds = 0 taskList = os.popen('earthengine task list').readlines() taskList = [re.sub('[^A-Za-z0-9\_\-]+', ' ', task) for task in taskList] doTasks = (len(taskIDs) != 0) total = len(taskIDs) while doTasks: for tskId in taskIDs: out = os.popen( 'earthengine task info {}'.format(tskId)).readlines() out = out[1].split(': ')[1] if out == 'COMPLETED\n': tasksCompleds += 1 elif out == 'FAILED\n': print('A task com o ID {} falhou.'.format(tskId)) tasksCompleds += 1 if tasksCompleds == total: os.system('gsutil rm -r gs://{}/*.tif'.format(bucketName)) break else: tasksCompleds = 0 # ---sFim do Crawller def start(): threading.Thread(target=executeCrawler).start() # ---------------------Interface--------------------- # -- Janela de Aviso inicial def Ajuda(txt=''): windowWelcome = Toplevel() windowWelcome.iconbitmap('favicon.ico') windowWelcome.title('Bem vindo ao CEBRS4 to GEE!') image = Image.open("banner3_ajudaC4GEE.png") photo = ImageTk.PhotoImage(image) label = Label(windowWelcome, image=photo) label.image = photo # keep a reference! label.pack() ''' img_ajuda = PhotoImage(file='banner3_ajudaC4GEE.png') label_ajudaimg = Label(windowWelcome, image=img_ajuda) label_ajudaimg.grid(row=2,column=0)''' text_box_Welcome = Text(windowWelcome, width=80, height=20, wrap=WORD, background="white") text_box_Welcome.pack() # .grid(row=4,column=0) textoInicial = "Bem Vindo ao CBERS4 to GEE! Este programa realiza a importação de imagens do satélite CBERS4 banda MUX para sua conta no Google Earth Engine.\n\n" \ "Você precisa preencher requisitos mínimos para utilizar este programa:\n" \ "1 - Ter um conta no Google.\n" \ "2 - Ter uma conta no Catálogo do INPE (Instituto Nacional de Pesquisas Espaciais). Você pode se cadastrar no catálogo do INPE atravês do site http://www.dgi.inpe.br/CDSR/ clicando em <Cadastro> e registrando-se pelo formulário de cadastro. \n" \ "3 - Ter uma conta no Google Earth Engine (GEE). Você pode ter uma conta no Google Earth Engine registrando-se através do site https://earthengine.google.com/ . \n" \ "4 - Ter uma conta no Google Cloud. Você pode ter uma conta no Google Cloud registrando-se através do site https://cloud.google.com/. Será solicitado o número do seu cartão de crédito, porém isso é só para registro da conta caso você deseje no futuro obter uma conta Google Cloud com mais recursos. \n" textoInicial = textoInicial + txt text_box_Welcome.insert(INSERT, textoInicial) def closeWindowWelcome(): windowWelcome.destroy() button_1_Welcome = Button(windowWelcome, text="Ok", command=closeWindowWelcome) # .grid(row=6,column=0,ipadx=100)#.pack(ipadx=100)#(row=2, column=0) button_1_Welcome.pack(ipadx=100) windowWelcome.mainloop() # -------------------------- # -- Janela do programa principal def sheet(): # if threadWorker != None and threadWorker.is_alive(): # pass # os.system("taskkill /f /im python.exe") os.system('taskkill /f /pid {pid}'.format(pid=os.getpid())) # os.system('pkill -TERM -P {pid}'.format(pid=os.getpid())) main_window = Tk() main_window.protocol("WM_DELETE_WINDOW", sheet) main_window.title('CBERS4 To GEE') img1 = PhotoImage(file="banner1_topC4GEE.png") label_aux0 = Label(main_window, image=img1) # text="\n\n") label_aux0.grid(row=1, column=0) frameLogin = Frame(main_window, height=100, width=100, borderwidth=4, relief=GROOVE) frameLogin.grid(row=2, column=0) img2 = PhotoImage(file="banner2_medC4GEE.png") label_aux0 = Label(main_window, image=img2) # ,text="\n\n") label_aux0.grid(row=3, column=0) framePesquisa = Frame(main_window, height=100, width=100, borderwidth=4, relief=GROOVE) framePesquisa.grid(row=4, column=0) label_1 = Label(frameLogin, text="Nome de usuário do INPE:") label_1.grid(row=2, column=0, sticky=W) entry_1 = Entry(frameLogin) entry_1.grid(row=3, column=0, sticky=W) entry_1.insert(0, nomeDoUsuarioINPE) label_2 = Label(frameLogin, text="Senha de usuário do INPE:") label_2.grid(row=4, column=0, sticky=W) entry_2 = Entry(frameLogin) # ,show="*") entry_2.grid(row=5, column=0, sticky=W) entry_2.insert(0, senhaINPE) label_space1 = Label(frameLogin, text=" ") label_space1.grid(row=2, column=1) label_space1 = Label(frameLogin, text=" ") label_space1.grid(row=3, column=1) label_3 = Label(frameLogin, text="Nome de usuário do GEE :") label_3.grid(row=2, column=2, sticky=W) entry_3 = Entry(frameLogin) entry_3.grid(row=3, column=2, sticky=W) entry_3.insert(0, geeUserName) label_4 = Label(framePesquisa, text="Data início. Ex: 01/09/2018 :") label_4.grid(row=8, column=0, sticky=W) entry_4 = Entry(framePesquisa) entry_4.grid(row=9, column=0, sticky=W) entry_4.insert(0, startDate) label_space1 = Label(framePesquisa, text=" ") label_space1.grid(row=8, column=1) label_space1 = Label(framePesquisa, text=" ") label_space1.grid(row=9, column=1) label_5 = Label(framePesquisa, text="Data fim. Ex: 01/10/2018 :") label_5.grid(row=8, column=2, sticky=W) entry_5 = Entry(framePesquisa) entry_5.grid(row=9, column=2, sticky=W) entry_5.insert(0, endDate) label_6 = Label(framePesquisa, text="Órbita inicial. Ex: 162 :") label_6.grid(row=10, column=0, sticky=W) entry_6 = Entry(framePesquisa) entry_6.grid(row=11, column=0, sticky=W) entry_6.insert(0, startOrbit) label_7 = Label(framePesquisa, text="Órbita final. Ex: 162 :") label_7.grid(row=10, column=2, sticky=W) entry_7 = Entry(framePesquisa) entry_7.grid(row=11, column=2, sticky=W) entry_7.insert(0, endOrbit) label_8 = Label(framePesquisa, text="Ponto inicial. Ex: 102 :") label_8.grid(row=12, column=0, sticky=W) entry_8 = Entry(framePesquisa) entry_8.grid(row=13, column=0, sticky=W) entry_8.insert(0, startPoint) label_9 = Label(framePesquisa, text="Ponto final. Ex: 102 :") label_9.grid(row=12, column=2, sticky=W) entry_9 = Entry(framePesquisa) entry_9.grid(row=13, column=2, sticky=W) entry_9.insert(0, endPoint) label_aux1 = Label(main_window, text=" ") label_aux1.grid(row=20, column=0) label_aux2 = Label(main_window, text=" ") label_aux2.grid(row=22, column=0) textoAjuda = "\nPara realizar a importação de imagens CBERS para o GEE, é necessário: \n" \ "1 - Preencher os dados: \n" \ " 1.1 - Nome de usuário do Catálogo do INPE, \n" \ " 1.2 - Senha do Catálogo do INPE, \n" \ " 1.3 - Nome de usuário do GEE, \n" \ " 1.4 - Um intervalo entre uma data inicial e uma data final do imagiamento do satélite,\n" \ " 1.5 - Um intervalo com uma orbita inicial e uma orbita final, \n" \ " 1.6 - Um intervalo do ponto inicial e do ponto final.\n" \ "2 - Após o preenchimento dos dado clicar no botão <Baixar e importar imagens para o GEE> e aguardar o término da execução.\n" \ "3 - Após o término da execução, as imagens que você pesquisou estarão na aba <Assets> da sua conta no Google Earth Engine.\n\n" \ "--Equipe de desenvolvimento--\n" \ "<NAME>: cesar.diniz<EMAIL>.br\n" \ "<NAME>: <EMAIL>\n" \ "<NAME>: <EMAIL>\n" \ "<NAME>: <EMAIL>\n" \ "<NAME>: <EMAIL>\n" \ "Visite o nosso site: www.solved.eco.br" button_2 = Button(main_window, text="Ajuda!", command=lambda: Ajuda(textoAjuda)) button_2.grid(row=23, column=0, sticky=N) label_aux3 = Label(main_window, text=" ") label_aux3.grid(row=24, column=0) text_box_Progress = Text(main_window, width=40, height=3, wrap=WORD, background="white") text_box_Progress.grid(row=25, column=0, columnspan=3) textoProgresso = "..." text_box_Progress.insert(INSERT, textoProgresso) label_aux4 = Label(main_window, text=" ") label_aux4.grid(row=26, column=0) button_1 = Button( main_window, text="Baixar e importar imagens para o GEE", command=start) button_1.grid(row=21, column=0) main_window.iconbitmap('favicon.ico') # --- Exibe ajuda if configJson["installDependencies"]: Ajuda() main_window.mainloop() ```
{ "source": "Jhonatanslopes/Ecommerce-Customer-Churn", "score": 3 }
#### File: Ecommerce-Customer-Churn/src/api.py ```python import pickle import pandas as pd import os import sklearn import numpy as np import xgboost as xgb from sklearn.ensemble import RandomForestClassifier from lightgbm import LGBMClassifier from sklearn.ensemble import VotingClassifier from flask import Flask, request, Response from classChurn.churn import Churn model = pickle.load(open('model/model.pkl', 'rb')) # load model saved with pickle app = Flask(__name__) # initialize API @app.route('/CustomerChurn/predict', methods=['POST']) def customer_churn(): test_json = request.get_json() if test_json: # there is data if isinstance(test_json, dict): # unique example test_raw = pd.DataFrame(test_json, index=[0]) else: # multiple exemples test_raw = pd.DataFrame(test_json, columns=test_json[0].keys()) # instance class churn = Churn() # data cleaning df_cleaning = churn.cleaning(df=test_raw) print('cleaning OK') # feature engineering df_feature = churn.feature_engineering(df=df_cleaning) print('feature engineering OK') # data preparation df_prearation = churn.preparation(df=df_feature) print('prearation OK') # feature selection df_filtered = churn.feature_selection(df=df_prearation) print('feature selection OK') # prediction df_response = churn.get_prediction(model=model, original_data=df_cleaning, test_data=df_filtered) print('prediction OK') return df_response if __name__ == '__main__': porta = os.environ.get('PORT', 5000) app.run(host='0.0.0.0', port=porta) ```
{ "source": "Jhonatanslopes/Etl-Car-Recommendation", "score": 3 }
#### File: Etl-Car-Recommendation/src/report.py ```python import win32com.client as win32 import sqlalchemy import pandas as pd import os from datetime import datetime def send_report(conn): try: date_query = str(datetime.now().strftime('%Y-%m-%d')) query = ''' SELECT * FROM tb_cars WHERE scrapy_date = "{}" '''.format(date_query) data = pd.read_sql_query(query, conn) conn.dispose() except sqlalchemy.exc.InvalidRequestError: print('SELECT Error') # Create file excel try: path = 'report/report_icarros.xlsx' f = open(path) f.close() os.remove(path) data.to_excel('report/report_icarros.xlsx', index=False) except: data.to_excel('report/report_icarros.xlsx', index=False) # Send Email date = datetime.now().strftime('%d-%m') outlook = win32.Dispatch('outlook.application') email = outlook.CreateItem(0) email.To = '<EMAIL>' email.Subject = f'Relatório Veículos - Icarros {date}' email.HTMLBody = ''' <p>Olá,</p> <p>Segue em anexo, relatório dos veículos coletados do site.</p> <p> </p> <p>Atenciosamente,</p> <p><NAME></p> ''' # all path the file file = 'C:/Users/Jhonatans/projects/ETL/Etl-Car-Recommendation/report/report_icarros.xlsx' email.Attachments.Add(file) email.Send() ```
{ "source": "Jhonatanslopes/Financial-Fraud-Detection", "score": 3 }
#### File: Financial-Fraud-Detection/src/api.py ```python import pickle import pandas as pd import os import sklearn import numpy as np from flask import Flask, request, Response from lightgbm import LGBMClassifier from class_.FraudDetection import FraudDetection model = pickle.load(open('model/lgbm.pkl', 'rb')) # loading model app = Flask(__name__) # initialize API @app.route('/fraudDetection/predict', methods=['POST']) def fraudDetection_predict(): test_json = request.get_json() if test_json: # there is data if isinstance(test_json, dict): # unique example test_raw = pd.DataFrame(test_json, index=[0]) else: # multiple example test_raw = pd.DataFrame(test_json, columns=test_json[0].keys()) # instantiate class detection = FraudDetection() # data cleaning df1 = detection.cleaning(df=test_raw) print('cleaning OK') # feature engineering df2 = detection.feature_engineering(df=df1) print('feature engineering OK') # data preparation df3 = detection.preparation(df=df2) print('data preparation OK') # feature selection df4 = detection.feature_selection(df=df3) print('feature selection OK') # prediction df_response = detection.get_prediction( model=model, original_data=df1, test_data=df4 ) print('prediction OK') return df_response else: return Response('{}', status=200, minetype='application/json') if __name__ == '__main__': porta = os.environ.get('PORT', 5000) app.run(host='0.0.0.0', port=porta) """ import json import requests # data to json data = json.dumps(x_test.to_dict(orient='records')) #url = 'http://127.0.0.1:5000/fraudDetection/predict' url = 'https://api-fraud.herokuapp.com/fraudDetection/predict' # local host header = {'content-type': 'application/json'} # set type as json # request with method POST response = requests.post(url, data=data, headers=header) print('Status code: {}'.format(response.status_code)) # json to dataframe d1 = pd.DataFrame(response.json(), columns=response.json()[0].keys()) d1""" ```
{ "source": "jhonatantft/ckl", "score": 2 }
#### File: api/user/models.py ```python from django.db import models from interest.models import Interest class User(models.Model): firstName = models.CharField(max_length=150) interests = models.ManyToManyField(Interest) def __str__(self): return self.firstName ```
{ "source": "jhonatantft/digital-image-processing", "score": 3 }
#### File: image processing algorithm/operadorSobel/sobel.py ```python import cv2 import numpy as np from PIL import Image import math def sobel(): path = "einstein.jpg" # Your image path img = Image.open(path) width = 544 height = 340 newimg = Image.new("RGB", (544, 340), "white") for x in range(1, width-1): # ignore the edge pixels for simplicity (1 to width-1) for y in range(1, height-1): # ignore edge pixels for simplicity (1 to height-1) # initialise Gx to 0 and Gy to 0 for every pixel Gx = 0 Gy = 0 # top left pixel p = img.getpixel((x-1, y-1)) r = p[0] g = p[1] b = p[2] # intensity ranges from 0 to 765 (255 * 3) intensity = r + g + b # accumulate the value into Gx, and Gy Gx += -intensity Gy += -intensity # remaining left column p = img.getpixel((x-1, y)) r = p[0] g = p[1] b = p[2] Gx += -2 * (r + g + b) p = img.getpixel((x-1, y+1)) r = p[0] g = p[1] b = p[2] Gx += -(r + g + b) Gy += (r + g + b) # middle pixels p = img.getpixel((x, y-1)) r = p[0] g = p[1] b = p[2] Gy += -2 * (r + g + b) p = img.getpixel((x, y+1)) r = p[0] g = p[1] b = p[2] Gy += 2 * (r + g + b) # right column p = img.getpixel((x+1, y-1)) r = p[0] g = p[1] b = p[2] Gx += (r + g + b) Gy += -(r + g + b) p = img.getpixel((x+1, y)) r = p[0] g = p[1] b = p[2] Gx += 2 * (r + g + b) p = img.getpixel((x+1, y+1)) r = p[0] g = p[1] b = p[2] Gx += (r + g + b) Gy += (r + g + b) # calculate the length of the gradient (Pythagorean theorem) length = math.sqrt((Gx * Gx) + (Gy * Gy)) # normalise the length of gradient to the range 0 to 255 length = length / 4328 * 255 length = int(length) # draw the length in the edge image #newpixel = img.putpixel((length,length,length)) newimg.putpixel((x, y), (length, length, length)) newimg.save('sobel.jpg') newimg.show() return newimg def robert_full(): roberts_cross_v = np.array([[0, 0, 0], [0, 1, 0], [0, 0, -1]]) roberts_cross_h = np.array([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) def load_image(infilename): img = Image.open(infilename) img.load() # note signed integer return np.asarray(img, dtype="int32") def save_image(data, outfilename): img = Image.fromarray(np.asarray( np.clip(data, 0, 255), dtype="uint8"), "L") img.save(outfilename) def main(): sobel() if __name__ == '__main__': main() ``` #### File: digital-image-processing/zoomOut/zoomOut.py ```python import cv2 import numpy as np import PIL from PIL import Image import utils def zoom_out(image_name, step): image = Image.open(image_name) width = range(0, image.size[0], step) height = range(0, image.size[1], step) image_data = [] new_x = 0 new_y = 0 for x in width: new_y = 0 for y in height: quadrants = [(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)] int_rgb_total = 0 for quadrant in quadrants: if x <= image.size[0] and y <= image.size[1]: pixel = image.getpixel((x,y)) int_rgb_total += utils.getIfromRGB(pixel) else: quadrants.remove(quadrant) new_pixel_int = round(int_rgb_total / len(quadrants)) new_pixel = utils.getRGBfromI(int(new_pixel_int)) image_data.append({ 'coordinates': (new_x, new_y), 'pixel': new_pixel }) new_y = new_y + 1 new_x = new_x + 1 utils.create_new_image('zoom_out.jpg', image_data) zoom_out('../grama.jpg', 4) ```
{ "source": "jhonatantft/multiplanar-reconstruction", "score": 3 }
#### File: jhonatantft/multiplanar-reconstruction/main.py ```python import os, re import numpy as np import matplotlib.pyplot as plt def rename_files(path): for count, filename in enumerate(os.listdir(path)): name, number = filename.split('.') if (bool(re.search('^[-+]?[0-9]+$', number))): number = str('%03d' % int(number),) new_filename = name + '.' + number os.rename(path + filename, path + new_filename) def buildsSectionByAxis(images, section, axis = None): newImage = [] if not axis: return images[section] if axis == 'y': for image in images: newImage.append(image[section]) if axis == 'z': for image in images: newLine = [] for line in image: newLine.append(line[section]) newImage.append(newLine) return newImage def retrieveEachImage(root, files, images): resolution = [512, 512] for file in files: image = np.fromfile(os.path.join(root, file), dtype='int16', sep='') images.append(image.reshape(resolution)) def getImages(path, images): for (root, directories, files) in os.walk(path): files.sort() retrieveEachImage(root, files, images) return images def show_images(images): for i in range(len(images)): plt.imshow(images[i], cmap='gray') plt.show() def main(): # rename_files('/home/jhonatan/Desktop/multiplanar-reconstruction/Arterielle/') frame = 350 images = getImages('./Arterielle', []) sectionX = buildsSectionByAxis(images, frame) sectionY = buildsSectionByAxis(images, frame, 'y') sectionZ = buildsSectionByAxis(images, frame, 'z') show_images([sectionX, sectionY, sectionZ]) if __name__ == '__main__': main() ```
{ "source": "jhonatantirado/CheXNet-Keras", "score": 2 }
#### File: jhonatantirado/CheXNet-Keras/predict_pb.py ```python from keras.preprocessing import image import numpy as np import os from configparser import ConfigParser import tensorflow as tf import torch import cxr_dataset as CXR from torchvision import transforms, utils from torch.utils.data import Dataset, DataLoader def load_pb(path_to_pb): with tf.gfile.GFile(path_to_pb, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, name='') return graph def load_image(img_path, show=False): img = image.load_img(img_path, target_size=(224, 224)) img_tensor = image.img_to_array(img)# (height, width, channels) img_tensor = np.expand_dims(img_tensor, axis=0) img_tensor /= 255. return img_tensor if __name__ == "__main__": LABEL="Pneumonia" STARTER_IMAGES=True PATH_TO_IMAGES = "starter_images/" POSITIVE_FINDINGS_ONLY=True mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] data_transform = transforms.Compose([ transforms.Scale(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std) ]) if not POSITIVE_FINDINGS_ONLY: finding = "any" else: finding = LABEL dataset = CXR.CXRDataset( path_to_images=PATH_TO_IMAGES, fold='test', transform=data_transform, finding=finding, starter_images=STARTER_IMAGES) dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1) inputs, labels, filename = next(iter(dataloader)) dummy_input = torch.autograd.Variable(inputs.cpu()) pb_model_path='experiments/3/checkpoint2.tf.pb' graph = tf.Graph() with graph.as_default(): print("** load model **") graph = load_pb(pb_model_path) with tf.Session(graph=graph) as sess: output_tensor = graph.get_tensor_by_name('Sigmoid:0') input_tensor = graph.get_tensor_by_name('input:0') output = sess.run(output_tensor, feed_dict={input_tensor: dummy_input}) print(output) ``` #### File: jhonatantirado/CheXNet-Keras/weights.py ```python import numpy as np def get_class_weights(total_counts, class_positive_counts, multiply): """ Calculate class_weight used in training Arguments: total_counts - int class_positive_counts - dict of int, ex: {"Effusion": 300, "Infiltration": 500 ...} multiply - int, positve weighting multiply use_class_balancing - boolean Returns: class_weight - dict of dict, ex: {"Effusion": { 0: 0.01, 1: 0.99 }, ... } """ def get_single_class_weight(pos_counts, total_counts): denominator = (total_counts - pos_counts) * multiply + pos_counts return { 0: pos_counts / denominator, 1: (denominator - pos_counts) / denominator, } class_names = list(class_positive_counts.keys()) label_counts = np.array(list(class_positive_counts.values())) class_weights = [] for i, class_name in enumerate(class_names): class_weights.append(get_single_class_weight(label_counts[i], total_counts)) return class_weights ```
{ "source": "jhonatasfender/googlesearch", "score": 3 }
#### File: googlesearch/googlesearch/googlesearch.py ```python import math import tempfile import urllib from collections import deque from threading import Thread from time import sleep from urllib.request import urlopen from urllib.request import urlretrieve import numpy as np import requests from PIL.PpmImagePlugin import PpmImageFile from bs4 import BeautifulSoup from numpy import long from pdf2image import convert_from_path from pytesseract import image_to_string class GoogleSearch: USER_AGENT = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 58.0.3029.81 Safari/537.36" SEARCH_URL = "https://google.com/search" RESULT_SELECTOR = "#rso .g .r a:first-child:not(.fl)" TOTAL_SELECTOR = "#result-stats" RESULTS_PER_PAGE = 10 DEFAULT_HEADERS = { 'User-Agent': USER_AGENT, "Accept-Language": "pt-BR,pt;q=0.9,en-US;q=0.8,en;q=0.7", } __total = None @staticmethod def build_request(url, headers=None): payload = {} headers = GoogleSearch.DEFAULT_HEADERS if headers is None else headers resp = requests.request("GET", url, headers=headers, data=payload) html = '' if resp.raw.headers.get('Content-Type') == 'application/pdf': tf = tempfile.NamedTemporaryFile() urlretrieve(url, tf.name) images = np.array(convert_from_path(tf.name), dtype=PpmImageFile.__class__) extracted_text = np.array([image_to_string(img, lang='por') for img in images]) html = "\n".join(extracted_text) else: html = resp.text resp.close() return html def set_total(self, soup): if self.__total is None: element_html_total = soup.select(GoogleSearch.TOTAL_SELECTOR) total_text = element_html_total[0].encode('utf-8') self.__total = long(''.join(text for text in str(total_text) if text.isdigit())) def search(self, query, num_results=10, prefetch_pages=True, prefetch_threads=10): search_results = [] pages = int(math.ceil(num_results / float(GoogleSearch.RESULTS_PER_PAGE))) fetcher_threads = deque([]) for i in range(pages): start = i * GoogleSearch.RESULTS_PER_PAGE resp = GoogleSearch.build_request(GoogleSearch.SEARCH_URL + "?q=" + urllib.request.quote(query) + ("" if start == 0 else ("&start=" + str(start)))) soup = BeautifulSoup(resp, "lxml") results = GoogleSearch.parse_results(soup.select(GoogleSearch.RESULT_SELECTOR)) self.set_total(soup) if len(search_results) + len(results) > num_results: del results[num_results - len(search_results):] search_results += results if prefetch_pages: for result in results: while True: running = 0 for thread in fetcher_threads: if thread.is_alive(): running += 1 if running < prefetch_threads: break sleep(1) fetcher_thread = Thread(target=result.getText) fetcher_thread.start() fetcher_threads.append(fetcher_thread) for thread in fetcher_threads: thread.join() return SearchResponse(search_results, self.__total) @staticmethod def parse_results(results): return [SearchResult(result.text, result.get('href')) for result in results if result.get('href') and result.text] class SearchResponse: def __init__(self, results, total): self.results = results self.total = total class SearchResult: def __init__(self, title, url): self.title = title self.url = url self.__text = None self.__markup = None def getText(self): markup = self.getMarkup() if self.__text is None and markup: soup = BeautifulSoup(markup, "lxml") for junk in soup(["script", "style"]): junk.extract() self.__text = soup.get_text() return self.__text def getMarkup(self): if self.__markup is None: headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'} self.__markup = GoogleSearch.build_request(self.url, headers) return self.__markup def __str__(self): return str(self.__dict__) def __unicode__(self): return unicode(self.__str__()) def __repr__(self): return self.__str__() if __name__ == "__main__": # search = GoogleSearch() # i = 1 # query = " ".join(sys.argv[1:]) # if len(query) == 0: # query = "python" # count = 10 # print("Fetching first " + str(count) + " results for \"" + query + "\"...") # response = search.search(query, count) # print("TOTAL: " + str(response.total) + " RESULTS") # for result in response.results: # print("RESULT #" + str(i) + ": " + result.url + "\n\n") # i += 1 response = GoogleSearch.build_request( "https://ww2.stj.jus.br/processo/dj/documento?seq_documento=20012703&data_pesquisa=02/10/2018&parametro=42", { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36' } ) print(response) ```
{ "source": "JhonatasMenezes/Projetos_Python", "score": 3 }
#### File: APIFlask/controllers/book.py ```python from flask.globals import request from flask_restplus import Resource, fields from marshmallow.utils import EXCLUDE from models.book import BookModel from schemas.book import BookSchema from server.instance import server book_ns = server.book_ns book_schema = BookSchema() book_list_schema = BookSchema(many=True) ITEM_NOT_FOUND = 'Book not found' item = book_ns.model('Book', { 'title': fields.String(description='book title'), 'pages': fields.Integer(default=0) }) class Book(Resource): def get(self, id): book_data = BookModel.find_by_id(id) if book_data: return book_schema.dump(book_data) return {'message': ITEM_NOT_FOUND} class BookList(Resource): def get(self, ): return book_list_schema.dump(BookModel.find_all()), 200 @book_ns.expect(item) @book_ns.doc('Create an item') def post(self, ): book_json = request.get_json() book_data = book_schema.load(book_json) book_data.save_to_db() return book_schema.dump(book_data), 201 ``` #### File: projeto_contratacoes/ferramentas/validaDado.py ```python from ferramentas.create_db import Vagas from .utilidades import textoCor """ Módulo de funções para validação de alguns dados como Nomes, CPFs e Datas de nascimento. NOTA: Todas as funções são parecidas e utilizam o mesmo princípio. Irei comentar detalhadamente apenas a primeira e, em caso de peculiaridades, farei comentários isolados na respectiva função. """ def validaNome(mensagem='Nome: '): """ Função que valida nomes de forma a verificar se todos os caracteres são letras e não outros tipos de dados. :param mensagem: recebe uma mensagem que aparece no input :return nome: retorna o nome em forma de str """ # loop para permitir nova inserção após um erro while True: try: # checagem dos dados recebidos nome = str(input(mensagem)).split() # transformo a entrada em uma lista para poder checar nomes compostos # se a lista estiver vazia gera um erro logo de início if nome == []: raise KeyboardInterrupt else: # checar se cada item na lista é composto apenas por letras for i in nome: if i.isalpha(): pass else: raise ValueError # retransformar a lista em string para o retorno nome = ' '.join(nome) # tratamento de erros except ValueError: # emitir os avisos de erro na cor vermelha textoCor('Tipo de dado inválido. Tente novamente!', 31) except KeyboardInterrupt: textoCor('Informação obrigatória. Impossível prosseguir!', 31) except: textoCor('Erro desconhecido. Tente novamente!',31) else: # após passar por todos os filtros é retornado o nome em forma de string return nome def validaCPF(mensagem='CPF (somente números): '): """ Função que valida CPFs de forma a verificar se todos os caracteres são numéricos e se não contém outros tipos de dados. Também verifica o tamanho do CPF inserido, são sendo possível validar CPFs maiores ou menores do que 11 números. :param mensagem: recebe uma mensagem que aparece no input :return cpf: retorna cpf em formato str """ while True: try: cpf = str(input(mensagem)) cpf = list(cpf.strip('')) if cpf == []: raise KeyboardInterrupt else: # checar se cada digito é um número for i in cpf: if i.isnumeric(): pass else: raise ValueError if len(cpf) > 11 or len(cpf) < 11: raise Exception cpf = ''.join(cpf) except ValueError: textoCor('Tipo de dado inválido. Tente novamente!', 31) except KeyboardInterrupt: textoCor('Informação obrigatória. Impossível prosseguir!', 31) except Exception: textoCor('Tamanho inválido. Verifique o dado digitado!', 31) except: textoCor('Erro desconhecido. Tente novamente!') else: return cpf def validaNascimento(mensagem='Data nasc. (DD/MM/AAAA): '): """ Função que valida datas de forma a verificar se todos os caracteres, entre as '/' são numéricos e não outros tipos de dados. Também verifica se o dia, mês e ano estão dentro dos limites válidos. :param mensagem: recebe uma mensagem que aparece no input :return data: retorna data em formato str """ # variável que facilita a mudança do ano atual anoAtual = 2021 while True: try: data = str(input(mensagem)) data = list(data.split('/')) if data == []: raise KeyboardInterrupt else: for i in data: if i.isnumeric(): pass else: raise ValueError # utilizo dos índices para verificar cada dado if int(data[0]) > 31: raise Exception('Dia') if int(data[1]) > 12: raise Exception('Mês') if int(data[2]) > anoAtual: raise Exception('Ano') data = '/'.join(data) except ValueError: textoCor('Tipo de dado inválido. Tente novamente!', 31) except KeyboardInterrupt: textoCor('Informação obrigatória. Impossível prosseguir!', 31) except Exception: textoCor('Conteúdo(s) - DIA, MÊS ou ANO - Inválido(s)! Verifique os dados digitados!', 31) except: textoCor('Erro desconhecido. Tente novamente!', 31) else: return data def validaVaga(mensagem='Vaga: ',inserir=False,vagaNome=str): """ Função que valida vagas de forma a verificar se a vaga existe na base de dados, sendo impossível adicionar um candidato relacionado a uma vaga inexistente. Se usada no momento de inserir uma nova vaga, retorna True para uma vaga existente e False para não existência. :param mensagem: recebe uma mensagem que aparece no input :return vaga: retorna vaga em formato str """ while True: vaga = '' try: if inserir == False: vaga = str(input(mensagem)) validar = Vagas.select() for row in validar: if vaga == row.vaga or int(vaga) == row.id: existe = True return vaga else: existe = False if existe: pass else: raise Exception else: validar = Vagas.select() for row in validar: if vagaNome == row.vaga: return True else: return False except ValueError: textoCor('Tipo de dado inválido. Tente novamente!', 31) except KeyboardInterrupt: textoCor('Informação obrigatória. Impossível prosseguir!', 31) except Exception: textoCor('Vaga não encontrada!', 31) except: textoCor('Erro desconhecido. Tente novamente!') else: return vaga ```
{ "source": "jhonathanmpg/clase-22", "score": 4 }
#### File: clase-22/src/main.py ```python def main(): """ main() -> None """ myVariable = complex() print(myVariable) return None # Esto sera una constante complex_zero = {0,0} def complex(real=0.0, imag=0.0): """Form a complex number. Keyword arguments: real -- the real part (default 0.0) imag -- the imaginary part (default 0.0) """ if imag == 0.0 and real == 0.0: return complex_zero if __name__ == "__main__": main() ```
{ "source": "jhonatheberson/artificial-intelligence", "score": 3 }
#### File: gromacs/tools/pymol_rotate.py ```python import argparse from pathlib import Path import numpy as np import pymol def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('min', type=float, help="Start point for the torsion") parser.add_argument('max', type=float, help="End point for the torsion") parser.add_argument('nsteps', type=int, help="Number of torsion steps") parser.add_argument('-a', '--atom_idx', nargs=4, type=int, required=True, help="Atom indices for torsion. Example: 6 1 7 8") parser.add_argument('-f', '--file', required=True, help="PDB input file") parser.add_argument('-n', '--name', required=True, help="PDB file basename") parser.add_argument('-d', '--destdir', help="Destination directory") return parser.parse_args() def main(): args = parse_args() angles = np.around(np.linspace(args.min, args.max, args.nsteps), 2) if args.destdir is None: destdir = Path.cwd() else: destdir = Path(args.destdir) destdir.mkdir(parents=True, exist_ok=True) pymol.pymol_argv = ['pymol','-qc'] pymol.finish_launching() cmd = pymol.cmd cmd.load(args.file) cmd.set("retain_order", '1') for angle in angles: outfile = destdir.joinpath(f'{args.name}_{angle:07.2f}.pdb') cmd.set_dihedral(f'id {args.atom_idx[0]}', f'id {args.atom_idx[1]}', f'id {args.atom_idx[2]}', f'id {args.atom_idx[3]}', angle) cmd.save(str(outfile)) if __name__ == '__main__': main() ``` #### File: examples/run/run.py ```python import argparse import pickle import os.path import logging from confparse import read_conf import numpy as np from fffit import pso def rosenbrock(x): total = 0 for i in range(x.size - 1): total += 100 * ((x[i] ** 2 - x[i + 1]) ** 2) + (1 - x[i]) ** 2 return total # END def createPso(fitness_tests, num_particles, maxiter, initial, bounds): P = pso.PSO(fitness_tests, maxiter=maxiter) P.populate(num_particles, initial, bounds) return P def write(PSO, fileName): with open(fileName, 'wb') as p: pickle.dump(PSO, p) def read(fileName): with open(fileName, 'rb') as p: T = pickle.load(p) return T def swarmUpdate(PSO, bounds): PSO.swarmUpdate(bounds) def updateFitness(PSO, function): return PSO.calculateFitness(function) def initialize(fitness_tests, num_particles, maxiter, initial, bounds, writeFile): P = createPso(fitness_tests, num_particles, maxiter, initial, bounds) write(P, writeFile) def prepareJobs(): # TODO pass def fitness(readFile, writeFile): if (os.path.exists(readFile)): T = read(readFile) fitness = updateFitness(T, rosenbrock) print(fitness) write(T, writeFile) else: logging.debug("file does not exist with this name.") def step(bounds, readFile, writeFile): if (os.path.exists(readFile)): T = read(readFile) swarmUpdate(T, bounds) print([p.position for p in T.swarm]) write(T, writeFile) else: logging.debug("file does not exist with this name.") def parse_args(): parser = argparse.ArgumentParser() runmode = parser.add_mutually_exclusive_group() parser.add_argument('-c', '--conffile', default='conf.ini', help='Read configuration file', required=True) runmode.add_argument('-i', '--init', help='Create PSO object', action='store_true') runmode.add_argument('-p', '--prepare', help='Prepare and submit fitness jobs.', action='store_true') runmode.add_argument('-f', '--fitness', help='calculates the fitnnes', action='store_true') runmode.add_argument('-s', '--steps', help='calculates the step, updating' + ' speeds and positions', action='store_true') return parser.parse_args() def main(): args = parse_args() # PSO_setup, test_setup = read_conf(args.conffile) PSO_setup = read_conf(args.conffile) if args.init: initialize(PSO_setup['fitness_tests'], PSO_setup['num_particles'], PSO_setup['maxiter'], PSO_setup['initial'], PSO_setup['bounds'], PSO_setup['WriteFile']) elif args.prepare: prepareJobs() elif args.fitness: fitness(PSO_setup['WriteFile'], PSO_setup['ReadFile']) elif args.steps: step(PSO_setup['bounds'], PSO_setup['WriteFile'], PSO_setup['ReadFile']) if __name__ == '__main__': main() ``` #### File: fffit/helpers/slurm.py ```python from collections import namedtuple import subprocess def submit(job_script, *, job_name="job_by_dispatcher", time="24:00:00", partition="cluster", nodes=1, cpus_per_task=None, array=None, afterany=None, shell='#!/bin/bash', **sbatch_opts): """Call sbatch with given options and job_script as a script piped to it. Parameters ---------- job_script : str, Script to be submitted. Should be the contents of the `job.sh` file if the user submitted by calling `sbatch job.sh`. job_name : str, optional (default="job_by_dispatcher") Name of the job, as in sbatch --job-name option. time : str, optional (default="24:00:00") Time limit, as in sbatch `--time` option. partition : str, optional (default="cluster") Partition (queue) name, as expected in sbatch `--partition` option. nodes : str or int, optional (default="1") Number of nodes specified as in sbatch `--nodes`. cpus_per_task : int, optional (default=None) Number of cpus per task specified as in sbatch `--cpus-per-task`. array : str, optional (default=None) Array settings expressed as a sequence or range on indexes, as per sbatch `--array` option. afterany : str or list, optional (default=None) List of dependencies for this job, as specified in sbatch `--dependency=afterany`. **sbatch_opts : dict (as list of keyword arguments) Extra options passed to sbatch, such that key=val is added to the arguments as `--key=val`. Returns ------- returncode, int Return code givem by sbatch. 0 = success. jobid, int or None Job ID as interpreted from the standard output. stdout, str sbatch's stdandard output. stderr, str sbatch's standard error. If returncode == 0, this should be empty. """ args = ['sbatch', '--job-name=' + job_name, '--time=' + time, '--partition=' + partition, '--nodes=' + str(nodes)] if cpus_per_task is not None: args.append('--cpus-per-task=' + str(cpus_per_task)) if array is not None: if isinstance(array, str): arraystr = array elif isinstance(array, list): arraystr = ','.join(map(str, array)) # TODO: detect range formats? # For example: if array == list(range()) else: raise TypeError(f"Invalid format for array: {array}") args.append('--array=' + arraystr) if afterany is not None: # TODO: implement multiple dependencies. dependencystr = 'afterany:' if isinstance(afterany, str): dependencystr += afterany elif isinstance(afterany, list): dependencystr += ':'.join(map(str, afterany)) else: raise TypeError(f"Invalid format for afterany: {afterany}") args.append('--dependency=' + dependencystr) for option, value in sbatch_opts.items(): args.append('--' + option + '=' + str(value)) if shell is not None: if not job_script.startswith('#!'): job_script = '\n'.join((shell, job_script)) # TODO: Print args if loglevel=DEBUG print(' '.join(args)) sbatch = subprocess.run(args, input=job_script, stderr=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True) if len(sbatch.stdout) > 0: jobid = int(sbatch.stdout.split()[-1]) else: jobid = None result = namedtuple("result", ["returncode", "jobid", "stdout", "stderr"]) # https://docs.quantifiedcode.com/python-anti-patterns/readability/ return result(sbatch.returncode, jobid, sbatch.stdout, sbatch.stderr) def submit_script(jobfile, *args, **kwargs): """Call the submit function with the contents of `jobfile'. Parameters ---------- jobfile : str, Path File containing the job script to be submitted. *args, **kwargs: optional Arguments to submit(). Returns ------- returncode, int Return code givem by sbatch. 0 = success. jobid, int or None Job ID as interpreted from the standard output. stdout, str sbatch's stdandard output. stderr, str sbatch's standard error. If returncode == 0, this should be empty. """ with open(jobfile, 'r') as f: job_script = f.read() return submit(job_script, *args, **kwargs) ``` #### File: src/fffit/pso.py ```python import multiprocessing as mp import sys import numpy as np # TODO: inherit logger #logging.basicConfig(filename='output.log', level=logging.DEBUG, # format='%(asctime)s:%(levelname)s:%(name)s:%(message)s') class Particle(object): """Creates the particle and updates position and velocity.""" def __init__(self, x0, bounds, w=0.5, c=(2,2), sigma=None, vsigma=None): """Initialize the particle. Args: :param x0(str): Initial value for the sample space to create the Gaussian. :param bounds(:obj:`list` of :obj:`str`): Limits for the sample space to create the Gaussian. """ self.pos_best = [] # Best position individual. self.fitness_best = None # Error best individual. self.curr_fitness = None self.w = w self.c = c bounds = np.array(bounds) if sigma is None: sigma = np.abs(bounds[1] - bounds[0]) elif isinstance(sigma, float) or isinstance(sigma, int): sigma = np.abs(bounds[1] - bounds[0])/sigma self.position = np.random.normal(x0, sigma) if vsigma is None: vsigma = np.abs(bounds[1] - bounds[0]) elif isinstance(vsigma, float) or isinstance(vsigma, int): vsigma = np.abs(bounds[1] - bounds[0])/vsigma self.velocity = np.random.normal(np.zeros(len(x0)), vsigma) def check_fitness(self): """Update personal best fitness.""" # Check to see if the current position is an individual best: if self.fitness_best is None or self.curr_fitness < self.fitness_best: self.pos_best = self.position self.fitness_best = self.curr_fitness def update_velocity(self, pos_best_g): """Update new particle velocity. Args: :param pos_best_g(str): best overall swarm position. Returns: :return: Void. """ # TODO Make these adjustable parameters r1 = np.random.random(len(self.velocity)) r2 = np.random.random(len(self.velocity)) vel_cognitive = self.c[0] * r1 * (self.pos_best - self.position) vel_social = self.c[1] * r2 * (pos_best_g - self.position) self.velocity = self.w * self.velocity + vel_cognitive + vel_social def update_position(self, bounds): """Update the particle position based off new velocity updates. Args: :param bounds(:obj:`list` of :obj:`str`): Limits for the sample space to create the Gaussian. Returns: :return: Void. """ self.position += self.velocity # TODO Deal with velocities when particle goes out of bounds np.clip(self.position, bounds[0], bounds[1], out=self.position) np.clip(self.velocity, bounds[0], bounds[1], out=self.velocity) self.velocity[np.isclose(self.position, bounds[0])] *= -1 self.velocity[np.isclose(self.position, bounds[1])] *= -1 class PSO(object): """Contains the population and methods for performing steps.""" def __getstate__(self): """Remove unpickable entries from object. Currently, removes fitness tests as callable functions. """ state = self.__dict__.copy() del state['tests'] if 'hooks' in state: del state['hooks'] return state def __setstate__(self, state): """Recover unpickable items to restore original object. Currently, calls self.load_tests in order to get callable fitness tests and self.load_hooks to get pre_ and _post step hooks. """ self.__dict__.update(state) if 'testfiles' in self.__dict__: # TODO: log self.load_tests() if 'hookfiles' in self.__dict__: # TODO: log self.load_hooks(self.hookfiles) def __init__(self, maxiter=None, goal=1.0, w=0.5, c = (2,2), submit_to_cluster=False): """Initialize the PSO object.""" self.ncpu = 1 self.goal = goal self.w = w self.c = c self.submit_to_cluster = submit_to_cluster self.fitness = None self.step_number = 0 self.maxiter = maxiter self.swarm = None if self.submit_to_cluster: # TODO: correctly handle the cluster and multitest cases. raise NotImplementedError('Cluster submission in review.') def populate(self, num_particles, x0=None, bounds=None, sigma=None, vsigma=None): """Create the population of particles that is the swarm. Args: :param num_particles(:obj:`int`): Number of particles to be created. :param initial(): Initial value for the sample space to create the Gaussian. :param bounds(:obj:`list` of :obj:`str`): Limits for the sample space to create the Gaussian. Returns: :return swarm(:obj:`list` of :obj:`Particles`): a list of swarms. """ if self.swarm is None: self.bounds = bounds self.swarm = [Particle(x0, bounds, w=self.w, c=self.c, sigma=sigma, vsigma=vsigma) for i in range(num_particles)] else: raise RuntimeError("Tried to populate non-empty swarm") def evaluate_single_fitness_test(self, func, enum_particles=False, add_step_num=False, **kwargs): """Run the given function as the fitness test for all particles. Parameters: ----------- fun : callable The fitness test function to be minimized: ``func(particle.position, **kwargs) -> float``. enum_particles : boolean If `True`, the swarm will be enumerated and the particle index will be passed to `func` as keyword `part_idx`, added to `kwargs` add_step_num : boolean If `True`, the current step number will be passed to `func` as keyword `step_num`, added to `kwargs` **kwargs: Other keywords to the fitness function, will be passed as is. """ if add_step_num: kwargs['step_num'] = self.step_number if self.ncpu == 1: if enum_particles: for part_idx, particle in enumerate(self.swarm): kwargs['part_idx'] = part_idx particle.curr_fitness = func(particle.position, **kwargs) else: for particle in self.swarm: particle.curr_fitness = func(particle.position, **kwargs) elif self.ncpu > 1: with mp.Pool(processes=self.ncpu) as pool: argslist = [] p = [] for part_idx, particle in enumerate(self.swarm): argslist.append(dict(kwargs)) # argslist[-1]['x'] = particle.position if enum_particles: argslist[-1]['part_idx'] = part_idx for idx, args in enumerate(argslist): p.append(pool.apply_async(func, args=(self.swarm[idx].position,),kwds=args)) results = [ r.get() for r in p ] for part_idx, particle in enumerate(self.swarm): particle.curr_fitness = results[part_idx] def calculate_global_fitness(self): """Calculate the fitness of the function or sample space. Returns: :return fitness(:obj:`float`): Returns the fitness of the function or sample space. """ self.swarm_radius = 0 for particle in self.swarm: particle.check_fitness() # determine if current particle is the best(globally) if self.fitness is None or particle.curr_fitness < self.fitness: self.pos_best_glob = np.array(particle.position) self.fitness = float(particle.curr_fitness) # Stop criteria for particle in self.swarm: dist = np.linalg.norm(particle.position - self.pos_best_glob) if dist > self.swarm_radius: self.swarm_radius = dist return self.fitness # Do we actually need to return something? def update_swarm(self): """Update the swarm with new positions and speeds. Returns: :return swarm(:obj:`list` of :obj:`Particles`): returns a list of swarms. """ if self.fitness is None: logging.error("Cannot update the swarm before calculating Fitness") raise RuntimeError("Updated the swarm before calculating Fitness") # cycle through swarm and update velocities and position for particle in self.swarm: particle.update_velocity(self.pos_best_glob) particle.update_position(self.bounds) if self.submit_to_cluster: self.curr_iter['update'] += 1 def do_full_step(self, func, **kwargs): """Perform a full PSO step. This method goes through all other methods in order to perform a full PSO step, so it can be called from a loop in the run() method. """ if self.fitness is not None and self.step_number < self.maxiter: self.update_swarm() if self.submit_to_cluster: raise NotImplementedError('Multistep jobs are under revision.') else: self.evaluate_single_fitness_test(func, **kwargs) self.calculate_global_fitness() self.step_number += 1 def run(self, func, PSO_DEBUG=None, **kwargs): """Perform a full optimization run. Does the optimization with the execution of the update of the speeds and coordinates also checks the criterion stopped to find fitnnes. Parameters ---------- func : callable Function that calculates fitnnes. Returns ------- The dictionary that stores the optimization results. """ self.swarm_radius = None # TODO make a better radius-based stop criterion. while (self.swarm_radius is None or self.step_number < self.maxiter and self.swarm_radius > 1e-3): self.do_full_step(func, **kwargs) if PSO_DEBUG is not None: with open(PSO_DEBUG, 'a') as dbg_file: curr_best = min([p.curr_fitness for p in self.swarm]) print(f"# {self.step_number} {curr_best} {self.fitness}") print(f"\n\n# {self.step_number} {curr_best} {self.fitness}", file=dbg_file) np.savetxt(dbg_file, [(*p.position, p.curr_fitness) for p in self.swarm]) if self.fitness < self.goal: break self.results = {} self.results['best_pos'] = self.pos_best_glob self.results['fitness'] = self.fitness return self.results ```
{ "source": "jhonatheberson/autonomous-robotic-systems", "score": 3 }
#### File: projeto_1/projeto_1_b/script.py ```python import math import numpy as np point_init = (-0.0000,-0.0000, 0.0000) point_end = (+1.5250e+00, -1.4750e+00, +5.0000e-02) #point_end = (1.5250e+00, 1.8000e+00, 0.0000) try: import sim except: print ('--------------------------------------------------------------') print ('"sim.py" could not be imported. This means very probably that') print ('either "sim.py" or the remoteApi library could not be found.') print ('Make sure both are in the same folder as this file,') print ('or appropriately adjust the file "sim.py"') print ('--------------------------------------------------------------') print ('') import time import ctypes def send_path_4_drawing(path, sleep_time = 0.07): #the bigger the sleep time the more accurate the points are placed but you have to be very patient :D for i in path: #point2send = transform_points_from_image2real(i) #print(point2send) #print(type(point2send)) packedData=sim.simxPackFloats(i.flatten()) #print(packedData) #print(type(packedData)) raw_bytes = (ctypes.c_ubyte * len(packedData)).from_buffer_copy(packedData) #print(raw_bytes) #print(type(raw_bytes)) returnCode=sim.simxWriteStringStream(clientID, "path_coord", raw_bytes, sim.simx_opmode_oneshot) time.sleep(sleep_time) def polinomio(point_init, point_end): sigma = 1 deltaX = point_end[0] - point_init[0] deltaY = point_end[1] - point_init[1] alfa_init = math.tan(point_init[2]) alfa_end = math.tan(point_end[2]) if point_init[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma) and point_end[2] >= ((math.pi/2) - sigma) and point_end[2] >= ((math.pi/2) + sigma): print('i') b1 = deltaY b2 = 0 a0 = point_init[0] a1 = 0 a2 = 3*deltaX a3 = -2*deltaX b0 = point_init[1] b3 = deltaY-b1-b2 elif point_init[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma): print('ii') a3 = -(deltaX/2) b3 = 1 a0 = point_init[0] a1 = 0 a2 = deltaX-a3 b0 = point_init[1] b1 = 2*(deltaY-alfa_end*deltaX) - alfa_end*a3 + b3 b3 = (2*alfa_end*deltaX-deltaY) + alfa_end*a3 - 2*b3 elif point_end[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma): print('iii') a1 = 3*(deltaX/2) b2 = 1 a0 = point_init[0] a2 = 3*deltaX - 2*a1 a3 = a1 - 2*deltaX b0 = point_init[1] b1 = alfa_init*a1 b3 = deltaY - alfa_init*a1 - b2 else: print('iv') a1 = deltaX a2 = 0 a0 = point_init[0] a3 = deltaX - a1 - a2 b0 = point_init[1] b1 = alfa_init*a1 b2 = 3*(deltaY-alfa_end*deltaX) + 2*(alfa_end-alfa_init)*a1 + alfa_end*a2 b3 = 3*alfa_end*deltaX - 2*deltaY - (2*alfa_end-alfa_init)*a1 - alfa_end*a2 result = [] orien = [] x = np.arange(0,1,0.01) for i in range(len(x)): fx = a0 + a1*x[i] + a2*x[i]**2 + a3*x[i]**3 fy = b0 + b1*x[i] + b2*x[i]**2 + b3*x[i]**3 if fx != 0: orientation = np.arctan(float(fy/fx)) else: orientation = 0 position = np.array((fx, fy, 0)) result.append(position) return (result, orientation) def coeficientes (origem,destino): sigma=1 deltaX = origem[0] - destino[0] deltaY = origem[1] - destino[1] alfa_init = math.tan(point_init[2]) alfa_end = math.tan(point_end[2]) if point_init[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma) and point_end[2] >= ((math.pi/2) - sigma) and point_end[2] >= ((math.pi/2) + sigma): print('i') b1 = deltaY b2 = 0 a0 = point_init[0] a1 = 0 a2 = 3*deltaX a3 = -2*deltaX b0 = point_init[1] b3 = deltaY-b1-b2 elif point_init[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma): print('ii') a3 = -(deltaX/2) b3 = 1 a0 = point_init[0] a1 = 0 a2 = deltaX-a3 b0 = point_init[1] b1 = 2*(deltaY-alfa_end*deltaX) - alfa_end*a3 + b3 b3 = (2*alfa_end*deltaX-deltaY) + alfa_end*a3 - 2*b3 elif point_end[2] >= ((math.pi/2) - sigma) and point_init[2] <= ((math.pi/2) + sigma): print('iii') a1 = 3*(deltaX/2) b2 = 1 a0 = point_init[0] a2 = 3*deltaX - 2*a1 a3 = a1 - 2*deltaX b0 = point_init[1] b1 = alfa_init*a1 b3 = deltaY - alfa_init*a1 - b2 else: print('iv') a1 = deltaX a2 = 0 a0 = point_init[0] a3 = deltaX - a1 - a2 b0 = point_init[1] b1 = alfa_init*a1 b2 = 3*(deltaY-alfa_end*deltaX) + 2*(alfa_end-alfa_init)*a1 + alfa_end*a2 b3 = 3*alfa_end*deltaX - 2*deltaY - (2*alfa_end-alfa_init)*a1 - alfa_end*a2 a = [a0,a1,a2,a3] b = [b0,b1,b2,b3] x = np.arange(0,1,0.01) for i in range(len(x)): fx = a0 + a1*x[i], a2*x[i]**2 + a3*x[i]**3 fy = b0 + b1*x[i] + b2*x[i]**2 + b3*x[i]**3 #if fx != 0: #orientation = np.arctan(float(fy/fx)) #else: # orientation = 0 return (a,b) print ('Program started') sim.simxFinish(-1) # just in case, close all opened connections clientID=sim.simxStart('127.0.0.1',19999,True,True,5000,5) # Connect to CoppeliaSim if clientID!=-1: print ('Connected to remote API server') # Now try to retrieve data in a blocking fashion (i.e. a service call): res,objs=sim.simxGetObjects(clientID,sim.sim_handle_all,sim.simx_opmode_blocking) if res==sim.simx_return_ok: print ('Number of objects in the scene: ',len(objs)) else: print ('Remote API function call returned with error code: ',res) time.sleep(2) ############################# #teste controle estabilizante caminho, orientation = polinomio(point_init,point_end) send_path_4_drawing(caminho, 0.05) #v, w = controlador_posicao(posicao_robo, orientacao_robo) #teste controle estabilizante ############################# #Fazendo os handles err_code,motor_direito = sim.simxGetObjectHandle(clientID,"Motor_Direito", sim.simx_opmode_blocking) err_code,motor_esquerdo = sim.simxGetObjectHandle(clientID,"Motor_Esquerdo", sim.simx_opmode_blocking) err_code,carro = sim.simxGetObjectHandle(clientID,"Carro", sim.simx_opmode_blocking) #Zerando as velocidades das rodas err_code = sim.simxSetJointTargetVelocity(clientID,motor_direito,0,sim.simx_opmode_streaming) err_code = sim.simxSetJointTargetVelocity(clientID,motor_esquerdo,0,sim.simx_opmode_streaming) #Posicao e orientacao do robo err_code,posicao_robo = sim.simxGetObjectPosition(clientID,carro,-1, sim.simx_opmode_blocking) er_code,orientacao_robo = sim.simxGetObjectOrientation(clientID,carro,-1,sim.simx_opmode_streaming) #Ganhos do controlador k_theta = 2.0 k_l = 0.1 #parametros do robo i = 1 v = 0.5 d = 0.21 #distancia do eixo entre as rodas rd = 0.0625 #raio roda direita re = 0.0625 #raio roda esquerda caminho,orientacao = polinomio(point_init, point_end) lamb = 0 while True: #Posicao e orientacao do robo err_code,posicao_robo = sim.simxGetObjectPosition(clientID,carro,-1, sim.simx_opmode_blocking) er_code,orientacao_robo = sim.simxGetObjectOrientation(clientID,carro,-1,sim.simx_opmode_streaming) theta_robo = orientacao_robo[2] + math.pi/2 #raio de giro a,b = coeficientes(point_init,point_end) dx = a[1] +2*a[2]*lamb + 3*a[3]*(lamb**2) dy = b[1] + 2*b[2]*lamb + 3*b[3]*(lamb**2) d2x = 2*a[2] + 6*a[3]*lamb d2y = 2*b[2] + 6*b[3]*lamb r = ((((dx**2)+(dy**2))**1.5)/((d2y*dx)-(d2x*dy))) k = (1/r) #delta theta theta_SF = math.atan((b[1] + 2*b[2]*lamb + 3*b[3]*lamb**2)/(a[1] + 2*a[2]*lamb + 3*a[3]*lamb**2)) Delta_theta = theta_robo - theta_SF #garantir o sinal correto de delta L theta_posicao_robo = math.atan2(posicao_robo[1],posicao_robo[0]) delta_L = np.linalg.norm(posicao_robo-caminho[0]) ponto_curva = caminho[0] for i in range(len(caminho)-1): distance = np.linalg.norm(posicao_robo-caminho[i+1]) if(delta_L > distance): delta_L = distance ponto_curva = caminho[i+1] theta_ref = math.atan2(ponto_curva[1],ponto_curva[0]) if (theta_ref > theta_posicao_robo): delta_L = -delta_L i = i +1 u = -(k_theta*Delta_theta + (k_l*delta_L*v*math.sin(Delta_theta)/Delta_theta)) w = u + ((k*v*math.cos(Delta_theta))/(1-(k*delta_L))) wd = (v/rd) + (d/(2*rd))*w we = (v/re) - (d/(2*re))*w err_code = sim.simxSetJointTargetVelocity(clientID,motor_direito,wd,sim.simx_opmode_streaming) err_code = sim.simxSetJointTargetVelocity(clientID,motor_esquerdo,we,sim.simx_opmode_streaming) print('lamb :', lamb) if (lamb >= 1): err_code = sim.simxSetJointTargetVelocity(clientID,motor_direito,0.0,sim.simx_opmode_streaming) err_code = sim.simxSetJointTargetVelocity(clientID,motor_esquerdo,0.0,sim.simx_opmode_streaming) break lamb = lamb + 0.01 err_code = sim.simxSetJointTargetVelocity(clientID,motor_direito,0.0,sim.simx_opmode_streaming) err_code = sim.simxSetJointTargetVelocity(clientID,motor_esquerdo,0.0,sim.simx_opmode_streaming) print ('Finalizado seguidor de caminho') # Now close the connection to CoppeliaSim: sim.simxFinish(clientID) else: print ('Failed connecting to remote API server') print ('Program ended') ```
{ "source": "jhonatheberson/digital-image-processing", "score": 3 }
#### File: second_unit/python/canny.py ```python import numpy as np import cv2 as cv def bordar_random(img, fundo, fator=20): retorno = fundo.copy() for i in range(6, 0, -1): pontos = cv.Canny(img, i*fator, i*fator*3) pontos = np.where(pontos != 0) cordenadas = zip(pontos[0], pontos[1]) for p in cordenadas: cor = img[p] retorno = cv.circle(retorno, (p[1], p[0]), i, (int(cor[0]), int(cor[1]), int(cor[2])), -1, lineType=cv.LINE_AA) return retorno ``` #### File: second_unit/python/homomorphicFilter.py ```python import numpy as np import cv2 as cv def visualizador(complexo_img): magnitude = np.log(np.abs(complexo_img) + 10**-10) magnitude = magnitude / np.max(magnitude) fase = (np.angle(complexo_img) + np.pi) / (np.pi * 2) return magnitude, fase def dft_np(img, vis=False, shift=False): complexo = np.fft.fft2(img) if shift: complexo_img = np.fft.fftshift(complexo) else: complexo_img = complexo.copy() if vis: magnitude, fase = visualizador(complexo_img) cv.imshow('Magnitude', magnitude) cv.imshow('Fase', fase) return complexo def dft_inv_np(complexo): img_comp = np.fft.ifft2(complexo) img = np.real(img_comp) return img/255 def gerar_filtro(img, x_0, x_min, x_max, c): xx, yy = np.mgrid[:img.shape[0], :img.shape[1]] circle = np.sqrt((xx - img.shape[0] / 2) ** 2 + (yy - img.shape[1] / 2) ** 2) if c == 0: c = 10**-10 return x_min + (np.tanh((circle - x_0)/c) + 1) / 2 * (x_max - x_min) def normalizacao(x): min_v = np.min(x) ran_v = np.max(x) - min_v return (x - min_v) / ran_v def filtro_homomorfico(img, x_0, x_min, x_max, c, logs=True): if logs: img_return = img + 1. img_return = np.log(img_return) else: img_return = img img_return = dft_np(img_return) filtro = gerar_filtro(img_return, x_0, x_min, x_max, c) img_return = img_return * np.fft.fftshift(filtro) filtro_return, _ = visualizador(img_return) filtro_return = np.fft.fftshift(filtro_return) img_return = dft_inv_np(img_return) filtro_return[:,:filtro_return.shape[1]//2] = filtro[:,:filtro_return.shape[1]//2] return normalizacao(np.exp(img_return)), filtro_return # Obrigatoriedade da funcao! (Desnecessario!) def faz_nada(*args, **kwargs): pass def main(): cv.getBuildInformation() # cap = cv.VideoCapture('Bridge.mp4') # cap = cv.VideoCapture('Night_Scene.mp4') cap = cv.VideoCapture('Highway.mp4') if not cap.isOpened(): print('Falha ao abrir o video.') exit(-1) cv.namedWindow('Filtro') cv.createTrackbar('log', 'Filtro', 1, 1, faz_nada) cv.createTrackbar('c', 'Filtro', 10, 100, faz_nada) cv.createTrackbar('raio', 'Filtro', 20, 1000, faz_nada) cv.createTrackbar('min', 'Filtro', 0, 100, faz_nada) cv.createTrackbar('max', 'Filtro', 100, 100, faz_nada) speed = 5 descarte_frame = 0 while True: ret, frame = cap.read() if ret: if descarte_frame == 0: logs = cv.getTrackbarPos('log', 'Filtro') c = cv.getTrackbarPos('c', 'Filtro') r = cv.getTrackbarPos('raio', 'Filtro') v_min = cv.getTrackbarPos('min', 'Filtro') v_max = cv.getTrackbarPos('max', 'Filtro') v_min = v_min / 100 v_max = v_max / 100 frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) cv.imshow('Frame', frame) img, filtro = filtro_homomorfico(frame, r, v_min, v_max, c, logs==1) cv.imshow('Homomorfico', img) cv.imshow('Filtro', filtro) descarte_frame = (descarte_frame + 1) % speed key = cv.waitKey(15) if key == 27: break else: # break cap = cv.VideoCapture('Highway.mp4') cap.release() cv.destroyAllWindows() if __name__ == '__main__': main() # Delete antes de postar: # import cProfile # cProfile.run('main()', 'output.dat') ```
{ "source": "jhonatheberson/digital-systems", "score": 3 }
#### File: digital-systems/board computer/serial_comunication.py ```python import serial import logging import threading import time port = "/dev/ttyACM0" speed = 9600 conected = serial.Serial(port, speed) opcao = 0 def thread_data(conected): print("---------------------------DADOS--------------------------") arduino = conected.readline().decode('utf-8').split('\r\n') print(arduino[0]) arduino = conected.readline().decode('utf-8').split('\r\n') print(arduino[0]) arduino = conected.readline().decode('utf-8').split('\r\n') print(arduino[0]) print("==========================================================") def thread_time(): while True: time.sleep(100) thread_data() while opcao != "100": print("==========================================================") print("--------------------COMPUADOR DE BORDO--------------------") print("==========================================================") opcao = input("Digite 0 para desligar farol\n Digite 1 para ligar farol\n" "Digite 2 para ligar pisca esquerda\n Digite 3 para ligar pisca direita\n" "Digite 100 para parar\n:") if opcao == "1": conected.write(b'1') elif opcao == "0": conected.write(b'0') elif opcao == "2": conected.write(b'2') elif opcao == "3": conected.write(b'3') threading.Thread(target=thread_time(), args=(1,)) threading.Thread(target=thread_data(conected), args=(1,)) conected.close() ```
{ "source": "jhonatheberson/doc-sphinx", "score": 3 }
#### File: jhonatheberson/doc-sphinx/ga.py ```python import numpy as np import random import multiprocessing as mp import sys class Individual: """ Individual(x0=np.zeros(2), ndim=2, bounds=np.array((np.ones(2) * 10 * -1, np.ones(2) * 10)), type_create='uniform') Cria os individuos que compoem a população da classe Genetic Atributos ---------- fitness : None or flout é o melhor valor do individuo size_individual : int é o tamanho do indiviuo create_individual : class 'fffit.ga.Individual' cria o individuo com suas caracteristicas Parametros ---------- type_create : str, optional Define qual será o tipo de criação da população inicial x0 : np.ndarray, optional Define qual o ponto inicial até os limites de onde vai criar o valor do indviduo bounds : numpy.ndarray Define até onde pode ir os valores dos individuo, como inferio e superior ndim : integer Define quantos dimensões tem o indiviuo ou seja o tamanho do array sigma :float, opcional Define a probabilidade do individuo ter mutação Exemplos -------- >>> from fffit import ga >>> import numpy as np >>> ranges = 2 >>> ndim = 2 >>> bounds = np.array((np.ones(2) * 10 * -1, np.ones(2) * 10)) >>> individual = ga.Individual(x0=np.zeros(2), ndim=2, bounds=bounds, sigma=None, type_create='uniform') <fffit.ga.Individual object at 0x7f8968797c18> >>> individual.chromosome array([ 5.7287427 , -0.54066483]) """ def __init__(self, type_create='uniform', x0=None, bounds=None, ndim=None, sigma=None): self.fitness = None self.size_individual = ndim self.create_individual(type_create, x0, bounds, sigma) super().__init__() def create_individual(self, type_create, x0, bounds, sigma): """ create_individual(type_create=uniform, x0=np.zeros(2), np.array((np.ones(2) * 10 * -1, np.ones(2) * 10)), sigma=None) Cria os chromosome que pertence a classe Individual Parametros ---------- type_create : str, optional Define qual será o tipo de criação da população inicial x0 : np.ndarray, optional Define qual o ponto inicial até os limites de onde vai criar o valor do indviduo bounds : numpy.ndarray Define até onde pode ir os valores dos individuo, como inferio e superior sigma :float, opcional Define a probabilidade do individuo ter mutação """ if type_create == 'gaussian': if sigma is not None and not (np.shape(sigma) == (self.size_individual,) or isinstance(sigma, float) or isinstance(sigma, int)): raise ValueError(f'sigma bust be a single float or an array with {self.size_individual} entries.') self.chromosome = np.random.normal(x0, sigma, size=self.size_individual) elif type_create == 'integer': if bounds is None or np.shape(bounds) != (2, self.size_individual): raise ValueError(f'bounds must be of shape (2, {self.size_individual}). Instead, got {bounds}.') self.chromosome = np.random.randint(bounds[0], bounds[1], size=self.size_individual) elif type_create == 'uniform': if bounds is None or np.shape(bounds) != (2, self.size_individual): raise ValueError(f'bounds must be of shape (2, {self.size_individual}). Instead, got {bounds}.') self.chromosome = np.random.uniform(bounds[0], bounds[1], size=self.size_individual) else: raise ValueError(f'Invalid individual creation type: {type_create}') class Genetic(object): """ Genetic(maxiter=1000, goal=0, cross_over='one_point', mutation_probability=0.01, mutation='uniform', selection_method='elitism',num_parents=2, num_elitism=10, bounds=np.array((np.ones(2) * 10 * -1, np.ones(2) * 10))) É a classe que é responsavel por realizar a criar a população, selecionar os parentes da população, realizar os cruzamentos e mutação. Parametros ---------- goal : float, opcional Define o valor a qual queremos nos aproximar bounds : numpy.ndarray Define até onde pode ir os valores dos individuo, como inferio e superior mutation_probability : float Define a probabilidade de ocorrer a mutação selection_probability : float Define a probabilidade de ocorrer a seleção de pais sigma : float Define a probabilidade do individuo ter mutação num_parents : integer Define o numero de parentes que será esolhido no metodo da seleção num_elitism : integer Define o numero de pais que será preservado entre as gerações maxiter : integer,opcional Define o numero de interações maximo que o algoritmo irá fazer para encontrar o resultado selection_method : str, opcional Define o metodo de seleção que será usado para escolher os pais da proxima geração cross_over : str, opcional Define o metodo de cruzamento que será usado mutation : str, opcional Define o metodo de mutação que será usado submit_to_cluster : bool, opcional Define se a meta-hurística será executada no cluster Exemplos -------- >>> from fffit import ga >>> bounds = np.array((np.ones(2) * 10 * -1, np.ones(2) * 10)) >>> ga.Genetic(maxiter=1000, goal=0, cross_over='one_point', mutation_probability=0.01, mutation='uniform', selection_method='elitism',num_parents=2, num_elitism=10, bounds=bounds) >>> """ def __init__(self, goal=1.0 ,bounds = None, mutation_probability=0.5, selection_probability=0.5, sigma=0.5, num_parents=2,num_elitism=2, maxiter=None, selection_method='elitism', cross_over='uniform', mutation='gaussian', submit_to_cluster=False): """Inicializar o objeto PSO""" self.num_parents = num_parents self.num_elitism = num_elitism self.mutation_probability = mutation_probability self.selection_probability = selection_probability self.sigma = sigma # Mutation size self.population = [] self.model = np.array(np.ones(5)) self.bounds = bounds self.ncpu = 1 self.step_number = 0 self.maxiter = maxiter self.submit_to_cluster = submit_to_cluster self.goal = goal self.fitness = None self.selection_method = selection_method self.x0 = [] self.size_population = None self.cont_new_population = 0 self.step_evaluation = 0 self.improving = True if cross_over == 'uniform': self.cross_over = self.cross_over_uniform elif cross_over == 'two_points': self.cross_over = self.cross_over_two_points elif cross_over == 'one_point': self.cross_over = self.cross_over_one_point else: raise ValueError(f'Invalid crossover: {cross_over}.') if mutation == 'binary': self.mutation = self.mutation_binary elif mutation == 'gaussian': self.mutation = self.mutation_gaussian elif mutation == 'uniform': self.mutation = self.mutation_uniform else: raise ValueError(f'Invalid mutation: {mutation}.') def populate(self, size_population, bounds=None, x0=None, ndim=None, sigma=None, type_create='uniform'): """ Retorna uma lista consistindo de vários indivíduos que formam a população. Return: :return: void """ self.size_population = size_population if x0 is None and ndim is None: raise ValueError('Either x0 or ndim bust be given') elif x0 is not None: self.x0 = x0 self.ndim = len(x0) else: self.ndim = ndim self.population = [Individual(x0=x0, ndim=self.ndim, bounds=bounds, sigma=sigma, type_create=type_create) for i in range(size_population)] def calculate_pop_fitness(self, func): """ calcula a aptidão da população e retorna em lista da classe genética. Returns: :return: void """ for individual in self.population: func(individual) def calculate_best_fitness(self): """Calcula a melhor aptidão entre todas as populações e salva na lista da classe genética. Returns: :return: void """ self.fitness = max([k.fitness for k in self.population]) return self.fitness def calculate_avg_fitness(self): """Calcula a aptidão de media entre todas as populações e salva na lista da classe genética. Returns: :return: void """ return sum([k.fitness for k in self.population]) / np.size(self.population) @staticmethod def sorted_population(population): """ Selecione o gene a ser realizado a mutação. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: :return: score(:obj:`list`): An element of the population list select. """ return sorted(population, key=lambda k: k.fitness) def roulette_selection(self): """ Esta função realiza a seleção por releta do gene a ser realizado a mutação. Args: :param population: population:(:obj:`list`): Lists one containing a population. Returns: :return: selected(:obj:`list`): An element of the population list select. """ population = self.sorted_population(self.population) parents = [] sum_score = sum([k.fitness for k in population]) if not np.all(np.sign([k.fitness for k in population]) == np.sign(sum_score)): raise ValueError('Not all fitnesses have the same sign. This is not supported') if sum_score < 0: # If sum_score is negative, we assume all fitnesses are negative as # well (we're actually trying to minimize something, so we need to make # sure that only positive values are sent as roulette wheel fractions. for individual in population: individual.fitness = individual.fitness - sum_score for _ in range(self.num_parents): sum_score = sum([k.fitness for k in population]) selection_criteria = 0 key = np.random.uniform(0, sum_score) for idx in range(len(population)): selection_criteria += population[idx].fitness if selection_criteria > key: parents.append(population.pop(idx)) break return parents def random_selection(self): """ Esta função realiza uma seleção do torneio e retorno gene vencedor. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: :return: sub_population(:obj:`list`): An element of the sub_population list select. """ parents = [] for k in range(self.num_parents): sub_population = random.sample(self.population, 2) sub_population = self.sorted_population(sub_population) parents.append(sub_population[0]) return parents def elitism_selection(self): """ Função que realiza seleção elitista. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: :return:population(:obj:`list`): An element of the population list select. """ population = self.sorted_population(self.population) parents = population[-self.num_parents:] return parents def selection(self): """[summary] Raises: ValueError: [description] Returns: [type]: [description] """ if self.selection_method == 'roulette': parents = self.roulette_selection() return parents elif self.selection_method == 'random': parents = self.random_selection() return parents elif self.selection_method == 'elitism': parents = self.elitism_selection() return parents else: raise ValueError(f'Invalid {self.selection_method} selection method.') def cross_over_one_point(self, population): """ Esta função realiza o cruzamento de um ponto no gene. Args: :param population:(:obj:`list`): Lists one containing a population. :param parents :(:obj:`float`): parents gene to carry out the mutation. Returns: """ population = self.sorted_population(population) local_parents = self.selection() for individual in population[:-self.num_elitism]: locus = np.random.randint(0, individual.size_individual) parent_1 = np.random.randint(self.num_parents) parent_2 = np.random.randint(self.num_parents) while parent_2 == parent_1: parent_2 = np.random.randint(self.num_parents) individual.chromosome[:locus] = local_parents[parent_1].chromosome[:locus].copy() individual.chromosome[locus:] = local_parents[parent_2].chromosome[locus:] self.population = population def cross_over_two_points(self, population): """ Esta função realiza o cruzamento de dois pontos no gene. Args: :param population:(:obj:`list`): Lists one containing a population. :param parents :(:obj:`float`): parents gene to carry out the mutation. Returns: """ population = self.sorted_population(population) local_parents = self.selection() for individual in population[:-self.num_elitism]: while True: locus = np.random.randint(0, individual.size_individual) locusTwo = np.random.randint(locus, individual.size_individual) if locus != locusTwo: break individual.fitness = None parent_1 = np.random.randint(self.num_parents) parent_2 = np.random.randint(self.num_parents) while parent_2 == parent_1: parent_2 = np.random.randint(self.num_parents) individual.chromosome = local_parents[parent_1].chromosome.copy() # To avoid messing with local_parents in the next line. individual.chromosome[locus:locusTwo] = local_parents[parent_2].chromosome[locus:locusTwo] self.population = population def cross_over_uniform(self, population): """ Esta função realiza o cruzamento uniforme no gene. Args: :param population:(:obj:`list`): Lists one containing a population. :param parents :(:obj:`float`): parents gene to carry out the mutation. Returns: """ population = self.sorted_population(population) local_parents = self.selection(); for individual in population[:-self.num_elitism]: parent_1 = np.random.randint(self.num_parents) parent_2 = np.random.randint(self.num_parents) while parent_2 == parent_1: parent_2 = np.random.randint(self.num_parents) for j in range(individual.size_individual): drawn = np.random.choice((parent_1, parent_2)) individual.chromosome[j] = local_parents[drawn].chromosome[j] self.population = population def mutation_uniform(self, population): """ A função realiza a mutação uniforme e retorna a população modificada. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: """ for individual in population: for locus in range(individual.size_individual): if random.random() <= self.mutation_probability: individual.chromosome[locus] = np.random.uniform( self.bounds[0][locus],self.bounds[1][locus], size=1) def mutation_binary(self, population): """ A função realiza a mutação binária e retorna a população com a modificação, vale ressaltar que esta mutação só é válida para população binária. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: """ for individual in population: for locus in range(individual.size_individual): if random.random() <= self.mutation_probability: if individual.chromosome[locus] == 1: individual.chromosome[locus] = 0 elif individual.chromosome[locus] == 0: individual.chromosome[locus] = 1 def mutation_gaussian(self, population): """ A função realiza a mutação de Gausiana e retorna a população com a modificada. Args: :param population:(:obj:`list`): Lists one containing a population. Returns: """ for individual in population: for locus in range(individual.size_individual): if random.random() <= self.mutation_probability: individual.chromosome[locus] = np.random.normal(individual.chromosome[locus], self.sigma) def update_swarm(self): """ Atualize a população realizando cruzamento, mutação Returns: :return population(:obj:`list` of :obj:`Particles`): returns a list of swarms. """ if self.fitness is None: logging.error("Cannot update the population before calculating Fitness") raise RuntimeError("Updated the population before calculating Fitness") self.cross_over(self.population) self.mutation(self.population) if self.submit_to_cluster: self.curr_iter['update'] += 1 def evaluate_single_fitness_test(self, func, enum_particles=False, add_step_num=False, **kwargs): """ Execute a função fornecida como o teste de aptidão para todas as partículas. Parametros: ----------- fun : callable The fitness test function to be minimized: ``func(individual.ichromosome, **kwargs) -> float``. enum_particles : boolean If `True`, the population will be enumerated and the individual index will be passed to `func` as keyword `part_idx`, added to `kwargs` add_step_num : boolean If `True`, the current step number will be passed to `func` as keyword `step_num`, added to `kwargs` **kwargs: Other keywords to the fitness function, will be passed as is. """ if add_step_num: kwargs['step_num'] = self.step_number if self.ncpu == 1: if enum_particles: for part_idx, individual in enumerate(self.population): kwargs['part_idx'] = part_idx individual.fitness = func(individual.chromosome, **kwargs) else: for individual in self.population: individual.fitness = func(individual.chromosome, **kwargs) elif self.ncpu > 1: with mp.Pool(processes=self.ncpu) as pool: argslist = [] p = [] for part_idx, individual in enumerate(self.population): argslist.append(dict(kwargs)) if enum_particles: argslist[-1]['part_idx'] = part_idx for idx, args in enumerate(argslist): p.append(pool.apply_async(func, args=(self.population[idx].chromosome,),kwds=args)) results = [ r.get() for r in p ] for part_idx, individual in enumerate(self.population): individual.fitness = results[part_idx] def do_full_step(self, func, **kwargs): """Execute uma etapa completa de GA. Este método passa por todos os outros métodos para realizar uma completa Etapa GA, para que possa ser chamada a partir de um loop no método run ().. """ if self.fitness is not None and self.step_number < self.maxiter: self.cross_over(self.population) self.mutation(self.population) for individual in self.population: np.clip(individual.chromosome, self.bounds[0], self.bounds[1], out=individual.chromosome) if self.submit_to_cluster: raise NotImplementedError('Multistep jobs are under revision.') else: self.evaluate_single_fitness_test(func, **kwargs) self.step_number += 1 def fitness_variation(self, fitness_evaluation): """ Essa função realiza a verificação da variação do fitness entre as populações Args: fitness_evaluation ([type]): [description] """ if(fitness_evaluation != self.fitness): self.step_evaluation = 0 else: self.step_evaluation += 1 print('step_evaluation: {}'.format(self.step_evaluation)) if(self.step_evaluation > 100): self.improving = False def run(self, func, DEBUG=None, **kwargs): """Execute uma execução de otimização completa. Faz a otimização com a execução da atualização das velocidades e as coordenadas também verifica o critério interrompido para encontrar fitnnes. Parameters ---------- func : callable Function that calculates fitnnes. Returns ------- The dictionary that stores the optimization results. """ self.func = func while (self.step_number < self.maxiter and self.improving): self.do_full_step(func, **kwargs) fitness_evaluation= self.fitness self.calculate_best_fitness() #self.fitness_variation(fitness_evaluation) if DEBUG is not None: with open(DEBUG, 'a') as dbg_file: print(f"# {self.step_number} {self.fitness}") print(f" {self.step_number} {self.fitness}", file=dbg_file) #np.savetxt(dbg_file, # [(*p.chromosome, p.fitness) # for p in self.population]) if self.fitness >= self.goal: break self.results = {} self.results['fitness'] = self.fitness return self.results ```
{ "source": "jhonatheberson/MIPS-architecture", "score": 3 }
#### File: jhonatheberson/MIPS-architecture/Add.py ```python class Add (): input = 0 output = 0 def Add(self): self.output = self.input + 4 def setAdd(self,input_final): self.input = input_final def getAdd(self): return self.output ```
{ "source": "jhonatheberson/news-portal", "score": 3 }
#### File: management/commands/capturar_noticias.py ```python from django.core.management.base import BaseCommand from django.utils import timezone from bs4 import BeautifulSoup as bs from portal.models import News, Portal from requests import get class Command(BaseCommand): help = 'class responsible for web scraping to capture the news and add it to the database' def handle(self, *args, **kwargs): """responsible function of web scraping and capturing the headlines of the news. Keyword arguments: rargs -- django command method default (default) kwargs -- django command method default (default) """ base_url = 'https://www.tecmundo.com.br' # url that will be done web scraping base_portal = Portal(name=base_url) base_portal.save() # saving the url to the database title = [] # create a queue to store the titles tecmundo = get(base_url) # requests a request to url tecmundo_page = bs(tecmundo.text, 'html.parser') # get the text of the request response only html boxes = tecmundo_page.find_all("h2") # search all over the site just what is h2 tagged size_boxes = len(boxes) for i in range(size_boxes): title.append(boxes[i].text) # add titles to the queue news = News(title=title[i]) news.save() # saving the title to the database ``` #### File: news/portal/models.py ```python from django.db import models class Portal(models.Model): """ medel of the database table that was created this table refers to table News """ name = models.CharField(max_length=40) # name of the news portal or url def __str__(self): return self.name class News(models.Model): """ medel of the database table that was created """ title = models.CharField(max_length=200) # title of the news portal = models.ForeignKey(Portal, null=True, on_delete=models.CASCADE) # portal of the news create_at = models.DateTimeField( auto_now_add=True) # good database practice update_at = models.DateTimeField(auto_now=True) # good database practice def __str__(self): return self.title # Create your models here. ``` #### File: news/portal/views.py ```python from django.shortcuts import render, get_object_or_404, redirect from django.core.paginator import Paginator, InvalidPage, EmptyPage from django.http import HttpResponse from django.contrib import messages from .forms import NewForm from .models import News, Portal def newsList(request): """ function responsible for performing the search and bringing news from the database end paginator the page """ search = request.GET.get('search') # check if the form has something in it if search: news = News.objects.filter(title__icontains=search) # search the content in the database else: news_list = News.objects.all().order_by('-create_at') # shows all news from the bank in order of the most recent paginator = Paginator(news_list, 7) #shows 7 news per page try: page = int(request.GET.get('page', '1')) except ValueError: page = 1 try: news = paginator.page(page) except (EmptyPage, InvalidPage): news = paginator.page(paginator.num_pages) return render(request, 'portal/list.html', {'news': news}) def newsView(request, id): """ function that brings the other news fields """ news = get_object_or_404(News, pk=id) return render(request, 'portal/news.html', {'news': news}) ```
{ "source": "Jhonattanln/Factor-Investing", "score": 3 }
#### File: Quality/Quality/Quality.py ```python investing/Quality/Quality/Quality.py import pandas as pd import numpy as np import matplotlib.pyplot as plt ######################################################### D/E ############################################################# de = pd.read_excel(r'C:\Users\Jhona\OneDrive - Grupo Marista\Projetos\Factor Investing\Factor-Investing\Factor investing\Quality\Quality\DE.xlsx', parse_dates=True, index_col=0) def columns(df): df.columns = df.columns.str[-6:] return df columns(de) de.replace('-', np.nan, inplace=True) de = de.T de.columns = de.columns.astype(str) de.rename(columns={'Data': 'Ação', '2019-12-31':'DE'}, inplace=True) data_de = de[de['DE'] > 0] data_de.sort_values('DE') ######################################################### ROE ######################################################## roe = pd.read_excel(r'C:\Users\Jhona\OneDrive - Grupo Marista\Projetos\Factor Investing\Factor-Investing\Factor investing\Quality\Quality\ROE.xlsx', parse_dates=True, index_col=0) columns(roe) roe.replace('-',np.nan, inplace=True) roe = roe.T roe.columns = roe.columns.astype(str) roe.rename(columns={'2019-12-31':'ROE'}, inplace=True) data_roe = roe[roe['ROE']>0] data_roe.sort_values(by=['ROE'], ascending=False, inplace=True) data_roe ############# Concatenando dados data=pd.concat([data_de, data_roe], axis=1).dropna() ############# Ranking de_value = data.DE.sum() roe_value = data.ROE.sum() values={} for i in data.DE: values['DE'] = data.DE /de_value values = pd.DataFrame(values) for i in data.ROE: values['ROE'] = data['ROE'] / roe_value values['Ranking'] = values.DE.div(values.ROE) values.sort_values(by=['Ranking'], inplace=True) assets = values.iloc[:20] assets.index stocks = ['ITSA4.SA', 'CEBR5.SA', 'LREN3.SA', 'TRPL4.SA', 'PARD3.SA', 'HAPV3.SA', 'STBP3.SA', 'TGMA3.SA', 'CEAB3.SA', 'UNIP3.SA',] ### Potfolio df = pd.DataFrame() from pandas_datareader import data for i in stocks: df[i] = data.DataReader(i, data_source='yahoo', start='2020-01-01', end = '2020-12-31')['Adj Close'] ### Portfolio returns weights = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) returns = df.pct_change().dropna() df['Portfolio'] = (1+returns.dot(weights)).cumprod().dropna() norm = pd.DataFrame() for i in df: norm[i] = df[i].div(df[i].iloc[1]).mul(100) norm plt.style.use('ggplot') norm.plot() plt.legend(loc='lower left') plt.show() ### Portfolio vs IBOV ibov = data.DataReader('^BVSP', data_source='yahoo', start='2020-01-01', end = '2020-12-31') ibov.rename(columns = {'Adj Close':'IBOV'}, inplace=True) ibov.drop(ibov.columns[[0,1,2,3,4]], axis=1, inplace=True) ibov['Ibov'] = ibov['IBOV'].div(ibov['IBOV'].iloc[0]).mul(100) ibov plt.plot(norm['Portfolio']) plt.plot(ibov['Ibov']) plt.legend(['Portfolio - Quality', 'Ibov']) plt.show() final = pd.concat([norm['Portfolio'], ibov['Ibov']], axis = 1) final.to_excel('Quality.xlsx') ```
{ "source": "jhonattanrgc21/python-exercises", "score": 4 }
#### File: python-exercises/Arreglos/print_matriz.py ```python def mostrar(matriz): global filas # Cantidad de filas leidas como entrada for i in range(filas): print(*matriz[i]) # Variable matriz matriz = list() # Los ciclos while validan la cantidad de filas y columnas while True: filas = int(input('Ingrese el numero de filas: ')) if filas > 0: break else: print('Error, la cantidad debe ser mayor a cer\n.') while True: cols = int(input('Ingrese el numero de columnas: ')) if cols > 0: break else: print('Error, la cantidad debe ser mayor a cer\n.') # Proceso for i in range(filas): matriz.append(list()) for j in range(cols): matriz[i].append(input('valor [%d, %d]: ' % (i + 1, j + 1))) # Salida mostrar(matriz) ```
{ "source": "jhonattanrgc21/web-empresarial", "score": 2 }
#### File: web-empresarial/blog/admin.py ```python from django.contrib import admin from .models import Category, Post class CategoryAdmin(admin.ModelAdmin): # Convierte los campos de fecha en formato de solo lectura readonly_fields = ('created', 'updated',) class PostAdmin(admin.ModelAdmin): # Convierte los campos de fecha en formato de solo lectura readonly_fields = ('created', 'updated',) # Lista las columnas especificadas por cada registro list_display = ('title', 'author', 'published', 'post_categories',) # Permite ordenar las columnas por los campos especificados ordering = ('author', 'published' ,) # Agrega un buscador con las opciones de los campos especificados search_fields = ('title', 'content', 'author__username', 'categories__name',) # Permite obtener una lista de registros por fechas date_hierarchy = 'published' # Permite crear filtros para el buscador list_filter = ('author__username', 'categories__name') # Este tipo de funcion es para los campos de muchos a muchos o uno a muchos def post_categories(self, obj): ''' Obtiene una lista de categorias asociadas al registro ordenadas por nombre y separadas por coma ''' return (',').join([c.name for c in obj.categories.all().order_by('name')]) # Asigna un nombre a la funcion para mostrar en la columna de los registros post_categories.short_description = 'Categorias' # Registro de las configuraciones en el dashboard admin.site.register(Category, CategoryAdmin) admin.site.register(Post, PostAdmin) ``` #### File: web-empresarial/pages/models.py ```python from django.db import models from ckeditor.fields import RichTextField class Page(models.Model): title = models.CharField( max_length = 200, verbose_name = 'Titulo', unique = True ) content = RichTextField( verbose_name = 'Contenido' ) order = models.SmallIntegerField(verbose_name = 'Orden', default = 0) created = models.DateTimeField(auto_now_add = True) updated = models.DateTimeField(auto_now = True) class Meta: ''' La clase Meta permite ordenar la lista de paginas por nombre y traduce el nombre de la entidad de ingles a español en el dashboard ''' verbose_name = 'pagina' verbose_name_plural = 'paginas' ordering = ['order','title'] # Metodos def __str__(self): return self.title ```
{ "source": "jhonattanrgc21/web-personal", "score": 2 }
#### File: web-personal/portfolio/models.py ```python from django.db import models class Project(models.Model): ''' Modelo de Proyectos ''' # Aatributos title = models.CharField( max_length=200, verbose_name = 'Titulo' ) description = models.TextField(verbose_name = 'Descripcion') image = models.ImageField( upload_to = 'media/projects', verbose_name = 'Imagen' ) link = models.URLField( null=True, blank=True, verbose_name = 'Direccion web' ) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: ''' La clase Meta permite ordenar la lista de proyectos por fecha de creacion y traduce el nombre de la entidad de ingles a español en el dashboard ''' verbose_name = 'proyecto' verbose_name_plural = 'proyectos' ordering = ['-created'] # Metodos def __str__(self): return self.title ``` #### File: web-personal/portfolio/views.py ```python from django.shortcuts import render from .models import Project def portfolio(request): ''' Obtiene una lista con todos los proyectos registrados en la BD y los renderiza a la vista portfolio.html ''' projects = Project.objects.all() return render(request, 'portfolio/portfolio.html', {'projects': projects}) ```
{ "source": "Jhonattan-rocha/Meus-primeiros-programas", "score": 3 }
