metadata
dict
text
stringlengths
60
3.49M
{ "source": "JiajianZeng/caffe-face-attributes", "score": 2 }
#### File: caffe-face-attributes/tools/train_plain_zf_for_face_attributes.py ```python import _init_paths from fast_rcnn.train import get_training_roidb, train_net from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from datasets.factory import get_imdb import argparse import pprint import numpy as np import sys, os import multiprocessing as mp import cPickle import shutil import os.path as osp def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a plain ZF network for face attributes') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--net_name', dest='net_name', help='network name (e.g., "ZF")', default=None, type=str) parser.add_argument('--weights', dest='pretrained_model', help='initialize with pretrained model weights', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--imdb', dest='imdb_name', help='dataset to train on', default='voc_2007_trainval', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) # set proposal method 'gt' to make this imdb load annotation imdb.set_proposal_method('gt') roidb = get_training_roidb(imdb) return roidb, imdb def get_solvers(net_name): n = 'plain_zf' # Solvers solvers = [[net_name, n, 'plain_zf_for_face_attributes_solver.pt']] solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers] # Iterations max_iters = [100000] return solvers, max_iters # ------------------------------------------------------------------------------ # Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded # (e.g. "del net" in Python code). To work around this issue, each training # stage is executed in a separate process using multiprocessing.Process. # ------------------------------------------------------------------------------ def _init_caffe(gpu_id): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(gpu_id) def train_plain_zf(queue=None, imdb_name=None, init_model=None, solver=None, max_iters=None, cfg=None): """Train a plain ZF for face attributes prediction. """ print 'Init model: {}'.format(init_model) print('Using config:') pprint.pprint(cfg) # initialize caffe _init_caffe(cfg.GPU_ID) roidb, imdb = get_roidb(imdb_name) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) # Train plain ZF model_paths = train_net(solver, roidb, output_dir, pretrained_model=init_model, max_iters=max_iters) # Cleanup all but the final model #for i in model_paths[:-1]: #os.remove(i) plain_zf_model_path = model_paths[-1] # Send plain ZF model path over the multiprocessing queue queue.put({'model_path': plain_zf_model_path}) if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.GPU_ID = args.gpu_id # -------------------------------------------------------------------------- # Pycaffe doesn't reliably free GPU memory when instantiated nets are # discarded (e.g. "del net" in Python code). To work around this issue, each # training stage is executed in a separate process using # multiprocessing.Process. # -------------------------------------------------------------------------- cfg.MODELS_DIR = osp.abspath(osp.join(cfg.ROOT_DIR, 'models', 'celeba')) #cfg.MODELS_DIR = osp.abspath(osp.join(cfg.ROOT_DIR, 'models', 'lfwa')) # queue for communicated results between processes mp_queue = mp.Queue() # solves, iters, etc. solvers, max_iters = get_solvers(args.net_name) print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Plain ZF, for face attributes prediction using CelebA dataset' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, init_model=args.pretrained_model, solver=solvers[0], max_iters=max_iters[0], cfg=cfg) p = mp.Process(target=train_plain_zf, kwargs=mp_kwargs) p.start() plain_zf_out = mp_queue.get() p.join() # Create final model (just a copy of the last stage) final_path = os.path.join( os.path.dirname(plain_zf_out['model_path']), 'celeba_plain_zf_final.caffemodel') #final_path = os.path.join( #os.path.dirname(plain_zf_out['model_path']), #'lfwa_plain_zf_final.caffemodel') print 'cp {} -> {}'.format( plain_zf_out['model_path'], final_path) shutil.copy(plain_zf_out['model_path'], final_path) print 'Final model: {}'.format(final_path) ```
{ "source": "jiajiaxu123/Orca", "score": 2 }