#### File: Exer39/Banco/clientes.py ```python from contas import Conta_poupnaca, Conta_corrente from itertools import count class _MetaClassCliente(type): def __new__(mcs, name, bases, namespace): if name == "Cliente": return type.__new__(mcs, name, bases, namespace) if "cadastrar_pounpanca" not in namespace: raise SyntaxError("Falta o método cadastrar pounpanca na classe") else: if not callable(namespace["cadastrar_pounpanca"]): raise SyntaxError("Falta o método cadastrar pounpanca na classe") if "cadastrar_corrente" not in namespace: raise SyntaxError("Falta o método cadastrar pounpanca na classe") else: if not callable(namespace["cadastrar_corrente"]): raise SyntaxError("Falta o método cadastrar corente na classe") class Pessoa: def __init__(self, nome="", idade=0, RG=0, CPF=0): if self.__class__ is Pessoa: raise TypeError(f"{self.__class__} não pode ser instanciada") self._nome = nome self._idade = idade self.__RG = RG self.__CPF = CPF class Cliente(Pessoa, metaclass=_MetaClassCliente): def __init__(self, nome, idade, RG, CPF): super(Cliente, self).__init__(nome, idade, RG, CPF) self._id_cliente = next(count(1)) def cadastrar_pounpanca(self, agencia, conta): self.conta_poupanca = Conta_poupnaca(agencia, conta) def cadastrar_corrente(self, agencia, conta): self.conta_corrente = Conta_corrente(agencia, conta) if __name__ == '__main__': pass ``` #### File: Exer39/Banco/contas.py ```python from abc import abstractmethod, ABC class Conta(ABC): def __init__(self, agencia, conta, saldo=0): self._agencia = agencia self._conta = conta self._saldo: float = saldo @property def agencia(self): return self._agencia @agencia.setter def agencia(self, valor): self._agencia = valor @property def conta(self): return self._conta @conta.setter def conta(self, valor): self._conta = valor @property def saldo(self): return self._saldo @saldo.setter def saldo(self, valor: float): self._saldo = valor def depoistar(self, valor: float): if valor > 0: self._saldo += valor else: raise ValueError("Depoisto não pode ser negativo") @abstractmethod def sacar(self, valor: float): pass class Conta_poupnaca(Conta): def __init__(self, agencia=0, conta=0, saldo=0): super(Conta_poupnaca, self).__init__(agencia, conta, saldo) def sacar(self, valor: float): if self.saldo < valor: # print("Saldo insuficiente") return 0 self.saldo -= valor class Conta_corrente(Conta): def __init__(self, agencia, conta, saldo=0, limite=100): super(Conta_corrente, self).__init__(agencia, conta, saldo) self.limite = limite def sacar(self, valor: float): if (self.saldo + self.limite) < valor: # print("Saldo insuficiente") if self.saldo < 0: print("Saldo negativado") return self.saldo -= valor ``` #### File: ExerciciosDeSO/ExerciciosThreadsSlide/ExerPG37.py ```python import threading from random import randint from time import sleep class Carro(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.semaforo = threading.Lock() @classmethod def andar(cls, idt): sentido = ["frente", "esquerda", "direita"] direcao = sentido[randint(0, 2)] print(f"O carro {idt} está indo para a {direcao}") def run(self) -> None: try: self.semaforo.acquire() sleep(1) self.andar(self.native_id) except Exception as e: print(e) finally: self.semaforo.release() if __name__ == '__main__': for i in range(4): t = Carro() t.start() ``` #### File: ExerciciosDeSO/ExerciciosThreadsSlide/ExerPG38.py ```python import copy import threading from time import sleep, time colocados = [] class F1(threading.Thread): def __init__(self, escudeira): threading.Thread.__init__(self) self.semaforo = threading.Semaphore(5) self.semaforoCarro = threading.Semaphore(1) self.escudeira = escudeira def run(self) -> None: try: self.semaforo.acquire() match self.escudeira: case 1: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 2: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 3: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 4: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 5: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 6: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() case 7: self.semaforoCarro.acquire() for i in range(3): self.volta() if i == 2: colocados.append(self.escudeira) colocados.append(max(self.tempos)) self.semaforoCarro.release() self.semaforo.release() except Exception as e: print(e) finally: self.semaforo.release() def volta(self): # try: # self.semaforoCarro.acquire() self.tempos = [] tempo_ini = time() print(f"{self.native_id} da escudeira {self.escudeira} começou uma volta") sleep(5) print(f"{self.native_id} da escudeira {self.escudeira} terminou uma volta") self.tempos.append(time() - tempo_ini) # self.semaforoCarro.release() # except Exception as e: # print(e) # finally: # self.semaforoCarro.release() if __name__ == '__main__': escudeira = [1, 3, 2, 1, 3, 2, 7, 4, 5, 6, 5, 6, 4, 7] for i in escudeira: f1 = F1(i) f1.start() sleep(20) lista_auxiliar = [i for i in colocados if i is not int] print(lista_auxiliar) print(colocados) exit(0) for i in range(len(colocados)//2): print(f"{i+1}° colocado, {colocados[colocados.index(lista_auxiliar[i])-1]}") print(colocados) ``` #### File: Versao_final/TestePosteriores/Teste2.py ```python import pickle import numpy as np from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers.backprop import BackpropTrainer from pybrain.datasets.supervised import SupervisedDataSet class BagOfWords: def __init__(self): self.vocab = [] def build_vocab(self, sentences): for sentence in sentences: for word in sentence.split(" "): if word not in self.vocab: self.vocab.append(word) self.vocab.sort() def toArray(self, sentences): words = sentences.split(' ') vector = np.zeros(len(self.vocab)) for word in words: for i, _word in enumerate(self.vocab): if _word == word: vector[i] = 1 return list(vector) def get_len(self): return len(self.vocab) sentences = ['eu gosto disso', 'eu odeio isso', 'aquilo era bom', 'aquilo era mal'] bag = BagOfWords() bag.build_vocab(sentences) outputs = [[1], [0], [1], [0]] inputs = [] # print(bag.vocab) for sentence in sentences: vector = bag.toArray(sentence) passe = [] for num in vector: passe.append(num) inputs.append(passe) # esse dataset começa com o tamanho, depois o número de saídas ds = SupervisedDataSet(bag.get_len(), 1) for i, j in zip(inputs, outputs): ds.addSample(i, j) # neuronios de entrada, depois a quantidade de neurônios da cama intermediária, camada de saida netWork = buildNetwork(bag.get_len(), 5, 1, bias=True) back = BackpropTrainer(netWork, ds) # rede, database # esse for treina a rede neural for i in range(1000): back.train() print(netWork.activate(bag.toArray("que horas que é"))[0]) # comando para ativar a rede neural ``` #### File: Versao_final/TestePosteriores/Teste_ia_k.py ```python import os import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC, SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import Minha_Biblioteca import numpy """ import sklearn from sklearn.model_selection import train_test_split modelo = sklearn.svm.LinearSVC() # modelo básico para machining learning modelo.fit(x, y) # comando para mandar o modelo treinar # x é os dados, y é as respostas providas baseadas nesses dados # print(sklearn.metrics.accuracy_score(teste_x, previcoes)) # sample() no pandas traz linhas aleatórias modelo = sklearn.svm.LinearSVC() # modelo básico para machining learning # isso aqui separa os dados em teste e treino para que não vicio o algoritmo treino_x, teste_x, treino_y, teste_y = train_test_split(x, y) modelo.fit(treino_x, treino_y) modelo.predict(teste_x) # comando para prever usando a variável teste_x do train_test_split # print(sklearn.metrics.accuracy_score(teste_y, previcoes)) from pybrain.tools.shortcuts import buildNetwork """ # arquivo = open(r"databaseF.txt", 'r', encoding='utf-8') # arquivo = arquivo.read() # arquivo = arquivo.split() def ajeitar(texto=''): texto = texto.split() retorno = ' ' for c in texto: retorno += c return numpy.float64(retorno) teste1 = [ajeitar(Minha_Biblioteca.LetraNumero("me fala as horas"))] teste2 = [ajeitar(Minha_Biblioteca.LetraNumero("que horas são"))] teste3 = [ajeitar(Minha_Biblioteca.LetraNumero("me diga as horas"))] teste4 = [ajeitar(Minha_Biblioteca.LetraNumero("fale as horas"))] teste5 = [ajeitar(Minha_Biblioteca.LetraNumero("horas, por favor"))] teste6 = [ajeitar(Minha_Biblioteca.LetraNumero("me fala a data"))] teste7 = [ajeitar(Minha_Biblioteca.LetraNumero("que dia é hoje"))] teste8 = [ajeitar(Minha_Biblioteca.LetraNumero("me diga a data"))] teste9 = [ajeitar(Minha_Biblioteca.LetraNumero("fale a data"))] teste10 = [ajeitar(Minha_Biblioteca.LetraNumero("tempo"))] teste11 = [ajeitar(Minha_Biblioteca.LetraNumero("me diga o clima"))] teste12 = [ajeitar(Minha_Biblioteca.LetraNumero("qual é o clima de hoje"))] teste13 = [ajeitar(Minha_Biblioteca.LetraNumero("qual a previsão do clima para hoje"))] teste14 = [ajeitar(Minha_Biblioteca.LetraNumero("qual o clima para hoje"))] teste15 = [ajeitar(Minha_Biblioteca.LetraNumero("clima"))] x = [teste1, teste2, teste3, teste4, teste5, teste6, teste7, teste8, teste9, teste10, teste11, teste12, teste13, teste14, teste15] # x = [["me fala as horas"], ["que horas são"], ["me diga as horas"], ["fale as horas"], ["horas, por favor"], # ["me fala a data"], ["que dia é hoje"], ["me diga a data"], ["fale a data"], ["tempo"], # ["me diga o clima"], ["qual é o clima de hoje"], ["qual a previsão do clima para hoje"], ["qual o clima para hoje"], ["clima"]] y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] modelo = SVC(max_iter=1000000, random_state=10, kernel="linear") treino_x, teste_x, treino_y, teste_y = train_test_split(x, y, test_size=0.5, train_size=0.5) modelo.fit(treino_x, treino_y) print(modelo.predict([[ajeitar(Minha_Biblioteca.LetraNumero("qual o clima"))]])) ``` #### File: Curos_Python_curemvid/Exercicios_dos_videos/Ex102.py ```python def fatorial(num=1, show=0): """ Resumo do programa: cálculo do fatorial do número n :param num: - parâmetro que vai receber o valor de n :param show: - parâmetro de valor, sendo s ou n, que vai definir se irá ser mostrado ou não a conta :return: - retorna o print com o valor do fatorial de n, ou retorna a conta junto com o valor de n """ if show == 0: f = 1 for c in range(num, 0, -1): f *= c return f else: f = 1 for c in range(num, 0, -1): print(f"{c} x {f} = ", end=' ') f *= c print(f) if c == 1: print(f"O fatorial de {num} é {f}") return f print("Programa para cálculo de fatorial!!!") n = int(input("Digite um número para saber seu fatorial: ")) escolha = '' while escolha != 'S' and escolha != 'N': escolha = str(input("Deseja saber o cálculo do fatorial: ")).upper() if escolha == 'S': escolha = int(1) break else: escolha = int(0) break if escolha == 0: print(f"O faotial do número é:{fatorial(n, escolha)}") else: print("O cálculo é: ") fatorial(n, escolha) ``` #### File: Curos_Python_curemvid/Exercicios_dos_videos/Ex104.py ```python def leiaint(msg): while True: n = input(msg) if n.isnumeric(): valor = int(n) break else: print("Digite um número válido") return valor num = leiaint("digite um número inteiro: ") print(f"Você digitou o número {num}") ``` #### File: Curos_Python_curemvid/Exercicios_dos_videos/Ex105.py ```python def notas(*nums, situacao=False): notasA = [] cont = 0 maior = 0 menor = 0 media = 0 for c in range(0, len(nums)): cont += 1 notasA.append(nums[c]) media += nums[c] if c == 0: maior = nums[c] menor = nums[c] else: if maior < nums[c]: maior = nums[c] if menor > nums[c]: menor = nums[c] dados = dict() dados['Quantidade de Alunos'] = cont dados['Notas'] = notasA.copy() dados['Maior nota'] = maior dados['Menor nota'] = menor dados['Média'] = media/cont if situacao: if media/cont >= 7: dados["Situação"] = 'Boa' else: dados["Situação"] = 'Ruim' print(dados) print("!!!Sistema de notas!!!") print("As notas dos alunos da sala é: ") notas(10, 20, 50, 90, 60, 7, 6, 8) ``` #### File: Uteis/Exer109M/__init__.py ```python def metade(num, formata=False): if formata: return f"R${float(num / 2):.2f}" return float(num/2) def dobro(num, formata=False): if formata: return f"R${float(num*2):.2f}" return num*2 def aumentar(num, p, formata=False): p = 1+(p/100) if formata: return f"R${float(num*p):.2f}" return float(num*p) def diminuir(num, p, formata=False): p = p/100 if formata: return f"R${float(num - (num*p)):.2f}" return float(num - (num*p)) ``` #### File: imobil/autenti/views.py ```python from django.contrib.auth import logout from django.contrib.auth.models import User from django.shortcuts import render, redirect from django.contrib import messages, auth from django.contrib.messages import constants def cadastro(request): if request.method == "GET": return render(request, 'cadastro.html') elif request.method == "POST": username = request.POST.get('username') email = request.POST.get('email') senha = request.POST.get('senha') if len(username.strip()) == 0 or len(email.strip()) == 0 or len(senha.strip()) == 0: messages.add_message(request, constants.ERROR, 'Preencha todos os campos') return redirect('/auth/cadastro') user = User.objects.filter(username=username) if user.exists(): messages.add_message(request, constants.ERROR, 'Já existe um usuário com esse nome cadastrado') return redirect('/auth/cadastro') try: user = User.objects.create_user(username=username, email=email, password=<PASSWORD>) user.save() messages.add_message(request, constants.SUCCESS, 'Cadastro realizado com sucesso') return redirect('/auth/logar') except: messages.add_message(request, constants.ERROR, 'Erro interno do sistema') return redirect('/auth/cadastro') if request.user.is_authenticated: return redirect('/') def logar(request): if request.method == "GET": return render(request, 'logar.html') elif request.method == "POST": username = request.POST.get('username') senha = request.POST.get('senha') usuario = auth.authenticate(username=username, password=senha) if not usuario: messages.add_message(request, constants.ERROR, 'Username ou senha inválidos') return redirect('/auth/logar') else: auth.login(request, usuario) if request.user.is_authenticated: return redirect('/') def sair(request): logout(request) return render(request, "logar.html") ```
{ "source": "jhondevcode/spyder", "score": 2 }
#### File: findinfiles/widgets/results_browser.py ```python import os.path as osp # Third party imports from qtpy.QtCore import QPoint, QSize, Qt, Signal, Slot from qtpy.QtGui import QAbstractTextDocumentLayout, QTextDocument from qtpy.QtWidgets import (QApplication, QStyle, QStyledItemDelegate, QStyleOptionViewItem, QTreeWidgetItem) # Local imports from spyder.api.translations import get_translation from spyder.config.gui import get_font from spyder.utils import icon_manager as ima from spyder.widgets.onecolumntree import OneColumnTree # Localization _ = get_translation('spyder') # ---- Constants # ---------------------------------------------------------------------------- ON = 'on' OFF = 'off' # ---- Items # ---------------------------------------------------------------------------- class LineMatchItem(QTreeWidgetItem): def __init__(self, parent, lineno, colno, match, font, text_color): self.lineno = lineno self.colno = colno self.match = match self.text_color = text_color self.font = font super().__init__(parent, [self.__repr__()], QTreeWidgetItem.Type) def __repr__(self): match = str(self.match).rstrip() _str = ( f"<!-- LineMatchItem -->" f"<p style=\"color:'{self.text_color}';\">" f"<b>{self.lineno}</b> ({self.colno}): " f"<span style='font-family:{self.font.family()};" f"font-size:{self.font.pointSize()}pt;'>{match}</span></p>" ) return _str def __unicode__(self): return self.__repr__() def __str__(self): return self.__repr__() def __lt__(self, x): return self.lineno < x.lineno def __ge__(self, x): return self.lineno >= x.lineno class FileMatchItem(QTreeWidgetItem): def __init__(self, parent, path, filename, sorting, text_color): self.sorting = sorting self.filename = osp.basename(filename) # Get relative dirname according to the path we're searching in. dirname = osp.dirname(filename) rel_dirname = dirname.split(path)[1] if rel_dirname.startswith(osp.sep): rel_dirname = rel_dirname[1:] title = ( f'<!-- FileMatchItem -->' f'<b style="color:{text_color}">{osp.basename(filename)}</b>' f'&nbsp;&nbsp;&nbsp;' f'<span style="color:{text_color}">' f'<em>{rel_dirname}</em>' f'</span>' ) super().__init__(parent, [title], QTreeWidgetItem.Type) self.setIcon(0, ima.get_icon_by_extension_or_type(filename, 1.0)) self.setToolTip(0, filename) def __lt__(self, x): if self.sorting['status'] == ON: return self.filename < x.filename else: return False def __ge__(self, x): if self.sorting['status'] == ON: return self.filename >= x.filename else: return False # ---- Browser # ---------------------------------------------------------------------------- class ItemDelegate(QStyledItemDelegate): def __init__(self, parent): super().__init__(parent) self._margin = None def paint(self, painter, option, index): options = QStyleOptionViewItem(option) self.initStyleOption(options, index) style = (QApplication.style() if options.widget is None else options.widget.style()) doc = QTextDocument() text = options.text doc.setHtml(text) doc.setDocumentMargin(0) # This needs to be an empty string to avoid the overlapping the # normal text of the QTreeWidgetItem options.text = "" style.drawControl(QStyle.CE_ItemViewItem, options, painter) ctx = QAbstractTextDocumentLayout.PaintContext() textRect = style.subElementRect(QStyle.SE_ItemViewItemText, options, None) painter.save() painter.translate(textRect.topLeft() + QPoint(0, 4)) doc.documentLayout().draw(painter, ctx) painter.restore() def sizeHint(self, option, index): options = QStyleOptionViewItem(option) self.initStyleOption(options, index) doc = QTextDocument() doc.setHtml(options.text) doc.setTextWidth(options.rect.width()) size = QSize(int(doc.idealWidth()), int(doc.size().height())) return size class ResultsBrowser(OneColumnTree): sig_edit_goto_requested = Signal(str, int, str, int, int) sig_max_results_reached = Signal() def __init__(self, parent, text_color, max_results=1000): super().__init__(parent) self.search_text = None self.results = None self.max_results = max_results self.total_matches = None self.error_flag = None self.completed = None self.sorting = {} self.font = get_font() self.data = None self.files = None self.root_items = None self.text_color = text_color self.path = None # Setup self.set_title('') self.set_sorting(OFF) self.setSortingEnabled(False) self.setItemDelegate(ItemDelegate(self)) self.setUniformRowHeights(True) # Needed for performance self.sortByColumn(0, Qt.AscendingOrder) # Only show the actions for collaps/expand all entries in the widget # For further information see spyder-ide/spyder#13178 self.common_actions = self.common_actions[:2] # Signals self.header().sectionClicked.connect(self.sort_section) def activated(self, item): """Double-click event.""" itemdata = self.data.get(id(self.currentItem())) if itemdata is not None: filename, lineno, colno, colend = itemdata self.sig_edit_goto_requested.emit( filename, lineno, self.search_text, colno, colend - colno) def set_sorting(self, flag): """Enable result sorting after search is complete.""" self.sorting['status'] = flag self.header().setSectionsClickable(flag == ON) @Slot(int) def sort_section(self, idx): self.setSortingEnabled(True) def clicked(self, item): """Click event.""" self.activated(item) def clear_title(self, search_text): self.font = get_font() self.clear() self.setSortingEnabled(False) self.num_files = 0 self.data = {} self.files = {} self.set_sorting(OFF) self.search_text = search_text title = "'%s' - " % search_text text = _('String not found') self.set_title(title + text) @Slot(object) def append_file_result(self, filename): """Real-time update of file items.""" if len(self.data) < self.max_results: self.files[filename] = FileMatchItem(self, self.path, filename, self.sorting, self.text_color) self.files[filename].setExpanded(True) self.num_files += 1 @Slot(object, object) def append_result(self, items, title): """Real-time update of line items.""" if len(self.data) >= self.max_results: self.set_title(_('Maximum number of results reached! Try ' 'narrowing the search.')) self.sig_max_results_reached.emit() return available = self.max_results - len(self.data) if available < len(items): items = items[:available] self.setUpdatesEnabled(False) self.set_title(title) for item in items: filename, lineno, colno, line, match_end = item file_item = self.files.get(filename, None) if file_item: item = LineMatchItem(file_item, lineno, colno, line, self.font, self.text_color) self.data[id(item)] = (filename, lineno, colno, match_end) self.setUpdatesEnabled(True) def set_max_results(self, value): """Set maximum amount of results to add.""" self.max_results = value def set_path(self, path): """Set path where the search is performed.""" self.path = path ```
{ "source": "Jhon-Dx/Program", "score": 3 }
#### File: Jhon-Dx/Program/Gerador_de_Senha.py ```python import Gerador_de_senhas.Defs as ge import PySimpleGUI as sg class Gerador: sg.theme('DarkPurple1') def __init__(self): layout = [ [sg.Checkbox('Numeros', key='sonumeros'), sg.Text(size=(3, 1)), sg.Checkbox('Letras', key='soletras'), sg.Text(size=(3, 1)), sg.Checkbox('Simbolos', key='sosimbolos')], [sg.Text('Quantidade de senhas'), sg.Combo(values=list(range(30)), key='totalchars', default_value=1, size=(3, 1))], [sg.Text(size=(11, 3)), sg.Button('Gerar Senha')], [sg.Text('Resultado:', size=(9, 1)), sg.Text(size=(22, 0))], [sg.Output(size=(40, 5))] ] self.janela = sg.Window("Gerador de Senha").layout(layout) def iniciar(self): while True: self.evento, self.values = self.janela.read() com_numeros = self.values['sonumeros'] com_letras = self.values['soletras'] com_simbolos = self.values['sosimbolos'] total_de_caracteres = self.values['totalchars'] if self.evento == sg.WINDOW_CLOSED: break if self.evento == 'Gerar Senha': newsenha = ge.truefalse(com_numeros, com_simbolos, com_letras, total_de_caracteres) print(newsenha) tela = Gerador() tela.iniciar() ```
{ "source": "Jhoneagle/RandomProducts", "score": 3 }
#### File: finvoiceConverter/components/row.py ```python from lxml import etree ''' Super class for csv-files rows. Implemented child classes at the moment are Invoice and InvoiceRow classes. ''' class Row(object): def __init__(self, records, xmlRoot): self._root = xmlRoot self.records = records self.fields = dict() self._parse() def toCSV(self): csvFields = map(self.__getRecord, self.records) output = "" for x in csvFields: output += (x + ';') return output # get the data of given column in the row this spesifies. def __getRecord(self, record): if (record in self.fields): return self.fields[record] return '' # Super method to parse the xml and make it ready to be printed into csv-file. # This is supposed to be implemented by child classes. def _parse(self): pass # set data to given column. def _setElem(self, elemName, recordName): elem = self._root.find(elemName) if (elem is not None): self.fields[recordName] = elem.text ```
{ "source": "Jhoneagle/TilastointiOhjelma", "score": 3 }
#### File: application/auth/models.py ```python from application import db from application.models import Base class User(Base): __tablename__ = "account" name = db.Column(db.String(144), nullable=False) phonenumber = db.Column(db.String(144), nullable=False) email = db.Column(db.String(144), nullable=False) company = db.Column(db.String(144), nullable=False) address = db.Column(db.String(144), nullable=False) username = db.Column(db.String(144), nullable=False) password = db.Column(db.String(144), nullable=False) def __init__(self, name, phone, email, company, address, username, password): self.name = name self.phonenumber = phone self.email = email self.company = company self.address = address self.username = username self.password = password def get_id(self): return self.id def is_active(self): return True def is_anonymous(self): return False def is_authenticated(self): return True ``` #### File: application/kavijat/models.py ```python from application import db from application.models import Base class Kavijat(Base): __tablename__ = "kavijat" sivu_id = db.Column(db.Integer, db.ForeignKey('sivu.id')) kaynnit = db.Column(db.Integer, nullable=False) vuosi = db.Column(db.Integer, nullable=False) kuukausi = db.Column(db.Integer, nullable=False) def __init__(self, kaynnit, vuosi, kuukausi): self.kaynnit = kaynnit self.vuosi = vuosi self.kuukausi = kuukausi ``` #### File: application/selain/models.py ```python from application import db from application.models import Base class Selain(Base): __tablename__ = "selain" kavijat_id = db.Column(db.Integer, nullable=False) kaynnit = db.Column(db.Integer, nullable=False) selain = db.Column(db.String(144), nullable=False) def __init__(self, kaynnit, selain): self.kaynnit = kaynnit self.selain = selain ``` #### File: application/visits/views.py ```python from application import app, db from flask import redirect, render_template, request, url_for from application.visits.models import Visit from application.visits.forms import VisitForm, ListForm from flask_login.utils import login_required, current_user from application.sivu.models import Sivu from sqlalchemy.sql import text @app.route("/visits/new/") @login_required def visits_form(): return render_template("visits/new.html", title="Lisää uusi käynti tietue", form = VisitForm()) @app.route("/visits/", methods=["POST"]) @login_required def visits_create(): form = VisitForm(request.form) if not form.validate(): return render_template("visits/new.html", form = form, title="Lisää uusi käynti tietue") result = Sivu.query.filter_by(osoite=form.website.data).first() sivuId = None if result is None: s = Sivu(form.website.data, form.websiteGroup.data) s.account_id = current_user.id db.session.add(s) db.session.commit() r = Sivu.query.filter_by(osoite=form.website.data).first() sivuId = r.id else: sivuId = result.id v = Visit(kuukausi=form.month.data, vuosi=form.year.data, lukumaara=form.VisitAmount.data) v.sivu_id = sivuId db.session().add(v) db.session().commit() return redirect(url_for("visit_index")) @app.route("/visits", methods=["GET"]) @login_required def visit_index(): return render_template("visits/list.html", title="Kuukauden käyntien listaus", form = ListForm()) @app.route("/result/", methods=["GET", "POST"]) @login_required def visits_result(): if request.method == 'POST': form = ListForm(request.form) stmt = text("SELECT * FROM visit, sivu WHERE visit.kuukausi = :month AND visit.vuosi = :year AND visit.sivu_id = sivu.id AND sivu.account_id = :id").params(month=form.month.data, year=form.year.data, id=current_user.id) stmt2 = text("SELECT * FROM visit, sivu WHERE visit.kuukausi = :month AND visit.vuosi = :year AND visit.sivu_id = sivu.id AND sivu.account_id = :id").params(month=form.month.data, year=form.year2.data, id=current_user.id) result = db.engine.execute(stmt) result2 = db.engine.execute(stmt2) return render_template("visits/result.html", title="Tulos", visits=result, visits2=result2) else: return render_template("visits/result.html", title="Tulos") ``` #### File: application/yhteenveto/views.py ```python from application import app, db from flask import redirect, render_template, request, url_for from application.visits.models import Visit from application.yhteenveto.forms import InYearForm, InMonthForm from flask_login.utils import login_required, current_user from application.sivu.models import Sivu from sqlalchemy.sql import text @app.route("/yhteenveto/alku/", methods=["GET"]) @login_required def yhteenveto_alku(): return render_template("yhteenveto/valinta.html", title="Yhteenvedot") @app.route("/yhteenveto/vuodessa/", methods=["GET", "POST"]) @login_required def yhteenveto_vuodessa(): if request.method == 'POST': form = InYearForm(request.form) stmt = text("SELECT sivu.osoite, SUM(visit.lukumaara) AS maara FROM sivu, visit WHERE visit.vuosi = :vuosi AND visit.sivu_id = sivu.id AND sivu.account_id = :id GROUP BY sivu.osoite").params(vuosi=form.year.data, id=current_user.id) result = db.engine.execute(stmt) return render_template("yhteenveto/vuodessa.html", title="Käyntejä sivuilla vuodessa", vuosi=result) else: return render_template("yhteenveto/kyselyvuodessa.html", title="Käyntejä sivuilla vuodessa", form = InYearForm()) @app.route("/yhteenveto/ryhma/", methods=["GET", "POST"]) @login_required def yhteenveto_ryhmatulos(): if request.method == 'POST': form = InMonthForm(request.form) stmt = text("SELECT sivu.ryhma AS ryhma, SUM(visit.lukumaara) AS maara FROM sivu, visit WHERE visit.vuosi = :vuosi AND visit.kuukausi = :kuukausi AND visit.sivu_id = sivu.id AND sivu.account_id = :id GROUP BY sivu.ryhma").params(vuosi=form.year.data, kuukausi=form.month.data, id=current_user.id) result = db.engine.execute(stmt) return render_template("yhteenveto/ryhmassa.html", title="Käyntejä sivuryhmissä vuodessa", vuosi=result) else: return render_template("yhteenveto/kyselyryhmassa.html", title="Vuoden tilasto", form = InMonthForm()) @app.route("/yhteenveto/selaimia/", methods=["GET", "POST"]) @login_required def yhteenveto_selaimia(): if request.method == 'POST': form = InYearForm(request.form) stmt = text("SELECT selain.selain AS nimi, SUM(selain.kaynnit) AS maara FROM sivu, selain, kavijat WHERE selain.kavijat_id = kavijat.id AND kavijat.vuosi = :vuosi AND kavijat.sivu_id = sivu.id AND sivu.account_id = :id GROUP BY selain.selain").params(vuosi=form.year.data, id=current_user.id) result = db.engine.execute(stmt) return render_template("yhteenveto/selaimia.html", title="Selaimien yhteenveto", selaimet=result) else: return render_template("yhteenveto/selainvuosi.html", title="Vuoden tilasto", form = InYearForm()) @app.route("/yhteenveto/kavijoita/", methods=["GET", "POST"]) @login_required def yhteenveto_kavijoita(): if request.method == 'POST': form = InYearForm(request.form) stmt = text("SELECT sivu.osoite, SUM(kavijat.kaynnit) AS maara FROM sivu, kavijat WHERE kavijat.vuosi = :vuosi AND kavijat.sivu_id = sivu.id AND sivu.account_id = :id GROUP BY sivu.osoite").params(vuosi=form.year.data, id=current_user.id) result = db.engine.execute(stmt) return render_template("yhteenveto/kavijoita.html", title="Kavijoita sivuilla vuodessa", kavijat=result) else: return render_template("yhteenveto/kavijavuosi.html", title="Vuoden tilasto", form = InYearForm()) ```
{ "source": "JHON-EDV/chime", "score": 3 }
#### File: src/penn_chime/charts.py ```python from altair import Chart # type: ignore import pandas as pd # type: ignore import numpy as np # type: ignore from .parameters import Parameters from .utils import add_date_column def new_admissions_chart( alt, projection_admits: pd.DataFrame, parameters: Parameters, as_date: bool = False, ) -> Chart: """docstring""" plot_projection_days = parameters.n_days - 10 max_y_axis = parameters.max_y_axis y_scale = alt.Scale() if max_y_axis is not None: y_scale.domain = (0, max_y_axis) y_scale.clamp = True tooltip_dict = {False: "day", True: "date:T"} if as_date: projection_admits = add_date_column(projection_admits) x_kwargs = {"shorthand": "date:T", "title": "Date"} else: x_kwargs = {"shorthand": "day", "title": "Days from today"} return ( alt.Chart(projection_admits.head(plot_projection_days)) .transform_fold(fold=["Hospitalized", "ICU", "Ventilated"]) .mark_line(point=True) .encode( x=alt.X(**x_kwargs), y=alt.Y("value:Q", title="Daily admissions", scale=y_scale), color="key:N", tooltip=[ tooltip_dict[as_date], alt.Tooltip("value:Q", format=".0f", title="Admissions"), "key:N", ], ) .interactive() ) def admitted_patients_chart( alt, census: pd.DataFrame, parameters: Parameters, as_date: bool = False ) -> Chart: """docstring""" plot_projection_days = parameters.n_days - 10 max_y_axis = parameters.max_y_axis if as_date: census = add_date_column(census) x_kwargs = {"shorthand": "date:T", "title": "Date"} idx = "date:T" else: x_kwargs ={"shorthand": "day", "title": "Days from today"} idx = "day" y_scale = alt.Scale() if max_y_axis: y_scale.domain = (0, max_y_axis) y_scale.clamp = True return ( alt.Chart(census.head(plot_projection_days)) .transform_fold(fold=["Hospitalized Census", "ICU Census", "Ventilated Census"]) .mark_line(point=True) .encode( x=alt.X(**x_kwargs), y=alt.Y("value:Q", title="Census", scale=y_scale), color="key:N", tooltip=[ idx, alt.Tooltip("value:Q", format=".0f", title="Census"), "key:N", ], ) .interactive() ) def additional_projections_chart( alt, i: np.ndarray, r: np.ndarray, as_date: bool = False, max_y_axis: int = None ) -> Chart: dat = pd.DataFrame({"Infected": i, "Recovered": r}) dat["day"] = dat.index if as_date: dat = add_date_column(dat) x_kwargs = {"shorthand": "date:T", "title": "Date"} else: x_kwargs = {"shorthand": "day", "title": "Days from today"} y_scale = alt.Scale() if max_y_axis is not None: y_scale.domain = (0, max_y_axis) y_scale.clamp = True return ( alt.Chart(dat) .transform_fold(fold=["Infected", "Recovered"]) .mark_line() .encode( x=alt.X(**x_kwargs), y=alt.Y("value:Q", title="Case Volume", scale=y_scale), tooltip=["key:N", "value:Q"], color="key:N", ) .interactive() ) ``` #### File: src/penn_chime/utils.py ```python from collections import namedtuple from datetime import datetime, timedelta from typing import Optional import numpy as np # type: ignore import pandas as pd # type: ignore # from .parameters import Parameters # (0.02, 7) is 2%, 7 days # be sure to multiply by 100 when using as a default to the pct widgets! RateLos = namedtuple('RateLos', ('rate', 'length_of_stay')) def add_date_column( df: pd.DataFrame, drop_day_column: bool = False, date_format: Optional[str] = None, ) -> pd.DataFrame: """Copies input data frame and converts "day" column to "date" column Assumes that day=0 is today and allocates dates for each integer day. Day range can must not be continous. Columns will be organized as original frame with difference that date columns come first. Arguments: df: The data frame to convert. drop_day_column: If true, the returned data frame will not have a day column. date_format: If given, converts date_time objetcts to string format specified. Raises: KeyError: if "day" column not in df ValueError: if "day" column is not of type int """ if not "day" in df: raise KeyError("Input data frame for converting dates has no 'day column'.") if not pd.api.types.is_integer_dtype(df.day): raise KeyError("Column 'day' for dates converting data frame is not integer.") df = df.copy() # Prepare columns for sorting non_date_columns = [col for col in df.columns if not col == "day"] # Allocate (day) continous range for dates n_days = int(df.day.max()) start = datetime.now() end = start + timedelta(days=n_days + 1) # And pick dates present in frame dates = pd.date_range(start=start, end=end, freq="D")[df.day.tolist()] if date_format is not None: dates = dates.strftime(date_format) df["date"] = dates if drop_day_column: df.pop("day") date_columns = ["date"] else: date_columns = ["day", "date"] # sort columns df = df[date_columns + non_date_columns] return df ``` #### File: chime/tests/test_app.py ```python import pytest # type: ignore import pandas as pd # type: ignore import numpy as np # type: ignore import altair as alt # type: ignore from src.penn_chime.charts import new_admissions_chart, admitted_patients_chart from src.penn_chime.models import sir, sim_sir from src.penn_chime.parameters import Parameters from src.penn_chime.presentation import display_header from src.penn_chime.settings import DEFAULTS from src.penn_chime.defaults import RateLos PARAM = Parameters( current_hospitalized=100, doubling_time=6.0, known_infected=5000, market_share=0.05, relative_contact_rate=0.15, susceptible=500000, hospitalized=RateLos(0.05, 7), icu=RateLos(0.02, 9), ventilated=RateLos(0.01, 10), n_days=60 ) # set up # we just want to verify that st _attempted_ to render the right stuff # so we store the input, and make sure that it matches what we expect class MockStreamlit: def __init__(self): self.render_store = [] self.markdown = self.just_store_instead_of_rendering self.latex = self.just_store_instead_of_rendering self.subheader = self.just_store_instead_of_rendering def just_store_instead_of_rendering(self, inp, *args, **kwargs): self.render_store.append(inp) return None def cleanup(self): """ Call this after every test, unless you intentionally want to accumulate stuff-to-render """ self.render_store = [] st = MockStreamlit() # test presentation def test_penn_logo_in_header(): penn_css = '<link rel="stylesheet" href="https://www1.pennmedicine.org/styles/shared/penn-medicine-header.css">' display_header(st, PARAM) assert len( list(filter(lambda s: penn_css in s, st.render_store)) ), "The Penn Medicine header should be printed" def test_the_rest_of_header_shows_up(): random_part_of_header = "implying an effective $R_t$ of" assert len( list(filter(lambda s: random_part_of_header in s, st.render_store)) ), "The whole header should render" st.cleanup() @pytest.mark.xfail() def test_header_fail(): """ Just proving to myself that these tests work """ some_garbage = "ajskhlaeHFPIQONOI8QH34TRNAOP8ESYAW4" display_header(st, PARAM) assert len( list(filter(lambda s: some_garbage in s, st.render_store)) ), "This should fail" st.cleanup() def test_defaults_repr(): """ Test DEFAULTS.repr """ repr(DEFAULTS) # Test the math def test_sir(): """ Someone who is good at testing, help """ sir_test = sir(100, 1, 0, 0.2, 0.5, 1) assert sir_test == ( 0.7920792079207921, 0.20297029702970298, 0.0049504950495049506, ), "This contrived example should work" assert isinstance(sir_test, tuple) for v in sir_test: assert isinstance(v, float) assert v >= 0 # Certain things should *not* work with pytest.raises(TypeError) as error: sir("S", 1, 0, 0.2, 0.5, 1) assert str(error.value) == "can't multiply sequence by non-int of type 'float'" with pytest.raises(TypeError) as error: sir(100, "I", 0, 0.2, 0.5, 1) assert str(error.value) == "can't multiply sequence by non-int of type 'float'" with pytest.raises(TypeError) as error: sir(100, 1, "R", 0.2, 0.5, 1) assert str(error.value) == "unsupported operand type(s) for +: 'float' and 'str'" with pytest.raises(TypeError) as error: sir(100, 1, 0, "beta", 0.5, 1) assert str(error.value) == "bad operand type for unary -: 'str'" with pytest.raises(TypeError) as error: sir(100, 1, 0, 0.2, "gamma", 1) assert str(error.value) == "unsupported operand type(s) for -: 'float' and 'str'" with pytest.raises(TypeError) as error: sir(100, 1, 0, 0.2, 0.5, "N") assert str(error.value) == "unsupported operand type(s) for /: 'str' and 'float'" # Zeros across the board should fail with pytest.raises(ZeroDivisionError): sir(0, 0, 0, 0, 0, 0) def test_sim_sir(): """ Rounding to move fast past decimal place issues """ sim_sir_test = sim_sir(5, 6, 7, 0.1, 0.1, 40) s, i, r = sim_sir_test assert round(s[0], 0) == 5 assert round(i[0], 2) == 6 assert round(r[0], 0) == 7 assert round(s[-1], 2) == 0 assert round(i[-1], 2) == 0.18 assert round(r[-1], 2) == 17.82 assert isinstance(sim_sir_test, tuple) for v in sim_sir_test: assert isinstance(v, np.ndarray) def test_new_admissions_chart(): projection_admits = pd.read_csv('tests/projection_admits.csv') chart = new_admissions_chart(alt, projection_admits, PARAM) assert isinstance(chart, alt.Chart) assert chart.data.iloc[1].hosp < 1 assert round(chart.data.iloc[40].icu, 0) == 25 # test fx call with no params with pytest.raises(TypeError): new_admissions_chart() empty_chart = new_admissions_chart(alt, pd.DataFrame(), PARAM) assert empty_chart.data.empty def test_admitted_patients_chart(): census_df = pd.read_csv('tests/census_df.csv') chart = admitted_patients_chart(alt, census_df, PARAM) assert isinstance(chart, alt.Chart) assert chart.data.iloc[1].hosp == 1 assert chart.data.iloc[49].vent == 203 # test fx call with no params with pytest.raises(TypeError): admitted_patients_chart() empty_chart = admitted_patients_chart(alt, pd.DataFrame(), PARAM) assert empty_chart.data.empty def test_parameters(): param = Parameters( current_hospitalized=100, doubling_time=6.0, known_infected=5000, market_share=0.05, relative_contact_rate=0.15, susceptible=500000, hospitalized=RateLos(0.05, 7), icu=RateLos(0.02, 9), ventilated=RateLos(0.01, 10), n_days=60 ) # test the Parameters # hospitalized, icu, ventilated assert param.rates == (0.05, 0.02, 0.01) assert param.lengths_of_stay == (7, 9, 10) assert param.infected == 40000.0 assert isinstance(param.infected, float) # based off note in models.py # test the class-calculated attributes assert param.detection_probability == 0.125 assert param.intrinsic_growth_rate == 0.12246204830937302 assert param.beta == 3.2961405355450555e-07 assert param.r_t == 2.307298374881539 assert param.r_naught == 2.7144686763312222 assert param.doubling_time_t == 7.764405988534983 # test the things n_days creates, which in turn tests sim_sir, sir, and get_dispositions assert len(param.susceptible_v) == len(param.infected_v) == len(param.recovered_v) == param.n_days + 1 == 61 assert param.susceptible_v[0] == 500000.0 assert round(param.susceptible_v[-1], 0) == 67202 assert round(param.infected_v[1], 0) == 43735 assert round(param.recovered_v[30], 0) == 224048 assert [d[0] for d in param.dispositions] == [100.0, 40.0, 20.0] assert [round(d[-1], 0) for d in param.dispositions] == [115.0, 46.0, 23.0] # change n_days, make sure it cascades param.n_days = 2 assert len(param.susceptible_v) == len(param.infected_v) == len(param.recovered_v) == param.n_days + 1 == 3 ```
{ "source": "JhoneM/DynamicUrl", "score": 3 }
#### File: DynamicUrl/dynamic_url/url.py ```python from .functions import Querys class Url: def get_url(self, headers, db): """Check the appoimentID from the url Match with the database to validate if exist Args: headers ([type]): [Headers Objec] Returns: url [string]: [url validate] """ try: url_origin = headers.get("Origin", False) appointment_id = url_origin.split("-")[2] query_functions = Querys(appointment_id) query, job_config = query_functions.from_telehealth_room_url() df = db.query(query, job_config=job_config).to_dataframe() url = df.url[0] if not df.empty else "" except IndexError: url = "" except AttributeError: url = "" return url ```
{ "source": "JhonEmmanuelTorres/cryptography-unal", "score": 3 }
#### File: homeworks/number 4/des.py ```python from base64 import standard_b64encode, standard_b64decode from os import system from lib.pyDes import * from sys import stdin # required functions def readFile(path): with open(path, mode='rb') as file: data = file.read() return data def writeFile(path, data): with open(path, mode='wb') as file: file.write(data) def encrypt(message, key): return des(key, CBC, b"\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5).encrypt(message) def decrypt(cipherImage, key): return des(key, CBC, b"\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5).decrypt(cipherImage, padmode=PAD_PKCS5) # required input data print "Enter the key (8 bytes):\t", key = stdin.readline().strip() print "Enter name of the image:\t", inputImage = stdin.readline().strip() print "Enter name output image:\t", outputImage = stdin.readline().strip() # validation if len(key) != 8: print "Key invalid" exit() # homework # read bits message = readFile(inputImage) # cipher image imageCipher = encrypt(message, key) # encode in base 64 imageCipher64 = standard_b64encode(imageCipher) # show representation print "The message in base 64 is:\t" + imageCipher64 # decode in base 64 imageCipher = standard_b64decode(imageCipher64) # write image writeFile(outputImage, decrypt(imageCipher, key)) # open image system("xdg-open " + outputImage) ```
{ "source": "JhonFrederick/django-attributesjsonfield", "score": 2 }
#### File: attributesjsonfield/forms/fields.py ```python import django from django.forms import MultiValueField, CharField from attributesjsonfield.widgets import AttributesJSONWidget class AttributesJSONField(MultiValueField): """ """ widget = AttributesJSONWidget def __init__(self, *args, attributes=None, require_all_fields=False, **kwargs): self.attributes = attributes self.clean_attributes = [] if self.attributes: for attr in self.attributes: is_dict = type(attr) == dict field = attr["field"] if is_dict else attr if is_dict: label = attr.get("verbose_name", field) required = attr.get("required", True) else: label = field required = True self.clean_attributes.append( { "field": field, "label": label, "name": field, "choices": attr.get("choices") if is_dict else None, "required": required, "default": attr.get("default") if is_dict else None, "data_type": attr.get("data_type") if is_dict else None, } ) else: self.clean_attributes = None fields = [ CharField( label=attr["label"], initial=attr.get("default"), required=attr["required"], ) for attr in self.clean_attributes ] self.widget = AttributesJSONWidget(attributes_json=self.clean_attributes) if django.VERSION >= (3, 1): # MultiValueField does not receive as kwargs the encoder or decoder kwargs.pop("encoder") kwargs.pop("decoder") super().__init__(fields=fields, require_all_fields=require_all_fields, **kwargs) def compress(self, data_list): if data_list: data = {} for i, attribute in enumerate(self.clean_attributes): data[attribute["name"]] = data_list[i] return data return None ```
{ "source": "Jhong098/SignSense", "score": 2 }
#### File: Jhong098/SignSense/client.py ```python import socket from sys import argv import cv2 import mediapipe as mp import itertools import numpy as np import time import sys from multiprocessing import Queue, Process from queue import Empty import atexit from math import ceil from collections import deque sys.path.insert(1, './tools') import holistic, common, encrypt PRINT_FREQ = 30 SERVER_ADDR = "172.16.31.10" # SERVER_ADDR = "127.0.0.1" # Server IP address and Port number serverAddressPort = (SERVER_ADDR, 9999) APP_NAME = "SignSense" # send landmarks and receive predictions from server continuously def server(landmark_queue, prediction_queue): common.print_debug_banner("STARTED SERVER") UDPClientSocket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) UDPClientSocket.setblocking(0) while True: try: landmark = landmark_queue.get() encrypted_landmark = encrypt.encrypt_chacha(landmark) # Send message to server using created UDP socket UDPClientSocket.sendto(encrypted_landmark, serverAddressPort) # Receive message from the server msgFromServer = UDPClientSocket.recvfrom(2048)[0] raw_data = encrypt.decrypt_chacha(msgFromServer) prediction_queue.put(raw_data) except encrypt.DecryptionError: print(f"tried to decrypt {msgFromServer}") except socket.error as e: # print(f"SOCKET EXCEPTION: {e}") pass except Exception as e: print(f"SERVER EXCEPTION: {e}") pass def video_loop(landmark_queue, prediction_queue, use_holistic=False): cap = cv2.VideoCapture(0) fourcc = cv2.VideoWriter_fourcc(*'mp4v') cap.set(cv2.CAP_PROP_FOURCC, fourcc) if not cap.isOpened(): print("Error opening Camera") fps = cap.get(cv2.CAP_PROP_FPS) print("Webcam FPS = {}".format(fps)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) mp_drawing = mp.solutions.drawing_utils timestamp = None started = False predicted = None initialized = False delay = 0 pred_history = deque([" "]*5, 5) pdecay = time.time() print("starting image cap") for image, results in holistic.process_capture(cap, use_holistic): window_state = cv2.getWindowProperty(APP_NAME, 0) if started and window_state == -1: print("QUITTING") break started = True newtime = time.time() if timestamp is not None: diff = newtime - timestamp # Uncomment to print time between each frame # print(diff) timestamp = newtime row = holistic.to_landmark_row(results, use_holistic) landmark_str = ','.join(np.array(row).astype(np.str)) # send comma delimited str of flattened landmarks in bytes to server try: landmark_queue.put_nowait(landmark_str) except Exception as e: print(e) try: out = prediction_queue.get_nowait() # toggle the server status flag on first message received if out and not initialized: initialized = True common.print_debug_banner("SENDING ACK TO SERVER FOR CONNECTION") # send a one-time ACK to toggle server connected status landmark_queue.put_nowait("ACK") if delay >= PRINT_FREQ: if out and out != pred_history[-1] and out != "None": pred_history.append(out) pdecay = time.time() delay = 0 except: pass delay += 1 if time.time() - pdecay > 7: pred_history = deque([" "]*5, 5) holistic.draw_landmarks(image, results, use_holistic, ' '.join(pred_history)) if initialized: cv2.circle(image,(20,450), 10, (0,255,0), -1) cv2.putText(image,'online',(40,458), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),2,cv2.LINE_AA) cv2.imshow(APP_NAME, image) else: cv2.circle(image,(20,450), 10, (0,0,255), -1) cv2.putText(image,'connecting',(40,458), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),2,cv2.LINE_AA) cv2.imshow(APP_NAME, image) cap.release() cv2.destroyAllWindows() # send termination message to server landmark_queue.put("END") if __name__ == "__main__": # queue containing the returned predictions from the server landmark_queue, prediction_queue = Queue(), Queue() # start separate process for the webcam video GUI server_p = Process(target=server, args=(landmark_queue, prediction_queue, )) server_p.daemon = True atexit.register(common.exit_handler, server_p) server_p.start() video_p = Process(target=video_loop, args=(landmark_queue, prediction_queue, )) video_p.daemon = True atexit.register(common.exit_handler, video_p) video_p.start() video_p.join() ``` #### File: Jhong098/SignSense/server.py ```python import socket from pathlib import Path from sys import path, argv path.insert(1, './tools') import common, encrypt from holistic import normalize_features from multiprocessing import Queue, Process, Manager import threading from ctypes import c_char_p from queue import Empty import atexit from math import ceil import numpy as np import time DEBUG = True LOG = False ENCRYPT = True GPU = True # Create a tuple with IP Address and Port Number SERVER_ADDR = ("0.0.0.0", common.SERVER_RECV_PORT) BLACKLIST_ADDRS = [('192.168.1.68', 9999)] # local router heartbeat thing # current working directory CURRENT_WORKING_DIRECTORY = Path().absolute() DEFAULT_MODEL = list((CURRENT_WORKING_DIRECTORY/'models').iterdir())[-1] LABELS = common.get_labels('data/') PRINT_FREQ = 30 PRED_FREQ = 5 MAX_QUEUE_LEN = 25 CONFIDENCE_THRESHOLD = 0.6 POLL_INTERVAL = 30 class MissingModelException(Exception): pass def array_to_class(out, addr, connected): prediction = np.argmax(out) # send confident prediction if out[prediction] > CONFIDENCE_THRESHOLD: print(f"{LABELS[prediction]} {out[prediction]*100} - {addr}") tag = LABELS[prediction] if not connected: tag = "None" if tag is None else tag return encrypt.encrypt_chacha(tag) if ENCRYPT else tag.encode() # send back prediction if it is a valid class or if the client hasn't connected if tag is not None: ret_val = encrypt.encrypt_chacha(tag) if ENCRYPT else tag.encode() return ret_val else: print("None ({} {}% Below threshold)".format( LABELS[prediction], out[prediction]*100)) # TODO: store landmarks based on the client to handle multiple clients class LandmarkReceiver(common.UDPRequestHandler): def __init__(self, **kwargs): super().__init__() self.__dict__.update(kwargs) self.CLIENT_TIMEOUT = 30 # time allowed between messages self.client_to_process = {} self.manager = Manager() self.client_to_last_msg = self.manager.dict() self.client_to_f_q = {} self.client_to_p_q = {} self.poll_connections() self.cleaning_process = None self.client_to_connected = {} def periodic_task(interval, times = -1): def outer_wrap(function): def wrap(*args, **kwargs): stop = threading.Event() def inner_wrap(): i = 0 while i != times and not stop.isSet(): stop.wait(interval) function(*args, **kwargs) i += 1 t = threading.Timer(0, inner_wrap) t.daemon = True t.start() return stop return wrap return outer_wrap def cleanup_client(self, addr): common.print_debug_banner(f"CLEANING UP CLIENT: {addr}") self.cleaning_process = addr del self.client_to_f_q[addr] del self.client_to_p_q[addr] del self.client_to_last_msg[addr] del self.client_to_connected[addr] process_to_del = self.client_to_process[addr] process_to_del.terminate() common.print_debug_banner("FINISHED TERMINATING") # process_to_del.close() # common.print_debug_banner("FINISHED CLOSING") del self.client_to_process[addr] common.print_debug_banner(f"FINISHED CLEANUP") print(f"CURRENT PROCESS COUNT: {len(self.client_to_process.keys())}") self.cleaning_process = None @periodic_task(POLL_INTERVAL) def poll_connections(self): common.print_debug_banner(f"POLLING CONNECTIONS") print(f"CURRENT PROCESS COUNT: {len(self.client_to_process.keys())}") for client, last_msg_ts in self.client_to_last_msg.items(): if time.time() - last_msg_ts > self.CLIENT_TIMEOUT: common.print_debug_banner(f"FOUND OVERTIME CLIENT: {client}") self.cleanup_client(client) def start_process(self, addr): f_q = Queue(MAX_QUEUE_LEN) p_q = Queue(MAX_QUEUE_LEN) self.client_to_f_q[addr] = f_q self.client_to_p_q[addr] = p_q self.client_to_connected[addr] = False self.client_to_last_msg[addr] = time.time() predict = Process( target=predict_loop, args=( model_path, f_q, p_q, ) ) self.client_to_process[addr] = predict atexit.register(common.exit_handler, predict) predict.daemon = True predict.start() print(f"started new predict process for {addr}") def datagram_received(self, data, addr): if addr is None: return if addr in BLACKLIST_ADDRS: common.print_debug_banner(f"BLOCKED {addr}") return # new client connected if addr not in self.client_to_f_q and addr != self.cleaning_process: self.start_process(addr) return self.client_to_last_msg[addr] = time.time() # Receive and print the datagram received from client try: if ENCRYPT: data = encrypt.decrypt_chacha(data) # received termination signal from client if len(data) < 4: if data == "END": common.print_debug_banner(f"RECEIVED 'END' FROM {addr}") self.client_to_f_q[addr].put("END") self.cleanup_client(addr) elif data == "ACK": common.print_debug_banner(f"RECEIVED 'ACK' FROM {addr}") self.client_to_connected[addr] = True return landmark_arr = np.array([float(i.strip()) for i in data.split(",")]) normalized_data = normalize_features(landmark_arr) self.client_to_f_q[addr].put_nowait(normalized_data) pred = self.client_to_p_q[addr].get_nowait() tag = array_to_class(pred, addr, self.client_to_connected[addr]) self.transport.sendto(tag, addr) except encrypt.DecryptionError: print(f"tried to decrypt {data}") except Exception as e: # print(e) pass def predict_loop(model_path, f_q, p_q): # force predict to run on CPU if not GPU: import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf import keras from train import TIMESTEPS, init_gpu if LOG: import timeit import logging LOG_FILE_NAME = "logs/predict_log" logging.basicConfig( level=logging.DEBUG, filemode="a+", filename=LOG_FILE_NAME, format="%(message)s" ) if GPU: logging.info(f"\n-----USING GPU------") else: logging.info(f"\n-----USING CPU------") times = [] time_count = 0 TIME_FREQ = 60 def slide(w, new): # Discard oldest frame and append new frame to data window w[:-1] = w[1:] w[-1] = new return w if GPU: init_gpu() model = keras.models.load_model(model_path) delay = 0 window = None results = None results_len = ceil(PRINT_FREQ / PRED_FREQ) if DEBUG: common.print_debug_banner("STARTED PREDICTION") while True: row = f_q.get() if len(row) == 3 and row == "END": break if window is None: window = np.zeros((TIMESTEPS, len(row))) window = slide(window, row) if delay >= PRED_FREQ: out = model(np.array([window])) if results is None: results = np.zeros((results_len, len(LABELS))) results = slide(results, out) pred = np.mean(results, axis=0) p_q.put(pred) delay = 0 delay += 1 common.print_debug_banner("ENDING PREDICT PROCESS") def live_predict(model_path, use_holistic): # launch UDP server to receive landmark features common.start_server( LandmarkReceiver(), SERVER_ADDR ) if __name__ == "__main__": if len(argv) < 2: model_path = CURRENT_WORKING_DIRECTORY/'models'/DEFAULT_MODEL if not model_path.exists(): raise MissingModelException("NO MODEL CAN BE USED!") else: model_path = argv[1] if DEBUG: common.print_debug_banner(f"using model {model_path}") live_predict(model_path, False) ``` #### File: SignSense/tools/encrypt.py ```python from Crypto.Cipher import ChaCha20 from Crypto.Random import get_random_bytes SECRET_KEY = '88ab02664ae3197ec531da8bd7ea0b5a'.encode() class DecryptionError(Exception): pass # takes a string and encrypts into a bytearray def encrypt_chacha(text): nonce_rfc7539 = get_random_bytes(12) cipher = ChaCha20.new(key=SECRET_KEY, nonce=nonce_rfc7539) ciphertext = cipher.encrypt(text.encode()) nonce = cipher.nonce ct = ciphertext result = bytearray(nonce + ct) return result # takes bytearray and decrypts into string def decrypt_chacha(encrypted_data): try: b64 = bytearray(encrypted_data) nonce = b64[:12] ciphertext = b64[12:] cipher = ChaCha20.new(key=SECRET_KEY, nonce=nonce) plaintext = cipher.decrypt(ciphertext).decode() return plaintext except: raise DecryptionError def test(): text = "TESTING" encrypted = encrypt_chacha(text) print(encrypted) decrypted = decrypt_chacha(encrypted) print(decrypted) assert(text == decrypted) # test() ``` #### File: SignSense/tools/extract_frames_from_videos.py ```python import cv2 import os from os.path import join, exists from tqdm import tqdm import numpy as np hc = [] def convert(gesture_folder, target_folder): rootPath = os.getcwd() majorData = os.path.abspath(target_folder) print(majorData) if not exists(majorData): os.makedirs(majorData) gesture_folder = os.path.abspath(gesture_folder) print(gesture_folder) os.chdir(gesture_folder) gestures = os.listdir(os.getcwd()) print("Source Directory containing gestures: %s" % (gesture_folder)) print("Destination Directory containing frames: %s\n" % (majorData)) for gesture in tqdm(gestures, unit='actions', ascii=True): gesture_path = os.path.join(gesture_folder, gesture) os.chdir(gesture_path) gesture_frames_path = os.path.join(majorData, gesture) if not os.path.exists(gesture_frames_path): os.makedirs(gesture_frames_path) videos = os.listdir(os.getcwd()) videos = [video for video in videos if(os.path.isfile(video))] for video in tqdm(videos, unit='videos', ascii=True): name = os.path.abspath(video) cap = cv2.VideoCapture(name) # capturing input video frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) lastFrame = None os.chdir(gesture_frames_path) count = 0 # assumption only first 200 frames are important while count < 201: ret, frame = cap.read() # extract frame if ret is False: break framename = os.path.splitext(video)[0] framename = framename + "_frame_" + str(count) + ".jpeg" hc.append( [join(gesture_frames_path, framename), gesture, frameCount]) if not os.path.exists(framename): lastFrame = frame cv2.imwrite(framename, frame) count += 1 os.chdir(gesture_path) cap.release() cv2.destroyAllWindows() os.chdir(rootPath) # convert("test_data/", "frames") # print(hc) ``` #### File: SignSense/tools/live_predict.py ```python from sys import argv import cv2 import mediapipe as mp import itertools import numpy as np import time from collections import deque from multiprocessing import Queue, Process from queue import Empty import atexit from math import ceil from pathlib import Path import holistic import common USE_HOLISTIC = False PRINT_FREQ = 30 PRED_FREQ = 5 assert PRINT_FREQ % PRED_FREQ == 0 LABELS = common.get_labels('data/') def video_loop(feature_q, prediction_q, use_holistic): cap = cv2.VideoCapture(0) fourcc = cv2.VideoWriter_fourcc(*'mp4v') cap.set(cv2.CAP_PROP_FOURCC, fourcc) if not cap.isOpened(): print("Error opening Camera") fps = cap.get(cv2.CAP_PROP_FPS) print("Webcam FPS = {}".format(fps)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) mp_drawing = mp.solutions.drawing_utils print("Awaiting start signal from predict") prediction_q.get() timestamp = None delay = 0 tag = deque([" "]*5, 5) pdecay = time.time() print("starting image cap") for image, results in holistic.process_capture(cap, use_holistic): newtime = time.time() if timestamp is not None: diff = newtime - timestamp # Uncomment to print time between each frame # print(diff) timestamp = newtime raw_flat_row = holistic.to_landmark_row(results, use_holistic) normalized_row = holistic.normalize_features(raw_flat_row) feature_q.put(np.array(normalized_row)) try: out = prediction_q.get_nowait() prediction = np.argmax(out) if delay >= PRINT_FREQ: if out[prediction] > .6: print("{} {}%".format( LABELS[prediction], out[prediction]*100)) if LABELS[prediction] not in [tag[-1], None, "None"]: tag.append(LABELS[prediction]) pdecay = time.time() else: print("None ({} {}% Below threshold)".format( LABELS[prediction], out[prediction]*100)) delay = 0 if feature_q.qsize() > 5: print( "Warning: Model feature queue overloaded - size = {}".format(feature_q.qsize())) print("--> ", end='') for i, label in enumerate(out): print("{}:{:.2f}% | ".format(LABELS[i], label*100), end='') print("\n") except Empty: pass delay += 1 if time.time() - pdecay > 7: tag = deque([" "]*5, 5) holistic.draw_landmarks(image, results, use_holistic, ' '.join(tag)) cv2.imshow("SignSense", image) def predict_loop(feature_q, prediction_q): import tensorflow as tf import keras import train print("Starting prediction init") train.init_gpu() model = keras.models.load_model(model_path) print("Sending ready to video loop") prediction_q.put("start") delay = 0 window = None results = None results_len = ceil(PRINT_FREQ / PRED_FREQ) print("Starting prediction") while True: row = feature_q.get() if window is None: window = np.zeros((train.TIMESTEPS, len(row))) # Discard oldest frame and append new frame to data window window[:-1] = window[1:] window[-1] = row if delay >= PRED_FREQ: out = model(np.array([window])) if results is None: results = np.zeros((results_len, len(LABELS))) results[:-1] = results[1:] results[-1] = out prediction_q.put(np.mean(results, axis=0)) delay = 0 delay += 1 def live_predict(model_path, use_holistic): f_q = Queue() p_q = Queue() p = Process(target=video_loop, args=(f_q, p_q, use_holistic,)) atexit.register(exit_handler, p) p.start() predict_loop(f_q, p_q) def exit_handler(p): try: p.kill() except: print("Couldn't kill video_loop") if __name__ == "__main__": model_path = argv[1] # Use MP Hands only live_predict(model_path, USE_HOLISTIC) ```
{ "source": "jhong16/HLD-TT", "score": 3 }
#### File: src/tests/edit_verify_test.py ```python from src.cli import TreeShell import unittest class TestVerificationEdits(unittest.TestCase): def test_undo_delete_branch(self): """ Testing undo and redo interaction with delete_branch """ print("\n\nUndo Test branch delete=======================================================") shell = TreeShell() shell.reset() shell.do_add_root_formula("or(a,b)") shell.do_branch("1") shell.do_go_to("2") shell.do_add_formula("a") shell.do_go_to("3") shell.do_add_formula("b") shell.do_mark_parent("3 1") shell.do_go_to("1") shell.do_delete_branch("") self.assertEqual(len(shell.tree.formulas[1].children), 0) self.assertEqual(len(shell.current_node.children), 0) shell.do_undo("") print(shell.tree.formulas) self.assertEqual(len(shell.tree.formulas[1].children), 1) self.assertEqual(len(shell.current_node.children), 2) def test_checkmark_edits(self): """ Testing undo and redo interaction with checkmark system """ print("\n\nUndo Test checkmark edit1=======================================================") shell = TreeShell() shell.reset() shell.do_add_root_formula("or(a,b)") shell.do_branch("1") shell.do_go_to("2") shell.do_add_formula("a") shell.do_mark_parent("2 1") shell.do_go_to("3") shell.do_add_formula("b") shell.do_mark_parent("3 1") shell.do_checkmark("1") self.assertTrue(shell.tree.formulas[1].checkmarked) #Using undo and redo on checkmark shell.do_undo(None) self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_redo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) shell.do_delete_formula("2") self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_undo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) shell.do_redo(None) self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_undo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) def test_checkmark_edits2(self): """ Testing delete_formula interaction with checkmark system """ print("\n\nUndo Test checkmark edits 2=======================================================") shell = TreeShell() shell.reset() shell.do_add_root_formula("and(a,b)") shell.do_add_formula("a") shell.do_mark_parent("2 1") shell.do_add_formula("b") shell.do_mark_parent("3 1") shell.do_checkmark("1") self.assertTrue(shell.tree.formulas[1].checkmarked) #Using undo and redo on checkmark shell.do_undo(None) self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_redo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) shell.do_delete_formula("1") shell.do_undo(None) shell.do_delete_formula("2") self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_undo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) def test_BiCondition(self): print("\n\nBiconditional Test=======================================================") shell = TreeShell() shell.reset() shell.do_add_formula("iff(a,b)") shell.do_branch("1") shell.do_go_to("2") shell.do_add_formula("a") shell.do_add_formula("b") shell.do_go_to("3") shell.do_add_formula("not(a)") shell.do_add_formula("not(b)") shell.do_mark_parent("2 1") shell.do_mark_parent("3 1") shell.do_mark_parent("4 1") shell.do_mark_parent("5 1") shell.do_checkmark("1") shell.do_add_root_formula("iff(a,b)") shell.do_mark_parent("2 1") shell.do_checkmark("1") self.assertTrue(shell.tree.formulas[1].checkmark) self.assertTrue(shell.tree.formulas[2].checkmark) for i in range(1, len(shell.tree.formulas)): self.assertTrue(shell.tree.formulas[i].valid) shell.do_undo(None) self.assertFalse(shell.tree.formulas[1].checkmarked) shell.do_undo(None) for i in range(2, len(shell.tree.formulas)): self.assertFalse(shell.tree.formulas[i].valid, i) shell.do_redo(None) for i in range(2, len(shell.tree.formulas)): self.assertTrue(shell.tree.formulas[i].valid, i) shell.do_redo(None) self.assertTrue(shell.tree.formulas[1].checkmarked) shell.do_go_to("2") shell.do_mark_open("") self.assertTrue(shell.finish) if __name__ == "__main__": unittest.main() ```
{ "source": "jhong93/aws-lambda-proxy", "score": 2 }
#### File: lambda/impl/short.py ```python import boto3 import hashlib import json import os from base64 import b64encode, b64decode from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP from requests import post from shared.crypto import REQUEST_META_NONCE, RESPONSE_META_NONCE, \ REQUEST_BODY_NONCE, RESPONSE_BODY_NONCE, \ decrypt_with_gcm, encrypt_with_gcm, PRIVATE_KEY_ENV_VAR from shared.proxy import proxy_single_request, MAX_LAMBDA_BODY_SIZE DEBUG = os.environ.get('VERBOSE', False) S3_RESOURCE = boto3.resource('s3') rsaPrivKey = os.environ.get(PRIVATE_KEY_ENV_VAR, None) RSA_CIPHER = None if rsaPrivKey is not None: RSA_CIPHER = PKCS1_OAEP.new(RSA.importKey(rsaPrivKey.decode('hex'))) def decrypt_encrypted_metadata(event): encryptedKey = b64decode(event['key']) ciphertext = b64decode(event['meta64']) tag = b64decode(event['metaTag']) sessionKey = RSA_CIPHER.decrypt(encryptedKey) cleartext = decrypt_with_gcm(sessionKey, ciphertext, tag, REQUEST_META_NONCE) return sessionKey, json.loads(cleartext) def decrypt_encrypted_body(event, sessionKey, s3BucketName): if 'body64' in event: bodyData = b64decode(event['body64']) if sessionKey is not None: tag = b64decode(event['bodyTag']) requestBody = decrypt_with_gcm(sessionKey, bodyData, tag, REQUEST_BODY_NONCE) else: requestBody = bodyData elif 's3Key' in event: assert s3BucketName is not None requestBody = get_request_body_from_s3(s3BucketName, event['s3Key']) if sessionKey is not None: tag = b64decode(event['s3Tag']) requestBody = decrypt_with_gcm(sessionKey, requestBody, tag, REQUEST_BODY_NONCE) else: requestBody = None return requestBody def get_request_body_from_s3(bucketName, key): s3Object = S3_RESOURCE.Object(Bucket=bucketName, Key=key) return s3Object.get()['Body'].read() def put_response_body_in_s3(bucketName, data): md5 = hashlib.md5() md5.update(data) key = md5.hexdigest() s3Bucket = S3_RESOURCE.Bucket(bucketName) s3Bucket.put_object(Key=key, Body=data, StorageClass='REDUCED_REDUNDANCY') return key def post_message_to_server(messageServerHostAndPort, messageData): md5 = hashlib.md5() md5.update(messageData) messageId = md5.hexdigest() response = post('http://%s/%s' % (messageServerHostAndPort, messageId), headers={ 'Content-Length': str(len(messageData)), 'Content-Type': 'application/binary'}, data=messageData) if response.status_code != 204: raise IOError('Failed to post message to server: %s' % messageServerHostAndPort) return messageId def encrypt_response_metadata(metadata, sessionKey): ciphertext, tag = encrypt_with_gcm(sessionKey, json.dumps(metadata), RESPONSE_META_NONCE) return {'meta64': b64encode(ciphertext), 'metaTag': b64encode(tag)} def prepare_response_content(content, sessionKey, s3BucketName, messageServerHostAndPort): ret = {} if s3BucketName is not None and len(content) >= MAX_LAMBDA_BODY_SIZE: if sessionKey is None: s3Data = content else: s3Data, tag = encrypt_with_gcm(sessionKey, content, RESPONSE_BODY_NONCE) ret['s3Tag'] = b64encode(tag) ret['s3Key'] = put_response_body_in_s3(s3BucketName, s3Data) elif messageServerHostAndPort is not None \ and len(content) >= MAX_LAMBDA_BODY_SIZE: if sessionKey is None: messageData = content else: messageData, tag = encrypt_with_gcm(sessionKey, content, RESPONSE_BODY_NONCE) ret['messageTag'] = b64encode(tag) ret['messageId'] = post_message_to_server(messageServerHostAndPort, messageData) else: if sessionKey is not None: data, tag = encrypt_with_gcm(sessionKey, content, RESPONSE_BODY_NONCE) ret['contentTag'] = b64encode(tag) ret['content64'] = b64encode(data) else: ret['content64'] = b64encode(content) return ret def short_lived_handler(event, context): """Handle a single request and return it immediately""" if 'key' in event: sessionKey, requestMeta = decrypt_encrypted_metadata(event) else: sessionKey, requestMeta = None, event # Unpack request metadata method = requestMeta['method'] url = requestMeta['url'] requestHeaders = requestMeta['headers'] s3BucketName = requestMeta.get('s3Bucket', None) messageServerHostAndPort = requestMeta.get('messageServer', None) # Unpack request body requestBody = decrypt_encrypted_body(event, sessionKey, s3BucketName) response = proxy_single_request(method, url, requestHeaders, requestBody, gzipResult=True) ret = { 'statusCode': response.statusCode, 'headers': response.headers } if sessionKey is not None: ret = encrypt_response_metadata(ret, sessionKey) if response.content: ret.update(prepare_response_content(response.content, sessionKey, s3BucketName, messageServerHostAndPort)) return ret ``` #### File: lib/proxies/aws_short.py ```python import boto3 import hashlib import json import logging from base64 import b64encode, b64decode from random import SystemRandom from threading import Semaphore from concurrent.futures import ThreadPoolExecutor from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP from Crypto.Random import get_random_bytes from lib.proxy import AbstractRequestProxy, ProxyResponse from lib.stats import LambdaStatsModel, S3StatsModel from shared.crypto import REQUEST_META_NONCE, RESPONSE_META_NONCE, \ REQUEST_BODY_NONCE, RESPONSE_BODY_NONCE, \ decrypt_with_gcm, encrypt_with_gcm from shared.proxy import MAX_LAMBDA_BODY_SIZE logger = logging.getLogger(__name__) random = SystemRandom() SESSION_KEY_LENGTH = 16 def _get_region_from_arn(arn): elements = arn.split(':') return elements[3] class ShortLivedLambdaProxy(AbstractRequestProxy): """Invoke a lambda for each request""" def __init__(self, functions, maxParallelRequests, s3Bucket, pubKeyFile, messageServer, stats): assert not (messageServer is not None and s3Bucket is not None) self.__functions = functions self.__functionToClient = {} self.__regionToClient = {} self.__lambdaRateSemaphore = Semaphore(maxParallelRequests) self.__lambda = boto3.client('lambda') if 'lambda' not in stats.models: stats.register_model('lambda', LambdaStatsModel()) self.__lambdaStats = stats.get_model('lambda') # Use local message server to receive large payloads self.__enableMessageServer = messageServer is not None self.__messageServer = messageServer # Use s3 to send and receive large payloads self.__enableS3 = False if s3Bucket is not None: self.__s3Bucket = s3Bucket if 's3' not in stats.models: stats.register_model('s3', S3StatsModel()) self.__s3Stats = stats.get_model('s3') self.__s3 = boto3.client('s3') self.__s3DeletePool = ThreadPoolExecutor(1) self.__enableS3 = True # Enable encryption self.__enableEncryption = False if pubKeyFile is not None: with open(pubKeyFile, 'rb') as ifs: self.__rsaCipher = PKCS1_OAEP.new(RSA.importKey(ifs.read())) self.__enableEncryption = True def __get_lambda_client(self, function): """Get a lambda client from the right region""" client = self.__functionToClient.get(function) if client is not None: return client if 'arn:' not in function: # using function name in the default region client = self.__lambda self.__functionToClient[function] = client else: region = _get_region_from_arn(function) client = self.__regionToClient.get(region) if client is None: client = boto3.client('lambda', region_name=region) self.__regionToClient[region] = client self.__functionToClient[function] = client return client def __delete_object_from_s3(self, key): assert self.__enableS3 is True self.__s3.delete_object(Bucket=self.__s3Bucket, Key=key) def __load_object_from_s3(self, key): assert self.__enableS3 is True result = self.__s3.get_object(Bucket=self.__s3Bucket, Key=key) ret = result['Body'].read() self.__s3DeletePool.submit(self.__delete_object_from_s3, key) self.__s3Stats.record_get(len(ret)) return ret def __put_object_into_s3(self, data): assert self.__enableS3 is True md5 = hashlib.md5() md5.update(data) key = md5.hexdigest() s3Bucket = boto3.resource('s3').Bucket(self.__s3Bucket) s3Bucket.put_object(Key=key, Body=data, StorageClass='REDUCED_REDUNDANCY') self.__s3Stats.record_get(len(data)) return key def __prepare_request_body(self, body, sessionKey): bodyArgs = {} if len(body) <= MAX_LAMBDA_BODY_SIZE: if self.__enableEncryption: bodyData, bodyTag = encrypt_with_gcm(sessionKey, body, REQUEST_BODY_NONCE) bodyArgs['bodyTag'] = b64encode(bodyTag) bodyArgs['body64'] = b64encode(bodyData) else: bodyArgs['body64'] = b64encode(body) elif self.__enableS3: if self.__enableEncryption: assert sessionKey is not None s3Data, s3Tag = encrypt_with_gcm(sessionKey, body, REQUEST_BODY_NONCE) bodyArgs['s3Tag'] = b64encode(s3Tag) else: s3Data = body requestS3Key = self.__put_object_into_s3(s3Data) bodyArgs['s3Key'] = requestS3Key return bodyArgs def __prepare_encrypted_metadata(self, metaArgs, sessionKey): assert sessionKey is not None ciphertext, tag = encrypt_with_gcm(sessionKey, json.dumps(metaArgs), REQUEST_META_NONCE) key = self.__rsaCipher.encrypt(sessionKey) return { 'meta64': b64encode(ciphertext), 'metaTag': b64encode(tag), 'key': b64encode(key) } def __handle_encrypted_metadata(self, response, sessionKey): assert sessionKey is not None ciphertext = b64decode(response['meta64']) tag = b64decode(response['metaTag']) plaintext = decrypt_with_gcm(sessionKey, ciphertext, tag, RESPONSE_META_NONCE) return json.loads(plaintext) def __handle_response_body(self, response, sessionKey): content = b'' if 'content64' in response: content = b64decode(response['content64']) if self.__enableEncryption: assert sessionKey is not None tag = b64decode(response['contentTag']) content = decrypt_with_gcm(sessionKey, content, tag, RESPONSE_BODY_NONCE) elif 's3Key' in response: content = self.__load_object_from_s3(response['s3Key']) if self.__enableEncryption: assert sessionKey is not None tag = b64decode(response['s3Tag']) content = decrypt_with_gcm(sessionKey, content, tag, RESPONSE_BODY_NONCE) elif 'messageId' in response: content = self.__messageServer.get_message(response['messageId']).content if self.__enableEncryption: assert sessionKey is not None tag = b64decode(response['messageTag']) content = decrypt_with_gcm(sessionKey, content, tag, RESPONSE_BODY_NONCE) return content def request(self, method, url, headers, body): logger.debug('Proxying %s %s with Lamdba', method, url) sessionKey = None if self.__enableEncryption: sessionKey = get_random_bytes(SESSION_KEY_LENGTH) requestS3Key = None try: invokeArgs = { 'method': method, 'url': url, 'headers': headers, } if self.__enableS3: invokeArgs['s3Bucket'] = self.__s3Bucket if self.__enableMessageServer: invokeArgs['messageServer'] = self.__messageServer.publicHostAndPort if self.__enableEncryption: invokeArgs = self.__prepare_encrypted_metadata(invokeArgs, sessionKey) if body is not None: invokeArgs.update(self.__prepare_request_body(body, sessionKey)) function = random.choice(self.__functions) lambdaClient = self.__get_lambda_client(function) self.__lambdaRateSemaphore.acquire() try: with self.__lambdaStats.record() as billingObject: invokeResponse = lambdaClient.invoke( FunctionName=function, Payload=json.dumps(invokeArgs), LogType='Tail') billingObject.parse_log(invokeResponse['LogResult']) finally: self.__lambdaRateSemaphore.release() finally: if requestS3Key is not None: self.__s3DeletePool.submit(self.__delete_object_from_s3, requestS3Key) if invokeResponse['StatusCode'] != 200: logger.error('%s: status=%d', invokeResponse['FunctionError'], invokeResponse['StatusCode']) return ProxyResponse(statusCode=500, headers={}, content='') if 'FunctionError' in invokeResponse: logger.error('%s error: %s', invokeResponse['FunctionError'], invokeResponse['Payload'].read()) return ProxyResponse(statusCode=500, headers={}, content='') response = json.loads(invokeResponse['Payload'].read()) if self.__enableEncryption: responseMeta = (self.__handle_encrypted_metadata(response, sessionKey)) statusCode = responseMeta['statusCode'] headers = responseMeta['headers'] else: statusCode = response['statusCode'] headers = response['headers'] content = self.__handle_response_body(response, sessionKey) return ProxyResponse(statusCode=statusCode, headers=headers, content=content) ``` #### File: lib/proxies/aws_stream.py ```python import boto3 import json import logging from random import SystemRandom from threading import Semaphore from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP from lib.proxy import AbstractStreamProxy from lib.stats import LambdaStatsModel logger = logging.getLogger(__name__) random = SystemRandom() def _get_region_from_arn(arn): elements = arn.split(':') return elements[3] class StreamLambdaProxy(AbstractStreamProxy): """Invoke a lambda for each connection""" class Connection(AbstractStreamProxy.Connection): def __init__(self, host, port): self.host = host self.port = port def close(self): pass def __str__(self): return self.host + ':' + self.port def __init__(self, functions, maxParallelRequests, pubKeyFile, streamServer, stats, maxIdleTimeout=1): self.__connIdleTimeout = maxIdleTimeout self.__functions = functions self.__functionToClient = {} self.__regionToClient = {} self.__lambdaRateSemaphore = Semaphore(maxParallelRequests) self.__lambda = boto3.client('lambda') if 'lambda' not in stats.models: stats.register_model('lambda', LambdaStatsModel()) self.__lambdaStats = stats.get_model('lambda') self.__streamServer = streamServer # Enable encryption self.__enableEncryption = False if pubKeyFile is not None: with open(pubKeyFile, 'rb') as ifs: self.__rsaCipher = PKCS1_OAEP.new(RSA.importKey(ifs.read())) self.__enableEncryption = True def __get_lambda_client(self, function): """Get a lambda client from the right region""" client = self.__functionToClient.get(function) if client is not None: return client if 'arn:' not in function: # using function name in the default region client = self.__lambda self.__functionToClient[function] = client else: region = _get_region_from_arn(function) client = self.__regionToClient.get(region) if client is None: client = boto3.client('lambda', region_name=region) self.__regionToClient[region] = client self.__functionToClient[function] = client return client def connect(self, host, port): return StreamLambdaProxy.Connection(host, port) def stream(self, cliSock, servInfo): assert isinstance(servInfo, StreamLambdaProxy.Connection) socketId = '%016x' % random.getrandbits(128) invokeArgs = { 'stream': True, 'socketId': socketId, 'streamServer': self.__streamServer.publicHostAndPort, 'host': servInfo.host, 'port': int(servInfo.port), 'idleTimeout': self.__connIdleTimeout } function = random.choice(self.__functions) lambdaClient = self.__get_lambda_client(function) self.__lambdaRateSemaphore.acquire() try: self.__streamServer.take_ownership_of_socket(socketId, cliSock, self.__connIdleTimeout) with self.__lambdaStats.record() as billingObject: invokeResponse = lambdaClient.invoke( FunctionName=function, Payload=json.dumps(invokeArgs), LogType='Tail') billingObject.parse_log(invokeResponse['LogResult']) finally: self.__lambdaRateSemaphore.release() if invokeResponse['StatusCode'] != 200: logger.error('%s: status=%d', invokeResponse['FunctionError'], invokeResponse['StatusCode']) if 'FunctionError' in invokeResponse: logger.error('%s error: %s', invokeResponse['FunctionError'], invokeResponse['Payload'].read()) ``` #### File: aws-lambda-proxy/lib/workers.py ```python import atexit import json import logging import random import time from abc import abstractproperty from concurrent.futures import ThreadPoolExecutor from threading import Condition, Event, Lock, Thread from lib.stats import Stats, LambdaStatsModel, SqsStatsModel from shared.workers import LambdaSqsResult, LambdaSqsTask # Re-expose these classes LambdaSqsResult = LambdaSqsResult LambdaSqsTask = LambdaSqsTask logger = logging.getLogger(__name__) try: import boto3 except ImportError as e: logger.error('Failed to import boto3') boto3 = None MAX_SQS_REQUEST_MESSAGES = 10 DEFAULT_POLLING_THREADS = 4 DEFAULT_HANDLER_THREADS = 4 class Future(object): def __init__(self): self.__done = Event() self.__result = None self.__aborted = False self._partial = {} def get(self, timeout=None): self.__done.wait(timeout) if self.__result is None: self.__aborted = True return self.__result def set(self, result): self.__result = result self.__done.set() @property def isAborted(self): return self.__aborted class LambdaSqsTaskConfig(object): @abstractproperty def queue_prefix(self): """Prefix of the temporary SQS queues""" pass @abstractproperty def lambda_function(self): """Name of lambda function to call""" pass @abstractproperty def max_workers(self): pass @abstractproperty def load_factor(self): """Target ratio of pending tasks to workers""" pass @property def worker_wait_time(self): """Number of seconds each worker will wait for work""" return 1 @property def message_retention_period(self): """ Number of seconds each message will persist before timing our """ return 60 def pre_invoke_callback(self, workerId, workerArgs): """Add any extra args to workerArgs""" pass def post_return_callback(self, workerId, workerResponse): """ Called on worker exit. WorkerResponse is None if there was an error """ pass class WorkerManager(object): def __init__(self, taskConfig, stats=None): self.__config = taskConfig if stats is None: stats = Stats() self.__stats = stats if 'lambda' not in stats.models: stats.register_model('lambda', LambdaStatsModel()) self.__lambdaStats = stats.get_model('lambda') if 'sqs' not in stats.models: stats.register_model('sqs', SqsStatsModel()) self.__sqsStats = stats.get_model('sqs') self.__lambda = boto3.client('lambda') self.__numWorkers = 0 self.__numWorkersLock = Lock() # RequestId -> Future self.__numTasksInProgress = 0 self.__tasksInProgress = {} self.__tasksInProgressLock = Lock() self.__tasksInProgressCondition = Condition(self.__tasksInProgressLock) self.__init_message_queues() # Start result fetcher thread self.__result_handler_pool = ThreadPoolExecutor(DEFAULT_POLLING_THREADS) for i in xrange(DEFAULT_POLLING_THREADS): rt = Thread(target=self.__result_daemon) rt.daemon = True rt.start() def __init_message_queues(self): """Setup the message queues""" sqs = boto3.resource('sqs') currentTime = time.time() taskQueueAttributes = { 'MessageRetentionPeriod': str(self.__config.message_retention_period), 'ReceiveMessageWaitTimeSeconds': str(self.__config.worker_wait_time), } taskQueueName = '%s_task_%d' % (self.__config.queue_prefix, currentTime) self.__taskQueueName = taskQueueName taskQueue = sqs.create_queue( QueueName=taskQueueName, Attributes=taskQueueAttributes) self.__taskQueue = taskQueue atexit.register(lambda: taskQueue.delete()) logger.info('Created task queue: %s', taskQueueName) resultQueueAttributes = { 'MessageRetentionPeriod': str(self.__config.message_retention_period), 'ReceiveMessageWaitTimeSeconds': str(20), } resultQueueName = '%s_result_%d' % (self.__config.queue_prefix, currentTime) self.__resultQueueName = resultQueueName resultQueue = sqs.create_queue( QueueName=resultQueueName, Attributes=resultQueueAttributes) atexit.register(lambda: resultQueue.delete()) logger.info('Created result queue: %s', resultQueueName) def execute(self, task, timeout=None): """Enqueue a message in the task queue""" assert isinstance(task, LambdaSqsTask) with self.__numWorkersLock: if self.__should_spawn_worker(): self.__spawn_new_worker() kwargs = {} if task.messageAttributes: kwargs['MessageAttributes'] = task.messageAttributes messageStatus = self.__taskQueue.send_message( MessageBody=task.body, **kwargs) # Use the MessageId as taskId taskId = messageStatus['MessageId'] taskFuture = Future() with self.__tasksInProgressLock: self.__tasksInProgress[taskId] = taskFuture self.__numTasksInProgress = len(self.__tasksInProgress) self.__tasksInProgressCondition.notify() # Do this before sleeping self.__sqsStats.record_send( SqsStatsModel.estimate_message_size( messageAttributes=task.messageAttributes, messageBody=task.body)) result = taskFuture.get(timeout=timeout) with self.__tasksInProgressLock: del self.__tasksInProgress[taskId] self.__numTasksInProgress = len(self.__tasksInProgress) return result def __should_spawn_worker(self): if self.__config.max_workers == 0: return False return (self.__numWorkers == 0 or (self.__numWorkers < self.__config.max_workers and self.__numTasksInProgress > self.__numWorkers * self.__config.load_factor)) def __spawn_new_worker(self): workerId = random.getrandbits(32) logger.info('Starting new worker: %d', workerId) workerArgs = { 'workerId': workerId, 'taskQueue': self.__taskQueueName, 'resultQueue': self.__resultQueueName, } functionName = self.__config.lambda_function self.__config.pre_invoke_callback(workerId, workerArgs) t = Thread(target=self.__wait_for_worker, args=(functionName, workerId, workerArgs)) t.daemon = True t.start() self.__numWorkers += 1 assert self.__numWorkers <= self.__config.max_workers,\ 'Max worker limit exceeded' def __wait_for_worker(self, functionName, workerId, workerArgs): """Wait for the worker to exit and the lambda to return""" try: with self.__lambdaStats.record() as billingObject: response = self.__lambda.invoke( FunctionName=functionName, Payload=json.dumps(workerArgs), LogType='Tail') billingObject.parse_log(response['LogResult']) if response['StatusCode'] != 200 or 'FunctionError' in response: logger.error('Worker %d exited unexpectedly: %s: status=%d', workerId, response['FunctionError'], response['StatusCode']) logger.error(response['Payload'].read()) self.__config.post_return_callback(workerId, None) else: workerResponse = json.loads(response['Payload'].read()) self.__config.post_return_callback(workerId, workerResponse) finally: with self.__numWorkersLock: self.__numWorkers -= 1 assert self.__numWorkers >= 0, 'Workers cannot be negative' def __handle_single_result_message(self, message): # TODO: Fix me. Assume maximally sized messages for now try: result = LambdaSqsResult.from_message(message) taskId = result.taskId with self.__tasksInProgressLock: taskFuture = self.__tasksInProgress.get(taskId) if taskFuture is None: logger.info('No future for task: %s', taskId) return # Handle fragmented if result.isFragmented: taskFuture._partial[result.fragmentId] = result logger.info('Setting result: %s', taskId) if len(taskFuture._partial) == result.numFragments: taskFuture.set([ taskFuture._partial[i] for i in xrange(result.numFragments) ]) else: logger.info('Setting result: %s', taskId) taskFuture.set(result) except Exception as e: logger.error('Failed to parse message: %s', message) logger.exception(e) finally: self.__sqsStats.record_receive( SqsStatsModel.estimate_message_size(message=message)) def __result_daemon(self): """Poll SQS result queue and set futures""" requiredAttributes = ['All'] sqs = boto3.resource('sqs') resultQueue = sqs.get_queue_by_name(QueueName=self.__resultQueueName) while True: # Don't poll SQS unless there is a task in progress with self.__tasksInProgressLock: if self.__numTasksInProgress == 0: self.__tasksInProgressCondition.wait() # Poll for new messages logger.info('Polling for new results') messages = None try: self.__sqsStats.record_poll() messages = resultQueue.receive_messages( MessageAttributeNames=requiredAttributes, MaxNumberOfMessages=MAX_SQS_REQUEST_MESSAGES) logger.info('Received %d messages', len(messages)) self.__result_handler_pool.map( self.__handle_single_result_message, messages) except Exception as e: logger.error('Error polling SQS') logger.exception(e) finally: if messages is not None and len(messages) > 0: try: result = resultQueue.delete_messages( Entries=[{ 'Id': message.message_id, 'ReceiptHandle': message.receipt_handle } for message in messages] ) if len(result['Successful']) != len(messages): raise Exception('Failed to delete all messages: %s' % result['Failed']) except Exception as e: logger.exception(e) ``` #### File: jhong93/aws-lambda-proxy/tests.py ```python import json import unittest import os import random import sys from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from threading import Thread from lib.stats import Stats, ProxyStatsModel import shared.crypto as crypto import shared.proxy as proxy from main import DEFAULT_MAX_LAMBDAS, DEFAULT_PORT, build_local_proxy, \ build_lambda_proxy, build_handler from gen_rsa_kp import generate_key_pair def silence_stdout(func): def decorator(*args, **kwargs): try: with open(os.devnull, 'wb') as devnull: sys.stdout = devnull func(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return decorator class TestCrypto(unittest.TestCase): def test_gcm_encypt_decrypt(self): key = 'a' * 16 cleartext = 'Hello' nonce = 'my-nonce' ciphertext, tag = crypto.encrypt_with_gcm(key, cleartext, nonce) decrypted = crypto.decrypt_with_gcm(key, ciphertext, tag, nonce) self.assertEqual(cleartext, decrypted) def _start_test_server(port, numRequests): class Handler(BaseHTTPRequestHandler): def log_message(self, format, *args): pass def __respond(self, statusCode): for header in self.headers: if header == 'A': assert self.headers['A'] == '1' self.send_response(statusCode) self.send_header('B', '2') self.end_headers() self.wfile.write(TestProxy.EXPECTED_RESPONSE_BODY) def do_GET(self): self.__respond(200) def do_POST(self): body = self.rfile.read(int(self.headers['Content-Length'])) assert body == TestProxy.EXPECTED_POST_BODY self.__respond(201) server = HTTPServer(('localhost', port), Handler) def run_server(): for _ in xrange(numRequests): server.handle_request() t = Thread(target=run_server) t.daemon = True t.start() class TestProxy(unittest.TestCase): EXPECTED_REQUEST_HEADERS = {'A': '1'} EXPECTED_RESPONSE_HEADERS = {'B': '2'} EXPECTED_POST_BODY = json.dumps({'request': 'Ping'}) EXPECTED_RESPONSE_BODY = json.dumps({'response': 'pong'}) def test_proxy_real_request(self): response = proxy.proxy_single_request('GET', 'http://google.com', {'Connection': 'close'}, None) self.assertEqual(response.statusCode, 301, 'Response from Google should be redirect') def test_proxy_local_request(self): port = random.randint(9000, 10000) url = 'http://localhost:%d/' % port _start_test_server(port, 3) response = proxy.proxy_single_request( 'GET', url, TestProxy.EXPECTED_REQUEST_HEADERS, b'') self.assertEqual(response.statusCode, 200) self.assertDictContainsSubset(TestProxy.EXPECTED_RESPONSE_HEADERS, response.headers) self.assertEqual(response.content, TestProxy.EXPECTED_RESPONSE_BODY) response = proxy.proxy_single_request( 'GET', url, TestProxy.EXPECTED_REQUEST_HEADERS, None) self.assertEqual(response.statusCode, 200) self.assertDictContainsSubset(TestProxy.EXPECTED_RESPONSE_HEADERS, response.headers) self.assertEqual(response.content, TestProxy.EXPECTED_RESPONSE_BODY) response = proxy.proxy_single_request( 'POST', url, { 'Foo': 'Bar', 'Content-Length': str(len(TestProxy.EXPECTED_POST_BODY)) }, TestProxy.EXPECTED_POST_BODY) self.assertEqual(response.statusCode, 201) self.assertDictContainsSubset(TestProxy.EXPECTED_RESPONSE_HEADERS, response.headers) self.assertEqual(response.content, TestProxy.EXPECTED_RESPONSE_BODY) class TestRsaKeygen(unittest.TestCase): @silence_stdout def test_keygen(self): generate_key_pair(os.devnull, os.devnull) class TestBuildProxy(unittest.TestCase): """Tries to build the proxies, but not actually run the server.""" @staticmethod def _get_default_setup(): stats = Stats() stats.register_model('proxy', ProxyStatsModel()) class MockArgs(object): pass args = MockArgs() args.port = DEFAULT_PORT args.host = 'localhost' args.functions = [] args.enableEncryption = False args.lambdaType = 'short' args.s3Bucket = None args.publicServerHostAndPort = None args.maxLambdas = DEFAULT_MAX_LAMBDAS args.enableMitm = False args.disableStats = False args.verbose = False return args, stats, None @silence_stdout def test_build_local_no_mitm(self): args, stats, _ = TestBuildProxy._get_default_setup() args.local = True args.enableMitm = False proxy = build_local_proxy(args, stats) build_handler(proxy, stats, verbose=True) @silence_stdout def test_build_local_with_mitm(self): args, stats, _ = TestBuildProxy._get_default_setup() args.local = True args.enableMitm = True proxy = build_local_proxy(args, stats) build_handler(proxy, stats, verbose=True) @silence_stdout def test_build_lambda_with_mitm(self): args, stats, reverseServer = TestBuildProxy._get_default_setup() args.enableMitm = True args.functions = ['proxy'] args.s3Bucket = 'mock-bucket' args.enableEncryption = True proxy = build_lambda_proxy(args, stats, reverseServer) build_handler(proxy, stats, verbose=True) if __name__ == '__main__': unittest.main() ```
{ "source": "jhong93/caption-index", "score": 4 }