#### File: orca/core/datetimes.py ```python import itertools import pandas as pd from .common import default_session from .internal import _ConstantSP def _orca_unary_op(func, infered_ddb_dtypestr=None): # infered_ddb_dtypestr is used to convert Timestamp's data type # to make the category of two objects compatible @property def ufunc(self): return self._unary_op(func, infered_ddb_dtypestr) return ufunc def _orca_logical_unary_op(func): @property def lufunc(self): return self._logical_unary_op(func) return lufunc class Timestamp(object): def __init__(self, ts_input, freq=None, tz=None, unit=None, year=None, month=None, day=None, hour=None, minute=None, second=None, microsecond=None, nanosecond=None, tzinfo=None, session=default_session()): if isinstance(ts_input, pd.Timestamp): data = ts_input else: data = pd.Timestamp(ts_input, freq, tz, unit, year, month, day, hour, minute, second, microsecond, nanosecond, tzinfo) self._session = session self._internal = data.to_numpy() self._var = _ConstantSP.upload_obj(session, self._internal) @property def _var_name(self): return self._var._var_name def __repr__(self): return self._internal.__repr__() def __str__(self): return self._internal.__str__() class DatetimeProperties(object): date = _orca_unary_op("date", "date") time = _orca_unary_op("second", "second") year = _orca_unary_op("year") month = _orca_unary_op("monthOfYear") day = _orca_unary_op("dayOfMonth") hour = _orca_unary_op("hour") minute = _orca_unary_op("minuteOfHour") hourminute = _orca_unary_op("minute", "minute") second = _orca_unary_op("secondOfMinute") microsecond = _orca_unary_op("(t->nanotimestamp(t).microsecond())") nanosecond = _orca_unary_op("(t->nanotimestamp(t).nanosecond()%1000)") # TODO: nanosecond support other dtypes dayofyear = _orca_unary_op("dayOfYear") weekofyear = _orca_unary_op("weekOfYear") week = weekofyear dayofweek = _orca_unary_op("weekday{,false}") weekday = dayofweek quarter = _orca_unary_op("quarterOfYear") daysinmonth = _orca_unary_op("daysInMonth") days_in_month = daysinmonth is_month_start = _orca_logical_unary_op("isMonthStart") is_month_end = _orca_logical_unary_op("isMonthEnd") is_quarter_start = _orca_logical_unary_op("isQuarterStart") is_quarter_end = _orca_logical_unary_op("isQuarterEnd") is_year_start = _orca_logical_unary_op("isYearStart") is_year_end = _orca_logical_unary_op("isYearEnd") is_leap_year = _orca_logical_unary_op("isLeapYear") class DatetimeMethods(DatetimeProperties): def __init__(self, s): self._s = s def _logical_unary_op(self, func): from .operator import BooleanExpression return BooleanExpression(self._s, None, func, 1) def _unary_op(self, func, infered_ddb_dtypestr): from .operator import ArithExpression return ArithExpression(self._s, None, func, 0, infered_ddb_dtypestr=infered_ddb_dtypestr) ``` #### File: orca/core/groupby.py ```python import abc import itertools from typing import Iterable from .indexes import Index from .internal import _InternalAccessor from .merge import MergeExpression from .operator import (ArithExpression, BooleanExpression, DataFrameLike, SeriesLike, StatOpsMixin) from .series import Series from .utils import (ORCA_INDEX_NAME_FORMAT, _infer_level, _unsupport_columns_axis, check_key_existence, dolphindb_numeric_types, get_orca_obj_from_script, sql_select, to_dolphindb_literal) def _orca_groupby_op(func, numeric_only): def gfunc(self): return self._groupby_op(func, numeric_only) return gfunc def _orca_contextby_op(func, numeric_only): def cfunc(self): return self._contextby_op(func, numeric_only) return cfunc class GroupByOpsMixin(metaclass=abc.ABCMeta): all = _orca_groupby_op("all", numeric_only=False) any = _orca_groupby_op("any", numeric_only=False) count = _orca_groupby_op("count", numeric_only=False) size = _orca_groupby_op("size", numeric_only=False) sum = _orca_groupby_op("sum", numeric_only=True) sum2 = _orca_groupby_op("sum2", numeric_only=True) prod = _orca_groupby_op("prod", numeric_only=True) mean = _orca_groupby_op("mean", numeric_only=True) median = _orca_groupby_op("median", numeric_only=True) min = _orca_groupby_op("min", numeric_only=False) max = _orca_groupby_op("max", numeric_only=False) std = _orca_groupby_op("std", numeric_only=True) var = _orca_groupby_op("var", numeric_only=True) sem = _orca_groupby_op("sem", numeric_only=True) mad = _orca_groupby_op("mad", numeric_only=True) skew = _orca_groupby_op("skew", numeric_only=True) kurtosis = _orca_groupby_op("kurtosis", numeric_only=True) first = _orca_groupby_op("first", numeric_only=False) last = _orca_groupby_op("last", numeric_only=False) ohlc = _orca_groupby_op("ohlc", numeric_only=True) ffill = _orca_contextby_op("ffill", numeric_only=False) pad = ffill bfill = _orca_contextby_op("bfill", numeric_only=False) backfill = bfill cumcount = _orca_contextby_op("cumcount", numeric_only=False) cummax = _orca_contextby_op("cummax", numeric_only=False) cummin = _orca_contextby_op("cummin", numeric_only=False) cumprod = _orca_contextby_op("cumprod", numeric_only=True) cumsum = _orca_contextby_op("cumsum", numeric_only=True) pct_change = _orca_contextby_op("percentChange", numeric_only=True) def diff(self, periods=1, axis=0): _unsupport_columns_axis(self, axis) if periods != 1: raise ValueError("periods must be 1") return self._contextby_op("deltas", numeric_only=True) _STRING_TO_NUMERIC_ONLY = { "all": False, "any": False, "count": False, "size": False, "sum": True, "sum2": True, "prod": True, "mean": True, "median": True, "min": False, "max": False, "std": True, "var": True, "sem": True, "med": True, "skew": True, "kurtosis": True, "first": False, "last": False, "ohlc": True, "bfill": False, "ffill": False, "cumcount": False, "cummax": False, "cummin": False, "cumprod": True, "cumsum": True, "pct_change": True, "diff": True, } def rank(self, axis=0, method='min', na_option='top', ascending=True, pct=False, rank_from_zero=False, group_num=None): from .operator import _check_rank_arguments func = _check_rank_arguments(axis, method, na_option, ascending, pct, rank_from_zero, group_num) return self._contextby_op(func, numeric_only=False) def ols(self, y, x, column_names, intercept=True): y, _ = check_key_existence(y, self._data_columns) x, _ = check_key_existence(x, self._data_columns) if len(y) != 1: raise ValueError("y must be a single column") y_script = y[0] x_script = ",".join(x) intercept = "true" if intercept else "false" column_names_literal = to_dolphindb_literal(column_names) script = f"ols({y_script}, ({x_script}), {intercept}) as {column_names_literal}" orderby_list = self._orderby_list if self._sort else None script = sql_select([script], self._var_name, self._where_expr, groupby_list=self._groupby_list, orderby_list=orderby_list, asc=self._ascending) return self._run_groupby_script("ols", script, self._result_index_map) def aggregate(self, func, *args, **kwargs): return self._groupby_op(func, False) agg = aggregate def apply(self, func, *args, **kwargs): if not isinstance(func, str): raise ValueError("Orca does not support callable func; func must be a string representing a DolphinDB function") select_list = [func] orderby_list = self._orderby_list if self._sort else None if isinstance(self._internal, MergeExpression): var_name = self._internal._from_clause else: var_name = self._var_name script = sql_select(select_list, var_name, self._where_expr, groupby_list=self._groupby_list, orderby_list=orderby_list, asc=self._ascending) return self._run_groupby_script(func, script, self._result_index_map) def transform(self, func="", *args, **kwargs): if not isinstance(func, str): raise ValueError("Orca does not support callable func; func must be a string representing a