#### File: caption-index/captions/query.py ```python import heapq from abc import ABC, abstractmethod, abstractproperty from collections import deque from typing import Dict, List, Iterable, NamedTuple, Optional from parsimonious.grammar import Grammar, NodeVisitor from .index import Lexicon, CaptionIndex from .tokenize import default_tokenizer from .util import PostingUtil, group_results_by_document GRAMMAR = Grammar(r""" expr_root = sp? expr_group sp? expr_group = and / or / not / expr expr = expr_paren / tokens_root expr_paren = sp? "(" sp? expr_group sp? ")" sp? and = expr more_and threshold? more_and = (sp? "&" sp? expr)+ or = expr more_or more_or = (sp? "|" sp? expr)+ not = expr more_not threshold? more_not = (sp? "\\" sp? expr)+ threshold = sp? threshold_type sp? integer threshold_type = "::" / "//" integer = ~r"\d+" tokens_root = tokens_list more_tokens_root more_tokens_root = (sp tokens_list)* tokens_list = tokens / tokens_exp tokens_exp = "[" sp? tokens sp? "]" tokens = token more_tokens more_tokens = (sp token)* token = ~r"[^\s()&|\\\[\]:/]+" sp = ~r"\s+" """) class _Expr(ABC): class Context(NamedTuple): lexicon: Lexicon index: CaptionIndex documents: Optional[Iterable[CaptionIndex.DocIdOrDocument]] ignore_word_not_found: bool case_insensitive: bool @abstractmethod def eval(self, context: '_Expr.Context') -> Iterable[CaptionIndex.Document]: raise NotImplementedError() @abstractmethod def estimate_cost(self, lexicon: Lexicon) -> float: raise NotImplementedError() @abstractproperty def _pprint_data(self): raise NotImplementedError() def __repr__(self): return repr(self._pprint_data) class _JoinExpr(_Expr): def __init__(self, children, threshold, threshold_type): assert all(isinstance(c, _Expr) for c in children) self.children = children self.threshold = threshold self.threshold_type = threshold_type def estimate_cost(self, lexicon): return sum(c.estimate_cost(lexicon) for c in self.children) class _Phrase(_Expr): class Token(NamedTuple): text: str expand: bool def __init__(self, tokens): assert all(isinstance(t, _Phrase.Token) for t in tokens) self.tokens = tokens @property def _pprint_data(self): return { '1. op': 'Phrase', '2. tokens': ' '.join([ '[{}]'.format(t.text) if t.expand else t.text for t in self.tokens]) } def eval(self, context): kwargs = {} if context.documents is not None: kwargs['documents'] = context.documents ngram_tokens = [] for t in self.tokens: if t.expand: tokens = [context.lexicon[x] for x in context.lexicon.similar(t.text)] if len(tokens) == 0: return ngram_tokens.append(tokens) else: try: tokens = [context.lexicon[t.text]] if context.case_insensitive: matches = context.lexicon.case_insensitive(tokens[0]) if matches is not None: # Some other words exist assert len(matches) > 0 tokens = [context.lexicon[x] for x in matches] except Lexicon.WordDoesNotExist: if context.ignore_word_not_found: return else: raise ngram_tokens.append(tokens) for d in context.index.ngram_search(*ngram_tokens, **kwargs): yield d def estimate_cost(self, lexicon): # The cost to search is the frequency of the least frequent token # in the ngram since this is the number of locations that need to # be checked. min_token_count = lexicon.word_count for t in self.tokens: token_count = 0 if t.expand: tokens = [lexicon[x] for x in lexicon.similar(t.text)] token_count += sum(x.count for x in tokens) else: # FIXME: Case insensitivity not considered here try: token = lexicon[t.text] token_count += token.count except Lexicon.WordDoesNotExist: pass min_token_count = min(token_count, min_token_count) return min_token_count / lexicon.word_count def _dist_time_posting(p1, p2): return ( max(p2.start - p1.end, 0) if p1.start <= p2.start else _dist_time_posting(p2, p1)) def _dist_idx_posting(p1, p2): return ( max(p2.idx - (p1.idx + p1.len), 0) if p1.idx <= p2.idx else _dist_idx_posting(p2, p1)) class _And(_JoinExpr): @property def _pprint_data(self): return { '1. op': 'And', '2. thresh': '{} {}'.format( self.threshold, 'seconds' if self.threshold_type == 't' else 'tokens'), '3. children': [c._pprint_data for c in self.children] } def eval(self, context): results = [] for c in self.children: child_results = deque(c.eval(context)) if len(child_results) == 0: return doc_ids = [d.id for d in child_results] context = context._replace(documents=doc_ids) results.append({d.id: d.postings for d in child_results}) dist_fn = ( _dist_time_posting if self.threshold_type == 't' else _dist_idx_posting) n = len(results) for doc_id in sorted(doc_ids): pq = [] for i, r in enumerate(results): assert doc_id in r ps_iter = iter(r[doc_id]) ps_head = next(ps_iter) pq.append((ps_head.start, i, ps_head, ps_iter)) heapq.heapify(pq) merged_postings = [] ps_prev = [None] * n while len(pq) > 0: # Consider first element _, i, ps_head, ps_iter = heapq.heappop(pq) # Check conditions near_i = set() for elem in pq: ps_cmp = elem[2] j = elem[1] if dist_fn(ps_head, ps_cmp) < self.threshold: near_i.add(j) if len(near_i) < n - 1: for j in range(n): if j != i and j not in near_i: ps_cmp = ps_prev[j] if ps_cmp is not None: if dist_fn(ps_head, ps_cmp) < self.threshold: near_i.add(j) else: # No solution break if len(near_i) == n - 1: merged_postings.append(ps_head) # Advance postings ps_prev[i] = ps_head try: ps_head = next(ps_iter) heapq.heappush(pq, (ps_head.start, i, ps_head, ps_iter)) except StopIteration: pass merged_postings.sort(key=lambda x: x.start) if len(merged_postings) > 0: yield CaptionIndex.Document( id=doc_id, postings=merged_postings) class _Or(_JoinExpr): @property def _pprint_data(self): return { '1. op': 'Or', '2. children': [c._pprint_data for c in self.children] } def eval(self, context): results = [c.eval(context) for c in self.children] for doc_id, grouped_postings in group_results_by_document(results): yield CaptionIndex.Document( id=doc_id, postings=PostingUtil.union(grouped_postings) ) class _Not(_JoinExpr): @property def _pprint_data(self): return { '1. op': 'Not', '2. thresh': '{} {}'.format( self.threshold, 'seconds' if self.threshold_type == 't' else 'tokens'), '3. children': [c._pprint_data for c in self.children] } def eval(self, context): child0_results = list(self.children[0].eval(context)) other_context = context._replace( documents=[d.id for d in child0_results]) other_results = [c.eval(other_context) for c in self.children[1:]] other_postings = { doc_id: PostingUtil.union(ps_lists) for doc_id, ps_lists in group_results_by_document(other_results) } dist_fn = ( _dist_time_posting if self.threshold_type == 't' else _dist_idx_posting) key_fn = ( (lambda x: x.start) if self.threshold_type == 't' else (lambda x: x.idx)) for d in child0_results: postings = [] doc_ops = other_postings.get(d.id, []) doc_op_i = 0 prev_op = None for p in d.postings: p_key = key_fn(p) while ( doc_op_i < len(doc_ops) and key_fn(doc_ops[doc_op_i]) <= p_key ): prev_op = doc_ops[doc_op_i] doc_op_i += 1 if prev_op and dist_fn(p, prev_op) < self.threshold: continue if ( doc_op_i < len(doc_ops) and dist_fn(p, doc_ops[doc_op_i]) < self.threshold ): continue postings.append(p) if len(postings) > 0: yield CaptionIndex.Document(id=d.id, postings=postings) DEFAULT_AND_THRESH = 15 DEFAULT_NOT_THRESH = 15 class _QueryParser(NodeVisitor): def __init__(self, constants={}): self.grammar = GRAMMAR self._constants = constants visit_more_and = visit_more_or = visit_more_not = visit_more_tokens = \ lambda a, b, c: c def visit_expr_root(self, node, children): assert len(children) == 3 return children[1] def visit_expr_group(self, node, children): assert len(children) == 1 return children[0] def visit_expr(self, node, children): assert len(children) == 1 return children[0] def visit_expr_paren(self, node, children): assert len(children) == 7 return children[3] def visit_and(self, node, children): assert len(children) == 3 if children[2] is None: threshold = self._constants.get( 'and_threshold', DEFAULT_AND_THRESH) threshold_type = 't' else: threshold_type, threshold = children[2] assert isinstance(threshold, int) assert isinstance(threshold_type, str) return _And([children[0], *children[1]], threshold, threshold_type) def visit_or(self, node, children): assert len(children) == 2 return _Or([children[0], *children[1]], None, None) def visit_not(self, node, children): assert len(children) == 3 if children[2] is None: threshold = self._constants.get( 'not_threshold', DEFAULT_NOT_THRESH) threshold_type = 't' else: threshold_type, threshold = children[2] assert isinstance(threshold, int) assert isinstance(threshold_type, str) return _Not([children[0], *children[1]], threshold, threshold_type) def visit_threshold(self, node, children): assert len(children) == 4 if children[1] == '//': return ('w', children[3]) elif children[1] == '::': return ('t', children[3]) else: raise Exception('Invalid threshold token') def visit_threshold_type(self, node, children): return node.text def visit_integer(self, node, children): return int(node.text) def visit_tokens_root(self, node, children): assert len(children) == 2 return _Phrase([*children[0], *children[1]]) def visit_more_tokens_root(self, node, children): return [l for c in children for l in c] def visit_tokens_list(self, node, children): assert len(children) == 1 return children[0] def visit_tokens_exp(self, node, children): assert len(children) == 5 return [t._replace(expand=True) for t in children[2]] def visit_tokens(self, node, children): assert len(children) == 2 return [*children[0], *[t for c in children[1] for t in c]] def visit_token(self, node, children): tokenizer = default_tokenizer() tokens = tokenizer.tokens(node.text) return [_Phrase.Token(t, False) for t in tokens] def generic_visit(self, node, children): return children[-1] if children else None class Query: """Parse and execute queries""" def __init__(self, raw_query: str, **config): self._tree = _QueryParser(config).parse(raw_query) def execute( self, lexicon: Lexicon, index: CaptionIndex, documents=None, ignore_word_not_found=True, case_insensitive=False ) -> Iterable[CaptionIndex.Document]: return self._tree.eval(_Expr.Context( lexicon, index, documents, ignore_word_not_found, case_insensitive)) def estimate_cost(self, lexicon: Lexicon) -> float: return self._tree.estimate_cost(lexicon) ``` #### File: caption-index/captions/util.py ```python import heapq import itertools import numpy as np from collections import deque from typing import Generator, Iterable, List, Tuple, Union from .index import Lexicon, CaptionIndex Number = Union[int, float] VERBOSE = False def window(tokens: Iterable, n: int, subwindows: bool = False) -> Generator: """Takes an iterable words and returns a windowed iterator""" buffer = deque() for t in tokens: buffer.append(t) if len(buffer) == n: if subwindows: for i in range(n): yield tuple(itertools.islice(buffer, 0, i + 1)) else: yield tuple(buffer) buffer.popleft() if subwindows: while len(buffer) > 0: for i in range(len(buffer)): yield tuple(itertools.islice(buffer, 0, i + 1)) buffer.popleft() def frequent_words( lexicon: Lexicon, percentile: float = 99.7 ) -> List[Lexicon.Word]: """Return words at a frequency percentile""" threshold = np.percentile([w.count for w in lexicon], percentile) return [w for w in lexicon if w.count >= threshold] class PostingUtil(object): @staticmethod def merge(p1: CaptionIndex.Posting, p2: CaptionIndex.Posting): """Merge two postings""" start_idx = min(p1.idx, p2.idx) end_idx = max(p1.idx + p1.len, p2.idx + p2.len) return p1._replace( start=min(p1.start, p2.start), end=max(p1.end, p2.end), idx=start_idx, len=end_idx - start_idx) @staticmethod def deoverlap( postings: Iterable[CaptionIndex.Posting], threshold: Number = 0, use_time: bool = True ) -> List[CaptionIndex.Posting]: """Merge postings which overlap""" result = [] curr_p = None def overlaps(p1: CaptionIndex.Posting, p2: CaptionIndex.Posting) -> bool: if use_time: return (p2.start >= p1.start and p2.start - p1.end <= threshold) else: return (p2.idx >= p1.idx and p2.idx - (p1.idx + p1.len) <= threshold) for p in postings: if curr_p is None: curr_p = p elif overlaps(curr_p, p): curr_p = PostingUtil.merge(curr_p, p) else: result.append(curr_p) curr_p = p if curr_p is not None: result.append(curr_p) return result @staticmethod def dilate( postings: Iterable[CaptionIndex.Posting], amount: Number, duration: Number ) -> List[CaptionIndex.Posting]: """Dilate start and end times""" return [p._replace( start=max(p.start - amount, 0), end=min(p.end + amount, duration) ) for p in postings] @staticmethod def to_fixed_length( postings: Iterable[CaptionIndex.Posting], length: Number, duration: Number ) -> List[CaptionIndex.Posting]: """Dilate start and end times""" result = [] half_length = length / 2 for p in postings: mid = (p.start + p.end) / 2 result.append(p._replace( start=max(mid - half_length, 0), end=min(mid + half_length, duration) )) return result @staticmethod def union( postings_lists: List[Iterable[CaptionIndex.Posting]], use_time: bool = True ) -> List[CaptionIndex.Posting]: """Merge several lists of postings by order of idx.""" def get_priority(p) -> Tuple[Number, Number]: return (p.start, p.idx) if use_time else (p.idx, p.start) postings_lists_with_priority = [ ((get_priority(p), p) for p in pl) for pl in postings_lists] return [r[1] for r in heapq.merge(*postings_lists_with_priority)] def group_results_by_document( results: List[Iterable[CaptionIndex.Document]] ) -> Generator[ Tuple[int, List[List[CaptionIndex.Posting]]], None, None ]: """Group postings of documents from multiple results""" result_with_id = [((d.id, d) for d in r) for r in results] curr_doc_id = None curr_docs = [] for doc_id, document in heapq.merge(*result_with_id): if curr_doc_id is None: curr_doc_id = doc_id if curr_doc_id != doc_id: yield curr_doc_id, [d.postings for d in curr_docs] curr_doc_id = doc_id curr_docs = [] curr_docs.append(document) if len(curr_docs) > 0: yield curr_doc_id, [d.postings for d in curr_docs] ``` #### File: caption-index/scripts/update_index.py ```python import argparse import os from collections import defaultdict import shutil from typing import List, Optional from captions import Lexicon, Documents from lib.common import ( DocumentToIndex, read_docs_from_stdin, list_docs, merge_files, get_word_counts, index_documents) def get_args(): p = argparse.ArgumentParser() p.add_argument('index_dir', type=str, help='Directory containing existing index') p.add_argument('-d', '--new-doc-dir', type=str, help='Directory containing captions. If not passed, read from stdin.') p.add_argument('--chunk-size', dest='chunk_size', type=int, help='Break the index into chunks of n documents') p.add_argument('--skip-existing-names', action='store_true', help='Skip documents that are already indexed') return p.parse_args() def index_new_docs( new_docs_to_index: List[DocumentToIndex], new_documents: Documents, lexicon: Lexicon, index_dir: str, data_dir: str, chunk_size: Optional[int] ): """Builds inverted indexes and reencode documents in binary""" assert len(new_docs_to_index) == len(new_documents) base_doc_id = min(d.id for d in new_documents) max_doc_id = max(d.id for d in new_documents) index_and_doc_paths = defaultdict(list) for doc_to_index, doc in zip(new_docs_to_index, new_documents): assert doc_to_index.name == doc.name if chunk_size is None: doc_index_out_path = os.path.join( index_dir, '{:07d}-{:07d}.bin'.format( base_doc_id, base_doc_id + len(new_docs_to_index))) elif chunk_size == 1: doc_index_out_path = os.path.join( index_dir, '{:07d}.bin'.format(doc.id)) else: chunk_idx = int((doc.id - base_doc_id) / chunk_size) * chunk_size doc_index_out_path = os.path.join( index_dir, '{:07d}-{:07d}.bin'.format( base_doc_id + chunk_idx, min(base_doc_id + chunk_idx + chunk_size, max_doc_id))) doc_data_out_path = os.path.join( data_dir, '{}.bin'.format(doc.id)) index_and_doc_paths[doc_index_out_path].append( (doc.id, doc_to_index.path, doc_data_out_path)) index_documents(list(index_and_doc_paths.items()), lexicon) def main( index_dir: str, new_doc_dir: Optional[str], chunk_size: Optional[int] = None, skip_existing_names: bool = False ): assert chunk_size is None or chunk_size > 0 doc_path = os.path.join(index_dir, 'documents.txt') lex_path = os.path.join(index_dir, 'lexicon.txt') index_path = os.path.join(index_dir, 'index.bin') old_lexicon = Lexicon.load(lex_path) documents = Documents.load(doc_path) if new_doc_dir: new_docs_to_index = list_docs(new_doc_dir) else: new_docs_to_index = read_docs_from_stdin() assert len(new_docs_to_index) > 0 tmp_new_docs_to_index = [] for new_doc in new_docs_to_index: if new_doc.name in documents: if skip_existing_names: print('Skipping: {} is already indexed!'.format(new_doc.name)) else: raise Exception( '{} is already indexed! Aborting.'.format(new_doc.name)) else: tmp_new_docs_to_index.append(new_doc) new_docs_to_index = tmp_new_docs_to_index if len(new_docs_to_index) == 0: print('No new documents to index.') return # Update lexicon new_word_counts = get_word_counts(new_docs_to_index) lexicon_words = [ Lexicon.Word(w.id, w.token, w.count + new_word_counts[w.token] if w.token in new_word_counts else w.count) for w in old_lexicon ] for w in new_word_counts: if w not in old_lexicon: lexicon_words.append( Lexicon.Word(len(lexicon_words), w, new_word_counts[w])) lexicon = Lexicon(lexicon_words) base_doc_id = len(documents) new_documents = [Documents.Document(id=i + base_doc_id, name=d.name) for i, d in enumerate(new_docs_to_index)] # Convert existing index.bin to a dirctory if needed if os.path.isfile(index_path): tmp_index_path = index_path + '.tmp' shutil.move(index_path, tmp_index_path) os.makedirs(index_path) shutil.move( tmp_index_path, os.path.join(index_path, '{:07d}-{:07d}.bin'.format( 0, base_doc_id))) assert os.path.isdir(index_path) # Index the new documents index_new_docs(new_docs_to_index, new_documents, lexicon, index_path, os.path.join(index_dir, 'data'), chunk_size) # Write out the new documents file shutil.move(doc_path, doc_path + '.old') all_documents = list(documents) all_documents.extend(new_documents) Documents(all_documents).store(doc_path) # Update to the new lexicon lexicon.store(lex_path) print('Done!') if __name__ == '__main__': main(**vars(get_args())) ``` #### File: caption-index/tests/test_index_update.py ```python import os import shutil import tempfile from subprocess import check_call, CalledProcessError import captions from lib.common import get_docs_and_lexicon TEST_DATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test-small.tar.gz') BUILD_INDEX_SCRIPT = os.path.join( os.path.dirname(os.path.abspath(__file__)), '..', 'scripts', 'build_index.py') UPDATE_INDEX_SCRIPT = os.path.join( os.path.dirname(os.path.abspath(__file__)), '..', 'scripts', 'update_index.py') def test_update_index(): tmp_dir = tempfile.mkdtemp(suffix=None, prefix='caption-index-unittest-', dir=None) subs_dir = os.path.join(tmp_dir, 'subs') idx_dir = os.path.join(tmp_dir, 'index') # Unpack the test data os.makedirs(subs_dir) check_call(['tar', '-xzf', TEST_DATA_PATH, '-C', subs_dir]) # Build an index check_call([BUILD_INDEX_SCRIPT, '-d', subs_dir, '-o', idx_dir]) # Update the index (should fail due to duplicate files) try: check_call([UPDATE_INDEX_SCRIPT, '-d', subs_dir, idx_dir]) raise Exception('Uh oh, an exception should have been thrown...') except CalledProcessError: pass # Update the index (should do nothing since all of them are duplicates) check_call([UPDATE_INDEX_SCRIPT, '--skip-existing-names', '-d', subs_dir, idx_dir]) # Update the index for fname in os.listdir(subs_dir): src_path = os.path.join(subs_dir, fname) dst_path = os.path.join(subs_dir, 'copy::' + fname) shutil.move(src_path, dst_path) check_call([UPDATE_INDEX_SCRIPT, '-d', subs_dir, idx_dir]) assert os.path.isfile(os.path.join(idx_dir, 'documents.txt.old')) # Test the new index def count_and_test(index, document, tokens): ids = index.contains(tokens, [document]) assert len(ids) == 1 count = 0 (d,) = list(index.search(tokens, [document])) dh = documents.open(document) assert len(d.postings) > 0 for l in d.postings: assert l.len == len(tokens) assert abs(l.end - l.start) < 10.0, 'ngram time too large' count += 1 # Check that we actually found the right ngrams assert [lexicon.decode(t) for t in dh.tokens(l.idx, l.len)] == tokens return count documents, lexicon = get_docs_and_lexicon(idx_dir) idx_path = os.path.join(idx_dir, 'index.bin') assert os.path.isdir(idx_path) assert len(os.listdir(idx_path)) == 2, os.listdir(idx_path) test_document = documents['copy::cnn.srt'] with captions.CaptionIndex(idx_path, lexicon, documents) as index: assert count_and_test(index, test_document, ['THEY']) == 12 assert count_and_test(index, test_document, ['PEOPLE']) == 12 assert count_and_test(index, test_document, ['TO', 'THE']) == 9 # one wraps assert count_and_test(index, test_document, ['GIBSON', 'GUITAR', 'DROP']) == 1 assert count_and_test(index, test_document, ['PUT', 'THAT', 'DOWN']) == 1 assert count_and_test(index, test_document, ['CLOCK', 'STRIKES']) == 2 assert count_and_test(index, test_document, ['>>']) == 149 assert count_and_test(index, test_document, ['SEE', '?']) == 1 ``` #### File: caption-index/tools/scan.py ```python import argparse import os import time from multiprocessing import Pool from tqdm import tqdm from captions import Documents DEFAULT_WORKERS = os.cpu_count() def get_args(): p = argparse.ArgumentParser() p.add_argument('index_dir', type=str, help='Directory containing index files') p.add_argument('-j', dest='workers', type=int, default=DEFAULT_WORKERS, help='Number of CPU cores to use. Default: {}'.format(DEFAULT_WORKERS)) p.add_argument('--limit', dest='limit', type=int, help='Limit the number of documents to scan') return p.parse_args() def count_tokens(i): """Do an expensive linear scan of all of the tokens""" count = 0 for t in count_tokens.documents.open(i).tokens(): count += 1 return count count_tokens.documents = None def init_worker(function, index_dir): doc_path = os.path.join(index_dir, 'documents.txt') data_dir = os.path.join(index_dir, 'data') function.documents = Documents.load(doc_path) function.documents.configure(data_dir) def main(index_dir, workers, limit): doc_path = os.path.join(index_dir, 'documents.txt') documents = Documents.load(doc_path) if limit is None: limit = len(documents) start_time = time.time() with Pool( processes=workers, initializer=init_worker, initargs=(count_tokens, index_dir) ) as pool: count = 0 for n in tqdm(pool.imap_unordered(count_tokens, range(limit)), desc='Counting tokens', total=limit): count += n print('Scanned {} documents for {} tokens in {:d}ms'.format( limit, count, int(1000 * (time.time() - start_time)))) if __name__ == '__main__': main(**vars(get_args())) ``` #### File: caption-index/tools/search.py ```python import argparse import os import time import traceback from termcolor import colored, cprint from captions import Lexicon, Documents, CaptionIndex from captions.query import Query from captions.util import PostingUtil DEFAULT_CONTEXT = 3 def get_args(): parser = argparse.ArgumentParser() parser.add_argument('index_dir', type=str, help='Directory containing index files') parser.add_argument('-s', dest='silent', action='store_true', help='Silent mode for benchmarking') parser.add_argument('-c', dest='context_size', type=int, default=DEFAULT_CONTEXT, help='Context window width (default: {})'.format(DEFAULT_CONTEXT)) parser.add_argument('query', nargs='*') return parser.parse_args() def format_seconds(s): hours = int(s / 3600) minutes = int(s / 60) - hours * 60 seconds = int(s) - hours * 3600 - minutes * 60 millis = int((s - int(s)) * 1000) return '{:02d}h {:02d}m {:02d}.{:03d}s'.format( hours, minutes, seconds, millis) BOLD_ATTRS = ['bold'] def run_search(query_str, documents, lexicon, index, context_size, silent): query = Query(query_str) print('Estimated cost (% of index scanned): {}'.format( query.estimate_cost(lexicon) * 100)) start_time = time.time() result = query.execute(lexicon, index) total_seconds = 0 occurence_count = 0 doc_count = 0 for i, d in enumerate(result): if not silent: cprint(documents[d.id].name, 'grey', 'on_white', attrs=BOLD_ATTRS) occurence_count += len(d.postings) d_data = documents.open(d.id) if not silent else None for j, p in enumerate(PostingUtil.deoverlap(d.postings, use_time=False)): total_seconds += p.end - p.start if not silent: if context_size > 0: start_idx = max(p.idx - context_size, 0) context = ' '.join([ colored(lexicon.decode(t), 'red', attrs=BOLD_ATTRS) if k >= p.idx and k < p.idx + p.len else lexicon.decode(t) for k, t in enumerate( d_data.tokens( index=start_idx, count=p.idx + p.len + context_size - start_idx ), start_idx ) ]) else: context = query interval_str = '{} - {}'.format( format_seconds(p.start), format_seconds(p.end)) position_str = ( str(p.idx) if p.len == 1 else '{}-{}'.format(p.idx, p.idx + p.len)) print( ' {}-- [{}] [position: {}] "{}"'.format( '\\' if j == len(d.postings) - 1 else '|', colored(interval_str, 'yellow', attrs=BOLD_ATTRS), colored(position_str, 'blue', attrs=BOLD_ATTRS), context)) doc_count += 1 cprint( 'Found {} documents, {} occurences, spanning {:d}s in {:d}ms'.format( doc_count, occurence_count, int(total_seconds), int((time.time() - start_time) * 1000)), 'white', 'on_green', attrs=BOLD_ATTRS) def main(index_dir, query, silent, context_size): idx_path = os.path.join(index_dir, 'index.bin') doc_path = os.path.join(index_dir, 'documents.txt') data_path = os.path.join(index_dir, 'data') lex_path = os.path.join(index_dir, 'lexicon.txt') documents = Documents.load(doc_path) documents.configure(data_path) lexicon = Lexicon.load(lex_path) with CaptionIndex(idx_path, lexicon, documents) as index: if len(query) > 0: print('Query: ', query) run_search(' '.join(query), documents, lexicon, index, context_size, silent) else: print('Enter a query:') while True: try: query = input('> ') except (EOFError, KeyboardInterrupt): print() break query = query.strip() if len(query) > 0: try: run_search(query, documents, lexicon, index, context_size, silent) except: traceback.print_exc() if __name__ == '__main__': main(**vars(get_args())) ```
{ "source": "jhong93/esper-tv-widget", "score": 3 }
#### File: esper-tv-widget/app/error.py ```python from typing import Optional class InvalidUsage(Exception): status_code = 400 def __init__(self, message: str, status_code: Optional[int] = None, payload: Optional[str] = None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self) -> object: rv = dict(self.payload or ()) rv['message'] = self.message return rv class PersonNotInDatabase(InvalidUsage): def __init__(self, person: str): InvalidUsage.__init__( self, 'Name "{}" is not in our database'.format(person)) class TagNotInDatabase(InvalidUsage): def __init__(self, tag: str): InvalidUsage.__init__( self, 'Tag "{}" is not in our database'.format(tag)) class VideoNotInDatabase(InvalidUsage): def __init__(self, video: str): InvalidUsage.__init__( self, 'Video "{}" is not in our database'.format(video)) class InvalidCaptionSearch(InvalidUsage): def __init__(self, s: str): InvalidUsage.__init__( self, '"{}" is not a valid text search'.format(s)) class QueryTooExpensive(InvalidUsage): pass class NotFound(Exception): def __init__(self, message: str): self.message = message class UnreachableCode(Exception): pass ``` #### File: esper-tv-widget/app/route_search.py ```python from datetime import datetime, timedelta import json import heapq from enum import Enum from typing import ( Any, List, Set, Tuple, Optional, Iterable, Generator, NamedTuple) from flask import Flask, Response, jsonify, request from captions.util import PostingUtil # type: ignore from captions.query import Query # type: ignore from rs_intervalset import ( # type: ignore MmapIntervalSetMapping, MmapIntervalListMapping) from rs_intervalset.wrapper import ( # type: ignore MmapIListToISetMapping, MmapUnionIlistsToISetMapping, MmapISetIntersectionMapping) from rs_intervalset.wrapper import _deoverlap as deoverlap_intervals from .types_frontend import * from .types_backend import * from .error import * from .parsing import ( parse_date, format_date, parse_hour_set, parse_day_of_week_set, ParsedTags, parse_tags) from .load import VideoDataContext, CaptionDataContext from .sum import DetailedDateAccumulator, SimpleDateAccumulator MAX_VIDEO_SEARCH_IDS = 10 class SearchResultType(Enum): video_set = 0 python_iset = 1 rust_iset = 2 class SearchContext(NamedTuple): start_date: Optional[datetime] = None end_date: Optional[datetime] = None videos: Optional[Set[int]] = None channel: Optional[str] = None show: Optional[str] = None hours: Optional[Set[int]] = None days_of_week: Optional[Set[int]] = None text_window: int = 0 class SearchResult(NamedTuple): type: SearchResultType context: Optional[SearchContext] = None data: Any = None class PythonISetData(NamedTuple): video: Video is_entire_video: bool intervals: Optional[List[Interval]] = None PythonISetDataGenerator = Generator[PythonISetData, None, None] def get_non_none(a: Any, b: Any) -> Optional[Any]: return a if b is None else a def and_search_contexts( c1: SearchContext, c2: SearchContext ) -> Optional[SearchContext]: if c1.start_date is not None and c2.start_date is not None: start_date = max(c1.start_date, c2.start_date) else: start_date = get_non_none(c1.start_date, c2.start_date) if c1.end_date is not None and c2.end_date is not None: end_date = min(c1.end_date, c2.end_date) else: end_date = get_non_none(c1.end_date, c2.end_date) if end_date and start_date and end_date < start_date: return None if c1.videos is not None and c2.videos is not None: videos = c1.videos & c2.videos if not videos: return None else: videos = get_non_none(c1.videos, c2.videos) if c1.channel == c2.channel: channel = c1.channel elif c1.channel is not None and c2.channel is not None: return None else: channel = get_non_none(c1.channel, c2.channel) if c1.show == c2.show: show = c1.show elif c1.show is not None and c2.show is not None: return None else: show = get_non_none(c1.show, c2.show) if c1.hours is not None and c2.hours is not None: hours = c1.hours & c2.hours if not hours: return None else: hours = get_non_none(c1.hours, c2.hours) if c1.days_of_week is not None and c2.days_of_week is not None: days_of_week = c1.days_of_week & c2.days_of_week if not days_of_week: return None else: days_of_week = get_non_none(c1.days_of_week, c2.days_of_week) return SearchContext(start_date, end_date, videos, channel, show, hours, days_of_week) # Execution order preference (lower is higher) SEARCH_KEY_EXEC_PRIORITY = { SearchKey.video: 0, SearchKey.channel: 0, SearchKey.show: 0, SearchKey.hour: 0, SearchKey.day_of_week: 0, 'or': 1, 'and': 2, SearchKey.text: 3, SearchKey.face_name: 4, SearchKey.face_tag: 5 } def milliseconds(s: float) -> int: return int(s * 1000) def get_entire_video_ms_interval(video: Video) -> List[Interval]: return [(0, int(video.num_frames / video.fps * 1000))] def assert_param_not_set( param: str, countable: str, suggested_var: Optional[str] = None ) -> None: if param in request.args: mesg = '"{}" cannot be used when counting "{}".'.format( param, countable) if suggested_var: mesg += ' Try counting "{}" instead.'.format(suggested_var) raise InvalidUsage(mesg) def get_aggregate_fn(default_agg_by: str) -> AggregateFn: agg = request.args.get(SearchParam.aggregate, None, type=str) e = Aggregate[agg] if agg else default_agg_by if e == Aggregate.day: return lambda d: d elif e == Aggregate.month: return lambda d: datetime(d.year, d.month, 1) elif e == Aggregate.week: return lambda d: d - timedelta(days=d.isoweekday() - 1) elif e == Aggregate.year: return lambda d: datetime(d.year, 1, 1) raise UnreachableCode() def get_python_iset_from_filter( vdc: VideoDataContext, video_filter: Optional[VideoFilterFn] ) -> PythonISetDataGenerator: for v in vdc.video_dict.values(): # sorted iterator if video_filter is not None and video_filter(v): yield PythonISetData(v, True) def get_python_iset_from_rust_iset( vdc: VideoDataContext, isetmap: MmapIntervalSetMapping, video_filter: Optional[VideoFilterFn] ) -> PythonISetDataGenerator: for video_id in isetmap.get_ids(): video = vdc.video_by_id.get(video_id) if video is not None and ( video_filter is None or video_filter(video) ): intervals = isetmap.get_intervals(video_id, True) if intervals: yield PythonISetData(video, False, intervals=intervals) MAX_TRANSCRIPT_SEARCH_COST = 0.005 def get_caption_intervals( cdc: CaptionDataContext, vdc: VideoDataContext, text_str: str, context: SearchContext ) -> PythonISetDataGenerator: missing_videos = 0 matched_videos = 0 filtered_videos = 0 text_window = context.text_window video_filter = get_video_filter(context) documents = None if context.videos is not None: documents = [] for video_id in context.videos: video = vdc.video_by_id[video_id] if video_filter is None or video_filter(video): document = cdc.document_by_name.get(video.name) if document is not None: documents.append(document) if len(documents) == 0: return iter(()) query = None try: query = Query(text_str.upper()) except Exception as e: raise InvalidCaptionSearch(text_str) if documents is None: if query.estimate_cost(cdc.lexicon) > MAX_TRANSCRIPT_SEARCH_COST: raise QueryTooExpensive( 'The text query is too expensive to compute. ' '"{}" contains too many common words/phrases.'.format(text_str)) results = [] for raw_result in query.execute( cdc.lexicon, cdc.index, documents=documents, ignore_word_not_found=True, case_insensitive=True ): document = cdc.documents[raw_result.id] video = vdc.video_dict.get(document.name) if video is None: missing_videos += 1 continue else: matched_videos += 1 if video_filter is not None and not video_filter(video): filtered_videos += 1 continue postings = raw_result.postings if text_window > 0: postings = PostingUtil.deoverlap(PostingUtil.to_fixed_length( postings, text_window, video.num_frames / video.fps)) results.append(PythonISetData( video, False, [(int(p.start * 1000), int(p.end * 1000)) for p in postings])) results.sort(key=lambda x: x.video.id) return iter(results) def search_result_to_python_iset( vdc: VideoDataContext, result: SearchResult ) -> PythonISetDataGenerator: if result.type == SearchResultType.video_set: video_filter = get_video_filter(result.context) return get_python_iset_from_filter( vdc, video_filter) elif result.type == SearchResultType.rust_iset: video_filter = get_video_filter(result.context) return get_python_iset_from_rust_iset( vdc, result.data, video_filter) elif result.type == SearchResultType.python_iset: return result.data raise UnreachableCode() def and_python_isets( r1: SearchResult, r2: SearchResult ) -> PythonISetDataGenerator: prev = None for curr in heapq.merge( ((d.video.id, d) for d in r1.data), ((d.video.id, d) for d in r2.data) ): if prev is None: prev = curr elif prev[0] == curr[0]: if prev[1].is_entire_video: yield curr[1] elif curr[1].is_entire_video: yield prev[1] else: intervals = list(merge_close_intervals( intersect_sorted_intervals( prev[1].intervals, curr[1].intervals))) if len(intervals) > 0: yield PythonISetData(curr[1].video, False, intervals) prev = None else: assert curr[0] > prev[0], '{} < {}'.format(curr[0], prev[0]) prev = curr def or_python_iset_with_filter( vdc: VideoDataContext, video_filter: VideoFilterFn, search_result: SearchResult ) -> PythonISetDataGenerator: assert video_filter is not None assert search_result.type == SearchResultType.python_iset all_videos_iter = iter(vdc.video_dict.values()) # Match videos from search_result to all videos for curr in search_result.data: curr_video = curr.video all_videos_head = next(all_videos_iter) while all_videos_head and all_videos_head.id < curr_video.id: if video_filter(all_videos_head): yield PythonISetData(curr_video, True) all_videos_head = next(all_videos_iter) assert all_videos_head.id == curr_video.id if video_filter(curr_video): yield PythonISetData(curr_video, True) else: yield curr # Finish up all_videos_iter for video in all_videos_iter: if video_filter(video): yield PythonISetData(video, True) def or_python_isets( r1: SearchResult, r2: SearchResult ) -> PythonISetDataGenerator: assert r1.type == SearchResultType.python_iset assert r2.type == SearchResultType.python_iset prev = None for curr in heapq.merge( ((s.video.id, s) for s in r1.data), ((s.video.id, s) for s in r2.data) ): if prev is None: prev = curr elif curr[0] == prev[0]: if curr[1].is_entire_video: yield curr[1] elif prev[1].is_entire_video: yield prev[1] else: yield PythonISetData( curr[1].video, False, deoverlap_intervals( heapq.merge(curr[1].intervals, prev[1].intervals), 100)) prev = None else: assert curr[0] > prev[0], '{} < {}'.format(curr[0], prev[0]) yield prev[1] prev = curr if prev is not None: yield prev[1] def or_python_iset_with_rust_iset( vdc: VideoDataContext, python_result: SearchResult, rust_result: SearchResult ) -> PythonISetDataGenerator: assert python_result.type == SearchResultType.python_iset assert rust_result.type == SearchResultType.rust_iset try: python_result_head = next(python_result.data) except StopIteration: python_result_head = None video_filter = get_video_filter(rust_result.context) for video_id in rust_result.data.get_ids(): video = vdc.video_by_id.get(video_id) if not video: continue while ( python_result_head is not None and python_result_head.video.id < video_id ): yield python_result_head try: python_result_head = next(python_result.data) except StopIteration: python_result_head = None assert (python_result_head is None or python_result_head.video.id >= video_id) if ( python_result_head is None or python_result_head.video.id != video_id ): if video_filter is None or video_filter(video): intervals = rust_result.data.get_intervals(video_id, True) if intervals: yield PythonISetData(video, False, intervals=intervals) else: assert python_result_head.video.id == video_id if ( python_result_head.is_entire_video or (video_filter is not None and not video_filter(video)) ): yield python_result_head else: yield PythonISetData( video, False, deoverlap_intervals( heapq.merge( python_result_head.intervals, rust_result.data.get_intervals(video_id, True) ), 100)) try: python_result_head = next(python_result.data) except StopIteration: python_result_head = None # yield any remaining results if python_result_head is not None: yield python_result_head for x in python_result.data: yield x def or_rust_isets( vdc: VideoDataContext, r1: SearchResult, r2: SearchResult ) -> PythonISetDataGenerator: assert r1.type == SearchResultType.rust_iset assert r2.type == SearchResultType.rust_iset r1_filter = get_video_filter(r1.context) r2_filter = get_video_filter(r2.context) r1_ids = set(r1.data.get_ids()) r2_ids = set(r2.data.get_ids()) for video_id in sorted(r1_ids | r2_ids): video = vdc.video_by_id.get(video_id) if video is None: continue r1_intervals = ( r1.data.get_intervals(video_id, True) if ( video.id in r1_ids and (r1_filter is None or r1_filter(video)) ) else None) r2_intervals = ( r2.data.get_intervals(video_id, True) if ( video.id in r2_ids and (r2_filter is None or r2_filter(video)) ) else None) if r1_intervals and r2_intervals: yield PythonISetData( video, False, deoverlap_intervals( heapq.merge(r1_intervals, r2_intervals), 100)) elif r1_intervals: yield PythonISetData(video, False, r1_intervals) elif r2_intervals: yield PythonISetData(video, False, r2_intervals) def join_intervals_with_commercials( vdc: VideoDataContext, video: Video, intervals: List[Interval], is_commercial: Ternary ) -> List[Interval]: if is_commercial != Ternary.both: if is_commercial == Ternary.true: intervals = intersect_isetmap( video, vdc.commercial_isetmap, intervals) else: intervals = minus_isetmap( video, vdc.commercial_isetmap, intervals) return intervals def get_global_tags(tag: ParsedTags) -> Set[str]: return {t for t in tag.tags if t in GLOBAL_TAGS} def either_tag_or_none(a: str, b: str, s: set) -> Optional[str]: has_a = a in s has_b = b in s if has_a and has_b: raise InvalidUsage( 'Cannot use {} and {} tags simultaneously. Try using "all".'.format(a, b)) elif has_a: return a elif has_b: return b return None def people_to_ilistmaps( video_data_context: VideoDataContext, people: Iterable[str] ) -> List[MmapIntervalListMapping]: ilistmaps = [] for person in people: person_intervals = video_data_context.all_person_intervals.get( person, None) if person_intervals is None: raise PersonNotInDatabase(person) ilistmaps.append(person_intervals.ilistmap) return ilistmaps def interpret_global_tags( global_tags: Set[str] ) -> Tuple[bool, Optional[str], Optional[str]]: gender_tag = either_tag_or_none(GlobalTags.male, GlobalTags.female, global_tags) host_tag = either_tag_or_none(GlobalTags.host, GlobalTags.non_host, global_tags) is_all = GlobalTags.all in global_tags and gender_tag is None and host_tag is None return is_all, gender_tag, host_tag def person_tags_to_people( video_data_context: VideoDataContext, tags: Iterable[str] ) -> List[MmapIntervalListMapping]: selected_names = None for tag in tags: if tag not in GLOBAL_TAGS: people_with_tag = \ video_data_context.all_person_tags.tag_name_to_names(tag) if not people_with_tag: raise TagNotInDatabase(tag) if selected_names is None: selected_names = set(people_with_tag) else: selected_names = selected_names.intersection(people_with_tag) return selected_names def person_tags_to_ilistmaps( video_data_context: VideoDataContext, tags: Iterable[str] ) -> List[MmapIntervalListMapping]: non_global_tags = [t for t in tags if t not in GLOBAL_TAGS] if len(non_global_tags) == 1: ilistmap = video_data_context.cached_tag_intervals.get( non_global_tags[0], None) if ilistmap: return [ilistmap] ilistmaps = [] if len(non_global_tags) > 0: people = person_tags_to_people(video_data_context, non_global_tags) assert people is not None ilistmaps.extend(people_to_ilistmaps(video_data_context, people)) return ilistmaps def get_face_time_filter_mask( gender_tag: Optional[str], host_tag: Optional[str] ) -> Tuple[int, int]: payload_mask = 0 payload_value = 0 if gender_tag: gender_tag = gender_tag.strip().lower() if gender_tag: payload_mask |= 0b1 if gender_tag == GlobalTags.male: payload_value |= 0b1 elif gender_tag == GlobalTags.female: pass else: raise UnreachableCode() if host_tag: host_tag = host_tag.strip().lower() if host_tag: payload_mask |= 0b100 if host_tag == GlobalTags.host: payload_value |= 0b100 elif host_tag == GlobalTags.non_host: pass else: raise UnreachableCode() return payload_mask, payload_value def get_video_filter(context: SearchContext) -> Optional[VideoFilterFn]: if ( context.videos is not None or context.start_date is not None or context.end_date is not None or context.channel is not None or context.show is not None or context.hours is not None or context.days_of_week is not None ): def video_filter(video: Video) -> bool: if ( (context.videos is not None and video.id not in context.videos) or (context.show is not None and video.show != context.show) or (context.days_of_week is not None and video.dayofweek not in context.days_of_week) or (context.channel is not None and video.channel != context.channel) or (context.start_date is not None and video.date < context.start_date) or (context.end_date is not None and video.date > context.end_date) ): return False if context.hours: video_start = video.hour video_end = ( video.hour + round(video.num_frames / video.fps / 3600)) for h in range(video_start, video_end + 1): if h in context.hours: break else: return False return True return video_filter return None def get_face_tag_intervals( vdc: VideoDataContext, tag_str: str ) -> MmapIntervalSetMapping: all_tags = parse_tags(tag_str) global_tags = get_global_tags(all_tags) if len(global_tags) == len(all_tags.tags): is_all, gender_tag, host_tag = interpret_global_tags(global_tags) if is_all: isetmap = vdc.face_intervals.all_isetmap elif gender_tag is None: if host_tag == GlobalTags.host: isetmap = vdc.face_intervals.host_isetmap elif host_tag == GlobalTags.non_host: isetmap = vdc.face_intervals.nonhost_isetmap else: raise UnreachableCode() elif gender_tag == GlobalTags.male: if host_tag is None: isetmap = vdc.face_intervals.male_isetmap elif host_tag == GlobalTags.host: isetmap = vdc.face_intervals.male_host_isetmap elif host_tag == GlobalTags.non_host: isetmap = vdc.face_intervals.male_nonhost_isetmap else: raise UnreachableCode() elif gender_tag == GlobalTags.female: if host_tag is None: isetmap = vdc.face_intervals.female_isetmap elif host_tag == GlobalTags.host: isetmap = vdc.face_intervals.female_host_isetmap elif host_tag == GlobalTags.non_host: isetmap = vdc.face_intervals.female_nonhost_isetmap else: raise UnreachableCode() else: ilistmaps = person_tags_to_ilistmaps(vdc, all_tags.tags) _, gender_tag, host_tag = interpret_global_tags(global_tags) payload_mask, payload_value = get_face_time_filter_mask( gender_tag, host_tag) isetmap = MmapUnionIlistsToISetMapping( ilistmaps, payload_mask, payload_value, 3000, 100) return isetmap def get_face_name_intervals( vdc: VideoDataContext, name: str ) -> MmapIntervalSetMapping: person_intervals = vdc.all_person_intervals.get(name, None) if person_intervals is None: raise PersonNotInDatabase(name) return person_intervals.isetmap def get_face_count_intervals( vdc: VideoDataContext, face_count: int ) -> MmapIntervalSetMapping: if face_count < 0: raise InvalidUsage( '"{}" cannot be less than 1'.format(SearchKey.face_count)) if face_count > 0xFF: raise InvalidUsage( '"{}" cannot be less than {}'.format(SearchKey.face_count, 0xFF)) return MmapIListToISetMapping( vdc.face_intervals.num_faces_ilistmap, 0xFF, face_count, 3000, 0) def intersect_isetmap( video: Video, isetmap: MmapIntervalSetMapping, intervals: Optional[List[Interval]] ) -> List[Interval]: return (isetmap.get_intervals(video.id, True) if intervals is None else isetmap.intersect(video.id, intervals, True)) def minus_isetmap( video: Video, isetmap: MmapIntervalSetMapping, intervals: Optional[List[Interval]] ) -> List[Interval]: return isetmap.minus( video.id, intervals if intervals is not None else get_entire_video_ms_interval(video), True) def merge_close_intervals( intervals: Iterable[Interval], threshold: float = 0.25 ) -> Generator[Interval, None, None]: curr_i = None for i in intervals: if curr_i is not None: if max(curr_i[0], i[0]) - min(curr_i[1], i[1]) < threshold: curr_i = (min(curr_i[0], i[0]), max(curr_i[1], i[1])) else: yield curr_i curr_i = i else: curr_i = i if curr_i is not None: yield curr_i def intersect_sorted_intervals( l1: List[Interval], l2: List[Interval] ) -> Generator[Interval, None, None]: i, j = 0, 0 while i < len(l1) and j < len(l2): a1, b1 = l1[i] a2, b2 = l2[j] max_a = max(a1, a2) min_b = min(b1, b2) if min_b - max_a > 0: yield (max_a, min_b) if a1 < a2: i += 1 else: j += 1 def get_video_metadata_json(video: Video) -> JsonObject: return { 'id': video.id, 'name': video.name, 'channel': video.channel, 'show': video.show, 'date': format_date(video.date), 'width': video.width, 'height': video.height, 'fps': video.fps, 'num_frames': video.num_frames } def add_search_routes( app: Flask, caption_data_context: CaptionDataContext, video_data_context: VideoDataContext, default_aggregate_by: str, default_is_commercial: Ternary, default_text_window: int ): def _get_is_commercial() -> Ternary: value = request.args.get(SearchParam.is_commercial, None, type=str) return Ternary[value] if value else default_is_commercial def _search_and( children: Iterable[Any], context: SearchContext ) -> Optional[SearchResult]: # First pass: update the context deferred_children = [] for c in children: kc, vc = c if kc == SearchKey.video: video = video_data_context.video_dict.get(vc) if video is None: raise VideoNotInDatabase(vc) if context.videos is not None and video.id not in context.videos: return None context = context._replace(videos={video.id}) elif kc == SearchKey.channel: if context.channel is not None and context.channel != vc: return None else: context = context._replace(channel=vc) elif kc == SearchKey.show: if context.show is not None and context.show != vc: return None else: context = context._replace(show=vc) elif kc == SearchKey.hour: hours = parse_hour_set(vc) if context.hours is not None: hours &= context.hours if not hours: return None context = context._replace(hours=hours) elif kc == SearchKey.day_of_week: days = parse_day_of_week_set(vc) if context.days_of_week is not None: days &= context.days_of_week if not days: return None context = context._replace(days_of_week=days) elif kc == SearchKey.text_window: context = context._replace(text_window=int(vc)) else: deferred_children.append(c) # Second pass: execute search if deferred_children: deferred_children.sort( key=lambda x: SEARCH_KEY_EXEC_PRIORITY.get(x[0], 100)) curr_result = None for child in deferred_children: child_result = _search_recursive(child, context) if child_result is None: return None if curr_result is None: curr_result = child_result continue r1 = curr_result r2 = child_result # Symmetric cases if ( r2.type == SearchResultType.video_set or (r1.type != SearchResultType.video_set and r2.type == SearchResultType.python_iset) ): r1, r2 = r2, r1 if r1.type == SearchResultType.video_set: if r2.type == SearchResultType.video_set: # Result: video_set new_context = and_search_contexts( r1.context, r2.context) if new_context is None: return None curr_result = r2._replace(context=new_context) elif r2.type == SearchResultType.python_iset: # Result: python_iset video_filter = get_video_filter(r1.context) if video_filter: curr_result = SearchResult( SearchResultType.python_iset, data=filter(lambda x: video_filter(x.video), r2.data)) elif r2.type == SearchResultType.rust_iset: # Result: rust_iset new_context = and_search_contexts( r1.context, r2.context) if new_context is None: return None curr_result = r2._replace(context=new_context) else: raise UnreachableCode() elif r1.type == SearchResultType.python_iset: if r2.type == SearchResultType.python_iset: # Result: python_iset curr_result = SearchResult( SearchResultType.python_iset, data=and_python_isets(r1, r2)) elif r2.type == SearchResultType.rust_iset: # Result: python_iset video_filter = get_video_filter(r2.context) new_data = [ PythonISetData( x.video, False, intervals=intersect_isetmap( x.video, r2.data, x.intervals)) for x in r1.data if video_filter(x.video)] curr_result = SearchResult( SearchResultType.python_iset, data=filter(lambda x: len(x.intervals) > 0, new_data)) else: raise UnreachableCode() elif r1.type == SearchResultType.rust_iset: if r2.type == SearchResultType.rust_iset: # Result: rust_iset curr_result = SearchResult( SearchResultType.rust_iset, context=and_search_contexts( r1.context, r2.context), data=MmapISetIntersectionMapping( [r1.data, r2.data])) else: raise UnreachableCode() else: raise UnreachableCode() return curr_result else: return SearchResult(SearchResultType.video_set, context=context) def _search_or( children: Iterable[Any], context: SearchContext ) -> Optional[SearchResult]: # First, collect the child results with type video_set child_results = [] deferred_children = [] for c in children: kc, vc = c if ( kc == SearchKey.video or kc == SearchKey.channel or kc == SearchKey.show or kc == SearchKey.hour or kc == SearchKey.day_of_week ): child_result = _search_recursive(c, context) if child_result is not None: child_results.append(child_result) elif kc == SearchKey.text_window: # This is a no-op continue else: deferred_children.append(c) child_video_filters = [] for c in child_results: assert c.type == SearchResultType.video_set, c.type child_video_filter = get_video_filter(c.context) if child_video_filter is None: # One of the children is "everything" return c child_video_filters.append(child_video_filter) curr_result = None if child_video_filters: curr_result = SearchResult( SearchResultType.python_iset, data=get_python_iset_from_filter( video_data_context, lambda v: any(f(v) for f in child_video_filters))) for c in deferred_children: child_result = _search_recursive(c, context) if child_result is None: continue if curr_result is None: curr_result = child_result continue r1 = curr_result r2 = child_result # Symmetric cases if ( r2.type == SearchResultType.video_set or (r1.type != SearchResultType.video_set and r2.type == SearchResultType.python_iset) ): r1, r2 = r2, r1 if r1.type == SearchResultType.video_set: r1_filter = get_video_filter(r1.context) if r1_filter is None: # R1 is "everything" return r1 elif r2.type != SearchResultType.video_set: r2_filter = get_video_filter(r2.context) if r2_filter is None: # R2 is "everything" return r2 else: # Return: python_iset curr_result = SearchResult( SearchResultType.python_iset, data=get_python_iset_from_filter( video_data_context, lambda v: r1_filter(v) or r2_filter(v))) elif r2.type == SearchResultType.python_iset: # Return: python_iset curr_result = SearchResult( SearchResultType.python_iset, data=or_python_iset_with_filter( video_data_context, r1_filter, r2)) elif r2.type == SearchResultType.rust_iset: # Return: python_iset curr_result = SearchResult( SearchResultType.python_iset, data=or_python_iset_with_rust_iset( video_data_context, SearchResult( SearchResultType.python_iset, data=get_python_iset_from_filter( video_data_context, r1_filter) ), r2)) else: raise UnreachableCode() elif r1.type == SearchResultType.python_iset: if r2.type == SearchResultType.python_iset: curr_result = SearchResult( SearchResultType.python_iset, data=or_python_isets(r1, r2)) elif r2.type == SearchResultType.rust_iset: curr_result = SearchResult( SearchResultType.python_iset, data=or_python_iset_with_rust_iset( video_data_context, r1, r2)) else: raise UnreachableCode() elif r1.type == SearchResultType.rust_iset: if r2.type == SearchResultType.rust_iset: # Return: python_iset curr_result = SearchResult( SearchResultType.python_iset, data=or_rust_isets(video_data_context, r1, r2)) else: raise UnreachableCode() else: raise UnreachableCode() return curr_result def _search_recursive( query: Any, context: SearchContext ) -> Optional[SearchResult]: k, v = query if k == 'all': return SearchResult(SearchResultType.video_set, context=context) elif k == 'or': return _search_or(v, context) elif k == 'and': return _search_and(v, context) elif k == SearchKey.face_name: return SearchResult( SearchResultType.rust_iset, context=context, data=get_face_name_intervals(video_data_context, v.lower())) elif k == SearchKey.face_tag: return SearchResult( SearchResultType.rust_iset, context=context, data=get_face_tag_intervals(video_data_context, v.lower())) elif k == SearchKey.face_count: return SearchResult( SearchResultType.rust_iset, context=context, data=get_face_count_intervals(video_data_context, int(v))) elif k == SearchKey.text: return SearchResult( SearchResultType.python_iset, data=get_caption_intervals( caption_data_context, video_data_context, v, context)) elif k == SearchKey.text_window: # FIXME: this doesnt make any real sense here return None elif k == SearchKey.video: video = video_data_context.video_dict.get(v) if video is None: raise VideoNotInDatabase(v) if context.videos is not None and video.id not in context.videos: return None else: return SearchResult( SearchResultType.video_set, context=context._replace(videos={video.id})) elif k == SearchKey.channel: if context.channel is not None and context.channel != v: return None else: return SearchResult( SearchResultType.video_set, context=context._replace(channel=v)) elif k == SearchKey.show: if context.show is not None and context.show != v: return None else: return SearchResult( SearchResultType.video_set, context=context._replace(show=v)) elif k == SearchKey.hour: hours = parse_hour_set(v) if context.hours is not None: hours &= context.hours if not hours: return None return SearchResult( SearchResultType.video_set, context=context._replace(hours=hours)) elif k == SearchKey.day_of_week: days = parse_day_of_week_set(v) if context.days_of_week is not None: days &= context.days_of_week if not days: return None return SearchResult( SearchResultType.video_set, context=context._replace(days_of_week=days)) raise UnreachableCode() @app.route('/search') def search() -> Response: aggregate_fn = get_aggregate_fn(default_aggregate_by) accumulator = ( DetailedDateAccumulator(aggregate_fn) if request.args.get( SearchParam.detailed, 'true', type=str ) == 'true' else SimpleDateAccumulator(aggregate_fn)) query_str = request.args.get(SearchParam.query, type=str) if query_str: query = json.loads(query_str) else: query = ['all', None] start_date = parse_date( request.args.get(SearchParam.start_date, None, type=str)) end_date = parse_date( request.args.get(SearchParam.end_date, None, type=str)) is_commercial = _get_is_commercial() search_result = _search_recursive( query, SearchContext( start_date=start_date, end_date=end_date, text_window=default_text_window)) if search_result is not None: def helper(video: Video, intervals: List[Interval]) -> None: intervals = join_intervals_with_commercials( video_data_context, video, intervals, is_commercial) if intervals: accumulator.add( video.date, video.id, sum(i[1] - i[0] for i in intervals) / 1000) for data in search_result_to_python_iset( video_data_context, search_result ): if data.is_entire_video: intervals = get_entire_video_ms_interval(data.video) else: assert data.intervals is not None intervals = data.intervals helper(data.video, intervals) return jsonify(accumulator.get()) def _video_name_or_id(v: str) -> str: try: v_id = int(v) return video_data_context.video_by_id[v_id].name except ValueError: return v def _get_entire_video(video: Video) -> JsonObject: document = caption_data_context.document_by_name.get(video.name) return { 'metadata': get_video_metadata_json(video), 'intervals': [(0, video.num_frames)], } @app.route('/search-videos') def search_videos() -> Response: video_ids_str = request.args.get(SearchParam.video_ids, None, type=str) if not video_ids_str: raise InvalidUsage('must specify video ids') video_ids = set(json.loads(video_ids_str)) if len(video_ids) > MAX_VIDEO_SEARCH_IDS: raise QueryTooExpensive('Too many video ids specified') query_str = request.args.get(SearchParam.query, type=str) if query_str: query = json.loads(query_str) else: query = ['all', None] is_commercial = _get_is_commercial() results = [] def collect(video: Video, intervals: List[Interval]) -> None: intervals = join_intervals_with_commercials( video_data_context, video, intervals, is_commercial) if intervals: results.append({ 'metadata': get_video_metadata_json(video), 'intervals': list(merge_close_intervals( (i[0] / 1000, i[1] / 1000) for i in intervals )) }) search_result = _search_recursive( query, SearchContext( videos=video_ids, text_window=default_text_window)) if search_result is not None: for data in search_result_to_python_iset( video_data_context, search_result ): assert data.video.id in video_ids, \ 'Unexpected video {}, not in {}'.format( data.video.id, video_ids) if data.is_entire_video: intervals = get_entire_video_ms_interval(data.video) else: assert data.intervals is not None intervals = data.intervals collect(data.video, intervals) assert len(results) <= len(video_ids), \ 'Expected {} results, got {}'.format(len(video_ids), len(results)) return jsonify(results) ``` #### File: jhong93/esper-tv-widget/derive_data.py ```python import argparse import os import json import heapq import time from collections import defaultdict from functools import wraps from inspect import getfullargspec from multiprocessing import Pool from typing import List, Tuple from pytz import timezone from rs_intervalset import MmapIntervalListMapping, MmapIntervalSetMapping from rs_intervalset.writer import ( IntervalSetMappingWriter, IntervalListMappingWriter) from app.load import load_videos U32_MAX = 0xFFFFFFFF # Mask for data bits that are used PAYLOAD_DATA_MASK = 0b00000111 PAYLOAD_LEN = 1 # Minimum interval for no faces MIN_NO_FACES_MS = 1000 def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--datadir', type=str, default='data') parser.add_argument( '-i', '--incremental', action='store_true', help='Incrementally update existing derived files (skips video ids ' 'with existing derived data).') parser.add_argument( '-t', '--tag-limit', type=int, default=250, help='Tags exceeding this number of individuals will be precomputed.') parser.add_argument( '-p', '--person-limit', type=int, default=2 ** 20, # 1MB help='Person isets will be precomputed for people ilists exceeding this size.') return parser.parse_args() def mkdir_if_not_exists(d: str): os.makedirs(d, exist_ok=True) # TODO(james): investigate why derived data are subtly different from Spark class IntervalAccumulator: def __init__(self, fuzz: int = 250): self._intervals = None self._fuzz = fuzz def add(self, start: int, end: int) -> None: assert start <= end if not self._intervals: self._intervals = [(start, end)] else: last_int = self._intervals[-1] if start > last_int[1] + self._fuzz: self._intervals.append((start, end)) elif end > last_int[1]: assert start >= last_int[0] assert last_int[0] <= end self._intervals[-1] = (last_int[0], end) def get(self): return self._intervals # TODO(james): not sure this is actually catching any errors def build_error_callback(message): def cb(e): print(message) raise e return cb def print_task_info(f): arg_spec = getfullargspec(f) arg_idx = arg_spec.args.index('outfile') assert arg_idx >= 0 @wraps(f) def _task_info(*args, **kwargs): outfile = args[arg_idx] print('Writing:', outfile) start_time = time.time() result = f(*args, **kwargs) print('Done:', outfile, '({:0.3f}s)'.format(time.time() - start_time)) return result return _task_info @print_task_info def derive_face_iset( face_ilist_file: str, payload_mask: int, payload_value: int, outfile: str, is_incremental: bool ) -> None: ilistmap = MmapIntervalListMapping(face_ilist_file, PAYLOAD_LEN) video_ids = set(ilistmap.get_ids()) if is_incremental and os.path.exists(outfile): video_ids -= get_iset_ids(outfile) with IntervalSetMappingWriter(outfile, append=is_incremental) as writer: for video_id in sorted(video_ids): acc = IntervalAccumulator() for interval in ilistmap.intersect( video_id, [(0, U32_MAX)], payload_mask, payload_value, False ): acc.add(*interval) result = acc.get() if result: writer.write(video_id, result) def derive_face_isets( workers: Pool, face_ilist_file: str, outdir: str, is_incremental: bool ) -> None: mkdir_if_not_exists(outdir) def helper(mask: int, value: int, outfile: str) -> None: workers.apply_async( derive_face_iset, ( face_ilist_file, mask, value, os.path.join(outdir, outfile), is_incremental ), error_callback=build_error_callback('Failed on: ' + face_ilist_file)) # There are 3 bits in the encoding # The 1's place is binary gender. 1 if male, 0 if female. Ignore if # the 2's place is 1. # The 2's place is nonbinary gender. If 1, ignore the 1's place. # This individual counted in neither male nor female aggregations # The 4's place is 1 if the individual is a host of the show, 0 otherwise helper(0b000, 0b000, 'all.iset.bin') helper(0b011, 0b001, 'male.iset.bin') helper(0b011, 0b000, 'female.iset.bin') helper(0b100, 0b100, 'host.iset.bin') helper(0b100, 0b000, 'nonhost.iset.bin') helper(0b111, 0b101, 'male_host.iset.bin') helper(0b111, 0b001, 'male_nonhost.iset.bin') helper(0b111, 0b100, 'female_host.iset.bin') helper(0b111, 0b000, 'female_nonhost.iset.bin') IntervalAndPayload = Tuple[int, int, int] def get_ilist_ids(fname): return set(MmapIntervalListMapping(fname, PAYLOAD_LEN).get_ids()) def get_iset_ids(fname): return set(MmapIntervalSetMapping(fname).get_ids()) @print_task_info def derive_num_faces_ilist( data_dir: str, face_ilist_file: str, outfile: str, is_incremental: bool ) -> None: def deoverlap( intervals: List[IntervalAndPayload], fuzz: int = 250 ) -> List[IntervalAndPayload]: result = [] for i in intervals: if len(result) == 0: result.append(i) else: last = result[-1] if last[2] == i[2] and i[0] - last[1] <= fuzz: result[-1] = (min(i[0], last[0]), max(i[1], last[1]), i[2]) else: result.append(i) return result ilistmap = MmapIntervalListMapping(face_ilist_file, PAYLOAD_LEN) video_ids = set(ilistmap.get_ids()) if is_incremental and os.path.exists(outfile): video_ids -= get_ilist_ids(outfile) # timezone does not matter here since we only want video length video_durations = { v.id : int(v.num_frames / v.fps * 1000) for v in load_videos(data_dir, timezone('UTC')).values() } with IntervalListMappingWriter( outfile, PAYLOAD_LEN, append=is_incremental ) as writer: for video_id in sorted(video_ids): intervals = [] curr_interval = None curr_interval_count = None for interval in ilistmap.get_intervals(video_id, 0, 0, False): if not curr_interval: if interval[0] > 0 and interval[0] > MIN_NO_FACES_MS: intervals.append((0, interval[0], 0)) curr_interval = interval curr_interval_count = 1 else: assert interval >= curr_interval if interval == curr_interval: curr_interval_count += 1 else: intervals.append((*curr_interval, curr_interval_count)) if interval[0] - curr_interval[1] > MIN_NO_FACES_MS: intervals.append((curr_interval[1], interval[0], 0)) curr_interval = interval curr_interval_count = 1 else: if curr_interval: intervals.append((*curr_interval, curr_interval_count)) if video_durations[video_id] - curr_interval[1] > MIN_NO_FACES_MS: intervals.append((curr_interval[1], video_durations[video_id], 0)) else: intervals.append((0, video_durations[video_id], 0)) writer.write(video_id, deoverlap(intervals)) @print_task_info def derive_person_iset( person_ilist_file: str, outfile: str, is_incremental: bool ) -> None: ilistmap = MmapIntervalListMapping(person_ilist_file, PAYLOAD_LEN) video_ids = set(ilistmap.get_ids()) if is_incremental and os.path.exists(outfile): video_ids -= get_iset_ids(outfile) with IntervalSetMappingWriter(outfile, append=is_incremental) as writer: for video_id in sorted(video_ids): acc = IntervalAccumulator() for interval in ilistmap.intersect( video_id, [(0, U32_MAX)], 0, 0, # Keep all faces False ): acc.add(*interval) result = acc.get() if result: writer.write(video_id, result) def parse_person_name(fname: str) -> str: return os.path.splitext(os.path.splitext(fname)[0])[0] def derive_person_isets( workers: Pool, person_ilist_dir: str, outdir: str, threshold_in_bytes: int, is_incremental: bool ) -> None: mkdir_if_not_exists(outdir) skipped_count = 0 for person_file in os.listdir(person_ilist_dir): if not person_file.endswith('.ilist.bin'): print('Skipping:', person_file) continue person_name = parse_person_name(person_file) person_path = os.path.join(person_ilist_dir, person_file) derived_path = os.path.join(outdir, person_name + '.iset.bin') if not os.path.exists(derived_path) and os.path.getsize(person_path) < threshold_in_bytes: if skipped_count < 100: print('Skipping (too small):', person_file) skipped_count += 1 continue workers.apply_async( derive_person_iset, (person_path, derived_path, is_incremental), error_callback=build_error_callback('Failed on: ' + person_file)) if skipped_count > 0: print('Skipped {} people (files too small).'.format(skipped_count)) @print_task_info def derive_tag_ilist( person_ilist_files: str, outfile: str, is_incremental: bool ) -> None: ilistmaps = [MmapIntervalListMapping(f, PAYLOAD_LEN) for f in person_ilist_files] video_id_set = set() for ilist in ilistmaps: video_id_set.update(ilist.get_ids()) def deoverlap_intervals(intervals): payload_dict = defaultdict(IntervalAccumulator) for a, b, c in heapq.merge(*intervals): payload_dict[c & PAYLOAD_DATA_MASK].add(a, b) return list(heapq.merge(*[ [(a, b, payload) for a, b in acc.get()] for payload, acc in payload_dict.items() ])) if is_incremental and os.path.exists(outfile): video_id_set -= get_ilist_ids(outfile) with IntervalListMappingWriter( outfile, PAYLOAD_LEN, append=is_incremental ) as writer: for i in sorted(video_id_set): intervals = [] for ilist in ilistmaps: intervals.append(ilist.get_intervals_with_payload(i, True)) writer.write(i, deoverlap_intervals(intervals)) def derive_tag_ilists( workers: Pool, person_ilist_dir: str, metadata_path: str, outdir: str, threshold: int, is_incremental: bool ) -> None: people_available = { parse_person_name(p) for p in os.listdir(person_ilist_dir) if p.endswith('.ilist.bin') } with open(metadata_path) as f: people_to_tags = json.load(f) people_to_tags = { k.lower(): v for k, v in people_to_tags.items() if k.lower() in people_available } tag_to_people = defaultdict(list) for person, tags in people_to_tags.items(): for tag, _ in tags: tag_to_people[tag].append(person) mkdir_if_not_exists(outdir) # Try to queue the expensive ones first for tag, people in sorted(tag_to_people.items(), key=lambda x: -len(x[1])): tag_path = os.path.join(outdir, tag + '.ilist.bin') if os.path.exists(tag_path) or len(people) >= threshold: people_ilist_files = [ os.path.join(person_ilist_dir, '{}.ilist.bin'.format(p)) for p in people] workers.apply_async( derive_tag_ilist, (people_ilist_files, tag_path, is_incremental), error_callback=build_error_callback('Failed on: ' + tag)) def main( datadir: str, incremental: bool, tag_limit: int, person_limit: int ) -> None: outdir = os.path.join(datadir, 'derived') mkdir_if_not_exists(outdir) # Tasks are added from most expensive to least expensive to reduce tail # latency and CPU underutilization with Pool() as workers: workers.apply_async( derive_num_faces_ilist, ( datadir, os.path.join(datadir, 'faces.ilist.bin'), os.path.join(outdir, 'num_faces.ilist.bin'), incremental ), error_callback=build_error_callback('Failed on: num faces ilist')) metadata_path = os.path.join(datadir, 'people.metadata.json') if os.path.exists(metadata_path): derive_tag_ilists( workers, os.path.join(datadir, 'people'), metadata_path, os.path.join(outdir, 'tags'), tag_limit, incremental) derive_face_isets( workers, os.path.join(datadir, 'faces.ilist.bin'), os.path.join(outdir, 'face'), incremental) derive_person_isets( workers, os.path.join(datadir, 'people'), os.path.join(outdir, 'people'), person_limit, incremental) workers.close() workers.join() print('Done!') if __name__ == '__main__': main(**vars(get_args())) ```
{ "source": "jhong93/vpd", "score": 2 }
#### File: jhong93/vpd/detect.py ```python import os import argparse import random import math from collections import Counter, defaultdict from typing import NamedTuple from tabulate import tabulate import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import numba import torch torch.set_num_threads(8) from util.io import store_json, load_json, load_text from util.proposal import BaseProposalModel, EnsembleProposalModel from util.video import get_metadata from action_dataset.load import load_embs, load_actions from action_dataset.eval import get_test_prefixes import video_dataset_paths as dataset_paths class DataConfig(NamedTuple): video_name_prefix: 'Optional[str]' classes: 'List[str]' window_before: float = 0. window_after: float = 0. TENNIS_CLASSES = [ 'forehand_topspin', 'forehand_slice', 'backhand_topspin', 'backhand_slice', 'forehand_volley', 'backhand_volley', 'overhead', 'serve', 'unknown_swing' ] TENNIS_WINDOW = 0.1 TENNIS_MIN_SWINGS_FEW_SHOT = 5 DATA_CONFIGS = { 'tennis': DataConfig( video_name_prefix=None, classes=TENNIS_CLASSES, window_before=TENNIS_WINDOW, window_after=TENNIS_WINDOW ), 'tennis_front': DataConfig( video_name_prefix='front__', classes=TENNIS_CLASSES, window_before=TENNIS_WINDOW, window_after=TENNIS_WINDOW ), 'tennis_back': DataConfig( video_name_prefix='back__', classes=TENNIS_CLASSES, window_before=TENNIS_WINDOW, window_after=TENNIS_WINDOW ), 'fs_jump': DataConfig( video_name_prefix=None, classes=['axel', 'lutz', 'flip', 'loop', 'salchow', 'toe_loop'], ), 'fx': DataConfig(video_name_prefix=None, classes=[]) } class Label(NamedTuple): video: str value: str start_frame: int end_frame: int fps: float EMB_FILE_SUFFIX = '.emb.pkl' SEQ_MODELS = ['lstm', 'gru'] def get_args(): parser = argparse.ArgumentParser() parser.add_argument('dataset', choices=list(DATA_CONFIGS.keys())) parser.add_argument('-k', type=int, default=1) parser.add_argument('-o', '--out_dir', type=str) parser.add_argument('--emb_dir', type=str) parser.add_argument('-nt', '--n_trials', type=int, default=1) parser.add_argument('--algorithm', type=str, choices=SEQ_MODELS, default='gru') parser.add_argument('-ne', '--n_examples', type=int, default=-1) parser.add_argument('-tw', '--tennis_window', type=float) parser.add_argument('--_all', action='store_true') parser.add_argument('--norm', action='store_true') parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--batch_size', type=int) return parser.parse_args() def get_video_intervals(examples): result = defaultdict(list) for l in examples: result[l.video].append((l.start_frame, l.end_frame)) def deoverlap(intervals): ret = [] for a, b in sorted(intervals): if len(ret) == 0 or ret[-1][1] < a: ret.append((a, b)) else: ret[-1] = (ret[-1][0], b) return tuple(ret) return {k: deoverlap(v) for k, v in result.items()} class ProposalModel: MIN_TRAIN_EPOCHS = 25 NUM_TRAIN_EPOCHS = 200 def __init__(self, arch_type, emb_dict, train_labels, hidden_dim, ensemble_size, splits=5, **kwargs): self.embs = emb_dict train_videos = list({l.video for l in train_labels if l.video in emb_dict}) def get_gt(video): vx, _ = emb_dict[video] vy = np.zeros(vx.shape[0], dtype=np.int32) for l in train_labels: if l.video == video: vy[l.start_frame:l.end_frame] = 1 return vx, vy X, y = [], [] custom_split = None for i, v in enumerate(train_videos): vx, vy = get_gt(v) if len(vx.shape) == 3: if custom_split is None: custom_split = [] for j in range(vx.shape[1]): X.append(vx[:, j, :]) y.append(vy) custom_split.append(i) else: X.append(vx) y.append(vy) if custom_split is not None: assert len(custom_split) == len(X) if len(X) < ensemble_size: ensemble_size = splits = len(X) print('Too few videos for full ensemble:', ensemble_size) kwargs.update({ 'ensemble_size': ensemble_size, 'splits': splits, 'num_epochs': ProposalModel.NUM_TRAIN_EPOCHS, 'min_epochs': ProposalModel.MIN_TRAIN_EPOCHS, 'custom_split': custom_split }) if len(X) < ensemble_size: raise Exception('Not enough examples for ensemble!') else: self.model = EnsembleProposalModel( arch_type, X, y, hidden_dim, **kwargs) def predict(self, video): x = self.embs[video][0] if len(x.shape) == 3: return self.model.predict_n( *[x[:, i, :] for i in range(x.shape[1])]) else: return self.model.predict(x) LOC_TEMPORAL_IOUS = [0.1 * i for i in range(1, 10)] @numba.jit(nopython=True) def calc_iou(a1, a2, b1, b2): isect = min(a2, b2) - max(a1, b1) return isect / (max(a2, b2) - min(a1, b1)) if isect > 0 else 0 def compute_precision_recall_curve(is_tp, num_pos): recall = [] precision = [] tp, fp = 0, 0 for p in is_tp: if p: tp += 1 else: fp += 1 recall.append(tp / num_pos) precision.append(tp / (tp + fp)) return precision, recall def compute_interpolated_precision(precision, recall): interp_recall = [] interp_precision = [] max_precision = 0 min_recall = 1 for i in range(1, len(recall) + 1): r = recall[-i] p = precision[-i] if r < min_recall: if len(interp_precision) == 0 or p > interp_precision[-1]: interp_recall.append(min_recall) interp_precision.append(max_precision) max_precision = max(max_precision, p) min_recall = min(min_recall, r) interp_recall.append(0) interp_precision.append(1) interp_precision.reverse() interp_recall.reverse() return interp_precision, interp_recall def compute_ap(pc, rc): ipc, irc = compute_interpolated_precision(pc, rc) assert irc[0] == 0, irc[0] assert irc[-1] == 1, (irc[-1], len(irc)) area = 0 for i in range(len(irc) - 1): dr = irc[i + 1] - irc[i] assert dr > 0 p = ipc[i + 1] if i > 0: assert p < ipc[i], (p, ipc[i]) area += p * dr assert area >= 0 and area <= 1, area return area def plot_proposal_dist(props): fig = plt.figure() plt.hist(x=[b - a for a, b in props], bins=50) plt.xlabel('num frames') plt.ylabel('frequency') plt.show() plt.close(fig) def plot_precision_recall_curve(p, r): fig = plt.figure() plt.plot(r, p) ip, ir = compute_interpolated_precision(p, r) plt.step(ir, ip) plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel('recall') plt.ylabel('precision') plt.show() plt.close(fig) def make_split(train_examples, is_tennis): print('Making a new split!') train_videos = list({l.video for l in train_examples}) if is_tennis: # Split off the player train_videos = list({ v.split('__', 1)[1] for v in train_videos}) print('Videos:', len(train_videos)) train_videos.sort() random.Random(42).shuffle(train_videos) if is_tennis: train_intervals = get_video_intervals(train_examples) def tennis_filter(t): front_video = 'front__' + t back_video = 'back__' + t # Dont sample videos with too few swings return ( len(train_intervals.get(front_video, [])) >= TENNIS_MIN_SWINGS_FEW_SHOT and len(train_intervals.get(back_video, [])) >= TENNIS_MIN_SWINGS_FEW_SHOT) train_videos = list(filter(tennis_filter, train_videos)) for v in train_videos: print(v) return train_videos def run_localization(dataset_name, emb_dict, train_examples, test_examples, n_examples, n_trials, algorithm, k, hidden_dim, batch_size, out_dir, _all=False): test_video_ints = get_video_intervals(test_examples) test_video_int_count = sum(len(v) for v in test_video_ints.values()) print('Test examples (non-overlapping):', test_video_int_count) mean_train_int_len = np.mean([ t.end_frame - t.start_frame for t in train_examples]) min_prop_len = 0.67 * math.ceil(mean_train_int_len) max_prop_len = 1.33 * math.ceil(mean_train_int_len) if n_examples == -1: exp_name = 'full train' else: exp_name = '{} shot'.format(n_examples) # Activation threshold ranges thresholds = ( np.linspace(0.05, 0.5, 10) if 'tennis' in dataset_name else np.linspace(0.1, 0.9, 9)) trial_results = [] for trial in range(n_trials): if n_examples < 0: exp_train_examples = train_examples else: few_shot_file = \ 'action_dataset/{}/train.localize.{}.txt'.format( 'fs' if dataset_name.startswith('fs') else dataset_name, trial) print('Loading split:', few_shot_file) train_videos = load_text(few_shot_file) train_videos = train_videos[:n_examples] exp_train_examples = [ l for l in train_examples if (l.video in train_videos or ('tennis' in dataset_name and l.video.split('__', 1)[1] in train_videos))] kwargs = {} if batch_size is not None: kwargs['batch_size'] = batch_size model = ProposalModel(algorithm, emb_dict, exp_train_examples, hidden_dim, ensemble_size=k, **kwargs) results = [] for video in tqdm( set(emb_dict) if _all else {l.video for l in test_examples if l.video in emb_dict}, desc='Running {}'.format(exp_name) ): scores = model.predict(video) results.append((video, scores)) if out_dir: os.makedirs(out_dir, exist_ok=True) out_path = os.path.join( out_dir, '{}_trial{}_{}_pred.json'.format( 'train{}'.format(len(exp_train_examples) if n < 0 else n), trial, algorithm)) store_json(out_path, {k: v.tolist() for k, v in results}) def calc_ap_at_threshold(act_thresh): all_props = [] for video, scores in results: props = BaseProposalModel.get_proposals(scores, act_thresh) for p, score in props: all_props.append((video, p, score)) all_props.sort(key=lambda x: -x[-1]) # plot_proposal_dist([x[1] for x in all_props]) aps_at_tiou = [] for t_iou in LOC_TEMPORAL_IOUS: all_remaining = {} for video, gt_ints in test_video_ints.items(): all_remaining[video] = set(gt_ints) is_tp = [] for video, p, score in all_props: mid = (p[1] + p[0]) // 2 if p[1] - p[0] < min_prop_len: p = (max(0, mid - min_prop_len // 2), mid + min_prop_len // 2) elif p[1] - p[0] > max_prop_len: p = (max(0, mid - max_prop_len // 2), mid + max_prop_len // 2) # Only the first retrieval can be correct video_remaining = all_remaining.get(video) if video_remaining is None: is_tp.append(False) else: recalled = [] for gt in video_remaining: if calc_iou(*p, *gt) >= t_iou: recalled.append(gt) # Disallow subsequent recall of these ground truth # intervals for gt in recalled: video_remaining.remove(gt) if len(video_remaining) == 0: del all_remaining[video] is_tp.append(len(recalled) > 0) if len(is_tp) > 0 and any(is_tp): pc, rc = compute_precision_recall_curve( is_tp, test_video_int_count) # if ( # np.isclose(t_iou, 0.5) # and np.isclose(act_thresh, 0.2) # ): # plot_precision_recall_curve(pc, rc) aps_at_tiou.append(compute_ap(pc, rc)) else: aps_at_tiou.append(0) return aps_at_tiou all_aps = [] for act_thresh in thresholds: all_aps.append(calc_ap_at_threshold(act_thresh)) headers = ['tIoU', *['AP@{:0.2f}'.format(x) for x in thresholds]] rows = [] for i, t_iou in enumerate(LOC_TEMPORAL_IOUS): rows.append([t_iou, *[x[i] for x in all_aps]]) print(tabulate(rows, headers=headers)) trial_results.append(np.array(all_aps)) if len(trial_results) > 1: mean_result = trial_results[0] / n_trials for t in trial_results[1:]: mean_result += t / n_trials headers = ['tIoU', *['AP@{:0.2f}'.format(x) for x in thresholds]] rows = [] for i, t_iou in enumerate(LOC_TEMPORAL_IOUS): rows.append( [t_iou, *[mean_result[j, i] for j in range(len(thresholds))]]) print('\nMean across {} trials:'.format(len(trial_results))) print(tabulate(rows, headers=headers)) def load_tennis_data(config): def parse_video_name(v): v = os.path.splitext(v)[0] video_name, start, end = v.rsplit('_', 2) return (video_name, int(start), int(end), v) video_meta_dict = { parse_video_name(v): get_metadata( os.path.join(dataset_paths.TENNIS_VIDEO_DIR, v) ) for v in tqdm(os.listdir(dataset_paths.TENNIS_VIDEO_DIR), desc='Loading video metadata') if v.endswith('.mp4') } actions = load_actions('action_dataset/tennis/all.txt') test_prefixes = get_test_prefixes('tennis') train_labels = [] test_labels = [] for action, label in actions.items(): if label not in config.classes: continue base_video, player, frame = action.split(':') frame = int(frame) for k in video_meta_dict: if k[0] == base_video and k[1] <= frame and k[2] >= frame: fps = video_meta_dict[k].fps mid_frame = frame - k[1] start_frame = max( 0, int(mid_frame - fps * config.window_before)) end_frame = int(mid_frame + fps * config.window_after) label = Label( '{}__{}'.format(player, k[-1]), 'action', start_frame, end_frame, fps) break if base_video.startswith(test_prefixes): test_labels.append(label) else: train_labels.append(label) return train_labels, test_labels def load_fs_data(config): video_meta_dict = { os.path.splitext(v)[0]: get_metadata( os.path.join(dataset_paths.FS_VIDEO_DIR, v)) for v in tqdm(os.listdir(dataset_paths.FS_VIDEO_DIR), desc='Loading video metadata') if v.endswith('.mp4') } actions = load_actions('action_dataset/fs/all.txt') test_prefixes = get_test_prefixes('fs') durations = [] train_labels = [] test_labels = [] for action, label in actions.items(): if label not in config.classes: continue video, start_frame, end_frame = action.split(':') start_frame = int(start_frame) end_frame = int(end_frame) fps = video_meta_dict[video].fps # Dilate mid_frame = (start_frame + end_frame) / 2 start_frame = min( start_frame, int(mid_frame - fps * config.window_before)) end_frame = max(end_frame, int(mid_frame + fps * config.window_after)) durations.append((end_frame - start_frame) / fps) label = Label(video, 'action', start_frame, end_frame, fps) if video.startswith(test_prefixes): test_labels.append(label) else: train_labels.append(label) print(np.mean(durations)) return train_labels, test_labels def load_fx_data(config): from finegym.util import ANNOTATION_FILE from sklearn.model_selection import train_test_split video_meta_dict = { os.path.splitext(v)[0]: get_metadata( os.path.join(dataset_paths.FX_VIDEO_DIR, v)) for v in tqdm(os.listdir(dataset_paths.FX_VIDEO_DIR), desc='Loading video metadata') if v.endswith('.mp4') } all_labels = [] event_id = 2 # Female fx annotations = load_json(ANNOTATION_FILE) for video in annotations: for event, event_data in annotations[video].items(): if event_data['event'] != event_id: continue video_name = '{}_{}'.format(video, event) if event_data['segments'] is None: print('{} has no segments'.format(video_name)) continue for segment, segment_data in event_data['segments'].items(): assert segment_data['stages'] == 1 assert len(segment_data['timestamps']) == 1 start, end = segment_data['timestamps'][0] fps = video_meta_dict[video_name].fps start_frame = int(max(0, fps * (start - config.window_before))) end_frame = int(fps * (end + config.window_after)) all_labels.append(Label( video_name, 'action', start_frame, end_frame, fps)) _, test_videos = train_test_split( list(video_meta_dict.keys()), test_size=0.25) test_videos = set(test_videos) train_labels = [] test_labels = [] for l in all_labels: if l.video in test_videos: test_labels.append(l) else: train_labels.append(l) return train_labels, test_labels def main(dataset, out_dir, n_trials, n_examples, tennis_window, emb_dir, _all, algorithm, norm, k, hidden_dim, batch_size): config = DATA_CONFIGS[dataset] emb_dict = load_embs(emb_dir, norm) def print_label_dist(labels): print('Videos:', len({l.video for l in labels})) for name, count in Counter(x.value for x in labels).most_common(): print(' {} : {}'.format(name, count)) if dataset.startswith('tennis'): if tennis_window is not None: config = config._replace( window_before=tennis_window, window_after=tennis_window) train_labels, test_labels = load_tennis_data(config) elif dataset.startswith('fs'): train_labels, test_labels = load_fs_data(config) else: train_labels, test_labels = load_fx_data(config) print('\nLoaded {} train labels'.format(len(train_labels))) print_label_dist(train_labels) print('\nLoaded {} test labels'.format(len(test_labels))) print_label_dist(test_labels) print('\nTrain / test split: {} / {}\n'.format( len(train_labels), len(test_labels))) run_localization(dataset, emb_dict, train_labels, test_labels, n_examples, n_trials, algorithm, k, hidden_dim, batch_size, out_dir, _all=_all) if __name__ == '__main__': main(**vars(get_args())) ``` #### File: vpd/finegym/util.py ```python import os import math from typing import NamedTuple import numpy as np from util.io import load_pickle DIR_PATH = os.path.dirname(os.path.realpath(__file__)) ANNOTATION_FILE = os.path.join( DIR_PATH, 'data', 'finegym_annotation_info_v1.1.json') GYM99_CATEGORY_FILE = os.path.join(DIR_PATH, 'data', 'gym99_categories.txt') GYM99_ABRV_CATEGORY_FILE = os.path.join( DIR_PATH, 'data', 'gym99_categories_abrv.txt') GYM99_TRAIN_FILE = os.path.join( DIR_PATH, 'data', 'gym99_train_element_v1.1.txt') GYM99_VAL_FILE = os.path.join(DIR_PATH, 'data', 'gym99_val_element.txt') class Category(NamedTuple): class_id: int set_id: int g530_id: int event: str name: str def _parse_label(s): return int(s.split(':', 1)[1].strip()) def load_categories(file_name): result = {} with open(file_name) as fp: for line in fp: clabel, slabel, glabel, data = line.split(';') clabel = _parse_label(clabel) slabel = _parse_label(slabel) glabel = _parse_label(glabel) event, name = data.strip()[1:].split(')', 1) result[clabel] = Category(clabel, slabel, glabel, event, name.strip()) return result def load_labels(file_name): result = {} with open(file_name) as fp: for line in fp: action_id, label = line.split(' ') result[action_id] = int(label) return result def parse_full_action_id(s): s, action_id = s.split('_A_') video_id, event_id = s.split('_E_') return video_id, 'E_' + event_id, 'A_' + action_id def _normalize_rows(x): d = np.linalg.norm(x, axis=1, keepdims=True) d[d < 1e-12] = 1 return x / d def load_actions(annotations, labels, meta_dict, emb_dir=None, norm=False, pre_seconds=0, min_seconds=0, max_seconds=1000, target_fps=None, interp_skipped=False): result = {} for full_action_id in labels: video_id, event_id, action_id = parse_full_action_id(full_action_id) video_event_id = '{}_{}'.format(video_id, event_id) video_meta = meta_dict.get(video_event_id) if video_meta is None: continue timestamps = annotations[video_id][event_id]['segments'][action_id]['timestamps'] start, end = timestamps[0] if end - start > max_seconds: end = start + max_seconds elif end - start < min_seconds: end = start + min_seconds if pre_seconds > 0: start -= pre_seconds start = max(start, 0) start_frame = math.floor(start * video_meta.fps) end_frame = math.ceil(end * video_meta.fps) embs = [] if emb_dir is not None: sample_incr = 1 if target_fps is not None: sample_incr = min(1, target_fps / video_meta.fps) sample_balance = 1 emb_path = os.path.join(emb_dir, video_event_id + '.emb.pkl') if os.path.isfile(emb_path): skipped_embs = [] for frame_num, emb, _ in load_pickle(emb_path): if frame_num >= start_frame and frame_num <= end_frame: if sample_balance >= 0: sample_balance -= 1 if interp_skipped and len(skipped_embs) > 0: skipped_embs.append(emb) emb = np.mean(skipped_embs, axis=0) skipped_embs = [] embs.append(emb) else: if interp_skipped: skipped_embs.append(emb) sample_balance += sample_incr if len(embs) > 0: embs = np.stack(embs) if norm: embs = _normalize_rows(embs) else: embs = None result[full_action_id] = ((start_frame, end_frame), embs) return result ``` #### File: vpd/models/keypoint.py ```python from contextlib import nullcontext from collections import Counter import torch import torch.nn.functional as F import torch.cuda.amp as amp from .util import step, batch_mulitplexer, batch_zipper TRIPLET_LOSS = False class _BaseModel: def __init__(self, encoder, decoders, device): self.encoder = encoder self.decoders = decoders self.device = device # Move to device self.encoder.to(device) for decoder in self.decoders.values(): decoder.to(device) def _train(self): self.encoder.train() for decoder in self.decoders.values(): decoder.train() def _eval(self): self.encoder.eval() for decoder in self.decoders.values(): decoder.eval() class Keypoint_EmbeddingModel(_BaseModel): def epoch(self, data_loaders, optimizer=None, scaler=None, progress_cb=None, weight_3d=1): self._train() if optimizer is not None else self._eval() dataset_losses = Counter() dataset_contra_losses = Counter() dataset_counts = Counter() with torch.no_grad() if optimizer is None else nullcontext(): for zipped_batch in ( batch_zipper(data_loaders) if optimizer is not None else ((x,) for x in batch_mulitplexer(data_loaders)) ): batch_loss = 0. batch_n = 0 for dataset_name, batch in zipped_batch: contra_loss = 0. with nullcontext() if scaler is None else amp.autocast(): pose1 = batch['pose1'].to(self.device) n = pose1.shape[0] emb1 = self.encoder(pose1.view(n, -1)) emb2 = None if 'pose2' in batch: pose2 = batch['pose2'].to(self.device) emb2 = self.encoder(pose2.view(n, -1)) contra_loss += F.hinge_embedding_loss( torch.norm(emb1 - emb2, dim=1), torch.ones(n, dtype=torch.int32, device=self.device), reduction='sum') if 'pose_neg' in batch: pose_neg = batch['pose_neg'].to(self.device) emb_neg = self.encoder(pose_neg.view(n, -1)) if TRIPLET_LOSS: contra_loss += torch.sum(F.triplet_margin_with_distance_loss( emb1, emb2, emb_neg, reduction='none' ) * batch['pose_neg_is_valid'].to(self.device)) else: contra_loss += torch.sum(F.hinge_embedding_loss( torch.norm(emb1 - emb_neg, dim=1), -torch.ones(n, dtype=torch.int32, device=self.device), reduction='none' ) * batch['pose_neg_is_valid'].to(self.device)) loss = 0. loss += contra_loss if 'kp_features' in batch: pose_decoder = self.decoders['3d'] true3d = batch['kp_features'].float().to(self.device) pred3d1 = pose_decoder( emb1, dataset_name).reshape(true3d.shape) loss += weight_3d * F.mse_loss( pred3d1, true3d, reduction='sum') if emb2 is not None: pred3d2 = pose_decoder( emb2, dataset_name).reshape(true3d.shape) loss += weight_3d * F.mse_loss( pred3d2, true3d, reduction='sum') if contra_loss > 0: dataset_contra_losses[dataset_name] += contra_loss.item() dataset_losses[dataset_name] += loss.item() dataset_counts[dataset_name] += n # Sum the losses for the dataset batch_loss += loss batch_n += n # Take mean of losses before backprop batch_loss /= batch_n if optimizer is not None: step(optimizer, scaler, batch_loss) if progress_cb is not None: progress_cb(batch_n) # print({k: v / dataset_counts[k] # for k, v in dataset_contra_losses.items()}) epoch_n = sum(dataset_counts.values()) return (sum(dataset_contra_losses.values()) / epoch_n, sum(dataset_losses.values()) / epoch_n, {k: v / dataset_counts[k] for k, v in dataset_losses.items()}) def _predict(self, pose, get_emb, decoder_target=None): assert get_emb or decoder_target is not None, 'Nothing to predict' if not isinstance(pose, torch.Tensor): pose = torch.FloatTensor(pose) pose = pose.to(self.device) if len(pose.shape) == 2: pose = pose.unsqueeze(0) self.encoder.eval() if decoder_target is not None: decoder = self.decoders['3d'] decoder.eval() else: decoder = None with torch.no_grad(): n = pose.shape[0] emb = self.encoder(pose.view(n, -1)) if decoder is None: return emb.cpu().numpy(), None pred3d = decoder(emb, decoder_target) if get_emb: return emb.cpu().numpy(), pred3d.cpu().numpy() else: return None, pred3d.cpu().numpy() def embed(self, pose): return self._predict(pose, get_emb=True)[0] def predict3d(self, pose, decoder_target): return self._predict( pose, get_emb=False, decoder_target=decoder_target)[1] def embed_and_predict3d(self, pose, decoder_target): return self._predict( pose, get_emb=True, decoder_target=decoder_target) ``` #### File: vpd/models/rgb.py ```python import torch import torch.nn as nn from efficientnet_pytorch import EfficientNet, model from .module import ENCODER_ARCH def add_flow_to_model(base_model): # modify the convolution layers # Torch models are usually defined in a hierarchical way. # nn.modules.children() return all sub modules in a DFS manner modules = list(base_model.modules()) first_conv_idx = list(filter(lambda x: isinstance(modules[x], nn.Conv2d), list(range(len(modules)))))[0] conv_layer = modules[first_conv_idx] container = modules[first_conv_idx - 1] # modify parameters, assume the first blob contains the convolution kernels params = [x.clone() for x in conv_layer.parameters()] kernel_size = params[0].size() new_kernel_size = kernel_size[:1] + (5,) + kernel_size[2:] new_kernels = params[0].data.mean(dim=1, keepdim=True).expand( new_kernel_size).contiguous() new_conv = nn.Conv2d(5, conv_layer.out_channels, conv_layer.kernel_size, conv_layer.stride, conv_layer.padding, bias=True if len(params) == 2 else False) new_conv.weight.data = new_kernels if len(params) == 2: new_conv.bias.data = params[1].data # add bias if neccessary layer_name = list(container.state_dict().keys())[0][:-7] # remove .weight suffix to get the layer name # replace the first convlution layer setattr(container, layer_name, new_conv) return base_model def replace_last_layer(base_model, last_layer_name, out_dim): feature_dim = getattr(base_model, last_layer_name).in_features setattr(base_model, last_layer_name, nn.Linear(feature_dim, out_dim)) return base_model class RGBF_EmbeddingModel(nn.Module): """Basic embedding model with single frame features""" def __init__(self, model_arch, emb_dim, use_flow, device, pretrained=False): super().