DolphinDB function") return self._contextby_op(func, False) @staticmethod def _get_groupby_list_orderby_list_and_index_map(groupby_columns, index_names, sort, resample): index_columns = [ORCA_INDEX_NAME_FORMAT(i) for i in range(len(index_names))] groupby_list = [f"{groupby_column} as {index_column}" for groupby_column, index_column in zip(groupby_columns, index_columns)] if sort: orderby_list = index_columns elif resample: orderby_list = index_columns[-1:] else: orderby_list = None index_map = [(index_column, None) if index_name is None else (index_column, (index_name,)) for index_name, index_column in zip(index_names, index_columns)] contextby_index_map = [(index_column, None) if index_name is None else (index_name, (index_name,)) for index_name, index_column in zip(index_names, index_columns)] return groupby_list, orderby_list, index_map, contextby_index_map def _generate_groupby_select_list_and_value_list(self, func, groupkeys, numeric_only): def check_func_existance(func): return self._STRING_TO_NUMERIC_ONLY.get(func, False) def ohlc_select_list(select_col, col): return [f"first({select_col}) as {col}_open", f"max({select_col}) as {col}_high", f"min({select_col}) as {col}_low", f"last({select_col}) as {col}_close"] def funcname_alias(func): ALIAS = {"pad": "ffill", "backfill": "bfill", "pct_change": "percentChange", "diff": "deltas"} return ALIAS.get(func, func) select_columns = self._get_data_select_list() data_columns = self._data_columns # special functions if func == "size": return ["count(*)"], [] if func == "ohlc": column_ohlcs = (ohlc_select_list(select_col, col) for select_col, col in zip(select_columns, data_columns)) return list(itertools.chain(*column_ohlcs)), [] if isinstance(func, str): func = funcname_alias(func) numeric_only = check_func_existance(func) elif isinstance(func, list): select_list = [] func_names = [] for func_name in func: if not isinstance(func_name, str): raise TypeError(f"Only strings are supported to be used as function names") func_names.append(funcname_alias(func_name)) select_list= ([f"{func_name}({col}) as {col}_{func_name}" for func_name in func_names] for col in select_columns if col not in groupkeys) select_list = list(itertools.chain(*select_list)) return select_list, [] elif isinstance(func, dict): select_list = [] for col, func_name in func.items(): if not isinstance(func_name, str): raise TypeError(f"Only strings are supported to be used as function names") try: col_idx = data_columns.index(col) except ValueError: raise KeyError(col) func_name = funcname_alias(func_name) # check_func_existance(func_name) select_col = select_columns[col_idx] if func_name == "ohlc": select_list.extend(ohlc_select_list(select_col, col)) else: select_list.append(f"{func_name}({select_col}) as {col}") return select_list, [] else: raise TypeError(f"Only strings are supported to be used as function names") # is_op_on_different_columns = False if isinstance(self._internal, (ArithExpression, BooleanExpression)): numeric_only = False ddb_dtypes = self._ddb_dtypes select_list = [] value_list = [] for select_col, col in zip(select_columns, data_columns): if (col not in groupkeys and (not numeric_only or ddb_dtypes[col] in dolphindb_numeric_types)): select_list.append(f"{func}({select_col}) as {col}") value_list.append(f"{func}({select_col})") return select_list, value_list def _run_groupby_script(self, func, script, groupkeys, is_apply=False): groupby_size = (func == "size") groupby_having = (func == "") session = self._session index = groupkeys if self._as_index or groupby_size or groupby_having else [] if isinstance(func, list): column_index = ([(col, func_name) for func_name in func] for col in self._data_columns if col not in self._groupkeys) column_index = list(itertools.chain(*column_index)) return get_orca_obj_from_script(session, script, index, column_index=column_index) if func == "ohlc": column_index = ([(col, "open"), (col, "high"), (col, "low"), (col, "close")] for