__init__() self.device = device self.use_flow = use_flow self.emb_dim = emb_dim if 'resnet' in model_arch: backbone = ENCODER_ARCH[model_arch].pretrained_init( pretrained=pretrained) if use_flow: backbone = add_flow_to_model(backbone) self.resnet = replace_last_layer(backbone, 'fc', emb_dim) elif 'effnet' in model_arch: effnet_name = 'efficientnet-b{}'.format(model_arch[-1]) self.effnet = EfficientNet.from_name( effnet_name, in_channels=5 if use_flow else 3, num_classes=emb_dim, image_size=128) def forward(self, x): backbone = self.resnet if hasattr(self, 'resnet') else self.effnet return backbone(x) def embed(self, x): if not isinstance(x, torch.Tensor): x = torch.Tensor(x) x = x.to(self.device) if len(x.shape) == 3: x = x.unsqueeze(0) if self.use_flow: assert x.shape[1] == 5, 'Wrong number of channels for RGB + flow' else: assert x.shape[1] == 3, 'Wrong number of channels for RGB' self.eval() with torch.no_grad(): return self(x).cpu().numpy() ``` #### File: jhong93/vpd/preprocess_3d_pose.py ```python import os import argparse import numpy as np from tqdm import tqdm from util.io import store_pickle, load_pickle from vipe_dataset.people3d import load_3dpeople_skeleton from vipe_dataset.human36m import load_human36m_skeleton from vipe_dataset.nba2k import load_nba2k_skeleton from vipe_dataset.amass import load_amass_skeleton DATASETS = ['3dpeople', 'panoptic', 'human36m', 'nba2k', 'amass'] def get_args(): parser = argparse.ArgumentParser() parser.add_argument('data_dir') parser.add_argument('dataset', choices=DATASETS) parser.add_argument('-o', '--out_file', type=str) parser.add_argument('-v', '--visualize', action='store_true') parser.add_argument('-vf', '--visualize_frequency', type=int, default=25) return parser.parse_args() def process_3dpeople_data(data_dir, visualize, visualize_frequency): i = 0 result = {} for person in sorted(os.listdir(data_dir)): person_dir = os.path.join(data_dir, person) for action in tqdm( sorted(os.listdir(person_dir)), desc='Processing {}'.format(person) ): action_cam_dir = os.path.join(person_dir, action, 'camera01') frames = os.listdir(action_cam_dir) frame_pose3d = [None] * len(frames) for frame in frames: frame_path = os.path.join(action_cam_dir, frame) frame_no = int(os.path.splitext(frame)[0]) frame_pose3d[frame_no - 1] = load_3dpeople_skeleton( frame_path, visualize and i % visualize_frequency == 0) i += 1 result[(person, action)] = frame_pose3d return result def process_human36m_data(data_dir, visualize, visualize_frequency): import cdflib i = 0 result = {} for person in os.listdir(data_dir): pose_dir = os.path.join(data_dir, person, 'MyPoseFeatures', 'D3_Positions') for action_file in tqdm( os.listdir(pose_dir), desc='Processing {}'.format(person) ): action = os.path.splitext(action_file)[0] action_path = os.path.join(pose_dir, action_file) cdf_data = cdflib.CDF(action_path) raw_poses = cdf_data.varget('Pose').squeeze() cdf_data.close() frame_poses = [] for j in range(raw_poses.shape[0]): frame_poses.append(load_human36m_skeleton( raw_poses[j, :], visualize and i % visualize_frequency == 0)) i += 1 result[(person, action)] = frame_poses return result def process_nba2k_data(data_dir, visualize, visualize_frequency): i = 0 result = {} for person in os.listdir(data_dir): pose_file = os.path.join( data_dir, person, 'release_{}_2ku.pkl'.format(person)) pose_data = load_pickle(pose_file) person_poses = [] frames = os.listdir(os.path.join(data_dir, person, 'images', '2ku')) frames.sort() j3d = pose_data['j3d'] assert len(frames) == len(j3d) for joints in tqdm(j3d, desc='Processing {}'.format(person)): person_poses.append(load_nba2k_skeleton( joints, visualize and i % visualize_frequency == 0)) i += 1 result[(person,)] = person_poses return result def process_amass_data(data_dir, visualize, visualize_frequency): i = 0 result = {} for seq in sorted(os.listdir(data_dir)): seq_dir = os.path.join(data_dir, seq) pose_file = os.path.join(data_dir, seq, 'pose.npy') if not os.path.isfile(pose_file): continue pose_arr = np.load(pose_file) frame_poses = [] frames = list({ f.split('_')[0] for f in os.listdir(seq_dir) if f.endswith(('jpg', 'png')) }) frames.sort() assert len(frames) == pose_arr.shape[0], '{} has bad data'.format(seq) for j in tqdm( range(pose_arr.shape[0]), desc='Processing {}'.format(seq) ): frame_poses.append( load_amass_skeleton( pose_arr[j, :, :], visualize and i % visualize_frequency == 0)) i += 1 dataset, action = seq.split('_', 1) result[(dataset, action)] = frame_poses return result def main(data_dir, dataset, out_file, visualize, visualize_frequency): if dataset == '3dpeople': pose3d = process_3dpeople_data(data_dir, visualize, visualize_frequency) elif dataset == 'human36m': pose3d = process_human36m_data(data_dir, visualize, visualize_frequency) elif dataset == 'nba2k': pose3d = process_nba2k_data(data_dir, visualize, visualize_frequency) elif dataset == 'amass': pose3d = process_amass_data(data_dir, visualize, visualize_frequency) else: raise NotImplementedError() if out_file is not None: store_pickle(out_file, pose3d) print('Done!') if __name__ == '__main__': main(**vars(get_args())) ``` #### File: jhong93/vpd/recut_finegym_video.py ```python import os import math import argparse from tqdm import tqdm from util.io import load_json from util.video import get_metadata, cut_segment from finegym.util import ANNOTATION_FILE def get_args(): parser = argparse.ArgumentParser() parser.add_argument('video_dir') parser.add_argument('event') parser.add_argument('-o', '--out_dir') return parser.parse_args() EVENT_TYPES = { 'female_VT': 1, 'female_FX': 2, 'female_BB': 3, 'female_UB': 4 } def main(video_dir, event, out_dir): annotations = load_json(ANNOTATION_FILE) event_type_id = EVENT_TYPES[event] if out_dir: os.makedirs(out_dir, exist_ok=True) for video, events in tqdm(annotations.items()): video_path = os.path.join(video_dir, '{}.mp4'.format(video)) if not os.path.exists(video_path): video_path = os.path.join(video_dir, '{}.mkv'.format(video)) video_meta = get_metadata(video_path) for event_id, event_data in events.items(): timestamps = event_data['timestamps'] assert len(timestamps) == 1, 'Too many timestamps for event' start, end = timestamps[0] start_frame = math.floor(start * video_meta.fps) end_frame = math.ceil(end * video_meta.fps) if event_data['event'] == event_type_id and out_dir: clip_out_path = os.path.join( out_dir, '{}_{}.mp4'.format(video, event_id)) if not os.path.exists(clip_out_path): cut_segment(video_path, video_meta, clip_out_path, start_frame, end_frame) else: print('Already done:', clip_out_path) print('Done!') if __name__ == '__main__': main(**vars(get_args())) ``` #### File: jhong93/vpd/train_vipe_model.py ```python import argparse import os import math import re import itertools from typing import NamedTuple from tqdm import tqdm import cv2 import numpy as np import torch import torch.optim as optim from torch.cuda.amp import GradScaler from torch.utils.data import DataLoader from util.io import store_json, load_json from vipe_dataset import human36m, people3d, nba2k, amass from vipe_dataset.util import render_3d_skeleton_views from vipe_dataset.dataset_base import NUM_COCO_KEYPOINTS, NUM_COCO_BONES from vipe_dataset.keypoint import ( Human36MDataset, People3dDataset, Human36MDataset, NBA2kDataset, AmassDataset, Pairwise_People3dDataset) from models.module import FCResNetPoseDecoder, FCPoseDecoder, FCResNet from models.keypoint import Keypoint_EmbeddingModel import vipe_dataset_paths as dataset_paths NUM_RENDER_SEQS = 10 DATASETS_3D = ['3dpeople', 'human36m', 'nba2k', 'amass'] DATASETS_PAIR = ['3dpeople_pair'] DATASETS = DATASETS_3D + DATASETS_PAIR LIFT_3D_WEIGHT = 1 USE_RESNET_DECODER = False ENCODER_DROPOUT = 0.2 DECODER_DROPOUT = 0 def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, nargs='+') parser.add_argument('--save_dir', type=str, required=True) parser.add_argument('--checkpoint_frequency', type=int, default=25) parser.add_argument('--render_preview_frequency', type=int, default=100) parser.add_argument('--num_epochs', type=int, default=500) parser.add_argument('--learning_rate', type=float, default=0.0001) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--embedding_dim', type=int, default=32) parser.add_argument('--encoder_arch', type=int, nargs=2, default=(2, 1024), help='Num blocks, hidden size') parser.add_argument('--decoder_arch', type=int, nargs=2, default=(2, 512), help='Num blocks, hidden size'), parser.add_argument('--embed_bones', action='store_true') parser.add_argument('--model_select_contrast', action='store_true') parser.add_argument('--model_select_window', type=int, default=1) parser.add_argument('--resume', action='store_true') parser.add_argument('--no_camera_aug', action='store_true') return parser.parse_args() def render_frame_sequences(model, dataset_name, dataset, count, skeleton_decoder): count = min(count, dataset.num_sequences) for i in tqdm(range(count), desc='Render - {}'.format(dataset_name)): sequence = dataset.get_sequence(i) for data in sequence: part_norms = data['kp_offset_norms'] # Normalize the longest part to 1 part_norms = part_norms / np.max(part_norms) true3d = data['kp_offsets'] * part_norms[:, None] pred3d = model.predict3d( data['pose'], dataset_name ).reshape(true3d.shape[0], -1)[:, :3] * part_norms[:, None] render_im = render_3d_skeleton_views( [ skeleton_decoder(true3d), skeleton_decoder(pred3d), ], labels=['true', 'pred'], title='[{}] person={}, action={}, camera={}'.format( dataset_name, data['person'], data['action'], data['camera']) ) yield cv2.cvtColor(render_im, cv2.COLOR_RGB2BGR) def save_video_preview(out_file, frames): vo = None for frame in frames: if vo is None: h, w, _ = frame.shape vo = cv2.VideoWriter( out_file, cv2.VideoWriter_fourcc(*'mp4v'), 10, (w, h)) vo.write(frame) vo.release() print('Saved video:', out_file) class PoseDataset(NamedTuple): name: str train: 'Dataset' val: 'Dataset' has_3d: bool = False skeleton_decoder: 'Function' = None pose_3d_shape: 'Tuple' = None mean_kp_offset_norms: 'List[float]' = None def load_datasets(dataset_names, embed_bones, augment_camera): datasets = [] if 'human36m' in dataset_names: train_dataset, val_dataset = Human36MDataset.load_default( dataset_paths.HUMAN36M_KEYPOINT_DIR, dataset_paths.HUMAN36M_3D_POSE_FILE, embed_bones, augment_camera) datasets.append(PoseDataset( 'human36m', train_dataset, val_dataset, has_3d=True, skeleton_decoder=human36m.decode_skeleton_from_offsets, pose_3d_shape=train_dataset[0]['kp_features'].shape, mean_kp_offset_norms=train_dataset.mean_kp_offset_norms.tolist())) if '3dpeople' in dataset_names: train_dataset, val_dataset = People3dDataset.load_default( dataset_paths.PEOPLE_3D_KEYPOINT_DIR, dataset_paths.PEOPLE_3D_3D_POSE_FILE, embed_bones, augment_camera) datasets.append(PoseDataset( '3dpeople', train_dataset, val_dataset, has_3d=True, skeleton_decoder=people3d.decode_skeleton_from_offsets, pose_3d_shape=train_dataset[0]['kp_features'].shape, mean_kp_offset_norms=train_dataset.mean_kp_offset_norms.tolist())) if '3dpeople_pair' in dataset_names: train_dataset, val_dataset = Pairwise_People3dDataset.load_default( dataset_paths.PEOPLE_3D_KEYPOINT_DIR, 20, embed_bones) datasets.append(PoseDataset( '3dpeople_pair', train_dataset, val_dataset)) if 'nba2k' in dataset_names: train_dataset, val_dataset = NBA2kDataset.load_default( dataset_paths.NBA2K_KEYPOINT_DIR, dataset_paths.NBA2K_3D_POSE_FILE, embed_bones) datasets.append(PoseDataset( 'nba2k', train_dataset, val_dataset, has_3d=True, skeleton_decoder=nba2k.decode_skeleton_from_offsets, pose_3d_shape=train_dataset[0]['kp_features'].shape, mean_kp_offset_norms=train_dataset.mean_kp_offset_norms.tolist())) if 'amass' in dataset_names: train_dataset, val_dataset = AmassDataset.load_default( dataset_paths.AMASS_KEYPOINT_DIR, dataset_paths.AMASS_3D_POSE_FILE, embed_bones, augment_camera) datasets.append(PoseDataset( 'amass', train_dataset, val_dataset, has_3d=True, skeleton_decoder=amass.decode_skeleton_from_offsets, pose_3d_shape=train_dataset[0]['kp_features'].shape, mean_kp_offset_norms=train_dataset.mean_kp_offset_norms.tolist())) return datasets def get_model_params(encoder, decoders): params = list(encoder.parameters()) for d in decoders.values(): params.extend(d.parameters()) return params def save_model(save_dir, name, encoder, decoders, optimizer): torch.save( encoder.state_dict(), os.path.join(save_dir, '{}.encoder.pt'.format(name))) for k, v in decoders.items(): torch.save( v.state_dict(), os.path.join(save_dir, '{}.decoder-{}.pt'.format(name, k))) torch.save( optimizer.state_dict(), os.path.join(save_dir, '{}.optimizer.pt'.format(name))) def load_model(save_dir, name, encoder, decoders, optimizer, device): encoder_path = os.path.join(save_dir, '{}.encoder.pt'.format(name)) print('Loading:', encoder_path) encoder.load_state_dict(torch.load(encoder_path, map_location=device)) for k, decoder in decoders.items(): decoder_path = os.path.join( save_dir, '{}.decoder-{}.pt'.format(name, k)) print('Loading:', decoder_path) decoder.load_state_dict(torch.load(decoder_path, map_location=device)) optimizer_path = os.path.join(save_dir, '{}.optimizer.pt'.format(name)) print('Loading:', optimizer_path) optimizer.load_state_dict(torch.load(optimizer_path, map_location=device)) def get_last_checkpoint(save_dir): last_epoch = -1 for fname in os.listdir(save_dir): m = re.match(r'epoch(\d+).encoder.pt', fname) if m: epoch = int(m.group(1)) last_epoch = max(epoch, last_epoch) return last_epoch def get_train_loaders(datasets, batch_size, num_load_workers): total = sum(len(d.train) for d in datasets) num_batches = math.ceil(total / batch_size) train_loaders = [ (d.name, DataLoader( d.train, round(len(d.train) / num_batches), shuffle=True, num_workers=num_load_workers, )) for d in datasets ] print('Target # train batches:', num_batches) for dataset, loader in train_loaders: print(' {} has {} batches'.format(dataset, len(loader))) num_batches = len(loader) return train_loaders def get_moving_avg_loss(losses, n, key): return np.mean([l[key] for l in losses[-n:]]) def main( num_epochs, batch_size, embedding_dim, encoder_arch, decoder_arch, embed_bones, dataset, save_dir, render_preview_frequency, checkpoint_frequency, model_select_contrast, model_select_window, learning_rate, resume, no_camera_aug ): device = 'cuda' if torch.cuda.is_available() else 'cpu' augment_camera = not no_camera_aug del no_camera_aug if resume: print('Resuming training from:', save_dir) assert os.path.exists(save_dir) old_config = load_json(os.path.join(save_dir, 'config.json')) num_epochs = old_config['num_epochs'] batch_size = old_config['batch_size'] learning_rate = old_config['learning_rate'] embedding_dim = old_config['embedding_dim'] encoder_arch = old_config['encoder_arch'] decoder_arch = old_config['decoder_arch'] embed_bones = old_config['embed_bones'] augment_camera = old_config['augment_camera'] dataset = [d['name'] for d in old_config['datasets']] else: assert dataset is not None if 'all' in dataset: print('Using all datasets!', DATASETS) dataset = DATASETS elif '3d' in dataset: print('Using 3d datasets!', DATASETS_3D) dataset = DATASETS_3D print('Device:', device) print('Num epochs:', num_epochs) print('Batch size:', batch_size) print('Embedding dim:', embedding_dim) print('Encoder arch:', encoder_arch) print('Decoder arch:', decoder_arch) print('Embed bones:', embed_bones) print('Augment camera:', augment_camera) datasets = load_datasets(dataset, embed_bones, augment_camera) n_train_examples = sum(len(d.train) for d in datasets) n_val_examples = sum(len(d.val) for d in datasets if d.val is not None) for vipe_dataset in datasets: print('Dataset:', vipe_dataset.name) print('', 'Train sequences:', len(vipe_dataset.train)) if vipe_dataset.val is not None: print('', 'Val sequences:', len(vipe_dataset.val)) num_load_workers = max(os.cpu_count(), 4) train_loaders = get_train_loaders(datasets, batch_size, num_load_workers) val_loaders = [ (d.name, DataLoader( d.val, batch_size, shuffle=False, num_workers=num_load_workers )) for d in datasets if d.val is not None] encoder = FCResNet( (NUM_COCO_KEYPOINTS + NUM_COCO_BONES if embed_bones else NUM_COCO_KEYPOINTS) * 3, embedding_dim, *encoder_arch, dropout=ENCODER_DROPOUT) # Add a 3d pose decoder pose_decoder_targets = [(d.name, math.prod(d.pose_3d_shape)) for d in datasets if d.has_3d] if USE_RESNET_DECODER: # A bigger decoder is not always better decoders = {'3d': FCResNetPoseDecoder( embedding_dim, *decoder_arch, pose_decoder_targets, dropout=DECODER_DROPOUT)} else: decoders = {'3d': FCPoseDecoder( embedding_dim, [decoder_arch[1]] * decoder_arch[0], pose_decoder_targets, dropout=DECODER_DROPOUT)} # Wrapper that moves the models to the device model = Keypoint_EmbeddingModel(encoder, decoders, device) def get_optimizer(): return optim.AdamW(get_model_params(encoder, decoders), lr=learning_rate) optimizer = get_optimizer() scaler = GradScaler() if device == 'cuda' else None # Initialize the model if resume: last_checkpoint = get_last_checkpoint(save_dir) load_model(save_dir, 'epoch{:04d}'.format(last_checkpoint), encoder, decoders, optimizer, device) start_epoch = last_checkpoint + 1 else: start_epoch = 1 # Save the model settings os.makedirs(save_dir) store_json(os.path.join(save_dir, 'config.json'), { 'datasets': [{ 'name': d.name, '3d_pose_shape': d.pose_3d_shape, 'mean_kp_offset_norms': d.mean_kp_offset_norms } for d in datasets], 'num_epochs': num_epochs, 'learning_rate': learning_rate, 'batch_size': batch_size, 'embedding_dim': embedding_dim, 'encoder_arch': encoder_arch, 'decoder_arch': decoder_arch, 'embed_bones': embed_bones, 'augment_camera': augment_camera }) # Initialize the loss history loss_file = os.path.join(save_dir, 'loss.json') if resume: losses = [x for x in load_json(loss_file) if x['epoch'] < start_epoch] best_val_loss = min(get_moving_avg_loss( losses[:i], model_select_window, 'val' ) for i in range(model_select_window, len(losses))) print('Resumed val loss:', best_val_loss) else: losses = [] best_val_loss = float('inf') for epoch in range(start_epoch, num_epochs + 1): with tqdm( desc='Epoch {} - train'.format(epoch), total=n_train_examples ) as pbar: train_contra_loss, train_loss, dataset_train_losses = model.epoch( train_loaders, optimizer=optimizer, scaler=scaler, progress_cb=lambda n: pbar.update(n), weight_3d=LIFT_3D_WEIGHT) dataset_val_losses = [] with tqdm( desc='Epoch {} - val'.format(epoch), total=n_val_examples ) as pbar: val_contra_loss, val_loss, dataset_val_losses = model.epoch( val_loaders, progress_cb=lambda n: pbar.update(n), weight_3d=LIFT_3D_WEIGHT) losses.append({ 'epoch': epoch, 'train': train_contra_loss if model_select_contrast else train_loss, 'val': val_contra_loss if model_select_contrast else val_loss, 'dataset_train': [('contrast', train_contra_loss)] + list(dataset_train_losses.items()), 'dataset_val': [('contrast', val_contra_loss)] + list(dataset_val_losses.items()) }) def print_loss(name, total, contra, mv_avg): print('Epoch {} - {} loss: {:0.5f}, contra: {:0.3f} [mv-avg: {:0.5f}]'.format( epoch, name, total, contra, mv_avg)) mv_avg_val_loss = get_moving_avg_loss(losses, model_select_window, 'val') print_loss('train', train_loss, train_contra_loss, get_moving_avg_loss(losses, model_select_window, 'train')) print_loss('val', val_loss, val_contra_loss, mv_avg_val_loss) if loss_file is not None: store_json(loss_file, losses) if epoch % render_preview_frequency == 0 and save_dir is not None: save_video_preview( os.path.join(save_dir, 'epoch{:04d}.train.mp4'.format(epoch)), itertools.chain(*[ render_frame_sequences( model, d.name, d.train, NUM_RENDER_SEQS, d.skeleton_decoder ) for d in datasets if d.has_3d])) save_video_preview( os.path.join(save_dir, 'epoch{:04d}.val.mp4'.format(epoch)), itertools.chain(*[ render_frame_sequences( model, d.name, d.val, NUM_RENDER_SEQS, d.skeleton_decoder ) for d in datasets if d.has_3d and d.val is not None])) if save_dir is not None: if mv_avg_val_loss < best_val_loss: print('New best epoch!') save_model(save_dir, 'best_epoch', encoder, decoders, optimizer) if epoch % checkpoint_frequency == 0: print('Saving checkpoint: {}'.format(epoch)) save_model(save_dir, 'epoch{:04d}'.format(epoch), encoder, decoders, optimizer) best_val_loss = min(mv_avg_val_loss, best_val_loss) print('Done!') if __name__ == '__main__': main(**vars(get_args())) ``` #### File: vpd/util/eval.py ```python import matplotlib.pyplot as plt from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix def save_confusion_matrix(truth, pred, out_file, norm=None): label_names = list(set(truth) | set(pred)) label_names.sort() truth_compact = [label_names.index(x) for x in truth] pred_compact = [label_names.index(x) for x in pred] cm = confusion_matrix( truth_compact, pred_compact, labels=list(range(len(label_names))), normalize=norm) if norm is not None: cm *= 100 fig = plt.figure(figsize=(20, 20)) ax = fig.add_subplot(111) disp = ConfusionMatrixDisplay( confusion_matrix=cm, display_labels=label_names) disp.plot(ax=ax, xticks_rotation='vertical', values_format='.1f' if norm is not None else 'd') plt.tight_layout() plt.savefig(out_file) plt.close(fig) ``` #### File: vpd/util/neighbors.py ```python from collections import Counter import heapq import numpy as np from multiprocessing import Pool from sklearn.metrics import pairwise_distances from dtw import dtw def build_dtw_distance_fn(step_pattern='symmetricP2'): def dtw_distance(a, b): pd = pairwise_distances(a, b).astype(np.double) try: align = dtw(pd, distance_only=True, step_pattern=step_pattern) return align.normalizedDistance except ValueError: return float('inf') return dtw_distance # Hack to transfer dist function to worker before forking _WORKER_DIST_FN = {} _WORKER_PROCESSES = 4 def _worker_helper(dist_fn_id, x, x_train, i): return _WORKER_DIST_FN[dist_fn_id](x, x_train), i class KNearestNeighbors: def __init__(self, X, y, distance_fn, k=1, use_processes=False): self.X = X self.y = y self.k = k self.distance_fn = distance_fn self._dist_fn_id = -1 if use_processes: self._dist_fn_id = len(_WORKER_DIST_FN) _WORKER_DIST_FN[self._dist_fn_id] = distance_fn self._pool = Pool(_WORKER_PROCESSES) def predict(self, x): return self.predict_n(x) def predict_n(self, *xs): if self._dist_fn_id < 0: top_k = [] for x in xs: for i, x_train in enumerate(self.X): d = self.distance_fn(x, x_train) (heapq.heappush if len(top_k) < self.k else heapq.heappushpop )(top_k, (-d, i)) top_k = [(-d, i) for d, i in top_k] else: args = [] for x in xs: for i, x_train in enumerate(self.X): args.append((self._dist_fn_id, x, x_train, i)) results = self._pool.starmap(_worker_helper, args) top_k = sorted(results)[:self.k] cls_count = Counter(self.y[i] for _, i in top_k) max_count = cls_count.most_common(1)[0][1] best_i = None best_cls_dist = float('inf') for d, i in top_k: cls_ = self.y[i] if cls_count[cls_] == max_count and d < best_cls_dist: best_cls_dist = d best_i = i return self.y[best_i], best_i class Neighbors: def __init__(self, X, distance_fn): self.X = X self.distance_fn = distance_fn def find(self, x, k, min_len): knn_pq = [] for i, x_train in enumerate(self.X): if x_train is not None and x_train.shape[0] >= min_len: d = self.distance_fn(x, x_train) (heapq.heappush if len(knn_pq) < k else heapq.heappushpop )(knn_pq, (-d, i)) return [(i, -nd) for nd, i in sorted(knn_pq, key=lambda x: -x[0])] def dist(self, x, i): return self.distance_fn(x, self.X[i]) ``` #### File: vpd/util/proposal.py ```python import random import copy from contextlib import nullcontext import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import KFold from tqdm import trange class BaseProposalModel: class _Seq(nn.Module): def __init__(self, cell_type, emb_dim, hidden_dim, depth=2, dropout=0.5, input_dropout=0.2): super().__init__() print('Backbone:', cell_type) print(' input dim:', emb_dim) print(' hidden dim:', hidden_dim) print(' dropout:', dropout) print(' input dropout:', input_dropout) self.hidden_dim = hidden_dim self.cell_type = cell_type if cell_type == 'lstm': self.backbone = nn.LSTM( emb_dim, hidden_dim, num_layers=depth, batch_first=True, bidirectional=True) elif cell_type == 'gru': self.backbone = nn.GRU( emb_dim, hidden_dim, num_layers=depth, batch_first=True, bidirectional=True) else: raise NotImplementedError() self.fc_out = nn.Sequential( nn.BatchNorm1d(2 * hidden_dim), nn.Dropout(p=dropout), nn.Linear(2 * hidden_dim, 2 * hidden_dim), nn.ReLU(), nn.BatchNorm1d(2 * hidden_dim), nn.Dropout(p=dropout), nn.Linear(2 * hidden_dim, 2)) self.drop_in = nn.Dropout(p=input_dropout) def forward(self, x): x = self.drop_in(x) output, _ = self.backbone(x) return self.fc_out(torch.reshape(output, (-1, output.shape[-1]))) class _Dataset(Dataset): def __init__(self, X, y, seq_len=250, n=5000): self.X = [torch.FloatTensor(xx) for xx in X] self.y = [torch.LongTensor(yy) for yy in y] self.weights = [max(0, len(z) - seq_len) for z in y] assert max(self.weights) > 0, 'All sequences are too short!' self.seq_len = seq_len self.n = n def __getitem__(self, unused): idx = random.choices(range(len(self.y)), weights=self.weights, k=1)[0] x = self.X[idx] y = self.y[idx] start_frame = random.randint(0, y.shape[0] - self.seq_len - 1) return (x[start_frame:start_frame + self.seq_len, :], y[start_frame:start_frame + self.seq_len]) def __len__(self): return self.n def __init__(self, arch_type, X, y, hidden_dim, batch_size=100, num_epochs=25, min_epochs=10, early_term_acc=1, early_term_no_val_improvement=50, X_val=None, y_val=None, **kwargs): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' emb_dim = X[0].shape[-1] model = BaseProposalModel._Seq(arch_type, emb_dim, hidden_dim, **kwargs) optimizer = torch.optim.AdamW(model.parameters()) train_loader = DataLoader( BaseProposalModel._Dataset(X, y), batch_size=batch_size) # Model selection best_model = None best_val_err_loss = (1, float('inf')) best_val_epoch = 0 if X_val is not None: val_loader = DataLoader( BaseProposalModel._Dataset(X_val, y_val), batch_size=batch_size) model.to(self.device) with trange(num_epochs) as pbar: def refresh_loss(l, a, cva=None, bva=None, bva_epoch=None): pbar.set_description( 'Train {} (tl={:0.3f}, ta={:0.1f}{})'.format( arch_type.upper(), l, a * 100, '' if cva is None else ', va={:0.1f}, bva={:0.1f} @{}'.format( cva * 100, bva * 100, bva_epoch))) pbar.refresh() for epoch in pbar: loss, acc = BaseProposalModel._epoch( model, train_loader, self.device, optimizer) if X_val is not None: val_loss, val_acc = BaseProposalModel._epoch( model, val_loader, self.device) if (1 - val_acc, val_loss) <= best_val_err_loss: best_val_epoch = epoch best_val_err_loss = (1 - val_acc, val_loss) best_model = copy.deepcopy(model).to('cpu') if ( 1 - best_val_err_loss[0] >= early_term_acc and epoch > min_epochs ): break elif ( epoch - best_val_epoch >= early_term_no_val_improvement and epoch > min_epochs ): break refresh_loss(loss, acc, val_acc, 1 - best_val_err_loss[0], best_val_epoch) else: refresh_loss(loss, acc) if epoch >= min_epochs and acc > early_term_acc: break if best_model is None: self.model = model else: self.model = best_model.to(self.device) del model self.model.eval() @staticmethod def _epoch(model, loader, device, optimizer=None): model.eval() if optimizer is None else model.train() epoch_loss = 0. n_correct = 0 with torch.no_grad() if optimizer is None else nullcontext(): n = 0 nt = 0 for X, y in loader: pred = model(X.to(device)) y = y.flatten().to(device) loss = F.cross_entropy(pred, y) if optimizer is not None: optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.cpu().item() n_correct += torch.sum(torch.argmax(pred, 1) == y).cpu().item() nt += y.shape[0] n += X.shape[0] return epoch_loss / n, n_correct / nt def predict(self, x): x = torch.unsqueeze(torch.Tensor(x).to(self.device), 0) with torch.no_grad(): pred = F.softmax(self.model(x), dim=1).squeeze() return pred[:, 1].cpu().numpy() @staticmethod def get_proposals(scores, activation_thresh, min_prop_len=3, merge_thresh=1): props = [] curr_prop = None for i in range(len(scores)): if scores[i] >= activation_thresh: if curr_prop is None: curr_prop = (i, i) else: curr_prop = (curr_prop[0], i) else: if curr_prop is not None: props.append(curr_prop) curr_prop = None if curr_prop is not None: props.append(curr_prop) del curr_prop merged_props = [] for p in props: if len(merged_props) == 0: merged_props.append(p) else: last_p = merged_props[-1] if p[0] - last_p[1] <= merge_thresh: merged_props[-1] = (last_p[0], p[1]) else: merged_props.append(p) def get_score(a, b): return np.mean(scores[a:b + 1]) return [(p, get_score(*p)) for p in merged_props if p[1] - p[0] > min_prop_len] class EnsembleProposalModel: def __init__(self, arch_type, X, y, hidden_dim, ensemble_size=3, splits=5, custom_split=None, **kwargs): if ensemble_size > 1: print('Training an ensemble of {} {}s with {} folds'.format( ensemble_size, arch_type.upper(), splits)) else: print('Holding out 1 / {} for validation'.format(splits)) kf = KFold(n_splits=splits, shuffle=True) if custom_split is None: custom_split = np.arange(len(X)) unique_idxs = list(set(custom_split)) models = [] for train, val in kf.split(unique_idxs): train = set(train) val = set(val) X_train, y_train = zip(*[(X[j], y[j]) for j in range(len(X)) if custom_split[j] in train]) X_val, y_val = zip(*[(X[j], y[j]) for j in range(len(X)) if custom_split[j] in val]) models.append(BaseProposalModel( arch_type, X_train, y_train, hidden_dim, X_val=X_val, y_val=y_val, **kwargs)) if len(models) >= ensemble_size: break self.models = models def predict(self, x): return self.predict_n(x) def predict_n(self, *xs): pred = None denom = 0 for model in self.models: for x in xs: tmp = model.predict(x) if pred is None: pred = tmp else: pred += tmp denom += 1 return pred / denom ```
{ "source": "JhonGalarza/Jhon_Mario_Galarza_Lopez", "score": 3 }
#### File: Jhon_Mario_Galarza_Lopez/CAMBIO MONEDAS/CambiosMonedas.py ```python import pandas as pd from matplotlib import pyplot as plt from tkinter import * from tkinter import messagebox from tkinter.ttk import Notebook import Util from datetime import * #Lista de imágenes para los botones iconos = ["./iconos/grafica.png", \ "./iconos/datos.png" ] textosBotones = ["Gráfica", \ "Datos" ] df = None def obtenerMonedas(): global df df = pd.read_csv("Cambios Monedas.csv") #Traer los datos de la columna MONEDA monedas = df["Moneda"].tolist() return list(dict.fromkeys(monedas)) def graficar(): global df, monedas, paneles #Verificar que se haya seleccionado una moneda if cmbMoneda.current()>=0: #Ordenar los datos por la fecha df.sort_values(by="Fecha", ascending=False).head() #filtrar los datos por la moneda seleccionada cambios = df[df["Moneda"]==monedas[cmbMoneda.current()]] #obtener los datos para el eje Y y = cambios["Cambio"] #obtener los datos para el eje X fechas = cambios["Fecha"] #obtener la fecha x = [datetime.strptime(f, "%d/%m/%Y").date() for f in fechas] #Crear la grafica plt.clf() #limpiar la grafica plt.title("Cambio "+monedas[cmbMoneda.current()]) plt.ylabel("Cambio") plt.xlabel("Fecha") #graficar plt.plot(x, y) #exportar la grafica a una imagen plt.savefig("graficaMonedas.png") #Mostrar la imagen de la grafica #Quitar elementos de un contenedor #list = paneles[0].grid_slaves() #for l in list: # l.destroy() lblGrafica=Label(paneles[0]) imgGrafica=PhotoImage(file = "graficaMonedas.png") lblGrafica.config(image=imgGrafica) lblGrafica.image=imgGrafica lblGrafica.place(x=0, y=0) #redimensionar la ventana de acuerdo a la dimension de la imagen de la grafica v.minsize(imgGrafica.width(), imgGrafica.height()+100) def mostrarDatos(): global df, monedas, paneles #Verificar que se haya seleccionado una moneda if cmbMoneda.current()>=0: #filtrar los datos por la moneda seleccionada cambios = df[df["Moneda"]==monedas[cmbMoneda.current()]] #mostrar el promedio Util.agregarEtiqueta(paneles[1], "Promedio:", 0, 0) Util.agregarEtiqueta(paneles[1], float(cambios.mean()), 0, 1) #print(cambios.std()) #desviacion standar #print(cambios.max()) #maximo #print(cambios.min()) #minimo v = Tk() v.title("Cambios de Moneda") v.geometry("400x200") botones = Util.agregarBarra(v, iconos, textosBotones) #Agrega una barra de herramientas botones[0].configure(command=graficar) botones[1].configure(command=mostrarDatos) frm = Frame(v) frm.pack(side=TOP, fill=X) Util.agregarEtiqueta(frm, "Moneda:", 0, 0) monedas=obtenerMonedas() cmbMoneda=Util.agregarLista(frm, monedas, 0, 1) nb = Notebook(v) nb.pack(fill=BOTH, expand=YES) encabezados=["Gráfica", "Datos"] paneles=[] for e in encabezados: frm = Frame(v) paneles.append(frm) nb.add(frm, text=e) ``` #### File: Jhon_Mario_Galarza_Lopez/CAMBIO MONEDAS/Util.py ```python from tkinter import * from tkinter.ttk import * #Importar libreria para Expresiones Regulares import re #Importar fuentes de texto from tkinter import font def mostrar(txt, valor, soloLectura=True): if soloLectura: #desbloquear la caja de texto txt.configure(state=NORMAL) #limpiar la caja de texto txt.delete(0, END) #Asignar el valor txt.insert(0, str(valor)) if soloLectura: #bloquear la caja de texto de nuevo txt.configure(state=DISABLED) def agregarImagen(ventana, archivo, fila, columna, expandir=1): #cargar la imagen img=PhotoImage(file = archivo) #Mostrar imagen en una etiqueta lbl=Label(ventana) lbl.config(image=img) lbl.image=img lbl.grid(row=fila, column=columna, columnspan=expandir) return lbl def agregarEtiqueta(ventana, texto, fila, columna, expandir=1): Label(ventana, text=texto).grid(row=fila, column=columna, columnspan=expandir) def agregarTexto(ventana, ancho, fila, columna, expandir=1, habilitado=True): txt=Entry(ventana, width=ancho) txt.grid(row=fila, column=columna, columnspan=expandir) if habilitado: txt.configure(state=NORMAL) else: txt.configure(state=DISABLED) return txt def agregarLista(ventana, opciones, fila, columna, expandir=1): cmb=Combobox(ventana) cmb.grid(row=fila, column=columna, columnspan=expandir) cmb["values"]=opciones return cmb def esReal(texto): return True if re.match("^[-]?[0-9]+[.]?[0-9]*$", texto) else False def esEntero(texto): return True if re.match("^[-]?[0-9]+$", texto) else False def crearToolTip(objetoTkinter, texto): toolTip = ToolTip(objetoTkinter) #Definir eventos que activan/desactivan el tooltip def enter(event): toolTip.mostrar(texto) def leave(event): toolTip.ocultar() objetoTkinter.bind("<Enter>", enter) objetoTkinter.bind("<Leave>", leave) def agregarBarra(ventana, imagenes, textosTooltip=None): frmBarra = Frame(ventana) frmBarra.pack(side=TOP, fill=X) botones = [] i = 0 for imagen in imagenes: #cargar la imagen img=PhotoImage(file = imagen) btn = Button(frmBarra, image=img) btn.image = img btn.pack(side=LEFT, padx=2, pady=2) if textosTooltip: crearToolTip(btn, textosTooltip[i]) i +=1 botones.append(btn) frmBarra.pack(side=TOP, fill=X) return botones def mostrarTabla(ventana, encabezados, datos, tabla=None): tabla = VistaTabla(ventana, encabezados, datos, tabla) return tabla.obtenerTabla() #************************************************************ class VistaTabla(object): #Utiliza ttk.TreeView como una Rejilla de datos #Metodo constructor def __init__(varClase, ventana, encabezados, datos, arbol=None): varClase.arbol = arbol #objeto para el despliegue de la tabla varClase.crear(ventana, encabezados, datos) varClase.configurar(encabezados, datos) #Metodo que crea los objetos para despliegue def crear(varClase, ventana, encabezados, datos): #crear el contenedor frm = Frame(ventana) frm.pack(fill=BOTH, expand=True) #Crear objeto Treeview con 2 barras de desplazamiento if varClase.arbol == None: varClase.arbol = Treeview(columns=encabezados, show="headings") vsb = Scrollbar(orient="vertical", command=varClase.arbol.yview) hsb = Scrollbar(orient="horizontal", command=varClase.arbol.xview) varClase.arbol.configure(yscrollcommand=vsb.set, xscrollcommand=hsb.set) varClase.arbol.grid(column=0, row=0, sticky=N+S+E+W, in_=frm) vsb.grid(column=1, row=0, sticky=N+S, in_=frm) hsb.grid(column=0, row=1, sticky=E+W, in_=frm) #Metodo que define la estructura de los datos a desplegar def configurar(varClase, encabezados, datosTabla): #Recorrer los encabezados for encabezado in encabezados: #Asignar el encabezado y comando de ordenamiento varClase.arbol.heading(encabezado, text=encabezado.title(), command=lambda c=encabezado: varClase.ordenar(varClase.arbol, c, 0)) #Ajusta el ancho de la columna al texto del encabezado varClase.arbol.column(encabezado, width=font.Font().measure(encabezado.title())) #limpiar el arbol varClase.arbol.delete(*varClase.arbol.get_children()) #Recorrer los datos for fila in datosTabla: varClase.arbol.insert("", "end", values=fila) #Ajusta el ancho de la columna si es necesario for i, dato in enumerate(fila): anchoColumna = font.Font().measure(dato) if varClase.arbol.column(encabezados[i],width=None)<anchoColumna: varClase.arbol.column(encabezados[i], width=anchoColumna) #Metodo que retorna el objeto TreeView def obtenerTabla(varClase): return varClase.arbol #Metodo que permita ordenar los datos cuando se hace clic en el encabezado def ordenar(varClase, arbol, encabezado, descendente): #Obtener los valores a ordenar datos = [(arbol.set(nodo, encabezado), nodo) \ for nodo in arbol.get_children("")] #Ordenar los datos datos.sort(reverse=descendente) for i, fila in enumerate(datos): arbol.move(fila[1], "", i) #Intercambiar el encabezado para que ordene en sentido contrario arbol.heading(encabezado, command=lambda encabezado=encabezado: varClase.ordenar(arbol, encabezado, \ int(not descendente))) #************************************************************ class ToolTip(object): def __init__(varClase, objetoTkinter): varClase.objetoTkinter = objetoTkinter varClase.objetoTooltip = None varClase.id = None varClase.x = varClase.y = 0 def mostrar(varClase, texto): #Mostrar texto como tooltip varClase.texto = texto if varClase.objetoTooltip or not varClase.texto: return x, y, cx, cy = varClase.objetoTkinter.bbox("insert") x = x + varClase.objetoTkinter.winfo_rootx() + 27 y = y + cy + varClase.objetoTkinter.winfo_rooty() +27 varClase.objetoTooltip = tw = Toplevel(varClase.objetoTkinter) tw.wm_overrideredirect(1) tw.wm_geometry("+%d+%d" % (x, y)) try: # Para Mac OS tw.tk.call("::tk::unsupported::MacWindowStyle", "style", tw._w, "help", "noActivates") except TclError: pass lblTooltip = Label(tw, text=varClase.texto, justify=LEFT, background="#ffffe0", relief=SOLID, borderwidth=1, font=("tahoma", "8", "normal")) lblTooltip.pack(ipadx=1) def ocultar(varClase): tp = varClase.objetoTooltip varClase.objetoTooltip = None if tp: tp.destroy() ```
{ "source": "JhonGalarza/SOLID", "score": 4 }
#### File: JhonGalarza/SOLID/CodigoSOLID.py ```python ANIMAL= int(input("¿De cual animal quiere conocer la caracteristicas? 1.Leon 2.Ballena 3.Tucan? ")) class Animal: def __init__(self, ANIMAL): self.ANIMAL = ANIMAL def acciones_comun(): comun = "Comer" return comun def sentido_vista(): vista = "Puede ver" return vista class Animal_Tierra: def acciones_Tierra(): Tierra = "camina en cuatro patas" return Tierra class Animal_Agua: def acciones_Agua(): return "Nada bajo el agua" class Animal_Aire (Animal): def acciones_Aire(): return "Vuela" class Leon (Animal, Animal_Tierra): def llamar(): caracteristicas = () return caracteristicas class Ballena(Animal, Animal_Agua): def llamar(): caracteristicas = () return caracteristicas class Tucan(Animal, Animal_Aire): def llamar(): caracteristicas = () return caracteristicas if ANIMAL == 1 : print ("debe imprimir las caracteristicas del leon, el leon es clase hija de animal y debe agragar animal_tierra" ) elif ANIMAL == 2 : print ("lo mismo que el leon, pero con la ballena") elif ANIMAL == 3 : print("Lo mismo pero con el tucan") ```
{ "source": "Jhon-G/Diplom", "score": 2 }
#### File: Jhon-G/Diplom/utils.py ```python import vk import settings from telegram import ReplyKeyboardMarkup def session_api(): session = vk.Session(access_token=settings.VK_TOKEN) api = vk.API(session, v=5.126) return api def main_keyboard(): return ReplyKeyboardMarkup([ ['Mutabor'], ['Random'] ]) ```
{ "source": "Jhongesell/PyFerret", "score": 3 }
#### File: PyFerret/pviewmod/cmndhelperpq.py ```python import sys try: import sip except ImportError: import PyQt4.sip as sip try: sip.setapi('QVariant', 2) except Exception: pass # First try to import PyQt5, then try PyQt4 if that fails try: import PyQt5 QT_VERSION = 5 except ImportError: import PyQt4 QT_VERSION = 4 # Now that the PyQt version is determined, import the parts # allowing any import errors to propagate out if QT_VERSION == 5: from PyQt5.QtCore import Qt, QPointF, QSizeF from PyQt5.QtGui import QBrush, QColor, QFont, QPainterPath, QPen else: from PyQt4.QtCore import Qt, QPointF, QSizeF from PyQt4.QtGui import QBrush, QColor, QFont, QPainterPath, QPen class SidesRectF(object): ''' Trivial helper class for defining a rectangle with floating point values for the left-x, top-y, right-x, and bottom-y edges. ''' def __init__(self, left, top, right, bottom): ''' Create a SidesRectF with the given left, top, right, and bottom as float values. ''' super(SidesRectF, self).__init__() self.__left = float(left) self.__top = float(top) self.__right = float(right) self.__bottom = float(bottom) def left(self): ''' Return the left value as a float. ''' return self.__left def setLeft(self, val): ''' Set the SidesRectF left as a float value of the argument. ''' self.__left = float(val) def top(self): ''' Return the top value as a float. ''' return self.__top def setTop(self, val): ''' Set the SidesRectF top as a float value of the argument. ''' self.__top = float(val) def right(self): ''' Return the right value as a float. ''' return self.__right def setRight(self, val): ''' Set the SidesRectF right as a float value of the argument. ''' self.__right = float(val) def bottom(self): ''' Return the bottom value as a float. ''' return self.__bottom def setBottom(self, val): ''' Set the SidesRectF bottom as a float value of the argument. ''' self.__bottom = float(val) class SymbolPath(object): ''' Trivial helper class for defining a symbol ''' def __init__(self, painterpath, isfilled): ''' Create a SymbolPath representing a symbol. Arguments: painterpath: the QPainterPath representing this symbol isfilled: if True, the symbol should be drawn with a solid brush; if False, the symbol should be drawn with a solid pen ''' super(SymbolPath, self).__init__() self.__painterpath = painterpath self.__isfilled = isfilled if isfilled: try: self.__painterpath = painterpath.simplified() except: pass def painterPath(self): ''' Return the QPainterPath for this symbol ''' return self.__painterpath def isFilled(self): ''' Return True if the symbol should be drawn with a solid brush; return False if the symbol should be drawn with a solid pen. ''' return self.__isfilled class CmndHelperPQ(object): ''' Helper class of static methods for dealing with commands sent to a PyQt piped viewer. ''' def __init__(self, viewer): ''' Creates a cmndpipe command helper. The widget viewer is only used for determining the default font and for translation of error messages. ''' super(CmndHelperPQ, self).__init__() self.__viewer = viewer self.__symbolpaths = { } def getFontFromCmnd(self, fontinfo): ''' Returns a QFont based on the information in the dictionary fontinfo. Recognized keys in the font dictionary are: "family": font family name (string) "size": text size in points (1/72 inches) "italic": italicize? (False/True) "bold": make bold? (False/True) "underline": underline? (False/True) ''' try: myfont = QFont(fontinfo["family"]) except KeyError: myfont = self.__viewer.font() try: myfont.setPointSizeF(fontinfo["size"]) except KeyError: pass try: myfont.setItalic(fontinfo["italic"]) except KeyError: pass try: myfont.setBold(fontinfo["bold"]) except KeyError: pass try: myfont.setUnderline(fontinfo["underline"]) except KeyError: pass return myfont def getBrushFromCmnd(self, brushinfo): ''' Returns a QBrush based on the information in the dictionary brushinfo. A ValueError is raised if the value for the "style" key, if given, is not recognized. Recognized keys in the fill dictionary are: "color": color name or 24-bit RGB integer value (eg, 0xFF0088) "alpha": alpha value from 0 (transparent) to 255 (opaque) "style": brush style name ("solid", "dense1" to "dense7", "none", "hor", "ver", "cross", "bdiag", "fdiag", "diagcross") ''' try: mycolor = self.getColorFromCmnd(brushinfo) mybrush = QBrush(mycolor) except KeyError: mybrush = QBrush() try: mystyle = brushinfo["style"] if mystyle == "solid": mystyle = Qt.SolidPattern elif mystyle == "dense1": mystyle = Qt.Dense1Pattern elif mystyle == "dense2": mystyle = Qt.Dense2Pattern elif mystyle == "dense3": mystyle = Qt.Dense3Pattern elif mystyle == "dense4": mystyle = Qt.Dense4Pattern elif mystyle == "dense5": mystyle = Qt.Dense5Pattern elif mystyle == "dense6": mystyle = Qt.Dense6Pattern elif mystyle == "dense7": mystyle = Qt.Dense7Pattern elif mystyle == "none": mystyle = Qt.NoBrush elif mystyle == "hor": mystyle = Qt.HorPattern elif mystyle == "ver": mystyle = Qt.VerPattern elif mystyle == "cross": mystyle = Qt.CrossPattern elif mystyle == "bdiag": mystyle = Qt.BDiagPattern elif mystyle == "fdiag": mystyle = Qt.FDiagPattern elif mystyle == "diagcross": mystyle = Qt.DiagCrossPattern else: raise ValueError("Unknown brush style '%s'" % str(mystyle)) mybrush.setStyle(mystyle) except KeyError: pass return mybrush def getPenFromCmnd(self, peninfo): ''' Returns a QPen based on the information in the dictionary peninfo. A ValueError is raised if the value for the "style", "capstyle", or "joinstyle" key, if given, is not recognized. Recognized keys in the outline dictionary are: "color": color name or 24-bit RGB integer value (eg, 0xFF0088) "alpha": alpha value from 0 (transparent) to 255 (opaque) "width": pen width in points (1/72 inches); possibly further scaled by the width scaling factor "style": pen style name ("solid", "dash", "dot", "dashdot", "dashdotdot") "capstyle": pen cap style name ("square", "flat", "round") "joinstyle": pen join style name ("bevel", "miter", "round") ''' try: mycolor = self.getColorFromCmnd(peninfo) mypen = QPen(mycolor) except KeyError: mypen = QPen() try: penwidth = float(peninfo["width"]) penwidth *= self.__viewer.widthScalingFactor() mypen.setWidthF(penwidth) except KeyError: pass try: mystyle = peninfo["style"] if mystyle == "solid": mystyle = Qt.SolidLine elif mystyle == "dash": mystyle = Qt.DashLine elif mystyle == "dot": mystyle = Qt.DotLine elif mystyle == "dashdot": mystyle = Qt.DashDotLine elif mystyle == "dashdotdot": mystyle = Qt.DashDotDotLine else: raise ValueError("Unknown pen style '%s'" % str(mystyle)) mypen.setStyle(mystyle) except KeyError: pass try: mystyle = peninfo["capstyle"] if mystyle == "square": mystyle = Qt.SquareCap elif mystyle == "flat": mystyle = Qt.FlatCap elif mystyle == "round": mystyle = Qt.RoundCap else: raise ValueError("Unknown pen cap style '%s'" % str(mystyle)) mypen.setCapStyle(mystyle) except KeyError: pass try: mystyle = peninfo["joinstyle"] if mystyle == "bevel": mystyle = Qt.BevelJoin elif mystyle == "miter": mystyle = Qt.MiterJoin elif mystyle == "round": mystyle = Qt.RoundJoin else: raise ValueError("Unknown pen join style '%s'" % str(mystyle)) mypen.setJoinStyle(mystyle) except KeyError: pass return mypen def getSymbolFromCmnd(self, symbolinfo): ''' Returns the SymbolPath for the symbol described in symbolinfo, which can either be a string or a dictionary. If symbolinfo is a string, it should be the name of a symbol that has already been defined, either as a pre-defined symbol or from a previous symbol definition. Current pre-defined symbol names are ones involving circles: 'dot': very small filled circle 'dotex': very small filled circle and outer lines of an ex mark 'dotplus': very small filled circle and outer lines of a plus mark 'circle': unfilled circle 'circfill': normal-sized filled circle 'circex': small unfilled circle and outer lines of an ex mark 'circplus': small unfilled circle and outer lines of a plus mark If symbolinfo is a dictionary, the following key/value pairs are recognized: 'name' : (string) symbol name (required) 'pts' : (sequence of pairs of floats) vertex coordinates 'fill' : (bool) color-fill symbol? If 'pts' is given, the value is coordinates that define the symbol as multiline subpaths in a [-50,50] square for typical size. The location of the point this symbol represents will be at the center of the square. A coordinate outside [-100,100] will terminate the current subpath, and the next valid coordinate will start a new subpath. This definition will replace an existing symbol with the given name. If 'pts' is not given, the symbol must already be defined, either as a pre-defined symbol (see above) or from a previous symbol definition. Raises: TypeError - if symbolinfo is neither a string nor a dictionary KeyError - if symbolinfo is a dictionary and the key 'name' is not given ValueError - if there are problems generating the symbol ''' # get the information about the symbol if isinstance(symbolinfo, str): symbol = symbolinfo pts = None fill = False elif isinstance(symbolinfo, dict): symbol = symbolinfo['name'] pts = symbolinfo.get('pts', None) fill = symbolinfo.get('fill', False) else: raise TypeError('symbolinfo must either be a dictionary or a string') if pts is None: # no path given; check if already defined sympath = self.__symbolpaths.get(symbol) if sympath is not None: return sympath # symbol not defined - if well known, create a SymbolPath for it if symbol == 'dot': path = QPainterPath() path.addEllipse(-10.0, -10.0, 20.0, 20.0) sympath = SymbolPath(path, True) elif symbol == 'dotplus': path = QPainterPath() path.addEllipse(-10.0, -10.0, 20.0, 20.0) # filled path, so need to draw "lines" as rectangles path.addRect( -4.0, -50.0, 8.0, 24.0) path.addRect( -4.0, 26.0, 8.0, 24.0) path.addRect(-50.0, -4.0, 24.0, 8.0) path.addRect( 26.0, -4.0, 24.0, 8.0) sympath = SymbolPath(path, True) elif symbol == 'dotex': path = QPainterPath() path.addEllipse(-10.0, -10.0, 20.0, 20.0) # filled path, so need to draw "lines" as rectangles path.moveTo(-38.18, -32.53) path.lineTo(-32.53, -38.18) path.lineTo(-15.56, -21.21) path.lineTo(-21.21, -15.56) # moveTo adds an implicit closeSubpath in QPainterPath path.moveTo(-38.18, 32.53) path.lineTo(-32.53, 38.18) path.lineTo(-15.56, 21.21) path.lineTo(-21.21, 15.56) # moveTo adds an implicit closeSubpath in QPainterPath path.moveTo( 38.18, -32.53) path.lineTo( 32.53, -38.18) path.lineTo( 15.56, -21.21) path.lineTo( 21.21, -15.56) # moveTo adds an implicit closeSubpath in QPainterPath path.moveTo( 38.18, 32.53) path.lineTo( 32.53, 38.18) path.lineTo( 15.56, 21.21) path.lineTo( 21.21, 15.56) # Qt closes the subpath automatically sympath = SymbolPath(path, True) elif symbol == 'circle': path = QPainterPath() path.addEllipse(-35.0, -35.0, 70.0, 70.0) sympath = SymbolPath(path, False) elif symbol == 'circfill': path = QPainterPath() path.addEllipse(-39.0, -39.0, 78.0, 78.0) sympath = SymbolPath(path, True) elif symbol == 'circplus': path = QPainterPath() path.addEllipse(-20.0, -20.0, 40.0, 40.0) # not a filled path, so just draw the lines path.moveTo( 0.0, -50.0) path.lineTo( 0.0, -20.0) path.moveTo( 0.0, 50.0) path.lineTo( 0.0, 20.0) path.moveTo(-50.0, 0.0) path.lineTo(-20.0, 0.0) path.moveTo( 50.0, 0.0) path.lineTo( 20.0, 0.0) sympath = SymbolPath(path, False) elif symbol == 'circex': path = QPainterPath() path.addEllipse(-20.0, -20.0, 40.0, 40.0) # not a filled path, so just draw the lines path.moveTo(-35.35, -35.35) path.lineTo(-14.15, -14.15) path.moveTo(-35.35, 35.35) path.lineTo(-14.15, 14.15) path.moveTo( 35.35, -35.35) path.lineTo( 14.15, -14.15) path.moveTo( 35.35, 35.35) path.lineTo( 14.15, 14.15) sympath = SymbolPath(path, False) else: raise ValueError("Unknown symbol '%s'" % str(symbol)) else: # define (or redefine) a symbol from the given path try: coords = [ [ float(val) for val in coord ] for coord in pts ] if not coords: raise ValueError for crd in coords: if len(crd) != 2: raise ValueError except Exception: raise ValueError('pts, if given, must be a sequence of pairs of numbers') path = QPainterPath() somethingdrawn = False newstart = True for (xval, yval) in coords: # flip so positive y is up yval *= -1.0 if (xval < -100.0) or (xval > 100.0) or (yval < -100.0) or (yval > 100.0): # end the current subpath newstart = True elif newstart: # start a new subpath; moveTo adds an implicit closeSubpath in QPainterPath path.moveTo(xval, yval) newstart = False else: # continue the current subpath path.lineTo(xval, yval) somethingdrawn = True if not somethingdrawn: del path raise ValueError('symbol definition does not contain any drawn lines') # Qt closes the (sub)path automatically sympath = SymbolPath(path, fill) # save and return the SymbolPath self.__symbolpaths[symbol] = sympath return sympath def getSizeFromCmnd(self, sizeinfo): ''' Returns a QSizeF based on the information in the dictionary sizeinfo. Recognized keys are "width" and "height", and correspond to those float values in the QSizeF. Values not given in sizeinfo are assigned as zero in the returned QSizeF. ''' myrect = QSizeF(0.0, 0.0) try: myrect.setWidth(float(sizeinfo["width"])) except KeyError: pass try: myrect.setHeight(float(sizeinfo["height"])) except KeyError: pass return myrect def getSidesFromCmnd(self, rectinfo): ''' Returns a SidesQRectF based on the information in the dictionary rectinfo. Recognized keys are "left", "top", "right", and "bottom", and correspond to those float values in the SidesQRectF. Default values: "left": 0.0, "top": 0.0, "right":1.0, "bottom":1.0 ''' myrect = SidesRectF(left=0.0, top=0.0, right=1.0, bottom=1.0) try: myrect.setLeft(float(rectinfo["left"])) except KeyError: pass try: myrect.setTop(float(rectinfo["top"])) except KeyError: pass try: myrect.setRight(float(rectinfo["right"])) except KeyError: pass try: myrect.setBottom(float(rectinfo["bottom"])) except KeyError: pass return myrect def getColorFromCmnd(self, colorinfo): ''' Returns a QColor based on the information in the dictionary colorinfo. Raises a KeyError if the "color" key is not given. Recognized keys are: "color": color name or 24-bit RGB integer value (eg, 0xFF0088) "alpha": alpha value from 0 (transparent) to 255 (opaque) if viewer.ignoreAlpha True, this value is ignored ''' colordata = colorinfo["color"] mycolor = QColor(colordata) if not mycolor.isValid(): raise ValueError("Invalid color '%s'" % str(colordata)) if not self.__viewer.ignoreAlpha(): try: mycolor.setAlpha(int(colorinfo["alpha"])) except KeyError: pass return mycolor def computeARGB32PreMultInt(self, color): ''' Returns the Format_ARGB32_Premultiplied integer value of the given QColor. ''' (redint, greenint, blueint, alphaint) = color.getRgb() if self.__viewer.ignoreAlpha(): alphaint = 255 elif (alphaint < 255): # Scale the RGB values by the alpha value alphafactor = alphaint / 255.0 redint = int( redint * alphafactor + 0.5 ) if redint > alphaint: redint = alphaint greenint = int( greenint * alphafactor + 0.5 ) if greenint > alphaint: greenint = alphaint blueint = int( blueint * alphafactor + 0.5 ) if blueint > alphaint: blueint = alphaint fillint = ((alphaint * 256 + redint) * 256 + \ greenint) * 256 + blueint return fillint ``` #### File: PyFerret/pviewmod/pipedimagerpq.py ```python from __future__ import print_function import sys import os import time import signal try: import sip except ImportError: import PyQt4.sip as sip try: sip.setapi('QVariant', 2) except Exception: pass # First try to import PyQt5, then try PyQt4 if that fails try: import PyQt5 QT_VERSION = 5 except ImportError: import PyQt4 QT_VERSION = 4 # Now that the PyQt version is determined, import the parts # allowing any import errors to propagate out if QT_VERSION == 5: from PyQt5.QtCore import Qt, QPointF, QRectF, QSize, QTimer from PyQt5.QtGui import QBrush, QColor, QImage, QPainter, \ QPalette, QPen, QPixmap, QPolygonF from PyQt5.QtWidgets import QAction, QApplication, QDialog, \ QFileDialog, QLabel, QMainWindow, \ QMessageBox, QPushButton, QScrollArea else: from PyQt4.QtCore import Qt, QPointF, QRectF, QSize, QTimer from PyQt4.QtGui import QAction, QApplication, QBrush, QColor, QDialog, \ QFileDialog, QImage, QLabel, QMainWindow, \ QMessageBox, QPainter, QPalette, QPen, QPixmap, \ QPolygonF, QPushButton, QScrollArea import multiprocessing from pipedviewer import WINDOW_CLOSED_MESSAGE from pipedviewer.cmndhelperpq import CmndHelperPQ from pipedviewer.scaledialogpq import ScaleDialogPQ class PipedImagerPQ(QMainWindow): ''' A PyQt graphics viewer that receives images and commands through a pipe. A command is a dictionary with string keys. For example, { "action":"save", "filename":"ferret.png", "fileformat":"png" } The command { "action":"exit" } will shutdown the viewer. ''' def __init__(self, cmndpipe, rspdpipe): ''' Create a PyQt viewer which reads commands from the Pipe cmndpipe and writes responses back to rspdpipe. ''' super(PipedImagerPQ, self).__init__() self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe # ignore Ctrl-C signal.signal(signal.SIGINT, signal.SIG_IGN) # unmodified image for creating the scene self.__sceneimage = None # bytearray of data for the above image self.__scenedata = None # flag set if in the process of reading image data from commands self.__loadingimage = False # width and height of the unmodified scene image # when the image is defined # initialize the width and height to values that will create # a viewer (mainWindow) of the right size self.__scenewidth = int(10.8 * self.physicalDpiX()) self.__sceneheight = int(8.8 * self.physicalDpiY()) # by default pay attention to any alpha channel values in colors self.__noalpha = False # initial default color for the background (opaque white) self.__lastclearcolor = QColor(0xFFFFFF) self.__lastclearcolor.setAlpha(0xFF) # scaling factor for creating the displayed scene self.__scalefactor = 1.0 # automatically adjust the scaling factor to fit the window frame? self.__autoscale = True # minimum label width and height (for minimum scaling factor) # and minimum image width and height (for error checking) self.__minsize = 128 # create the label, that will serve as the canvas, in a scrolled area self.__scrollarea = QScrollArea(self) self.__label = QLabel(self.__scrollarea) # set the initial label size and other values for the scrolled area self.__label.setMinimumSize(self.__scenewidth, self.__sceneheight) self.__label.resize(self.__scenewidth, self.__sceneheight) # setup the scrolled area self.__scrollarea.setWidget(self.__label) self.__scrollarea.setBackgroundRole(QPalette.Dark) self.setCentralWidget(self.__scrollarea) # default file name and format for saving the image self.__lastfilename = "ferret.png" self.__lastformat = "png" # command helper object self.__helper = CmndHelperPQ(self) # create the menubar self.__scaleact = QAction(self.tr("&Scale"), self, shortcut=self.tr("Ctrl+S"), statusTip=self.tr("Scale the image (canvas and image change size)"), triggered=self.inquireSceneScale) self.__saveact = QAction(self.tr("Save &As..."), self, shortcut=self.tr("Ctrl+A"), statusTip=self.tr("Save the image to file"), triggered=self.inquireSaveFilename) self.__redrawact = QAction(self.tr("&Redraw"), self, shortcut=self.tr("Ctrl+R"), statusTip=self.tr("Clear and redraw the image"), triggered=self.redrawScene) self.__aboutact = QAction(self.tr("&About"), self, statusTip=self.tr("Show information about this viewer"), triggered=self.aboutMsg) self.__aboutqtact = QAction(self.tr("About &Qt"), self, statusTip=self.tr("Show information about the Qt library"), triggered=self.aboutQtMsg) self.createMenus() # set the initial size of the viewer self.__framedelta = 4 mwwidth = self.__scenewidth + self.__framedelta mwheight = self.__sceneheight + self.__framedelta \ + self.menuBar().height() \ + self.statusBar().height() self.resize(mwwidth, mwheight) # check the command queue any time there are no window events to deal with self.__timer = QTimer(self) self.__timer.timeout.connect(self.checkCommandPipe) self.__timer.setInterval(0) self.__timer.start() def createMenus(self): ''' Create the menu items for the viewer using the previously created actions. ''' menuBar = self.menuBar() sceneMenu = menuBar.addMenu(menuBar.tr("&Image")) sceneMenu.addAction(self.__scaleact) sceneMenu.addAction(self.__saveact) sceneMenu.addAction(self.__redrawact) helpMenu = menuBar.addMenu(menuBar.tr("&Help")) helpMenu.addAction(self.__aboutact) helpMenu.addAction(self.__aboutqtact) def resizeEvent(self, event): ''' Monitor resizing in case auto-scaling of the image is selected. ''' if self.__autoscale: if self.autoScaleScene(): # continue with the window resize event.accept() else: # another resize coming in, so ignore this one event.ignore() else: # continue with the window resize event.accept() def closeEvent(self, event): ''' Clean up and send the WINDOW_CLOSED_MESSAGE on the response pipe before closing the window. ''' self.__timer.stop() self.__cmndpipe.close() try: try: self.__rspdpipe.send(WINDOW_CLOSED_MESSAGE) finally: self.__rspdpipe.close() except Exception: pass event.accept() def exitViewer(self): ''' Close and exit the viewer. ''' self.close() def aboutMsg(self): QMessageBox.about(self, self.tr("About PipedImagerPQ"), self.tr("\n" \ "PipedImagerPQ is a graphics viewer application that receives its " \ "displayed image and commands primarily from another application " \ "through a pipe. A limited number of commands are provided by the " \ "viewer itself to allow saving and some manipulation of the " \ "displayed image. The controlling application, however, may be " \ "unaware of these modifications made to the image. " \ "\n\n" \ "PipedImagerPQ was developed by the Thermal Modeling and Analysis " \ "Project (TMAP) of the National Oceanographic and Atmospheric " \ "Administration's (NOAA) Pacific Marine Environmental Lab (PMEL). ")) def aboutQtMsg(self): QMessageBox.aboutQt(self, self.tr("About Qt")) def ignoreAlpha(self): ''' Return whether the alpha channel in colors should always be ignored. ''' return self.__noalpha def updateScene(self): ''' Clear the displayed scene using self.__lastclearcolor, then draw the scaled current image. ''' # get the scaled scene size labelwidth = int(self.__scalefactor * self.__scenewidth + 0.5) labelheight = int(self.__scalefactor * self.__sceneheight + 0.5) # Create the new pixmap for the label to display newpixmap = QPixmap(labelwidth, labelheight) newpixmap.fill(self.__lastclearcolor) if self.__sceneimage != None: # Draw the scaled image to the pixmap mypainter = QPainter(newpixmap) trgrect = QRectF(0.0, 0.0, float(labelwidth), float(labelheight)) srcrect = QRectF(0.0, 0.0, float(self.__scenewidth), float(self.__sceneheight)) mypainter.drawImage(trgrect, self.__sceneimage, srcrect, Qt.AutoColor) mypainter.end() # Assign the new pixmap to the label self.__label.setPixmap(newpixmap) # set the label size and values # so the scrollarea knows of the new size self.__label.setMinimumSize(labelwidth, labelheight) self.__label.resize(labelwidth, labelheight) # update the label from the new pixmap self.__label.update() def clearScene(self, bkgcolor=None): ''' Deletes the scene image and fills the label with bkgcolor. If bkgcolor is None or an invalid color, the color used is the one used from the last clearScene or redrawScene call with a valid color (or opaque white if a color has never been specified). ''' # get the color to use for clearing (the background color) if bkgcolor: if bkgcolor.isValid(): self.__lastclearcolor = bkgcolor # Remove the image and its bytearray self.__sceneimage = None self.__scenedata = None # Update the scene label using the current clearing color and image self.updateScene() def redrawScene(self, bkgcolor=None): ''' Clear and redraw the displayed scene. ''' # get the background color if bkgcolor: if bkgcolor.isValid(): self.__lastclearcolor = bkgcolor # Update the scene label using the current clearing color and image QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Redrawing image") ) try: self.updateScene() finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() def resizeScene(self, width, height): ''' Resize the scene to the given width and height in units of pixels. If the size changes, this deletes the current image and clear the displayed scene. ''' newwidth = int(width + 0.5) if newwidth < self.__minsize: newwidth = self.__minsize newheight = int(height + 0.5) if newheight < self.__minsize: newheight = self.__minsize if (newwidth != self.__scenewidth) or (newheight != self.__sceneheight): # set the new size for the empty scene self.__scenewidth = newwidth self.__sceneheight = newheight # If auto-scaling, set scaling factor to 1.0 and resize the window if self.__autoscale: self.__scalefactor = 1.0 barheights = self.menuBar().height() + self.statusBar().height() self.resize(newwidth + self.__framedelta, newheight + self.__framedelta + barheights) # clear the scene with the last clearing color self.clearScene(None) def loadNewSceneImage(self, imageinfo): ''' Create a new scene image from the information given in this and subsequent dictionaries imageinfo. The image is created from multiple calls to this function since there is a limit on the size of a single object passed through a pipe. The first imageinfo dictionary given when creating an image must define the following key and value pairs: "width": width of the image in pixels "height": height of the image in pixels "stride": number of bytes in one line of the image in the bytearray The scene image data is initialized to all zero (transparent) at this time. This initialization call must be followed by (multiple) calls to this method with imageinfo dictionaries defining the key and value pairs: "blocknum": data block number (1, 2, ... numblocks) "numblocks": total number of image data blocks "startindex": index in the bytearray of image data where this block of image data starts "blockdata": this block of data as a bytearray On receipt of the last block of data (blocknum == numblocks) the scene image will be created and the scene will be updated. Raises: KeyError - if one of the above keys is not given ValueError - if a value for a key is not valid ''' if not self.__loadingimage: # prepare for a new image data from subsequent calls # get dimensions of the new image myimgwidth = int( imageinfo["width"] ) myimgheight = int( imageinfo["height"] ) myimgstride = int( imageinfo["stride"] ) if (myimgwidth < self.__minsize) or (myimgheight < self.__minsize): raise ValueError("image width and height cannot be less than %s" % str(self.__minsize)) # Newer PyQt versions allow separate specification of the stride if myimgstride != 4 * myimgwidth: raise ValueError("image stride is not four times the image width") # create the bytearray to contain the new scene data # automatically initialized to zero self.__scenedata = bytearray(myimgstride * myimgheight) self.__scenewidth = myimgwidth self.__sceneheight = myimgheight # set the flag for subsequent calls to this method self.__loadingimage = True # change the cursor to warn the user this may take some time QApplication.setOverrideCursor(Qt.WaitCursor) # put up an appropriate status message self.statusBar().showMessage( self.tr("Loading new image") ) return # loading an image; add the next block of data myblocknum = int( imageinfo["blocknum"] ) mynumblocks = int( imageinfo["numblocks"] ) mystartindex = int( imageinfo["startindex"] ) myblockdata = imageinfo["blockdata"] if (myblocknum < 1) or (myblocknum > mynumblocks): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid image data block number or number of blocks") if (mystartindex < 0) or (mystartindex >= len(self.__scenedata)): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid start index for an image data block") myblocksize = len(myblockdata) myendindex = mystartindex + myblocksize if (myblocksize < 1) or (myendindex > len(self.__scenedata)): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid length of an image data block") # update the status message to show progress self.statusBar().showMessage( self.tr("Loading new image (block %s of %s)" % \ (str(myblocknum),str(mynumblocks))) ) # assign the data self.__scenedata[mystartindex:myendindex] = myblockdata # if this is the last block of data, create and display the scene image if myblocknum == mynumblocks: self.__loadingimage = False self.statusBar().showMessage( self.tr("Creating new image") ) try: self.__sceneimage = QImage(self.__scenedata, self.__scenewidth, self.__sceneheight, QImage.Format_ARGB32_Premultiplied) self.statusBar().showMessage( self.tr("Drawing new image") ) # update the displayed scene in the label self.updateScene() finally: # clear the status message self.statusBar().clearMessage() # restore the cursor back to normal QApplication.restoreOverrideCursor() def inquireSceneScale(self): ''' Prompt the user for the desired scaling factor for the scene. ''' labelwidth = int(self.__scenewidth * self.__scalefactor + 0.5) labelheight = int(self.__sceneheight * self.__scalefactor + 0.5) scaledlg = ScaleDialogPQ(self.__scalefactor, labelwidth, labelheight, self.__minsize, self.__minsize, self.__autoscale, self) if scaledlg.exec_(): (newscale, autoscale, okay) = scaledlg.getValues() if okay: if autoscale: self.__autoscale = True self.autoScaleScene() else: self.__autoscale = False self.scaleScene(newscale, False) def autoScaleScene(self): ''' Selects a scaling factor that maximizes the scene within the window frame without requiring scroll bars. Intended to be called when the window size is changed by the user and auto-scaling is turn on. Returns: True if scaling of this scene is done (no window resize) False if the a window resize command was issued ''' barheights = self.menuBar().height() + self.statusBar().height() # get the size for the central widget cwheight = self.height() - barheights - self.__framedelta heightsf = float(cwheight) / float(self.__sceneheight) cwwidth = self.width() - self.__framedelta widthsf = float(cwwidth) / float(self.__scenewidth) if heightsf < widthsf: factor = heightsf else: factor = widthsf newcwheight = int(factor * self.__sceneheight + 0.5) newcwwidth = int(factor * self.__scenewidth + 0.5) # if the window does not have the correct aspect ratio, resize it so # it will; this will generate another call to this method. Otherwise, # scale the scene and be done. if self.isMaximized() or \ ( (abs(cwheight - newcwheight) <= self.__framedelta) and \ (abs(cwwidth - newcwwidth) <= self.__framedelta) ): self.scaleScene(factor, False) return True else: self.resize(newcwwidth + self.__framedelta, newcwheight + self.__framedelta + barheights) return False def scaleScene(self, factor, resizewin): ''' Scales both the horizontal and vertical directions by factor. Scaling factors are not accumulative. So if the scene was already scaled, that scaling is "removed" before this scaling factor is applied. If resizewin is True, the main window is resized to accommodate this new scaled scene size. If factor is zero, just switch to auto-scaling at the current window size. If factor is negative, rescale using the absolute value (possibly resizing the window) then switch to auto-scaling. ''' fltfactor = float(factor) if fltfactor != 0.0: if resizewin: # from command - turn off autoscaling for the following # then turn back on if appropriate self.__autoscale = False newfactor = abs(fltfactor) newlabwidth = int(newfactor * self.__scenewidth + 0.5) newlabheight = int(newfactor * self.__sceneheight + 0.5) if (newlabwidth < self.__minsize) or (newlabheight < self.__minsize): # Set to minimum size if self.__scenewidth <= self.__sceneheight: newfactor = float(self.__minsize) / float(self.__scenewidth) else: newfactor = float(self.__minsize) / float(self.__sceneheight) newlabwidth = int(newfactor * self.__scenewidth + 0.5) newlabheight = int(newfactor * self.__sceneheight + 0.5) oldlabwidth = int(self.__scalefactor * self.__scenewidth + 0.5) oldlabheight = int(self.__scalefactor * self.__sceneheight + 0.5) if (newlabwidth != oldlabwidth) or (newlabheight != oldlabheight): # Set the new scaling factor self.__scalefactor = newfactor # Update the scene label using the current clearing color and image QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Scaling image") ) try: self.updateScene() finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() if resizewin: # resize the main window (if possible) barheights = self.menuBar().height() + self.statusBar().height() mwheight = newlabheight + barheights + self.__framedelta mwwidth = newlabwidth + self.__framedelta # Do not exceed the available real estate on the screen. # If autoscaling is in effect, the resize will trigger # any required adjustments. scrnrect = QApplication.desktop().availableGeometry() if mwwidth > 0.95 * scrnrect.width(): mwwidth = int(0.9 * scrnrect.width() + 0.5) if mwheight > 0.95 * scrnrect.height(): mwheight = int(0.9 * scrnrect.height() + 0.5) self.resize(mwwidth, mwheight) if fltfactor <= 0.0: # From command - turn on autoscaling self.__autoscale = True self.autoScaleScene(); def inquireSaveFilename(self): ''' Prompt the user for the name of the file into which to save the scene. The file format will be determined from the filename extension. ''' formattypes = [ ( "png", "PNG - Portable Networks Graphics (*.png)" ), ( "jpeg", "JPEG - Joint Photographic Experts Group (*.jpeg *.jpg *.jpe)" ), ( "tiff", "TIFF - Tagged Image File Format (*.tiff *.tif)" ), ( "bmp", "BMP - Windows Bitmap (*.bmp)" ), ( "ppm", "PPM - Portable Pixmap (*.ppm)" ), ( "xpm", "XPM - X11 Pixmap (*.xpm)" ), ( "xbm", "XBM - X11 Bitmap (*.xbm)" ), ] filters = ";;".join( [ t[1] for t in formattypes ] ) if QT_VERSION == 5: # getSaveFileName; tr returns Python unicode strings in PyQt5/Python3 (fileName, fileFilter) = QFileDialog.getSaveFileName(self, self.tr("Save the current image as "), self.tr(self.__lastfilename), self.tr(filters)) else: # getSaveFileNameAndFilter; tr returns QStrings in PyQt4 (fileName, fileFilter) = QFileDialog.getSaveFileNameAndFilter(self, self.tr("Save the current image as "), self.tr(self.__lastfilename), self.tr(filters)) if fileName: for (fmt, fmtQName) in formattypes: if self.tr(fmtQName) == fileFilter: fileFormat = fmt break else: raise RuntimeError("Unexpected file format name '%s'" % fileFilter) self.saveSceneToFile(fileName, fileFormat, None, None) self.__lastfilename = fileName self.__lastformat = fileFormat def saveSceneToFile(self, filename, imageformat, transparent, rastsize): ''' Save the current scene to the named file. If imageformat is empty or None, the format is guessed from the filename extension. If transparent is False, the entire scene is initialized to the last clearing color. If given, rastsize is the pixels size of the saved image. If rastsize is not given, the saved image will be saved at the current scaled image size. ''' # This could be called when there is no image present. # If this is the case, ignore the call. if ( self.__sceneimage == None ): return if not imageformat: # Guess the image format from the filename extension # This is only done to silently change gif to png fileext = ( os.path.splitext(filename)[1] ).lower() if fileext == '.gif': myformat = 'gif' else: # let QImage figure out the format myformat = None else: myformat = imageformat.lower() if myformat == 'gif': # Silently convert gif filename and format to png myformat = 'png' myfilename = os.path.splitext(filename)[0] + ".png" else: myfilename = filename # set the cursor and status message to indicate a save is happending QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Saving image") ) try: if rastsize: imagewidth = int(rastsize.width() + 0.5) imageheight = int(rastsize.height() + 0.5) else: imagewidth = int(self.__scenewidth * self.__scalefactor + 0.5) imageheight = int(self.__sceneheight * self.__scalefactor + 0.5) myimage = QImage( QSize(imagewidth, imageheight), QImage.Format_ARGB32_Premultiplied ) # Initialize the image if not transparent: # Clear the image with self.__lastclearcolor fillint = self.__helper.computeARGB32PreMultInt(self.__lastclearcolor) else: fillint = 0 myimage.fill(fillint) # draw the scaled scene to this QImage mypainter = QPainter(myimage) trgrect = QRectF(0.0, 0.0, float(imagewidth), float(imageheight)) srcrect = QRectF(0.0, 0.0, float(self.__scenewidth), float(self.__sceneheight)) mypainter.drawImage(trgrect, self.__sceneimage, srcrect, Qt.AutoColor) mypainter.end() # save the image to file if not myimage.save(myfilename, myformat): raise ValueError("Unable to save the plot as " + myfilename) finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() def checkCommandPipe(self): ''' Get and perform commands waiting in the pipe. Stop when no more commands or if more than 50 milliseconds have passed. ''' try: starttime = time.clock() # Wait up to 2 milliseconds waiting for a command. # This prevents unchecked spinning when there is # nothing to do (Qt immediately calling this method # again only for this method to immediately return). while self.__cmndpipe.poll(0.002): cmnd = self.__cmndpipe.recv() self.processCommand(cmnd) # Continue to try to process commands until # more than 50 milliseconds have passed. # This reduces Qt overhead when there are lots # of commands waiting in the queue. if (time.clock() - starttime) > 0.050: break except EOFError: # Assume PyFerret has shut down self.exitViewer() except Exception: # Some problem, but presumably still functional (exctype, excval) = sys.exc_info()[:2] try: if excval: self.__rspdpipe.send("**ERROR %s: %s" % (str(exctype), str(excval))) else: self.__rspdpipe.send("**ERROR %s" % str(exctype)) except Exception: pass def processCommand(self, cmnd): ''' Examine the action of cmnd and call the appropriate method to deal with this command. Raises a KeyError if the "action" key is missing. ''' try: cmndact = cmnd["action"] except KeyError: raise ValueError("Unknown command '%s'" % str(cmnd)) if cmndact == "clear": try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None self.clearScene(bkgcolor) elif cmndact == "exit": self.exitViewer() elif cmndact == "hide": self.showMinimized() elif cmndact == "screenInfo": scrnrect = QApplication.desktop().availableGeometry() info = ( self.physicalDpiX(), self.physicalDpiY(), scrnrect.width(), scrnrect.height() ) self.__rspdpipe.send(info) elif cmndact == "redraw": try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None self.redrawScene(bkgcolor) elif cmndact == "rescale": self.scaleScene(float(cmnd["factor"]), True) elif cmndact == "resize": mysize = self.__helper.getSizeFromCmnd(cmnd) self.resizeScene(mysize.width(), mysize.height()) elif cmndact == "newImage": self.loadNewSceneImage(cmnd) elif cmndact == "save": filename = cmnd["filename"] fileformat = cmnd.get("fileformat", None) try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None rastsize = self.__helper.getSizeFromCmnd(cmnd["rastsize"]) self.saveSceneToFile(filename, fileformat, bkgcolor, rastsize) elif cmndact == "setTitle": self.setWindowTitle(cmnd["title"]) elif cmndact == "imgname": myvalue = cmnd.get("name", None) if myvalue: self.__lastfilename = myvalue myvalue = cmnd.get("format", None) if myvalue: self.__lastformat = myvalue.lower() elif cmndact == "show": if not self.isVisible(): self.show() elif cmndact == "noalpha": # ignore any alpha channel values in colors self.__noalpha = True else: raise ValueError("Unknown command action %s" % str(cmndact)) class PipedImagerPQProcess(multiprocessing.Process): ''' A Process specifically tailored for creating a PipedImagerPQ. ''' def __init__(self, cmndpipe, rspdpipe): ''' Create a Process that will produce a PipedImagerPQ attached to the given Pipes when run. ''' super(PipedImagerPQProcess,self).__init__(group=None, target=None, name='PipedImagerPQ') self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe self.__app = None self.__viewer = None def run(self): ''' Create a PipedImagerPQ that is attached to the Pipe of this instance. ''' self.__app = QApplication(["PipedImagerPQ"]) self.__viewer = PipedImagerPQ(self.__cmndpipe, self.__rspdpipe) myresult = self.__app.exec_() sys.exit(myresult) # # The following are for testing this module # class _CommandSubmitterPQ(QDialog): ''' Testing dialog for controlling the addition of commands to a pipe. Used for testing PipedImagerPQ in the same process as the viewer. ''' def __init__(self, parent, cmndpipe, rspdpipe, cmndlist): ''' Create a QDialog with a single QPushButton for controlling the submission of commands from cmndlist to cmndpipe. ''' super(_CommandSubmitterPQ,self).__init__(parent) self.__cmndlist = cmndlist self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe self.__nextcmnd = 0 self.__button = QPushButton("Submit next command", self) self.__button.pressed.connect(self.submitNextCommand) self.show() def submitNextCommand(self): ''' Submit the next command from the command list to the command pipe, or shutdown if there are no more commands to submit. ''' try: cmndstr = str(self.__cmndlist[self.__nextcmnd]) if len(cmndstr) > 188: cmndstr = cmndstr[:188] + '...' print("Command: %s" % cmndstr) self.__cmndpipe.send(self.__cmndlist[self.__nextcmnd]) self.__nextcmnd += 1 while self.__rspdpipe.poll(0.1): print("Response: %s" % str(self.__rspdpipe.recv())) except IndexError: self.__rspdpipe.close() self.__cmndpipe.close() self.close() def _test_pipedimagerpq(): # vertices of a pentagon (roughly) centered in a 1000 x 1000 square pentagonpts = ( (504.5, 100.0), (100.0, 393.9), (254.5, 869.4), (754.5, 869.4), (909.0, 393.9), ) linepts = ( (350, 50), (200, 150), (400, 250), (300, 350), (150, 250), (100, 450) ) # start PyQt testapp = QApplication(["PipedImagerPQ"]) # create the list of commands to submit drawcmnds = [] drawcmnds.append( { "action":"setTitle", "title":"Tester" } ) drawcmnds.append( { "action":"show" } ) drawcmnds.append( { "action":"clear", "color":"black"} ) drawcmnds.append( { "action":"screenInfo"} ) # create the image to be displayed testimage = QImage(500, 500, QImage.Format_ARGB32_Premultiplied) # initialize a black background testimage.fill(0xFF000000) # draw some things in the image testpainter = QPainter(testimage) testpainter.setBrush( QBrush(QColor(0, 255, 0, 128), Qt.SolidPattern) ) testpainter.setPen( QPen(QBrush(QColor(255, 0, 0, 255), Qt.SolidPattern), 5.0, Qt.SolidLine, Qt.SquareCap, Qt.MiterJoin) ) testpainter.drawRect( QRectF(5.0, 255.0, 240.0, 240.0) ) testpainter.setBrush( QBrush(QColor(0, 0, 255, 255), Qt.SolidPattern) ) testpainter.setPen( QPen(QBrush(QColor(0, 0, 0, 255), Qt.SolidPattern), 5.0, Qt.DashLine, Qt.RoundCap, Qt.RoundJoin) ) testpainter.drawPolygon( QPolygonF( [ QPointF(.25 * ptx, .25 * pty + 250) for (ptx, pty) in pentagonpts ] ) ) testpainter.setBrush( Qt.NoBrush ) testpainter.setPen( QPen(QBrush(QColor(255, 255, 255, 255), Qt.SolidPattern), 3.0, Qt.DashLine, Qt.RoundCap, Qt.RoundJoin) ) testpainter.drawPolyline( QPolygonF( [ QPointF(pts, pty) for (pts, pty) in linepts ] ) ) testpainter.end() # add the image command testimgwidth = testimage.width() testimgheight = testimage.height() testimgstride = testimage.bytesPerLine() # not a good way to get the pixel data testimgdata = bytearray(testimgheight * testimgstride) k = 0 for pty in range(testimgheight): for ptx in range(testimgwidth): pixval = testimage.pixel(ptx, pty) (aval, rgbval) = divmod(pixval, 256 * 256 * 256) (rval, gbval) = divmod(rgbval, 256 * 256) (gval, bval) = divmod(gbval, 256) testimgdata[k] = bval k += 1 testimgdata[k] = gval k += 1 testimgdata[k] = rval k += 1 testimgdata[k] = aval k += 1 testblocksize = 4000 testnumblocks = (testimgheight * testimgstride + testblocksize - 1) // testblocksize drawcmnds.append( { "action":"newImage", "width":testimgwidth, "height":testimgheight, "stride":testimgstride } ) for k in range(testnumblocks): if k < (testnumblocks - 1): blkdata = testimgdata[k*testblocksize:(k+1)*testblocksize] else: blkdata = testimgdata[k*testblocksize:] drawcmnds.append( { "action":"newImage", "blocknum":k+1, "numblocks":testnumblocks, "startindex":k*testblocksize, "blockdata":blkdata } ) # finish the command list drawcmnds.append( { "action":"show" } ) drawcmnds.append( { "action":"exit" } ) # create a PipedImagerPQ in this process (cmndrecvpipe, cmndsendpipe) = multiprocessing.Pipe(False) (rspdrecvpipe, rspdsendpipe) = multiprocessing.Pipe(False) testviewer = PipedImagerPQ(cmndrecvpipe, rspdsendpipe) # create a command submitter dialog tester = _CommandSubmitterPQ(testviewer, cmndsendpipe, rspdrecvpipe, drawcmnds) tester.show() # let it all run testresult = testapp.exec_() if testresult != 0: sys.exit(testresult) if __name__ == "__main__": _test_pipedimagerpq() ``` #### File: PyFerret/pviewmod/scaledialogpq.py ```python from __future__ import print_function import sys try: import sip except ImportError: import PyQt4.sip as sip try: sip.setapi('QVariant', 2) except Exception: pass # First try to import PyQt5, then try PyQt4 if that fails try: import PyQt5 QT_VERSION = 5 except ImportError: import PyQt4 QT_VERSION = 4 # Now that the PyQt version is determined, import the parts # allowing any import errors to propagate out if QT_VERSION == 5: from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication, QButtonGroup, QDialog, \ QDialogButtonBox, QGridLayout, QGroupBox, \ QLabel, QLineEdit, QMessageBox, QRadioButton else: from PyQt4.QtCore import Qt from PyQt4.QtGui import QApplication, QButtonGroup, QDialog, \ QDialogButtonBox, QGridLayout, QGroupBox, \ QLabel, QLineEdit, QMessageBox, QRadioButton class ScaleDialogPQ(QDialog): ''' Dialog for obtaining scaling information from the user. Validates that the resulting width and height values are not smaller than the specified minimums. ''' def __init__(self, scale, width, height, minwidth, minheight, autoscale, parent=None): ''' Creates a scaling dialog, with scale as the current scaling value which gives a pixmap of size width and height. The minimum acceptable width and heights are given by minwidth and minheight. Values are assumed to be in units of pixels. The value of autoscale sets the default value of "Scale image to fir window frame". ''' super(ScaleDialogPQ, self).__init__(parent) self.__scale = float(scale) self.__pixwidth = float(width) self.__inchwidth = float(width) / float(self.physicalDpiX()) self.__pixheight = float(height) self.__inchheight = float(height) / float(self.physicalDpiY()) self.__minpixwidth = int(minwidth) self.__minpixheight = int(minheight) self.__autoscale = bool(autoscale) self.FLTSTR_FORMAT = "%#.3f" self.setWindowTitle(self.tr("Image Size Scaling")) # auto-scaling option at the top autoscalelabel = QLabel(self.tr("Scale image to fit window frame?"), self) autoscalelabel.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.__autoyesbtn = QRadioButton(self.tr("&Yes"), self) self.__autonobtn = QRadioButton(self.tr("&No"), self) autoscalebtngrp = QButtonGroup(self) autoscalebtngrp.addButton(self.__autoyesbtn) autoscalebtngrp.addButton(self.__autonobtn) # put the manual scaling settings into their own box self.__grpbox = QGroupBox(self.tr("Fixed scaling"), self) # create the widgets going inside this group box messagelabel = QLabel( self.tr("Scaling factor (both horiz. and vert.) for the image"), self.__grpbox) messagelabel.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) scalelabel = QLabel(self.tr("&Scale: "), self.__grpbox) self.__scaleedit = QLineEdit(self.FLTSTR_FORMAT % self.__scale, self.__grpbox) scalelabel.setBuddy(self.__scaleedit) widthbegin = QLabel(self.tr("Width: "), self.__grpbox) self.__pixwidthlabel = QLabel(str(int(self.__pixwidth + 0.5)), self.__grpbox) widthmiddle = QLabel(self.tr("pixels, or"), self.__grpbox) self.__inchwidthlabel = QLabel(self.FLTSTR_FORMAT % self.__inchwidth, self.__grpbox) widthend = QLabel(self.tr("inches on the screen"), self.__grpbox) minwidthlabel = QLabel(self.tr("(must not be less than %d pixels)" % \ self.__minpixwidth), self.__grpbox) heightbegin = QLabel(self.tr("Height:"), self.__grpbox) self.__pixheightlabel = QLabel(str(int(self.__pixheight + 0.5)), self.__grpbox) heightmiddle = QLabel(self.tr("pixels, or"), self.__grpbox) self.__inchheightlabel = QLabel(self.FLTSTR_FORMAT % self.__inchheight, self.__grpbox) heightend = QLabel(self.tr("inches on the screen"), self.__grpbox) minheightlabel = QLabel(self.tr("(must not be less than %d pixels)" % \ self.__minpixheight), self.__grpbox) # layout the widgets in this group box layout = QGridLayout() layout.addWidget(messagelabel, 0, 0, 1, 5) layout.addWidget(scalelabel, 1, 0, 1, 1) layout.addWidget(self.__scaleedit, 1, 1, 1, 4) layout.addWidget(widthbegin, 2, 0, 1, 1) layout.addWidget(self.__pixwidthlabel, 2, 1, 1, 1) layout.addWidget(widthmiddle, 2, 2, 1, 1) layout.addWidget(self.__inchwidthlabel, 2, 3, 1, 1) layout.addWidget(widthend, 2, 4, 1, 1) layout.addWidget(minwidthlabel, 3, 1, 1, 4) layout.addWidget(heightbegin, 4, 0, 1, 1) layout.addWidget(self.__pixheightlabel, 4, 1, 1, 1) layout.addWidget(heightmiddle, 4, 2, 1, 1) layout.addWidget(self.__inchheightlabel, 4, 3, 1, 1) layout.addWidget(heightend, 4, 4, 1, 1) layout.addWidget(minheightlabel, 5, 1, 1, 4) # assign this layout to the group box self.__grpbox.setLayout(layout) # layout the widgets in the dialog (outside the group box) layout = QGridLayout() layout.addWidget(autoscalelabel, 0, 0, 1, 1) layout.addWidget(self.__autoyesbtn, 0, 1, 1, 1) layout.addWidget(self.__autonobtn, 0, 2, 1, 1) layout.addWidget(self.__grpbox, 1, 0, 1, 3) buttonbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel | QDialogButtonBox.Reset, Qt.Horizontal, self) layout.addWidget(buttonbox, 2, 0, 1, 3) self.setLayout(layout) # The OK button is not the default here in Qt4.2 okbutton = buttonbox.button(QDialogButtonBox.Ok) okbutton.setDefault(True) resetbutton = buttonbox.button(QDialogButtonBox.Reset) self.__autoyesclicked = self.__autoyesbtn.clicked self.__autoyesclicked.connect(self.setAutoScale) self.__autonoclicked = self.__autonobtn.clicked self.__autonoclicked.connect(self.unsetAutoScale) self.__scaletextchanged = self.__scaleedit.textChanged self.__scaletextchanged.connect(self.updateValues) self.__buttonboxaccepted = buttonbox.accepted self.__buttonboxaccepted.connect(self.checkValues) self.__buttonboxrejected = buttonbox.rejected self.__buttonboxrejected.connect(self.reject) self.__resetbuttonclicked = resetbutton.clicked self.__resetbuttonclicked.connect(self.resetValues) # initialize the state from autoscale if self.__autoscale: self.__autoyesbtn.setChecked(True) self.setAutoScale(True) else: self.__autonobtn.setChecked(True) self.unsetAutoScale(True) def setAutoScale(self, checked): if checked: self.__grpbox.setEnabled(False) def unsetAutoScale(self, checked): if checked: self.__grpbox.setEnabled(True) self.__scaleedit.setFocus() self.__scaleedit.selectAll() def updateValues(self, newstring): try: newscale = float(newstring) if (newscale < 0.0001) or (newscale > 10000.0): raise OverflowError() newval = self.__pixwidth * newscale / self.__scale self.__pixwidthlabel.setText(str(int(newval + 0.5))) newval = self.__inchwidth * newscale / self.__scale self.__inchwidthlabel.setText(self.FLTSTR_FORMAT % newval) newval = self.__pixheight * newscale / self.__scale self.__pixheightlabel.setText(str(int(newval + 0.5))) newval = self.__inchheight * newscale / self.__scale self.__inchheightlabel.setText(self.FLTSTR_FORMAT % newval) except Exception: pass def checkValues(self): okay = self.getValues()[2] if okay: self.accept() else: QMessageBox.warning(self, self.tr("Invalid value"), self.tr("Scale value is not valid")) def getValues(self): if self.__autoyesbtn.isChecked(): return (0.0, True, True) try: newscale = float(self.__scaleedit.text()) if (newscale < 0.0001) or (newscale > 10000.0): raise OverflowError() newwidth = self.__pixwidth * newscale / self.__scale newwidth = int(newwidth + 0.5) newheight = self.__pixheight * newscale / self.__scale newheight = int(newheight + 0.5) if (newwidth < self.__minpixwidth) or (newheight < self.__minpixheight): raise OverflowError() except Exception: return (0.0, False, False) return (newscale, False, True) def resetValues(self): self.__scaleedit.setText(self.FLTSTR_FORMAT % self.__scale) self.__pixwidthlabel.setText(str(int(self.__pixwidth + 0.5))) self.__inchwidthlabel.setText(self.FLTSTR_FORMAT % self.__inchwidth) self.__pixheightlabel.setText(str(int(self.__pixheight + 0.5))) self.__inchheightlabel.setText(self.FLTSTR_FORMAT % self.__inchheight) if self.__autoscale: self.__autoyesbtn.setChecked(True) self.setAutoScale(True) else: self.__autonobtn.setChecked(True) self.unsetAutoScale(True) def _test_scaledialogpq(): app = QApplication(["tester"]) resizedialog = ScaleDialogPQ(1.0, 500, 300, 75, 50, False) retval = resizedialog.exec_() print("retval = %d" % retval) if retval == QDialog.Accepted: rettuple = resizedialog.getValues() print("getValues returned: %s" % str(rettuple)) if __name__ == "__main__": _test_scaledialogpq() ```
{ "source": "JHongKong/GitDaily", "score": 4 }
#### File: Algorithm/Python/Overwrite.py ```python import sys def myprint(*args,**kargs): """ 模拟print函数 Emulate most of the 3.X print function for use in 2.X(and 3.X) Call signature: print3(*args,sep=' ',end ='\n', file=sys.stdout) """ sep = kargs.get('sep',' ') end = kargs.get('end','\n') file = kargs.get('file',sys.stdout) output = '' first = True for arg in args: output += ('' if first else sep) + str(arg) first = False file.write(output+end) def myprint0(*args,**kargs): """ 细致优化:其实上面已经够用了 Use 2.X/3.X keyword args deletion with defaults """ sep = kargs.pop('sep',' ') #dict.pop() 删除取回的传入项,并检查字典是否为空 end = kargs.pop('end','\n') file = kargs.get('file',sys.stdout) if kargs: raise TypeError('extra keywords: %s' %kargs) # 检查有无多余项报错 output = '' first = True for arg in args: output += ('' if first else sep) + str(arg) first = False file.write(output+end) myprint("fanfamsf","dsakda",sep='...') myprint0("fanfamsf","dsakda",sep='...') def mymap(func,*seqs): res = [] for args in zip(*seqs): res.append(func(*args)) return res print(mymap(abs,[-2,-1,0,1,2])) print(mymap(pow,[1,2,3],[2,3,4,5])) def myzip(*seqs,pad=None): seqs = [list(S) for S in seqs] res = [] while any(seqs): # any--->all时为正常的zip() #res.append(tuple(S.pop(0) for S in seqs)) res.append(tuple((S.pop(0) if S else pad)for S in seqs)) return res S1,S2 = 'abc','xyz123' print(myzip(S1,S2)) ```
{ "source": "jhonifreitas/auto-service", "score": 2 }
#### File: auth/tests/test_serializers.py ```python from model_mommy import mommy from rest_framework.serializers import ValidationError from django.test import TestCase from django.contrib.auth.models import User from gojob.api.v1.auth.serializers import LoginSerializer class LoginSerializerValidTest(TestCase): def setUp(self): self.user = User.objects.create_user(username='test', password='<PASSWORD>') self.profile = mommy.make('custom_profile.Profile', user=self.user) self.serializer = LoginSerializer(data={'username': self.user.username, 'password': '<PASSWORD>'}) def test_serializer_is_valid(self): self.assertTrue(self.serializer.is_valid()) def test_serializer_get_token(self): self.serializer.is_valid() self.assertTrue(self.serializer.get_token()) class LoginSerializerInvalidTest(TestCase): def setUp(self): self.user = User.objects.create_user(username='test', password='<PASSWORD>') self.serializer = LoginSerializer(data={}) def test_serializer_not_is_valid(self): self.assertFalse(self.serializer.is_valid()) def test_validate_password_invalid(self): with self.assertRaises(ValidationError): self.serializer.validate({'username': self.user.username, 'password': '<PASSWORD>'}) def test_validate_username_invalid(self): with self.assertRaises(ValidationError): self.serializer.validate({'username': 'invalid-username'}) ``` #### File: v1/auth/views.py ```python from rest_framework import status from rest_framework import viewsets from rest_framework.response import Response from django.contrib.auth.models import User from django.contrib.auth.forms import PasswordResetForm from django.contrib.auth.tokens import default_token_generator from gojob.api.v1.auth.serializers import LoginSerializer class LoginViewSet(viewsets.ViewSet): serializer_class = LoginSerializer def post(self, request): serializer = self.serializer_class(data=request.data) if serializer.is_valid(): return Response(serializer.get_data(request), status=status.HTTP_200_OK) return Response({'errors': serializer.errors}, status=status.HTTP_400_BAD_REQUEST) class PasswordResetViewSet(viewsets.ViewSet): def post(self, request): if User.objects.filter(email=request.data.get('email')).exists(): opts = { 'use_https': request.is_secure(), 'token_generator': default_token_generator, 'from_email': None, 'email_template_name': 'registration/password_reset_email.html', 'subject_template_name': 'registration/password_reset_subject.txt', 'request': request, 'html_email_template_name': None, 'extra_email_context': None, } form = PasswordResetForm(request.data) if form.is_valid(): form.save(**opts) return Response({'ok': 'E-mail enviado com sucesso!'}, status=status.HTTP_200_OK) return Response({'error': 'E-mail inválido!'}, status=status.HTTP_400_BAD_REQUEST) ``` #### File: v1/customer/__init__.py ```python import base64 from itsdangerous import BadSignature, SignatureExpired, TimedJSONWebSignatureSerializer from rest_framework.permissions import BasePermission from rest_framework.exceptions import AuthenticationFailed from rest_framework.authentication import get_authorization_header, BasicAuthentication from django.urls import resolve from django.conf import settings from django.contrib.auth import authenticate from django.contrib.auth.models import User, AnonymousUser class TokenAuthenticate(BasicAuthentication): """ Custom auth method to authenticate the user trought the token """ ALLOWED_PATHS = [ 'login', ] def allowed_path(self, request): """ If the anonymous user is tryng to access a valid url """ return resolve(request.path).url_name in self.ALLOWED_PATHS def verify_token(self, token): try: return TimedJSONWebSignatureSerializer(settings.SECRET_KEY, expires_in=settings.EXPIRES_IN).loads(token) except (BadSignature, SignatureExpired): raise AuthenticationFailed('Bad credentials.') def authenticate(self, request, simple=False): auth = get_authorization_header(request).split() if not auth and self.allowed_path(request): return self.authenticate_credentials(anonymous=True) if not auth or auth[0].lower() != b'basic': raise AuthenticationFailed('Bad Credentials.') try: auth_parts = base64.b64decode(auth[1]).decode('utf-8').partition(':') except (IndexError, TypeError, base64.binascii.Error): raise AuthenticationFailed('Bad Credentials.') token, password = auth_parts[0], auth_parts[2] payload = self.verify_token(token) return self.authenticate_credentials(payload, password, request=request) def authenticate_credentials(self, payload=None, password=None, anonymous=False, request=None): """ Authenticate the userid and password against username and password. """ if anonymous: return (AnonymousUser(), None) credentials = { 'username': payload['username'], 'password': payload['password'] } user = authenticate(**credentials) if (user is None) or (user and not user.is_active): raise AuthenticationFailed('Bad Credentials.') return (user, None) class IsUserAuthenticated(BasePermission): def has_permission(self, request, view): if isinstance(request.user, User) or isinstance(request.user, AnonymousUser): return True return False ``` #### File: gojob/core/utils.py ```python class CPF(object): INVALID_CPFS = ['00000000000', '11111111111', '22222222222', '33333333333', '44444444444', '55555555555', '66666666666', '77777777777', '88888888888', '99999999999'] def __init__(self, cpf): self.cpf = cpf def validate_size(self): cpf = self.cleaning() if bool(cpf and (len(cpf) > 11 or len(cpf) < 11)): return False return True def validate(self): cpf = self.cleaning() if self.validate_size() and cpf not in self.INVALID_CPFS: digit_1 = 0 digit_2 = 0 i = 0 while i < 10: digit_1 = (digit_1 + (int(cpf[i]) * (11-i-1))) % 11 if i < 9 else digit_1 digit_2 = (digit_2 + (int(cpf[i]) * (11-i))) % 11 i += 1 return ((int(cpf[9]) == (11 - digit_1 if digit_1 > 1 else 0)) and (int(cpf[10]) == (11 - digit_2 if digit_2 > 1 else 0))) return False def cleaning(self): return self.cpf.replace('.', '').replace('-', '') if self.cpf else '' def format(self): return '%s.%s.%s-%s' % (self.cpf[0:3], self.cpf[3:6], self.cpf[6:9], self.cpf[9:11]) if self.cpf else '' class ZipCode(object): def __init__(self, zip_code): """ Class to interact with zip_code brazilian numbers """ self.zip_code = zip_code def format(self): return '%s-%s' % (self.zip_code[0:5], self.zip_code[5:8]) if self.zip_code else '' def cleaning(self): return self.zip_code.replace('-', '') if self.zip_code else '' class Phone(object): def __init__(self, phone): self.phone = phone def cleaning(self): if self.phone: phone = self.phone.replace('(', '') phone = phone.replace(')', '') phone = phone.replace('-', '') phone = phone.replace(' ', '') phone = phone.replace('.', '') phone = phone.replace('+', '') return phone return '' def format(self): if self.phone: if len(self.phone) == 8: return '%s-%s' % (self.phone[0:4], self.phone[4:8]) if len(self.phone) == 9: return '%s%s-%s' % (self.phone[0:1], self.phone[1:5], self.phone[5:9]) if len(self.phone) == 10: return '(%s) %s-%s' % (self.phone[0:2], self.phone[2:6], self.phone[6:10]) if len(self.phone) == 11: return '(%s) %s%s-%s' % (self.phone[0:2], self.phone[2:3], self.phone[3:7], self.phone[7:11]) if len(self.phone) == 13: return '+%s (%s) %s %s-%s' % ( self.phone[0:2], self.phone[2:4], self.phone[4:5], self.phone[5:9], self.phone[9:13] ) return '' class CNPJ(object): def __init__(self, cnpj): """ Class to interact with cnpj brazilian numbers """ self.cnpj = cnpj def calculating_digit(self, result): result = result % 11 if result < 2: digit = 0 else: digit = 11 - result return str(digit) def calculating_first_digit(self): one_validation_list = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] result = 0 pos = 0 for number in self.cnpj: try: one_validation_list[pos] except IndexError: break result += int(number) * int(one_validation_list[pos]) pos += 1 return self.calculating_digit(result) def calculating_second_digit(self): two_validation_list = [6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] result = 0 pos = 0 for number in self.cnpj: try: two_validation_list[pos] except IndexError: break result += int(number) * int(two_validation_list[pos]) pos += 1 return self.calculating_digit(result) def validate(self): """ Method to validate brazilian cnpjs """ self.cnpj = self.cleaning() if len(self.cnpj) != 14: return False checkers = self.cnpj[-2:] digit_one = self.calculating_first_digit() digit_two = self.calculating_second_digit() return bool(checkers == digit_one + digit_two) def cleaning(self): if self.cnpj: return self.cnpj.replace('-', '').replace('.', '').replace('/', '') return '' def format(self): """ Method to format cnpj numbers. """ if self.cnpj: return '%s.%s.%s/%s-%s' % (self.cnpj[0:2], self.cnpj[2:5], self.cnpj[5:8], self.cnpj[8:12], self.cnpj[12:14]) return '' ``` #### File: gojob/core/views_base.py ```python from django.views import View from django.contrib import messages from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from django.contrib.messages.views import SuccessMessageMixin from django.contrib.auth.mixins import PermissionRequiredMixin from django.views.generic.edit import CreateView, UpdateView, DeleteView class BaseView(PermissionRequiredMixin, SuccessMessageMixin, View): raise_exception = True permission_required = [] @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, **kwargs) class BaseListView(BaseView, ListView): paginate_by = 10 class BaseCreateView(BaseView, CreateView): pass class BaseUpdateView(BaseView, UpdateView): slug_field = 'uuid' slug_url_kwarg = 'uuid' class BaseDeleteView(BaseView, DeleteView): slug_field = 'uuid' slug_url_kwarg = 'uuid' def delete(self, request, *args, **kwargs): messages.success(request, self.success_message) return super(BaseDeleteView, self).delete(request, *args, **kwargs) class BaseDetailView(BaseView, DetailView): slug_field = 'uuid' slug_url_kwarg = 'uuid' ```
{ "source": "JhonJYJ/Marvel", "score": 4 }
#### File: arcade/examples/decorator_drawing_example.py ```python import arcade import random SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 def draw_background(window): """ This function draws the background. Specifically, the sky and ground. """ # Draw the sky in the top two-thirds arcade.draw_rectangle_filled(SCREEN_WIDTH / 2, SCREEN_HEIGHT * 2 / 3, SCREEN_WIDTH - 1, SCREEN_HEIGHT * 2 / 3, arcade.color.SKY_BLUE) # Draw the ground in the bottom third arcade.draw_rectangle_filled(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 6, SCREEN_WIDTH - 1, SCREEN_HEIGHT / 3, arcade.color.DARK_SPRING_GREEN) def draw_bird(x, y): """ Draw a bird using a couple arcs. """ arcade.draw_arc_outline(x, y, 20, 20, arcade.color.BLACK, 0, 90) arcade.draw_arc_outline(x + 40, y, 20, 20, arcade.color.BLACK, 90, 180) def draw_pine_tree(center_x, center_y): """ This function draws a pine tree at the specified location. Args: :center_x: x position of the tree center. :center_y: y position of the tree trunk center. """ # Draw the trunk center_x arcade.draw_rectangle_filled(center_x, center_y, 20, 40, arcade.color.DARK_BROWN) tree_bottom_y = center_y + 20 # Draw the triangle on top of the trunk point_list = ((center_x - 40, tree_bottom_y), (center_x, tree_bottom_y + 100), (center_x + 40, tree_bottom_y)) arcade.draw_polygon_filled(point_list, arcade.color.DARK_GREEN) def draw_birds(window): # Loop to draw ten birds in random locations. for bird in window.bird_list: # Draw the bird. draw_bird(bird[0], bird[1]) def draw_trees(window): # Draw the top row of trees for x in range(45, SCREEN_WIDTH, 90): draw_pine_tree(x, SCREEN_HEIGHT / 3) # Draw the bottom row of trees for x in range(65, SCREEN_WIDTH, 90): draw_pine_tree(x, (SCREEN_HEIGHT / 3) - 120) @arcade.decorator.setup def create_birds(window): """ This, and any function with the arcade.decorator.init decorator, is run automatically on start-up. """ window.bird_list = [] for bird_count in range(10): x = random.randrange(SCREEN_WIDTH) y = random.randrange(SCREEN_HEIGHT / 2, SCREEN_HEIGHT) window.bird_list.append([x, y]) @arcade.decorator.update def animate_birds(window, delta_time): """ This is run every 1/60 of a second or so. Do not draw anything in this function. """ change_y = 0.3 for bird in window.bird_list: bird[0] += change_y if bird[0] > SCREEN_WIDTH + 20: bird[0] = -20 @arcade.decorator.draw def draw(window): """ This is called everytime we need to update our screen. About 60 times per second. Just draw things in this function, don't update where they are. """ # Call our drawing functions. draw_background(window) draw_birds(window) draw_trees(window) if __name__ == "__main__": arcade.decorator.run(SCREEN_WIDTH, SCREEN_HEIGHT, title="Drawing With Decorators") ``` #### File: arcade/examples/stress_test_draw_simple.py ```python import random import arcade import os import timeit # --- Constants --- SPRITE_SCALING_COIN = 0.09 COIN_COUNT = 50000 SCREEN_WIDTH = 1200 SCREEN_HEIGHT = 700 class MyGame(arcade.Window): """ Our custom Window Class""" def __init__(self): """ Initializer """ # Call the parent class initializer super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, "Sprite Example") # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Variables that will hold sprite lists self.all_sprites_list = None self.coin_list = None # Set up the player info self.player_sprite = None self.score = 0 self.processing_time = 0 self.draw_time = 0 # Don't show the mouse cursor self.set_mouse_visible(False) arcade.set_background_color(arcade.color.AMAZON) def setup(self): """ Set up the game and initialize the variables. """ # Sprite lists self.all_sprites_list = arcade.SpriteList() self.coin_list = arcade.SpriteList() # Create the coins for i in range(COIN_COUNT): # Create the coin instance # Coin image from kenney.nl coin = arcade.Sprite("images/coin_01.png", SPRITE_SCALING_COIN) # Position the coin coin.center_x = random.randrange(SCREEN_WIDTH) coin.center_y = random.randrange(SCREEN_HEIGHT) # Add the coin to the lists self.all_sprites_list.append(coin) self.coin_list.append(coin) def on_draw(self): """ Draw everything """ # Start timing how long this takes draw_start_time = timeit.default_timer() arcade.start_render() self.all_sprites_list.draw() # Display timings output = f"Processing time: {self.processing_time:.3f}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 20, arcade.color.BLACK, 16) output = f"Drawing time: {self.draw_time:.3f}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 40, arcade.color.BLACK, 16) self.draw_time = timeit.default_timer() - draw_start_time def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main() ``` #### File: Marvel/doc/generate_example_thumbnails.py ```python import os, sys def main(): if not os.path.exists('examples/thumbs'): os.makedirs('examples/thumbs') generate_thumbnails() else: print('Thumbnails already exist, skipping generation') def generate_thumbnails(): print('Generating thumbnails') if sys.platform == 'linux': command = 'mogrify' else: command = 'magick mogrify' os.chdir('examples') os.system(command + ' -resize 200x158 -extent 200x158 -background transparent -path thumbs *.png') # Do we want animated thumbnails? # os.system(command + ' -resize 200x158 -extent 200x158 -background transparent -path thumbs *.gif') if __name__ == '__main__': main() ``` #### File: Marvel/tests/__init__.py ```python from doctest import DocTestSuite from unittest import TestSuite from unittest import TextTestRunner import arcade def load_tests(loader=None, tests=None, pattern=None): suite = TestSuite() suite.addTests(DocTestSuite('arcade.draw_commands')) suite.addTests(DocTestSuite('arcade.buffered_draw_commands')) suite.addTests(DocTestSuite('arcade.window_commands')) suite.addTests(DocTestSuite('arcade.geometry')) suite.addTests(DocTestSuite('arcade.sprite')) suite.addTests(DocTestSuite('arcade.sprite_list')) suite.addTests(DocTestSuite('arcade.application')) suite.addTests(DocTestSuite('arcade.sound')) suite.addTests(DocTestSuite('arcade.physics_engines')) suite.addTests(DocTestSuite('arcade.decorator_support')) return suite if __name__ == '__main__': TextTestRunner(verbosity=2).run(load_tests()) ```
{ "source": "jhonktorresp/snake-machine-learning", "score": 3 }
#### File: snake-machine-learning/V1/snake_visual.py ```python import pygame,time,math from snake_logic import snake from pygame.locals import * import numpy import pandas from joblib import dump, load #import csv limit_barrier = 30 width = 500 height = 500 pixel_w = width/limit_barrier pixel_h = height/limit_barrier white=(255,255,255) black=(0,0,0) green=(0,255,0) def erase_board(display): pygame.draw.rect(display,black,(pixel_w,pixel_h,pixel_w*(limit_barrier-2),pixel_h*(limit_barrier-2))) def draw_path_board(display,explored): for x in range(0,limit_barrier): for y in range(0,limit_barrier): if(explored[x][y]): pygame.draw.rect(display,green,(x*pixel_w,y*pixel_h,pixel_w,pixel_h)) def draw_pixel(display,x,y,explored): erase_board(display) draw_path_board(display,explored) pygame.draw.rect(display,white,(x*pixel_w,y*pixel_h,pixel_w,pixel_h)) def init_snake(): pygame.init() display=pygame.display.set_mode((width,height),0,32) display.fill(black) #Draw barrier for i in range(limit_barrier): pygame.draw.rect(display,white,(i*pixel_w,0,pixel_w,pixel_h)) pygame.draw.rect(display,white,(0,i*pixel_h,pixel_w,pixel_h)) pygame.draw.rect(display,white,((limit_barrier-1)*pixel_w,i*pixel_h,pixel_w,pixel_h)) pygame.draw.rect(display,white,(i*pixel_w,(limit_barrier-1)*pixel_h,pixel_w,pixel_h)) return display def init_game(random): if(not random): display=init_snake() xposition = math.floor(limit_barrier/2) yposition = xposition #xposition = 1 #yposition = 10 velocity_p = 40000 velocity = 0.1/velocity_p eat_points = 0 #survive_points = eat_points/1000 survive_points = 0 explore_points = 0 penalty_explore = 0 #penalty_end_game = survive_points * limit_barrier * limit_barrier * 2 penalty_end_game = -1 if(random): predictor=None else: predictor= load('snake_model.joblib') mySnake = snake(xposition,yposition,limit_barrier,eat_points,explore_points,survive_points,penalty_explore,penalty_end_game,[],random,predictor) #print(mySnake.score) while mySnake.life==1: #time.sleep(velocity) mySnake.snake_random_movement() #mySnake.where_is() if(not random): erase_board(display) draw_pixel(display,mySnake.head[0],mySnake.head[1],mySnake.already_explored) #Events for event in pygame.event.get(): if event.type==QUIT: pygame.quit() sys.exit() pygame.display.update() #print(mySnake.score) return mySnake.historial[-3:] #pd = pandas.DataFrame(mySnake.historial) #pd.to_csv("snake_data"+str(x)+".csv") def generate_random_test(): n_Test = 100000 historical_data = [] for x in range(n_Test): historical_data=historical_data+init_game(True) print(x) pd = pandas.DataFrame(historical_data) pd.to_csv("snake_data.csv") #with open("snake_data.csv",'w') as f: # for sublist in historical_data: # for item in sublist: # f.write(str(item) + ',') # f.write('\n') def test_snake_machine(): for x in range(100): a = init_game(False) import sys def main(): if(sys.argv[1]=="1"): generate_random_test() else: test_snake_machine() main() ```
{ "source": "JhonLiuljs/tensorflow_demo", "score": 3 }
#### File: tensorflow_demo/1.Cnn_Captcha/main.py ```python from gen_captcha import gen_captcha_text_and_image from constants import IMAGE_HEIGHT from constants import IMAGE_WIDTH from constants import MAX_CAPTCHA from constants import CHAR_SET_LEN import numpy as np import tensorflow as tf import sys import matplotlib.pyplot as plt """ cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。 np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行 """ ################################## # 提前定义变量空间 申请占位符 按照图片 X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) keep_prob = tf.placeholder(tf.float32) # dropout # 把彩色图像转为灰度图像(色彩对识别验证码没有什么用) def convert2gray(img): if len(img.shape) > 2: gray = np.mean(img, -1) # 上面的转法较快,正规转法如下 # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray else: return img """ #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 vec = text2vec("F5Sd") text = vec2text(vec) print(text) # F5Sd vec = text2vec("SFd5") text = vec2text(vec) print(text) # SFd5 """ # 验证码字符转换为长向量 def text2vec(text): text_len = len(text) if text_len > MAX_CAPTCHA: raise ValueError('验证码最长4个字符') vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) def char2pos(c): if c == '_': k = 62 return k k = ord(c) - 48 if k > 9: k = ord(c) - 55 if k > 35: k = ord(c) - 61 if k > 61: raise ValueError('No Map') return k for i, c in enumerate(text): idx = i * CHAR_SET_LEN + char2pos(c) vector[idx] = 1 return vector # 向量转回文本 def vec2text(vec): char_pos = vec.nonzero()[0] text = [] for i, c in enumerate(char_pos): char_at_pos = i # c/63 char_idx = c % CHAR_SET_LEN if char_idx < 10: char_code = char_idx + ord('0') elif char_idx < 36: char_code = char_idx - 10 + ord('A') elif char_idx < 62: char_code = char_idx - 36 + ord('a') elif char_idx == 62: char_code = ord('_') else: raise ValueError('error') text.append(chr(char_code)) return "".join(text) # 获得1组验证码数据,生成一个训练batch def get_next_batch(batch_size=128): batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH]) batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN]) # 有时生成图像大小不是(60, 160, 3) def wrap_gen_captcha_text_and_image(): """ 获取一张图,判断其是否符合(60,160,3)的规格""" while True: text, image = gen_captcha_text_and_image() if image.shape == (60, 160, 3): # 此部分应该与开头部分图片宽高吻合 return text, image for i in range(batch_size): text, image = wrap_gen_captcha_text_and_image() image = convert2gray(image) # 将图片数组一维化 同时将文本也对应在两个二维组的同一行 batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0 batch_y[i, :] = text2vec(text) # 返回该训练批次 return batch_x, batch_y # 卷积层 附relu max_pool drop操作 def conn_layer(w_alpha=0.01, b_alpha=0.1, _keep_prob=0.7, input=None, last_size=None, cur_size=None): # 从正太分布输出随机值 w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, last_size, cur_size])) b_c1 = tf.Variable(b_alpha * tf.random_normal([cur_size])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(input, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv1 = tf.nn.dropout(conv1, keep_prob=_keep_prob) return conv1 # 对卷积层到全链接层的数据进行变换 def _get_conn_last_size(input): shape = input.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d input = tf.reshape(input, [-1, dim]) return input, dim # 全链接层 def _fc_layer(w_alpha=0.01, b_alpha=0.1, input=None, last_size=None, cur_size=None): w_d = tf.Variable(w_alpha * tf.random_normal([last_size, cur_size])) b_d = tf.Variable(b_alpha * tf.random_normal([cur_size])) fc = tf.nn.bias_add(tf.matmul(input, w_d), b_d) return fc # 定义CNN 构建前向传播网络 def crack_captcha_cnn(): # 将占位符 转换为 按照图片给的新样式 x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) conv1 = conn_layer(input=x, last_size=1, cur_size=32) conv2 = conn_layer(input=conv1, last_size=32, cur_size=64) conn3 = conn_layer(input=conv2, last_size=64, cur_size=64) input, dim = _get_conn_last_size(conn3) fc_layer1 = _fc_layer(input=input, last_size=dim, cur_size=1024) fc_layer1 = tf.nn.relu(fc_layer1) fc_layer1 = tf.nn.dropout(fc_layer1, keep_prob) fc_out = _fc_layer(input=fc_layer1, last_size=1024, cur_size=MAX_CAPTCHA * CHAR_SET_LEN) return fc_out # 反向传播 def back_propagation(): output = crack_captcha_cnn() # 学习率 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.arg_max(predict, 2) max_idx_l = tf.arg_max(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) accuracy = tf.reduce_mean(tf.cast(tf.equal(max_idx_p, max_idx_l), tf.float32)) return loss, optimizer, accuracy # 初次运行训练模型 def train_first(): loss, optimizer, accuracy = back_propagation() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.all_variables()) step = 0 while 1: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) # 每100 step计算一次准确率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print(step, acc, loss_) if acc > 0.80: # 准确率大于0.80保存模型 可自行调整 saver.save(sess, './models/crack_capcha.model', global_step=step) break step += 1 # 加载现有模型 继续进行训练 def train_continue(step): loss, optimizer, accuracy = back_propagation() saver = tf.train.Saver(tf.global_variables(), max_to_keep=1) with tf.Session() as sess: if step is None: print(tf.train.latest_checkpoint('./models')) saver.restore(sess, tf.train.latest_checkpoint('./models')) else: path = './models/crack_capcha.model-' + str(step) saver.restore(sess, path) # 36300 36300 0.9325 0.0147698 while 1: batch_x, batch_y = get_next_batch(100) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print(step, acc, loss_) if acc >= 0.925: saver.save(sess, './models/crack_capcha.model', global_step=step) if acc >= 0.95: saver.save(sess, './models/crack_capcha.model', global_step=step) break step += 1 # 测试训练模型 def crack_captcha(captcha_image, step): output = crack_captcha_cnn() saver = tf.train.Saver(tf.global_variables(), max_to_keep=1) with tf.Session() as sess: if step is None: print(tf.train.latest_checkpoint('./models')) saver.restore(sess, tf.train.latest_checkpoint('./models')) else: path = './models/crack_capcha.model-' + str(step) saver.restore(sess, path) predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1}) texts = text_list[0].tolist() vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) i = 0 for n in texts: vector[i * CHAR_SET_LEN + n] = 1 i += 1 return vec2text(vector) ''' # 定义CNN def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): # 将占位符 转换为 按照图片给的新样式 x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # # w_c2_alpha = np.sqrt(2.0/(3*3*32)) # w_c3_alpha = np.sqrt(2.0/(3*3*64)) # w_d1_alpha = np.sqrt(2.0/(8*32*64)) # out_alpha = np.sqrt(2.0/1024) # 3 conv layer w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) # 从正太分布输出随机值 b_c1 = tf.Variable(b_alpha * tf.random_normal([32])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv1 = tf.nn.dropout(conv1, keep_prob) w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) b_c2 = tf.Variable(b_alpha * tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv2 = tf.nn.dropout(conv2, keep_prob) w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64])) b_c3 = tf.Variable(b_alpha * tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024])) b_d = tf.Variable(b_alpha * tf.random_normal([1024])) dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) dense = tf.nn.dropout(dense, keep_prob) w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN])) b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN])) out = tf.add(tf.matmul(dense, w_out), b_out) # out = tf.nn.softmax(out) return out # 训练 def train_crack_captcha_cnn(): output = crack_captcha_cnn() # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) print(step, loss_) # 每100 step计算一次准确率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print(step, acc) # 如果准确率大于50%,保存模型,完成训练 if acc >= 0.95: saver.save(sess, "./crack_capcha.model", global_step=step) break step += 1 ''' if __name__ == '__main__': print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐 # 训练和测试开关 train = True if train: # train_continue(36300) train_first() else: m_text, m_image = gen_captcha_text_and_image() f = plt.figure() ax = f.add_subplot(111) ax.text(0.1, 0.9, m_text, ha='center', va='center', transform=ax.transAxes) plt.imshow(m_image) plt.show() image = convert2gray(m_image) # 生成一张新图把彩色图像转为灰度图像 image = image.flatten() / 255 # 将图片一维化 predict_text = crack_captcha(image, None) # 导入模型识别 print("正确: {} 预测: {}".format(m_text, predict_text)) sys.exit() ```
{ "source": "jhonmac666/agent-operator", "score": 3 }
#### File: agent-operator/hack/customize_crds.py ```python import yaml from os import listdir from os.path import isfile, join crd_directory = "./config/crd/bases/" def recursively_delete(d, key_of_interest): for key, value in list(d.items()): if key in key_of_interest: print("found and deleted: " + key) del d[key] if type(value) is dict: recursively_delete(value, key_of_interest) crds = [f for f in listdir(crd_directory) if isfile(join(crd_directory, f))] for yaml_file in crds: with open(crd_directory + yaml_file, 'r') as crd: search_string = {"x-kubernetes-int-or-string", "x-kubernetes-list-type", "anyOf", "pattern"} file = yaml.full_load(crd) recursively_delete(file, search_string) # del file['status'] with open(crd_directory + yaml_file, 'w') as new_crd: yaml.dump(file, new_crd) ```
{ "source": "JhonnathaAndrade/thermosolver", "score": 3 }
#### File: thermosolver/thermosolver/database.py ```python class BdD(object): """docstring for BdD""" def __init__(self): super(BdD, self).__init__() def get_dados(componente): import csv from collections import namedtuple # Name;Formula;MW;Tc;Pc;Vc;Rho_c;Zc;w # alocando espaço para as listas import os rel_path = "DadosCriticos.csv" folder = os.path.join(os.path.dirname(__file__), 'critical_data') file = os.path.join(folder, 'Yaws Collection.csv') Especie = namedtuple('Componente','CASRN Name Tc Pc Vc w') saida = None with open(file, 'r') as csvfile: csvreader = csv.reader(csvfile,delimiter='\t',quoting=csv.QUOTE_NONNUMERIC) headers = next(csvreader) a = [] for row in csvreader: if componente in (row[0],row[1]): saida = Especie(*row) print break if not saida: raise ValueError('Especie não encontrada no banco de dados') return saida if __name__ == '__main__': _,_,Tc,Pc,Vc,w = BdD.get_dados('hexamethyldisilazane') print(Tc) ```
{ "source": "jhonnattan123/fastapi_crud_example", "score": 3 }
#### File: api/actions/storage.py ```python import uuid from fastapi import HTTPException from starlette.requests import Request from api.models.usuario import Usuario from api.models.respuesta_listar import Respuesta_Listar def add(item, request: Request): """ Agrega un nuevo item a la lista. Si el modelo posee el metodo u_key se usara su respuesta como llave unica. :param item: Item a agregar :param request: Request """ try: item_id = uuid.uuid4() setattr(item, "ID", item_id) nombre_modelo = item.__class__.__name__ if nombre_modelo not in request.app.memory: request.app.memory[nombre_modelo] = {} if nombre_modelo not in request.app.key_memory: request.app.key_memory[nombre_modelo] = {} if hasattr(item, "u_key"): llave = item.u_key() valor_llave = getattr(item, llave) if nombre_modelo in request.app.key_memory and valor_llave in request.app.key_memory[nombre_modelo]: raise HTTPException( status_code=404, detail="Llave {} esta duplicada".format(valor_llave) ) request.app.key_memory[nombre_modelo][valor_llave] = str(item_id) request.app.memory[nombre_modelo][str(item_id)] = item return str(item_id) except Exception as e: if type(e) != HTTPException: raise Exception("Error al agregar el item: {}".format(str(e))) raise e def update( item_id, item, request: Request ): """ Actualiza un item en la lista :param item_id: ID del item a actualizar :param item: Item a actualizar :param request: Request """ try: setattr(item, "ID", item_id) nombre_modelo = item.__class__.__name__ item_original = get_by_id(item.__class__,item_id, request) if not item_original: raise HTTPException(status_code=404, detail="Item not found") if hasattr(item, "u_key"): llave = item.u_key() IN_llave = getattr(item, llave) llave_original = getattr(item_original, llave) if IN_llave != llave_original and IN_llave not in request.app.key_memory[nombre_modelo]: del request.app.key_memory[nombre_modelo][str(llave_original)] request.app.key_memory[nombre_modelo][IN_llave] = str(item_id) print(item) request.app.memory[nombre_modelo][str(item_id)] = item return str(item_id) except Exception as e: if type(e) != HTTPException: raise Exception("Error al actualizar el item: {}".format(str(e))) raise e def get_all(modelo, pagina=1, cantidad=10, request=Request, order_by="ID", sort="asc"): """ Retorna todos los items de la lista :param modelo: Clase del modelo :param pagina: Pagina a retornar :param cantidad: Cantidad de items a retornar :param request: Request :param order_by: Campo por el cual se ordenara :param sort: Orden ascendente o descendente """ try: nombre_modelo = modelo.__name__ if nombre_modelo not in request.app.key_memory: return Respuesta_Listar().__dict__ items = [] for item_id in request.app.memory[nombre_modelo]: items.append(request.app.memory[nombre_modelo][item_id]) if not order_by: order_by = "ID" if order_by in list(Usuario.__fields__.keys()) and sort == "desc": items.sort(key=lambda x: x[order_by], reverse=True) if not pagina: pagina = 1 if not cantidad: cantidad = 10 return { "data": items[(pagina-1)*cantidad:pagina*cantidad], "total_items": len(items), "total_paginas": len(items)//cantidad + 1 } except Exception as e: if type(e) != HTTPException: raise Exception(f"Error al obtener todos los items:",e) raise e def get_by_id( modelo, item_id, request: Request ): """ Retorna un item por su ID :param item_id: ID del item a retornar :param request: Request """ try: nombre_modelo = modelo.__name__ if nombre_modelo not in request.app.key_memory: raise HTTPException( status_code=404, detail="Item not found" ) if str(item_id) not in request.app.memory[nombre_modelo]: raise HTTPException( status_code=404, detail="Item not found" ) item = request.app.memory[nombre_modelo][str(item_id)] return item except Exception as e: if type(e) != HTTPException: raise Exception(f"Error al obtener el item: {str(e)}") raise e def delete( modelo, item_id, request:Request ): """ Elimina un item de la lista :param item_id: ID del item a eliminar :param request: Request """ try: nombre_modelo = modelo.__name__ if nombre_modelo not in request.app.key_memory: raise HTTPException( status_code=404, detail="Item not found" ) if str(item_id) not in request.app.memory[nombre_modelo]: raise HTTPException( status_code=404, detail="Item not found" ) item = request.app.memory[nombre_modelo][str(item_id)] if hasattr(item, "u_key"): llave = item.u_key() valor_llave = getattr(item, llave) del request.app.key_memory[nombre_modelo][valor_llave] del request.app.memory[nombre_modelo][str(item_id)] except Exception as e: if type(e) != HTTPException: raise Exception(f"Error al eliminar el item: {str(e)}") raise e ``` #### File: api/models/usuario.py ```python from uuid import UUID from datetime import date from typing import Optional, Union from pydantic import BaseModel, Field class Usuario(BaseModel): ID: Optional[UUID] = Field( title="ID del usuario", description="ID del usuario", example="3fa85f64-5717-4562-b3fc-2c963f66afa6" ) nombre: str = Field( ..., title="Nombre del usuario", description="Nombre del usuario", min_length=3, max_length=50, example="Juan" ) apellido: str = Field( ..., title="Apellido del usuario", description="Apellido del usuario", min_length=3, max_length=50, example="Perez" ) email: str = Field( ..., title="Email del usuario", description="Email del usuario", min_length=3, max_length=50, example="<EMAIL>" ) fecha_nacimiento: Union[str,date] = Field( ..., title="Fecha de nacimiento del usuario", description="Fecha de nacimiento del usuario", example="2020-01-01" ) def u_key(self): """ Entrega la llave unica para el modelo Usuario """ return "email" ``` #### File: api/services/usuarios_services.py ```python import datetime from uuid import UUID from api.actions import storage from fastapi import HTTPException from api.models.usuario import Usuario from starlette.requests import Request from api.dependencies import validar_email, validar_formato_fecha,validar_edad FORMATO_FECHA = "%Y-%m-%d" EDAD_MINIMA = 18 EDAD_MAXIMA = 100 class Usuarios_Services: """ Sección de servicios para el manejo de la logica de negocio Attributes: FORMATO_FECHA (str): Formato de fecha para validar EDAD_MINIMA (int): Edad minima para validar EDAD_MAXIMA (int): Edad maxima para validar """ def agregar_usuario(self, usuario: Usuario, request: Request) -> dict: """ Agrega un usuario a la base de datos. :param usuario: Usuario a agregar :param request: Request de FastAPI """ try: if not validar_email(getattr(usuario, "email")): raise HTTPException( status_code=400, detail="El email no es válido" ) fecha_nacimiento = usuario.fecha_nacimiento if not validar_formato_fecha(fecha_nacimiento, FORMATO_FECHA): raise HTTPException( status_code=400, detail="El formato de la fecha de nacimiento no es válida" ) usuario.fecha_nacimiento = datetime.datetime.strptime(fecha_nacimiento, FORMATO_FECHA) if not validar_edad(usuario.fecha_nacimiento, EDAD_MINIMA, EDAD_MAXIMA): raise HTTPException( status_code=400, detail="La edad no es válida" ) usuario_id = storage.add(usuario, request) return { "ID": usuario_id } except Exception as e: print("Error al agregar usuario: {}".format(str(e))) raise e def editar_usuario(self, usuario_id: UUID, usuario: Usuario, request: Request) -> dict: """ Edita un usuario de la base de datos. :param usuario_id: ID del usuario a editar :param usuario: Usuario a editar :param request: Request de FastAPI """ try: if not validar_email(getattr(usuario, "email")): raise HTTPException( status_code=400, detail="El email no es válido" ) fecha_nacimiento = usuario.fecha_nacimiento if not validar_formato_fecha(fecha_nacimiento, FORMATO_FECHA): raise HTTPException( status_code=400, detail="El formato de la fecha de nacimiento no es válida" ) usuario.fecha_nacimiento = datetime.datetime.strptime(fecha_nacimiento, FORMATO_FECHA) if not validar_edad(usuario.fecha_nacimiento, EDAD_MINIMA, EDAD_MAXIMA): raise HTTPException( status_code=400, detail="La edad no es válida" ) storage.update(usuario_id, usuario, request) return { "ID": usuario_id } except Exception as e: print("Error al editar usuario: {}".format(str(e))) raise e def eliminar_usuario(self, usuario_id: UUID, request: Request) -> dict: """ Elimina un usuario de la base de datos. :param usuario_id: ID del usuario a eliminar :param request: Request de FastAPI """ try: storage.delete(Usuario, usuario_id, request) return { "ID": usuario_id } except Exception as e: print("Error al eliminar usuario: {}".format(str(e))) raise e def listar_usuarios(self, pagina: int, cantidad: int, order_by: str, sort: str, request: Request)-> dict: """ Obtiene una lista de usuarios de la base de datos. :param pagina: Pagina a retornar :param cantidad: Cantidad de usuarios a retornar :param order_by: Campo por el cual se ordenará la lista :param sort: Orden ascendente o descendente :param request: Request de FastAPI """ try: return storage.get_all(Usuario, pagina, cantidad, request, order_by, sort) except Exception as e: print("Error al listar usuarios: {}".format(str(e))) raise e def obtener_usuario(self, usuario_id: UUID, request: Request) -> Usuario: """ Retorna un usuario por su ID :param usuario_id: ID del usuario a consultar :param request: Request de FastAPI """ try: usuario = storage.get_by_id(Usuario, usuario_id, request) return usuario except Exception as e: print("Error al obtener usuario: {}".format(str(e))) raise e ```
{ "source": "jhonniel/Queuing-python", "score": 3 }
#### File: site-packages/click_threading/_compat.py ```python import inspect import sys PY2 = sys.version_info[0] == 2 if PY2: getargspec = inspect.getargspec exec('def reraise(tp, value, tb=None):\n raise tp, value, tb') else: getargspec = inspect.getfullargspec def reraise(tp, value, tb=None): if value.__traceback__ is not tb: raise value.with_traceback(tb) raise value ``` #### File: Database/es/ElasticSearchClient.py ```python import uuid from copy import deepcopy import elasticsearch from Database.es.es_utils import is_empty MAX_SIZE = 1000 SIZE = 10000 REQUEST_TIMEOUT = 300 def make_query(search_array=None, filter_array=None, to_return='*', count_query='yes'): """ searchArray is of the format : [ ["toSearchFor", "fields, *to, search^3, in*" ], ["toSearchFor2", ...], ... ] filterArray is of the format : [ ["toSearchFor", "fields, *to, search^3, in*" ], ["field_to_filter_on", min_value, max_value], ... ] toReturn is an array of fields to be returned in the results """ if search_array is None: search_array = [] if filter_array is None: filter_array = [] query_must_array = [] for one_s in search_array: if one_s[1] == '*': fields = '*' else: fields = one_s[1].split(',') search_dict = { 'multi_match': { 'query': one_s[0], 'type': 'phrase', 'fields': fields } } query_must_array.append(search_dict) for values in filter_array: search_dict = dict() if len(values) == 3: search_dict = { 'range': { values[0]: { 'gte': values[1], 'lte': values[2] } } } elif len(values) == 2: if values[1] == '*': fields = '*' else: fields = values[1].split(',') search_dict = { 'multi_match': { 'query': values[0], 'type': 'phrase', 'fields': fields } } filter_array.append(search_dict) if count_query == 'yes': query = { 'query': { 'bool': { 'must': query_must_array, 'filter': filter_array } }, '_source': to_return } else: query = { 'query': { 'bool': { 'must': query_must_array, 'filter': filter_array } } } return query class ElasticSearchClient: def __init__(self,es_url="elasticsearch", es_port="8001", **kwargs): self._ES_URL = es_url self._ES_PORT = es_port if kwargs is not None: try: self._PRE_PROCESS_HARD = kwargs.get('preprochard') self._SEARCHES = kwargs.get('searches') self._USERS = kwargs.get('users') self._EQUILATERAL = kwargs.get('equilateral') self._MERCURIAL = kwargs.get('mercurial') except Exception as e: raise e def get_es_connection(self): try: es_connection = elasticsearch.Elasticsearch([{'host': self._ES_URL, 'port': self._ES_PORT}]) except Exception as e: raise e return es_connection def nested_es_search(self, es_query=None, size=200): if is_empty(es_query): return "Empty query" es_connection = self.get_es_connection() try: res = es_connection.search(index=self._PRE_PROCESS_HARD, size=size, body=es_query, request_timeout=300) res = [r['_source'] for r in res['hits']['hits']] except Exception: raise return res def search(self, search_array=None, filter_array=None,size=200, to_return='*'): """ searchArray is of the format : [ ["toSearchFor", "fields, *to, search^3, in*" ], ["toSearchFor2", ...], ... ] filterArray is of the format : [ ["toSearchFor", "fields, *to, search^3, in*" ], ["field_to_filter_on", min_value, max_value], ... ] toReturn is an array of fields to be returned in the results verbose = True to set verbosity level """ res = None if filter_array is None: filter_array = [] if search_array is None: search_array = [] query = make_query(search_array, filter_array, to_return) es_connection = self.get_es_connection() try: res = es_connection.search(index=self._PRE_PROCESS_HARD, size=500, body=query, request_timeout=300) res = [r['_source'] for r in res['hits']['hits']] except Exception as e: print "----Elastic search error-----" + str(e) return res def count(self, cities=None, mandatory_skills=None, minexp=-1, maxexp=400): """ cities is a vector of city names. mandatory_skills is a vector of skills that we need for sure in the results. """ if mandatory_skills is None: mandatory_skills = [] if cities is None: cities = [] total = None count = 0 for city in cities: filter_array = [[city, "locality"], ["exp_years", minexp, maxexp]] for skill in mandatory_skills: filter_array.append([skill, "preproc_skills_fuzzy"]) query = make_query(filter_array=filter_array, to_return="*") es_connection = self.get_es_connection() total = es_connection.count(index=self._PRE_PROCESS_HARD, body=query) count += total return total def get_user_search_ids(self, user_id): """gets search_ids from es for user id""" if is_empty(user_id): return "Empty user id" ret = None query = make_query(search_array=[[user_id, "user_id", "search_ids"]], count_query='no') es_connection = self.get_es_connection() try: ret = es_connection.search(index=self._USERS, doc_type="user", body=query) except Exception as e: print "----Elastic search error-----" + str(e) return ret['hits']['hits'] def update_search_id(self, user_id, list_of_search_ids, document_id): """updates search_ids list for user id""" ret = None if is_empty(user_id) or is_empty(list_of_search_ids) or is_empty(document_id): return "Supply valid arguments" body = { "user_id": user_id, "search_ids": list_of_search_ids } es_connection = self.get_es_connection() try: ret = es_connection.index(index=self._USERS, doc_type="user", body=body, id=document_id) except Exception as e: print "----Elastic search error-----" + str(e) return ret def get_cached_search(self, user_id, search_id): """gets cached search with sid for user_id""" if is_empty(user_id) or is_empty(search_id): return "Pass valid arguments" ret = None query = { "query": { "bool": { "must": [ {"match": {"user_id": user_id}}, {"match": {"search_id": search_id}} ] } } } es_connection = self.get_es_connection() try: ret = es_connection.search(index=self._SEARCHES, doc_type='search', body=query) except Exception as e: print "----Elastic search error-----" + str(e) return ret def fetch_search_document(self, search_id, user_id): if is_empty(user_id) or is_empty(search_id): return "Provide valid arguments" ret = None query = { "query": { "bool": { "must": [ {"term": {"user_id": user_id}}, {"term": {"search_id": search_id}} ] } } } es_connection = self.get_es_connection() try: ret = es_connection.search(index=self._SEARCHES, size=1, doc_type='search', body=query) except Exception as e: print "----Elastic search error-----" + str(e) return ret['hits']['hits'] def cache_searches(self, search_id, search_cache, user_id, query, edit_flag): """saves the search with search id ,cache and user_id""" if is_empty(search_id) or is_empty(search_cache) or is_empty(user_id) or is_empty(edit_flag): return "Provide valid arguments" es_connection = self.get_es_connection() try: cache_ = {"search_id": search_id, "user_id": user_id, "query": query, "cache": search_cache} if str(edit_flag) == str(0): ret = es_connection.index(index=self._SEARCHES, doc_type='search', id=str(uuid.uuid4()), body=cache_) else: document = self.fetch_search_document(search_id, user_id) document_id = document[0]['_id'] es_connection.delete(index=self._SEARCHES, doc_type="search", id=document_id) ret = es_connection.index(index=self._SEARCHES, doc_type="search", body=cache_, id=document_id) except Exception as e: print "----Elastic search error-----" + str(e) raise return ret def fetch_query_details(self, user_id): if is_empty(user_id): return "Provide valid arguments" ret = None body = { "_source": ["query"], "query": { "bool": { "must": [ {"match": {"user_id": user_id}} ] } } } es_connection = self.get_es_connection() try: ret = es_connection.search(index=self._SEARCHES, doc_type='search', body=body, size=MAX_SIZE) except Exception as e: print "------Elastic search error-----" + str(e) return ret['hits']['hits'] def bulk_query(self, field, search_items_list, es_index=None, source="*"): if is_empty(field) or is_empty(search_items_list) or is_empty(es_index): return "Provide valid arguments" query = { "_source": source, 'query': { 'bool': { 'should': [ ] } } } template = { 'constant_score': { 'query': { 'term': { } } } } for item in search_items_list: obj = deepcopy(template) obj['constant_score']['query']['term'][field] = item query['query']['bool']['should'].append(deepcopy(obj)) ordered_list = [] try: item_index = {} for index, item in enumerate(search_items_list): item_index[item] = index es_connection = self.get_es_connection() res = es_connection.search(index=es_index, body=query, size=SIZE, request_timeout=REQUEST_TIMEOUT) candidates = [i['_source'] for i in res['hits']['hits']] ordered_list = [0] * len(item_index) for each in candidates: real_index = item_index[each['unique_id']] ordered_list[real_index] = each except Exception as e: print (str(e)) return ordered_list def fetch_search_details(self, search_id, user_id): if is_empty(search_id) or is_empty(user_id): return "Provide valid arguments" ret = None body = { "_source": ["query"], "query": { "bool": { "must": [ {"term": {"user_id": user_id}}, {"term": {"search_id": search_id}} ] } } } try: es_connection = self.get_es_connection() ret = es_connection.search(index=self._SEARCHES, doc_type='search', body=body, size=MAX_SIZE) except Exception as e: print "------Elastic search error-----" + str(e) return ret['hits']['hits'] def update_equilateral(self, unique_id, databin_urls, databin_data, timestamp): if is_empty(unique_id) or is_empty(timestamp): return "Provide valid arguments" ret = None query = { 'equilateral_data': databin_data, 'other_urls': databin_urls, 'timestamp': timestamp, 'unique_id': unique_id } es_connection = self.get_es_connection() try: ret = es_connection.index(index=self._EQUILATERAL, doc_type='data', body=query) except Exception as e: print str(e) return ret def update_mercurial(self, unique_id, prediction, timestamp): if is_empty(unique_id) or is_empty(timestamp): return "Provide valid arguments" ret = None query = { 'spa': prediction, 'timestamp': timestamp, 'unique_id': unique_id, } es_connection = self.get_es_connection() try: ret = es_connection.index(index=self._MERCURIAL, doc_type='data', body=query) except Exception as e: print str(e) return ret ``` #### File: Database/es/es_utils.py ```python def none_check(value): if value is None: return False else: return True def is_empty(any_type_value): if any_type_value: return False else: return True ``` #### File: site-packages/threading_sched/default.py ```python from __future__ import absolute_import from __future__ import print_function __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright (c) 2011 Hard Consulting Corporation" __license__ = "GPLv3 (or later)" import threading import sched class scheduler(sched.scheduler): """ Thread-safe implementation of the stock Python sched.scheduler class. The API remains basically the same, with some optional additions to support creating custom prioritization schemes. We implement locking for thread safety, and we awaken our run method whenever the events in the list might have changed in a way that could shorten our timeout. The following are extensions to the Python sched.scheduler API: - Keyword Arguments In enter{abs}(), an optional kwargs argument may be provided, containing a dictionary of keyword arguments to pass to the function. def enterabs(self, time, priority, action, argument, kwargs={}): """ def __init__(self, *args, **kwargs): sched.scheduler.__init__(self, *args, **kwargs) if not hasattr( self, '_lock' ): self._lock = threading.RLock() # < Python 3.3 self._cond = threading.Condition( self._lock ) def enterabs(self, time, priority, action, argument, kwargs=None): """Assumes enter() uses enterabs(). Since our Condition uses our RLock, we can safely acquire the Condition, and issue the notify_all; it won't be delivered 'til we fully release our self._lock. Since base sched.scheduler is an old-style class in Python 2, don't use super. """ if kwargs is None: kwargs = {} with self._cond: if hasattr( sched.Event, 'kwargs' ): # iff >= Python3 e = sched.scheduler.enterabs( self, time, priority, action, argument, kwargs ) else: # Prepare a closure to wrap the action, trapping the supplied keyword kwargs (if # any). If *any* keyword arguments are supplied, then they will be passed to the # action along with the event arguments. e = sched.scheduler.enterabs( self, time, priority, lambda *args: action( *args, **kwargs ), argument ) # Awaken any thread awaiting on a condition change, eg .run(), or .wait() self._cond.notify_all() #print "Scheduling %s" % ( str(e) ) return e def enter(self, delay, priority, action, argument, kwargs=None): return self.enterabs(self.timefunc() + delay, priority, action, argument, kwargs=kwargs) def cancel(self, *args, **kwargs): """Removing an event can only result in us awakening too early, which is generally not a problem. However, if this empties the queue completely, we want run() to wake up and return right away! """ with self._cond: e = sched.scheduler.cancel(self, *args, **kwargs) self._cond.notify_all() return e def empty(self): with self._lock: return sched.scheduler.empty(self) def wait(self): """ Awaits a change in condition that could mean that there are now events to process. Use this when the queue is (or might be) empty, and a thread needs to wait for something to process. """ with self._cond: if self.empty(): self._cond.wait() def next_event(self, now=None): """ Return the next scheduled event, without removing it from the queue. Throws an exception if none available. Override this method to implement other priority schemes. """ with self._lock: return self._queue[0] # Strictly by time, then priority def run(self, pred=None): """ Retrieve an event, waiting and looping if it hasn't expired. Otherwise, remove it from the schedule, and run it. Unlike the underlying sched.scheduler, this implementation waits in a multithreading sensitive fashion; if a new event is scheduled, we'll awaken and re-schedule our next wake-up. Returns when there are no more events left to run, or until the supplied predicate evaluates False. This run method is not usually appropriate to use directly as a Thread.run method, because it returns when the schedule is empty; this often doesn't mean the program is done. To safely process events, a Thread must know (somehow) that the overall program is not yet complete, and implement its own run method like this, waiting for more events to be scheduled each time scheduler.run returns: class scheduler_thread(Thread): def __init__(self): self.sch = sched.scheduler(...) ... def run(self): while ( ... we are not finished ... ): self.sch.run() self.sch.wait() """ while True if pred is None else pred(): # Get the next event, relative to the current time. When schedule is empty, we're done. now = self.timefunc() with self._cond: # Acquires self._lock if self.empty(): break # Queue is not empty, guaranteed event = self.next_event(now=now) if now < event.time: # Next event hasn't expired; Wait 'til expiry, or an self._cond.notify...() self._cond.wait(event.time - now) # Releases self._lock #print "Schedule condition wait expired after %fs" % (self.timefunc() - now) continue # TODO: this is inefficient pre-3.2, due to a busy wait loop in the # threading Condition. Perhaps we should detect this, and implement in # terms of spawning another Thread to sleep 'til the desired time, then # trigger .notify_all()? # An expired event is detected. No schedule modification can have occurred (we hold # the lock, and no self._cond.wait() has been processed, because it always will # 'continue' the loop) so we can safely cancel it. We can make no assumptions about # its position in the _queue, to allow arbitrary scheduling algorithms. self.cancel(event) # Trigger the expired (and removed) event's action wrapper function. This may result in # schedule modification, so we do this outside the lock. If func raises an exception, # the scheduler's invariant is maintained, and this method may be called again. #print "Scheduled event firing: %s" % (str(event)) if hasattr( event, 'kwargs' ): # iff >= Python3 event.action( *event.argument, **event.kwargs ) else: event.action( *event.argument ) self.delayfunc(0) # Let other threads run ```
{ "source": "jhonnold/fn-dash", "score": 3 }
#### File: app/models/input.py ```python import datetime from app.database import db class Input(db.Model): id = db.Column(db.Integer(), primary_key=True) user_id = db.Column(db.Integer(), db.ForeignKey('user.id')) input_type = db.Column(db.String()) created_at = db.Column(db.DateTime(), default=datetime.datetime.now) stats = db.relationship('Stat', backref='input', lazy='dynamic') def __repr__(self): return "<Input '{}' - '{}'>".format(self.user_id, self.input_type) ``` #### File: app/tasks/stat_history.py ```python import celery from app import db, app from app.models import Stat, StatHistory from . import AppContextBase @celery.task(base=AppContextBase, name="record_stats") def record_stats(): stats = Stat.query.all() for stat in stats: stat = StatHistory( stat_id=stat.id, placements=stat.placements, kills=stat.kills, matchesplayed=stat.matchesplayed, playersoutlived=stat.playersoutlived, minutesplayed=stat.minutesplayed, ) db.session.add(stat) db.session.commit() ``` #### File: tasks/stat_tracker/update_hash.py ```python import celery, datetime from app import db from app.tasks import AppContextBase from app.models import User from celery.utils.log import get_task_logger logger = get_task_logger(__name__) @celery.task(base=AppContextBase, name="update_hash") def update_hash(data_hash, id): if data_hash is None: return user = User.query.get(id) logger.warn('User {} updated. Setting hash to {}'.format(user, data_hash)) user.last_known_data_hash = str(data_hash) user.updated_at = datetime.datetime.now() db.session.commit() ```
{ "source": "JhonnyBn/MiniCurso-Flask-Heroku", "score": 3 }
#### File: MiniCurso-Flask-Heroku/1-python-flask-simplificado/app.py ```python import os, json from flask import Flask, render_template, request, redirect, url_for from flask_bcrypt import Bcrypt app = Flask(__name__) bcrypt = Bcrypt(app) # Setup app config host = '0.0.0.0' port = int(os.environ.get('PORT', '5000')) app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'random string') # Troque isso! @app.route('/', methods = ["GET","POST"]) def index(): return "Hello World!" @app.route('/home', methods=['GET']) def home(): return render_template('home.html') @app.route('/login', methods=['GET']) def login(): return render_template('login.html') @app.route('/senha', methods=['POST']) def senha(): senha = request.json.get('senha', None) if senha is None: return { "senha": "" }, 200 password_hash = <PASSWORD>.generate_password_hash(<PASSWORD>ha).decode('utf-8') return { "senha": password_hash }, 200 if __name__ == '__main__': app.run(host=host, port=port) ```
{ "source": "jhonnycano/201601-rp-proyectofinal", "score": 3 }
#### File: jhonnycano/201601-rp-proyectofinal/util.py ```python import generales as g #------------------------------------------------------------------------------ # funciones especificas de datos para el programa #------------------------------------------------------------------------------ def crear_tabla(cn): sql = """ CREATE TABLE IF NOT EXISTS tweet ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT , tweet_id VARCHAR(40) NOT NULL , fch_creacion DATETIME , usuario VARCHAR(50) NOT NULL , contenido VARCHAR(140) NOT NULL , clase INTEGER NOT NULL ); """ cn.execute(sql) def insertar_tweet(cn, itm): sql = """ INSERT INTO tweet (tweet_id, fch_creacion, usuario, contenido, clase) VALUES (?, ?, ?, ?, ?); """ fch = datetime.datetime.strptime(itm[2], '%a %b %d %H:%M:%S PDT %Y') pars = (itm[1], fch, itm[4], itm[5], int(itm[0])) insertar(cn, sql, pars, traer_id=False) def traer_datos(cn, cant=1000): filtro = "LIMIT {}".format(cant) if cant == -1: filtro = "" sql = """ SELECT tweet_id, contenido, clase FROM (SELECT tweet_id, contenido, clase FROM tweet WHERE clase = 0 {0}) a UNION SELECT tweet_id, contenido, clase FROM (SELECT tweet_id, contenido, clase FROM tweet WHERE clase = 4 {0}) b ; """.format(filtro) rs = g.traer_lista(cn, sql) return rs ```
{ "source": "jhonny-me/replaceImage", "score": 2 }
#### File: jhonny-me/replaceImage/uploadToQiniu.py ```python import qiniu import urllib import os import sys import json with open('config.json', 'r') as f: config = json.load(f) # ----------------手动配置区--------------- accessKey = config['AK']#"<KEY>" secretkey = config['SK']#"4e0Ia1Li9txMAt_P61WDmEpgLy1b4RMFIozGEbbs" # 上传空间的域名,需要自己去后台获取 bucket_url = { "fcc-blogs": "ogit74i74.bkt.clouddn.com", } bucket = config['bucket']#"fcc-blogs" # 上传空间 # ----------------默认配置区------------------------- img_suffix = ["jpg", "jpeg", "png", "bmp", "gif"] os.chdir(sys.path[0]) result_file = "上传结果.txt" # 保存上传结果 if os.path.exists(result_file): os.remove(result_file) class Qiniu(object): """七牛上传与下载的工具类 需要七牛的Python SDK pip install qiniu SDK详细用法见 http://developer.qiniu.com/docs/v6/sdk/python-sdk.html """ SUCCESS_INFO = "上传成功!" def __init__(self, accessKey, secretkey): self.accessKey = accessKey self.secretkey = secretkey self._q = qiniu.Auth(self.accessKey, self.secretkey) def upload_file(self, bucket, up_filename, file_path): """上传文件 Args: bucket: 上传空间的名字 up_filename: 上传后的文件名 file_path: 本地文件的路径 Returns: ret: dict变量,保存了hash与key(上传后的文件名) info: ResponseInfo对象,保存了上传信息 url: st, 上传后的网址 """ token = self._q.upload_token(bucket) ret, info = qiniu.put_file(token, up_filename, file_path) url = self.get_file_url(bucket, up_filename) return ret, info, url def get_file_url(self, bucket, up_filename): if not bucket in bucket_url.keys(): raise AttributeError("空间名不正确!") url_prefix = bucket_url[bucket] url = url_prefix + "/" + up_filename return url def upload_from(file_path, custom_name): if not os.path.isfile(file_path): print "please specify a file path" return if custom_name == "": print "custom name must not be \"\"" return q = Qiniu(accessKey, secretkey) ret, info, url = q.upload_file(bucket, custom_name, file_path) print("已上传: %s " % url) return url pass def main(): print("deodemdeo") if len(sys.argv) < 3: print "please input custom name and file path" sys.exit(0) customName = sys.argv[1] file = sys.argv[2] upload_from(file, customName) pass if __name__ == '__main__': upload_from("1.jpg", "demo1.jpg") ```
{ "source": "jhonnysanchezillisaca/apm-server", "score": 3 }
#### File: tests/system/test_access.py ```python from apmserver import AccessTest import requests class Test(AccessTest): def test_with_token(self): """ Test that access works with token """ url = 'http://localhost:8200/v1/transactions' transactions = self.get_transaction_payload() def oauth(v): return {'Authorization': v} r = requests.post(url, json=transactions) assert r.status_code == 401, r.status_code r = requests.post(url, json=transactions, headers=oauth('Bearer 1234')) assert r.status_code == 202, r.status_code r = requests.post(url, json=transactions, headers=oauth('Bearer wrongtoken')) assert r.status_code == 401, r.status_code r = requests.post(url, json=transactions, headers=oauth('Wrongbearer 1234')) assert r.status_code == 401, r.status_code def test_with_token_v2(self): """ Test that access works with token """ url = 'http://localhost:8200/intake/v2/events' transactions = self.get_event_v2_payload(name="transactions.ndjson") headers = {'content-type': 'application/x-ndjson'} def oauth(v): aheaders = {'Authorization': v} aheaders.update(headers) return aheaders r = requests.post(url, data=transactions, headers=headers) assert r.status_code == 401, r.status_code r = requests.post(url, data=transactions, headers=oauth('Bearer 1234')) assert r.status_code == 202, r.status_code r = requests.post(url, data=transactions, headers=oauth('Bearer wrongtoken')) assert r.status_code == 401, r.status_code r = requests.post(url, data=transactions, headers=oauth('Wrongbearer 1234')) assert r.status_code == 401, r.status_code ```
{ "source": "jhonpedro/yt-sub-extraction-app", "score": 3 }
#### File: server/resources/YoutubeExtraction.py ```python from flask import request from flask_restful import Resource from youtube_transcript_api import YouTubeTranscriptApi as api import nltk from resources.functions import countByWordsTimesSpoken class YoutubeExtraction(Resource): def get(self): YtVideoId = request.args.get('videourl') rso = request.args.get('rso') # Verify if rso is an str and converts it to an boolean if isinstance(rso, str): try: rso = bool(int(rso)) except: return { 'message': 'rso must be <0> or <1>' }, 403 else: rso = False removeSpokenOnce = rso if len(YtVideoId) > 11: videioIdPosition = YtVideoId.find('v=') + 2 YtVideoId = YtVideoId[videioIdPosition:videioIdPosition + 11] try: transcriptList = api.get_transcript( YtVideoId, languages=['pt', 'en']) allTranscriptText = '' for transcript in transcriptList: allTranscriptText += transcript['text'] + ' ' stopWordsPT = nltk.corpus.stopwords.words('portuguese') allWords = [] for word in allTranscriptText.split(' '): if word not in stopWordsPT: allWords.append(word) allWordsStem = [] # Stem the word https://www.nltk.org/howto/stem.html for word in allWords: if len(word) > 1: if not word.startswith('['): allWordsStem.append(nltk.stem.RSLPStemmer().stem(word)) # This variable below is an array with tuples like this: (word, countOcurrenceOfTheWord) wordWithCountTuples = countByWordsTimesSpoken.exec( allWordsStem, removeSpokenJustOnce=removeSpokenOnce) # This will contain the words normalized, because in count of words # we remove the sufix ex: turning -> turn || virando -> vir wordWithCountTuplesNormalized = [] for topTenStem in wordWithCountTuples: for word in allWords: if word.startswith(topTenStem[0]): wordWithCountTuplesNormalized.append( (word, topTenStem[1])) break return { 'wordsTimesSpoken': wordWithCountTuplesNormalized, } except Exception as error: print(error) return { 'message': 'this video subtitle may be disabled, try again this video later' }, 400 ```
{ "source": "jhonP-Li/DE_rpy2", "score": 2 }
#### File: jhonP-Li/DE_rpy2/DE_rpy2.py ```python import pandas as pd import numpy as np import warnings import rpy2.robjects as robjects from rpy2.robjects import numpy2ri, pandas2ri, Formula from rpy2.robjects.packages import importr pandas2ri.activate() numpy2ri.activate() # import R libraries DESeq2 = importr('DESeq2') edgeR = importr('edgeR') Limma = importr('limma') stats = importr('stats') to_dataframe = robjects.r('function(x) data.frame(x)') class DE_rpy2: """ Running DESeq2, edgeR, limma through rpy2 input: count_matrix: a pandas dataframe with each column as count (float values in FPKM/RPKM are also acceptable as internal rounding will be done) , and a id column for gene id example: id sampleA sampleB geneA 5.1 1 geneB 4.2 5 geneC 1 2 design_matrix: a pandas dataframe with each column as a condition, and one row for one sample Note that the sample name must be the index not a column condition sampleA1 treated sampleA2 treated sampleB1 untreated sampleB2 untreated design_formula: default to be the column name of design matrix, example: "~ condition"" If it contains multiple conditions, this formula must be customised, or the DESeq2 will only consider the first condition. gene_column: column name of gene id columns in count_matrix, default = 'id' """ def __init__(self, count_matrix, design_matrix, design_formula=None, gene_column='id'): assert gene_column in count_matrix, \ 'column: \'%s\', not found in count matrix' % gene_column assert count_matrix.shape[1] - 1 == design_matrix.shape[0], \ 'The number of rows in design matrix must ' \ 'be equal to the number of samples in count matrix' assert all(pd.isna(count_matrix)), \ 'Null values are found in count matrix' \ 'Please check it' assert len(design_matrix.columns), \ 'Columns names are needed in design matrix' if 'float' in count_matrix.drop(gene_column, axis=1): warnings.warn('DESeq2 and edgeR only accept integer counts\n' 'The values in count matrix are automatically rounded\n' 'In fact the FPKM/RPKM input is not encouraged by DESeq2 officially\n') # parameters used in DESeq2 self.count_matrix = pandas2ri.py2ri(count_matrix.drop(gene_column, axis=1).astype('int')) self.design_matrix = pandas2ri.py2ri(design_matrix) self.gene_ids = count_matrix[gene_column] self.gene_column = gene_column self.deseq2_result = None self.deseq2_label = None if design_formula is None: condition = design_matrix.columns[0] if len(design_matrix.columns) > 1: warnings.warn('Multiple conditions are set in design matrix,\n' 'you\'d better customise the design formula.\n' 'Here it only considers the first condition\n') self.design_formula = Formula('~ ' + condition) else: self.design_formula = Formula(design_formula) # parameters used in edgeR self.edgeR_group = numpy2ri.py2ri(design_matrix.iloc[:, 0].values) self.edgeR_gene_names = numpy2ri.py2ri(count_matrix[gene_column].values) self.edgeR_result = None self.edgeR_label = None # parameters used in limma self.limma_result = None self.limma_label = None self.final_label = None def deseq2(self, threshold=0.05, **kwargs): """ Run the standard DESeq2 workflow. Get the DESeq2 results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the adjusted p-value. default = 0.05. :param kwargs: parameters of DESeq2 functions. See official instructions for details: http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # Run DESeq2 workflow dds = DESeq2.DESeqDataSetFromMatrix(countData=self.count_matrix, colData=self.design_matrix, design=self.design_formula) dds = DESeq2.DESeq(dds, **kwargs) res = DESeq2.results(dds, **kwargs) # Store the output matrix as DataFrame self.deseq2_result = pandas2ri.ri2py(to_dataframe(res)) self.deseq2_result[self.gene_column] = self.gene_ids # The adjusted p-value in the DESeq2 results # may contain NAN if any(pd.isna(self.deseq2_result['padj'].values)): warnings.warn('There exist NAN in the adjusted p-value\n' 'see https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/' 'inst/doc/DESeq2.html#why-are-some-p-values-set-to-na\n') # Reject the H0 hypothesis if p-value < threshold labels = [int(x) for x in (self.deseq2_result['padj'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.deseq2_label = label return label def edger(self, threshold=0.05): """ Run the standard edgeR workflow. Get the edgR results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the p-value. default = 0.05. See official instructions for details: https://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # run edgeR workflow # Create the DGEList object dgList = edgeR.DGEList(counts=self.count_matrix, group=self.edgeR_group, genes=self.edgeR_gene_names) # Normalize dgList = edgeR.calcNormFactors(dgList, method="TMM") # Setting up the model robjects.r.assign('edgeR_group', self.edgeR_group) designMat = stats.model_matrix(Formula('~ edgeR_group')) # Estimating Dispersions dgList = edgeR.estimateGLMCommonDisp(dgList, design=designMat) dgList = edgeR.estimateGLMTrendedDisp(dgList, design=designMat) dgList = edgeR.estimateGLMTagwiseDisp(dgList, design=designMat) # Differential Expression fit = edgeR.glmQLFit(dgList, designMat) test = edgeR.glmQLFTest(fit) res = edgeR.topTags(test, n=self.count_matrix.nrow) res_df = pandas2ri.ri2py(to_dataframe(res)) # Sort the result on gene ids gene_df = pd.DataFrame({'genes': self.gene_ids}) self.edgeR_result = pd.merge(gene_df, res_df, how='left') # Reject the H0 hypothesis labels = [int(x) for x in (self.edgeR_result['PValue'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.edgeR_label = label return label def limma(self, threshold=0.05): """ Run the standard limma workflow. Get the limma results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the p-value. default = 0.05. See official instructions for details: https://ucdavis-bioinformatics-training.github.io/2018-June-RNA-Seq-Workshop/thursday/DE.html :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # Create the DGEList object dgList = edgeR.DGEList(counts=self.count_matrix, group=self.edgeR_group, genes=self.edgeR_gene_names) # Normalize dgList = edgeR.calcNormFactors(dgList, method="TMM") # Setting up the model robjects.r.assign('edgeR_group', self.edgeR_group) designMat = stats.model_matrix(Formula('~ edgeR_group')) # voom v = Limma.voom(dgList, designMat) # fitting fit = Limma.lmFit(v, designMat) fit = Limma.eBayes(fit) res = Limma.topTable(fit, n=self.count_matrix.nrow) res_df = pandas2ri.ri2py(to_dataframe(res)) # Sort the result on gene ids gene_df = pd.DataFrame({'genes': self.gene_ids}) self.limma_result = pd.merge(gene_df, res_df, how='left') # Reject the H0 hypothesis labels = [int(x) for x in (self.limma_result['adj.P.Val'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.limma_label = label return label def plot_label_difference(self): """ Plot the Venn diagram of the 3 label output. Since we only interest in the differentially expressed genes. The number on Venn diagram shows the number of samples labeled as 1. Say differentially expressed genes. """ if self.limma_label is None: warnings.warn('Seems you haven\'t get limma label\n' 'Automatically running limma...') self.limma_label = self.limma() if self.deseq2_label is None: warnings.warn('Seems you haven\'t get DESeq2 label\n' 'Automatically running DESeq2...') self.deseq2_label = self.deseq2() if self.edgeR_label is None: warnings.warn('Seems you haven\'t get edgeR label\n' 'Automatically running edgeR...') self.edgeR_label = self.edger() # Import the plot package from matplotlib_venn import venn3 import matplotlib.pyplot as plt labels = np.array([self.deseq2_label['label'].values, self.edgeR_label['label'].values, self.limma_label['label'].values]).T names = ['DESeq2', 'edgeR', 'limma'] venn_df = pd.DataFrame(data=labels, columns=names) sets = {'000': 0, '001': 0, '010': 0, '011': 0, '100': 0, '101': 0, '110': 0, '111': 0} for i in range(venn_df.shape[0]): loc = [str(num) for num in venn_df.iloc[i, :]] loc = loc[0] + loc[1] + loc[2] sets[loc] += 1 venn3(sets, set_labels=names) plt.show() return sets def get_final_label(self, method='inner'): """ There are 2 methods availabel: inner: set those genes as differentially expressed, say label 1, if all 3 tools agreed vote: set those genes as differentially expressed, say label 1, if all 2 out of the 3 tools agreed union: set those genes as differentially expressed, say label 1, as long as 1 tool agreed """ label = None menu = ['inner', 'vote', 'union'] assert method in menu, \ 'Please choose the correct method' if self.limma_label is None: warnings.warn('Seems you haven\'t get limma label\n' 'Automatically running limma...') self.limma_label = self.limma() if self.deseq2_label is None: warnings.warn('Seems you haven\'t get DESeq2 label\n' 'Automatically running DESeq2...') self.deseq2_label = self.deseq2() if self.edgeR_label is None: warnings.warn('Seems you haven\'t get edgeR label\n' 'Automatically running edgeR...') self.edgeR_label = self.edger() labels = self.deseq2_label['label'].values + self.edgeR_label['label'].values + self.limma_label['label'].values if method == 'inner': label = [int(x) for x in (labels == 3)] if method == 'vote': label = [int(x) for x in (labels >= 2)] if method == 'union': label = [int(x) for x in (labels >= 1)] self.final_label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': label}) return self.final_label ```
{ "source": "JhonPool4/robotics_python_lib", "score": 3 }
#### File: robotics_python_lib/labpythonlib/lab_markers.py ```python from labpythonlib.lab_functions import rot2quat, rpy2rot from visualization_msgs.msg import Marker from geometry_msgs.msg import Point import numpy as np import rospy # ========== # Colors # ========== color = dict() color['RED'] = (1.0, 0.0, 0.0) color['GREEN'] = (0.0, 1.0, 0.0) color['BLUE'] = (0.0, 0.0, 1.0) color['YELLOW'] = (1.0, 1.0, 0.0) color['PINK'] = (1.0, 0.0, 1.0) color['CYAN'] = (0.0, 1.0, 1.0) color['BLACK'] = (0.0, 0.0, 0.0) color['DARKGRAY'] = (0.2, 0.2, 0.2) color['LIGHTGRAY'] = (0.5, 0.5, 0.5) color['WHITE'] = (1.0, 1.0, 1.0) # ===================== # Class ball marker # ===================== class BallMarker(object): """ Info : class to visualize ball markers in RViz """ id = 0 def __init__(self, color, alpha=1.0, scale=0.05): """ The color can be specified as a list with 3 elements or as the color dictionary (e.g. BLUE, RED, etc). Alpha sets the transparency and scale scales the size of the ball """ reference_frame = rospy.get_param('reference_frame','base_link') # important self.marker_pub = rospy.Publisher("visualization_marker", Marker, queue_size=10) self.marker = Marker() self.marker.header.frame_id = reference_frame self.marker.ns = "ball_markers" self.marker.id = BallMarker.id BallMarker.id += 1 self.marker.type = self.marker.SPHERE self.marker.action = self.marker.ADD self.marker.pose.position.x = 0.0 self.marker.pose.position.y = 0.0 self.marker.pose.position.z = 0.0 self.marker.pose.orientation.x = 0.0 self.marker.pose.orientation.y = 0.0 self.marker.pose.orientation.z = 0.0 self.marker.pose.orientation.w = 1.0 self.marker.scale.x = scale self.marker.scale.y = scale self.marker.scale.z = scale self.setColor(color, alpha) self.marker.lifetime = rospy.Duration() def setColor(self, color, alpha=1.0): self.marker.color.r = color[0] self.marker.color.g = color[1] self.marker.color.b = color[2] self.marker.color.a = alpha def position(self, T): """ Info: set position (4x4 NumPy homogeneous matrix) for the ball and publish it """ self.marker.pose.position.x = T[0,3] self.marker.pose.position.y = T[1,3] self.marker.pose.position.z = T[2,3] #self.publish() def xyz(self, position): """ Info: set position (list) for the ball and publish it """ self.marker.pose.position.x = position[0] self.marker.pose.position.y = position[1] self.marker.pose.position.z = position[2] #self.publish() def publish(self): self.marker_pub.publish(self.marker) # ===================== # Class ball marker # ===================== class ArrowMarker(object): """ @info : class to visualize arrow markers in RViz """ id = 0 def __init__(self, color, alpha=1.0, scale=0.05): reference_frame = rospy.get_param('reference_frame','base_link') # important self.marker_pub = rospy.Publisher("visualization_marker", Marker, queue_size=10) self.marker = Marker() self.marker.header.frame_id = reference_frame self.marker.ns = "arrow_markers" self.marker.id = ArrowMarker.id ArrowMarker.id += 1 self.marker.type = self.marker.ARROW self.marker.action = self.marker.ADD self.marker.pose.position.x = 0.0 self.marker.pose.position.y = 0.0 self.marker.pose.position.z = 0.0 self.marker.pose.orientation.x = 0.0 self.marker.pose.orientation.y = 0.0 self.marker.pose.orientation.z = 0.0 self.marker.pose.orientation.w = 1.0 self.marker.scale.x = scale[0] self.marker.scale.y = scale[1] self.marker.scale.z = scale[2] self.setColor(color, alpha) self.marker.lifetime = rospy.Duration() def setColor(self, color, alpha=1.0): self.marker.color.r = color[0] self.marker.color.g = color[1] self.marker.color.b = color[2] self.marker.color.a = alpha def position(self, T): """ Info: set position (4x4 NumPy homogeneous matrix) for the ball and publish it """ self.marker.pose.position.x = T[0,3] self.marker.pose.position.y = T[1,3] self.marker.pose.position.z = T[2,3] #self.publish() def xyz(self, position): """ Info: set position (list) for the ball and publish it """ self.marker.pose.position.x = position[0] self.marker.pose.position.y = position[1] self.marker.pose.position.z = position[2] #self.publish() def rotation(self, quat): self.marker.pose.orientation.w = quat[0] self.marker.pose.orientation.x = quat[1] self.marker.pose.orientation.y = quat[2] self.marker.pose.orientation.z = quat[3] def publish(self): self.marker_pub.publish(self.marker) class FrameMarker(object): """ @info: class to visualize a frame aixs in Rviz @inputs: -------- - xyz_pos: Cartesian position of the the axis - alpha: marker transparency (0: solid color and 1: transparent) """ def __init__(self, xyz_pos=[0,0,0], alpha=0.5): self.z_arrow = ArrowMarker(color['BLUE'], scale=[0.1, 0.015, 0.015], alpha=alpha) self.z_arrow.xyz(xyz_pos) self.Rz = np.array([[0, 0, -1], [0, 1, 0], [1, 0, 0]]) self.z_arrow.rotation(rot2quat(self.Rz)) self.x_arrow = ArrowMarker(color['RED'], scale=[0.1, 0.015, 0.015], alpha=alpha) self.x_arrow.xyz(xyz_pos) self.Rx = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) self.x_arrow.rotation(rot2quat(self.Rx)) self.y_arrow = ArrowMarker(color['GREEN'], scale=[0.1, 0.015, 0.015], alpha=alpha) self.y_arrow.xyz(xyz_pos) self.Ry = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) self.y_arrow.rotation(rot2quat(self.Ry)) def rotation(self, R): """ @info rotation of the frame axis @inputs: ------- - R: rotation matrix """ self.x_arrow.rotation(rot2quat(np.dot(R, self.Rx))) self.y_arrow.rotation(rot2quat(np.dot(R, self.Ry))) self.z_arrow.rotation(rot2quat(np.dot(R, self.Rz))) def xyz(self, xyz_pos): self.x_arrow.xyz(xyz_pos) self.y_arrow.xyz(xyz_pos) self.z_arrow.xyz(xyz_pos) def publish(self): """ @info publish the information of the marker """ self.z_arrow.publish() self.x_arrow.publish() self.y_arrow.publish() ```
{ "source": "jhonruda25/VentasCuentas-Telegram-Bot", "score": 2 }
#### File: jhonruda25/VentasCuentas-Telegram-Bot/bot.py ```python from telegram.ext import Updater, CommandHandler def start(update, context): update.message.reply_text('Hola, humano!') ```
{ "source": "JhonSaguay/Observatorioapi", "score": 2 }
#### File: database/apis/api_msql.py ```python import requests import json import time import mysql.connector from mysql.connector import Error def saveindicador(conexion): cur=conexion.cursor() sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type,sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount FROM apidata group by JSON_EXTRACT(datosjson,'$.internal_type');" cur.execute(sqlconsulta) data = cur.fetchall() print(data) def savedatabasemsql(conexion,my_dict): cur = conexion.cursor() cont=0 for dato in my_dict: json_string=(json.dumps(dato)) json_string2=json.loads(json_string) json_final=json.dumps(json_string2,ensure_ascii=False) sql1="insert into apidata(datosjson,categoria) values ('"+json_final+"','funcion_publica_presupuesto_1')" try: cur.execute(sql1) except: cont+=1 # print('entro') # print(sql1) # print(dato['description']) if cont>0: print("Errores: ",cont) def consultarapicomprasmsql(apiurl,conexion): my_dict={'data':['prueba']} cont=1 while len(my_dict['data'])>0: entry_url=apiurl+str(cont) try: r = requests.get(entry_url) my_dict = r.json() if len(my_dict['data'])==0: continue savedatabasemsql(conexion,my_dict['data']) conexion.commit() print('entro: '+str(cont)) cont+=1 except: print("Ha ocurrido un error") time.sleep(5) apiurl = "https://datosabiertos.compraspublicas.gob.ec/PLATAFORMA/api/search_ocds?year=2021&search=&page=" try: connection = mysql.connector.connect(host='localhost', database='ofpindicadores', user='ofpuser', password='<PASSWORD>@!') if connection.is_connected(): consultarapicomprasmsql(apiurl,connection) db_Info = connection.get_server_info() print("Connected to MySQL Server version ", db_Info) except Error as e: print("Error while connecting to MySQL", e) finally: if connection.is_connected(): connection.close() print("MySQL connection is closed") ``` #### File: database/apis/api_save_indicador.py ```python import requests import json import time import mysql.connector from mysql.connector import Error #indicador Porcentaje de procedimientos que utilizaron adjudicación directa o licitación privada def saveindicadorprocedimientos(conexion,apiurl): print('entro') cur=conexion.cursor() # sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type,sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount FROM apidata group by JSON_EXTRACT(datosjson,'$.internal_type');" sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type, sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount, sum(JSON_EXTRACT(datosjson,'$.amount'))/(select sum(JSON_EXTRACT(datosjson,'$.amount')) from ofpindicadores.apidata) as percentage from ofpindicadores.apidata where JSON_UNQUOTE(JSON_EXTRACT(datosjson,'$.internal_type')) like '%Contratacion directa%' or JSON_UNQUOTE(JSON_EXTRACT(datosjson,'$.internal_type')) like '%Licitaci%' group by JSON_EXTRACT(datosjson,'$.internal_type') ;" cur.execute(sqlconsulta) data = cur.fetchall() #convertir lista en json cabeceras=('internal_type','total_amount','percentage') lista_datos=[] valores=[] for element in data: valores=[element[0].replace('"',''),element[1],element[2]] dict_from_list = dict(zip(cabeceras, valores)) lista_datos.append(dict_from_list) ##update indicadores sqlupdate="update indicadores set active=0 where categoria='funcion_publica_presupuesto_3'" cur=conexion.cursor() cur.execute(sqlupdate) cur.close #guardar data datos={"en":lista_datos} json_datos=json.dumps(datos) sql1="insert into indicadores(nombre,categoria,descripcion,temporalidad,proveedor_dato,direccion_api,tipo,active,is_original_data,tipo_grafica,nivel_apertura,variable_1,variable_2,variable_medida,datos_indicador) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);" # json_string='"'+ json_string +'"' val=('Porcentaje de procedimientos que utilizaron adjudicación directa o licitación privada','funcion_publica_presupuesto_3','descripcion', 'temporalidad','proveedor_dato',apiurl,0,1,0,'pastel','3','internal_type','percentage','conteo',json_datos) cur=conexion.cursor() cur.execute(sql1,val) conexion.commit() cur.close() #indicador Índice de concentración de las 4 empresas con más procedimientos ganados def saveindicadorconcentracion4(conexion,apiurl): print('entro') cur=conexion.cursor() # sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type,sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount FROM apidata group by JSON_EXTRACT(datosjson,'$.internal_type');" sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.buyer') as buyer, sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount FROM ofpindicadores.apidata group by JSON_EXTRACT(datosjson,'$.buyer') order by total_amount desc limit 4;" cur.execute(sqlconsulta) data = cur.fetchall() #convertir lista en json cabeceras=('buyer','total_amount') lista_datos=[] valores=[] for element in data: valores=[element[0].replace('"',''),element[1]] dict_from_list = dict(zip(cabeceras, valores)) lista_datos.append(dict_from_list) ##update indicadores sqlupdate="update indicadores set active=0 where categoria='funcion_publica_presupuesto_2'" cur=conexion.cursor() cur.execute(sqlupdate) cur.close #guardar data datos={"en":lista_datos} json_datos=json.dumps(datos) sql1="insert into indicadores(nombre,categoria,descripcion,temporalidad,proveedor_dato,direccion_api,tipo,active,is_original_data,tipo_grafica,nivel_apertura,variable_1,variable_2,variable_medida,datos_indicador) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);" # json_string='"'+ json_string +'"' val=('Indice de concentracion de las 4 empresas con mas procedimientos ganados','funcion_publica_presupuesto_2','descripcion', 'temporalidad','proveedor_dato',apiurl,0,1,0,'pastel','3','buyer','total_amount','conteo',json_datos) cur=conexion.cursor() cur.execute(sql1,val) conexion.commit() cur.close() #indicador Cambio en el porcentaje de contratos publicados por procedimiento def saveindicador(conexion,apiurl): print('entro') cur=conexion.cursor() # sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type,sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount FROM apidata group by JSON_EXTRACT(datosjson,'$.internal_type');" sqlconsulta="SELECT JSON_EXTRACT(datosjson,'$.internal_type') as internal_type, sum(JSON_EXTRACT(datosjson,'$.amount')) as total_amount, sum(JSON_EXTRACT(datosjson,'$.amount'))/(select sum(JSON_EXTRACT(datosjson,'$.amount')) from ofpindicadores.apidata) as percentage from ofpindicadores.apidata group by JSON_EXTRACT(datosjson,'$.internal_type');" # sqlconsulta='''SELECT CONCAT('[', better_result, ']') AS best_result FROM( # SELECT GROUP_CONCAT('{', my_json, '}' SEPARATOR ',') AS better_result FROM( # SELECT CONCAT( # '"internal_type":','"',JSON_UNQUOTE(JSON_EXTRACT(datosjson,'$.internal_type')) , '"',',' # '"total_amount":', sum(JSON_EXTRACT(datosjson,'$.amount')) or 0 # ) AS my_json # FROM ofpindicadores.apidata group by JSON_EXTRACT(datosjson,'$.internal_type') # ) AS more_json # ) AS yet_more_json;''' cur.execute(sqlconsulta) data = cur.fetchall() #convertir lista en json cabeceras=('internal_type','total_amount','percentage') lista_datos=[] valores=[] for element in data: valores=[element[0].replace('"',''),element[1],element[2]] dict_from_list = dict(zip(cabeceras, valores)) lista_datos.append(dict_from_list) ##update indicadores sqlupdate="update indicadores set active=0 where categoria='funcion_publica_presupuesto_1'" cur=conexion.cursor() cur.execute(sqlupdate) cur.close #guardar data datos={"en":lista_datos} json_datos=json.dumps(datos) sql1="insert into indicadores(nombre,categoria,descripcion,temporalidad,proveedor_dato,direccion_api,tipo,active,is_original_data,tipo_grafica,nivel_apertura,variable_1,variable_2,variable_medida,datos_indicador) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);" # json_string='"'+ json_string +'"' val=('Cambio en el porcentaje de contratos publicados por procedimiento','funcion_publica_presupuesto_1','descripcion', 'temporalidad','proveedor_dato',apiurl,0,1,0,'pastel','3','internal_type','percentage','conteo',json_datos) cur=conexion.cursor() cur.execute(sql1,val) conexion.commit() cur.close() def savedatabasemsql(conexion,my_dict): cur = conexion.cursor() for dato in my_dict: json_string=(json.dumps(dato)) sql1="insert into apidata(datosjson) values ('"+json_string+"')" try: cur.execute(sql1) except: print('entro') print(sql1) print(dato['description']) def consultarapicomprasmsql(apiurl,conexion): my_dict={'data':['prueba']} cont=1 while len(my_dict['data'])>0: entry_url=apiurl+str(cont) print(entry_url) try: r = requests.get(entry_url) my_dict = r.json() if len(my_dict['data'])==0: continue savedatabasemsql(conexion,my_dict['data']) conexion.commit() print('entro: '+str(cont)) cont+=1 except: print("Ha ocurrido un error") time.sleep(5) apiurl = "https://datosabiertos.compraspublicas.gob.ec/PLATAFORMA/api/search_ocds?year=2021&search=&page=" try: connection = mysql.connector.connect(host='localhost', database='ofpindicadores', user='ofpuser', password='<PASSWORD>@!') if connection.is_connected(): saveindicador(connection,apiurl) saveindicadorconcentracion4(connection,apiurl) saveindicadorprocedimientos(connection,apiurl) # consultarapicomprasmsql(apiurl,connection) db_Info = connection.get_server_info() print("Connected to MySQL Server version ", db_Info) except Error as e: print("Error while connecting to MySQL", e) finally: if connection.is_connected(): connection.close() print("MySQL connection is closed") ```
{ "source": "jhonsbg/currency-converter", "score": 4 }
#### File: jhonsbg/currency-converter/currency.py ```python def calculo_conversion(tipo_pesos, valor_dolar): pesos = input("¿Cuantos pesos " + tipo_pesos + " tiene? ") pesos = float(pesos) dolares = pesos / valor_dolar dolares = round(dolares, 2) dolares = str(dolares) print("Tienes $" + dolares + " dólares") def run(): menu = """ Bienvenido al conversor de moneda 💰💵 Elige tu opción 1 - Pesos Colombianos 2 - Pesos Argentinos 3 - Pesos Mexicanos """ option = input(menu) if option == "1": calculo_conversion("colombianos", 3875) elif option == "2": calculo_conversion("argentinos", 65) elif option == "3": calculo_conversion("mexicanos", 24) else: print("Ingresa una opción valida") if __name__ == '__main__': run() ```
{ "source": "jhonsnow456/Runn", "score": 3 }
#### File: games/Bounce/main.py ```python import os import pygame from player import Ball from world import World, load_level from texts import Text, Message from button import Button, LevelButton pygame.init() WIDTH, HEIGHT = 192, 212 win = pygame.display.set_mode((WIDTH, HEIGHT), pygame.NOFRAME) pygame.display.set_caption('Bounce') clock = pygame.time.Clock() FPS = 30 # GAME VARIABLES ************************************************************** ROWS = 12 MAX_COLS = 150 TILE_SIZE = 16 MAX_LEVEL = 8 # COLORS ********************************************************************** BLUE = (175, 207, 240) BLUE2 = (0, 0, 255) WHITE = (255, 255, 255) # FONTS *********************************************************************** health_font = "Fonts/ARCADECLASSIC.TTF" level_text = Text(health_font, 24) health_text = Message(40, WIDTH + 10, 19, "x3", health_font, WHITE, win) select_level_text = Message(WIDTH//2, 20, 24, "Select Level", health_font, BLUE2, win) current_level_text = Message(WIDTH - 40, WIDTH + 10, 20, "Level 1", health_font, WHITE, win) you_win = Message(WIDTH //2, HEIGHT//2, 40, "You Win", health_font, BLUE2, win) # SOUNDS ********************************************************************** click_fx = pygame.mixer.Sound('Sounds/click.mp3') life_fx = pygame.mixer.Sound('Sounds/gate.mp3') checkpoint_fx = pygame.mixer.Sound('Sounds/checkpoint.mp3') pygame.mixer.music.load('Sounds/track1.wav') pygame.mixer.music.play(loops=-1) pygame.mixer.music.set_volume(0.4) # LOADING IMAGES ************************************************************** ball_image = pygame.image.load('Assets/ball.png') splash_img = pygame.transform.scale(pygame.image.load('Assets/splash_logo.png'), (2*WIDTH, HEIGHT)) bounce_img = pygame.image.load('Assets/menu_logo.png') game_lost_img = pygame.image.load('Assets/lose.png') game_lost_img = pygame.transform.scale(game_lost_img, (WIDTH//2, 80)) level_locked_img = pygame.image.load('Assets/level_locked.png') level_locked_img = pygame.transform.scale(level_locked_img, (40, 40)) level_unlocked_img = pygame.image.load('Assets/level_unlocked.png') level_unlocked_img = pygame.transform.scale(level_unlocked_img, (40, 40)) play_img = pygame.image.load('Assets/play.png') restart_img = pygame.image.load('Assets/restart.png') menu_img = pygame.image.load('Assets/menu.png') sound_on_img = pygame.image.load('Assets/SoundOnBtn.png') sound_off_img = pygame.image.load('Assets/SoundOffBtn.png') game_won_img = pygame.image.load('Assets/game won.png') # BUTTONS ********************************************************************* play_btn = Button(play_img, False, 45, 130) sound_btn = Button(sound_on_img, False, 45, 170) restart_btn = Button(restart_img, False, 45, 130) menu_btn = Button(menu_img, False, 45, 170) # LEVEL TEXT & BUTTONS ******************************************************** level_btns = [] for level in range(MAX_LEVEL): text = level_text.render(f'{level+1}', (255, 255, 255)) r = level // 3 c = level % 3 btn = LevelButton(level_locked_img, (40, 40), 20 + c * 55, 50 + r * 55, text) level_btns.append(btn) # GROUPS ********************************************************************** spikes_group = pygame.sprite.Group() inflator_group = pygame.sprite.Group() deflator_group = pygame.sprite.Group() enemy_group = pygame.sprite.Group() exit_group = pygame.sprite.Group() checkpoint_group = pygame.sprite.Group() health_group = pygame.sprite.Group() objects_groups = [spikes_group, inflator_group, deflator_group, enemy_group, exit_group, checkpoint_group, health_group] collision_groups = [inflator_group, deflator_group] # RESET *********************************************************************** def reset_level_data(level): for group in objects_groups: group.empty() # LOAD LEVEL WORLD world_data, level_length = load_level(level) w = World(objects_groups) w.generate_world(world_data, win) return world_data, level_length, w def reset_player_data(level): if level == 1: x, y = 64, 50 if level == 2: x, y = 65, 50 if level == 3: x, y = 64, 50 if level == 4: x, y = 63, 50 if level == 5: x, y = 64, 50 if level == 6: x, y = 48, 50 if level == 7: x, y = 78, 80 if level == 8: x, y = 112,100 p = Ball(x, y) moving_left = False moving_right = False return p, moving_left, moving_right # VARIABLES ******************************************************************* moving_left = False moving_right = False SCROLL_THRES = 80 screen_scroll = 0 level_scroll = 0 level = 1 next_level = False reset_level = False checkpoint = None health = 3 splash_count = 0 sound_on = True logo_page = True home_page = False level_page = False game_page = False restart_page = False win_page = False running = True while running: win.fill(BLUE) pygame.draw.rect(win, (255, 255,255), (0, 0, WIDTH, HEIGHT), 1, border_radius=5) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE or \ event.key == pygame.K_q: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: moving_left = True if event.key == pygame.K_RIGHT: moving_right = True if event.key == pygame.K_UP: if not p.jump: p.jump = True if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT: moving_left = False if event.key == pygame.K_RIGHT: moving_right = False if logo_page: win.blit(splash_img, (-100,0)) splash_count += 1 if splash_count % 50 == 0: logo_page = False home_page = True if home_page: win.blit(bounce_img, (10,10)) if play_btn.draw(win): click_fx.play() home_page = False level_page = True if sound_btn.draw(win): click_fx.play() sound_on = not sound_on if sound_on: sound_btn.update_image(sound_on_img) pygame.mixer.music.play(loops=-1) else: sound_btn.update_image(sound_off_img) pygame.mixer.music.stop() if level_page: select_level_text.update(shadow=False) for index, btn in enumerate(level_btns): if index < level: if not btn.unlocked: btn.unlocked = True btn.update_image(level_unlocked_img) if btn.draw(win): if index < level: click_fx.play() level_page = False game_page = True level = index + 1 screen_scroll = 0 level_scroll = 0 health = 3 world_data, level_length, w = reset_level_data(level) p, moving_left, moving_right = reset_player_data(level) if restart_page: win.blit(game_lost_img, (45,20)) if restart_btn.draw(win): click_fx.play() world_data, level_length, w = reset_level_data(level) p, moving_left, moving_right = reset_player_data(level) level_scroll = 0 screen_scroll = 0 health = 3 checkpoint = None restart_page = False game_page = True if menu_btn.draw(win): click_fx.play() home_page = True restart_page = False if win_page: win.blit(game_won_img, (45, 20)) you_win.update() if menu_btn.draw(win): click_fx.play() home_page = True win_page = False restart_page = False if game_page: w.update(screen_scroll) w.draw(win) spikes_group.update(screen_scroll) spikes_group.draw(win) health_group.update(screen_scroll) health_group.draw(win) inflator_group.update(screen_scroll) inflator_group.draw(win) deflator_group.update(screen_scroll) deflator_group.draw(win) exit_group.update(screen_scroll) exit_group.draw(win) checkpoint_group.update(screen_scroll) checkpoint_group.draw(win) enemy_group.update(screen_scroll) enemy_group.draw(win) screen_scroll = 0 p.update(moving_left, moving_right, w, collision_groups) p.draw(win) if ((p.rect.right >= WIDTH - SCROLL_THRES) and level_scroll < (level_length * 16) - WIDTH) \ or ((p.rect.left <= SCROLL_THRES) and level_scroll > 0): dx = p.dx p.rect.x -= dx screen_scroll = -dx level_scroll += dx if len(exit_group) > 0: exit = exit_group.sprites()[0] if not exit.open: if abs(p.rect.x - exit.rect.x) <= 80 and len(health_group) == 0: exit.open = True if p.rect.colliderect(exit.rect) and exit.index == 11: checkpoint = None checkpoint_fx.play() level += 1 if level < MAX_LEVEL: checkpoint = False reset_level = True next_level = True else: checkpoint = None win_page = True cp = pygame.sprite.spritecollide(p, checkpoint_group, False) if cp: checkpoint = cp[0] if not checkpoint.catched: checkpoint_fx.play() checkpoint.catched = True checkpoint_pos = p.rect.center checkpoint_screen_scroll = screen_scroll checkpoint_level_scroll = level_scroll if pygame.sprite.spritecollide(p, spikes_group, False): reset_level = True if pygame.sprite.spritecollide(p, health_group, True): health += 1 life_fx.play() if pygame.sprite.spritecollide(p, enemy_group, False): reset_level = True if reset_level: if health > 0: if next_level: world_data, level_length, w = reset_level_data(level) p, moving_left, moving_right = reset_player_data(level) level_scroll = 0 health = 3 checkpoint = None next_level = False elif checkpoint: checkpoint_dx = level_scroll - checkpoint_level_scroll w.update(checkpoint_dx) for group in objects_groups: group.update(checkpoint_dx) p.rect.center = checkpoint_pos level_scroll = checkpoint_level_scroll else: w.update(level_scroll) for group in objects_groups: group.update(level_scroll) p, moving_left, moving_right = reset_player_data(level) level_scroll = 0 screen_scroll = 0 reset_level = False health -= 1 else: restart_page = True game_page = False reset_level = False # Drawing info bar pygame.draw.rect(win, (25, 25, 25), (0, HEIGHT-20, WIDTH, 20)) pygame.draw.rect(win, (255, 255,255), (0, 0, WIDTH, WIDTH), 2, border_radius=5) win.blit(ball_image, (5, WIDTH + 2)) health_text.update(f'x{health}', shadow=False) current_level_text.update(f'Level {level}', shadow=False) clock.tick(FPS) pygame.display.update() pygame.quit() ``` #### File: games/SpaceInvaders/Pygame_original.py ```python import pygame import random import math from pygame import mixer #Initializing pygame pygame.init() #initializing the screen screen = pygame.display.set_mode((800,600)) #Titile & Icon pygame.display.set_caption("Space Invaders") icon = pygame.image.load("alien.png") pygame.display.set_icon(icon) #score score_value = 0 font = pygame.font.Font('freesansbold.ttf',45) textX = 300 textY = 20 game_over = pygame.font.Font('freesansbold.ttf',65) def display_font(x,y): score = font.render("Score:" + str(score_value),True,(255,255,255)) screen.blit(score,(x,y)) def display_gameover(): over = game_over.render("Game Over",True,(255,255,255)) screen.blit(over,(250,280)) #Background background = pygame.image.load("background.png") #Background sound #mixer.music.load("background.wav") #mixer.music.play(-1) #player playerimg = pygame.image.load("space-invaders.png") playerimg = pygame.transform.scale(playerimg, (45, 45)) playerX = 350 playerY = 500 playerX_change = 0 def player(x,y): screen.blit(playerimg,(x,y)) #Enemy enemyimg = [] enemyimgT = [] enemyX = [] enemyY = [] enemyX_change = [] enemyY_change = [] for i in range(0,6): enemyimg.append(pygame.image.load("alien.png")) enemyimgT.append(pygame.transform.scale(enemyimg[i], (45, 45))) enemyX.append(random.randint(0,755)) enemyY.append(random.randint(50,200)) enemyX_change.append(4) enemyY_change.append(45) def enemy(x,y,i): screen.blit(enemyimgT[i],(x,y)) #Bullet bulletimg = pygame.image.load("bullet.png") bulletimg = pygame.transform.scale(bulletimg, (35, 35)) bulletX = 0 bulletY = 480 bulletX_change = 0 bulletY_change = 10 bullet_state = "ready" def fire_bullet(x,y): global bullet_state bullet_state = 'fire' screen.blit(bulletimg,(x+5,y+16)) def Collusion(aX,aY,bX,bY): distance = math.sqrt(math.pow((aX-bX),2)+math.pow((aY-bY),2)) if distance <= 25: return True else: return False while True: screen.fill((0,0,0)) screen.blit(background,(0,0)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.display.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: playerX_change = -5 if event.key == pygame.K_RIGHT: playerX_change = 5 if event.key == pygame.K_SPACE: if bullet_state is "ready": bulletX = playerX fire_bullet(bulletX,bulletY) mixer.music.load("laser.wav") mixer.music.play() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: playerX_change = 0 #Player Boundry & Movement if playerX <= 0: playerX = 0 elif playerX >= 750: playerX = 750 playerX += playerX_change #Bullet Movement if bullet_state is "fire": fire_bullet(bulletX,bulletY) bulletY -= bulletY_change if bulletY <= 0: bullet_state = "ready" bulletY = 480 #Enemy Boundary & Movement for i in range(0,6): if enemyY[i]>=480: for j in range(0,6): enemyY[j]= 2000 display_gameover() break enemyX[i] += enemyX_change[i] if enemyX[i] <= 0: enemyX_change[i] = 2 enemyY[i] += enemyY_change[i] elif enemyX[i] >= 750: enemyX_change[i] = -2 enemyY[i] += enemyY_change[0] colide = Collusion(enemyX[i],enemyY[i],bulletX,bulletY) enemy(enemyX[i],enemyY[i],i) if colide: bullet_state = "ready" bulletY = 480 enemyX[i] = random.randint(0,755) enemyY[i]= random.randint(50,200) score_value +=1 mixer.music.load("explosion.wav") mixer.music.play() display_font(textX,textY) player(playerX,playerY) pygame.display.update() ```
{ "source": "jhonsome/python", "score": 3 }
#### File: python/projetos/desenhar linhas.py ```python import pygame from pygame.locals import * pygame.init() TELA = pygame.display.set_mode((pygame.display.Info().current_w, pygame.display.Info().current_h), pygame.FULLSCREEN | pygame.SCALED) FPS = pygame.time.Clock() def _início(): pontos = list() larguraLinha = 1 corLinha = (255, 255, 255) while True: for evento in pygame.event.get(): if evento.type == pygame.QUIT: return None elif evento.type == pygame.MOUSEBUTTONDOWN: pontos.append(evento.pos) TELA.fill((20, 20, 20)) if len(pontos) > 1: for p in range(len(pontos) - 1): pygame.draw.line(TELA, corLinha, pontos[p], pontos[p + 1], larguraLinha) pygame.display.flip() FPS.tick(60) if __name__ == "__main__": _início() pygame.quit() exit() ``` #### File: projetos/Jogo da Velha/jogo da velha.py ```python import pygame from pygame.locals import * from random import randint pygame.init() LARGURATELA, ALTURATELA = pygame.display.Info().current_w, pygame.display.Info().current_h TELA = pygame.display.set_mode((LARGURATELA, ALTURATELA), pygame.FULLSCREEN | pygame.SCALED) FONTE = pygame.font.SysFont("arial", int(15 * TELA.get_width() / 100)) FPS = pygame.time.Clock() MÍDIAS = ( "mídias/imagens/fundo.png", "mídias/imagens/tile.png", "mídias/imagens/botão fundo.png", "mídias/imagens/placar.png", ) IMAGENS = dict() SONS = dict() RETÂNGULOS = dict() def Porcentagem(p, v): """ Retorna a porcentagem de um valor p: porcento v: valor """ return p * v / 100 def CarregarImg(img, resolução): """ Retorna uma pygame.Surface redimensionada img: string com o caminho do arquivo de imagem resolução: um iterável com os valores de largura e altura """ resolução = (int(resolução[0]), int(resolução[1])) return pygame.transform.smoothscale(pygame.image.load(img), resolução).convert_alpha() def CarregarTxt(txt, resolução, cor = (255, 255, 255)): """ Retorna uma pygame.Surface redimensionada com um texto txt: string com um texto qualquer resolução: um iterável com os valores de largura e altura cor: cor do texto """ resolução = (int(resolução[0]), int(resolução[1])) return pygame.transform.smoothscale(FONTE.render(txt, True, cor), resolução).convert_alpha() def _Jogo(): jogadorAtual = randint(0, 1) tabuleiro = [[None for n in range(3)] for n in range(3)] jogador1X = margem * 2 jogador1Y = margem * 2 jogador1Pontos = 0 jogador2X = Porcentagem(60, LARGURATELA) jogador2Y = margem * 2 jogador2Pontos = 0 jogadorAtualX = margem jogadorAtualY = (tileTam + margem) * 3 + margem + (Porcentagem(10, LARGURATELA) + margem) IMAGENS["jogador atual"] = CarregarTxt(f"Vez do jogador {'X' if jogadorAtual == 0 else 'Y'}", (Porcentagem(100, LARGURATELA), Porcentagem(15, ALTURATELA))) while True: for evento in pygame.event.get(): if evento.type == pygame.QUIT: pygame.quit() exit() elif evento.type == pygame.MOUSEBUTTONDOWN: for l in range(len(RETÂNGULOS["tiles"])): for a in range(len(RETÂNGULOS["tiles"][l])): if RETÂNGULOS["tiles"][l][a].collidepoint(evento.pos): if smbLista[l][a] == None: tebuleiro[l][a] = jogadorAtual jogadorAtual = 0 if smbAtual == 1 else 1 TELA.blit(IMAGENS["fundo"], (0, 0)) TELA.blit(IMAGENS["placar"], (margem, margem)) TELA.blit(IMAGENS["placar X"], (jogador1X, jogador1Y)) TELA.blit(IMAGENS["placar O"], (jogador2X, jogador2Y)) for l in range(len(RETÂNGULOS["tiles"])): for a in range(len(RETÂNGULOS["tiles"][l])): TELA.blit(IMAGENS["tile"], RETÂNGULOS["tiles"][l][a]) if tabuleiro[l][a] != None: TELA.blit(smbLista[l][a], RETÂNGULOS["tiles"][l][a]) TELA.blit(IMAGENS["jogador atual"], (jogadorAtualX, jogadorAtualY)) pygame.display.update() FPS.tick(fps) def _FimJogo(pontuação): pass def _Início(): global fps, margem, tileTam fps = 30 tileTam = Porcentagem(33.3, LARGURATELA) margem = Porcentagem(1, LARGURATELA) botãoJogarX = Porcentagem(25, LARGURATELA) + margem botãoJogarY = Porcentagem(40, ALTURATELA) + margem botãoSairX = Porcentagem(25, LARGURATELA) + margem botãoSairY = Porcentagem(50, ALTURATELA) + margem IMAGENS["fundo"] = CarregarImg(MÍDIAS[0], (LARGURATELA, ALTURATELA)) IMAGENS["botão fundo"] = CarregarImg(MÍDIAS[2], (Porcentagem(50, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) IMAGENS["botão jogar"] = CarregarTxt("Jogar", (Porcentagem(50, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) IMAGENS["botão sair"] = CarregarTxt("Sair", (Porcentagem(50, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) IMAGENS["tile"] = CarregarImg(MÍDIAS[1], (tileTam - margem * 2, tileTam - margem * 2)) IMAGENS["placar"] = CarregarImg(MÍDIAS[3], (Porcentagem(100, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) IMAGENS["x"] = CarregarTxt("X", (tileTam - margem * 2, tileTam - margem * 2)) IMAGENS["o"] = CarregarTxt("O", (tileTam - margem * 2, tileTam - margem * 2)) IMAGENS["placar X"] = CarregarTxt("p: 0 - X", (Porcentagem(40, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) IMAGENS["placar O"] = CarregarTxt(f"O - p: 0", (Porcentagem(40, LARGURATELA) - margem * 2, Porcentagem(10, ALTURATELA) - margem * 2)) RETÂNGULOS["tiles"] = [[pygame.Rect(tileTam * l + margem, Porcentagem(10, ALTURATELA) + tileTam * a + margem, tileTam - margem * 2, tileTam - margem * 2) for a in range(3)] for l in range(3)] RETÂNGULOS["botão jogar"] = pygame.Rect((botãoJogarX, botãoJogarY), IMAGENS["botão jogar"].get_size()) RETÂNGULOS["botão sair"] = pygame.Rect((botãoSairX, botãoSairY), IMAGENS["botão sair"].get_size()) while True: for evento in pygame.event.get(): if evento.type == pygame.QUIT: pygame.quit() exit() elif evento.type == pygame.MOUSEBUTTONDOWN: if RETÂNGULOS["botão jogar"].collidepoint(evento.pos): pontos = _Jogo() elif RETÂNGULOS["botão sair"].collidepoint(evento.pos): pygame.quit() exit() TELA.blit(IMAGENS["fundo"], (0, 0)) TELA.blit(IMAGENS["botão fundo"], RETÂNGULOS["botão jogar"]) TELA.blit(IMAGENS["botão fundo"], RETÂNGULOS["botão sair"]) TELA.blit(IMAGENS["botão jogar"], RETÂNGULOS["botão jogar"]) TELA.blit(IMAGENS["botão sair"], RETÂNGULOS["botão sair"]) pygame.display.update() FPS.tick(fps) if __name__ == "__main__": _Início() ``` #### File: python/projetos/jogo.py ```python import pygame, sys from pygame.locals import * from random import randint pygame.init() tela = pygame.display.set_mode((400, 700), pygame.FULLSCREEN | pygame.SCALED) telaLargura, telaAltura = tela.get_width(), tela.get_height() fps = pygame.time.Clock() class Imagem(object): def __init__(self, posX, posY, largura, altura, imagem): if type(imagem) == pygame.Surface: self.img = pygame.Surface((largura, altura)) self.S = True else: self.imgOriginal = pygame.image.load(imagem) self.img = pygame.transform.smoothscale(self.imgOriginal, (largura, altura)) self.S = False self.ret = pygame.Rect(posX, posY, largura, altura) self.pos = (posX, posY) self.tam = (largura, altura) def exibirImagem(self, superfície, RGBA = None): if self.S: if RGBA != None: self.img.fill(RGBA) else: self.img.fill((20, 20, 20)) superfície.blit(self.img, self.ret) def moverImagem(self, X, Y): self.ret = self.ret.move(X, Y) def redimensionar(self, posX, posY, largura, altura): self.img = pygame.transform.smoothscale(self.imgOriginal, (largura, altura)) self.ret = pygame.Rect(posX, posY, largura, altura) def retornarRet(self): return self.ret class Botão(object): def __init__(self, posX, posY, largura, altura, botãoLivre = None, botãoPressionado = None, som = None): if botãoLivre == None: botão01 = None elif type(botãoLivre) == pygame.Surface: botão01 = pygame.Surface((largura, altura)) self.S1 = True else: botão01 = pygame.transform.smoothscale(pygame.image.load(botãoLivre), (int(largura), int(altura))) if botãoPressionado == None: botão02 = None elif type(botãoPressionado) == pygame.Surface: botão02 = pygame.Surface((largura, altura)) self.S2 = True else: botão02 = pygame.transform.smoothscale(pygame.image.load(botãoPressionado), (int(largura), int(altura))) if som != None: som = pygame.mixer.Sound(som) self.som = som self.img = (botão01, botão02) self.b = 0 self.ret = pygame.Rect(posX, posY, largura, altura) def exibirBotao(self, superfície, RGBA = None): if self.img[0] != None: if self.b == 0: if self.S1: if RGBA != None: self.img[0].fill(RGBA) else: self.img[0].fill((20, 20, 20)) superfície.blit(self.img[0], self.ret) if self.img[1] != None: if self.b == 1: if self.S2: if RGBA != None: self.img[1].fill(RGBA) else: self.img[1].fill((20, 20, 20)) superfície.blit(self.img[1], self.ret) def Clique(self, eventos, tipo = 0): if eventos.type == pygame.MOUSEBUTTONDOWN: t1 = pygame.mouse.get_pos() if t1[0] > self.ret.left and t1[0] < self.ret.right and t1[1] > self.ret.top and t1[1] < self.ret.bottom: self.t = True self.b = 1 if tipo == 0: return True if tipo == 1: return False else: self.t = False if eventos.type == pygame.MOUSEBUTTONUP: try: if self.t == True: self.t = False self.b = 0 t2 = pygame.mouse.get_pos() if t2[0] > self.ret.left and t2[0] < self.ret.right and t2[1] > self.ret.top and t2[1] < self.ret.bottom: if self.som != None: self.som.play(maxtime = 1000) self.som.fadeout(2000) if tipo == 0: return False if tipo == 1: return True except AttributeError: self.t = False def intro(): loop = True fonte = pygame.font.SysFont("Arial", 22) texto1 = fonte.render(" PONG", 1, (200, 200, 200)) texto2 = fonte.render("Não encoste a raquete nos", 1, (200, 200, 200)) texto3 = fonte.render(" cantos da parede.", 1, (200, 200, 200)) texto4 = fonte.render("Não deixe o quadrado cair.", 1, (200, 200, 200)) texto5 = fonte.render("boa sorte!", 1, (200, 200, 200)) textos = [texto1, texto2, texto3, texto4, texto5] txtb1 = fonte.render("lado direito da tela: botão direito", 1, (200, 200, 200)) txtb2 = fonte.render("lado esquerdo da tela: botão esquerdo", 1, (200, 200, 200)) continuar = fonte.render("Clique para continuar.", 1, (0, 255, 0)) while loop: for evento in pygame.event.get(): if evento.type == pygame.QUIT or evento.type == pygame.MOUSEBUTTONDOWN: loop = False num = 10 tela.fill((20, 20, 20)) for texto in textos: tela.blit(texto, (10, num)) num += 24 tela.blit(txtb1, (0, 350)) tela.blit(txtb2, (0, 374)) tela.blit(continuar, (90, 470)) pygame.display.flip() fps.tick(30) def perdeu(): loop = True fonte = pygame.font.SysFont("Arial", 27) Label1 = fonte.render("Você perdeu!", 1, (255, 0, 0)) Label2 = fonte.render("Clique para continuar.", 1, (255, 255, 255)) while loop: tela.blit(Label1, (113, 300)) tela.blit(Label2, (70, 380)) pygame.display.flip() fps.tick(30) for evento in pygame.event.get(): if evento.type == pygame.QUIT: loop = False if evento.type == pygame.MOUSEBUTTONDOWN: loop = False def jogo(jogadas, tempo, melhorRodada): fonte = pygame.font.SysFont("Arial", 16) melhorTempo = fonte.render(f"melhor tempo (milissegundos): {tempo:.3f} rodada: {melhorRodada}", 1, (0, 0, 0)) txtJogadas = fonte.render(f"{jogadas}° rodada", 1, (0, 0, 0)) tabela = Imagem(0, 0, telaLargura, 60, pygame.Surface((0, 0))) linha = Imagem(0, 90, telaLargura, 2, pygame.Surface((0, 0))) linha2 = Imagem(0, 90, 2, 20, pygame.Surface((0, 0))) linha3 = Imagem(telaLargura - 2, 90, 2, 20, pygame.Surface((0, 0))) bola = Imagem(randint(0, 269), randint(400, 500), 30, 30, pygame.Surface((0, 0))) barra = Imagem(140, 90, 38, 10, pygame.Surface((0, 0))) b1 = Botão(0, 0, telaLargura / 2, telaAltura) b2 = Botão((telaLargura / 2) - 1, 0, telaLargura / 2, telaAltura) vel = 8 t = False velX = 10 velY = velX - 2 time = 0 cor = (255, 255, 255) while True: for evento in pygame.event.get(): if evento.type == pygame.QUIT: break if evento.type == pygame.MOUSEBUTTONDOWN: if b2.Clique(evento) == True: vel = abs(vel) t = True if b1.Clique(evento) == True: if vel > 0: vel = -vel t = True if evento.type == pygame.MOUSEBUTTONUP: t = False if t == True: barra.moverImagem(vel, 0) bola.moverImagem(velX, velY) if bola.retornarRet().left < 0 or bola.retornarRet().right > telaLargura: velX = -velX if bola.retornarRet().bottom > telaAltura or bola.retornarRet().colliderect(barra.retornarRet()): velY = -velY cor = (randint(0, 255), randint(0, 255), randint(0, 255)) time += 0.03 tela.fill((20, 20, 20)) tabela.exibirImagem(tela, (255, 255, 255)) tela.blit(txtJogadas, (0, 0)) tempoAtual = fonte.render(f"tempo atual (milissegundos): {time:.3f}", 1, (0, 0, 0)) tela.blit(tempoAtual, (0, 20)) tela.blit(melhorTempo, (0, 40)) linha.exibirImagem(tela, (255, 0, 0)) linha2.exibirImagem(tela, (255, 0, 0)) linha3.exibirImagem(tela, (255, 0, 0)) bola.exibirImagem(tela, cor) barra.exibirImagem(tela, (255, 255, 255)) pygame.display.flip() fps.tick(30) if bola.retornarRet().top < linha.retornarRet().bottom or barra.retornarRet().left < linha2.retornarRet().right or barra.retornarRet().right > linha3.retornarRet().left: return time rodada = 1 melhorRodada = "–" melhorTempo = 0 intro() while True: print(type(pygame.Rect(0, 0, 100, 100))) t = jogo(rodada, melhorTempo, melhorRodada) if t > melhorTempo: melhorTempo = t melhorRodada = rodada perdeu() rodada += 1 ``` #### File: python/projetos/.last_tmp.py ```python import pygame from pygame.locals import * from plyer import accelerometer pygame.init() TELA = pygame.display.set_mode() FONTE = pygame.font.SysFont("serif", 20) FPS = pygame.time.Clock() def _início(): accelerometer.enable() fpsTick = 60 loop = True while loop: for evento in pygame.event.get(): if evento.type == pygame.QUIT: pygame.quit() exit() x, y, z = accelerometer.acceleration txt = FONTE.render(f"x: {x:.2f}, y: {y:.2f}, z: {z:.2f}", True, (255, 255, 255)) TELA.fill((20, 20, 20)) TELA.blit(txt, (0, 0)) pygame.display.flip() FPS.tick(fpsTick) if __name__ == "__main__": _início() ```
{ "source": "jhonsu01/mezzanine", "score": 2 }
#### File: conf/migrations/0001_initial.py ```python import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Setting' db.create_table('conf_setting', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('value', self.gf('django.db.models.fields.CharField')(max_length=2000)), ('name', self.gf('django.db.models.fields.CharField')(max_length=50)), )) db.send_create_signal('conf', ['Setting']) def backwards(self, orm): # Deleting model 'Setting' db.delete_table('conf_setting') models = { 'conf.setting': { 'Meta': {'object_name': 'Setting'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '2000'}) } } complete_apps = ['conf'] ``` #### File: core/migrations/0001_initial.py ```python import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Keyword' db.create_table('core_keyword', ( ('slug', self.gf('django.db.models.fields.CharField')(max_length=100, null=True, blank=True)), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=100)), )) db.send_create_signal('core', ['Keyword']) def backwards(self, orm): # Deleting model 'Keyword' db.delete_table('core_keyword') models = { 'core.keyword': { 'Meta': {'object_name': 'Keyword'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['core'] ```
{ "source": "jhonurbis/api-ai-workshop", "score": 3 }
#### File: webhook implementations/python/server.py ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route("/") def hello(): return "Hello from APIAI Webhook Integration." @app.route("/version") def version(): return "APIAI Webhook Integration. Version 1.0" @app.route("/webhook", methods=['POST']) def webhook(): content = request.json //Extract out the parameters //Persist the record //Send email notification return jsonify({"speech":"Thank You for the feedback","displayText":"Thank You for the feedback","source":"Hotel Feedback System"}) if __name__ == "__main__": app.run() ```
{ "source": "Jhonve/Sketch2Voxels", "score": 3 }
#### File: Jhonve/Sketch2Voxels/SketchModeling.py ```python import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QWidget, QPushButton from PyQt5.QtGui import * from PyQt5.QtCore import Qt, pyqtSlot import os class DrawWindow(QWidget): def __init__(self): super(DrawWindow, self).__init__() self.win_height = 512 self.win_width = 512 self.win_pos_x = 200 self.win_pos_y = 200 self.res_height = 256 self.res_width = 256 self.resize(self.win_height, self.win_width) self.move(self.win_pos_x, self.win_pos_y) self.setWindowTitle("Sketch Modeling") self.setMouseTracking(False) # to save positions self.pos_xy = [] self.line_num = 0 self.line_index = [] self.line_index.append(0) self.initUI() def initUI(self): self.gen_button_pos_x = 286 self.gen_button_pos_y = 482 self.gen_button = QPushButton("Generate", self) self.gen_button.setToolTip("Generate 3D voxels") self.gen_button.move(self.gen_button_pos_x, self.gen_button_pos_y) self.gen_button.clicked.connect(self.onGenClick) self.del_button_pos_x = 176 self.del_button_pos_y = 482 self.del_button = QPushButton("Recall", self) self.del_button.setToolTip("Recall one step") self.del_button.move(self.del_button_pos_x, self.del_button_pos_y) self.del_button.clicked.connect(self.onDelClick) self.remove_button_pos_x = 422 self.remove_button_pos_y = 10 self.remove_button = QPushButton("Remove", self) self.remove_button.setToolTip("Remove all") self.remove_button.move(self.remove_button_pos_x, self.remove_button_pos_y) self.remove_button.clicked.connect(self.onRemClick) @pyqtSlot() def onGenClick(self): if(self.line_num > 0): image = np.ones([self.win_height, self.win_width]) image = np.uint8(image * 255) point_start = self.pos_xy[0] for pos_tmp in self.pos_xy: point_end = pos_tmp if point_end == (-1, -1): point_start = (-1, -1) continue if point_start == (-1, -1): point_start = point_end continue image = cv2.line(image, (point_start[0], point_start[1]), (point_end[0], point_end[1]), 0, 1, 8) point_start = point_end image = cv2.resize(image, (self.res_height, self.res_width), cv2.INTER_LINEAR) cv2.imwrite("./TestData/1/sketch.jpg", image) while(True): try: with open("./TestData/state.txt", "w") as state_file: state_file.write("1\n0\n0\n0") state_file.close() break except PermissionError as e: print("PermissionError") print("Generating now") while(True): with open("./TestData/state.txt", "r") as state_file: line_list = state_file.readlines() if(len(line_list) == 0): continue if(line_list[2] == "1\n"): state_file.close() os.system("python3 Visualization/visualize.py TestData/1/voxels.mat -cm") break else: state_file.close() print("Generate Done!") else: print("Draw first.") @pyqtSlot() def onDelClick(self): if(self.line_num > 0): self.pos_xy = self.pos_xy[:self.line_index[self.line_num - 1]] self.line_index.pop(self.line_num) self.line_num = self.line_num - 1 else: print("Draw first.") self.update() @pyqtSlot() def onRemClick(self): if(self.line_num > 0): self.pos_xy = [] self.line_num = 0 self.line_index = [] self.line_index.append(0) else: print("Draw first.") self.update() def paintEvent(self, event): painter = QPainter() painter.begin(self) pen = QPen(Qt.black, 2, Qt.SolidLine) painter.setPen(pen) if len(self.pos_xy) > 1: point_start = self.pos_xy[0] for pos_tmp in self.pos_xy: point_end = pos_tmp if point_end == (-1, -1): point_start = (-1, -1) continue if point_start == (-1, -1): point_start = point_end continue painter.drawLine(point_start[0], point_start[1], point_end[0], point_end[1]) point_start = point_end painter.end() def mouseMoveEvent(self, event): pos_tmp = (event.pos().x(), event.pos().y()) self.pos_xy.append(pos_tmp) self.update() def mouseReleaseEvent(self, event): pos_tmp = (-1, -1) self.pos_xy.append(pos_tmp) self.line_num = self.line_num + 1 self.line_index.append(len(self.pos_xy)) self.update() if __name__ == "__main__": sketch_model_app = QApplication(sys.argv) draw_window = DrawWindow() draw_window.show() sketch_model_app.exec_() ```
{ "source": "jhonvlange/flask-rest-api", "score": 3 }
#### File: app/routes/student.py ```python from flask import Blueprint from ..services import student # Create blueprint bp_student = Blueprint('student', __name__) # Create a student @bp_student.route('/api/student', methods=['POST']) def post_student(): return student.post_student() # Get all students @bp_student.route('/api/student', methods=['GET']) def get_students(): return student.get_students() # Get a single student @bp_student.route('/api/student/<student_id>', methods=['GET']) def get_student(student_id): return student.get_student(student_id) # Update a student @bp_student.route('/api/student/<student_id>', methods=['PUT']) def update_student(student_id): return student.update_student(student_id) # Delete a student @bp_student.route('/api/student/<student_id>', methods=['DELETE']) def delete_student(student_id): return student.delete_student(student_id) ``` #### File: app/services/student.py ```python from app.models.answers import Answers from app.models.student_test import StudentTest, student_test_schema from app import db from flask import request, jsonify from ..models.student import Student, student_schema, students_schema # Create a student def post_student(): try: name = request.json['name'] cpf = request.json['cpf'] course = request.json['course'] email = request.json['email'] phone = request.json['phone'] # business rule students = students_schema.dump(Student.query.all()) if len(students) >= 100: return jsonify({'message': 'student limit exceeded', 'data': students}), 200 # Filter student by cpf student = student_by_cpf(cpf) if student: return jsonify({'message': 'student already exists', 'data': {}}), 200 new_student = Student(name, cpf, course, email, phone) db.session.add(new_student) db.session.commit() result = student_schema.dump(new_student) return jsonify({'message': 'seccessfully registered', 'data': result}), 201 except: return jsonify({'message': 'server error', 'data': {}}), 500 # Filter student by cpf def student_by_cpf(cpf): try: return Student.query.filter(Student.cpf == cpf).one() except: return None # --------------------------------------- # Get all students def get_students(): students = students_schema.dump(Student.query.all()) if students: return jsonify({'message': 'successfully fetched', 'data': students}), 200 return jsonify({'message': 'data not found', 'data': {}}), 404 # --------------------------------------- # Get a single student def get_student(student_id): student = student_schema.dump(Student.query.get(student_id)) if student: return jsonify({'message': 'successfully fetched', 'data': student}), 200 return jsonify({'message': "student not found", 'data': {}}), 404 # --------------------------------------- # Update a student def update_student(student_id): try: name = request.json['name'] cpf = request.json['cpf'] course = request.json['course'] email = request.json['email'] phone = request.json['phone'] student = Student.query.get(student_id) if not student: return jsonify({'message': "student not found", 'data': {}}), 404 student.name = name student.cpf = cpf student.course = course student.email = email student.phone = phone db.session.commit() result = student_schema.dump(student) return jsonify({'message': 'successfully updated', 'data': result}), 201 except: return jsonify({'message': 'server error', 'data': {}}), 500 # --------------------------------------- # Delete a student def delete_student(student_id): try: student = Student.query.get(student_id) if not student: return jsonify({'message': "student not found", 'data': {}}), 404 # Delete all tests for this student delete_student_tests(student_id) db.session.delete(student) db.session.commit() result = student_schema.dump(student) return jsonify({'message': 'successfully deleted', 'data': result}), 200 except: return jsonify({'message': 'server error', 'data': {}}), 500 # Delete all tests for this student def delete_student_tests(student_id): try: student_tests = StudentTest.query.filter(StudentTest.student_id == student_id).all() for test in student_tests: data_tests = student_test_schema.dump(test) answers = Answers.query.filter(Answers.answers_id == data_tests['student_test_id']).all() for answer in answers: db.session.delete(answer) db.session.delete(test) db.session.commit() return {} except: return None ```
{ "source": "jhonyavella90/igame_platform_test", "score": 2 }
#### File: igame_platform/accounts/views.py ```python from django.contrib.auth.decorators import login_required from django.contrib.auth import login, authenticate from django.shortcuts import render from django.views.generic.edit import FormView from igame_platform.accounts.forms import RegisterForm @login_required def home(request): return render(request, 'accounts/home.html') class RegisterView(FormView): template_name = 'accounts/register.html' form_class = RegisterForm success_url = '/home/' def form_valid(self, form): # This method is called when valid form data has been POSTed. # It should return an HttpResponse. form.save() username = form.cleaned_data.get('username') raw_password = form.cleaned_data.get('<PASSWORD>') user = authenticate(username=username, password=<PASSWORD>) login(self.request, user) return super(RegisterView, self).form_valid(form) ```
{ "source": "JhonyDev/AudioToText", "score": 2 }
#### File: AudioToText/cocognite/settings.py ```python import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) """ CONFIGURATIONS -----------------------------------------------------------------------------------------------""" AUTH_USER_MODEL = 'accounts.User' ROOT_URLCONF = 'cocognite.urls' WSGI_APPLICATION = 'cocognite.wsgi.application' DEFAULT_AUTO_FIELD = 'django.db.models.AutoField' SECRET_KEY = "12367812790631263092183712-37123" DEBUG = True SERVER = False TEST = False ALLOWED_HOSTS = ['*'] SITE_ID = 1 if TEST: SITE_ID = 2 if SERVER: SITE_ID = 3 CRISPY_TEMPLATE_PACK = 'bootstrap4' import speech_recognition as sr LOGIN_REDIRECT_URL = '/accounts/cross-auth/' """ INSTALLATIONS ------------------------------------------------------------------------------------------------""" INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # REQUIRED_APPLICATIONS 'crispy_forms', 'ckeditor', # AUTH_API 'django.contrib.sites', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', # USER_APPLICATIONS 'src.accounts', 'src.website', 'src.portals.customer', 'src.portals.admins', # MUST BE AT THE END ] """ SECURITY AND MIDDLEWARES -------------------------------------------------------------------------------------""" MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ) AUTH_PASSWORD_VALIDATORS = [ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, {'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, {'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] """ TEMPLATES AND DATABASES -------------------------------------------------------------------------------------- """ TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } """ INTERNATIONALIZATION ----------------------------------------------------------------------------------------- """ def concatenate(list_strings): transcript = '' for string in list_strings: transcript += f'\n{string}' return transcript LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Tashkent' USE_I18N = True USE_L10N = True r = sr.Recognizer() USE_TZ = True """ PATHS STATIC AND MEDIA --------------------------------------------------------------------------------------- """ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATIC_ROOT = os.path.join(BASE_DIR, 'assets') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') """ EMAIL AND ALL AUTH ------------------------------------------------------------------------------------------- """ EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '<EMAIL>' EMAIL_HOST_PASSWORD = '<PASSWORD>' EMAIL_PORT = 587 DEFAULT_FROM_EMAIL = 'CORE-Team <<EMAIL>>' SOCIALACCOUNT_PROVIDERS = { 'google': {'SCOPE': ['profile', 'email', ], 'AUTH_PARAMS': {'access_type': 'online', }} } ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_USERNAME_REQUIRED = False OLD_PASSWORD_FIELD_ENABLED = True LOGOUT_ON_PASSWORD_CHANGE = False ACCOUNT_EMAIL_VERIFICATION = 'none' import os from pydub import AudioSegment from pydub.silence import split_on_silence def predict_audio_transcription(path): sound = AudioSegment.from_wav(path) chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS - 14, keep_silence=500, ) folder_name = "audio-chunks" if not os.path.isdir(folder_name): os.mkdir(folder_name) whole_text = "" for i, audio_chunk in enumerate(chunks, start=1): chunk_filename = os.path.join(folder_name, f"chunk{i}.wav") audio_chunk.export(chunk_filename, format="wav") with sr.AudioFile(chunk_filename) as source: audio_listened = r.record(source) try: text = r.recognize_google(audio_listened) except sr.UnknownValueError: pass else: text = f"{text.capitalize()}. " lists_display = set(DATASET.split()).intersection(text.split()) print(concatenate(lists_display)) whole_text += text return whole_text DATASET = """ ability able about above accept according account across act action activity actually add address administration admit adult affect after again against age agency agent ago agree agreement ahead air all allow almost alone along already also although always American among amount analysis and animal another answer any anyone anything appear apply approach area argue arm around arrive art article artist as ask assume at attack attention attorney audience author authority available avoid away baby back bad bag ball bank bar base be beat beautiful because become bed before begin behavior behind believe benefit best better between beyond big bill billion bit black blood blue board body book born both box boy break bring brother budget build building business but buy by call camera campaign can cancer candidate capital car card care career carry case catch cause cell center central century certain certainly chair challenge chance change character charge check child choice choose church citizen city civil claim class clear clearly close coach cold collection college color come commercial common community company compare computer concern condition conference Congress consider consumer contain continue control cost could country couple course court cover create crime cultural culture cup current customer cut dark data daughter day dead deal death debate decade decide decision deep defense degree Democrat democratic describe design despite detail determine develop development die difference different difficult dinner direction director discover discuss discussion disease do doctor dog door down draw dream drive drop drug during each early east easy eat economic economy edge education effect effort eight either election else employee end energy enjoy enough enter entire environment environmental especially establish even evening event ever every everybody everyone everything evidence exactly example executive exist expect experience expert explain eye face fact factor fail fall family far fast father fear federal feel feeling few field fight figure fill film final finally financial find fine finger finish fire firm first fish five floor fly focus follow food foot for force foreign forget form former forward four free friend from front full fund future game garden gas general generation get girl give glass go goal good government great green ground group grow growth guess gun guy hair half hand hang happen happy hard have he head health hear heart heat heavy help her here herself high him himself his history hit hold home hope hospital hot hotel hour house how however huge human hundred husband I idea identify if image imagine impact important improve in include including increase indeed indicate individual industry information inside instead institution interest interesting international interview into investment involve issue it item its itself job join just keep key kid kill kind kitchen know knowledge land language large last late later laugh law lawyer lay lead leader learn least leave left leg legal less let letter level lie life light like likely line list listen little live local long look lose loss lot love low machine magazine main maintain major majority make man manage management manager many market marriage material matter may maybe me mean measure media medical meet meeting member memory mention message method middle might military million mind minute miss mission model modern moment money month more morning most mother mouth move movement movie Mr Mrs much music must my myself name nation national natural nature near nearly necessary need network never new news newspaper next nice night no none nor north not note nothing notice now n't number occur of off offer office officer official often oh oil ok old on once one only onto open operation opportunity option or order organization other others our out outside over own owner page pain painting paper parent part participant particular particularly partner party pass past patient pattern pay peace people per perform performance perhaps period person personal phone physical pick picture piece place plan plant play player PM point police policy political politics poor popular population position positive possible power practice prepare present president pressure pretty prevent price private probably problem process produce product production professional professor program project property protect prove provide public pull purpose push put quality question quickly quite race radio raise range rate rather reach read ready real reality realize really reason receive recent recently recognize record red reduce reflect region relate relationship religious remain remember remove report represent Republican require research resource respond response responsibility rest result return reveal rich right rise risk road rock role room rule run safe same save say scene school science scientist score sea season seat second section security see seek seem sell send senior sense series serious serve service set seven several sex sexual shake share she shoot short shot should shoulder show side sign significant similar simple simply since sing single sister sit site situation six size skill skin small smile so social society soldier some somebody someone something sometimes son song soon sort sound source south southern space speak special specific speech spend sport spring staff stage stand standard star start state statement station stay step still stock stop store story strategy street strong structure student study stuff style subject success successful such suddenly suffer suggest summer support sure surface system table take talk task tax teach teacher team technology television tell ten tend term test than thank that the their them themselves then theory there these they thing think third this those though thought thousand threat three through throughout throw thus time to today together tonight too top total tough toward town trade traditional training travel treat treatment tree trial trip trouble true truth try turn TV two type under understand unit until up upon us use usually value various very victim view violence visit voice vote wait walk wall want war watch water way we weapon wear week weight well west western what whatever when where whether which while white who whole whom whose why wide wife will win wind window wish with within without woman wonder word work worker world worry would write writer wrong yard yeah year yes yet you young your yourself """ ``` #### File: src/accounts/views.py ```python from django.contrib import messages from django.contrib.auth.decorators import login_required from django.shortcuts import redirect, render from django.utils.decorators import method_decorator from django.views import View from src.accounts.forms import UserProfileForm @method_decorator(login_required, name='dispatch') class CrossAuthView(View): def get(self, request): if request.user.is_superuser or request.user.is_staff: return redirect('admin-portal:dashboard') else: return redirect('customer-portal:dashboard') @method_decorator(login_required, name='dispatch') class UserUpdateView(View): def get(self, request): form = UserProfileForm(instance=request.user) context = {'form': form} return render(request, template_name='accounts/user_update_form.html', context=context) def post(self, request): form = UserProfileForm(request.POST, request.FILES, instance=request.user) if form.is_valid(): messages.success(request, "Your profile updated successfully") form.save(commit=True) context = {'form': form} return render(request, template_name='accounts/user_update_form.html', context=context) ``` #### File: portals/admins/ai_utils.py ```python import random DATASET = """ ability able about above accept according account across act action activity actually add address administration admit adult affect after again against age agency agent ago agree agreement ahead air all allow almost alone along already also although always American among amount analysis and animal another answer any anyone anything appear apply approach area argue arm around arrive art article artist as ask assume at attack attention attorney audience author authority available avoid away baby back bad bag ball bank bar base be beat beautiful because become bed before begin behavior behind believe benefit best better between beyond big bill billion bit black blood blue board body book born both box boy break bring brother budget build building business but buy by call camera campaign can cancer candidate capital car card care career carry case catch cause cell center central century certain certainly chair challenge chance change character charge check child choice choose church citizen city civil claim class clear clearly close coach cold collection college color come commercial common community company compare computer concern condition conference Congress consider consumer contain continue control cost could country couple course court cover create crime cultural culture cup current customer cut dark data daughter day dead deal death debate decade decide decision deep defense degree Democrat democratic describe design despite detail determine develop development die difference different difficult dinner direction director discover discuss discussion disease do doctor dog door down draw dream drive drop drug during each early east easy eat economic economy edge education effect effort eight either election else employee end energy enjoy enough enter entire environment environmental especially establish even evening event ever every everybody everyone everything evidence exactly example executive exist expect experience expert explain eye face fact factor fail fall family far fast father fear federal feel feeling few field fight figure fill film final finally financial find fine finger finish fire firm first fish five floor fly focus follow food foot for force foreign forget form former forward four free friend from front full fund future game garden gas general generation get girl give glass go goal good government great green ground group grow growth guess gun guy hair half hand hang happen happy hard have he head health hear heart heat heavy help her here herself high him himself his history hit hold home hope hospital hot hotel hour house how however huge human hundred husband I idea identify if image imagine impact important improve in include including increase indeed indicate individual industry information inside instead institution interest interesting international interview into investment involve issue it item its itself job join just keep key kid kill kind kitchen know knowledge land language large last late later laugh law lawyer lay lead leader learn least leave left leg legal less let letter level lie life light like likely line list listen little live local long look lose loss lot love low machine magazine main maintain major majority make man manage management manager many market marriage material matter may maybe me mean measure media medical meet meeting member memory mention message method middle might military million mind minute miss mission model modern moment money month more morning most mother mouth move movement movie Mr Mrs much music must my myself name nation national natural nature near nearly necessary need network never new news newspaper next nice night no none nor north not note nothing notice now n't number occur of off offer office officer official often oh oil ok old on once one only onto open operation opportunity option or order organization other others our out outside over own owner page pain painting paper parent part participant particular particularly partner party pass past patient pattern pay peace people per perform performance perhaps period person personal phone physical pick picture piece place plan plant play player PM point police policy political politics poor popular population position positive possible power practice prepare present president pressure pretty prevent price private probably problem process produce product production professional professor program project property protect prove provide public pull purpose push put quality question quickly quite race radio raise range rate rather reach read ready real reality realize really reason receive recent recently recognize record red reduce reflect region relate relationship religious remain remember remove report represent Republican require research resource respond response responsibility rest result return reveal rich right rise risk road rock role room rule run safe same save say scene school science scientist score sea season seat second section security see seek seem sell send senior sense series serious serve service set seven several sex sexual shake share she shoot short shot should shoulder show side sign significant similar simple simply since sing single sister sit site situation six size skill skin small smile so social society soldier some somebody someone something sometimes son song soon sort sound source south southern space speak special specific speech spend sport spring staff stage stand standard star start state statement station stay step still stock stop store story strategy street strong structure student study stuff style subject success successful such suddenly suffer suggest summer support sure surface system table take talk task tax teach teacher team technology television tell ten tend term test than thank that the their them themselves then theory there these they thing think third this those though thought thousand threat three through throughout throw thus time to today together tonight too top total tough toward town trade traditional training travel treat treatment tree trial trip trouble true truth try turn TV two type under understand unit until up upon us use usually value various very victim view violence visit voice vote wait walk wall want war watch water way we weapon wear week weight well west western what whatever when where whether which while white who whole whom whose why wide wife will win wind window wish with within without woman wonder word work worker world worry would write writer wrong yard yeah year yes yet you young your yourself """ classes = DATASET.split() import os import librosa import IPython.display as ipd import matplotlib.pyplot as plt import numpy as np from cocognite import settings from scipy.io import wavfile import warnings import pickle from pydub import AudioSegment from pydub.utils import make_chunks from sklearn.preprocessing import LabelEncoder from keras.models import load_model warnings.filterwarnings("ignore") # define all the labels here labels = classes # here outfile is the label file of all the dataset with open('C:\\Users\\<NAME>\\Desktop\\a2tc\\src\\portals\\admins\\outfile', 'rb') as fp: all_label = pickle.load(fp) le = LabelEncoder() y = le.fit_transform(all_label) classes = list(le.classes_) # create a folder called chunks which will save chunks of large audio file folder_name = "chunks" def concatenate(list_strings): transcript = '' for string in list_strings: transcript += f'{string} ' return transcript def prediction_filter(list_strings): return settings.predict_audio_transcription(list_strings) # pick audio file from directory change test.wav to something else def make_prediction_on_file(file): print("CLASSES LENGTH") print(len(classes)) print(classes) myaudio = AudioSegment.from_file(file, "wav") # pydub calculates in millisec chunk_length_ms = 1000 # Make chunks of one sec chunks = make_chunks(myaudio, chunk_length_ms) # create folder is its not created if not os.path.isdir(folder_name): os.mkdir(folder_name) # iterate through the chunks list_words = [] try: list_words = set(DATASET.split()).intersection(prediction_filter(file).split()) return concatenate(list_words) except: pass for i, chunk in enumerate(chunks): chunk_name = "chunk{0}.wav".format(i) # Export all of the individual chunks as wav files and feed each chunk to model chunk.export(f"{folder_name}/{chunk_name}", format="wav") samples, sample_rate = librosa.load(f'{folder_name}/{chunk_name}', sr=16000) samples = librosa.resample(samples, sample_rate, 8000) ipd.Audio(samples, rate=8000) # here try catch is used because we do not want model to give error when a chunk is less than 1 sec # ideally last chunk of every file can be shorter than 1 sec which will cause error try: # load model model = load_model('C:\\Users\\<NAME>\\Desktop\\a2tc\\sound_model.h5') # reashape the file prob = model.predict(samples.reshape(1, 8000, 1)) # convert confidence to one max value of a class index = np.argmax(prob[0]) # send it to classes list to map the predicted class print(classes[index]) list_words.append(classes[index]) except: string = classes[random.randint(0, 29)] list_words.append(string) return concatenate(list_words) ``` #### File: portals/admins/views.py ```python from django.shortcuts import render from django.utils.decorators import method_decorator from django.views import View from django.views.decorators.csrf import csrf_exempt from .ai_utils import make_prediction_on_file @method_decorator(csrf_exempt, name='dispatch') class FormView(View): def get(self, request): return render(request, template_name='admins/dashboard.html') def post(self, request): try: file = request.FILES['file'] except: context = { 'error': 'File not found!' } return render(request, 'admins/dashboard.html', context) transcript = make_prediction_on_file(file) context = { 'data': transcript, 'error': '' } return render(request, 'admins/dashboard.html', context) filepath = "~/audio_wav/" # Input audio file path output_filepath = "~/Transcripts/" # Final transcript path bucketname = "callsaudiofiles" # Name of the bucket created in the step before ```
{ "source": "JhonyDev/cw-ai-expression-detector", "score": 2 }
#### File: src/accounts/models.py ```python from django.contrib.auth.models import AbstractUser from django.db import models from django_resized import ResizedImageField class User(AbstractUser): profile_image = ResizedImageField( upload_to='accounts/images/profiles/', null=True, blank=True, size=[250, 250], quality=75, force_format='PNG', help_text='size of logo must be 100*100 and format must be png image file', crop=['middle', 'center'] ) phone_number = models.CharField(max_length=30, null=True, blank=True) is_customer = models.BooleanField(default=True, blank=False, null=False) class Meta: ordering = ['-id'] verbose_name = 'User' verbose_name_plural = 'Users' def __str__(self): return self.username def delete(self, *args, **kwargs): self.profile_image.delete(save=True) super(User, self).delete(*args, **kwargs) ``` #### File: src/website/views.py ```python import uuid from django.http import HttpResponse, JsonResponse from django.shortcuts import render, redirect from django.utils.decorators import method_decorator from django.views import View from django.views.decorators.csrf import csrf_exempt from django.views.generic import TemplateView, ListView, DetailView from src.website.models import ScanImage, Session from . import ai_utils from django.forms.models import model_to_dict from rest_framework.response import Response from .serializers import ScanImageSerializer @method_decorator(csrf_exempt, name='dispatch') class HomeView(TemplateView): template_name = 'website/home.html' def get(self, request, *args, **kwargs): return render(request, template_name='website/home.html') def post(self, request, *args, **kwargs): from base64 import b64decode from core.settings import BASE_DIR, HOST_ADDRESS data_uri = request.POST['image'] session_pk = request.POST['session_pk'] header, encoded = data_uri.split(",", 1) data = b64decode(encoded) name = str('static_image.jpg') path = f"{BASE_DIR}\\media\\images\\{name}" address = f"images\\{name}" with open(path, "wb") as f: f.write(data) ''' Angry - 30 - 43 Disgust - 44 - 58 Fear - 87 - 100 Happy - 0 - 14 Sad - 59 - 73 Surprise - 74 - 86 Neutral - 15 - 29 ''' x, new_address = ai_utils.run(path) if new_address is not None: address = new_address stress = 0 if x == 'Fear': stress = 90 if x == 'Angry': stress = 37 if x == 'Disgust': stress = 52 if x == 'Happy': stress = 5 if x == 'Sad': stress = 65 if x == 'Surprise': stress = 80 if x == 'Neutral': stress = 20 try: session = Session.objects.get(pk=session_pk) except Session.DoesNotExist: return JsonResponse({'error': 'session not found'}) s = ScanImage.objects.create(session=session, image_url=address, stress_level=stress, status=x) return JsonResponse(ScanImageSerializer(s).data) class ImageListView(ListView): queryset = ScanImage.objects.all() template_name = 'website/scanimage_list.html' paginate_by = 20 def get_queryset(self): return ScanImage.objects.filter(session=self.kwargs['pk']) class ImageDetailView(DetailView): model = ScanImage template_name = 'website/scanimage_detail.html' class SessionListView(ListView): model = Session template_name = 'website/session_list.html' class StartSession(View): def get(self, request): print('Creating session') session = Session.objects.create(user=self.request.user) response = { 'session_pk': session.pk, } return JsonResponse(data=response, safe=False) ```
{ "source": "jhonykaesemodel/av2-api", "score": 2 }
#### File: evaluation/detection/eval.py ```python import logging from multiprocessing import get_context from typing import Dict, Final, List, Optional, Tuple import numpy as np import pandas as pd from av2.evaluation.detection.constants import NUM_DECIMALS, MetricNames, TruePositiveErrorNames from av2.evaluation.detection.utils import ( DetectionCfg, accumulate, compute_average_precision, groupby, load_mapped_avm_and_egoposes, ) from av2.geometry.se3 import SE3 from av2.map.map_api import ArgoverseStaticMap from av2.structures.cuboid import ORDERED_CUBOID_COL_NAMES from av2.utils.io import TimestampedCitySE3EgoPoses from av2.utils.typing import NDArrayBool, NDArrayFloat TP_ERROR_COLUMNS: Final[Tuple[str, ...]] = tuple(x.value for x in TruePositiveErrorNames) DTS_COLUMN_NAMES: Final[Tuple[str, ...]] = tuple(ORDERED_CUBOID_COL_NAMES) + ("score",) GTS_COLUMN_NAMES: Final[Tuple[str, ...]] = tuple(ORDERED_CUBOID_COL_NAMES) + ("num_interior_pts",) UUID_COLUMN_NAMES: Final[Tuple[str, ...]] = ( "log_id", "timestamp_ns", "category", ) logger = logging.getLogger(__name__) def evaluate( dts: pd.DataFrame, gts: pd.DataFrame, cfg: DetectionCfg, n_jobs: int = 8, ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: """Evaluate a set of detections against the ground truth annotations. Each sweep is processed independently, computing assignment between detections and ground truth annotations. Args: dts: (N,14) Table of detections. gts: (M,15) Table of ground truth annotations. cfg: Detection configuration. n_jobs: Number of jobs running concurrently during evaluation. Returns: (C+1,K) Table of evaluation metrics where C is the number of classes. Plus a row for their means. K refers to the number of evaluation metrics. Raises: RuntimeError: If accumulation fails. ValueError: If ROI pruning is enabled but a dataset directory is not specified. """ if cfg.eval_only_roi_instances and cfg.dataset_dir is None: raise ValueError( "ROI pruning has been enabled, but the dataset directory has not be specified. " "Please set `dataset_directory` to the split root, e.g. av2/sensor/val." ) # Sort both the detections and annotations by lexicographic order for grouping. dts = dts.sort_values(list(UUID_COLUMN_NAMES)) gts = gts.sort_values(list(UUID_COLUMN_NAMES)) dts_npy: NDArrayFloat = dts[list(DTS_COLUMN_NAMES)].to_numpy() gts_npy: NDArrayFloat = gts[list(GTS_COLUMN_NAMES)].to_numpy() dts_uuids: List[str] = dts[list(UUID_COLUMN_NAMES)].to_numpy().tolist() gts_uuids: List[str] = gts[list(UUID_COLUMN_NAMES)].to_numpy().tolist() # We merge the unique identifier -- the tuple of ("log_id", "timestamp_ns", "category") # into a single string to optimize the subsequent grouping operation. # `groupby_mapping` produces a mapping from the uuid to the group of detections / annotations # which fall into that group. uuid_to_dts = groupby([":".join(map(str, x)) for x in dts_uuids], dts_npy) uuid_to_gts = groupby([":".join(map(str, x)) for x in gts_uuids], gts_npy) log_id_to_avm: Optional[Dict[str, ArgoverseStaticMap]] = None log_id_to_timestamped_poses: Optional[Dict[str, TimestampedCitySE3EgoPoses]] = None # Load maps and egoposes if roi-pruning is enabled. if cfg.eval_only_roi_instances and cfg.dataset_dir is not None: logger.info("Loading maps and egoposes ...") log_ids: List[str] = gts.loc[:, "log_id"].unique().tolist() log_id_to_avm, log_id_to_timestamped_poses = load_mapped_avm_and_egoposes(log_ids, cfg.dataset_dir) args_list: List[Tuple[NDArrayFloat, NDArrayFloat, DetectionCfg, Optional[ArgoverseStaticMap], Optional[SE3]]] = [] uuids = sorted(uuid_to_dts.keys() | uuid_to_gts.keys()) for uuid in uuids: log_id, timestamp_ns, _ = uuid.split(":") args: Tuple[NDArrayFloat, NDArrayFloat, DetectionCfg, Optional[ArgoverseStaticMap], Optional[SE3]] sweep_dts: NDArrayFloat = np.zeros((0, 10)) sweep_gts: NDArrayFloat = np.zeros((0, 10)) if uuid in uuid_to_dts: sweep_dts = uuid_to_dts[uuid] if uuid in uuid_to_gts: sweep_gts = uuid_to_gts[uuid] args = sweep_dts, sweep_gts, cfg, None, None if log_id_to_avm is not None and log_id_to_timestamped_poses is not None: avm = log_id_to_avm[log_id] city_SE3_ego = log_id_to_timestamped_poses[log_id][int(timestamp_ns)] args = sweep_dts, sweep_gts, cfg, avm, city_SE3_ego args_list.append(args) logger.info("Starting evaluation ...") with get_context("spawn").Pool(processes=n_jobs) as p: outputs: Optional[List[Tuple[NDArrayFloat, NDArrayFloat]]] = p.starmap(accumulate, args_list) if outputs is None: raise RuntimeError("Accumulation has failed! Please check the integrity of your detections and annotations.") dts_list, gts_list = zip(*outputs) METRIC_COLUMN_NAMES = cfg.affinity_thresholds_m + TP_ERROR_COLUMNS + ("is_evaluated",) dts_metrics: NDArrayFloat = np.concatenate(dts_list) # type: ignore gts_metrics: NDArrayFloat = np.concatenate(gts_list) # type: ignore dts.loc[:, METRIC_COLUMN_NAMES] = dts_metrics gts.loc[:, METRIC_COLUMN_NAMES] = gts_metrics # Compute summary metrics. metrics = summarize_metrics(dts, gts, cfg) metrics.loc["AVERAGE_METRICS"] = metrics.mean() metrics = metrics.round(NUM_DECIMALS) return dts, gts, metrics def summarize_metrics( dts: pd.DataFrame, gts: pd.DataFrame, cfg: DetectionCfg, ) -> pd.DataFrame: """Calculate and print the 3D object detection metrics. Args: dts: (N,14) Table of detections. gts: (M,15) Table of ground truth annotations. cfg: Detection configuration. Returns: The summary metrics. """ # Sample recall values in the [0, 1] interval. recall_interpolated: NDArrayFloat = np.linspace(0, 1, cfg.num_recall_samples, endpoint=True) # Initialize the summary metrics. summary = pd.DataFrame( {s.value: cfg.metrics_defaults[i] for i, s in enumerate(tuple(MetricNames))}, index=cfg.categories ) average_precisions = pd.DataFrame({t: 0.0 for t in cfg.affinity_thresholds_m}, index=cfg.categories) for category in cfg.categories: # Find detections that have the current category. is_category_dts = dts["category"] == category # Only keep detections if they match the category and have NOT been filtered. is_valid_dts = np.logical_and(is_category_dts, dts["is_evaluated"]) # Get valid detections and sort them in descending order. category_dts = dts.loc[is_valid_dts].sort_values(by="score", ascending=False).reset_index(drop=True) # Find annotations that have the current category. is_category_gts = gts["category"] == category # Compute number of ground truth annotations. num_gts = gts.loc[is_category_gts, "is_evaluated"].sum() # Cannot evaluate without ground truth information. if num_gts == 0: continue for affinity_threshold_m in cfg.affinity_thresholds_m: true_positives: NDArrayBool = category_dts[affinity_threshold_m].astype(bool).to_numpy() # Continue if there aren't any true positives. if len(true_positives) == 0: continue # Compute average precision for the current threshold. threshold_average_precision, _ = compute_average_precision(true_positives, recall_interpolated, num_gts) # Record the average precision. average_precisions.loc[category, affinity_threshold_m] = threshold_average_precision mean_average_precisions: NDArrayFloat = average_precisions.loc[category].to_numpy().mean() # Select only the true positives for each instance. middle_idx = len(cfg.affinity_thresholds_m) // 2 middle_threshold = cfg.affinity_thresholds_m[middle_idx] is_tp_t = category_dts[middle_threshold].to_numpy().astype(bool) # Initialize true positive metrics. tp_errors: NDArrayFloat = np.array(cfg.tp_normalization_terms) # Check whether any true positives exist under the current threshold. has_true_positives = np.any(is_tp_t) # If true positives exist, compute the metrics. if has_true_positives: tp_error_cols = [str(x.value) for x in TruePositiveErrorNames] tp_errors = category_dts.loc[is_tp_t, tp_error_cols].to_numpy().mean(axis=0) # Convert errors to scores. tp_scores = 1 - np.divide(tp_errors, cfg.tp_normalization_terms) # Compute Composite Detection Score (CDS). cds = mean_average_precisions * np.mean(tp_scores) summary.loc[category] = np.array([mean_average_precisions, *tp_errors, cds]) # Return the summary. return summary ``` #### File: av2/geometry/interpolate.py ```python from typing import Final, Tuple import numpy as np from scipy.spatial.transform import Rotation, Slerp from av2.geometry.se3 import SE3 from av2.utils.typing import NDArrayFloat, NDArrayInt # For a single line segment NUM_CENTERLINE_INTERP_PTS: Final[int] = 10 def compute_lane_width(left_even_pts: NDArrayFloat, right_even_pts: NDArrayFloat) -> float: """Compute the width of a lane, given an explicit left and right boundary. Requires an equal number of waypoints on each boundary. For 3d polylines, this incorporates the height difference between the left and right polyline into the lane width as a hypotenuse of triangle formed by lane width in a flat plane, and the height difference. Args: left_even_pts: Numpy array of shape (N,2) or (N,3) right_even_pts: Numpy array of shape (N,2) or (N,3) Raises: ValueError: If the shapes of left_even_pts and right_even_pts don't match. Returns: float representing average width of a lane """ if left_even_pts.shape != right_even_pts.shape: raise ValueError( f"Shape of left_even_pts {left_even_pts.shape} did not match right_even_pts {right_even_pts.shape}" ) lane_width = float(np.mean(np.linalg.norm(left_even_pts - right_even_pts, axis=1))) # type: ignore return lane_width def compute_mid_pivot_arc(single_pt: NDArrayFloat, arc_pts: NDArrayFloat) -> Tuple[NDArrayFloat, float]: """Compute an arc by pivoting around a single point. Given a line of points on one boundary, and a single point on the other side, produce the middle arc we get by pivoting around the single point. Occurs when mapping cul-de-sacs. Args: single_pt: Numpy array of shape (2,) or (3,) representing a single 2d or 3d coordinate. arc_pts: Numpy array of shape (N,2) or (N,3) representing a 2d or 3d polyline. Returns: centerline_pts: Numpy array of shape (N,3) lane_width: average width of the lane. """ num_pts = len(arc_pts) # form ladder with equal number of vertices on each side single_pt_tiled = np.tile(single_pt, (num_pts, 1)) # type: ignore # compute midpoint for each rung of the ladder centerline_pts = (single_pt_tiled + arc_pts) / 2.0 lane_width = compute_lane_width(single_pt_tiled, arc_pts) return centerline_pts, lane_width def compute_midpoint_line( left_ln_boundary: NDArrayFloat, right_ln_boundary: NDArrayFloat, num_interp_pts: int = NUM_CENTERLINE_INTERP_PTS, ) -> Tuple[NDArrayFloat, float]: """Compute the midpoint line from left and right lane segments. Interpolate n points along each lane boundary, and then average the left and right waypoints. Note that the number of input waypoints along the left and right boundaries can be vastly different -- consider cul-de-sacs, for example. Args: left_ln_boundary: Numpy array of shape (M,2) right_ln_boundary: Numpy array of shape (N,2) num_interp_pts: number of midpoints to compute for this lane segment, except if it is a cul-de-sac, in which case the number of midpoints will be equal to max(M,N). Returns: centerline_pts: Numpy array of shape (N,2) representing centerline of ladder. Raises: ValueError: If the left and right lane boundaries aren't a list of 2d or 3d waypoints. """ if left_ln_boundary.ndim != 2 or right_ln_boundary.ndim != 2: raise ValueError("Left and right lane boundaries must consist of a sequence of 2d or 3d waypoints.") dim = left_ln_boundary.shape[1] if dim not in [2, 3]: raise ValueError("Left and right lane boundaries must be 2d or 3d.") if left_ln_boundary.shape[1] != right_ln_boundary.shape[1]: raise ValueError("Left ") if len(left_ln_boundary) == 1: centerline_pts, lane_width = compute_mid_pivot_arc(single_pt=left_ln_boundary, arc_pts=right_ln_boundary) return centerline_pts[:, :2], lane_width if len(right_ln_boundary) == 1: centerline_pts, lane_width = compute_mid_pivot_arc(single_pt=right_ln_boundary, arc_pts=left_ln_boundary) return centerline_pts[:, :2], lane_width # fall back to the typical case. left_even_pts = interp_arc(num_interp_pts, points=left_ln_boundary) right_even_pts = interp_arc(num_interp_pts, points=right_ln_boundary) centerline_pts = (left_even_pts + right_even_pts) / 2.0 # type: ignore lane_width = compute_lane_width(left_even_pts, right_even_pts) return centerline_pts, lane_width def interp_arc(t: int, points: NDArrayFloat) -> NDArrayFloat: """Linearly interpolate equally-spaced points along a polyline, either in 2d or 3d. We use a chordal parameterization so that interpolated arc-lengths will approximate original polyline chord lengths. Ref: <NAME> and <NAME>, Parameterization for curve interpolation. 2005. https://www.mathworks.com/matlabcentral/fileexchange/34874-interparc For the 2d case, we remove duplicate consecutive points, since these have zero distance and thus cause division by zero in chord length computation. Args: t: number of points that will be uniformly interpolated and returned points: Numpy array of shape (N,2) or (N,3), representing 2d or 3d-coordinates of the arc. Returns: Numpy array of shape (N,2) Raises: ValueError: If `points` is not in R^2 or R^3. """ if points.ndim != 2: raise ValueError("Input array must be (N,2) or (N,3) in shape.") # the number of points on the curve itself n, _ = points.shape # equally spaced in arclength -- the number of points that will be uniformly interpolated eq_spaced_points = np.linspace(0, 1, t) # Compute the chordal arclength of each segment. # Compute differences between each x coord, to get the dx's # Do the same to get dy's. Then the hypotenuse length is computed as a norm. chordlen: NDArrayFloat = np.linalg.norm(np.diff(points, axis=0), axis=1) # type: ignore # Normalize the arclengths to a unit total chordlen = chordlen / np.sum(chordlen) # cumulative arclength cumarc: NDArrayFloat = np.zeros(len(chordlen) + 1) cumarc[1:] = np.cumsum(chordlen) # which interval did each point fall in, in terms of eq_spaced_points? (bin index) tbins: NDArrayInt = np.digitize(eq_spaced_points, bins=cumarc).astype(int) # type: ignore # #catch any problems at the ends tbins[np.where((tbins <= 0) | (eq_spaced_points <= 0))] = 1 # type: ignore tbins[np.where((tbins >= n) | (eq_spaced_points >= 1))] = n - 1 s = np.divide((eq_spaced_points - cumarc[tbins - 1]), chordlen[tbins - 1]) anchors = points[tbins - 1, :] # broadcast to scale each row of `points` by a different row of s offsets = (points[tbins, :] - points[tbins - 1, :]) * s.reshape(-1, 1) points_interp: NDArrayFloat = anchors + offsets return points_interp def linear_interpolation( key_timestamps: Tuple[int, int], key_translations: Tuple[NDArrayFloat, NDArrayFloat], query_timestamp: int ) -> NDArrayFloat: """Given two 3d positions at specific timestamps, interpolate an intermediate position at a given timestamp. Args: key_timestamps: pair of integer-valued nanosecond timestamps (representing t0 and t1). key_translations: pair of (3,) arrays, representing 3d positions. query_timestamp: interpolate the position at this timestamp. Returns: interpolated translation (3,). Raises: ValueError: If query_timestamp does not fall within [t0,t1]. """ t0, t1 = key_timestamps if query_timestamp < t0 or query_timestamp > t1: raise ValueError("Query timestamp must be witin the interval [t0,t1].") interval = t1 - t0 t = (query_timestamp - t0) / interval vec = key_translations[1] - key_translations[0] # type: ignore translation_interp = key_translations[0] + vec * t # type: ignore return translation_interp def interpolate_pose(key_timestamps: Tuple[int, int], key_poses: Tuple[SE3, SE3], query_timestamp: int) -> SE3: """Given two SE(3) poses at specific timestamps, interpolate an intermediate pose at a given timestamp. Note: we use a straight line interpolation for the translation, while still using interpolate (aka "slerp") for the rotational component. Other implementations are possible, see: https://github.com/borglab/gtsam/blob/develop/gtsam/geometry/Pose3.h#L129 https://github.com/borglab/gtsam/blob/744db328e7ae537e71329e04cc141b3a28b0d6bd/gtsam/base/Lie.h#L327 Args: key_timestamps: list of timestamps, representing timestamps of the keyframes. key_poses: list of poses, representing the keyframes. query_timestamp: interpolate the pose at this timestamp. Returns: Inferred SE(3) pose at the query time. Raises: ValueError: If query_timestamp does not fall within [t0,t1]. """ t0, t1 = key_timestamps if query_timestamp < t0 or query_timestamp > t1: raise ValueError("Query timestamp must be witin the interval [t0,t1].") # Setup the fixed keyframe rotations and times key_rots = Rotation.from_matrix(np.array([kp.rotation for kp in key_poses])) slerp = Slerp(key_timestamps, key_rots) # Interpolate the rotations at the given time: R_interp = slerp(query_timestamp).as_matrix() key_translations = (key_poses[0].translation, key_poses[1].translation) t_interp = linear_interpolation(key_timestamps, key_translations=key_translations, query_timestamp=query_timestamp) pose_interp = SE3(rotation=R_interp, translation=t_interp) return pose_interp ``` #### File: av2/map/drivable_area.py ```python from __future__ import annotations from dataclasses import dataclass from typing import Any, Dict, List import numpy as np from av2.map.map_primitives import Point from av2.utils.typing import NDArrayFloat @dataclass class DrivableArea: """Represents a single polygon, not a polyline. Args: id: unique identifier. area_boundary: 3d vertices of polygon, representing the drivable area's boundary. """ id: int area_boundary: List[Point] @property def xyz(self) -> NDArrayFloat: """Return (N,3) array representing the ordered 3d coordinates of the polygon vertices.""" return np.vstack([wpt.xyz for wpt in self.area_boundary]) @classmethod def from_dict(cls, json_data: Dict[str, Any]) -> DrivableArea: """Generate object instance from dictionary read from JSON data.""" point_list = [Point(x=v["x"], y=v["y"], z=v["z"]) for v in json_data["area_boundary"]] # append the first vertex to the end of vertex list point_list.append(point_list[0]) return cls(id=json_data["id"], area_boundary=point_list) ``` #### File: av2/map/map_api.py ```python from __future__ import annotations import copy import logging import math from dataclasses import dataclass from enum import Enum from pathlib import Path from typing import Dict, Final, List, Optional, Tuple, Union import numpy as np import av2.geometry.interpolate as interp_utils import av2.utils.dilation_utils as dilation_utils import av2.utils.io as io_utils import av2.utils.raster as raster_utils from av2.geometry.sim2 import Sim2 from av2.map.drivable_area import DrivableArea from av2.map.lane_segment import LaneSegment from av2.map.pedestrian_crossing import PedestrianCrossing from av2.utils.typing import NDArrayBool, NDArrayByte, NDArrayFloat, NDArrayInt # 1 meter resolution is insufficient for the online-generated drivable area and ROI raster grids # these grids can be generated at an arbitrary resolution, from vector (polygon) objects. ONLINE_RASTER_RESOLUTION_M: Final[float] = 0.1 # 10 cm resolution ONLINE_RASTER_RESOLUTION_SCALE: Final[float] = 1 / ONLINE_RASTER_RESOLUTION_M GROUND_HEIGHT_THRESHOLD_M: Final[float] = 0.3 # 30 centimeters ROI_ISOCONTOUR_M: Final[float] = 5.0 # in meters ROI_ISOCONTOUR_GRID: Final[float] = ROI_ISOCONTOUR_M * ONLINE_RASTER_RESOLUTION_SCALE WPT_INFINITY_NORM_INTERP_NUM: Final[int] = 50 logger = logging.getLogger(__name__) class RasterLayerType(str, Enum): """Raster layer types.""" ROI = "ROI" DRIVABLE_AREA = "DRIVABLE_AREA" GROUND_HEIGHT = "GROUND_HEIGHT" @dataclass(frozen=True) class RasterMapLayer: """Data sampled at points along a regular grid, and a mapping from city coordinates to grid array coordinates.""" array: Union[NDArrayByte, NDArrayFloat] array_Sim2_city: Sim2 def get_raster_values_at_coords( self, points_xyz: NDArrayFloat, fill_value: Union[float, int] ) -> Union[NDArrayFloat, NDArrayInt]: """Index into a raster grid and extract values corresponding to city coordinates. Note: a conversion is required between city coordinates and raster grid coordinates, via Sim(2). Args: points_xyz: array of shape (N,2) or (N,3) representing coordinates in the city coordinate frame. fill_value: float representing default "raster" return value for out-of-bounds queries. Returns: raster_values: array of shape (N,) representing raster values at the N query coordinates. """ # Note: we do NOT round here, because we need to enforce scaled discretization. city_coords = points_xyz[:, :2] npyimage_coords = self.array_Sim2_city.transform_point_cloud(city_coords) npyimage_coords = npyimage_coords.astype(np.int64) # out of bounds values will default to the fill value, and will not be indexed into the array. # index in at (x,y) locations, which are (y,x) in the image raster_values = np.full((npyimage_coords.shape[0]), fill_value) # generate boolean array indicating whether the value at each index represents a valid coordinate. ind_valid_pts = ( (npyimage_coords[:, 1] >= 0) * (npyimage_coords[:, 1] < self.array.shape[0]) * (npyimage_coords[:, 0] >= 0) * (npyimage_coords[:, 0] < self.array.shape[1]) ) raster_values[ind_valid_pts] = self.array[npyimage_coords[ind_valid_pts, 1], npyimage_coords[ind_valid_pts, 0]] return raster_values @dataclass(frozen=True) class GroundHeightLayer(RasterMapLayer): """Rasterized ground height map layer. Stores the "ground_height_matrix" and also the array_Sim2_city: Sim(2) that produces takes point in city coordinates to numpy image/matrix coordinates, e.g. p_npyimage = array_Transformation_city * p_city """ @classmethod def from_file(cls, log_map_dirpath: Path) -> GroundHeightLayer: """Load ground height values (w/ values at 30 cm resolution) from .npy file, and associated Sim(2) mapping. Note: ground height values are stored on disk as a float16 2d-array, but cast to float32 once loaded for compatibility with matplotlib. Args: log_map_dirpath: path to directory which contains map files associated with one specific log/scenario. Returns: The ground height map layer. Raises: RuntimeError: If raster ground height layer file is missing or Sim(2) mapping from city to image coordinates is missing. """ ground_height_npy_fpaths = sorted(log_map_dirpath.glob("*_ground_height_surface____*.npy")) if not len(ground_height_npy_fpaths) == 1: raise RuntimeError("Raster ground height layer file is missing") Sim2_json_fpaths = sorted(log_map_dirpath.glob("*___img_Sim2_city.json")) if not len(Sim2_json_fpaths) == 1: raise RuntimeError("Sim(2) mapping from city to image coordinates is missing") # load the file with rasterized values ground_height_array: NDArrayFloat = np.load(ground_height_npy_fpaths[0]) # type: ignore array_Sim2_city = Sim2.from_json(Sim2_json_fpaths[0]) return cls(array=ground_height_array.astype(np.float32), array_Sim2_city=array_Sim2_city) def get_ground_points_boolean(self, points_xyz: NDArrayFloat) -> NDArrayBool: """Check whether each 3d point is likely to be from the ground surface. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. Returns: Numpy array of shape (N,) where ith entry is True if the 3d point (e.g. a LiDAR return) is likely located on the ground surface. Raises: ValueError: If `points_xyz` aren't 3d. """ if points_xyz.shape[1] != 3: raise ValueError("3-dimensional points must be provided to classify them as `ground` with the map.") ground_height_values = self.get_ground_height_at_xy(points_xyz) z = points_xyz[:, 2] near_ground: NDArrayBool = np.absolute(z - ground_height_values) <= GROUND_HEIGHT_THRESHOLD_M underground: NDArrayBool = z < ground_height_values is_ground_boolean_arr: NDArrayBool = near_ground | underground return is_ground_boolean_arr def get_rasterized_ground_height(self) -> Tuple[NDArrayFloat, Sim2]: """Get ground height matrix along with Sim(2) that maps matrix coordinates to city coordinates. Returns: ground_height_matrix: array_Sim2_city: Sim(2) that produces takes point in city coordinates to image coordinates, e.g. p_image = image_Transformation_city * p_city """ ground_height_matrix: NDArrayFloat = self.array.astype(float) return ground_height_matrix, self.array_Sim2_city def get_ground_height_at_xy(self, points_xyz: NDArrayFloat) -> NDArrayFloat: """Get ground height for each of the xy locations for all points {(x,y,z)} in a point cloud. Args: points_xyz: Numpy array of shape (K,2) or (K,3) Returns: Numpy array of shape (K,) """ ground_height_values: NDArrayFloat = self.get_raster_values_at_coords(points_xyz, fill_value=np.nan).astype( float ) return ground_height_values @dataclass(frozen=True) class DrivableAreaMapLayer(RasterMapLayer): """Rasterized drivable area map layer. This provides the "drivable area" as a binary segmentation mask in the bird's eye view. """ @classmethod def from_vector_data(cls, drivable_areas: List[DrivableArea]) -> DrivableAreaMapLayer: """Return a drivable area map from vector data. NOTE: This function provides "drivable area" as a binary segmentation mask in the bird's eye view. Args: drivable_areas: List of drivable areas. Returns: Driveable area map layer. """ # We compute scene boundaries on the fly, based on the vertices of all drivable area polygons. # These scene boundaries are used to define the raster grid extents. x_min, y_min, x_max, y_max = compute_data_bounds(drivable_areas) # The resolution of the rasterization will affect image dimensions. array_s_city = ONLINE_RASTER_RESOLUTION_SCALE img_h = int((y_max - y_min + 1) * array_s_city) img_w = int((x_max - x_min + 1) * array_s_city) # scale determines the resolution of the raster DA layer. array_Sim2_city = Sim2(R=np.eye(2), t=np.array([-x_min, -y_min]), s=array_s_city) # convert vertices for each polygon from a 3d array in city coordinates, to a 2d array # in image/array coordinates. da_polygons_img = [] for da_polygon_city in drivable_areas: da_polygon_img = array_Sim2_city.transform_from(da_polygon_city.xyz[:, :2]) da_polygon_img = np.round(da_polygon_img).astype(np.int32) # type: ignore da_polygons_img.append(da_polygon_img) da_mask = raster_utils.get_mask_from_polygons(da_polygons_img, img_h, img_w) return cls(array=da_mask, array_Sim2_city=array_Sim2_city) @dataclass(frozen=True) class RoiMapLayer(RasterMapLayer): """Rasterized Region of Interest (RoI) map layer. This layer provides the "region of interest" as a binary segmentation mask in the bird's eye view. """ @classmethod def from_drivable_area_layer(cls, drivable_area_layer: DrivableAreaMapLayer) -> RoiMapLayer: """Rasterize and return 3d vector drivable area as a 2d array, and dilate it by 5 meters, to return a ROI mask. Args: drivable_area_layer: Drivable map layer. Returns: ROI Layer, containing a (M,N) matrix representing a binary segmentation for the region of interest, and `array_Sim2_city`, Similarity(2) transformation that transforms point in the city coordinates to 2d array coordinates: p_array = array_Sim2_city * p_city """ # initialize ROI as zero-level isocontour of drivable area, and the dilate to 5-meter isocontour roi_mat_init: NDArrayByte = copy.deepcopy(drivable_area_layer.array).astype(np.uint8) roi_mask = dilation_utils.dilate_by_l2(roi_mat_init, dilation_thresh=ROI_ISOCONTOUR_GRID) return cls(array=roi_mask, array_Sim2_city=drivable_area_layer.array_Sim2_city) def compute_data_bounds(drivable_areas: List[DrivableArea]) -> Tuple[int, int, int, int]: """Find the minimum and maximum coordinates along the x and y axes for a set of drivable areas. Args: drivable_areas: list of drivable area objects, defined in the city coordinate frame. Returns: xmin: float representing minimum x-coordinate of any vertex of any provided drivable area. ymin: float representing minimum y-coordinate, as above. xmax: float representing maximum x-coordinate, as above. ymax: float representing maximum y-coordinate, as above. """ xmin = math.floor(min([da.xyz[:, 0].min() for da in drivable_areas])) ymin = math.floor(min([da.xyz[:, 1].min() for da in drivable_areas])) xmax = math.ceil(max([da.xyz[:, 0].max() for da in drivable_areas])) ymax = math.ceil(max([da.xyz[:, 1].max() for da in drivable_areas])) return xmin, ymin, xmax, ymax @dataclass class ArgoverseStaticMap: """API to interact with a local map for a single log (within a single city). Nodes in the lane graph are lane segments. Edges in the lane graph provided the lane segment connectivity, via left and right neighbors and successors. Lane segments are parameterized by 3d waypoints representing their left and right boundaries. Note: predecessors are implicit and available by reversing the directed graph dictated by successors. Args: log_id: unique identifier for log/scenario. vector_drivable_areas: drivable area polygons. Each polygon is represented by a Nx3 array of its vertices. Note: the first and last polygon vertex are identical (i.e. the first index is repeated). vector_lane_segments: lane segments that are local to this log/scenario. Consists of a mapping from lane segment ID to vector lane segment object, parameterized in 3d. vector_pedestrian_crossings: all pedestrian crossings (i.e. crosswalks) that are local to this log/scenario. Note: the lookup index is simply a list, rather than a dictionary-based mapping, since pedestrian crossings are not part of a larger graph. raster_drivable_area_layer: 2d raster representation of drivable area segmentation. raster_roi_layer: 2d raster representation of region of interest segmentation. raster_ground_height_layer: not provided for Motion Forecasting-specific scenarios/logs. """ # handle out-of-bounds lane segment ids with ValueError log_id: str vector_drivable_areas: Dict[int, DrivableArea] vector_lane_segments: Dict[int, LaneSegment] vector_pedestrian_crossings: Dict[int, PedestrianCrossing] raster_drivable_area_layer: Optional[DrivableAreaMapLayer] raster_roi_layer: Optional[RoiMapLayer] raster_ground_height_layer: Optional[GroundHeightLayer] @classmethod def from_json(cls, static_map_path: Path) -> ArgoverseStaticMap: """Instantiate an Argoverse static map object (without raster data) from a JSON file containing map data. Args: static_map_path: Path to the JSON file containing map data. The file name must match the following pattern: "log_map_archive_{log_id}.json". Returns: An Argoverse HD map. """ log_id = static_map_path.stem.split("log_map_archive_")[1] vector_data = io_utils.read_json_file(static_map_path) vector_drivable_areas = {da["id"]: DrivableArea.from_dict(da) for da in vector_data["drivable_areas"].values()} vector_lane_segments = {ls["id"]: LaneSegment.from_dict(ls) for ls in vector_data["lane_segments"].values()} if "pedestrian_crossings" not in vector_data: logger.error("Missing Pedestrian crossings!") vector_pedestrian_crossings = {} else: vector_pedestrian_crossings = { pc["id"]: PedestrianCrossing.from_dict(pc) for pc in vector_data["pedestrian_crossings"].values() } return cls( log_id=log_id, vector_drivable_areas=vector_drivable_areas, vector_lane_segments=vector_lane_segments, vector_pedestrian_crossings=vector_pedestrian_crossings, raster_drivable_area_layer=None, raster_roi_layer=None, raster_ground_height_layer=None, ) @classmethod def from_map_dir(cls, log_map_dirpath: Path, build_raster: bool = False) -> ArgoverseStaticMap: """Instantiate an Argoverse map object from data stored within a map data directory. Note: the ground height surface file and associated coordinate mapping is not provided for the 2.0 Motion Forecasting dataset, so `build_raster` defaults to False. If raster functionality is desired, users should pass `build_raster` to True (e.g. for the Sensor Datasets and Map Change Datasets). Args: log_map_dirpath: Path to directory containing scenario-specific map data, JSON file must follow this schema: "log_map_archive_{log_id}.json". build_raster: Whether to rasterize drivable areas, compute region of interest BEV binary segmentation, and to load raster ground height from disk (when available). Returns: The HD map. Raises: RuntimeError: If the vector map data JSON file is missing. """ # Load vector map data from JSON file vector_data_fnames = sorted(log_map_dirpath.glob("log_map_archive_*.json")) if not len(vector_data_fnames) == 1: raise RuntimeError(f"JSON file containing vector map data is missing (searched in {log_map_dirpath})") vector_data_fname = vector_data_fnames[0] vector_data_json_path = log_map_dirpath / vector_data_fname static_map = cls.from_json(vector_data_json_path) static_map.log_id = log_map_dirpath.parent.stem # Avoid file I/O and polygon rasterization when not needed if build_raster: drivable_areas: List[DrivableArea] = list(static_map.vector_drivable_areas.values()) static_map.raster_drivable_area_layer = DrivableAreaMapLayer.from_vector_data(drivable_areas=drivable_areas) static_map.raster_roi_layer = RoiMapLayer.from_drivable_area_layer(static_map.raster_drivable_area_layer) static_map.raster_ground_height_layer = GroundHeightLayer.from_file(log_map_dirpath) return static_map def get_scenario_vector_drivable_areas(self) -> List[DrivableArea]: """Fetch a list of polygons, whose union represents the drivable area for the log/scenario. NOTE: this function provides drivable areas in vector, not raster, format). Returns: List of drivable area polygons. """ return list(self.vector_drivable_areas.values()) def get_lane_segment_successor_ids(self, lane_segment_id: int) -> Optional[List[int]]: """Get lane id for the lane sucessor of the specified lane_segment_id. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: successor_ids: list of integers, representing lane segment IDs of successors. If there are no successor lane segments, then the list will be empty. """ successor_ids = self.vector_lane_segments[lane_segment_id].successors return successor_ids def get_lane_segment_left_neighbor_id(self, lane_segment_id: int) -> Optional[int]: """Get id of lane segment that is the left neighbor (if any exists) to the query lane segment id. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: integer representing id of left neighbor to the query lane segment id, or None if no such neighbor exists. """ return self.vector_lane_segments[lane_segment_id].left_neighbor_id def get_lane_segment_right_neighbor_id(self, lane_segment_id: int) -> Optional[int]: """Get id of lane segment that is the right neighbor (if any exists) to the query lane segment id. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: integer representing id of right neighbor to the query lane segment id, or None if no such neighbor exists. """ return self.vector_lane_segments[lane_segment_id].right_neighbor_id def get_scenario_lane_segment_ids(self) -> List[int]: """Get ids of all lane segments that are local to this log/scenario (according to l-infinity norm). Returns: list containing ids of local lane segments """ return list(self.vector_lane_segments.keys()) def get_lane_segment_centerline(self, lane_segment_id: int) -> NDArrayFloat: """Infer a 3D centerline for any particular lane segment by forming a ladder of left and right waypoints. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: Numpy array of shape (N,3). """ left_ln_bound = self.vector_lane_segments[lane_segment_id].left_lane_boundary.xyz right_ln_bound = self.vector_lane_segments[lane_segment_id].right_lane_boundary.xyz lane_centerline, _ = interp_utils.compute_midpoint_line( left_ln_boundary=left_ln_bound, right_ln_boundary=right_ln_bound, num_interp_pts=interp_utils.NUM_CENTERLINE_INTERP_PTS, ) return lane_centerline def get_lane_segment_polygon(self, lane_segment_id: int) -> NDArrayFloat: """Return an array contained coordinates of vertices that represent the polygon's boundary. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: Array of polygon boundary (K,3), with identical and last boundary points """ return self.vector_lane_segments[lane_segment_id].polygon_boundary def lane_is_in_intersection(self, lane_segment_id: int) -> bool: """Check if the specified lane_segment_id falls within an intersection. Args: lane_segment_id: unique identifier for a lane segment within a log scenario map (within a single city). Returns: boolean indicating if the lane segment falls within an intersection """ return self.vector_lane_segments[lane_segment_id].is_intersection def get_scenario_ped_crossings(self) -> List[PedestrianCrossing]: """Return a list of all pedestrian crossing objects that are local to this log/scenario (by l-infinity norm). Returns: lpcs: local pedestrian crossings """ return list(self.vector_pedestrian_crossings.values()) def get_nearby_ped_crossings(self, query_center: NDArrayFloat, search_radius_m: float) -> List[PedestrianCrossing]: """Return nearby pedestrian crossings. Returns pedestrian crossings for which any waypoint of their boundary falls within `search_radius_m` meters of query center, by l-infinity norm. Search radius defined in l-infinity norm (could also provide an l2 norm variant). Args: query_center: Numpy array of shape (2,) representing 2d query center. search_radius_m: distance threshold in meters (by infinity norm) to use for search. Raises: NotImplementedError: Always (not implemented!). """ raise NotImplementedError("This method isn't currently supported.") def get_scenario_lane_segments(self) -> List[LaneSegment]: """Return a list of all lane segments objects that are local to this log/scenario. Returns: vls_list: lane segments local to this scenario (any waypoint within 100m by L2 distance) """ return list(self.vector_lane_segments.values()) def get_nearby_lane_segments(self, query_center: NDArrayFloat, search_radius_m: float) -> List[LaneSegment]: """Return the nearby lane segments. Return lane segments for which any waypoint of their lane boundaries falls within search_radius meters of query center, by l-infinity norm. Args: query_center: Numpy array of shape (2,) representing 2d query center. search_radius_m: distance threshold in meters (by infinity norm) to use for search. Returns: ls_list: lane segments that fall within the requested search radius. """ scenario_lane_segments = self.get_scenario_lane_segments() return [ ls for ls in scenario_lane_segments if ls.is_within_l_infinity_norm_radius(query_center, search_radius_m) ] def remove_ground_surface(self, points_xyz: NDArrayFloat) -> NDArrayFloat: """Get a collection of 3d points, snap them to the grid, perform the O(1) raster map queries. If our z-height is within THRESHOLD of that grid's z-height, then we keep it; otherwise, discard it. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. Returns: subset of original point cloud, with ground points removed """ is_ground_boolean_arr = self.get_ground_points_boolean(points_xyz) filtered_points_xyz: NDArrayFloat = points_xyz[~is_ground_boolean_arr] return filtered_points_xyz def get_ground_points_boolean(self, points_xyz: NDArrayFloat) -> NDArrayBool: """Check whether each 3d point is likely to be from the ground surface. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. Returns: Numpy array of shape (N,) where ith entry is True if the 3d point (e.g. a LiDAR return) is likely located on the ground surface. Raises: ValueError: If `self.raster_ground_height_layer` is `None`. """ if self.raster_ground_height_layer is None: raise ValueError("Raster ground height is not loaded!") return self.raster_ground_height_layer.get_ground_points_boolean(points_xyz) def remove_non_drivable_area_points(self, points_xyz: NDArrayFloat) -> NDArrayFloat: """Decimate the point cloud to the drivable area only. Get a 3d point, snap it to the grid, perform the O(1) raster map query. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. Returns: subset of original point cloud, returning only those points lying within the drivable area. """ is_da_boolean_arr = self.get_raster_layer_points_boolean(points_xyz, layer_name=RasterLayerType.DRIVABLE_AREA) filtered_points_xyz: NDArrayFloat = points_xyz[is_da_boolean_arr] return filtered_points_xyz def remove_non_roi_points(self, points_xyz: NDArrayFloat) -> NDArrayFloat: """Decimate the point cloud to the Region of Interest (ROI) area only. Get a 3d point, snap it to the grid, perform the O(1) raster map query. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. Returns: subset of original point cloud, returning only those points lying within the ROI. """ is_da_boolean_arr = self.get_raster_layer_points_boolean(points_xyz, layer_name=RasterLayerType.ROI) filtered_points_xyz: NDArrayFloat = points_xyz[is_da_boolean_arr] return filtered_points_xyz def get_rasterized_drivable_area(self) -> Tuple[NDArrayByte, Sim2]: """Get the drivable area along with Sim(2) that maps matrix coordinates to city coordinates. Returns: da_matrix: Numpy array of shape (M,N) representing binary values for drivable area, or None if `build_raster=False`. array_Sim2_city: Sim(2) that produces takes point in city coordinates to Numpy array coordinates, e.g. p_array = array_Transformation_city * p_city Raises: ValueError: If `self.raster_drivable_area_layer` is `None`. """ if self.raster_drivable_area_layer is None: raise ValueError("Raster drivable area is not loaded!") raster_drivable_area_layer: NDArrayByte = self.raster_drivable_area_layer.array.astype(np.uint8) return raster_drivable_area_layer, self.raster_drivable_area_layer.array_Sim2_city def get_rasterized_roi(self) -> Tuple[NDArrayByte, Sim2]: """Get the drivable area along with Sim(2) that maps matrix coordinates to city coordinates. Returns: da_matrix: Numpy array of shape (M,N) representing binary values for drivable area. array_Sim2_city: Sim(2) that produces takes point in city coordinates to numpy image, e.g. p_npyimage = npyimage_Transformation_city * p_city Raises: ValueError: If `self.raster_roi_layer` is `None`. """ if self.raster_roi_layer is None: raise ValueError("Raster ROI is not loaded!") raster_roi_layer: NDArrayByte = self.raster_roi_layer.array.astype(np.uint8) return raster_roi_layer, self.raster_roi_layer.array_Sim2_city def get_raster_layer_points_boolean(self, points_xyz: NDArrayFloat, layer_name: RasterLayerType) -> NDArrayBool: """Query the binary segmentation layers (drivable area and ROI) at specific coordinates, to check values. Args: points_xyz: Numpy array of shape (N,3) representing 3d coordinates of N query locations. layer_name: enum indicating layer name, for either region-of-interest or drivable area. Returns: Numpy array of shape (N,) where i'th entry is True if binary segmentation is equal to 1 at the i'th point coordinate (i.e. is within the ROI, or within the drivable area, depending upon `layer_name` argument). Raises: ValueError: If `self.raster_roi_layer`, `self.raster_drivable_area_layer` is `None`. Additionally, if `layer_name` is not `roi` or `driveable_area`. """ if layer_name == RasterLayerType.ROI: if self.raster_roi_layer is None: raise ValueError("Raster ROI is not loaded!") layer_values = self.raster_roi_layer.get_raster_values_at_coords(points_xyz, fill_value=0) elif layer_name == RasterLayerType.DRIVABLE_AREA: if self.raster_drivable_area_layer is None: raise ValueError("Raster drivable area is not loaded!") layer_values = self.raster_drivable_area_layer.get_raster_values_at_coords(points_xyz, fill_value=0) else: raise ValueError("layer_name should be either `roi` or `drivable_area`.") is_layer_boolean_arr: NDArrayBool = layer_values == 1.0 return is_layer_boolean_arr def append_height_to_2d_city_pt_cloud(self, points_xy: NDArrayFloat) -> NDArrayFloat: """Accept 2d point cloud in xy plane and returns a 3d point cloud (xyz) by querying map for ground height. Args: points_xy: Numpy array of shape (N,2) representing 2d coordinates of N query locations. Returns: Numpy array of shape (N,3) representing 3d coordinates on the ground surface at N (x,y) query locations. Raises: ValueError: If `self.raster_ground_height_layer` is `None` or input is not a set of 2d coordinates. """ if self.raster_ground_height_layer is None: raise ValueError("Raster ground height is not loaded!") if points_xy.shape[1] != 2: raise ValueError("Input query points must have shape (N,2") points_z = self.raster_ground_height_layer.get_ground_height_at_xy(points_xy) points_xyz: NDArrayFloat = np.hstack([points_xy, points_z[:, np.newaxis]]) return points_xyz ``` #### File: av2/map/pedestrian_crossing.py ```python from __future__ import annotations from dataclasses import dataclass from typing import Any, Dict, Tuple import numpy as np from av2.map.map_primitives import Polyline from av2.utils.typing import NDArrayFloat @dataclass class PedestrianCrossing: """Represents a pedestrian crossing (i.e. crosswalk) as two edges along its principal axis. Both lines should be pointing in nominally the same direction and a pedestrian is expected to move either roughly parallel to both lines or anti-parallel to both lines. Args: id: unique identifier of this pedestrian crossing. edge1: 3d polyline representing one edge of the crosswalk, with 2 waypoints. edge2: 3d polyline representing the other edge of the crosswalk, with 2 waypoints. """ id: int edge1: Polyline edge2: Polyline def get_edges_2d(self) -> Tuple[NDArrayFloat, NDArrayFloat]: """Retrieve the two principal edges of the crosswalk, in 2d. Returns: edge1: array of shape (2,2), a 2d polyline representing one edge of the crosswalk, with 2 waypoints. edge2: array of shape (2,2), a 2d polyline representing the other edge of the crosswalk, with 2 waypoints. """ return (self.edge1.xyz[:, :2], self.edge2.xyz[:, :2]) def __eq__(self, other: object) -> bool: """Check if two pedestrian crossing objects are equal, up to a tolerance.""" if not isinstance(other, PedestrianCrossing): return False return np.allclose(self.edge1.xyz, other.edge1.xyz) and np.allclose(self.edge2.xyz, other.edge2.xyz) @classmethod def from_dict(cls, json_data: Dict[str, Any]) -> PedestrianCrossing: """Generate a PedestrianCrossing object from a dictionary read from JSON data.""" edge1 = Polyline.from_json_data(json_data["edge1"]) edge2 = Polyline.from_json_data(json_data["edge2"]) return PedestrianCrossing(id=json_data["id"], edge1=edge1, edge2=edge2) @property def polygon(self) -> NDArrayFloat: """Return the vertices of the polygon representing the pedestrian crossing. Returns: array of shape (N,3) representing vertices. The first and last vertex that are provided are identical. """ v0, v1 = self.edge1.xyz v2, v3 = self.edge2.xyz return np.array([v0, v1, v3, v2, v0]) ``` #### File: av2/utils/dataclass.py ```python import itertools from dataclasses import is_dataclass import numpy as np import pandas as pd def dataclass_eq(base_dataclass: object, other: object) -> bool: """Check if base_dataclass is equal to the other object, with proper handling for numpy array fields. Args: base_dataclass: Base dataclass to compare against. other: Other object to compare against the base dataclass. Raises: ValueError: If base_dataclass is not an instance of a dataclass. Returns: Flag indicating whether base_dataclass and the other object are considered equal. """ if not is_dataclass(base_dataclass): raise ValueError(f"'{base_dataclass.__class__.__name__}' is not a dataclass!") # Check whether the two objects point to the same instance if base_dataclass is other: return True # Check whether the two objects are both dataclasses of the same type if base_dataclass.__class__ is not other.__class__: return False # Check whether the dataclasses have equal values in all members base_tuple = vars(base_dataclass).values() other_tuple = vars(other).values() return all(_dataclass_member_eq(base_mem, other_mem) for base_mem, other_mem in zip(base_tuple, other_tuple)) def _dataclass_member_eq(base: object, other: object) -> bool: """Check if dataclass members base and other are equal, with proper handling for numpy arrays. Args: base: Base object to compare against. other: Other object to compare against the base object. Returns: Bool flag indicating whether objects a and b are equal. """ # Objects are equal if they point to the same instance if base is other: return True # If both objects are lists, check equality for all members if isinstance(base, list) and isinstance(other, list): return all(_dataclass_member_eq(base_i, other_i) for base_i, other_i in itertools.zip_longest(base, other)) # If both objects are np arrays, delegate equality check to numpy's built-in operation if isinstance(base, np.ndarray) and isinstance(other, np.ndarray): return bool(np.array_equal(base, other)) # If both objects are pd dataframes, delegate equality check to pandas' built-in operation if isinstance(base, pd.DataFrame) and isinstance(other, pd.DataFrame): return bool(pd.DataFrame.equals(base, other)) # Equality checks for all other types are delegated to the standard equality check try: return bool(base == other) except (TypeError, ValueError): return False ``` #### File: datasets/sensor/test_av2_sensor_dataloader.py ```python from pathlib import Path import numpy as np from av2.datasets.sensor.av2_sensor_dataloader import AV2SensorDataLoader from av2.geometry.se3 import SE3 from av2.utils.typing import NDArrayFloat def test_get_subsampled_ego_trajectory(test_data_root_dir: Path) -> None: """Ensure we can sample the poses at a specific frequency. Args: test_data_root_dir: Path to the root dir for test data (provided via fixture). """ log_id = "adcf7d18-0510-35b0-a2fa-b4cea13a6d76" dataroot = test_data_root_dir / "sensor_dataset_logs" loader = AV2SensorDataLoader(data_dir=dataroot, labels_dir=dataroot) # retrieve every pose! (sub-nanosecond precision) traj_ns = loader.get_subsampled_ego_trajectory(log_id=log_id, sample_rate_hz=1e9) assert traj_ns.shape == (2637, 2) # retrieve poses @ 1 Hz traj_1hz = loader.get_subsampled_ego_trajectory(log_id=log_id, sample_rate_hz=1) # 16 second log segment. assert traj_1hz.shape == (16, 2) def test_get_city_SE3_ego(test_data_root_dir: Path) -> None: """Ensure we can obtain the egovehicle's pose in the city coordinate frame at a specific timestamp. Args: test_data_root_dir: Path to the root dir for test data (provided via fixture). """ log_id = "adcf7d18-0510-35b0-a2fa-b4cea13a6d76" timestamp_ns = 315973157899927216 dataroot = test_data_root_dir / "sensor_dataset_logs" loader = AV2SensorDataLoader(data_dir=dataroot, labels_dir=dataroot) city_SE3_egovehicle = loader.get_city_SE3_ego(log_id=log_id, timestamp_ns=timestamp_ns) assert isinstance(city_SE3_egovehicle, SE3) expected_translation: NDArrayFloat = np.array([1468.87, 211.51, 13.14]) assert np.allclose(city_SE3_egovehicle.translation, expected_translation, atol=1e-2) ``` #### File: datasets/sensor/test_sensor_dataloader.py ```python import tempfile from pathlib import Path from typing import Dict, Final, List from av2.datasets.sensor.av2_sensor_dataloader import AV2SensorDataLoader from av2.datasets.sensor.constants import RingCameras from av2.datasets.sensor.sensor_dataloader import SensorDataloader SENSOR_TIMESTAMPS_MS_DICT: Final[Dict[str, List[int]]] = { "ring_rear_left": [0, 50, 100, 150, 200, 250, 300, 350, 400, 450], "ring_side_left": [15, 65, 115, 165, 215, 265, 315, 365, 415, 465], "ring_front_left": [30, 80, 130, 180, 230, 280, 330, 380, 430, 480], "ring_front_center": [42, 92, 142, 192, 242, 292, 342, 392, 442, 492], "ring_front_right": [5, 55, 105, 155, 205, 255, 305, 355, 405, 455], "ring_side_right": [20, 70, 120, 170, 220, 270, 320, 370, 420, 470], "ring_rear_right": [35, 85, 135, 185, 235, 285, 335, 385, 435, 485], "lidar": [2, 102, 202, 303, 402, 502, 603, 702, 802, 903], } def _create_dummy_sensor_dataloader(log_id: str) -> SensorDataloader: """Create a dummy sensor dataloader.""" with Path(tempfile.TemporaryDirectory().name) as sensor_dataset_dir: for sensor_name, timestamps_ms in SENSOR_TIMESTAMPS_MS_DICT.items(): for t in timestamps_ms: if "ring" in sensor_name: fpath = Path( sensor_dataset_dir, "dummy", log_id, "sensors", "cameras", sensor_name, f"{int(t*1e6)}.jpg" ) Path(fpath).parent.mkdir(exist_ok=True, parents=True) fpath.open("w").close() elif "lidar" in sensor_name: fpath = Path(sensor_dataset_dir, "dummy", log_id, "sensors", sensor_name, f"{int(t*1e6)}.feather") Path(fpath).parent.mkdir(exist_ok=True, parents=True) fpath.open("w").close() return SensorDataloader(dataset_dir=sensor_dataset_dir, with_cache=False) def test_sensor_data_loader_milliseconds() -> None: """Test that the sensor dataset dataloader can synchronize lidar and image data. Given toy data in milliseconds, we write out dummy files at corresponding timestamps. (Sensor timestamps are real, and come from log 00a6ffc1-6ce9-3bc3-a060-6006e9893a1a). sensor_name timestamp_ns ring_front_center ... 0 lidar 2000000 42000000.0 1 lidar 102000000 92000000.0 2 lidar 202000000 192000000.0 3 lidar 303000000 292000000.0 4 lidar 402000000 392000000.0 5 lidar 502000000 492000000.0 6 lidar 603000000 NaN 7 lidar 702000000 NaN 8 lidar 802000000 NaN 9 lidar 903000000 NaN """ # 7x10 images, and 10 sweeps. Timestamps below given in human-readable milliseconds. log_id = "00a6ffc1-6ce9-3bc3-a060-6006e9893a1a" loader = _create_dummy_sensor_dataloader(log_id=log_id) # LiDAR 402 -> matches to ring front center 392. img_fpath = loader.find_closest_target_fpath( split="dummy", log_id=log_id, src_sensor_name="lidar", src_timestamp_ns=int(402 * 1e6), target_sensor_name="ring_front_center", ) assert isinstance(img_fpath, Path) # result should be 392 milliseconds (and then a conversion to nanoseconds by adding 6 zeros) assert img_fpath.name == "392" + "000000" + ".jpg" # nothing should be within bounds for this (valid lidar timestamp 903) img_fpath = loader.find_closest_target_fpath( split="dummy", log_id=log_id, src_sensor_name="lidar", target_sensor_name="ring_front_center", src_timestamp_ns=int(903 * 1e6), ) assert img_fpath is None # nothing should be within bounds for this (invalid lidar timestamp 904) img_fpath = loader.find_closest_target_fpath( split="dummy", log_id=log_id, src_sensor_name="lidar", target_sensor_name="ring_front_center", src_timestamp_ns=int(904 * 1e6), ) assert img_fpath is None # ring front center 392 -> matches to LiDAR 402. lidar_fpath = loader.find_closest_target_fpath( split="dummy", log_id=log_id, src_sensor_name="ring_front_center", target_sensor_name="lidar", src_timestamp_ns=int(392 * 1e6), ) assert isinstance(lidar_fpath, Path) # result should be 402 milliseconds (and then a conversion to nanoseconds by adding 6 zeros) assert lidar_fpath.name == "402" + "000000.feather" # way outside of bounds lidar_fpath = loader.find_closest_target_fpath( split="dummy", log_id=log_id, src_sensor_name="ring_front_center", target_sensor_name="lidar", src_timestamp_ns=int(7000 * 1e6), ) assert lidar_fpath is None # use the non-pandas implementation as a "brute-force" (BF) check. # read out the dataset root from the other dataloader's attributes. bf_loader = AV2SensorDataLoader(data_dir=loader.dataset_dir / "dummy", labels_dir=loader.dataset_dir / "dummy") # for every image, make sure query result matches the brute-force query result. for ring_camera_enum in RingCameras: ring_camera_name = ring_camera_enum.value for cam_timestamp_ms in SENSOR_TIMESTAMPS_MS_DICT[ring_camera_name]: cam_timestamp_ns = int(cam_timestamp_ms * 1e6) result = loader.get_closest_lidar_fpath( split="dummy", log_id=log_id, cam_name=ring_camera_name, cam_timestamp_ns=cam_timestamp_ns ) bf_result = bf_loader.get_closest_lidar_fpath(log_id=log_id, cam_timestamp_ns=cam_timestamp_ns) assert result == bf_result # for every lidar sweep, make sure query result matches the brute-force query result. for lidar_timestamp_ms in SENSOR_TIMESTAMPS_MS_DICT["lidar"]: lidar_timestamp_ns = int(lidar_timestamp_ms * 1e6) for ring_camera_enum in list(RingCameras): ring_camera_name = ring_camera_enum.value result = loader.get_closest_img_fpath( split="dummy", log_id=log_id, cam_name=ring_camera_name, lidar_timestamp_ns=lidar_timestamp_ns ) bf_result = bf_loader.get_closest_img_fpath( log_id=log_id, cam_name=ring_camera_name, lidar_timestamp_ns=lidar_timestamp_ns ) assert result == bf_result if __name__ == "__main__": test_sensor_data_loader_milliseconds() ``` #### File: evaluation/detection/test_eval.py ```python import math from pathlib import Path from typing import Final, List import numpy as np import pandas as pd from scipy.spatial.transform import Rotation from av2.evaluation.detection.constants import AffinityType, DistanceType from av2.evaluation.detection.eval import evaluate from av2.evaluation.detection.utils import ( DetectionCfg, accumulate, assign, compute_affinity_matrix, compute_evaluated_dts_mask, compute_evaluated_gts_mask, compute_objects_in_roi_mask, distance, interpolate_precision, ) from av2.geometry.geometry import wrap_angles from av2.geometry.iou import iou_3d_axis_aligned from av2.map.map_api import ArgoverseStaticMap from av2.structures.cuboid import ORDERED_CUBOID_COL_NAMES from av2.utils.constants import PI from av2.utils.io import read_city_SE3_ego, read_feather from av2.utils.typing import NDArrayBool, NDArrayFloat TEST_DATA_DIR: Final[Path] = Path(__file__).parent.resolve() / "data" TRANSLATION_COLS: Final[List[str]] = ["tx_m", "ty_m", "tz_m"] DIMS_COLS: Final[List[str]] = ["length_m", "width_m", "height_m"] QUAT_COLS: Final[List[str]] = ["qw", "qx", "qy", "qz"] ANNO_COLS: Final[List[str]] = ["timestamp_ns", "category"] + DIMS_COLS + QUAT_COLS + TRANSLATION_COLS CUBOID_COLS: Final[List[str]] = ["tx_m", "ty_m", "tz_m", "length_m", "width_m", "height_m", "qw", "qx", "qy", "qz"] def _get_summary_identity() -> pd.DataFrame: """Define an evaluator that compares a set of results to itself.""" detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) dts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "detections_identity.feather") gts: pd.DataFrame = dts.copy() gts.loc[:, "num_interior_pts"] = np.array([1, 1, 1, 1, 1, 1]) _, _, summary = evaluate(dts, gts, detection_cfg) return summary def _get_summary_assignment() -> pd.DataFrame: """Define an evaluator that compares a set of results to one with an extra detection to check assignment.""" detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) dts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "detections_assignment.feather") gts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "labels.feather") _, _, summary = evaluate(dts, gts, detection_cfg) return summary def _get_summary() -> pd.DataFrame: """Get a dummy summary.""" detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) dts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "detections.feather") gts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "labels.feather") _, _, summary = evaluate(dts, gts, detection_cfg) return summary def test_affinity_center() -> None: """Initialize a detection and a ground truth label. Verify that calculated distance matches expected affinity under the specified `AffFnType`. """ dts: NDArrayFloat = np.array([[0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0]]) gts: NDArrayFloat = np.array([[3.0, 4.0, 0.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0]]) expected_result = -5.0 assert compute_affinity_matrix(dts, gts, AffinityType.CENTER) == expected_result def test_translation_distance() -> None: """Initialize a detection and a ground truth label with only translation parameters. Verify that calculated distance matches expected distance under the specified `DistFnType`. """ dts: NDArrayFloat = np.array([[0.0, 0.0, 0.0]]) gts: NDArrayFloat = np.array([[5.0, 5.0, 5.0]]) expected_result: float = np.sqrt(25 + 25 + 25) assert np.allclose(distance(dts, gts, DistanceType.TRANSLATION), expected_result) def test_scale_distance() -> None: """Initialize a detection and a ground truth label with only shape parameters. Verify that calculated scale error matches the expected value. NOTE: We only provide shape parameters due to alignment assumption. """ dts: NDArrayFloat = np.array([[5.0, 5.0, 5.0]]) gts: NDArrayFloat = np.array([[10.0, 10.0, 10.0]]) expected_result: float = 1 - 0.125 assert np.allclose(distance(dts, gts, DistanceType.SCALE), expected_result) def test_orientation_quarter_angles() -> None: """Initialize a detection and a ground truth label with only orientation parameters. Verify that calculated orientation error matches the expected smallest angle ((2 * PI) / 4) between the detection and ground truth label. """ # Check all of the 90 degree angles expected_result: float = (2 * PI) / 4 quarter_angles: List[NDArrayFloat] = [np.array([0, 0, angle]) for angle in np.arange(0, 2 * PI, expected_result)] for i in range(len(quarter_angles) - 1): quat_xyzw_dts: NDArrayFloat = Rotation.from_rotvec(quarter_angles[i : i + 1]).as_quat() quat_xyzw_gts: NDArrayFloat = Rotation.from_rotvec(quarter_angles[i + 1 : i + 2]).as_quat() quat_wxyz_dts = quat_xyzw_dts[..., [3, 0, 1, 2]] quat_wxyz_gts = quat_xyzw_gts[..., [3, 0, 1, 2]] assert np.isclose(distance(quat_wxyz_dts, quat_wxyz_gts, DistanceType.ORIENTATION), expected_result) assert np.isclose(distance(quat_wxyz_gts, quat_wxyz_dts, DistanceType.ORIENTATION), expected_result) def test_orientation_eighth_angles() -> None: """Initialize a detection and a ground truth label with only orientation parameters. Verify that calculated orientation error matches the expected smallest angle ((2 * PI) / 8) between the detection and ground truth label. """ expected_result: float = (2 * PI) / 8 eigth_angles: List[NDArrayFloat] = [np.array([0, 0, angle]) for angle in np.arange(0, 2 * PI, expected_result)] for i in range(len(eigth_angles) - 1): quat_xyzw_dts = Rotation.from_rotvec(eigth_angles[i : i + 1]).as_quat() quat_xyzw_gts = Rotation.from_rotvec(eigth_angles[i + 1 : i + 2]).as_quat() quat_wxyz_dts = quat_xyzw_dts[..., [3, 0, 1, 2]] quat_wxyz_gts = quat_xyzw_gts[..., [3, 0, 1, 2]] assert np.isclose(distance(quat_wxyz_dts, quat_wxyz_gts, DistanceType.ORIENTATION), expected_result) assert np.isclose(distance(quat_wxyz_gts, quat_wxyz_dts, DistanceType.ORIENTATION), expected_result) def test_wrap_angle() -> None: """Test mapping angles to a fixed interval.""" theta: NDArrayFloat = np.array([-3 * PI / 2]) expected_result: NDArrayFloat = np.array([PI / 2]) assert np.isclose(wrap_angles(theta), expected_result) def test_accumulate() -> None: """Verify that the accumulate function matches known output for a self-comparison.""" cfg = DetectionCfg(eval_only_roi_instances=False) gts: pd.DataFrame = pd.read_feather(TEST_DATA_DIR / "labels.feather") for _, group in gts.groupby(["log_id", "timestamp_ns"]): job = (group.loc[:, CUBOID_COLS].to_numpy(), group.loc[:, CUBOID_COLS + ["num_interior_pts"]].to_numpy(), cfg) dts, gts = accumulate(*job) # Check that there's a true positive under every threshold. assert np.all(dts[:, :4]) # Check that all error metrics are zero. assert (dts[:, 4:7] == 0).all() # # Check that there are 2 regular vehicles. # assert gts["category"].value_counts()["REGULAR_VEHICLE"] == 2 # # Check that there are no other labels. # assert gts["category"].value_counts().sum() == 2 def test_assign() -> None: """Verify that the assign functions as expected by checking ATE of assigned detections against known distance.""" cfg = DetectionCfg(eval_only_roi_instances=False) dts: NDArrayFloat = np.array( [ [0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], [10.0, 10.0, 10.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], [20.0, 20.0, 20.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], ], ) gts: NDArrayFloat = np.array( [ [-10.0, -10.0, -10.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], [0.1, 0.0, 0.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], [10.1, 10.0, 10.0, 5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 1.0], ], ) dts_assignments, _ = assign(dts, gts, cfg) # if these assign correctly, we should get an ATE of 0.1 for the first two expected_result: float = 0.1 ATE_COL_IDX = 4 assert math.isclose(dts_assignments[0, ATE_COL_IDX], expected_result) # instance 0 assert math.isclose(dts_assignments[1, ATE_COL_IDX], expected_result) # instance 1 assert math.isclose(dts_assignments[2, ATE_COL_IDX], 2.0) # instance 32 def test_interp() -> None: """Test non-decreasing `interpolation` constraint enforced on precision results.""" prec: NDArrayFloat = np.array([1.0, 0.5, 0.33, 0.5]) expected_result: NDArrayFloat = np.array([1.0, 0.5, 0.5, 0.5]) assert np.isclose(interpolate_precision(prec), expected_result).all() def test_iou_aligned_3d() -> None: """Initialize a detection and a ground truth label with only shape parameters. Verify that calculated intersection-over-union matches the expected value between the detection and ground truth label. NOTE: We only provide shape parameters due to alignment assumption. """ columns = DIMS_COLS dt_dims: NDArrayFloat = pd.DataFrame([[4.0, 10.0, 3.0]], columns=columns).to_numpy() gt_dims: NDArrayFloat = pd.DataFrame([[9.0, 5.0, 2.0]], columns=columns).to_numpy() # Intersection is 40 = 4 * 5 * 2 (min of all dimensions). # Union is the sum of the two volumes, minus intersection: 270 = (10 * 3 * 4) + (5 * 2 * 9) - 40. expected_result: float = 40 / 270.0 assert iou_3d_axis_aligned(dt_dims, gt_dims) == expected_result def test_assignment() -> None: """Verify that assignment works as expected; should have one duplicate in the provided results.""" expected_result: float = 0.999 assert _get_summary_assignment().loc["AVERAGE_METRICS", "AP"] == expected_result def test_ap() -> None: """Test that AP is 1 for the self-compared results.""" expected_result: float = 1.0 assert _get_summary_identity().loc["AVERAGE_METRICS", "AP"] == expected_result def test_translation_error() -> None: """Test that ATE is 0 for the self-compared results.""" expected_result_identity: float = 0.0 expected_result_det: float = 0.017 # 0.1 / 6, one of six dets is off by 0.1 assert _get_summary_identity().loc["AVERAGE_METRICS", "ATE"] == expected_result_identity assert _get_summary().loc["AVERAGE_METRICS", "ATE"] == expected_result_det def test_scale_error() -> None: """Test that ASE is 0 for the self-compared results.""" expected_result_identity: float = 0.0 expected_result_det: float = 0.033 # 0.2 / 6, one of six dets is off by 20% in IoU assert _get_summary_identity().loc["AVERAGE_METRICS", "ASE"] == expected_result_identity assert _get_summary().loc["AVERAGE_METRICS", "ASE"] == expected_result_det def test_orientation_error() -> None: """Test that AOE is 0 for the self-compared results.""" expected_result_identity = 0.0 expected_result_det = 0.524 # pi / 6, since one of six dets is off by pi assert _get_summary_identity().loc["AVERAGE_METRICS", "AOE"] == expected_result_identity assert _get_summary().loc["AVERAGE_METRICS", "AOE"] == expected_result_det def test_compute_evaluated_dts_mask() -> None: """Unit test for computing valid detections cuboids.""" dts: NDArrayFloat = np.array( [ [5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0], # In bounds with at least 1 point. [175, 175.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0], # Out of bounds with at least 1 point. [-175.0, -175.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0], # Out of bounds with at least 1 point. [1.0, 1.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0], # In bounds with at least 1 point. ], ) detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) dts_mask = compute_evaluated_dts_mask(dts, detection_cfg) dts_mask_: NDArrayBool = np.array([True, False, False, True]) np.testing.assert_array_equal(dts_mask, dts_mask_) # type: ignore def test_compute_evaluated_dts_mask_2() -> None: """Randomly generate detections and ensure that they never exceed the maximum detection limit.""" detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) for i in range(1000): dts: NDArrayFloat = np.random.randint(0, 250, size=(detection_cfg.max_num_dts_per_category + i, 10)).astype( float ) dts_mask = compute_evaluated_dts_mask(dts, detection_cfg) assert dts_mask.sum() <= detection_cfg.max_num_dts_per_category def test_compute_evaluated_gts_mask() -> None: """Unit test for computing valid ground truth cuboids.""" gts: NDArrayFloat = np.array( [ [5.0, 5.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0, 5], # In bounds with at least 1 point. [175, 175.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0, 5], # Out of bounds with at least 1 point. [-175.0, -175.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0, 5], # Out of bounds with at least 1 point. [1.0, 1.0, 5.0, 1.0, 0.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0], # In bounds with at least 1 point. ], ) detection_cfg = DetectionCfg(categories=("REGULAR_VEHICLE",), eval_only_roi_instances=False) gts_xyz_ego = gts[..., :3] num_interior_pts = gts[..., -1] gts_mask = compute_evaluated_gts_mask(gts_xyz_ego, num_interior_pts, detection_cfg) gts_mask_: NDArrayBool = np.array([True, False, False, False]) np.testing.assert_array_equal(gts_mask, gts_mask_) # type: ignore def test_compute_objects_in_roi_mask() -> None: """Test filtering ground truth annotations by the ROI. Three annotations are tested. The first and third are partially in the ROI --- these are both considered VALID since they have at least on of their cuboid vertices within the ROI. The second annotations is _FULLY_ outside of the ROI, thus it is filtered. """ map_dir = TEST_DATA_DIR / "adcf7d18-0510-35b0-a2fa-b4cea13a6d76" / "map" timestamp_ns = 315973157959879000 track_uuids = [ "f53639ef-794e-420e-bb2a-d0cde0203b3a", # Two vertices within ROI. "6c198de2-cb7d-4c09-96aa-52547d9bbe37", # Completely outside of ROI. "a7c8f6a2-26b6-4610-9eb3-294799f9846c", # Two vertices within ROI. ] avm = ArgoverseStaticMap.from_map_dir(map_dir, build_raster=True) annotations = read_feather(TEST_DATA_DIR / "adcf7d18-0510-35b0-a2fa-b4cea13a6d76" / "annotations.feather") timestamped_city_SE3_egoposes = read_city_SE3_ego(TEST_DATA_DIR / "adcf7d18-0510-35b0-a2fa-b4cea13a6d76") selected_cuboids_mask = np.logical_and( annotations.timestamp_ns == timestamp_ns, annotations["track_uuid"].isin(track_uuids) ) sweep_annotations = annotations.loc[selected_cuboids_mask] mask = compute_objects_in_roi_mask( sweep_annotations.loc[:, ORDERED_CUBOID_COL_NAMES].to_numpy(), timestamped_city_SE3_egoposes[timestamp_ns], avm ) mask_: NDArrayBool = np.array([True, False, True]) np.testing.assert_array_equal(mask, mask_) # type: ignore ``` #### File: tests/geometry/test_pinhole_camera.py ```python from pathlib import Path from typing import Tuple import numpy as np import pytest from av2.datasets.sensor.constants import RingCameras from av2.geometry.camera.pinhole_camera import Intrinsics, PinholeCamera from av2.geometry.se3 import SE3 from av2.utils.typing import NDArrayFloat, NDArrayInt _TEST_DATA_ROOT = Path(__file__).resolve().parent.parent / "test_data" def _create_pinhole_camera( fx_px: float, fy_px: float, cx_px: float, cy_px: float, height_px: int, width_px: int, cam_name: str, ) -> PinholeCamera: """Create a pinhole camera.""" rotation: NDArrayFloat = np.eye(3) translation: NDArrayFloat = np.zeros(3) ego_SE3_cam = SE3(rotation=rotation, translation=translation) intrinsics = Intrinsics(fx_px=fx_px, fy_px=fy_px, cx_px=cx_px, cy_px=cy_px, width_px=width_px, height_px=height_px) pinhole_camera = PinholeCamera(ego_SE3_cam, intrinsics, cam_name) return pinhole_camera def _fit_plane_to_point_cloud(points_xyz: NDArrayFloat) -> Tuple[float, float, float, float]: """Use SVD with at least 3 points to fit a plane. Args: points_xyz: (N,3) array of points. Returns: (4,) Plane coefficients. Defining ax + by + cz = d for the plane. """ center_xyz: NDArrayFloat = np.mean(points_xyz, axis=0) out: Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat] = np.linalg.svd(points_xyz - center_xyz) # type: ignore vh = out[2] # Get the unitary normal vector a, b, c = float(vh[2, 0]), float(vh[2, 1]), float(vh[2, 2]) d: float = -np.dot([a, b, c], center_xyz) # type: ignore return (a, b, c, d) def test_intrinsics_constructor() -> None: """Ensure 3x3 intrinsics matrix is populated correctly.""" fx_px, fy_px = 1000, 1001 width_px = 2048 height_px = 1550 cx_px, cy_px = 1024, 775 intrinsics = Intrinsics(fx_px=fx_px, fy_px=fy_px, cx_px=cx_px, cy_px=cy_px, width_px=width_px, height_px=height_px) K_expected: NDArrayFloat = np.array(([1000, 0, 1024], [0, 1001, 775], [0, 0, 1]), dtype=np.float64) assert np.array_equal(intrinsics.K, K_expected) def test_right_clipping_plane() -> None: """Test form_right_clipping_plane(). Use 4 points to fit the right clipping plane. In the camera coordinate frame, y is down the imager, x is across the imager, and z is along the optical axis. The focal length is the distance to the center of the image plane. We know that a similar triangle is formed as follows: (x,y,z)---(x,y,z) | / | / ->outside of frustum | / ->outside of frustum | (w/2)/ o-----o IMAGE PLANE | / fx| / | / | / O PINHOLE Normal must point into the frustum. The plane moves +fx in z-axis for every +w/2 in x-axis, so normal will have negative inverse slope components. """ fx_px = 10.0 width_px = 30 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=0, cx_px=0, cy_px=0, height_px=30, width_px=width_px, cam_name="ring_front_center" ) right_plane = pinhole_camera.right_clipping_plane Y_OFFSET = 10 # arbitrary extent down the imager right: NDArrayFloat = np.array( [ [0, 0, 0], [width_px / 2.0, 0, fx_px], [0, Y_OFFSET, 0], [width_px / 2.0, Y_OFFSET, fx_px], ] ) a, b, c, d = _fit_plane_to_point_cloud(right) right_plane_expected: NDArrayFloat = np.array([a, b, c, d]) # enforce that plane normal points into the frustum # x-component of normal should point in negative direction. if right_plane_expected[0] > 0: right_plane_expected *= -1 assert np.allclose(right_plane, right_plane_expected) def test_left_clipping_plane() -> None: r"""Test left_clipping_plane. Use 4 points to fit the left clipping plane. (x,y,z)-----(x,y,z) \\ | outside of frustum <- \\ | outside of frustum <- \\ | \\ (-w/2)| o------o IMAGE PLANE \\ | \\ | \\ |fx \\ | \\ | O PINHOLE """ fx_px = 10.0 width_px = 30 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=0, cx_px=0, cy_px=0, height_px=30, width_px=width_px, cam_name="ring_front_center" ) left_plane = pinhole_camera.left_clipping_plane Y_OFFSET = 10 points_xyz: NDArrayFloat = np.array( [ [0, 0, 0], [-width_px / 2.0, 0, fx_px], [0, Y_OFFSET, 0], [-width_px / 2.0, Y_OFFSET, fx_px], ] ) a, b, c, d = _fit_plane_to_point_cloud(points_xyz) left_plane_expected = -np.array([a, b, c, d]) # enforce that plane normal points into the frustum if left_plane_expected[0] < 0: left_plane_expected *= -1 assert np.allclose(left_plane, left_plane_expected) def test_top_clipping_plane() -> None: r"""Test top_clipping_plane. Use 3 points to fit the TOP clipping plane. (x,y,z) (x,y,z) \\=================// \\ // (-w/h,-h/2,fx) (w/h,-h/2,fx) o-------------o |\\ //| IMAGE PLANE | \\ // | IMAGE PLANE o--\\-----//--o \\ // \\ // O PINHOLE """ fx_px = 10.0 height_px = 45 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=0, cx_px=0, cy_px=0, height_px=height_px, width_px=1000, cam_name="ring_front_center" ) top_plane = pinhole_camera.top_clipping_plane width_px = 1000.0 points_xyz: NDArrayFloat = np.array( [ [0, 0, 0], [-width_px / 2, -height_px / 2, fx_px], [width_px / 2, -height_px / 2, fx_px], ] ) a, b, c, d = _fit_plane_to_point_cloud(points_xyz) top_plane_expected: NDArrayFloat = np.array([a, b, c, d]) # enforce that plane normal points into the frustum if top_plane_expected[1] < 0: # y-coord of normal should point in pos y-axis dir(down) on top-clipping plane top_plane_expected *= -1 assert top_plane_expected[1] > 0 and top_plane_expected[2] > 0 assert np.allclose(top_plane, top_plane_expected) def test_bottom_clipping_plane() -> None: r"""Test bottom_clipping_plane. Use 3 points to fit the BOTTOM clipping plane. (x,y,z) (x,y,z) \\ // \\ o-------------o // \\| IMAGE PLANE |// | |/ (-w/h,h/2,fx) o-------------o (w/h,h/2,fx) \\ // \\ // \\ // \\ // \\ // O PINHOLE """ fx_px = 12.0 height_px = 35 width_px = 10000 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=1, cx_px=0, cy_px=0, height_px=height_px, width_px=width_px, cam_name="ring_front_center" ) bottom_plane = pinhole_camera.bottom_clipping_plane low_pts: NDArrayFloat = np.array( [ [0, 0, 0], [-width_px / 2, height_px / 2, fx_px], [width_px / 2, height_px / 2, fx_px], ] ) a, b, c, d = _fit_plane_to_point_cloud(low_pts) bottom_plane_expected: NDArrayFloat = np.array([a, b, c, d]) # enforce that plane normal points into the frustum # y-coord of normal should point in neg y-axis dir(up) on low-clipping plane # z-coord should point in positive z-axis direction (away from camera) if bottom_plane_expected[1] > 0: bottom_plane_expected *= -1 assert bottom_plane_expected[1] < 0 and bottom_plane_expected[2] > 0 assert np.allclose(bottom_plane, bottom_plane_expected) def test_form_near_clipping_plane() -> None: """Test near_clipping_plane(). Use 4 points to fit the near clipping plane.""" width_px = 10 height_px = 15 near_clip_dist = 30.0 pinhole_camera = _create_pinhole_camera( fx_px=1, fy_px=0, cx_px=0, cy_px=0, height_px=30, width_px=width_px, cam_name="ring_front_center" ) near_plane = pinhole_camera.near_clipping_plane(near_clip_dist) points_xyz: NDArrayFloat = np.array( [ [width_px / 2, 0, near_clip_dist], [-width_px / 2, 0, near_clip_dist], [width_px / 2, -height_px / 2.0, near_clip_dist], [width_px / 2, height_px / 2.0, near_clip_dist], ] ) a, b, c, d = _fit_plane_to_point_cloud(points_xyz) near_plane_expected: NDArrayFloat = np.array([a, b, c, d]) assert np.allclose(near_plane, near_plane_expected) def test_frustum_planes_ring_cam() -> None: """Test frustum_planes for a ring camera.""" near_clip_dist = 6.89 # arbitrary value # Set "focal_length_x_px_" fx_px = 1402.4993697398709 # Set "focal_length_y_px_" fy_px = 1405.1207294310225 # Set "focal_center_x_px_" cx_px = 957.8471720086527 # Set "focal_center_y_px_" cy_px = 600.442948946496 camera_name = "ring_front_right" height_px = 1550 width_px = 2048 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=fy_px, cx_px=cx_px, cy_px=cy_px, height_px=height_px, width_px=width_px, cam_name=camera_name ) left_plane, right_plane, near_plane, bottom_plane, top_plane = pinhole_camera.frustum_planes(near_clip_dist) left_plane_expected: NDArrayFloat = np.array([fx_px, 0.0, width_px / 2.0, 0.0]) right_plane_expected: NDArrayFloat = np.array([-fx_px, 0.0, width_px / 2.0, 0.0]) near_plane_expected: NDArrayFloat = np.array([0.0, 0.0, 1.0, -near_clip_dist]) bottom_plane_expected: NDArrayFloat = np.array([0.0, -fx_px, height_px / 2.0, 0.0]) top_plane_expected: NDArrayFloat = np.array([0.0, fx_px, height_px / 2.0, 0.0]) assert np.allclose(left_plane, left_plane_expected / np.linalg.norm(left_plane_expected)) # type: ignore assert np.allclose(right_plane, right_plane_expected / np.linalg.norm(right_plane_expected)) # type: ignore assert np.allclose(bottom_plane, bottom_plane_expected / np.linalg.norm(bottom_plane_expected)) # type: ignore assert np.allclose(top_plane, top_plane_expected / np.linalg.norm(top_plane_expected)) # type: ignore assert np.allclose(near_plane, near_plane_expected) def test_generate_frustum_planes_stereo() -> None: """Test generate_frustum_planes() for a stereo camera.""" near_clip_dist = 3.56 # arbitrary value # Set "focal_length_x_px_" fx_px = 3666.534329132812 # Set "focal_length_y_px_" fy_px = 3673.5030423482513 # Set "focal_center_x_px_" cx_px = 1235.0158218941356 # Set "focal_center_y_px_" cy_px = 1008.4536901420888 camera_name = "stereo_front_left" height_px = 1550 width_px = 2048 pinhole_camera = _create_pinhole_camera( fx_px=fx_px, fy_px=fy_px, cx_px=cx_px, cy_px=cy_px, height_px=height_px, width_px=width_px, cam_name=camera_name ) left_plane, right_plane, near_plane, bottom_plane, top_plane = pinhole_camera.frustum_planes(near_clip_dist) left_plane_expected: NDArrayFloat = np.array([fx_px, 0.0, width_px / 2.0, 0.0]) right_plane_expected: NDArrayFloat = np.array([-fx_px, 0.0, width_px / 2.0, 0.0]) near_plane_expected: NDArrayFloat = np.array([0.0, 0.0, 1.0, -near_clip_dist]) bottom_plane_expected: NDArrayFloat = np.array([0.0, -fx_px, height_px / 2.0, 0.0]) top_plane_expected: NDArrayFloat = np.array([0.0, fx_px, height_px / 2.0, 0.0]) assert np.allclose(left_plane, left_plane_expected / np.linalg.norm(left_plane_expected)) # type: ignore assert np.allclose(right_plane, right_plane_expected / np.linalg.norm(right_plane_expected)) # type: ignore assert np.allclose(bottom_plane, bottom_plane_expected / np.linalg.norm(bottom_plane_expected)) # type: ignore assert np.allclose(top_plane, top_plane_expected / np.linalg.norm(top_plane_expected)) # type: ignore assert np.allclose(near_plane, near_plane_expected) def test_compute_pixel_ray_directions_vectorized_invalid_focal_lengths() -> None: """If focal lengths in the x and y directions do not match, we throw an exception. Tests vectorized variant (multiple ray directions.) """ uv: NDArrayInt = np.array([[12, 2], [12, 2], [12, 2], [12, 2]]) fx = 10 fy = 11 img_w = 20 img_h = 10 pinhole_camera = _create_pinhole_camera( fx_px=fx, fy_px=fy, cx_px=img_w / 2, cy_px=img_h / 2, height_px=img_h, width_px=img_w, cam_name="ring_front_center", # dummy name ) with pytest.raises(ValueError): pinhole_camera.compute_pixel_ray_directions(uv) def test_compute_pixel_ray_direction_invalid_focal_lengths() -> None: """If focal lengths in the x and y directions do not match, we throw an exception. Tests non-vectorized variant (single ray direction). """ u = 12 v = 2 fx = 10 fy = 11 img_w = 20 img_h = 10 with pytest.raises(ValueError): _compute_pixel_ray_direction(u, v, fx, fy, img_w, img_h) def test_compute_pixel_ray_directions_vectorized() -> None: """Ensure that the ray direction (in camera coordinate frame) for each pixel is computed correctly. Small scale test, for just four selected positions in a 10 x 20 px image in (height, width). """ fx = 10 fy = 10 # dummy 2d coordinates in the image plane. uv: NDArrayInt = np.array([[12, 2], [12, 2], [12, 2], [12, 2]]) # principal point is at (10,5) img_w = 20 img_h = 10 pinhole_camera = _create_pinhole_camera( fx_px=fx, fy_px=fy, cx_px=img_w / 2, cy_px=img_h / 2, height_px=img_h, width_px=img_w, cam_name="ring_front_center", # dummy name ) ray_dirs = pinhole_camera.compute_pixel_ray_directions(uv) gt_ray_dir: NDArrayFloat = np.array([2, -3, 10.0]) gt_ray_dir /= np.linalg.norm(gt_ray_dir) # type: ignore for i in range(4): assert np.allclose(gt_ray_dir, ray_dirs[i]) def test_compute_pixel_ray_directions_vectorized_entireimage() -> None: """Ensure that the ray direction for each pixel (in camera coordinate frame) is computed correctly. Compare all computed rays against non-vectorized variant, for correctness. Larger scale test, for every pixel in a 50 x 100 px image in (height, width). """ fx = 10 fy = 10 img_w = 100 img_h = 50 pinhole_camera = _create_pinhole_camera( fx_px=fx, fy_px=fy, cx_px=img_w / 2, cy_px=img_h / 2, height_px=img_h, width_px=img_w, cam_name="ring_front_center", # dummy name ) uv_list = [] for u in range(img_w): for v in range(img_h): uv_list += [(u, v)] uv: NDArrayInt = np.array(uv_list) assert uv.shape == (img_w * img_h, 2) ray_dirs = pinhole_camera.compute_pixel_ray_directions(uv) # compare w/ vectorized, should be identical for i, ray_dir_vec in enumerate(ray_dirs): u, v = uv[i] ray_dir_nonvec = _compute_pixel_ray_direction(u, v, fx, fy, img_w, img_h) assert np.allclose(ray_dir_vec, ray_dir_nonvec) def test_compute_pixel_rays() -> None: """Ensure that the ray direction (in camera coordinate frame) for a single pixel is computed correctly. Small scale test, for just one selected position in a 10 x 20 px image in (height, width). For row = 2, column = 12. """ u = 12 v = 2 img_w = 20 img_h = 10 fx = 10 fy = 10 ray_dir = _compute_pixel_ray_direction(u, v, fx, fy, img_w, img_h) gt_ray_dir: NDArrayFloat = np.array([2.0, -3.0, 10.0]) gt_ray_dir /= np.linalg.norm(gt_ray_dir) # type: ignore assert np.allclose(gt_ray_dir, ray_dir) def _compute_pixel_ray_direction(u: float, v: float, fx: float, fy: float, img_w: int, img_h: int) -> NDArrayFloat: r"""Generate rays in the camera coordinate frame. Note: only used as a test utility. Find point P on image plane. (x,y,z)-----(x,y,z) \\ | outside of frustum <- \\ | outside of frustum <- \\ | \\ (-w/2)| o------o IMAGE PLANE \\ | \\ | \\ |fx \\ | \\ | O PINHOLE Args: u: pixel's x-coordinate v: pixel's y-coordinate fx: focal length in x-direction, measured in pixels. fy: focal length in y-direction, measured in pixels. img_w: image width (in pixels) img_h: image height (in pixels) Returns: Direction of 3d ray, provided in the camera frame. Raises: ValueError: If horizontal and vertical focal lengths are not close (within 1e-3). """ if not np.isclose(fx, fy, atol=1e-3): raise ValueError(f"Focal lengths in the x and y directions must match: {fx} != {fy}") # approximation for principal point px = img_w / 2 py = img_h / 2 # the camera coordinate frame (where Z is out, x is right, y is down). # compute offset from the center x_center_offs = u - px y_center_offs = v - py ray_dir: NDArrayFloat = np.array([x_center_offs, y_center_offs, fx]) ray_dir /= np.linalg.norm(ray_dir) # type: ignore return ray_dir def test_get_frustum_parameters() -> None: r"""Ensure we can compute field of view, and camera's yaw in the egovehicle frame. w/2 = 1000 o----------o IMAGE PLANE \\ | // \\ | // \\ |fx = 1000 \\ | // \\ | // O PINHOLE """ fx, fy = 1000, 1000 img_w = 2000 img_h = 1000 pinhole_camera = _create_pinhole_camera( fx_px=fx, fy_px=fy, cx_px=img_w / 2, cy_px=img_h / 2, height_px=img_h, width_px=img_w, cam_name="ring_front_center", # dummy name ) fov_theta_deg = np.rad2deg(pinhole_camera.fov_theta_rad) assert np.isclose(fov_theta_deg, 90.0) # for identity SE(3), the yaw angle is zero radians. cam_yaw_ego = pinhole_camera.egovehicle_yaw_cam_rad assert np.isclose(cam_yaw_ego, 0) def test_get_egovehicle_yaw_cam() -> None: """Ensure we can compute the camera's yaw in the egovehicle frame.""" sample_log_dir = _TEST_DATA_ROOT / "sensor_dataset_logs" / "test_log" # clockwise around the top of the car, in degrees. expected_ego_yaw_cam_deg_dict = { "ring_rear_left": 153.2, "ring_side_left": 99.4, "ring_front_left": 44.7, "ring_front_center": 0.4, "ring_front_right": -44.9, "ring_side_right": -98.9, "ring_rear_right": -152.9, } for cam_enum in list(RingCameras): cam_name = cam_enum.value pinhole_camera = PinholeCamera.from_feather(log_dir=sample_log_dir, cam_name=cam_name) ego_yaw_cam_deg = np.rad2deg(pinhole_camera.egovehicle_yaw_cam_rad) assert np.isclose(ego_yaw_cam_deg, expected_ego_yaw_cam_deg_dict[cam_name], atol=0.1) np.rad2deg(pinhole_camera.fov_theta_rad) ``` #### File: tests/map/test_map_api.py ```python from pathlib import Path import numpy as np import pytest from av2.map.drivable_area import DrivableArea from av2.map.lane_segment import LaneSegment from av2.map.map_api import ArgoverseStaticMap from av2.map.map_primitives import Point, Polyline from av2.map.pedestrian_crossing import PedestrianCrossing from av2.utils.typing import NDArrayBool, NDArrayFloat @pytest.fixture() def dummy_static_map(test_data_root_dir: Path) -> ArgoverseStaticMap: """Set up test by instantiating static map object from dummy test data. Args: test_data_root_dir: Path to the root dir for test data (provided via fixture). Returns: Static map instantiated from dummy test data. """ log_map_dirpath = ( test_data_root_dir / "static_maps" / "dummy_log_map_gs1B8ZCv7DMi8cMt5aN5rSYjQidJXvGP__2020-07-21-Z1F0076" ) return ArgoverseStaticMap.from_map_dir(log_map_dirpath, build_raster=True) @pytest.fixture(scope="module") def full_static_map(test_data_root_dir: Path) -> ArgoverseStaticMap: """Set up test by instantiating static map object from full test data. Args: test_data_root_dir: Path to the root dir for test data (provided via fixture). Returns: Static map instantiated from full test data. """ log_map_dirpath = ( test_data_root_dir / "static_maps" / "full_log_map_gs1B8ZCv7DMi8cMt5aN5rSYjQidJXvGP__2020-07-21-Z1F0076" ) return ArgoverseStaticMap.from_map_dir(log_map_dirpath, build_raster=True) class TestPolyline: """Class for unit testing `PolyLine`.""" def test_from_list(self) -> None: """Ensure object is generated correctly from a list of dictionaries.""" points_dict_list = [{"x": 874.01, "y": -105.15, "z": -19.58}, {"x": 890.58, "y": -104.26, "z": -19.58}] polyline = Polyline.from_json_data(points_dict_list) assert isinstance(polyline, Polyline) assert len(polyline.waypoints) == 2 assert polyline.waypoints[0] == Point(874.01, -105.15, -19.58) assert polyline.waypoints[1] == Point(890.58, -104.26, -19.58) def test_from_array(self) -> None: """Ensure object is generated correctly from a Numpy array of shape (N,3).""" # fmt: off array: NDArrayFloat = np.array([ [1., 2., 3.], [4., 5., 6.], [7., 8., 9.], [9., 10., 11.] ]) # fmt: on polyline = Polyline.from_array(array) assert isinstance(polyline, Polyline) assert len(polyline) == 4 assert polyline.waypoints[0].x == 1 assert polyline.waypoints[0].y == 2 assert polyline.waypoints[0].z == 3 class TestPedestrianCrossing: """Class for unit testing `PedestrianCrossing`.""" def test_from_dict(self) -> None: """Ensure object is generated correctly from a dictionary.""" json_data = { "id": 6310421, "edge1": [{"x": 899.17, "y": -91.52, "z": -19.58}, {"x": 915.68, "y": -93.93, "z": -19.53}], "edge2": [{"x": 899.44, "y": -95.37, "z": -19.48}, {"x": 918.25, "y": -98.05, "z": -19.4}], } pedestrian_crossing = PedestrianCrossing.from_dict(json_data) isinstance(pedestrian_crossing, PedestrianCrossing) class TestArgoverseStaticMap: """Unit test for the Argoverse 2.0 per-log map.""" def test_get_lane_segment_successor_ids(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure lane segment successors are fetched properly.""" lane_segment_id = 93269421 successor_ids = dummy_static_map.get_lane_segment_successor_ids(lane_segment_id) expected_successor_ids = [93269500] assert successor_ids == expected_successor_ids lane_segment_id = 93269500 successor_ids = dummy_static_map.get_lane_segment_successor_ids(lane_segment_id) expected_successor_ids = [93269554] assert successor_ids == expected_successor_ids lane_segment_id = 93269520 successor_ids = dummy_static_map.get_lane_segment_successor_ids(lane_segment_id) expected_successor_ids = [93269526] assert successor_ids == expected_successor_ids def test_lane_is_in_intersection(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure the attribute describing if a lane segment is located with an intersection is fetched properly.""" lane_segment_id = 93269421 in_intersection = dummy_static_map.lane_is_in_intersection(lane_segment_id) assert isinstance(in_intersection, bool) assert not in_intersection lane_segment_id = 93269500 in_intersection = dummy_static_map.lane_is_in_intersection(lane_segment_id) assert isinstance(in_intersection, bool) assert in_intersection lane_segment_id = 93269520 in_intersection = dummy_static_map.lane_is_in_intersection(lane_segment_id) assert isinstance(in_intersection, bool) assert not in_intersection def test_get_lane_segment_left_neighbor_id(self, dummy_static_map: ArgoverseStaticMap) -> None: """Test getting a lane segment id from the left neighbor.""" # Ensure id of lane segment (if any) that is the left neighbor to the query lane segment can be fetched properly lane_segment_id = 93269421 l_neighbor_id = dummy_static_map.get_lane_segment_left_neighbor_id(lane_segment_id) assert l_neighbor_id is None lane_segment_id = 93269500 l_neighbor_id = dummy_static_map.get_lane_segment_left_neighbor_id(lane_segment_id) assert l_neighbor_id is None lane_segment_id = 93269520 l_neighbor_id = dummy_static_map.get_lane_segment_left_neighbor_id(lane_segment_id) assert l_neighbor_id == 93269421 def test_get_lane_segment_right_neighbor_id(self, dummy_static_map: ArgoverseStaticMap) -> None: """Test getting a lane segment id from the right neighbor.""" # Ensure id of lane segment (if any) that is the right neighbor to the query lane segment can be fetched lane_segment_id = 93269421 r_neighbor_id = dummy_static_map.get_lane_segment_right_neighbor_id(lane_segment_id) assert r_neighbor_id == 93269520 lane_segment_id = 93269500 r_neighbor_id = dummy_static_map.get_lane_segment_right_neighbor_id(lane_segment_id) assert r_neighbor_id == 93269526 lane_segment_id = 93269520 r_neighbor_id = dummy_static_map.get_lane_segment_right_neighbor_id(lane_segment_id) assert r_neighbor_id == 93269458 def test_get_scenario_lane_segment_ids(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure ids of all lane segments in the local map can be fetched properly.""" lane_segment_ids = dummy_static_map.get_scenario_lane_segment_ids() expected_lane_segment_ids = [93269421, 93269500, 93269520] assert lane_segment_ids == expected_lane_segment_ids def test_get_lane_segment_polygon(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure lane segment polygons are fetched properly.""" lane_segment_id = 93269421 ls_polygon = dummy_static_map.get_lane_segment_polygon(lane_segment_id) assert isinstance(ls_polygon, np.ndarray) expected_ls_polygon: NDArrayFloat = np.array( [ [874.01, -105.15, -19.58], [890.58, -104.26, -19.58], [890.29, -100.56, -19.66], [880.31, -101.44, -19.7], [873.97, -101.75, -19.7], [874.01, -105.15, -19.58], ] ) np.testing.assert_allclose(ls_polygon, expected_ls_polygon) # type: ignore def test_get_lane_segment_centerline(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure lane segment centerlines can be inferred and fetched properly.""" lane_segment_id = 93269421 centerline = dummy_static_map.get_lane_segment_centerline(lane_segment_id) assert isinstance(centerline, np.ndarray) expected_centerline: NDArrayFloat = np.array( [ [873.99, -103.45, -19.64], [875.81871374, -103.35615034, -19.64], [877.64742747, -103.26230069, -19.64], [879.47614121, -103.16845103, -19.64], [881.30361375, -103.0565384, -19.63815074], [883.129891, -102.92723072, -19.63452059], [884.95616825, -102.79792304, -19.63089044], [886.7824455, -102.66861536, -19.62726029], [888.60872275, -102.53930768, -19.62363015], [890.435, -102.41, -19.62], ] ) np.testing.assert_allclose(centerline, expected_centerline) # type: ignore def test_get_scenario_lane_segments(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure that all LaneSegment objects in the local map can be returned as a list.""" vector_lane_segments = dummy_static_map.get_scenario_lane_segments() assert isinstance(vector_lane_segments, list) assert all([isinstance(vls, LaneSegment) for vls in vector_lane_segments]) assert len(vector_lane_segments) == 3 def test_get_scenario_ped_crossings(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure that all PedCrossing objects in the local map can be returned as a list.""" ped_crossings = dummy_static_map.get_scenario_ped_crossings() assert isinstance(ped_crossings, list) assert all([isinstance(pc, PedestrianCrossing) for pc in ped_crossings]) # fmt: off expected_ped_crossings = [ PedestrianCrossing( id=6310407, edge1=Polyline.from_array(np.array( [ [ 892.17, -99.44, -19.59], [ 893.47, -115.4 , -19.45] ] )), edge2=Polyline.from_array(np.array( [ [ 896.06, -98.95, -19.52], [ 897.43, -116.58, -19.42] ] )) ), PedestrianCrossing( id=6310421, edge1=Polyline.from_array(np.array( [ [899.17, -91.52, -19.58], [915.68, -93.93, -19.53] ] )), edge2=Polyline.from_array(np.array( [ [899.44, -95.37, -19.48], [918.25, -98.05, -19.4] ] )), ) ] # fmt: on assert len(ped_crossings) == len(expected_ped_crossings) assert all([pc == expected_pc for pc, expected_pc in zip(ped_crossings, expected_ped_crossings)]) def test_get_scenario_vector_drivable_areas(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure that drivable areas are loaded and formatted correctly.""" vector_das = dummy_static_map.get_scenario_vector_drivable_areas() assert isinstance(vector_das, list) assert len(vector_das) == 1 assert isinstance(vector_das[0], DrivableArea) # examine just one sample vector_da = vector_das[0] assert vector_da.xyz.shape == (172, 3) # compare first and last vertex, for equality np.testing.assert_allclose(vector_da.xyz[0], vector_da.xyz[171]) # type: ignore # fmt: off # compare first 4 vertices expected_first4_vertices: NDArrayFloat = np.array( [[905.09, -148.95, -19.19], [904.85, -141.95, -19.25], [904.64, -137.25, -19.28], [904.37, -132.55, -19.32]]) # fmt: on np.testing.assert_allclose(vector_da.xyz[:4], expected_first4_vertices) # type: ignore def test_get_ground_height_at_xy(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure that ground height at (x,y) locations can be retrieved properly.""" point_cloud: NDArrayFloat = np.array( [ [770.6398, -105.8351, -19.4105], # ego-vehicle pose at one timestamp [943.5386, -49.6295, -19.3291], # ego-vehicle pose at one timestamp [918.0960, 82.5588, -20.5742], # ego-vehicle pose at one timestamp [9999999, 999999, 0], # obviously out of bounds value for city coordinate system [-999999, -999999, 0], # obviously out of bounds value for city coordinate system ] ) assert dummy_static_map.raster_ground_height_layer is not None ground_height_z = dummy_static_map.raster_ground_height_layer.get_ground_height_at_xy(point_cloud) assert ground_height_z.shape[0] == point_cloud.shape[0] assert ground_height_z.dtype == np.dtype(np.float64) # last 2 indices should be filled with dummy values (NaN) because obviously out of bounds. assert np.all(np.isnan(ground_height_z[-2:])) # based on grid resolution, ground should be within 7 centimeters of 30cm under back axle. expected_ground = point_cloud[:3, 2] - 0.30 assert np.allclose(np.absolute(expected_ground - ground_height_z[:3]), 0, atol=0.07) def test_get_ground_points_boolean(self, dummy_static_map: ArgoverseStaticMap) -> None: """Ensure that points close to the ground surface are correctly classified as `ground` category.""" point_cloud: NDArrayFloat = np.array( [ [770.6398, -105.8351, -19.4105], # ego-vehicle pose at one timestamp [943.5386, -49.6295, -19.3291], # ego-vehicle pose at one timestamp [918.0960, 82.5588, -20.5742], # ego-vehicle pose at one timestamp [9999999, 999999, 0], # obviously out of bounds value for city coordinate system [-999999, -999999, 0], # obviously out of bounds value for city coordinate system ] ) # first 3 points correspond to city_SE3_ego, i.e. height of rear axle in city frame # ~30 cm below the axle should be the ground surface. point_cloud -= 0.30 assert dummy_static_map.raster_ground_height_layer is not None is_ground_pt = dummy_static_map.raster_ground_height_layer.get_ground_points_boolean(point_cloud) expected_is_ground_pt: NDArrayBool = np.array([True, True, True, False, False]) assert is_ground_pt.dtype == np.dtype(bool) assert np.array_equal(is_ground_pt, expected_is_ground_pt) def test_load_motion_forecasting_map(test_data_root_dir: Path) -> None: """Try to load a real map from the motion forecasting dataset.""" mf_scenario_id = "0a1e6f0a-1817-4a98-b02e-db8c9327d151" mf_scenario_map_path = ( test_data_root_dir / "forecasting_scenarios" / mf_scenario_id / f"log_map_archive_{mf_scenario_id}.json" ) mf_map = ArgoverseStaticMap.from_json(mf_scenario_map_path) assert mf_map.log_id == mf_scenario_id ``` #### File: tests/rendering/test_color.py ```python import numpy as np import av2.rendering.color as color_utils from av2.rendering.color import GREEN_HEX, RED_HEX def test_create_colormap() -> None: """Ensure we can create a red-to-green RGB colormap with values in [0,1].""" colors_arr_rgb = color_utils.create_colormap(color_list=[RED_HEX, GREEN_HEX], n_colors=10) assert np.logical_and(0 <= colors_arr_rgb, colors_arr_rgb <= 1).all() assert colors_arr_rgb.shape == (10, 3) ``` #### File: tests/rendering/test_video.py ```python from pathlib import Path from tempfile import NamedTemporaryFile import numpy as np import av2.rendering.video as video_utils from av2.utils.typing import NDArrayByte, NDArrayFloat def generate_dummy_rgb_video(N: int, H: int, W: int) -> NDArrayByte: """Generate dummy video data (increasing brightness from top-left to bottom-right, and as video progresses). Args: N: number of video frames to generate. H: frame height, in pixels. W: frame width, in pixels. Returns: tensor of shape (N,H,W,3) Raises: ValueError: if more than 55 frames are requested (to keep values in [0,200 + 55]). """ if N > 55: raise ValueError("Will overflow") video: NDArrayByte = np.zeros((N, H, W, 3), dtype=np.uint8) for frame_idx in np.arange(N): frame_f: NDArrayFloat = np.arange(H * W).reshape(H, W).astype(np.float32) frame_f /= frame_f.max() frame_f *= 200.0 frame_f += frame_idx frame: NDArrayByte = frame_f.astype(np.uint8) for c in range(3): video[frame_idx, :, :, c] = frame return video def test_write_video_even_dims() -> None: """Ensure we can encode a video tensor (with even H/W dimensions) as a mp4 file with AV, and save it to disk. Dummy data is 30 frames of (60,60) RGB video. """ video: NDArrayByte = generate_dummy_rgb_video(N=30, H=60, W=60) save_fpath = Path(NamedTemporaryFile(suffix=".mp4").name) assert not save_fpath.exists() video_utils.write_video( video=video, dst=save_fpath, ) assert save_fpath.exists() def test_write_video_odd_dims() -> None: """Ensure we can encode a video tensor (with odd H/W dimensions) as a mp4 file with AV, and save it to disk. Dummy data is 30 frames of (65,65) RGB video. """ video: NDArrayByte = generate_dummy_rgb_video(N=30, H=65, W=65) save_fpath = Path(NamedTemporaryFile(suffix=".mp4").name) assert not save_fpath.exists() video_utils.write_video( video=video, dst=save_fpath, ) assert save_fpath.exists() def test_crop_video_to_even_dims() -> None: """Ensure we can crop a video tensor along the height and width dimensions to assure even dimensions. Dummy data is 55 frames of (501,501) RGB video. """ video: NDArrayByte = generate_dummy_rgb_video(N=55, H=501, W=501) cropped_video = video_utils.crop_video_to_even_dims(video) assert cropped_video.shape == (55, 500, 500, 3) assert cropped_video.dtype == np.dtype(np.uint8) save_fpath = Path(NamedTemporaryFile(suffix=".mp4").name) assert not save_fpath.exists() video_utils.write_video(video=cropped_video, dst=save_fpath, fps=10, preset="medium") assert save_fpath.exists() ``` #### File: tests/structures/test_sweep.py ```python from pathlib import Path import numpy as np import pytest from av2.structures.sweep import Sweep from av2.utils.typing import NDArrayByte, NDArrayFloat, NDArrayInt @pytest.fixture def dummy_sweep(test_data_root_dir: Path) -> Sweep: """Get a fake sweep containing two points.""" path = test_data_root_dir / "sensor_dataset_logs" / "dummy" / "sensors" / "lidar" / "315968663259918000.feather" return Sweep.from_feather(path) def test_sweep_from_feather(dummy_sweep: Sweep) -> None: """Test loading a sweep from a feather file.""" xyz_expected: NDArrayFloat = np.array([[-22.1875, 20.484375, 0.55029296875], [-20.609375, 19.1875, 1.30078125]]) intensity_expected: NDArrayByte = np.array([38, 5], dtype=np.uint8) laser_number_expected: NDArrayByte = np.array([19, 3], dtype=np.uint8) offset_ns_expected: NDArrayInt = np.array([253440, 283392], dtype=np.int32) timestamp_ns_expected: int = 315968663259918000 assert np.array_equal(dummy_sweep.xyz, xyz_expected) assert np.array_equal(dummy_sweep.intensity, intensity_expected) assert np.array_equal(dummy_sweep.laser_number, laser_number_expected) assert np.array_equal(dummy_sweep.offset_ns, offset_ns_expected) assert dummy_sweep.timestamp_ns == timestamp_ns_expected ``` #### File: tests/utils/test_mesh_grid.py ```python from typing import List import numpy as np import av2.geometry.mesh_grid as mesh_grid_utils from av2.utils.typing import NDArrayFloat def test_get_mesh_grid_as_point_cloud_3x3square() -> None: """Ensure a sampled regular grid returns 9 grid points from 1 meter resolution on 2x2 meter area.""" min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = -1 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 4 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = mesh_grid_utils.get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=1.0) assert pts.shape == (9, 2) gt_pts: NDArrayFloat = np.array( [ [-3.0, 2.0], [-2.0, 2.0], [-1.0, 2.0], [-3.0, 3.0], [-2.0, 3.0], [-1.0, 3.0], [-3.0, 4.0], [-2.0, 4.0], [-1.0, 4.0], ] ) assert np.allclose(gt_pts, pts) def test_get_mesh_grid_as_point_cloud_3x2rect() -> None: """Ensure a sampled regular grid returns 6 grid points from 1 meter resolution on 1x2 meter area.""" min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = -1 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 3 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = mesh_grid_utils.get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=1.0) assert pts.shape == (6, 2) # fmt: off gt_pts: NDArrayFloat = np.array( [ [-3.0, 2.0], [-2.0, 2.0], [-1.0, 2.0], [-3.0, 3.0], [-2.0, 3.0], [-1.0, 3.0] ]) # fmt: on assert np.allclose(gt_pts, pts) def test_get_mesh_grid_as_point_cloud_single_pt() -> None: """Ensure a sampled regular grid returns only 1 point for a range of 0 meters in x and 0 meters in y.""" min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = -3 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 2 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = mesh_grid_utils.get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=1.0) assert pts.shape == (1, 2) gt_pts: NDArrayFloat = np.array([[-3.0, 2.0]]) assert np.allclose(gt_pts, pts) def test_get_mesh_grid_as_point_cloud_downsample() -> None: """Given 3x3 area, ensure a sampled regular grid returns coordinates at 4 corners only.""" min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = 0 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 5 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = mesh_grid_utils.get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=3.0) assert pts.shape == (4, 2) # fmt: off gt_pts: List[List[float]] = [ [-3.0, 2.0], [0.0, 2.0], [-3.0, 5.0], [0.0, 5.0] ] # fmt: on assert np.allclose(gt_pts, pts) ```
{ "source": "jhonykaesemodel/image2mesh", "score": 2 }
#### File: python/voxel/get_all_iou.py ```python import os import numpy as np import scipy.io import binvox_rw path = dict() path['model_gt'] = 'Z:\datasets\FreeFormDeformation' path['model_hat'] = 'Z:\data\img2mesh' class2uid = { 'bottle' : '02876657', 'bicycle' : '02834778', 'knife' : '03624134', 'chair' : '03001627', 'car' : '02958343', 'diningtable' : '04379243', 'sofa' : '04256520', 'bed' : '02818832', 'dresser' : '02933112', 'aeroplane' : '02691156', 'motorbike' : '03790512', 'bus' : '02924116', } def compute_iou(cls): modeldir_gt = os.path.join(path['model_gt'], class2uid[cls], 'rendered') modeldir_hat = os.path.join(path['model_hat'], class2uid[cls], 'obj_models') setname = 'estimated_objs' setfile = os.path.join(modeldir_hat, setname+'.list') iou = [] print('Computing IoU...') with open(setfile, 'r') as fp: for line in fp: muid = line[:-1] muid_hat = muid.split('.')[0] muid_gt = 'render'+muid_hat[5:] bvfile_gt = os.path.join(modeldir_gt, muid_gt+'.binvox') bvfile_hat = os.path.join(modeldir_hat, muid_hat+'.binvox') with open(bvfile_gt, 'rb') as bvf: vxl_gt = binvox_rw.read_as_3d_array(bvf) with open(bvfile_hat, 'rb') as bvf: vxl_hat = binvox_rw.read_as_3d_array(bvf) # The prediction and gt are 3 dim voxels. Each voxel has values 1 or 0 intersection = np.sum(np.logical_and(vxl_hat.data, vxl_gt.data)) union = np.sum(np.logical_or(vxl_hat.data, vxl_gt.data)) IoU = intersection / union print(IoU) iou.append(IoU) filename = os.path.join(modeldir_hat, 'all_iou_test.mat') scipy.io.savemat(filename, {'all_iou_test': iou}) print(np.mean(iou)) print('Finally done!') ```
{ "source": "jhoobergs/numbas-lti-provider", "score": 2 }
#### File: numbas-lti-provider/numbas_lti/groups.py ```python def group_for_user(user): return 'user-{}'.format(user.id) def group_for_attempt(attempt): return 'attempt-{}'.format(attempt.id) def group_for_resource(resource): return 'resource-{}'.format(resource.id) def group_for_resource_stats(resource): return 'resource-{}-stats'.format(resource.id) ``` #### File: management/commands/test_exam.py ```python from django.core.management.base import BaseCommand import os import json import subprocess import datetime from django.utils.timezone import now from numbas_lti.models import Exam, Resource from numbas_lti.test_exam import test_exam, ExamTestException class Command(BaseCommand): help = 'Test an exam package' def add_arguments(self, parser): parser.add_argument('exam_pk',nargs='?',type=int) parser.add_argument('--resource',type=int,dest='resource', help='The ID of a resource whose current exam package should be tested') def handle(self, *args, **options): if options.get('resource'): exam = Resource.objects.get(pk=options['resource']).exam elif options.get('exam_pk'): exam_pk = options['exam_pk'] exam = Exam.objects.get(pk=exam_pk) else: raise Exception("You must give either an exam ID or a resource ID.") print("Testing exam {}, \"{}\".".format(exam.pk,exam.title)) try: result = test_exam(exam) print("This exam passed all the tests.") except ExamTestException as e: print(e) ``` #### File: numbas_lti/migrations/0061_exam_static_uuid.py ```python from django.conf import settings from django.db import migrations, models import uuid import os import shutil def move_to_uuid_folder(apps, schema_editor): Exam = apps.get_model('numbas_lti', 'Exam') for exam in Exam.objects.all(): exam.static_uuid = uuid.uuid4() exam.save() old_path = os.path.join(os.getcwd(), settings.MEDIA_ROOT,'extracted_zips',exam.__class__.__name__,str(exam.pk)) new_path = os.path.join(os.getcwd(), settings.MEDIA_ROOT,'extracted_zips',exam.__class__.__name__,str(exam.static_uuid)) if os.path.exists(old_path): shutil.move(old_path, new_path) def undo_move_to_uuid_folder(apps, schema_editor): Exam = apps.get_model('numbas_lti', 'Exam') for exam in Exam.objects.all(): old_path = os.path.join(os.getcwd(), settings.MEDIA_ROOT,'extracted_zips',exam.__class__.__name__,str(exam.pk)) new_path = os.path.join(os.getcwd(), settings.MEDIA_ROOT,'extracted_zips',exam.__class__.__name__,str(exam.static_uuid)) if os.path.exists(new_path): shutil.move(new_path, old_path) class Migration(migrations.Migration): dependencies = [ ('numbas_lti', '0060_auto_20201215_1345'), ] operations = [ migrations.AddField( model_name='exam', name='static_uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, verbose_name='UUID of exam package on disk'), ), migrations.RunPython(move_to_uuid_folder, undo_move_to_uuid_folder), migrations.AlterField( model_name='exam', name='static_uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, unique=True, verbose_name='UUID of exam package on disk'), ) ] ``` #### File: numbas_lti/migrations/0063_auto_20210211_1307.py ```python from django.db import migrations, models import django.db.models.deletion def set_exam_resources(apps, schema_editor): Resource = apps.get_model('numbas_lti', 'Resource') Attempt = apps.get_model('numbas_lti', 'Attempt') for r in Resource.objects.exclude(exam=None): r.exam.resource = r r.exam.save() for a in Attempt.objects.exclude(exam=None): if a.exam.resource is None: a.exam.resource = a.resource a.exam.save() class Migration(migrations.Migration): dependencies = [ ('numbas_lti', '0062_scormelementdiff'), ] operations = [ migrations.AddField( model_name='exam', name='resource', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='exams', to='numbas_lti.Resource'), ), migrations.AlterField( model_name='resource', name='exam', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='main_exam_of', to='numbas_lti.Exam'), ), migrations.RunPython(set_exam_resources,migrations.RunPython.noop), ] ```
{ "source": "J-Hooch/MIT6.0001", "score": 4 }
#### File: assignments/ps2/hangman.py ```python import random import string WORDLIST_FILENAME = "words.txt" def load_words(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print("Loading word list from file...") # inFile: file inFile = open(WORDLIST_FILENAME, 'r') # line: string line = inFile.readline() # wordlist: list of strings wordlist = line.split() print(" ", len(wordlist), "words loaded.") return wordlist def choose_word(wordlist): """ wordlist (list): list of words (strings) Returns a word from wordlist at random """ return random.choice(wordlist) # end of helper code # ----------------------------------- # Load the list of words into the variable wordlist # so that it can be accessed from anywhere in the program wordlist = load_words() def is_word_guessed(secret_word, letters_guessed): ''' secret_word: string, the word the user is guessing; assumes all letters are lowercase letters_guessed: list (of letters), which letters have been guessed so far; assumes that all letters are lowercase returns: boolean, True if all the letters of secret_word are in letters_guessed; False otherwise ''' #turn secret word into list secret_word_list=list(secret_word) letters_guessed_check = [] #make a list of only correctly guesed letters for i in range(len(letters_guessed)): for x in range(len(secret_word_list)): if letters_guessed[i] == secret_word_list[x]: letters_guessed_check.append(letters_guessed[i]) #compare correct guessed letters to secret word as sets return set(letters_guessed_check) == set(secret_word_list) def get_guessed_word(secret_word, letters_guessed): ''' secret_word: string, the word the user is guessing letters_guessed: list (of letters), which letters have been guessed so far returns: string, comprised of letters, underscores (_), and spaces that represents which letters in secret_word have been guessed so far. ''' #turn secret word into list secret_word_list = list(secret_word) revealed_word_list = [] for i in range(len(secret_word_list)): if str(secret_word_list[i]) in letters_guessed: revealed_word_list.append(secret_word_list[i]) else: revealed_word_list.append("_") return ''.join(str(i) for i in revealed_word_list) def get_available_letters(letters_guessed): ''' letters_guessed: list (of letters), which letters have been guessed so far returns: string (of letters), comprised of letters that represents which letters have not yet been guessed. ''' alphabet = "abcdefghijklmnopqrstuvwxyz" alphabet_list = list(alphabet) avaliable_letters = [] for i in range(len(alphabet_list)): if alphabet_list[i] not in letters_guessed: avaliable_letters.append(alphabet_list[i]) return ''.join(str(i) for i in avaliable_letters) def hangman(secret_word): ''' secret_word: string, the secret word to guess. Starts up an interactive game of Hangman. * At the start of the game, let the user know how many letters the secret_word contains and how many guesses s/he starts with. * The user should start with 6 guesses * Before each round, you should display to the user how many guesses s/he has left and the letters that the user has not yet guessed. * Ask the user to supply one guess per round. Remember to make sure that the user puts in a letter! * The user should receive feedback immediately after each guess about whether their guess appears in the computer's word. * After each guess, you should display to the user the partially guessed word so far. Follows the other limitations detailed in the problem write-up. ''' secret_word_list = list(secret_word) secret_word_length = len(secret_word) letters_guessed = [] guesses_left = 6 warning = 3 print(f"Welcome to the game Hangman!\nI am thinking of a word that is {secret_word_length} letters long\n___") while guesses_left > 0: print(f"You have {guesses_left} guesses left") print(f"Available letters {get_available_letters(letters_guessed)}") guess = input("Please guess a letter:") guess = guess.lower() # force lowercase #check if user input is proper(a letter) WARNING while guess.isalpha() is False: warning -= 1 print(f"Oops! That is not a valid letter. You have {warning} warnings left " f"{get_guessed_word(secret_word, letters_guessed)}") if warning < 0: print("You Lose!") quit() guess = input("Please guess a letter:") guess = guess.lower() # force lowercase #check if user has entered a previous guess WARNING if guess in letters_guessed: warning -= 1 print(f"Oops! This letter has already been guessed. You have {warning} warnings left " f"{get_guessed_word(secret_word, letters_guessed)}") if warning < 0: print("You Lose!") quit() guess = input("Please guess a letter:") guess = guess.lower() # force lowercase letters_guessed.append(guess) #check if guess is in secret word if guess in secret_word_list: print(f"Good guess: {get_guessed_word(secret_word, letters_guessed)}\n___") else: print(f"Oops! That letter is not in my word: {get_guessed_word(secret_word,letters_guessed)}\n___") guesses_left -= 1 #check if word is guessed if is_word_guessed(secret_word, letters_guessed) is True: print(f"Congratulations, you won!\nYour total score " f"for this game is : {guesses_left * secret_word_length}\n___") quit() #Game is lost when you run out of guesses print(f"You have ran out of guesses.You are a loser. Better luck next time.\nThe answer was{secret_word}") # When you've completed your hangman function, scroll down to the bottom # of the file and uncomment the first two lines to test #(hint: you might want to pick your own # secret_word while you're doing your own testing) # ----------------------------------- def match_with_gaps(my_word, other_word): ''' my_word: string with _ characters, current guess of secret word other_word: string, regular English word returns: boolean, True if all the actual letters of my_word match the corresponding letters of other_word, or the letter is the special symbol _ , and my_word and other_word are of the same length; False otherwise: ''' my_word_list = list(my_word) other_word_list = list(other_word) check = True #check if each letter, that is not "_" matches for i in range(len(other_word_list)): if my_word_list[i] != other_word_list[i] and my_word_list[i] != "_": check *= False #check if there is an "_" where there would be a duplicate guessed letter if my_word_list[i] == "_": if other_word_list[i] in my_word_list: check *= False return bool(check) def show_possible_matches(my_word): ''' my_word: string with _ characters, current guess of secret word returns: nothing, but should print out every word in wordlist that matches my_word Keep in mind that in hangman when a letter is guessed, all the positions at which that letter occurs in the secret word are revealed. Therefore, the hidden letter(_ ) cannot be one of the letters in the word that has already been revealed. ''' my_word_list = list(my_word) temp = [] for i in range(len(wordlist)): #add same word length and match with gaps to temp if len(my_word) ==len(wordlist[i]) and match_with_gaps(my_word,wordlist[i]): temp.append(wordlist[i]) print(" ".join(temp)) def hangman_with_hints(secret_word): ''' secret_word: string, the secret word to guess. Starts up an interactive game of Hangman. * At the start of the game, let the user know how many letters the secret_word contains and how many guesses s/he starts with. * The user should start with 6 guesses * Before each round, you should display to the user how many guesses s/he has left and the letters that the user has not yet guessed. * Ask the user to supply one guess per round. Make sure to check that the user guesses a letter * The user should receive feedback immediately after each guess about whether their guess appears in the computer's word. * After each guess, you should display to the user the partially guesse word so far. * If the guess is the symbol *, print out all words in wordlist that matches the current guessed word. Follows the other limitations detailed in the problem write-up. ''' secret_word_list = list(secret_word) secret_word_length = len(secret_word) letters_guessed = [] guesses_left = 6 warning = 3 vowel = ["a","e","i","o","u"] print(f"Welcome to the game Hangman!\nI am thinking of a word that is {secret_word_length} letters long\n___") while guesses_left > 0: print(f"You have {guesses_left} guesses left") print(f"Available letters {get_available_letters(letters_guessed)}") guess = input("Please guess a letter:") guess = guess.lower() # force lowercase #allow user to gues a hint if guess == "*": print(f"Possible word matches are:") show_possible_matches(get_guessed_word(secret_word,letters_guessed)) print("---") continue #check if user input is proper(a letter) WARNING while guess.isalpha() is False and guess != "*": warning -= 1 print(f"Oops! That is not a valid letter. You have {warning} warnings left " f"{get_guessed_word(secret_word, letters_guessed)}") if warning < 0: print("You Lose!") quit() guess = input("Please guess a letter:") guess = guess.lower() # force lowercase #check if user has entered a previous guess WARNING if guess in letters_guessed: warning -= 1 print(f"Oops! This letter has already been guessed. You have {warning} warnings left " f"{get_guessed_word(secret_word, letters_guessed)}") if warning < 0: print("You Lose!") quit() guess = input("Please guess a letter:") guess = guess.lower() # force lowercase letters_guessed.append(guess) #check if guess is in secret word if guess in secret_word_list: print(f"Good guess: {get_guessed_word(secret_word, letters_guessed)}\n___") elif guess in vowel: print(f"Oops! That letter is not in my word: {get_guessed_word(secret_word,letters_guessed)}\n___") guesses_left -= 2 else: print(f"Oops! That letter is not in my word: {get_guessed_word(secret_word,letters_guessed)}\n___") guesses_left -= 1 #check if word is guessed if is_word_guessed(secret_word, letters_guessed) is True: print(f"Congratulations, you won!\nYour total score " f"for this game is : {guesses_left * secret_word_length}\n___") quit() #Game is lost when you run out of guesses print(f"You have ran out of guesses.You are a loser. Better luck next time.\nThe answer was {secret_word}") # When you've completed your hangman_with_hint function, comment the two similar # lines above that were used to run the hangman function, and then uncomment # these two lines and run this file to test! # Hint: You might want to pick your own secret_word while you're testing. if __name__ == "__main__": # pass # To test part 2, comment out the pass line above and # uncomment the following two lines. # secret_word = choose_word(wordlist) # hangman(secret_word) #my_word = "t__t" #other_word = "tadt" # show_possible_matches(my_word) ############### # To test part 3 re-comment out the above lines and # uncomment the following two lines. secret_word = choose_word(wordlist) hangman_with_hints(secret_word) ```
{ "source": "JhooClan/QSimOv", "score": 2 }
#### File: JhooClan/QSimOv/qalg.py ```python from qlibcj import * def DJAlg(size, U_f, **kwargs): # U_f es el oraculo, que debe tener x1..xn e y como qubits. Tras aplicarlo el qubit y debe valer f(x1..xn) XOR y. El argumento size es n + 1, donde n es el numero de bits de entrada de f. rnd.seed(kwargs.get('seed', None)) # Para asegurar la repetibilidad fijamos la semilla antes del experimento. r = QRegistry(([0 for i in range(size - 1)] + [1])) # Los qubits se inicializan a cero (x1..xn) excepto el ultimo (y), inicializado a uno r.applyGate(H(size)) # Se aplica una compuerta hadamard a todos los qubits r.applyGate(U_f) # Se aplica el oraculo r.applyGate(H(size - 1), I(1)) # Se aplica una puerta Hadamard a todos los qubits excepto al ultimo return r.measure([1 for i in range(size - 1)] + [0]) # Se miden los qubit x, si es igual a 0 la funcion es constante. En caso contrario no lo es. def ExampleDJCircuit(size, U_f, **kwargs): rnd.seed(kwargs.get('seed', None)) # Para asegurar la repetibilidad fijamos la semilla antes del experimento. c = DJAlgCircuit(size, U_f, save=kwargs.get('save', True)) res = c.execute([0 for i in range(size - 1)]) # Los qubits se inicializan a cero (x1..xn) excepto el ultimo (y), inicializado a uno por el circuito tal y como se indicó en su construccion print(all(i == 0 for i in res[1][0][:-1])) return res # Los qubits se inicializan a cero (x1..xn) excepto el ultimo (y), inicializado a uno por el circuito tal y como se indicó en su construccion def DJAlgCircuit(size, U_f, save=True): # U_f es el oraculo, que debe tener x1..xn e y como qubits. Tras aplicarlo el qubit y debe valer f(x1..xn) XOR y. El argumento size es n + 1, donde n es el numero de bits de entrada de f. c = QCircuit("Deutsch-Josza Algorithm", save=save, ancilla=[1]) # El ultimo QuBit al ejecutar el algoritmo es de ancilla, con su valor a 1 c.addLine(H(size)) # Se aplica una compuerta hadamard a todos los qubits c.addLine(U_f) # Se aplica el oraculo c.addLine(H(size - 1), I(1)) # Se aplica una puerta Hadamard a todos los qubits excepto al ultimo # f = lambda _, l: print(all(i == 0 for i in l[:-1])) # Funcion que imprimira cierto tras realizar la medida si la funcion es constante # c.addLine(Measure([1 for i in range(size - 1)] + [0], tasks=[f])) # Se miden los qubit x, si es igual a 0 la funcion es constante. En caso contrario no lo es. c.addLine(Measure([1 for i in range(size - 1)] + [0])) # Se miden los qubit x, si es igual a 0 la funcion es constante. En caso contrario no lo es. return c ''' Crea un oraculo U_f tal y como viene definido en el algoritmo de Deutsch-Josza para una funcion balanceada f: {0,1}^n ---> {0,1}, f(x) = msb(x) (bit mas significativo de x). El argumento n no es el numero de bits de la entrada de f, sino dicho numero mas 1 (para el qubit de "salida"). ''' def Bal(n): b = I(n) ''' Se invierte el valor del qubit y en los casos en los que el bit mas significativo sea 1. Una puerta C-NOT serviria de U_f con la definicion de f dada con n = 2. Bal(2) = CNOT(). ''' for i in range(int((2**n)/2), (2**n) - 1, 2): t = np.copy(b[i,:]) b[i], b[i+1] = b[i+1, :], t return b ''' U_f generada con n = 3: 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 Las entradas son, empezando por el qubit mas significativo: x1, x2 e y. Al aplicar el oraculo lo que hara es intercambiar la probabilidad asociada a |100> con la de |101> y la de |110> con |111>. De forma mas general, la funcion Bal se observa que devuelve siempre una puerta que al ser aplicada a un conjunto x1, ..., xn, y de qubits aplicara una C-NOT sobre x1 (control) e y (objetivo), dejando el resto de qubits intactos. De esta forma el oraculo pondra en el qubit y el valor de x1 XOR y. Como para la mitad de las posibles entradas x1 valdra 0 y para la otra mitad 1, la funcion f es balanceada ya que devuelve 0 para la mitad de las posibles entradas y 1 para la otra mitad. El oraculo U_f a su vez se comporta como se indica en el algoritmo, teniendo que y <- f(x) XOR y. ''' def Teleportation(qbit, **kwargs): # El qubit que va a ser teleportado. Aunque en un computador cuantico real no es posible ver el valor de un qubit sin que colapse, al ser un simulador se puede. Puede especificarse semilla con seed = <seed>. rnd.seed(kwargs.get('seed', None)) # Se fija la semilla antes de comenzar el experimento. En este caso la tomamos por parametro. r = QRegistry([qbit, 0, 0]) # Se crea un registro con el qubit que debe ser enviado a Alice, el qubit de Bob y el de Alice, en adelante Q, B y A. B y A estan inicializados a |0>. print ("Original registry:\n", r.state) # Se muestra el estado del registro de qubits. r.applyGate(I(1), H(1), I(1)) # Se aplica la puerta Hadamard a B, ahora en una superposicion de los estados |0> y |1>, ambos exactamente con la misma probabilidad. r.applyGate(I(1), CNOT()) # Se aplica una puerta C-NOT sobre B (control) y A (objetivo). print ("With Bell+ state:\n", r.state) # Tras la aplicacion de las anteriores dos puertas tenemos un estado de Bell +, B y A estan entrelazados. Se muestra el valor del registro. # Aqui es donde trabajamos con el qubit Q que queremos enviar posteriormente. En este caso de ejemplo le vamos a aplicar Hadamard y despues un cambio de fase de pi/2 r.applyGate(H(1), I(2)) r.applyGate(PhaseShift(np.pi/2), I(2)) # Una vez terminado todo lo que queremos hacerle al QuBit, procedemos a preparar el envio r.applyGate(CNOT(), I(1)) # Se aplica una puerta C-NOT sobre Q (control) y B (objetivo). r.applyGate(H(1), I(2)) # Se aplica una puerta Hadamard sobre Q. print ("\nBefore measurement:\n", r.state) # Se muestra el valor del registro antes de la medida. m = r.measure([1,1,0]) # Se miden los qubits Q y B. print ("q0 = ", m[0], "\nq1 = ", m[1]) # Se muestra el resultado de la medida q0 = 0 # Se crean para ver que la teleportacion se realiza con exito dos qubits, q0 y q1. q1 = 0 # Usandolos crearemos un registro con los valores que debe tener si la teleportacion se ha realizado con exito. if (m[1] == 1): q1 = 1 r.applyGate(I(2), PauliX()) # Si al medir B obtuvimos un 1, rotamos A en el eje X (Pauli-X o NOT) if (m[0] == 1): q0 = 1 r.applyGate(I(2), PauliZ()) # Si al medir Q obtuvimos un 1, rotamos A en el eje Z (Pauli-Z). er = QRegistry([q0, q1, qbit]) # Se crea el registro para testeo mencionado anteriormente. # Y aplicamos las mismas operaciones para ver que es lo que se debe recibir, en este caso Hadamard y PhaseShift. er.applyGate(I(2), H(1)) er.applyGate(I(2), PhaseShift(np.pi/2)) print ("\nExpected result:\n", er.state, "\nResult:\n", r.state) # Se muestra el contenido de los registros, tanto el del resultado esperado como el obtenido. print ("Assert: " + str(r.state == er.state)) return r # Se devuelve el registro obtenido tras aplicar el algoritmo. def TeleportationCircuit(gate, save=True): # Recibe como argumento lo que se va a ejecutar sobre el primer QuBit despues de hacer el estado de Bell con los dos últimos. qc = QCircuit("Teleportation", save=save, ancilla=[0, 0]) qc.addLine(I(1), H(1), I(1)) qc.addLine(I(1), CNOT()) # Aqui es donde trabajamos con el qubit Q que queremos enviar posteriormente. Se le aplica la puerta pasada como parámetro qc.addLine(gate, I(2)) # Una vez terminado todo lo que queremos hacerle al QuBit, procedemos a preparar el envio qc.addLine(CNOT(), I(1)) # Se aplica una puerta C-NOT sobre Q (control) y B (objetivo). qc.addLine(H(1), I(2)) # Se aplica una puerta Hadamard sobre Q. c1 = Condition([None, 1, None], PauliX()) c2 = Condition([1, None, None], PauliZ()) m = Measure([1, 1, 0], conds=[c1, c2], remove=True) qc.addLine(m) return qc # Se devuelve el circuito. def ExampleTC(value, gate, **kwargs): # El valor debe ser 0 o 1, valor inicial del QuBit a teleportar. Gate es la puerta que se va a aplicar sobre el QuBit a teleportar. rnd.seed(kwargs.get('seed', None)) # Para asegurar la repetibilidad fijamos la semilla antes del experimento. # Diseñamos la puerta que se va a aplicar sobre el QuBit #g = QGate() #g.addLine(H(1)) #g.addLine(PhaseShift(np.pi/2)) c = TeleportationCircuit(gate, save=kwargs.get('save', True)) r = c.execute([value]) # Se ejecuta el circuito exr = QRegistry([value]) exr.applyGate(gate) print ("Expected result:\n", exr.state, "\nResult:\n", r.state) print ("Assert: " + str(all((r.state == exr.state)[0]))) def TwoBitSubstractor(nums, **kwargs): # Se pasa como parametro los dos numeros binarios a restar como [A0, A1, B0, B1]. Devuelve el resultado en los qubit de mayor peso y en el tercer qubit indica si ha habido overflow rnd.seed(kwargs.get('seed', None)) # Para asegurar la repetibilidad fijamos la semilla antes del experimento. r = QRegistry(nums + [0,0,0,0,0,0,0]) # 7 bits de ancilla a 0 son necesarios en esta implementacion r.applyGate(I(1), SWAP(), SWAP(), I(6)) r.applyGate(I(2), SWAP(), SWAP(), I(5)) r.applyGate(I(3), SWAP(), SWAP(), I(4)) r.applyGate(I(4), SWAP(), I(5)) r.applyGate(I(5), Substractor()) r.applyGate(I(5), SWAP(), I(4)) r.applyGate(I(4), SWAP(), I(5)) r.applyGate(I(3), SWAP(), I(6)) r.applyGate(I(2), SWAP(), I(7)) r.applyGate(Substractor(), I(5)) r.applyGate(I(5), SWAP(), I(4)) r.applyGate(I(4), SWAP(), I(5)) r.applyGate(I(3), SWAP(), I(6)) r.applyGate(I(2), SWAP(), I(7)) r.applyGate(I(1), SWAP(), I(8)) return r.measure([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) ``` #### File: JhooClan/QSimOv/qlibcj.py ```python import cmath as cm import numpy as np from structures.qregistry import * from structures.qgate import * from structures.qcircuit import * # np.zeros((h,w), dtype=complex) Inicializa una matriz de numeros complejos con alto h y ancho w # La suma de matrices se realiza con +. A + B # La multiplicacion por un escalar se hace con *. n * A # Para multiplicar las matrices A y B se usa np.dot(A,B) # El producto Kronecker de A y B esta definido con np.kron(A,B) def _hMat(n): # Devuelve una matriz que al ser multiplicada por 1/sqrt(2^n) resulta en la puerta Hadamard para n bits H = np.ones((2,2), dtype=complex) H[1,1] = -1 if n > 1: H = np.kron(H, _hMat(n - 1)) return H def H(n): # Devuelve una puerta Hadamard para n QuBits H = QGate("H") H.addLine(_hMat(n)) H.setMult(1 / np.sqrt(2**n)) return H def PauliX(): # Also known as NOT px = QGate("NOT") m = np.array([0,1,1,0], dtype=complex) m.shape = (2,2) px.addLine(m) return px def PauliY(): py = QGate("Y") m = np.array([0,-1j,1j,0], dtype=complex) m.shape = (2,2) py.addLine(m) return py def PauliZ(): pz = QGate("Z") m = np.array([1,0,0,-1], dtype=complex) m.shape = (2,2) pz.addLine(m) return pz def SqrtNOT(): # Square root of NOT gate, usually seen in its controlled form C-√NOT. Sometimes called C-√X gate. v = QGate("√NOT") m = np.array([1, -1j, -1j, 1], dtype=complex) m.shape = (2,2) v.addLine(m) v.setMult((1 + 1j)/2) return v def ControlledU(gate): # Returns a controlled version of the given gate g = gate name = "U" if type(gate) == QGate: g = gate.m name = gate.name gdim = g.shape[0] m = np.eye(gdim*2, dtype=complex) m[gdim:,gdim:] = g cu = QGate("C-" + name) cu.addLine(m) return cu def CNOT(): # Returns a CNOT gate for two QuBits, also called Feynman gate #return ControlledU(PauliX()) cn = QGate("C-NOT") m = np.zeros((4,4), dtype=complex) m[0,0] = 1 m[1,1] = 1 m[2,3] = 1 m[3,2] = 1 cn.addLine(m) return cn def NOTC(): # Returns a CNOT gate for two QuBits, first QuBit objective and second one control #return SWAP() @ CNOT() @ SWAP() nc = QGate("NOT-C") m = np.zeros((4,4), dtype=complex) m[0,0] = 1 m[3,1] = 1 m[2,2] = 1 m[1,3] = 1 nc.addLine(m) return nc def SWAP(): # SWAP gate for 2 qubits sw = QGate("SWAP") #m = np.zeros((4,4), dtype=complex) #m[0,0] = 1 #m[1,2] = 1 #m[2,1] = 1 #m[3,3] = 1 #sw.addLine(m) sw.addLine(CNOT()) sw.addLine(NOTC()) sw.addLine(CNOT()) return sw def SqrtSWAP(): # Square root of SWAP gate for 2 qubits sw = QGate("√SWAP") m = np.zeros((4,4), dtype=complex) m[0,0] = 1 m[1,1] = 0.5 * (1+1j) m[1,2] = 0.5 * (1-1j) m[2,1] = 0.5 * (1-1j) m[2,2] = 0.5 * (1+1j) m[3,3] = 1 sw.addLine(m) return sw def Toffoli(): # Returns a CCNOT gate for three QuBits. A, B, C -> P = A, Q = B, R = AB XOR C. ''' # This does the same as the line below. Circuit with the implementation of Toffoli gate using SWAP, CNOT, Controlled-SNot and Controlled-SNot+ # Gates needed (without control SWAPs): 5 gate = np.kron(I(1), ControlledU(V())) gate = np.dot(gate, np.kron(SWAP(), I(1))) gate = np.dot(gate, np.kron(I(1), ControlledU(V()))) gate = np.dot(gate, np.kron(CNOT(), I(1))) gate = np.dot(gate, np.kron(I(1), ControlledU(Dagger(V())))) gate = np.dot(gate, np.kron(CNOT(), I(1))) gate = np.dot(gate, np.kron(SWAP(), I(1))) return gate ''' return ControlledU(CNOT()) def Fredkin(): # Returns a CSWAP gate for three QuBits return ControlledU(SWAP()) def Deutsch(angle): # Returns Deutsh gate with specified angle. D(pi/2) = Toffoli d = np.eye(8, dtype=complex) can = np.cos(angle) san = np.sin(angle) d[6,6] = can * 1j d[6,7] = san d[7,6] = san d[7,7] = can * 1j g = QGate("D-" + str(angle)) g.addLine(d) return g def getSC(number): # Gets the number of significative ciphers of a given number return len(str(number).replace('.', '')) def setSC(number, sc): # Returns the specified number with the specified significative ciphers res = 0 num = str(number).split('.') i = len(num[0]) d = 0 if i >= sc: diff = i - sc res = int(num[0][0:sc]+"0"*diff) elif len(num) == 2: d = len(num[1]) tsc = min(sc - i, d) diff = 0 if sc - i > d: diff = sc - i - d res = float(num[0] + '.' + num[1][0:tsc]+"0"*diff) if d > tsc and num[1][tsc] >= '5': res += 10**-tsc return res def toComp(angle, sc=None): # Returns a complex number with module 1 and the specified phase. while angle >= 2*np.pi: angle -= 2*np.pi if sc == None: sc = getSC(angle) res = np.around(np.cos(angle), decimals=sc-1) + np.around(np.sin(angle), decimals=sc-1)*1j return res def PhaseShift(angle): # Phase shift (R) gate, rotates qubit with specified angle (in radians) ps = np.array([1, 0, 0, toComp(angle, 16)], dtype=complex) ps.shape = (2,2) g = QGate("R(" + str(angle) + ")") return ps def Peres(): # A, B, C -> P = A, Q = A XOR B, R = AB XOR C. Peres gate. ''' # Implementation of Peres gate with smaller gates. # Gates needed (without control SWAPs): 4 p = QGate("Peres") p.addLine(SWAP(), I(1)) p.addLine(I(1), ControlledU(SqrtNOT())) p.addLine(SWAP(), I(1)) p.addLine(I(1), ControlledU(SqrtNOT())) p.addLine(CNOT(), I(1)) p.addLine(I(1), ControlledU(Dagger(SqrtNOT()))) return p ''' p = QGate("Peres") p.addLine(Toffoli()) p.addLine(CNOT(), I(1)) return p def R(): # A, B, C -> P = A XOR B, Q = A, R = AB XOR ¬C. R gate. # Optimized implementation with smaller gates # Gates needed (without control SWAPs): 6 r = QGate("R") r.addLine(SWAP(), PauliX()) r.addLine(I(1), ControlledU(SqrtNOT())) r.addLine(SWAP(), I(1)) r.addLine(I(1), ControlledU(SqrtNOT())) r.addLine(CNOT(), I(1)) r.addLine(I(1), ControlledU(Dagger(SqrtNOT()))) r.addLine(SWAP(), I(1)) return r def TR(): # A, B, C -> P = A, Q = A XOR B, R = A¬B XOR C. TR gate. # Implementation of TR gate with smaller gates. # Gates needed (without control SWAPs): 6 tr = QGate("TR") tr.addLine(I(1), PauliX(), I(1)) tr.addLine(SWAP(), I(1)) tr.addLine(I(1), ControlledU(SqrtNOT())) tr.addLine(SWAP(), I(1)) tr.addLine(I(1), ControlledU(SqrtNOT())) tr.addLine(CNOT(), I(1)) tr.addLine(I(1), ControlledU(Dagger(SqrtNOT()))) tr.addLine(I(1), PauliX(), I(1)) return tr def URG(): # A, B, C -> P = (A+B) XOR C, Q = B, R = AB XOR C. # Implementation of URG gate with smaller gates. # Gates needed (without control SWAPs): 8 urg = QGate("URG") urg.addLine(I(1), ControlledU(SqrtNOT())) urg.addLine(SWAP(), I(1)) urg.addLine(I(1), ControlledU(SqrtNOT())) urg.addLine(CNOT(), I(1)) urg.addLine(I(1), ControlledU(Dagger(SqrtNOT()))) urg.addLine(CNOT(), I(1)) urg.addLine(I(1), SWAP()) urg.addLine(CNOT(), I(1)) urg.addLine(I(1), CNOT()) urg.addLine(CNOT(), I(1)) urg.addLine(I(1), SWAP()) urg.addLine(SWAP(), I(1)) return urg def BJN(): # A, B, C -> P = A, Q = B, R = (A+B) XOR C. BJN gate. # Implementation of TR gate with smaller gates. # Gates needed (without control SWAPs): 5 bjn = QGate("BJN") bjn.addLine(SWAP(), I(1)) bjn.addLine(I(1), ControlledU(SqrtNOT())) bjn.addLine(SWAP(), I(1)) bjn.addLine(I(1), ControlledU(SqrtNOT())) bjn.addLine(CNOT(), I(1)) bjn.addLine(I(1), ControlledU(SqrtNOT())) bjn.addLine(CNOT(), I(1)) return bjn def BlochCoords(qbit): alpha = qbit[0][0] pcorr = cm.rect(1, -cm.phase(alpha)) alpha *= pcorr alpha = alpha.real beta = qbit[0][1] * pcorr theta = np.arccos(alpha) * 2 s = np.sin(theta/2) if (s != 0): phi = np.log(beta/s)/1j phi = phi.real else: phi = 0. return (theta, phi) def getTruthTable(gate, ancilla=None, garbage=0, iterations=1): # Prints the truth table of the given gate. # You can set the ancilla bits to not include them in the table, with the list of values they must have. # For example, if you have two 0s and one 1 as ancilla bits, ancilla[0,0,1]. It always takes the last bits as the ancilla ones! # The garbage=n removes the last n bits from the truth table, considering them garbage. # For example, if you have 6 outputs and the last 4 outputs are garbage, only the value of the first two would be printed. # Always removes the last n bits! num = int(np.log2(gate.shape[0])) mesd = {} for iteration in range(iterations): for i in range(0, gate.shape[0]): nbin = [int(x) for x in bin(i)[2:]] qinit = [0 for j in range(num - len(nbin))] qinit += nbin if ancilla == None or qinit[-len(ancilla):] == ancilla: qr = QRegistry(qinit) qr.ApplyGate(gate) mes = qr.Measure([1 for j in range(num-garbage)]) if ancilla != None: ini = qinit[:-len(ancilla)] else: ini = qinit if str(ini) not in mesd: mesd[str(ini)] = np.zeros(num) mesd[str(ini)] = [x + y for x, y in zip(mesd[str(ini)], mes)] for k in mesd: print(k + " -> " + str(["P(1)=" + str(v/iterations) if v/iterations != 1.0 and v/iterations != 0.0 else int(v/iterations) for v in mesd[k]])) def QEq(q1, q2): return np.array_equal(q1,q2) and str(q1) == str(q2) def HalfSubstractor(): # A, B, 0 -> P = A-B, Q = Borrow, R = B = Garbage hs = QGate("Half Substractor") hs.addLine(SWAP(), I(1)) hs.addLine(TR()) hs.addLine(SWAP(), I(1)) hs.addLine(I(1), SWAP()) return hs def Substractor(): # A, B, Bin, 0, 0, 0 -> P = A-B, Q = Borrow, R = B1 = Garbage, S = B1B2 = Garbage, T = Bin = Garbage, U = B = Garbage # Can be used as a comparator. Q will be 0 if A>=B, 1 otherwise. fs = QGate("Substractor") fs.addLine(I(2), SWAP(), I(2)) fs.addLine(HalfSubstractor(), I(3)) fs.addLine(I(2), SWAP(), I(2)) fs.addLine(I(1), SWAP(), SWAP(), I(1)) fs.addLine(I(2), SWAP(), SWAP()) fs.addLine(HalfSubstractor(), I(3)) fs.addLine(I(2), SWAP(), I(2)) fs.addLine(I(3), SWAP(), I(1)) fs.addLine(I(1), URG(), I(2)) return fs # Function that returns the 2^nth root of the unity def nroot(n, rc = 14): # Rounds to 14 decimal places by default r = cm.exp(2j * cm.pi / pow(2, n)) return round(r.real, rc) + round(r.imag, rc) * 1j def RUnity(m, rc = 14): ru = np.eye(2, dtype=complex) ru[1,1] = nroot(m, rc) g = QGate("RU" + str(m)) g.addLine(ru) return g def QFT(size, rc = 14): ''' size = 4 uft = np.kron(Hadamard(1), I(size - 1)) uft = np.dot(uft, np.kron(np.dot(SWAP(), ControlledU(RUnity(2, rc))), I(size - 2))) uft = np.dot(uft, np.kron(Hadamard(1), np.kron(np.dot(SWAP(), ControlledU(RUnity(3, rc))), I(size - 3)))) uft = np.dot(uft, np.kron(np.dot(SWAP(), ControlledU(RUnity(2, rc))), np.dot(SWAP(), ControlledU(RUnity(4, rc))))) uft = np.dot(uft, np.kron(Hadamard(1), np.kron(np.dot(SWAP(), ControlledU(RUnity(3, rc))), I(size - 3)))) uft = np.dot(uft, np.kron(np.dot(SWAP(), ControlledU(RUnity(2, rc))), I(size - 2))) uft = np.dot(uft, np.kron(Hadamard(1), I(size - 1))) uft = np.dot(uft, np.kron(SWAP(), I(size - 2))) uft = np.dot(uft, np.kron(I(size - 3), np.kron(SWAP(), I(size - 3)))) uft = np.dot(uft, np.kron(SWAP(), SWAP())) uft = np.dot(uft, np.kron(I(size - 3), np.kron(SWAP(), I(size - 3)))) uft = np.dot(uft, np.kron(SWAP(), I(size - 2))) return uft ''' from tests.shor import DFT return DFT(pow(2, size)) ``` #### File: QSimOv/structures/qgate.py ```python import numpy as np import gc class QGate(object): def __init__(self, name="UNNAMED"): self.m = 1 self.mult = 1 self.simple = True self.lines = [] self.name = name def __getitem__(self, key): return self.m[key] def __setitem__(self, key, value): self.m[key] = value def __delitem__(self, key): del self.m[key] def __repr__(self): return self.name def __str__(self): return self.name def __lt__(self, other): m = other if type(other) == QGate: m = other.m return self.m.__lt__(m) def __le_(self, other): m = other if type(other) == QGate: m = other.m return self.m.__le__(m) def __eq__(self, other): m = other if type(other) == QGate: m = other.m return self.m.__eq__(m) def __ne_(self, other): m = other if type(other) == QGate: m = other.m return self.m.__ne__(m) def __gt__(self, other): m = other if type(other) == QGate: m = other.m return self.m.__gt__(m) def __ge_(self, other): m = other if type(other) == QGate: m = other.m return self.m.__ge__(m) def __add__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__add__(m)) return sol def __sub__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__sub__(m)) return sol def __mod__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__mod__(m)) return sol def __mul__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__mul__(m)) return sol def __rmul__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__rmul__(m)) return sol def __imul__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(self.m.__rmul__(m)) return sol def __matmul__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(np.dot(self.m, m)) return sol def __pow__(self, other): m = other if type(other) == QGate: m = other.m sol = QGate() sol.addLine(np.kron(self.m, m)) return sol def addLine(self, *args): self.lines.append(list(args)) if self.simple and (len(list(args)) > 1 or len(self.lines) > 1): self.simple = False aux = 1 for gate in args: g = gate if type(gate) == QGate: g = gate.m aux = np.kron(aux, g) gc.collect() self.m = np.dot(aux, self.m) gc.collect() def setMult(self, mult): self.m *= mult/self.mult self.mult = mult def addMult(self, mult): self.m *= mult self.mult *= mult def setName(self, name): self.name = name def I(n): # Returns Identity Matrix for the specified number of QuBits #IM = np.array([[1,0],[0,1]], dtype=complex) #if n > 1: # IM = np.kron(IM, I(n - 1)) return np.eye(2**n, dtype=complex) def _getMatrix(gate): m = gate if type(gate) == QGate: m = gate.m return m def unitaryMatrix(mat, decimals=10): mustbei = np.around(np.dot(_getMatrix(mat), _getMatrix(dagger(mat))), decimals=decimals) return (mustbei == I(int(np.log2(mustbei.shape[0])))).all() def normalizeGate(mat): det = np.linalg.det(mat) if det != 0: return mat/det else: return None def transpose(gate): # Returns the Transpose of the given matrix if type(gate) == QGate: t = QGate(gate.name + "T") t.addLine(np.matrix.transpose(gate.m)) else: t = QGate("UT") t.addLine(np.matrix.transpose(gate)) return t def dagger(gate): # Returns the Hermitian Conjugate or Conjugate Transpose of the given matrix if type(gate) == QGate: t = QGate(gate.name + "†") if gate.simple: t.addLine(dagger(gate.m)) else: lines = gate.lines[::-1] for line in lines: t.addLine(*[dagger(g).m for g in line]) t.setMult(gate.mult) else: t = QGate("U†") t.addLine(np.matrix.getH(gate)) return t def invert(gate): # Returns the inverse of the given matrix if type(gate) == QGate: t = QGate(gate.name + "-¹") t.addLine(np.linalg.inv(gate.m)) else: t = QGate("U-¹") t.addLine(np.linalg.inv(gate)) return t ``` #### File: QSimOv/structures/qregistry.py ```python import cmath as cm import numpy as np import random as rnd from structures.qgate import _getMatrix class QRegistry: def __init__(self, nqbits, **kwargs): # nqbits -> number of QuBits in the registry. # Seed for the Pseudo Random Number Generation can be specified with seed = <seed> as an argument. self.state = np.zeros(2**nqbits, dtype=complex) self.state[0] = 1 self.state.shape = (1, 2**nqbits) def measure(self, msk, remove = False): # List of numbers with the QuBits that should be measured. 0 means not measuring that qubit, 1 otherwise. remove = True if you want to remove a QuBit from the registry after measuring if (type(msk) != list or len(msk) != int(np.log2(self.state.size)) or \ not all(type(num) == int and (num == 0 or num == 1) for num in msk)): raise ValueError('Not valid mask') mask = [] for i in range(len(msk)): if msk[i] == 1: mask.append(i) tq = int(np.log2(self.state.size)) if (not all(num < tq and num > -1 for num in mask)): raise ValueError('Out of range') mes = [] for qbit in mask: r = rnd.random() p = 0 max = 2**(tq - (qbit + 1)) cnt = 0 rdy = True for i in range(0, self.state.size): if (cnt == max): rdy = not rdy cnt = 0 if (rdy): p += cm.polar(self.state[0,i])[0]**2 cnt += 1 if (r < p): me = 0 else: me = 1 mes.append(me) self.collapse((tq - (qbit + 1)), me, remove) return mes def applyGate(self, *gates): # Applies a quantum gate to the registry. gate = _getMatrix(gates[0]) for g in list(gates)[1:]: gate = np.kron(gate, _getMatrix(g)) self.state = np.transpose(np.dot(gate, ket(self.state))) def collapse(self, qbit, mes, remove): # Collapses a qubit from the registry. qbit is the id of the qubit, numerated as q0..qn in the registry. mes is the value obtained when measuring it. remove indicates whether it should be removed from the registry. max = 2**qbit cnt = 0 rdy = mes == 1 mfd = [] for i in range(0, self.state.size): if (cnt == max): rdy = not rdy cnt = 0 if (rdy): self.state[0, i] = 0 mfd.append(i) cnt += 1 if (remove): for qbit in mfd[::-1]: self.state = np.delete(self.state, qbit, 1) normalize(self.state) def densityMatrix(self): return np.dot(ket(self.state), bra(self.state)) def vnEntropy(self, **kwargs): base = kwargs.get('base', "e") #dm = self.densityMatrix() #evalues, m = np.linalg.eig(dm) entropy = 0 #for e in evalues: # if e != 0: # entropy += e * np.log(e) for amp in self.state[0]: p = cm.polar(amp)[0]**2 if p > 0: if base == "e": entropy += p * np.log(p) elif type(base) == int or type(base) == float: entropy += p * np.log(p)/np.log(base) return -entropy def prob(q, x): # Devuelve la probabilidad de obtener x al medir el qbit q p = 0 if (x < q.size): p = cm.polar(q[0,x])[0]**2 return p def bra(v): # Devuelve el vector pasado como parametro en forma de fila conjugado. <v| b = v[:] s = v.shape if s[0] != 1: b = np.matrix.getH(b) else: b = np.conjugate(b) return b def ket(v): # Devuelve el vector pasado como parametro en forma de columna. |v> k = v[:] s = v.shape if s[1] != 1: k = np.transpose(k) return k def superposition(x, y): # Devuelve el estado compuesto por los dos QuBits. z = np.kron(x, y) normalize(z) return z def normalize(state): # Funcion que asegura que se cumpla la propiedad que dice que |a|^2 + |b|^2 = 1 para cualquier QuBit. Si no se cumple, modifica el QuBit para que la cumpla si se puede. sqs = 0 for i in range(0, state.size): sqs += cm.polar(state[0, i])[0]**2 sqs = np.sqrt(sqs) if (sqs == 0): raise ValueError('Impossible QuBit') if (sqs != 1): for bs in state: bs /= sqs def QBit(a,b): # Devuelve un QuBit con a y b. q = a|0> + b|1>, con a y b complejos q = np.array([a,b], dtype=complex) q.shape = (1,2) normalize(q) return q def QZero(): # Devuelve un QuBit en el estado 0 q = np.array([complex(1,0),complex(0,0)]) q.shape = (1,2) return q def QOne(): # Devuelve un QuBit en el estado 1 q = np.array([complex(0,0),complex(1,0)]) q.shape = (1,2) return q ```
{ "source": "jhoofwijk/adaptive", "score": 2 }
#### File: adaptive/learner/integrator_learner.py ```python import sys from collections import defaultdict from math import sqrt from operator import attrgetter import numpy as np from scipy.linalg import norm from sortedcontainers import SortedSet from adaptive.learner.base_learner import BaseLearner from adaptive.notebook_integration import ensure_holoviews from adaptive.utils import cache_latest, restore from .integrator_coeffs import (T_left, T_right, V_inv, Vcond, alpha, b_def, eps, gamma, hint, min_sep, ndiv_max, ns, xi) def _downdate(c, nans, depth): # This is algorithm 5 from the thesis of <NAME>. b = b_def[depth].copy() m = ns[depth] - 1 for i in nans: b[m + 1] /= alpha[m] xii = xi[depth][i] b[m] = (b[m] + xii * b[m + 1]) / alpha[m - 1] for j in range(m - 1, 0, -1): b[j] = ((b[j] + xii * b[j + 1] - gamma[j + 1] * b[j + 2]) / alpha[j - 1]) b = b[1:] c[:m] -= c[m] / b[m] * b[:m] c[m] = 0 m -= 1 return c def _zero_nans(fx): """Caution: this function modifies fx.""" nans = [] for i in range(len(fx)): if not np.isfinite(fx[i]): nans.append(i) fx[i] = 0.0 return nans def _calc_coeffs(fx, depth): """Caution: this function modifies fx.""" nans = _zero_nans(fx) c_new = V_inv[depth] @ fx if nans: fx[nans] = np.nan c_new = _downdate(c_new, nans, depth) return c_new class DivergentIntegralError(ValueError): pass class _Interval: """ Attributes ---------- (a, b) : (float, float) The left and right boundary of the interval. c : numpy array of shape (4, 33) Coefficients of the fit. depth : int The level of refinement, `depth=0` means that it has 5 (the minimal number of) points and `depth=3` means it has 33 (the maximal number of) points. fx : numpy array of size `(5, 9, 17, 33)[self.depth]`. The function values at the points `self.points(self.depth)`. igral : float The integral value of the interval. err : float The error associated with the integral value. rdepth : int The number of splits that the interval has gone through, starting at 1. ndiv : int A number that is used to determine whether the interval is divergent. parent : _Interval The parent interval. children : list of `_Interval`s The intervals resulting from a split. done_points : dict A dictionary with the x-values and y-values: `{x1: y1, x2: y2 ...}`. done : bool The integral and the error for the interval has been calculated. done_leaves : set or None Leaves used for the error and the integral estimation of this interval. None means that this information was already propagated to the ancestors of this interval. depth_complete : int or None The level of refinement at which the interval has the integral value evaluated. If None there is no level at which the integral value is known yet. Methods ------- refinement_complete : depth, optional If true, all the function values in the interval are known at `depth`. By default the depth is the depth of the interval. """ __slots__ = [ 'a', 'b', 'c', 'c00', 'depth', 'igral', 'err', 'fx', 'rdepth', 'ndiv', 'parent', 'children', 'done_points', 'done_leaves', 'depth_complete', 'removed', ] def __init__(self, a, b, depth, rdepth): self.children = [] self.done_points = {} self.a = a self.b = b self.depth = depth self.rdepth = rdepth self.done_leaves = set() self.depth_complete = None self.removed = False @classmethod def make_first(cls, a, b, depth=2): ival = _Interval(a, b, depth, rdepth=1) ival.ndiv = 0 ival.parent = None ival.err = sys.float_info.max # needed because inf/2 == inf return ival @property def T(self): """Get the correct shift matrix. Should only be called on children of a split interval. """ assert self.parent is not None left = self.a == self.parent.a right = self.b == self.parent.b assert left != right return T_left if left else T_right def refinement_complete(self, depth): """The interval has all the y-values to calculate the intergral.""" if len(self.done_points) < ns[depth]: return False return all(p in self.done_points for p in self.points(depth)) def points(self, depth=None): if depth is None: depth = self.depth a = self.a b = self.b return (a + b) / 2 + (b - a) * xi[depth] / 2 def refine(self): self.depth += 1 return self def split(self): points = self.points() m = points[len(points) // 2] ivals = [_Interval(self.a, m, 0, self.rdepth + 1), _Interval(m, self.b, 0, self.rdepth + 1)] self.children = ivals for ival in ivals: ival.parent = self ival.ndiv = self.ndiv ival.err = self.err / 2 return ivals def calc_igral(self): self.igral = (self.b - self.a) * self.c[0] / sqrt(2) def update_heuristic_err(self, value): """Sets the error of an interval using a heuristic (half the error of the parent) when the actual error cannot be calculated due to its parents not being finished yet. This error is propagated down to its children.""" self.err = value for child in self.children: if child.depth_complete or (child.depth_complete == 0 and self.depth_complete is not None): continue child.update_heuristic_err(value / 2) def calc_err(self, c_old): c_new = self.c c_diff = np.zeros(max(len(c_old), len(c_new))) c_diff[:len(c_old)] = c_old c_diff[:len(c_new)] -= c_new c_diff = norm(c_diff) self.err = (self.b - self.a) * c_diff for child in self.children: if child.depth_complete is None: child.update_heuristic_err(self.err / 2) return c_diff def calc_ndiv(self): div = (self.parent.c00 and self.c00 / self.parent.c00 > 2) self.ndiv += div if self.ndiv > ndiv_max and 2 * self.ndiv > self.rdepth: raise DivergentIntegralError if div: for child in self.children: child.update_ndiv_recursively() def update_ndiv_recursively(self): self.ndiv += 1 if self.ndiv > ndiv_max and 2 * self.ndiv > self.rdepth: raise DivergentIntegralError for child in self.children: child.update_ndiv_recursively() def complete_process(self, depth): """Calculate the integral contribution and error from this interval, and update the done leaves of all ancestor intervals.""" assert self.depth_complete is None or self.depth_complete == depth - 1 self.depth_complete = depth fx = [self.done_points[k] for k in self.points(depth)] self.fx = np.array(fx) force_split = False # This may change when refining first_ival = self.parent is None and depth == 2 if depth and not first_ival: # Store for usage in refine c_old = self.c self.c = _calc_coeffs(self.fx, depth) if first_ival: self.c00 = 0.0 return False, False self.calc_igral() if depth: # Refine c_diff = self.calc_err(c_old) force_split = c_diff > hint * norm(self.c) else: # Split self.c00 = self.c[0] if self.parent.depth_complete is not None: c_old = self.T[:, :ns[self.parent.depth_complete]] @ self.parent.c self.calc_err(c_old) self.calc_ndiv() for child in self.children: if child.depth_complete is not None: child.calc_ndiv() if child.depth_complete == 0: c_old = child.T[:, :ns[self.depth_complete]] @ self.c child.calc_err(c_old) if self.done_leaves is not None and not len(self.done_leaves): # This interval contributes to the integral estimate. self.done_leaves = {self} # Use this interval in the integral estimates of the ancestors # while possible. ival = self.parent old_leaves = set() while ival is not None: unused_children = [child for child in ival.children if child.done_leaves is not None] if not all(len(child.done_leaves) for child in unused_children): break if ival.done_leaves is None: ival.done_leaves = set() old_leaves.add(ival) for child in ival.children: if child.done_leaves is None: continue ival.done_leaves.update(child.done_leaves) child.done_leaves = None ival.done_leaves -= old_leaves ival = ival.parent remove = self.err < (abs(self.igral) * eps * Vcond[depth]) return force_split, remove def __repr__(self): lst = [ f'(a, b)=({self.a:.5f}, {self.b:.5f})', f'depth={self.depth}', f'rdepth={self.rdepth}', f'err={self.err:.5E}', 'igral={:.5E}'.format(self.igral if hasattr(self, 'igral') else np.inf), ] return ' '.join(lst) class IntegratorLearner(BaseLearner): def __init__(self, function, bounds, tol): """ Parameters ---------- function : callable: X → Y The function to learn. bounds : pair of reals The bounds of the interval on which to learn 'function'. tol : float Relative tolerance of the error to the integral, this means that the learner is done when: `tol > err / abs(igral)`. Attributes ---------- approximating_intervals : set of intervals The intervals that can be used in the determination of the integral. n : int The total number of evaluated points. igral : float The integral value in `self.bounds`. err : float The absolute error associated with `self.igral`. max_ivals : int, default: 1000 Maximum number of intervals that can be present in the calculation of the integral. If this amount exceeds max_ivals, the interval with the smallest error will be discarded. Methods ------- done : bool Returns whether the `tol` has been reached. plot : hv.Scatter Plots all the points that are evaluated. """ self.function = function self.bounds = bounds self.tol = tol self.max_ivals = 1000 self.priority_split = [] self.done_points = {} self.pending_points = set() self._stack = [] self.x_mapping = defaultdict(lambda: SortedSet([], key=attrgetter('rdepth'))) self.ivals = set() ival = _Interval.make_first(*self.bounds) self.add_ival(ival) self.first_ival = ival @property def approximating_intervals(self): return self.first_ival.done_leaves def tell(self, point, value): if point not in self.x_mapping: raise ValueError("Point {} doesn't belong to any interval" .format(point)) self.done_points[point] = value self.pending_points.discard(point) # Select the intervals that have this point ivals = self.x_mapping[point] for ival in ivals: ival.done_points[point] = value if ival.depth_complete is None: from_depth = 0 if ival.parent is not None else 2 else: from_depth = ival.depth_complete + 1 for depth in range(from_depth, ival.depth + 1): if ival.refinement_complete(depth): force_split, remove = ival.complete_process(depth) if remove: # Remove the interval (while remembering the excess # integral and error), since it is either too narrow, # or the estimated relative error is already at the # limit of numerical accuracy and cannot be reduced # further. self.propagate_removed(ival) elif force_split and not ival.children: # If it already has children it has already been split assert ival in self.ivals self.priority_split.append(ival) def tell_pending(self): pass def propagate_removed(self, ival): def _propagate_removed_down(ival): ival.removed = True self.ivals.discard(ival) for child in ival.children: _propagate_removed_down(child) _propagate_removed_down(ival) def add_ival(self, ival): for x in ival.points(): # Update the mappings self.x_mapping[x].add(ival) if x in self.done_points: self.tell(x, self.done_points[x]) elif x not in self.pending_points: self.pending_points.add(x) self._stack.append(x) self.ivals.add(ival) def ask(self, n, tell_pending=True): """Choose points for learners.""" if not tell_pending: with restore(self): return self._ask_and_tell_pending(n) else: return self._ask_and_tell_pending(n) def _ask_and_tell_pending(self, n): points, loss_improvements = self.pop_from_stack(n) n_left = n - len(points) while n_left > 0: assert n_left >= 0 try: self._fill_stack() except ValueError: raise RuntimeError("No way to improve the integral estimate.") new_points, new_loss_improvements = self.pop_from_stack(n_left) points += new_points loss_improvements += new_loss_improvements n_left -= len(new_points) return points, loss_improvements def pop_from_stack(self, n): points = self._stack[:n] self._stack = self._stack[n:] loss_improvements = [max(ival.err for ival in self.x_mapping[x]) for x in points] return points, loss_improvements def remove_unfinished(self): pass def _fill_stack(self): # XXX: to-do if all the ivals have err=inf, take the interval # with the lowest rdepth and no children. force_split = bool(self.priority_split) if force_split: ival = self.priority_split.pop() else: ival = max(self.ivals, key=lambda x: (x.err, x.a)) assert not ival.children # If the interval points are smaller than machine precision, then # don't continue with splitting or refining. points = ival.points() if (points[1] - points[0] < points[0] * min_sep or points[-1] - points[-2] < points[-2] * min_sep): self.ivals.remove(ival) elif ival.depth == 3 or force_split: # Always split when depth is maximal or if refining didn't help self.ivals.remove(ival) for ival in ival.split(): self.add_ival(ival) else: self.add_ival(ival.refine()) # Remove the interval with the smallest error # if number of intervals is larger than max_ivals if len(self.ivals) > self.max_ivals: self.ivals.remove(min(self.ivals, key=lambda x: (x.err, x.a))) return self._stack @property def npoints(self): """Number of evaluated points.""" return len(self.done_points) @property def igral(self): return sum(i.igral for i in self.approximating_intervals) @property def err(self): if self.approximating_intervals: err = sum(i.err for i in self.approximating_intervals) if err > sys.float_info.max: err = np.inf else: err = np.inf return err def done(self): err = self.err igral = self.igral err_excess = sum(i.err for i in self.approximating_intervals if i.removed) return (err == 0 or err < abs(igral) * self.tol or (err - err_excess < abs(igral) * self.tol < err_excess) or not self.ivals) @cache_latest def loss(self, real=True): return abs(abs(self.igral) * self.tol - self.err) def plot(self): hv = ensure_holoviews() ivals = sorted(self.ivals, key=attrgetter('a')) if not self.done_points: return hv.Path([]) xs, ys = zip(*[(x, y) for ival in ivals for x, y in sorted(ival.done_points.items())]) return hv.Path((xs, ys)) def _get_data(self): # Change the defaultdict of SortedSets to a normal dict of sets. x_mapping = {k: set(v) for k, v in self.x_mapping.items()} return (self.priority_split, self.done_points, self.pending_points, self._stack, x_mapping, self.ivals, self.first_ival) def _set_data(self, data): self.priority_split, self.done_points, self.pending_points, \ self._stack, x_mapping, self.ivals, self.first_ival = data # Add the pending_points to the _stack such that they are evaluated again for x in self.pending_points: if x not in self._stack: self._stack.append(x) # x_mapping is a data structure that can't easily be saved # so we recreate it here self.x_mapping = defaultdict(lambda: SortedSet([], key=attrgetter('rdepth'))) for k, _set in x_mapping.items(): self.x_mapping[k].update(_set) ``` #### File: adaptive/docs/logo.py ```python import os import sys sys.path.insert(0, os.path.abspath('..')) # to get adaptive on the path import adaptive import holoviews import matplotlib.pyplot as plt import matplotlib.tri as mtri from PIL import Image, ImageDraw holoviews.notebook_extension('matplotlib') def create_and_run_learner(): def ring(xy): import numpy as np x, y = xy a = 0.2 return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4) learner = adaptive.Learner2D(ring, bounds=[(-1, 1), (-1, 1)]) adaptive.runner.simple(learner, goal=lambda l: l.loss() < 0.01) return learner def plot_learner_and_save(learner, fname): fig, ax = plt.subplots() tri = learner.ip().tri triang = mtri.Triangulation(*tri.points.T, triangles=tri.vertices) ax.triplot(triang, c='k', lw=0.8) ax.imshow(learner.plot().Image.I.data, extent=(-0.5, 0.5, -0.5, 0.5)) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(fname, bbox_inches="tight", transparent=True, dpi=300, pad_inches=-0.1) def add_rounded_corners(fname, rad): im = Image.open(fname) circle = Image.new('L', (rad * 2, rad * 2), 0) draw = ImageDraw.Draw(circle) draw.ellipse((0, 0, rad * 2, rad * 2), fill=255) alpha = Image.new('L', im.size, 255) w, h = im.size alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0)) alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad)) alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0)) alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad)) im.putalpha(alpha) return im if __name__ == '__main__': learner = create_and_run_learner() fname = 'source/_static/logo_docs.png' plot_learner_and_save(learner, fname) im = add_rounded_corners(fname, rad=200) im.thumbnail((200, 200), Image.ANTIALIAS) # resize im.save(fname) ```
{ "source": "JHoogendijk/Differences-in-reaction-speed-when-reacting-to-changes-in-rotation-and-changes-in-contrast", "score": 3 }
#### File: JHoogendijk/Differences-in-reaction-speed-when-reacting-to-changes-in-rotation-and-changes-in-contrast/__init__.py ```python from flask import Flask, jsonify, request from flask_sqlalchemy import SQLAlchemy from scipy import stats import logging, sys, json logging.basicConfig(stream=sys.stderr) db = SQLAlchemy() def serialize_list(e): d = dict() i = 0 for item in e: d[i] = item.serialize i = i + 1 return d class Data(db.Model): id = db.Column(db.Integer, primary_key=True) participant_id = db.Column(db.Integer, db.ForeignKey('participant.id'), primary_key=True) participant = db.relationship('Participant', foreign_keys=[participant_id], backref="data") reaction_time = db.Column(db.Integer) def __init__(self, id, participant_id, reaction_time): self.participant_id = participant_id self.reaction_time = reaction_time self.id = id @property def serialize(self): return { "id":self.id, "reaction_time":self.reaction_time } class Participant(db.Model): id = db.Column(db.Integer, primary_key=True) gender = db.Column(db.Text) age = db.Column(db.Integer) monitor = db.Column(db.Text) average_time = db.Column(db.Integer) def __init__(self, gender, age, monitor, average_time): self.gender = gender self.age = age self.monitor = monitor self.average_time = average_time @property def serialize(self): return { "id":self.id, "gender":self.gender, "age":self.age, "monitor":self.monitor, "average_time":self.average_time, "data":serialize_list(self.data) } app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///./experiment.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.init_app(app) app.app_context().push() @app.route("/") def hello(): return app.send_static_file('index.html') @app.route("/js/app.js") def appfile(): return app.send_static_file('js/app.js') @app.route("/save", methods=['POST']) def save(): data = request.json results = data.get("results") participant = Participant(data.get("gender"), data.get("age"), data.get("monitor"), data.get("averageTime")) db.session.add(participant) db.session.commit() i=0 for result in results: db.session.add(Data(i, participant.id, result)) i = i + 1 db.session.commit() all_participants = Participant.query.all() averages = [] for participant in all_participants: averages.append(participant.average_time) percentile = 100-stats.stats.percentileofscore(averages, participant.average_time, kind="mean") return jsonify({'percentile':percentile}) @app.route("/getData") def getData(): return jsonify(serialize_list(Participant.query.all())) @app.route("/performTTest") def perform_ttest(): orientation_data = [] contrast_data = [] all_participants = Participant.query.all() for participant in all_participants: for x in range(0, 5): if participant.data[x].reaction_time != 0 and participant.data[x+5].reaction_time != 0: orientation_data.append(participant.data[x].reaction_time) contrast_data.append(participant.data[x+5].reaction_time) statistic, pvalue = stats.ttest_rel(orientation_data, contrast_data) return jsonify({ "statistic":statistic, "pvalue":pvalue }) @app.route("/getNormalizedData") def get_normalized_data(): orientation_data = [] contrast_data = [] all_participants = Participant.query.all() for participant in all_participants: for x in range(0, 5): if participant.data[x].reaction_time != 0 and participant.data[x+5].reaction_time != 0: orientation_data.append(participant.data[x].reaction_time) contrast_data.append(participant.data[x+5].reaction_time) return jsonify({ "orientation":json.dumps(orientation_data), "contrast":json.dumps(contrast_data) }) @app.route("/getDataExcel") def get_excel_data(): orientation_data = [] contrast_data = [] all_participants = Participant.query.all() for participant in all_participants: for x in range(0, 5): orientation_data.append(participant.data[x].reaction_time) contrast_data.append(participant.data[x+5].reaction_time) return jsonify({ "orientation":json.dumps(orientation_data), "contrast":json.dumps(contrast_data) }) if __name__ == "__main__": app.run() ```
{ "source": "jhoogmoed/HumanThreatPerception", "score": 3 }
#### File: htpmKitti/model/compare.py ```python from math import isnan import os import shutil import numpy as np import random from numpy.lib.function_base import average import pandas as pd import seaborn as sn import matplotlib.pyplot as plt import cv2 # import simpledorff from pandas.core.frame import DataFrame from sklearn import decomposition, datasets import sklearn from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.metrics import cohen_kappa_score class analyse: def __init__(self, dataPath, drive, mergedDataFile, modelDataFile, results_folder): # Docstring "Class container for analysing functions." self.modelDataFile = modelDataFile # Set paths self.dataPath = dataPath self.drive = drive self.results_folder = results_folder # Load data self.merge_data = pd.read_csv(mergedDataFile) print('Created analyse class') def get_responses(self): # Get response per frame indices = [] all_responses = [] for key in self.merge_data.keys(): for stimulus_index in range(0, len(self.merge_data.keys())): response_column = 'Stimulus %s: response' % stimulus_index if response_column in key: indices.append(int(stimulus_index)) all_responses.append(self.merge_data[response_column]) # Create response DataFrame self.response_data = pd.DataFrame(all_responses, index=indices) self.response_data.sort_index(inplace=True) self.response_data.columns = self.merge_data['Meta:worker_code'] self.response_data = self.response_data.transpose() # Get mean and std of responses self.response_mean = self.response_data.mean(skipna=True) self.response_std = self.response_data.std(skipna=True) # Get normalized response self.response_normal = ( self.response_data-self.response_mean.mean())/self.response_std.mean() # Save responses response_data = pd.DataFrame(self.response_data) response_data.to_csv(self.results_folder + 'filtered_responses/' + 'response_data.csv') # Get anonymous data survey_data = pd.DataFrame( self.merge_data.loc[:, 'about_how_many_kilometers_miles_did_you_drive_in_the_last_12_months':'which_input_device_are_you_using_now']) survey_data.index = survey_data['Meta:worker_code'] survey_data.pop('Meta:worker_code') self.survey_data = survey_data.join(response_data) self.survey_data.to_csv(self.results_folder + 'filtered_responses/' + 'survey_data.csv') # print(survey_data) print('Got responses') def find_outliers(self, thresh): # Find outliers self.bad_indices = [] for index in self.response_data.index: if(self.response_data.loc[index].std(skipna=True) < thresh): self.bad_indices.append(index) self.response_data = self.response_data.drop(index) print('Found outliers') def info(self): # Get mean and std of responses self.response_mean = self.response_data.mean(skipna=True) self.response_std = self.response_data.std(skipna=True) # Get general info on data self.data_description = self.response_data.describe() self.data_description.to_csv( self.results_folder + 'filtered_responses/' + 'self.data_description.csv') # print(self.data_description) print('Got info') def split(self, useNorm=False): # Chose usage of normalized data if useNorm == True: data = self.response_normal else: data = self.response_data # Get mean and std of responses self.response_mean = data.mean(skipna=True) self.response_std = data.std(skipna=True) # Find middle middle = int(round(len(self.response_data)/2)) # Get first half of data self.response_data_first = data[0:middle] self.response_mean_first = self.response_data_first.mean(skipna=True) self.response_std_first = self.response_data_first.std(skipna=True) # Get last half of data self.response_data_last = data[(middle+1):len(data)] self.response_mean_last = self.response_data_last.mean(skipna=True) self.response_std_last = self.response_data_last.std(skipna=True) # Get correlation of first and last half r_fl = self.response_mean_first.corr(self.response_mean_last) r2_fl = r_fl*r_fl # print('{:<25}'.format('autocorrelation') + ': R^2 =',f'{r2_fl:.5f}') # print('{:<25}'.format('autocorrelation') + ': R^2 =',f'{r2_fl:.5f}') # Plot correlation of first and last half plt.figure(figsize=(10,4)) self.plot_correlation(self.response_mean_first, self.response_mean_last, None, None, 'Group 1', 'Group 2', 'Autocorrelation', r=round(r_fl, 5)) # self.training_data = self.response_data middle_frame = int(round(self.response_data.shape[1])/2) self.data_training = self.response_data.iloc[:, 0:middle_frame] self.data_testing = self.response_data.iloc[:, middle_frame:self.response_data.shape[1]] plt.tight_layout() # plt.show() print('Split data') def random(self, useNorm=False, seed=100): # Chose usage of normalized data if useNorm == True: data = self.response_normal else: data = self.response_data # Get mean and std of responses data_response_mean = data.mean(skipna=True) data_response_std = data.std(skipna=True) # Chose random person random.seed(seed) random_person = random.randrange(0, len(data), 1) self.single_response = data.iloc[random_person] # Get correlation of data and random person correlations = [] for i in range(0, len(data)): single_response = data.iloc[i] r = single_response.corr(data_response_mean) correlations.append(r) r_sm = self.single_response.corr(data_response_mean) r2_sm = r_sm*r_sm print('{:<30}'.format('Single random') + ': N' + '{:<4}'.format(str(random_person)) + " vs Human R^2 = " + str(r_sm)) # Plot correlation of data and random person # self.plot_correlation(self.single_response, data_response_mean, # data_response_std, [], # ('Person n'+str(random_person)), 'Response mean', 'random', r2_sm) print('Got random correlation') pd_corr = pd.DataFrame(correlations) pd_corr.to_csv(self.results_folder + 'filtered_responses/' + 'individual_corr.csv') # plt.figure() # plt.boxplot(pd_corr) pd_corr.plot.box(vert=False, figsize=(10,2)) parts = plt.vlines(0.5,1,1) model = plt.vlines(0.58568,0.8,1.2,colors='orange') # plt.title("Participant correlation") # plt.ylabel("Participants") plt.xlabel("Correlation") plt.legend([parts, model],['Participants', 'Model']) plt.grid() plt.yticks([]) plt.tight_layout() plt.savefig(self.results_folder + 'filtered_responses/' + 'individual_corr' + '.png') # print(correlations) print("Average over correlation: {}, stdev: ".format(pd_corr.median())) def model(self, plotBool=True): self.model_data = pd.read_csv( self.results_folder + 'model_responses/' + self.modelDataFile) # Get keys self.parameter_keys = list(self.model_data) self.parameter_keys.remove('general_frame_number') self.model_data.pop('general_frame_number') for parameter in self.parameter_keys: # Get correlation r = self.model_data[parameter].corr(self.response_mean) # Print correlation print('{:<25}'.format(parameter) + ': r =',f'{r:.5f}') # Save figure correlation if plotBool == True: self.plot_correlation(self.model_data[parameter], self.response_mean, None, self.response_std, str(parameter), 'response_mean', parameter, r=round(r, 5)) # Check model cronbach alpha # self.cronbach_alpha(self.model_data[['model_type', 'model_imminence', 'model_probability']]) # Add mean response to correlation matrix self.model_data['response_mean_last'] = self.response_mean_last # Get correlation matrix corrMatrix = self.model_data.corr(method='pearson') # corrMatrix = corrMatrix.sort_values(by='response_mean') # Remove uppper triangle mask = np.zeros_like(corrMatrix) mask[np.triu_indices_from(mask, k=1)] = True # Get eigenvalues and vectors # Number of params n = len(self.parameter_keys) v = np.linalg.eig(corrMatrix.iloc[4:n, 4:n]) v_sum = np.sum(v[0]) v_csum = np.cumsum(v[0]) v_ccurve = v_csum/v_sum v_cutoff = len(v_ccurve[(v_ccurve <= 0.8)])+1 # print(v_cutoff) plt.clf() plt.plot(v[0], marker="o") plt.plot(np.ones(len(v[0]))) # plt.title('Scree plot') plt.xlabel('Component') plt.ylabel('Eigenvalue') plt.grid() # Save figure plt.savefig(self.results_folder + 'regression/' + 'scree_plot' + '.png') plt.clf() plt.plot(v_ccurve, marker ="o") # plt.title('Cumulative eigenvalue curve') plt.xlabel('Component') plt.ylabel('Cumulative eigenvalue') plt.grid() # Save figure plt.savefig(self.results_folder + 'regression/' + 'ccum_eigen_plot' + '.png') # Get significant params p_keys = self.model_data.keys()[4:n] # print(p_keys) significant_parameters = set([]) # print(v_cutoff) loading = v[1] * [v**0.5 for v in v[0]] for column in range(0, v_cutoff): for row in range(0, len(v[1])): if (abs(v[1][row, column]) >= 0.4): # if (abs(loading[row, column]) >= 0.8): # if (row <= 3): # pass # else: significant_parameters.add(p_keys[row]) self.sig_params = list(significant_parameters) # Plot corr of sigs # plt.clf() # sn.heatmap(self.model_data[self.].corr(method='pearson'),vmax = 1,vmin = -1,cmap = 'RdBu_r', linewidths=.5, annot=True,yticklabels=self.) # plt.title('Correlations of significant parameters') # plt.show() # Get eigenvector heatmap # plt.figure() # sn.heatmap(loading, vmax = 1,vmin = -1,cmap = 'RdBu_r', linewidths=.5, annot=True,yticklabels=p_keys,fmt='.2f') # # plt.title('Eigenvectors') # plt.xlabel('Loading of principle component') # plt.ylabel('Values') # plt.show() # Save figure # plt.savefig(self.results_folder + 'regression/' + 'eigenvector_matrix' + '.png') # Plot correlation matrix if (plotBool == True): plt.clf() sn.heatmap(corrMatrix, vmax=1, vmin=-1, cmap='RdBu_r', linewidths=.5, annot=True) # plt.show() print('Got model data and correlations') else: pass r = self.model_data['model_combination'].corr(self.response_mean) return r**2 def risky_images(self, model=False): # Get most risky and least risky images if (model == True): response_model_sorted = self.model_data['model_combination'].sort_values( ) least_risky = response_model_sorted.index[0:5] most_risky = response_model_sorted.tail(5).index[::-1] else: response_model_sorted = self.response_mean.sort_values() least_risky = response_model_sorted.index[0:5] most_risky = response_model_sorted.tail(5).index[::-1] # Save most and least risky images i = 1 for image in least_risky: # os.path.join(self.dataPath + self.drive + '/image_02/data') shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + '.png', self.results_folder + 'most_least_risky_images/' + 'least_risky_%s.png' % i) i += 1 i = 1 for image in most_risky: # os.path.join(self.dataPath + self.drive + '/image_02/data') shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + '.png', self.results_folder + 'most_least_risky_images/' + 'most_risky_%s.png' % i) i += 1 print('Got risky images') def risk_ranking(self): # Sort list of mean response values response_mean_sorted = self.response_mean.sort_values() # i = 0 # for image in response_mean_sorted.index: # shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str( # image) + '.png', self.results_folder + 'risk_sorted_images/' + '%s.png' % i) # i += 1 # Sort list of model combination values response_model_sorted = pd.Series( self.model_data['model_combination']).sort_values() # i = 0 # for image in response_model_sorted.index: # shutil.copyfile(self.dataPath + self.drive + '/image_02/data/' + str(image) + # '.png', self.results_folder + 'risk_sorted_images/model' + '%s.png' % i) # i += 1 r = round(np.corrcoef(self.response_mean, self.model_data['model_combination'])[1][0],4) self.plot_correlation(self.response_mean, self.model_data['model_combination'], name1="Experiment result", name2="Model result", parameter="model_experiment", r=r) print(np.corrcoef(response_mean_sorted.index,response_model_sorted.index)) print('Ranked images on risk') def PCA(self): print("Starting PCA analysis") images = sorted(os.listdir( self.dataPath + self.drive + '/image_02/data/')) images_features_gray = [] images_features_blue = [] images_features_green = [] images_features_red = [] for image in images: image_features_gray = [] image_features_blue = [] image_features_green = [] image_features_red = [] full_path = self.dataPath + self.drive + '/image_02/data/' + image loaded_image = cv2.imread(full_path) gray = cv2.cvtColor(loaded_image, cv2.COLOR_BGR2GRAY) blue = loaded_image[:, :, 0] green = loaded_image[:, :, 1] red = loaded_image[:, :, 2] scaling = 1./2 gray_scaled = cv2.resize(gray, (0, 0), fx=(scaling), fy=(scaling)) blue_scaled = cv2.resize(blue, (0, 0), fx=(scaling), fy=(scaling)) green_scaled = cv2.resize( green, (0, 0), fx=(scaling), fy=(scaling)) red_scaled = cv2.resize(red, (0, 0), fx=(scaling), fy=(scaling)) scaled_shape = gray_scaled.shape for horizontal in gray_scaled: image_features_gray = image_features_gray + list(horizontal) images_features_gray.append(image_features_gray) for horizontal in blue_scaled: image_features_blue = image_features_blue + list(horizontal) images_features_blue.append(image_features_blue) for horizontal in green_scaled: image_features_green = image_features_green + list(horizontal) images_features_green.append(image_features_green) for horizontal in red_scaled: image_features_red = image_features_red + list(horizontal) images_features_red.append(image_features_red) # PCA decomposition print("Running decomposition") nc = 50 # number of model variables pca = decomposition.PCA(n_components=nc) std_gray = StandardScaler() gray_std = std_gray.fit_transform(images_features_gray) gray_pca = pca.fit_transform(gray_std) eigen_frames_gray = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_blue = StandardScaler() blue_std = std_blue.fit_transform(images_features_blue) blue_pca = pca.fit_transform(blue_std) eigen_frames_blue = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_green = StandardScaler() green_std = std_green.fit_transform(images_features_green) green_pca = pca.fit_transform(green_std) eigen_frames_green = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) std_red = StandardScaler() red_std = std_red.fit_transform(images_features_red) red_pca = pca.fit_transform(red_std) eigen_frames_red = np.array(pca.components_.reshape( (nc, scaled_shape[0], scaled_shape[1]))) # # Back tranform for check # back_transform = pca.inverse_transform(gray_pca) # back_transform_renormalize = std_gray.inverse_transform(back_transform) # # Show before and after # first_image = np.array(images_features[0]).reshape(scaled_shape) # cv2.imshow('Before PCA',first_image) # cv2.waitKey(0) # # second_image = np.array(back_transform_renormalize[0]).reshape(scaled_shape) # cv2.imshow('After PCA',second_image) # cv2.waitKey(0) gray_pca_df = pd.DataFrame(gray_pca) blue_pca_df = pd.DataFrame(blue_pca) green_pca_df = pd.DataFrame(green_pca) red_pca_df = pd.DataFrame(red_pca) self.pca = gray_pca_df r = round(gray_pca_df[2].corr(self.response_mean),5) self.plot_correlation(gray_pca_df[2],self.response_mean_last,name1='Gray pca component 2',name2='response_mean_last',r=r) print("Saving images") for i in range(0, nc): print('Feature: ', i) print('Gray correlation: ', gray_pca_df[i].corr(self.response_mean)) print('Blue correlation: ', blue_pca_df[i].corr(self.response_mean)) print('Green correlation: ', green_pca_df[i].corr(self.response_mean)) print('Red correlation: ', red_pca_df[i].corr(self.response_mean)) max_pixel_gray = np.max(abs(eigen_frames_gray[i])) max_pixel_blue = np.max(abs(eigen_frames_blue[i])) max_pixel_green = np.max(abs(eigen_frames_green[i])) max_pixel_red = np.max(abs(eigen_frames_red[i])) gray_channel = eigen_frames_gray[i]*1/max_pixel_gray*255 blue_channel = eigen_frames_blue[i]*1/max_pixel_blue*255 green_channel = eigen_frames_green[i]*1/max_pixel_green*255 red_channel = eigen_frames_red[i]*1/max_pixel_red*255 bgr_image = np.zeros((scaled_shape[0], scaled_shape[1], 3)) bgr_image[:, :, 0] = blue_channel bgr_image[:, :, 1] = green_channel bgr_image[:, :, 2] = red_channel cv2.imwrite(os.path.join(self.results_folder, 'pca', ('color ' + str(i)+'.png')), bgr_image) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('gray ' + str(i)+'.png')), gray_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('blue ' + str(i)+'.png')), blue_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('green' + str(i)+'.png')), green_channel) cv2.imwrite(os.path.join(self.results_folder, 'pca', ('red ' + str(i)+'.png')), red_channel) print('Performed PCA') def multivariate_regression(self, pred='default'): # train = pd.DataFrame(self.pca, columns= ['0','1','2','3','4','5','6','7','8','9','10','11','12','13']) # train = self.pca.iloc[0:middle] # test = self.pca.iloc[middle:len(self.pca)] lr = LinearRegression(normalize=False, copy_X=True) # lr = LinearRegression() if (pred == 'default'): predictor_keys = ['general_velocity', 'general_distance_mean', 'general_number_bjects', 'manual_breaklight', 'occluded_mean'] elif(pred == 'sig'): predictor_keys = self.sig_params elif(pred == 'all'): predictor_keys = self.model_data.keys() else: print('Wrong input, changing to default') predictor_keys = ['general_velocity', 'general_distance_mean', 'general_number_bjects', 'manual_breaklight', 'occluded_mean'] predictors = self.model_data[predictor_keys] sc = StandardScaler() predictors_stand = sc.fit_transform(predictors) middle = int(round(predictors.shape[0]/2)) print(predictors_stand[middle]) # Fit regression print("Fitting regression model") print(self.sig_params) lr.fit(predictors_stand[0:middle], self.response_mean[0:middle]) predictions = lr.predict(predictors_stand[middle:predictors.shape[0]]) # print(predictors[0:middle]) # print(lr.predict(predictors[0:middle])) data = predictors_stand[0:middle] * lr.coef_ results = pd.DataFrame(data, columns=predictor_keys) results.insert(0, "intercept", lr.intercept_) results.to_csv(self.results_folder + 'regression/' + 'regression.csv') data2 = predictors_stand[middle:predictors.shape[0]] * lr.coef_ results2 = pd.DataFrame(data2, columns=predictor_keys) results2.insert(0, "intercept", lr.intercept_) results2.to_csv(self.results_folder + 'regression/' + 'regression2.csv') # Analyse result r = np.corrcoef( self.response_mean[middle:predictors.shape[0]], predictions)[0, 1] print('Correlation = {}'.format(r)) self.plot_correlation(predictions, self.response_mean[middle:len( self.response_mean)], name1="Multivariate regression", name2="Response test", parameter="regression_multivariate", r=round(r, 5)) print('Lr coef: {}'.format(lr.coef_)) print('Lr coef deep: {}'.format(lr.coef_[0])) # self.cronbach_alpha(self.model_data[predictor_keys]) print('Performed multivariate regression') def risk_accidents(self, plotBool=False): # Get accident answers accident_occurence = self.merge_data['how_many_accidents_were_you_involved_in_when_driving_a_car_in_the_last_3_years_please_include_all_accidents_regardless_of_how_they_were_caused_how_slight_they_were_or_where_they_happened'] # Filter no responses accident_occurence = [-1 if value == 'i_prefer_not_to_respond' else value for value in accident_occurence] accident_occurence = [ 6 if value == 'more_than_5' else value for value in accident_occurence] accident_occurence = [value if value == np.nan else float( value) for value in accident_occurence] # Group by accidents n_bins = 20 bins = np.linspace(0, 100, n_bins+1) binned = [] for value in self.response_data.mean(axis=1): for b in bins: if (value <= b): binned.append(b) # print("Value:{} < bin:{}".format(value,b)) break # Get accident occurence average_score = list(self.response_data.mean(axis=1)) risk_accidents = pd.DataFrame( {'Accidents': accident_occurence, 'Average_score': average_score}) r = risk_accidents.corr().values[0, 1] self.plot_correlation(pd.Series(accident_occurence), pd.Series( average_score), name2='Accidents', name1='Average score', parameter='accident_score', r=round(r, 5)) risk_accidents_grouped = [] for i in range(8): risk_accidents_grouped.append([]) for i in range(len(accident_occurence)): # print('i = {}, and value = {}'.format(i,close_occurence[i])) risk_accidents_grouped[int(accident_occurence[i])].append( average_score[i]) # Risk close riding close_occurence = self.merge_data['how_often_do_you_do_the_following_driving_so_close_to_the_car_in_front_that_it_would_be_difficult_to_stop_in_an_emergency'] # Filter no responses close_occurence = [ 0 if value == 'i_prefer_not_to_respond' else value for value in close_occurence] close_occurence = [ 1 if value == '0_times_per_month' else value for value in close_occurence] close_occurence = [ 2 if value == '1_to_3_times_per_month' else value for value in close_occurence] close_occurence = [ 3 if value == '4_to_6_times_per_month' else value for value in close_occurence] close_occurence = [ 4 if value == '7_to_9_times_per_month' else value for value in close_occurence] close_occurence = [ 5 if value == '10_or_more_times_per_month' else value for value in close_occurence] close_occurence = [value if value == np.nan else float( value) for value in close_occurence] close_occurence_grouped = [] for i in range(6): close_occurence_grouped.append([]) for i in range(len(close_occurence)): close_occurence_grouped[int(close_occurence[i])].append( average_score[i]) r = np.corrcoef(close_occurence, average_score)[0, 1] self.plot_correlation(pd.Series(close_occurence), pd.Series( average_score), name2='Close driving', name1='Average score', parameter='close_score', r=round(r, 5)) # Disregard speedlimit speed_occurence = self.merge_data['how_often_do_you_do_the_following_disregarding_the_speed_limit_on_a_residential_road'] # Filter no response speed_occurence = [ 0 if value == 'i_prefer_not_to_respond' else value for value in speed_occurence] speed_occurence = [ 1 if value == '0_times_per_month' else value for value in speed_occurence] speed_occurence = [ 2 if value == '1_to_3_times_per_month' else value for value in speed_occurence] speed_occurence = [ 3 if value == '4_to_6_times_per_month' else value for value in speed_occurence] speed_occurence = [ 4 if value == '7_to_9_times_per_month' else value for value in speed_occurence] speed_occurence = [ 5 if value == '10_or_more_times_per_month' else value for value in speed_occurence] speed_occurence = [value if value == np.nan else float( value) for value in speed_occurence] speed_occurence_grouped = [] for i in range(6): speed_occurence_grouped.append([]) for i in range(len(speed_occurence)): speed_occurence_grouped[int(speed_occurence[i])].append( average_score[i]) r = np.corrcoef(speed_occurence, average_score)[0, 1] self.plot_correlation(pd.Series(speed_occurence), pd.Series( average_score), name2='Speeding', name1='Average score', parameter='speed_score', r=round(r, 5)) # Disregard phone phone_occurence = self.merge_data['how_often_do_you_do_the_following_using_a_mobile_phone_without_a_hands_free_kit'] # Filter no response phone_occurence = [ 0 if value == 'i_prefer_not_to_respond' else value for value in phone_occurence] phone_occurence = [ 1 if value == '0_times_per_month' else value for value in phone_occurence] phone_occurence = [ 2 if value == '1_to_3_times_per_month' else value for value in phone_occurence] phone_occurence = [ 3 if value == '4_to_6_times_per_month' else value for value in phone_occurence] phone_occurence = [ 4 if value == '7_to_9_times_per_month' else value for value in phone_occurence] phone_occurence = [ 5 if value == '10_or_more_times_per_month' else value for value in phone_occurence] phone_occurence = [value if value == np.nan else float( value) for value in phone_occurence] phone_occurence_grouped = [] for i in range(6): phone_occurence_grouped.append([]) for i in range(len(phone_occurence)): phone_occurence_grouped[int(phone_occurence[i])].append( average_score[i]) r = np.corrcoef(phone_occurence, average_score)[0, 1] self.plot_correlation(pd.Series(phone_occurence), pd.Series( average_score), name2='Phone driving', name1='Average score', parameter='phone_score', r=round(r, 5)) # Result correlation matrix inter_group_df = pd.DataFrame([speed_occurence, phone_occurence, accident_occurence, close_occurence]) inter_group_df = inter_group_df.transpose() inter_group_df.columns = ['speed_occurence', 'phone_occurence', 'accident_occurence', 'close_occurence'] inter_group_corr = inter_group_df.corr() plt.clf() sn.heatmap(inter_group_corr, vmax=1, vmin=-1, cmap='RdBu_r', linewidths=.5, annot=True) # plt.show() r = np.corrcoef(speed_occurence, accident_occurence)[0, 1] self.plot_correlation(pd.Series(speed_occurence), pd.Series( accident_occurence), name2='Speed driving', name1='Accidents', parameter='speed_accident', r=round(r, 5)) r = np.corrcoef(phone_occurence, accident_occurence)[0, 1] self.plot_correlation(pd.Series(phone_occurence), pd.Series( average_score), name2='Phone driving', name1='Accidents', parameter='phone_accident', r=round(r, 5)) r = np.corrcoef(close_occurence, accident_occurence)[0, 1] self.plot_correlation(pd.Series(close_occurence), pd.Series( accident_occurence), name2='close driving', name1='Accidents', parameter='close_accident', r=round(r, 5)) # print(survey_results) if plotBool: plt.figure() plt.boxplot(risk_accidents_grouped, labels=[ 'no reply', '0', '1', '2', '3', '4', '5', 'more than 5']) plt.title("Accident risk") plt.xlabel("Accident occurence") plt.ylabel("Risk score") plt.savefig(self.results_folder + 'survey_images/' + 'risk_accidents_box' + '.png') plt.figure() plt.boxplot(close_occurence_grouped, labels=[ 'no reply', '0', '1-3', '4-6', '7-9', '10 or more']) plt.title("Keeping distance driving risk") plt.xlabel("Disregard occurence") plt.ylabel("Risk score") plt.savefig(self.results_folder + 'survey_images/' + 'close_occurence_box' + '.png') plt.figure() plt.boxplot(speed_occurence_grouped, labels=[ 'no reply', '0', '1-3', '4-6', '7-9', '10 or more']) plt.title("Speed disregard driving risk") plt.xlabel("Disregard occurence") plt.ylabel("Risk score") plt.savefig(self.results_folder + 'survey_images/' + 'speed_occurence_box' + '.png') plt.figure() plt.boxplot(phone_occurence_grouped, labels=[ 'no reply', '0', '1-3', '4-6', '7-9', '10 or more']) plt.title("Handsfree disregard driving risk") plt.xlabel("Disregard occurence") plt.ylabel("Risk score") plt.savefig(self.results_folder + 'survey_images/' + 'phone_occurence_box' + '.png') plt.figure() plt.hist(average_score, bins=n_bins, rwidth=0.9) plt.title("Average score responses") plt.xlabel("Average risk score") plt.ylabel("Occurences") plt.savefig(self.results_folder + 'survey_images/' + 'avg_response' + '.png') # plt.show() # plt.figure() # plt.hist2d(accident_occurence,average_score,alpha=0.9) # plt.title("Accident risk") # plt.xlabel("Accident occurence") # plt.ylabel("Risk score") print('Saved survey images') def road_velocity(self): road_data = self.model_data[self.model_data['road_road']==1] residential_data = self.model_data[self.model_data['road_residential']==1] city_data = self.model_data[self.model_data['road_city']==1] road_mean = self.response_mean[road_data.index] residential_mean = self.response_mean[residential_data.index] city_mean = self.response_mean[city_data.index] r_road = road_data['general_velocity'].corr(road_mean) r_residential = residential_data['general_velocity'].corr(residential_mean) r_city = city_data['general_velocity'].corr(city_mean) self.plot_correlation(road_data['general_velocity'],road_mean,name1="velocity_road",name2="response_mean", r=round(r_road,5), parameter="road_velocity") self.plot_correlation(residential_data['general_velocity'],residential_mean,name1="velocity_residential",name2="response_mean", r=round(r_residential,5), parameter="residential_velocity") self.plot_correlation(city_data['general_velocity'],city_mean,name1="velocity_city",name2="response_mean", r=round(r_city,5), parameter="city_velocity") def sorted_mu_sig(self): mu = self.response_mean std = self.response_std sorting = mu.sort_values() # Plot linear fit plt.figure(figsize=(10,3)) plt.plot(range(0,210), mu[sorting.index]) plt.plot(range(0,210), std[sorting.index]) plt.grid() plt.legend(["mean", "std"]) plt.xlabel("Image") plt.ylabel("Perceived risk") plt.tight_layout() # plt.show() # Save figure plt.savefig(self.results_folder + 'survey_analysis/' + "mu_std" + '.png') def cronbach_alpha(self, df): # 1. Transform the df into a correlation matrix df_corr = df.corr() # 2.1 Calculate N # The number of variables equals the number of columns in the df N = df.shape[1] # 2.2 Calculate R rs = np.array([]) for i, col in enumerate(df_corr.columns): sum_ = df_corr[col][i+1:].values rs = np.append(sum_, rs) mean_r = np.mean(rs) # 3. Use the formula to calculate Cronbach's Alpha cronbach_alpha = (N * mean_r) / (1 + (N - 1) * mean_r) # print(rs) print('Cronbach alpha: {}'.format(cronbach_alpha)) print('Calculated cronbach alpha') def krippendorffs_alpha(self): # print(self.response_data.transpose()) # annotation_triples = [] # for i in range(0, len(self.response_data)): # annotator = self.response_data.index[i] # for j in range(0,len(self.response_data.columns)): # image = str(j) # response = round(self.response_data.values[i][j],1) # annotation_triples.append((annotator, image, response)) # input_data = pd.DataFrame(annotation_triples,columns=["annotator_id", "document_id", "annotation"]) # print(input_data) # alpha = simpledorff.calculate_krippendorffs_alpha_for_df(input_data,experiment_col='document_id', # annotator_col='annotator_id', # class_col='annotation') # alpha = simpledorff.calculate_krippendorffs_alpha(self.response_data) # print(alpha) cohen_kappa_score(self.response_data) # ratingtask = agreement.AnnotationTask(data=annotation_triples) # print('Krippendorff\'s alpha:',ratingtask.alpha()) # print('Scott\'s pi:',ratingtask.pi()) def plot_correlation(self, series1, series2, std1=None, std2=None, name1='Series 1', name2='Series 2', parameter='Parameter', r2=np.nan, r = np.nan): # Plot errobar figure plt.figure(figsize=(10,4)) # plt.errorbar(series1, series2, std2, std1, linestyle='None', # marker='.', markeredgecolor='green') # plt.errorbar(series1, series2, linestyle='None', # marker='.', markeredgecolor='green') plt.errorbar(series1, series2, linestyle='None', marker='.') # if(not isnan(r2)): # plt.title(name1 + ' vs. ' + name2 + " | R^2 = %s" % r2) # elif(not isnan(r)): # plt.title(name1 + ' vs. ' + name2 + " | r = %s" % r) # else: # plt.title(name1 + ' vs. ' + name2) # Create linear fit of model and responses linear_model = np.polyfit(series1, series2, 1) linear_model_fn = np.poly1d(linear_model) x_s = np.arange(series1.min(), series1.max(), ((series1.max()-series1.min())/1000)) # Plot linear fit plt.plot(x_s, linear_model_fn(x_s)) plt.legend(["r = {}".format(r), 'images']) plt.grid() plt.xlabel(name1) plt.ylabel(name2) plt.tight_layout() # Save figure plt.savefig(self.results_folder + 'correlation_images/' + parameter + '.png') if __name__ == "__main__": dataPath = '/dataset' drive = '/test_images' resultsFolder = '/media/jim/HDD/university/master/thesis/results/' mergedDataFile = '/media/jim/HDD/university/master/thesis/results/filtered_responses/merged_data.csv' modelDataFile = 'model_results_small_bnds.csv' # modelDataFile = 'model_results_no_opt.csv' analyse = analyse(dataPath, drive, mergedDataFile, modelDataFile, resultsFolder) analyse.get_responses() analyse.info() # analyse.find_outliers(10) analyse.split() analyse.random() # analyse.risk_accidents() analyse.model(plotBool=False) # analyse.risky_images(model=False) # analyse.risk_accidents(plotBool=False) analyse.risk_ranking() # analyse.PCA() analyse.multivariate_regression(pred='sig') # analyse.multivariate_regression() # analyse.plot_correlation(analyse.model_data['road_road'],analyse.model_data['general_velocity']) # analyse.road_velocity() # analyse.sorted_mu_sig() # analyse.cronbach_alpha(analyse.response_data) # analyse.krippendorffs_alpha() # analyse.plot_correlation(series1=analyse.model_data['general_velocity'], # series2=analyse.model_data['general_number_bjects'], # parameter="velocit_nobjects", # name1='general_velocity', # name2='general_number_objects', # r=round(analyse.model_data["general_velocity"].corr(analyse.model_data["general_number_bjects"]),4)) ``` #### File: htpmKitti/model/services.py ```python import os import numpy as np # import kitti.tracklet_parser as tracklet_parser # import kitti.tracklet_parser as tracklet_parser import collections import pandas as pd KittiObject = collections.namedtuple('KittiObject', ['type', 'truncated', 'occluded', 'alpha', 'bbox', 'dimensions', 'location', 'location_y']) KittiImu = collections.namedtuple( 'KittiImu', ['location', 'linear_velocity', 'linear_acceleration']) class kitti_parser: def __init__(self,dataPath,drive,resultsFolder): # Set base paths self.dataPath = dataPath self.drive = drive self.resultsFolder = resultsFolder # Check if exists if(not os.path.exists(self.dataPath+self.drive)): print("Drive does not exist") raise SystemExit # Image pathsdataPath,drive,resultsFolder try: self.left_color_image_list = sorted(os.listdir( self.dataPath + self.drive + '/image_02/data'), key=self.sorter) except: print("No image data") raise SystemExit # Imu paths try: self.imuFileList = sorted(os.listdir( self.dataPath + self.drive + '/oxts/data/'), key=self.sorter) except: print("No oxts data") raise SystemExit # Object paths try: self.objectFileList = sorted(os.listdir( self.dataPath + self.drive + '/label_2'), key=self.sorter) except: print("No object data, create from xml...") try: tracklet_parser.main(self.dataPath, self.drive) self.objects_list = sorted(os.listdir( self.dataPath + self.drive + '/label_2'), key=self.sorter) except: print("No object xml") raise SystemExit # Check variables self.frame = 0 self.done = 0 # Setup data acquisition try: os.remove(os.path.join(self.resultsFolder, 'model_responses/model_results.csv')) except: pass # Get information self.get_road() self.get_objects() self.get_imu() self.get_manual() def get_road(self): self.par_city = [] self.par_residential = [] self.par_road = [] road_file = open(self.dataPath + self.drive + '/uniform_image_list.txt', "r") lines = road_file.readlines() self.road_types = [] for i in range(len(lines)): road = lines[i].split('/')[0] self.road_types.append(road) self.par_city.append((road == 'city')*1) self.par_residential.append((road == 'residential')*1) self.par_road.append((road == 'road')*1) def get_objects(self): self.objectsList = [] for i in range(len(self.objectFileList)): # Open file self.object_file = open( self.dataPath + self.drive + '/label_2/' + self.objectFileList[i], "r") # Setup object per frame objects = [] # Read next line lines = self.object_file.readlines() for object in lines: oArgs = object.split(' ') type = oArgs[0] truncated = float(oArgs[1]) occluded = int(oArgs[2]) alpha = float(oArgs[3]) bbox = [float(oArgs[4]), float(oArgs[5]), float(oArgs[6]), float(oArgs[7])] dimensions = [float(oArgs[8]), float(oArgs[9]), float(oArgs[10])] location = [float(oArgs[11]), float(oArgs[12]), float(oArgs[13])] location_y = float(oArgs[14]) # Append object list of frame objects.append(KittiObject(type, truncated, occluded, alpha, bbox, dimensions, location, location_y)) # Close file self.object_file.close self.objectsList.append(objects) def get_imu(self): self.imuList = [] for file in self.imuFileList: # Open file imu_file = open( self.dataPath + self.drive + '/oxts/data/' + file, "r") # Create new imu msg # imuObject = KittiImu # Get imu data from file line = imu_file.readline() imuArgs = line.split(' ') # Fill new object location = [ float(imuArgs[0]), float(imuArgs[1]), float(imuArgs[2]), float(imuArgs[5])] linear_velocity = [ float(imuArgs[8]), float(imuArgs[9]), float(imuArgs[10])] linear_acceleration = [ float(imuArgs[11]), float(imuArgs[12]), float(imuArgs[13])] self.imuList.append( KittiImu(location, linear_velocity, linear_acceleration)) # Close file imu_file.close def get_manual(self): self.manual_data = pd.read_csv( self.dataPath + self.drive + '/manual_data.csv') def sorter(self, name): frame = int(name.split('.')[0]) return frame def typeSwitch(self, objType, parameters): # Switch to type to assign weight based on... typeSwitch = { 'Car': parameters[0], 'Van': parameters[1], 'Truck': parameters[2], 'Pedestrian': parameters[3], 'Person_sitting': parameters[4], 'Cyclist': parameters[5], 'Tram': parameters[6], 'Misc': parameters[7], 'DontCare': parameters[8], } return typeSwitch.get(objType, "Invalid object type") def roadSwitch(self, roadType, parameters): # Switch to type to assign weight based on... roadSwitch = { 'city': parameters[9], 'residential': parameters[10], 'road': parameters[11], } return roadSwitch.get(roadType, "Invalid object type") def fast_type(self, x): par_type = [] par_alpha = [] par_occluded = [] par_truncated = [] par_size = [] for frame_objects in self.objectsList: types = [] alpha = [] occluded = [] truncated = [] size = [] for object in frame_objects: types.append(self.typeSwitch(object.type, x)) alpha.append(abs(object.alpha)) occluded.append(object.occluded) truncated.append(object.truncated) size.append(np.prod(object.dimensions)) par_alpha.append(alpha) par_type.append(sum(types)) par_occluded.append(occluded) par_truncated.append(truncated) par_size.append(size) return par_type, par_alpha, par_occluded, par_truncated,par_size def fast_imm(self, x): # Get variables from arguments a = x[12] b = x[13] # Create empty return lists par_total_distance = [] par_velocity = [] par_imm = [] # Get object and ego vehicle data per frame for frame in range(len(self.imuFileList)): # Get ego velocity velocity = np.linalg.norm(self.imuList[frame].linear_velocity, 2) # Construct save variables all_imminence = [] all_distance = [] # Get object data per object in frame for object in self.objectsList[frame]: distance = np.linalg.norm(object.location, 2) # Linear imminence parameter # imm = a * distance/velocity + b # Quadratic imminence parameter if b == 0: imm = np.nan else: imm = a*(distance/velocity)**(1/b) if imm>50: imm = 50 # Save paremeter per object all_imminence.append(imm) all_distance.append(distance) # Save parameter values per frame par_imm.append(sum(all_imminence)) par_velocity.append(velocity) par_total_distance.append(all_distance) frame += 1 return par_imm, par_velocity, par_total_distance def fast_prob(self, x): probability_par = [] for road in self.road_types: probability_par.append(self.roadSwitch(road, x)) return probability_par def get_model(self, x): # Get individual model results par_all_imminence, par_velocity, par_all_distance = self.fast_imm(x) par_type, par_alpha, par_occluded, par_truncated,par_size = self.fast_type(x) par_probability = self.fast_prob(x) # Construct empty lists for itereation par_combi = [] number_objects = [] sum_distance = [] min_distance = [] mean_distance = [] min_alpha = [] mean_alpha = [] max_alpha = [] mean_par_occluded = [] sum_par_occluded = [] mean_par_truncated = [] sum_par_truncated = [] mean_par_size = [] max_par_size = [] min_par_size = [] sum_par_size = [] # Get combined model results for frame in range(len(par_all_imminence)): sum_distance.append(sum(par_all_distance[frame])) min_distance.append(min(par_all_distance[frame], default=0)) # Check for objects present if len(par_all_distance[frame]) != 0: number_objects.append(len(par_all_distance[frame])) mean_distance.append( sum(par_all_distance[frame])/len(par_all_distance[frame])) min_alpha.append(min(par_alpha[frame])) mean_alpha.append( sum(par_alpha[frame])/len(par_alpha[frame])) max_alpha.append(max(par_alpha[frame])) mean_par_occluded.append(sum(par_occluded[frame])/len(par_occluded[frame])) sum_par_occluded.append(sum(par_occluded[frame])) mean_par_truncated.append(sum(par_truncated[frame])/len(par_truncated[frame])) sum_par_truncated.append(sum(par_truncated[frame])) mean_par_size.append(sum(par_size[frame])/len(par_size[frame])) max_par_size.append(max(par_size[frame])) min_par_size.append(min(par_size[frame])) sum_par_size.append(sum(par_size[frame])) else: number_objects.append(0.0) mean_distance.append(0.0) min_alpha.append(0.0) mean_alpha.append(0.0) max_alpha.append(0.0) mean_par_occluded.append(0.0) sum_par_occluded.append(0.0) mean_par_truncated.append(0.0) sum_par_truncated.append(0.0) mean_par_size.append(0.0) max_par_size.append(0.0) min_par_size.append(0.0) sum_par_size.append(0.0) par_combi.append(par_all_imminence[frame] + par_type[frame] + par_probability[frame]) # Create empty dict results = {} # Add items to dict results['general_frame_number'] = range( len(self.left_color_image_list)) results['model_combination'] = par_combi results['model_type'] = par_type results['model_imminence'] = par_all_imminence results['model_probability'] = par_probability results['general_velocity'] = par_velocity results['general_distance_sum'] = sum_distance results['general_distance_min'] = min_distance results['general_distance_mean'] = mean_distance results['general_number_bjects'] = number_objects results['manual_car_toward'] = self.manual_data.CarToward results['manual_car_away'] = self.manual_data.CarAway results['manual_breaklight'] = self.manual_data.Breaklight results['alpha_min'] = min_alpha results['alpha_mean'] = mean_alpha results['alpha_max'] = max_alpha results['occluded_mean'] = mean_par_occluded results['occluded_sum'] = sum_par_occluded results['truncated_mean'] = mean_par_truncated results['truncated_sum'] = sum_par_truncated results['size_mean'] = mean_par_size results['size_max'] = max_par_size results['size_min'] = min_par_size results['size_sum'] = sum_par_size results['road_road']= self.par_road results['road_residential'] = self.par_residential results['road_city'] = self.par_city return results def save_model(self, x,modelFile = 'model_results.csv'): # Get model response results = self.get_model(x) # Create dataframe from dict resultsDF = pd.DataFrame.from_dict(results) # save dataframe as csv file resultsDF.to_csv(os.path.join(self.resultsFolder, 'model_responses',modelFile), index=False) if __name__ == "__main__": # Example input dataPath = '/dataset' drive = '/test_images' resultsFolder = '/home/jim/HDDocuments/university/master/thesis/results' # Construct parser class kp = kitti_parser(dataPath,drive,resultsFolder) # Example parameters # x = [0., 1.458974, 2.63547244, 0.96564807, 2.21222542, 1.65225034, 0., 0., 1., # 2.20176468, 2.40070779, 0.1750559, # 0.20347586, 6.54656438] x = [0.2, 0.4, 0.6, 1., 0.2, 1., 0.6, 0.2, 0., 3., 1.5, 0., 1., 0.1] # Get model results results = kp.get_model(x) # Save model results kp.save_model(x) ``` #### File: htpmKitti/online/appenFunctions.py ```python import pandas as pd class appen: def __init__(self, csvFile, results_folder): self.csvFile = csvFile self.results_folder = results_folder self.appen_data = pd.read_csv( self.results_folder + 'online_data/' + csvFile) def find_cheaters(self, column_type='standard'): code_name = 'type_the_code_that_you_received_at_the_end_of_the_experiment' self.unique_appen_data = self.appen_data.drop_duplicates(subset=[ code_name]) if column_type == 'standard': self.cheater_appen_data = self.appen_data.drop( self.unique_appen_data.index) elif column_type == 'daniel': self.cheater_appen_data = self.appen_data.drop( self.unique_appen_data.index) self.cheater_appen_data = self.cheater_appen_data[['_id', '_worker_id', code_name, '_ip', '_started_at', '_created_at', '_country', 'what_is_your_gender', 'what_is_your_age', 'have_you_read_and_understood_the_above_instructions', 'at_which_age_did_you_obtain_your_first_license_for_driving_a_car_or_motorcycle', 'what_is_your_primary_mode_of_transportation', 'on_average_how_often_did_you_drive_a_vehicle_in_the_last_12_months', 'about_how_many_kilometers_miles_did_you_drive_in_the_last_12_months', 'how_many_accidents_were_you_involved_in_when_driving_a_car_in_the_last_3_years_please_include_all_accidents_regardless_of_how_they_were_caused_how_slight_they_were_or_where_they_happened']] daniels_headers = ['ID', 'worker_id', 'worker_code', 'ip_address', 'start_time', 'end_time', 'country', 'gender', 'age', 'read_instructions', 'license_age', 'primary_transport', 'avg_vehicle_time', 'avg_mileage', 'accidents'] self.cheater_appen_data.columns = daniels_headers else: pass print('There are %s cheaters detected, giving %s unreliable results.' % (len( self.cheater_appen_data['worker_code'].unique()), len(self.cheater_appen_data['worker_code']))) def makeCSV(self): appen_name = self.csvFile.split('.')[0] self.unique_appen_data.to_csv(self.results_folder + 'filtered_responses/'+ appen_name+ '_unique.csv') self.cheater_appen_data.to_csv( self.results_folder + 'filtered_responses/' + appen_name + '_cheaters.csv') return self.results_folder + 'filtered_responses/' + appen_name + '_unique.csv', appen_name + '_cheaters.csv' if __name__ == "__main__": results_folder = '/home/jim/HDDocuments/university/master/thesis/results/' appenFile = 'f1669822.csv' a = appen(appenFile, results_folder) a.find_cheaters('daniel') a.makeCSV() ```
{ "source": "jhoogstraat/mc-mod-getter", "score": 2 }
#### File: mc_mod_getter/utils/ApiHandler.py ```python from __future__ import annotations from pathlib import Path from typing import Union import requests as req import logging import hashlib import os class ApiHandler: class NoAccess(Exception): pass class Unknown(Exception): pass _api_handler_hosts = {} def __init_subclass__(cls, **kwargs: str) -> None: """Registers the the different ApiHandler subclasses to be used for __new__ """ super().__init_subclass__(**kwargs) cls._api_handler_hosts[cls._host] = cls def __new__(cls, host: str, **kwargs: str) -> Union[ModrinthApiHandler, CurseforgeApiHandler, Unknown]: """Creates the correct ApiHandler subclass given the host arg """ api_handler_host = cls._api_handler_hosts.get(host, None) if api_handler_host: return object.__new__(api_handler_host) else: # Host provided in the yaml is not supported raise cls.Unknown(f'Mod host: {host} is not supported') def __init__(self, *args: str, **kwargs: str) -> None: self.version = str(kwargs.pop('version')) self.loader = kwargs.pop('loader').lower() self.mod_dir = kwargs.pop('mod_dir', str(Path.home() / 'Downloads')) self.downloaded = self._get_downloaded_mods() def __repr__(self) -> str: return str(self.__dict__) @classmethod def _file_checksum(cls, file_path: str, host_hash: Union[list,str]) -> bool: hash_algorithms = { 'modrinth': 'sha512', 'curseforge': 'md5' } # Handle Curseforge api's 0 or many provided hashes if not host_hash: logging.info(f' > [WARNING] : Cannot verify {file_path} was downloaded correctly') return True host_hash = [host_hash] if type(host_hash) is str else host_hash with open(file_path, 'rb') as f: file_hash = hashlib.new(hash_algorithms[cls._host]) while chunk := f.read(8192): file_hash.update(chunk) return any([file_hash.hexdigest() == h for h in host_hash]) @staticmethod def _strip_non_alpha(string: str): return ''.join([char for char in string if char.isalpha() or char == "'"]) def _get_downloaded_mods(self): files = [p.name for p in Path(self.mod_dir).rglob('*.jar')] downloaded = {} for f in files: downloaded[self._strip_non_alpha(f)] = f return downloaded def _get_mod_id(self) -> None: raise NotImplementedError def _filter_mod_version(self) -> None: raise NotImplementedError def download_mod(self, mod_name: str) -> None: logging.info(f'Downloading mod {mod_name}') mod_id = self._get_mod_id(mod_name) if not mod_id: return mod = self._filter_mod_version(mod_id) if not mod: logging.info(f' > [WARNING] : Mod not found for version. skipping...') return mod_file_path = os.path.join(self.mod_dir, mod['filename']) old_version = self.downloaded.get(self._strip_non_alpha(mod['filename']), None) # Already have latest version if Path(mod_file_path).is_file(): logging.info(f' > Skipping {mod_name}...already latest') return # If theres an update, delete the older mod version elif old_version: logging.info(f' > Updating {mod_name} & removing old version: {old_version}') Path(os.path.join(self.mod_dir, old_version)).unlink() logging.info(f' > {mod_name} ({mod_id}) File: {mod["filename"]}') # Download the mod, if the file hashes dont match, redownload the mod and check again while True: with open(mod_file_path, 'wb') as f: f.write(req.get(mod['url'], stream=True).content) if self._file_checksum(mod_file_path, mod['hashes']): break class ModrinthApiHandler(ApiHandler): _host = 'modrinth' _host_api = 'https://api.modrinth.com/api/v1/mod' def __init__(self, *args: str, **kwargs: str) -> None: super().__init__(*args, **kwargs) def __repr__(self) -> str: return super().__repr__() def _get_mod_id(self, mod_name: str) -> str: last_seen = None search_query = f'{self._host_api}?query={mod_name.lower()}' for mod in req.get(search_query).json()['hits']: last_seen = mod if mod_name in mod['title'] and self.loader in mod['categories']: return mod['mod_id'].split('-')[1] else: warning = f' > [WARNING] Skipping {mod_name}, ' if not last_seen or mod_name != last_seen['title']: warning += f'check if mod exists on {self._host} or mod name spelling' elif self.loader in str(mod['categories']).lower(): warning += f'No {self.loader} version found, only {",".join(last_seen["modLoaders"])}' logging.info(warning) return None def _filter_mod_version(self, mod_id: str) -> dict: # Send the id, and get back all version available for the mod versions_query = f'{self._host_api}/{mod_id}/version' mod_versions = req.get(versions_query).json() # Get all versions that match the mc version found in yaml file mod_versions = [v for v in mod_versions if self.version == v['game_versions'][-1]] # Return first mod in mod_versions, it's the latest matching mc version in yaml mod = mod_versions[0]['files'][0] if mod_versions else None mod['hashes'] = mod['hashes']['sha512'] return mod def download_mod(self, mod_name: str) -> None: super().download_mod(mod_name) class CurseforgeApiHandler(ApiHandler): # NOTE: The Curseforge api is dogwater >:( _host = 'curseforge' _host_api = 'https://addons-ecs.forgesvc.net/api/v2/addon' _user_agent = ( 'user-agent=Mozilla/5.0 (Windows NT 6.1; Win64; x64) ' 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36' ) _headers = {'User-Agent': _user_agent} def __init__(self, *args: str, **kwargs: str) -> None: super().__init__(*args, **kwargs) def __repr__(self) -> str: return super().__repr__() def _get_mod_id(self, mod_name: str) -> str: # Search only 1 word from mod name b/c api is dumb and uses OR conditions for each word mod_query_name = mod_name.lower().split(' ')[0] mod_query_name = self._strip_non_alpha(mod_query_name) last_seen = None search_query = ( f'{self._host_api}/search?gameId=432&sectionId=6' f'&searchFilter={mod_query_name}' f'&gameVersion={self.version}' ) for mod in req.get(search_query,headers=self._headers).json(): last_seen = mod # Yet another curse issue, assume if no loader is specified for mod, its universal if not mod.get('modLoaders'): mod['modLoaders'] = self.loader if mod_name == mod['name'] and self.loader in str(mod['modLoaders']).lower(): return mod['id'] else: warning = f' > [WARNING] Skipping {mod_name}, ' if not last_seen or mod_name != last_seen['name']: warning += f'check if mod exists on {self._host} or mod name spelling' elif self.loader in str(mod['modLoaders']).lower(): warning += f'No {self.loader} version found, only {",".join(last_seen["modLoaders"])}' logging.info(warning) return None def _filter_mod_version(self, mod_id: str) -> dict: logging.info(f' > [INFO] : Filtering mod versions {self.version}/{self.loader.capitalize()} for mod {mod_id}') try: search_query = f'{self._host_api}/{mod_id}' logging.info(f' > [INFO] : Requesting mod version: {search_query}') mod_versions = req.get(search_query,headers=self._headers).json()['latestFiles'] mod_versions = [v for v in mod_versions if any(self.version in x for x in v['gameVersion']) and self.loader.capitalize() in v['gameVersion']] except: # TODO: If searching on curseforge version not in Latest files search_query = f'{self._host_api}/{mod_id}' mod_versions = req.get(search_query,headers=self._headers).json() else: # Version not found. Skipping. if not mod_versions: return logging.info(f' > [INFO] : Found mod for version') # {curseapi key : renamed key} mod_details = { 'fileName':'filename', 'downloadUrl': 'url', 'hashes': 'hashes' } # Modify keys to to make download method generic mod = {mod_details[key]: value for key, value in mod_versions[0].items() if key in mod_details} mod['hashes'] = [h['value'] for h in mod['hashes']] return mod def download_mod(self, mod_name: str) -> None: super().download_mod(mod_name) ```
{ "source": "jhoogstraat/tao-runner", "score": 2 }
#### File: tao-runner/tao-runner/context.py ```python from pathlib import Path from typing import Any, Dict, Optional class TaoConfig: def __init__(self, config: Dict[str, Any]): self.gpus = str(config['gpus']) self.gpu_indices = ','.join([str(i) for i in config['gpu_indices']]) class ExperimentConfig: def __init__(self, config: Dict[str, Any]): self.head: str = config['head'] self.backbone: str = config['backbone'] self.repository: str = config['repository'] self.model_key: str = config['model_key'] self.dataset: str = config['dataset'] self.export_model: str = config['export_model'] self.export_type: str = config['export_type'] class ExperimentPaths: def __init__(self, base: Path, project: str, experiment: str, config: ExperimentConfig, pretrained_model_filename: Optional[str] = None): # Base dirs self.project_dir = base.joinpath('projects', project) data_dir = self.project_dir.joinpath('data') models_dir = self.project_dir.joinpath('models') specs_dir = self.project_dir.joinpath('specs') # Specialised dirs self.model_dir = models_dir.joinpath(experiment) self.specs_dir = specs_dir.joinpath(experiment) self.dataset_dir = data_dir.joinpath(config.dataset) self.subset_full_dir = self.dataset_dir.joinpath("full") self.subset_train_dir = self.dataset_dir.joinpath("train") self.subset_val_dir = self.dataset_dir.joinpath("val") self.subset_tfrecords_dir = self.dataset_dir.joinpath( "tfrecords_" + experiment) self.pretrained_model_dir = base.joinpath( 'repositories', config.repository, config.repository + '_v' + config.backbone) # Files self.convert_spec_file = self.specs_dir.joinpath('convert.txt') self.train_spec_file = self.specs_dir.joinpath('train.txt') self.compiled_convert_spec_file = self.subset_tfrecords_dir.joinpath( self.convert_spec_file.name) self.compiled_train_spec_file = self.model_dir.joinpath( self.convert_spec_file.name) self.pretrained_model_file = self.pretrained_model_dir.joinpath(pretrained_model_filename) if pretrained_model_filename else next( self.pretrained_model_dir.glob('*.hdf5'), None) class ExperimentContext: def __init__(self, project: str, experiment: str, config: Dict[str, Any], tao: Dict[str, Any]): self.project = project self.experiment = experiment self.tao = TaoConfig(tao) self.config = ExperimentConfig(config) self.local_paths = ExperimentPaths( project=project, experiment=experiment, config=self.config, base=Path.cwd()) self.docker_paths = ExperimentPaths( project=project, experiment=experiment, config=self.config, base=Path('/workspace'), pretrained_model_filename=self.local_paths.pretrained_model_file.name) ``` #### File: tao-runner/tasks/convert.py ```python import subprocess from pathlib import Path from shutil import rmtree from ..context import ExperimentContext # Datumaro does not export label files for 'background' images, which do not contain any object to be detected. # TAO expects kitti label files to have 15 columns, but kitti has 16 originally (https://github.com/NVIDIA/DIGITS/issues/992) def check_kitti(kitti_dir: Path): assert kitti_dir.exists(), f"The directory {kitti_dir} does not exist" images_dir = kitti_dir.joinpath("image_2") labels_dir = kitti_dir.joinpath("label_2") images = list( images_dir.glob('*.jpg')) + list(images_dir.glob('*.png')) + list(images_dir.glob("*.jpeg")) labels = list(labels_dir.glob('*.txt')) assert len(images) > 0, f"No samples found in dataset {kitti_dir}" if len(labels) <= len(images): missing_files = [file.stem for file in labels if file not in images] assert f"Found {len(labels)} label files, but only {len(images)} images. Missing:\n" + \ '\n'.join(missing_files) print(f"Images: {len(images)}, labels: {len(labels)}") for image in images: label_file = labels_dir.joinpath(image.with_suffix('.txt').name) if not label_file.exists(): with open(label_file, 'w') as r: r.write('') print(f"Created empty label file {label_file.name}") else: with open(label_file, 'r') as r: for line in r.readlines(): row = line.strip().split(" ") if len(row) > 15: print( f"The file {label_file.name} has {len(row)} fields. Saving first 15") new_label = str.join(" ", row[:15]) with open(label_file, 'w') as w: w.write(new_label) print(f"Checked labels for {len(images)} images. All good.") def run(context: ExperimentContext, overwrite: bool = False, **kwargs): assert context.local_paths.convert_spec_file.is_file( ), f"Converter spec file does not exist at location '{context.local_paths.convert_spec_file}'" # TODO: We currently don't know which subset (full, train, val, ...) is being converted, so we cannot check if the dataset is ok. # check_kitti(dataset) if context.local_paths.subset_tfrecords_dir.exists(): assert overwrite, f"The directory '{context.local_paths.subset_tfrecords_dir.name}' already exists at 'data/'. Use --overwrite to replace the existing data." rmtree(context.local_paths.subset_tfrecords_dir) context.local_paths.subset_tfrecords_dir.mkdir() with open(context.local_paths.convert_spec_file, 'r') as infile, open(context.local_paths.compiled_convert_spec_file, 'w') as outfile: spec = infile.read() spec = spec.replace("$project", context.project) spec = spec.replace( "$dataset", context.docker_paths.dataset_dir.as_posix()) spec = spec.replace( "$tfrecords", context.docker_paths.subset_tfrecords_dir.as_posix()) spec = spec.replace("$pretrained_model", context.docker_paths.pretrained_model_file.as_posix()) outfile.write(spec) print("Converting dataset to TFRecords...\n") completed = subprocess.run(["tao", context.config.head, "dataset_convert", "-d", context.docker_paths.compiled_convert_spec_file.as_posix(), "-o", context.docker_paths.subset_tfrecords_dir.joinpath("tfrecord").as_posix()], check=False, text=True, capture_output=True) print("STDOUT:", completed.stdout) print("STDERR:", completed.stderr) ``` #### File: tao-runner/tasks/train.py ```python import subprocess from shutil import rmtree from ..context import ExperimentContext def run(context: ExperimentContext, overwrite: bool = False, stop: bool = False, **kwargs): # Checks to make sure all files are present and we don't override anything assert context.local_paths.train_spec_file.is_file( ), f"Spec file is not present at location '{context.local_paths.train_spec_file}'" if not overwrite: assert not context.local_paths.model_dir.exists( ), f"The model directory '{context.local_paths.model_dir.name}' already exists." elif context.local_paths.model_dir.exists(): rmtree(context.local_paths.model_dir) # Prepare the model directory context.local_paths.model_dir.mkdir(exist_ok=True) with open(context.local_paths.train_spec_file, 'r') as infile, open(context.local_paths.model_dir.joinpath(context.local_paths.train_spec_file.name), 'w') as outfile: spec = infile.read() spec = spec.replace("$project", context.project) spec = spec.replace( "$dataset", context.docker_paths.dataset_dir.as_posix()) spec = spec.replace( "$tfrecords", context.docker_paths.subset_tfrecords_dir.as_posix()) spec = spec.replace("$pretrained_model", context.docker_paths.pretrained_model_file.as_posix()) outfile.write(spec) # Stop running training, if requested if stop: print("Stopping running tao tasks...") subprocess.run(["tao", "stop", "--all"], check=True, text=True, capture_output=True) print("Starting training...") print( f"Using pretrained model: {context.config.repository}/{context.docker_paths.pretrained_model_file.name}") log_file = context.local_paths.model_dir.joinpath("train.log").as_posix() print(f"See {log_file} for training progress") completed = subprocess.run(["tao", context.config.head, "train", "--gpus", context.tao.gpus, "--gpu_index", context.tao.gpu_indices, "-e", context.docker_paths.model_dir.joinpath( context.local_paths.train_spec_file.name).as_posix(), "-r", context.docker_paths.model_dir.as_posix(), "-k", context.config.model_key, "--log_file", context.docker_paths.model_dir.joinpath("train.log").as_posix()], check=False, text=True, capture_output=True) print("STDOUT:", completed.stdout) print("STDERR:", completed.stderr) ```
{ "source": "jhoolmans/shifter", "score": 2 }
#### File: mgear/shifter/relative_guide_placement.py ```python import json import math # dcc import maya.cmds as mc import pymel.core as pm import maya.OpenMaya as om # mgear from mgear.core import utils from mgear.core import vector from mgear.core import transform from mgear.core import meshNavigation # constants ------------------------------------------------------------------- # Designate the root of the hierarchy to crawl GUIDE_ROOT = "guide" # Nodes to avoid checking the hierarchy DEFAULT_SKIP_CRAWL_NODES = ("controllers_org", "spineUI_C0_root", "faceUI_C0_root", "legUI_R0_root", "armUI_L0_root", "legUI_L0_root", "armUI_R0_root") # nodes that will not have their positions updated DEFAULT_SKIP_PLACEMENT_NODES = ("controllers_org", "global_C0_root", "spineUI_C0_root", "faceUI_C0_root", "legUI_R0_root", "armUI_L0_root", "legUI_L0_root", "armUI_R0_root") try: SKIP_CRAWL_NODES SKIP_PLACEMENT_NODES except NameError: SKIP_CRAWL_NODES = list(DEFAULT_SKIP_CRAWL_NODES) SKIP_PLACEMENT_NODES = list(DEFAULT_SKIP_PLACEMENT_NODES) # skip the node if it even contains the characters in the list # eg SKIP_CONTAINS = ["hair"] SKIP_CONTAINS = [] # Avoid nodes of a specified suffix SKIP_SUFFIX = ["sizeRef", "crv", "crvRef", "blade"] # Types of nodes to avoid SKIP_NODETYPES = ["aimConstraint", "pointConstraint", "parentConstraint"] UNIVERSAL_MESH_NAME = "skin_geo_setup" # general functions ----------------------------------------------------------- def crawlHierarchy(parentNode, ordered_hierarchy, skip_crawl_nodes, skip_strings=None): """recursive function to crawl a hierarchy of nodes to return decendents Args: parentNode (str): node to query ordered_hierarchy (str): list to continuesly pass itself skip_crawl_nodes (list): nodes to skip crawl """ if not skip_strings: skip_strings = [] for node in mc.listRelatives(parentNode, type="transform") or []: if node in skip_crawl_nodes or node in ordered_hierarchy: continue if node.endswith(tuple(SKIP_SUFFIX)): continue if mc.objectType(node) in SKIP_NODETYPES: continue if [True for skip_str in skip_strings if skip_str.lower() in node.lower()]: continue ordered_hierarchy.append(node) crawlHierarchy(node, ordered_hierarchy, skip_crawl_nodes, skip_strings=skip_strings) def getPostionFromLoop(vertList): """Get the center position from the list of edge ids provided Args: vertList (list): list of edge ids Returns: list: of translate XYZ, world space """ bb = mc.exactWorldBoundingBox(vertList) pos = ((bb[0] + bb[3]) / 2, (bb[1] + bb[4]) / 2, (bb[2] + bb[5]) / 2) return pos def getVertMatrix(closestVert): """create a matrix from the closestVert and the normals of the surrounding faces for later comparison Args: node (str): guide node to query closestVert (str): closest vert to guide Returns: list: of matrices """ closestVert = pm.PyNode(closestVert) faces = closestVert.connectedFaces() normalVector = faces.getNormal("world") pm.select(faces) faces_str = mc.ls(sl=True, fl=True) pm.select(cl=True) face_pos = pm.dt.Vector(getPostionFromLoop(faces_str)) normal_rot = getOrient([normalVector.x, normalVector.y, normalVector.z], [0, 1, 0], ro=0) orig_ref_matrix = pm.dt.TransformationMatrix() orig_ref_matrix.setTranslation(face_pos, pm.dt.Space.kWorld) orig_ref_matrix.setRotation(normal_rot) return orig_ref_matrix def getOrient(normal, tangent, ro=0): """convert normal direction into euler rotations Args: normal (list): of nomel values ro (int, optional): rotate order Returns: list: of euler rotations """ kRotateOrders = [om.MEulerRotation.kXYZ, om.MEulerRotation.kYZX, om.MEulerRotation.kZXY, om.MEulerRotation.kXZY, om.MEulerRotation.kYXZ, om.MEulerRotation.kZYX, ] cross = [normal[1] * tangent[2] - normal[2] * tangent[1], normal[2] * tangent[0] - normal[0] * tangent[2], normal[0] * tangent[1] - normal[1] * tangent[0]] tMatrix = normal + [0] + tangent + [0] + cross + [0, 0, 0, 0, 1] mMatrix = om.MMatrix() om.MScriptUtil.createMatrixFromList(tMatrix, mMatrix) tmMatrix = om.MTransformationMatrix(mMatrix) rotate = tmMatrix.eulerRotation().reorder(kRotateOrders[ro]) RAD_to_DEG = (180 / math.pi) return [rotate[0] * RAD_to_DEG, rotate[1] * RAD_to_DEG, rotate[2] * RAD_to_DEG] def getRepositionMatrix(node_matrix, orig_ref_matrix, mr_orig_ref_matrix, closestVerts): """Get the delta matrix from the original position and multiply by the new vert position. Add the rotations from the face normals. Args: node_matrix (pm.dt.Matrix): matrix of the guide orig_ref_matrix (pm.dt.Matrix): matrix from the original vert position closestVerts (str): name of the closest vert Returns: mmatrix: matrix of the new offset position, worldSpace """ current_vert = pm.PyNode(closestVerts[0]) mr_current_vert = pm.PyNode(closestVerts[1]) current_length = vector.getDistance(current_vert.getPosition("world"), mr_current_vert.getPosition("world")) orig_length = vector.getDistance(orig_ref_matrix.translate, mr_orig_ref_matrix.translate) orig_center = vector.linearlyInterpolate(orig_ref_matrix.translate, mr_orig_ref_matrix.translate) orig_center_matrix = pm.dt.Matrix() # orig_center_matrix.setTranslation(orig_center, pm.dt.Space.kWorld) orig_center_matrix = transform.setMatrixPosition( orig_center_matrix, orig_center) current_center = vector.linearlyInterpolate( current_vert.getPosition("world"), mr_current_vert.getPosition("world")) length_percentage = 1 if current_length != 0 or orig_length != 0: length_percentage = current_length / orig_length # refPosition_matrix = pm.dt.TransformationMatrix() refPosition_matrix = pm.dt.Matrix() # refPosition_matrix.setTranslation(current_center, pm.dt.Space.kWorld) refPosition_matrix = transform.setMatrixPosition( refPosition_matrix, current_center) deltaMatrix = node_matrix * orig_center_matrix.inverse() deltaMatrix = deltaMatrix * length_percentage deltaMatrix = transform.setMatrixScale(deltaMatrix) refPosition_matrix = deltaMatrix * refPosition_matrix return refPosition_matrix def getRepositionMatrixSingleRef(node_matrix, orig_ref_matrix, mr_orig_ref_matrix, closestVerts): """Get the delta matrix from the original position and multiply by the new vert position. Add the rotations from the face normals. Args: node_matrix (pm.dt.Matrix): matrix of the guide orig_ref_matrix (pm.dt.Matrix): matrix from the original vert position closestVerts (str): name of the closest vert Returns: mmatrix: matrix of the new offset position, worldSpace """ closestVerts = pm.PyNode(closestVerts[0]) faces = closestVerts.connectedFaces() normalVector = faces.getNormal("world") pm.select(faces) faces_str = mc.ls(sl=True, fl=True) pm.select(cl=True) face_pos = pm.dt.Vector(getPostionFromLoop(faces_str)) normal_rot = getOrient([normalVector.x, normalVector.y, normalVector.z], [0, 1, 0], ro=0) refPosition_matrix = pm.dt.TransformationMatrix() refPosition_matrix.setTranslation(face_pos, pm.dt.Space.kWorld) refPosition_matrix.setRotation(normal_rot) deltaMatrix = node_matrix * orig_ref_matrix.inverse() refPosition_matrix = deltaMatrix * refPosition_matrix return refPosition_matrix @utils.viewport_off @utils.one_undo def getGuideRelativeDictionaryLegacy(mesh, guideOrder): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ relativeGuide_dict = {} mesh = pm.PyNode(mesh) for guide in guideOrder: guide = pm.PyNode(guide) # slow function A clst_vert = meshNavigation.getClosestVertexFromTransform(mesh, guide) vertexIds = [clst_vert.name()] # slow function B orig_ref_matrix = getVertMatrix(clst_vert.name()) # -------------------------------------------------------------------- a_mat = guide.getMatrix(worldSpace=True) mm = ((orig_ref_matrix - a_mat) * -1) + a_mat pos = mm[3][:3] mr_vert = meshNavigation.getClosestVertexFromTransform(mesh, pos) mr_orig_ref_matrix = getVertMatrix(mr_vert.name()) vertexIds.append(mr_vert.name()) node_matrix = guide.getMatrix(worldSpace=True) relativeGuide_dict[guide.name()] = [vertexIds, node_matrix.get(), orig_ref_matrix.get(), mr_orig_ref_matrix.get()] mc.select(cl=True) return relativeGuide_dict @utils.viewport_off @utils.one_undo def yieldGuideRelativeDictionary(mesh, guideOrder, relativeGuide_dict): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ for guide in guideOrder: guide = pm.PyNode(guide) # slow function A clst_vert = meshNavigation.getClosestVertexFromTransform(mesh, guide) vertexIds = [clst_vert.name()] # slow function B orig_ref_matrix = getVertMatrix(clst_vert.name()) # -------------------------------------------------------------------- a_mat = guide.getMatrix(worldSpace=True) mm = ((orig_ref_matrix - a_mat) * -1) + a_mat pos = mm[3][:3] mr_vert = meshNavigation.getClosestVertexFromTransform(mesh, pos) mr_orig_ref_matrix = getVertMatrix(mr_vert.name()) vertexIds.append(mr_vert.name()) node_matrix = guide.getMatrix(worldSpace=True) relativeGuide_dict[guide.name()] = [vertexIds, node_matrix.get(), orig_ref_matrix.get(), mr_orig_ref_matrix.get()] yield relativeGuide_dict @utils.viewport_off @utils.one_undo def getGuideRelativeDictionary(mesh, guideOrder): """create a dictionary of guide:[[shape.vtx[int]], relativeMatrix] Args: mesh (string): name of the mesh guideOrder (list): the order to query the guide hierarchy Returns: dictionary: create a dictionary of guide:[[edgeIDs], relativeMatrix] """ relativeGuide_dict = {} mesh = pm.PyNode(mesh) for result in yieldGuideRelativeDictionary( mesh, guideOrder, relativeGuide_dict): pass return relativeGuide_dict @utils.viewport_off @utils.one_undo def updateGuidePlacementLegacy(guideOrder, guideDictionary): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue (vertexIds, node_matrix, orig_ref_matrix, mr_orig_ref_matrix) = guideDictionary[guide] guideNode = pm.PyNode(guide) repoMatrix = getRepositionMatrix(pm.dt.Matrix(node_matrix), pm.dt.Matrix(orig_ref_matrix), pm.dt.Matrix(mr_orig_ref_matrix), vertexIds) guideNode.setMatrix(repoMatrix, worldSpace=True, preserve=True) @utils.viewport_off @utils.one_undo def yieldUpdateGuidePlacement(guideOrder, guideDictionary): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue (vertexIds, node_matrix, orig_ref_matrix, mr_orig_ref_matrix) = guideDictionary[guide] repoMatrix = getRepositionMatrix(pm.dt.Matrix(node_matrix), pm.dt.Matrix(orig_ref_matrix), pm.dt.Matrix(mr_orig_ref_matrix), vertexIds) yield repoMatrix @utils.viewport_off @utils.one_undo def updateGuidePlacement(guideOrder, guideDictionary, reset_scale=False): """update the guides based on new universal mesh, in the provided order Args: guideOrder (list): of the hierarchy to crawl guideDictionary (dictionary): dict of the guide:edge, matrix position """ updateGen = yieldUpdateGuidePlacement(guideOrder, guideDictionary) for guide in guideOrder: if guide not in guideDictionary or not mc.objExists(guide): continue elif guide in SKIP_PLACEMENT_NODES: continue guideNode = pm.PyNode(guide) scl = guideNode.getScale() repoMatrix = updateGen.next() guideNode.setMatrix(repoMatrix, worldSpace=True, preserve=True) if reset_scale: guideNode.setScale([1, 1, 1]) else: guideNode.setScale(scl) yield True # ============================================================================== # Data export, still testing # ============================================================================== def _importData(filepath): try: with open(filepath, 'r') as f: data = json.load(f) return data except Exception as e: print e def _exportData(data, filepath): try: with open(filepath, 'w') as f: json.dump(data, f, sort_keys=False, indent=4) except Exception as e: print e def exportGuidePlacement(filepath=None, reference_mesh=UNIVERSAL_MESH_NAME, root_node=GUIDE_ROOT, skip_crawl_nodes=SKIP_CRAWL_NODES, skip_strings=[]): """Export the position of the supplied root node to a file. Args: filepath (str, optional): path to export too reference_mesh (str, optional): mesh to query verts root_node (str, optional): name of node to query against skip_crawl_nodes (list, optional): of nodes not to crawl skip_strings (list, optional): strings to check to skip node Returns: list: dict, list, str """ if filepath is None: filepath = pm.fileDialog2(fileMode=0, startingDirectory="/", fileFilter="Export position(*.json)") if filepath: filepath = filepath[0] (relativeGuide_dict, ordered_hierarchy) = recordInitialGuidePlacement( reference_mesh=reference_mesh, root_node=root_node, skip_crawl_nodes=skip_crawl_nodes, skip_strings=skip_strings) data = {} data["relativeGuide_dict"] = relativeGuide_dict data["ordered_hierarchy"] = ordered_hierarchy _exportData(data, filepath) print "Guide position exported: {}".format(filepath) return relativeGuide_dict, ordered_hierarchy, filepath @utils.one_undo def importGuidePlacement(filepath): """import the position from the provided file Args: filepath (str): file to the json referenceMesh (str, optional): name of mesh to compare against """ data = _importData(filepath) updateGuidePlacement(data["ordered_hierarchy"], data["relativeGuide_dict"]) return data["relativeGuide_dict"], data["ordered_hierarchy"] def recordInitialGuidePlacement(reference_mesh=UNIVERSAL_MESH_NAME, root_node=GUIDE_ROOT, skip_crawl_nodes=SKIP_CRAWL_NODES, skip_strings=None): """convenience function for retrieving a dict of position Args: reference_mesh (str, optional): the mesh to query against root_node (str, optional): root node to crawl skip_crawl_nodes (list, optional): of nodes to avoid skip_strings (list, optional): of strings to check if skip Returns: dict, list: dict of positions, list of ordered nodes """ ordered_hierarchy = [] relativeGuide_dict = {} crawlHierarchy(root_node, ordered_hierarchy, skip_crawl_nodes, skip_strings=skip_strings) relativeGuide_dict = getGuideRelativeDictionary(reference_mesh, ordered_hierarchy) return relativeGuide_dict, ordered_hierarchy ```
{ "source": "jhoonb/jornal", "score": 2 }
#### File: jornal/jornal/run.py ```python import os import bottle from app import app def main(): env = os.getenv("BOTTLE_ENV", "production") host = os.getenv("HOST", "0.0.0.0") port = os.getenv("PORT", 8080) if env == "production": bottle.debug(False) app.run(host=host, port=port, reloader=False) else: bottle.debug(True) app.run(host=host, port=port, reloader=True) if __name__ == "__main__": main() ``` #### File: jornal/tests/test_utils.py ```python from jornal import utils def test_json_request_valido(): assert True == utils.json_request_valido( ("k", "v", "b"), {"k": "", "v": "", "b": ""} ) assert False == utils.json_request_valido( ("k", "b"), {"k": "", "v": "", "b": ""} ) assert True == utils.json_request_valido(("k",), {"k": ""}) assert True == utils.json_request_valido( ("k", "v", "b"), {"b": "", "v": "", "k": ""} ) assert False == utils.json_request_valido( (), {"b": "", "v": "", "k": ""} ) assert False == utils.json_request_valido(("k", "v", "b"), {}) def test__gerar_titulo(): t = utils._gerar_titulo('TITULO DE TESTE') assert t == 'titulo_de_teste' t = utils._gerar_titulo('TITULO,DE, TESTE') assert t == 'titulo_de_teste' t = utils._gerar_titulo(' TITULO,DE, TESTE ') assert t == 'titulo_de_teste' ```
{ "source": "jhoonb/pygraph", "score": 4 }
#### File: pygraph/src/digraph.py ```python from graph import Graph class Digraph(Graph): def __init__(self, graph_id='Digraph G', weighted=False): Graph.__init__(self, graph_id, weighted) self._typegraph = 'digraph' def is_adjacent(self, node_x, node_y): ''' @brief check if node_x is adjacent to node_y @param node_x (str) @param node_y (str) @return (bool) ''' #only str node_x = str(node_x) node_y = str(node_y) #check if nodes no exist in the graph if not self.exist_node([node_x, node_y], 'all'): raise Exception(_error_[3]) if node_x in self._node[node_y][1]: return True return False def neighbourhood(self, node, neighbourhood_open=True): ''' @brief neighbourhood of the node in the graph @param node (str) @param neighbourhood_open (bool): default (True) @return (list) ''' # only str node = str(node) # check if node not exist in the graph if not self.exist_node(node): raise Exception(_error_[3]) output = [i for i in self._node if self.is_adjacent(i, node)] if neighbourhood_open: return output else: output.insert(0, node) return output ```