col in self._data_columns) column_index = list(itertools.chain(*column_index)) return get_orca_obj_from_script(session, script, index, column_index=column_index) data = get_orca_obj_from_script(session, script, index) if groupby_size: s = data["count"] s.rename(None, inplace=True) return s elif is_apply: s = data[data._data_columns[0]] s.rename(None, inplace=True) return s elif self._is_series_like: s = data[data._data_columns[0]] s.rename(self._name, inplace=True) return s else: return data def _get_data_select_list(self): internal = self._internal if isinstance(internal, (ArithExpression, BooleanExpression, MergeExpression)): return internal._get_data_select_list() else: return self._data_columns @abc.abstractmethod def _groupby_op(self, func, numeric_only): select_list, _ = \ self._generate_groupby_select_list_and_value_list(func, self._groupkeys, numeric_only) if len(select_list) == 0: # TODO: handle raise NotImplementedError() orderby_list = self._orderby_list if self._sort else None if isinstance(self._internal, MergeExpression): var_name = self._internal._from_clause else: var_name = self._var_name script = sql_select(select_list, var_name, self._where_expr, groupby_list=self._groupby_list, orderby_list=orderby_list, asc=self._ascending) return self._run_groupby_script(func, script, self._result_index_map) @abc.abstractmethod def _contextby_op(self, func, numeric_only): # TODO: context by order select_list, value_list = \ self._generate_groupby_select_list_and_value_list(func, self._groupkeys, numeric_only) klass = SeriesContextByExpression if self._is_series_like else DataFrameContextByExpression return klass(self._session, self._internal, func, self._where_expr, self._name, select_list, value_list, self._groupby_list) class ContextByExpression(_InternalAccessor): """ Expression related to DolphinDB context by expressions. """ def __init__(self, session, internal, func, where_expr, name, select_list, value_list, groupby_list): self._session = session self._internal = internal self._func = func self._where_expr = where_expr self._name = name self._select_list = select_list self._value_list = value_list self._groupby_list = groupby_list self._as_index = True def compute(self): select_list = self._select_list if len(select_list) == 0: raise NotImplementedError() select_list = itertools.chain(self._index_columns, select_list) script = sql_select(select_list, self._var_name, self._where_expr, groupby_list=self._groupby_list, is_groupby=False, hint=128) return GroupByOpsMixin._run_groupby_script(self, self._func, script, self._index_map) def to_pandas(self): return self.compute().to_pandas() def _get_data_select_list(self): return self._value_list def _get_contextby_list(self): return self._groupby_list class DataFrameContextByExpression(DataFrameLike, ContextByExpression): pass class SeriesContextByExpression(SeriesLike, ContextByExpression): pass class GroupBy(_InternalAccessor, GroupByOpsMixin, metaclass=abc.ABCMeta): def __init__(self, session, internal, index, by, level, as_index, sort, ascending, where_expr, name, groupkeys=None, groupby_list=None, orderby_list=None, result_index_map=None, contextby_result_index_map=None): self._session = session self._internal = internal self._index = index self._as_index = as_index self._sort = sort self._ascending = ascending self._where_expr = where_expr self._name = name if (groupkeys is not None and groupby_list is not None and orderby_list is not None and result_index_map is not None and contextby_result_index_map is not None): self._groupkeys = groupkeys self._groupby_list = groupby_list self._orderby_list = orderby_list self._result_index_map = result_index_map self._contextby_result_index_map = contextby_result_index_map return index_names = [] groupkeys = [] if by is None and level is None: raise TypeError("You have to supply one of 'by' and 'level'") if level is not None: groupkeys, _, index_names, _ = _infer_level(level, self._index_map) else: for column in by: if isinstance(column, str): groupkeys.append(column) index_names.append(column) elif isinstance(column, Series): if column._var_name != self._var_name: raise ValueError("Unable to groupby with an external Series") groupkeys.append(column._data_columns[0]) index_names.append(column._name) elif isinstance(column, Index): if column._var_name != self._var_name: raise ValueError("Unable to groupby with an external Index") groupkeys += column._index_columns index_names += column._index_columns elif isinstance(column, (ArithExpression, BooleanExpression)): if not column._is_series_like: raise ValueError("Grouper is not 1-dimensional") if column._var_name != self._var_name: raise ValueError("Unable to groupby with an external Index") groupkeys.append(column._get_data_select_list()[0]) index_names.append(column._name) else: raise ValueError("Each element in by must be a label") self._groupkeys = groupkeys self._groupby_list, self._orderby_list, \ self._result_index_map, self._contextby_result_index_map = \ GroupByOpsMixin._get_groupby_list_orderby_list_and_index_map( groupkeys, index_names, sort, resample=False) @property @abc.abstractmethod def _is_series_like(self): pass @property @abc.abstractmethod def _is_dataframe_like(self): pass def __getitem__(self, key): if isinstance(key, str): klass = SeriesGroupBy name = key elif isinstance(key, Iterable): klass = DataFrameGroupBy name = self._name else: raise KeyError(key) new_odf = self._internal[key] return klass(self._session, new_odf, self._index, None, None, self._as_index, self._sort, self._ascending, self._where_expr, name, self._groupkeys, self._groupby_list, self._orderby_list, self._result_index_map, self._contextby_result_index_map) def _groupby_op(self, *args, **kwargs): return GroupByOpsMixin._groupby_op(self, *args, **kwargs) def _contextby_op(self, *args, **kwargs): return GroupByOpsMixin._contextby_op(self, *args, **kwargs) def resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None, lazy=False, **kwargs): from .resample import SeriesResampler, DataFrameResampler klass = SeriesResampler if self._is_series_like else DataFrameResampler StatOpsMixin._validate_resample_arguments(how=how, axis=axis, fill_method=fill_method, closed=closed, label=label, convention=convention, kind=kind, loffset=loffset, limit=limit, base=base, on=on, level=level) return klass(self._session, self._internal, self._index, rule, on=on, level=level, where_expr=self._where_expr, name=self._name, groupkeys=self._groupkeys, sort=self._sort) def filter(self, func, dropna=True, *args, **kwargs): if not dropna: raise NotImplementedError() if not isinstance(func, str): raise ValueError("Orca does not support callable func; func must be a string representing a HAVING condition") index_columns = self._index_columns select_list = index_columns + self._get_data_select_list() script = sql_select(select_list, self._var_name, self._where_expr, groupby_list=self._groupby_list, is_groupby=False, having_list=[func]) return self._run_groupby_script("", script, self._index_map) class DataFrameGroupBy(DataFrameLike, GroupBy): pass class SeriesGroupBy(SeriesLike, GroupBy): pass class HavingGroupBy(_InternalAccessor, GroupByOpsMixin, metaclass=abc.ABCMeta): @property @abc.abstractmethod def _is_series_like(self): pass @property @abc.abstractmethod def _is_dataframe_like(self): pass class DataFrameHavingGroupBy(DataFrameLike, HavingGroupBy): pass class SeriesHavingGroupBy(DataFrameLike, HavingGroupBy): pass ``` #### File: orca/core/indexes.py ```python import abc import itertools from typing import Iterable import dolphindb as ddb import numpy as np import pandas as pd from .common import default_session from .datetimes import DatetimeProperties from .internal import _ConstantSP, _InternalFrame, _InternalAccessor from .operator import IndexLike, SeriesLike, ArithOpsMixin, StatOpsMixin, LogicalOpsMixin, IOOpsMixin from .utils import ( _to_freq, dolphindb_temporal_types, _to_numpy_dtype, is_dolphindb_uploadable, sql_select, get_orca_obj_from_script) class IndexOpsMixin(ArithOpsMixin, LogicalOpsMixin, metaclass=abc.ABCMeta): def __init__(self, internal, session): self._internal = internal self._session = session if isinstance(internal, _ConstantSP): self._name = None else: names = [name[0] if name is not None else None for _, name in internal.index_map] if len(names) == 0: self._name = None self._names = None elif len(names) == 1: self._name = names[0] self._names = None elif len(names) > 1: self._name = None self._names = names # self._dtype = internal.dtype def __len__(self): return len(self._internal) # @property TODO: name getter and setter # def name(self): # return self.name # @name.setter # def name(self, name): # self.rename(inplace=True) @property def _ddb_dtype(self): if isinstance(self._internal, _ConstantSP): return self._type else: index_column = self._index_column return self._ddb_dtypes[index_column] @property def ndim(self): return 1 @property def size(self): return len(self) @property def dtype(self): return _to_numpy_dtype(self._ddb_dtype) @abc.abstractmethod def to_numpy(self): pass @abc.abstractmethod def to_pandas(self): pass @property def is_monotonic(self): return self._unary_agg_op("isSorted", axis=None, level=None, numeric_only=False) @property def is_monotonic_increasing(self): return self._unary_agg_op("isSorted", axis=None, level=None, numeric_only=False) @property def is_monotonic_decreasing(self): return self._unary_agg_op("isSorted{,false}", axis=None, level=None, numeric_only=False) @property def is_unique(self): len_self = len(self) return len_self == 1 or self.nunique == len_self @property def hasnans(self): return self._unary_agg_op("hasNull", axis=None, level=None, numeric_only=False) def _unary_op(self, *args, **kwargs): return ArithOpsMixin._unary_op(self, *args, **kwargs) def _binary_op(self, *args, **kwargs): return ArithOpsMixin._binary_op(self, *args, **kwargs) def _extended_binary_op(self, *args, **kwargs): return ArithOpsMixin._extended_binary_op(self, *args, **kwargs) def _logical_op(self, *args, **kwargs): return LogicalOpsMixin._logical_op(self, *args, **kwargs) def _logical_unary_op(self, *args, **kwargs): return LogicalOpsMixin._logical_unary_op(self, *args, **kwargs) def _to_script(self): odf = self._internal if isinstance(odf, _ConstantSP): return self._var_name select_list = self._index_columns return sql_select(select_list, self._var_name) # elif self._segmented: # select_list = self._index_columns # return sql_select(select_list, self._var_name, is_exec=True) # else: # assert len(self._index_columns) == 1 # var_name, column_name = self._var_name, self._index_column # return f"{var_name}.{column_name}" def _binary_op_on_different_indices(self, other, func, axis): """ Implementation of binary operator between Series on different indices. A new Series representing an in-memory DolphinDB table is returned. It is garenteed that both Series have no where_expr. Parameters ---------- other : _Frame Right hand side of the operator. func : str Fuction name. Returns ------- orca.DataFrame The result of the operation. Raises ------ NotImplementedError To be implemented. """ from .merge import _generate_joiner _COLUMN_NAME = "ORCA_DIFFERENT_INDICES_COLUMN" if other._is_series_like: session = self._session self_var_name, other_var_name = self._var_name, other._var_name self_column_name = self._data_columns[0] other_column_name = other._data_columns[0] select_list = [f"{func}({self_var_name}.{self_column_name}, {other_var_name}.{other_column_name}) as {_COLUMN_NAME}"] index_list, from_clause = _generate_joiner( self_var_name, other_var_name, self._index_columns, other._index_columns) select_list = itertools.chain(index_list, select_list) script = sql_select(select_list, from_clause) index_map = [(s_map[0], None if s_map[1] != o_map[1] else s_map[1]) for s_map, o_map in zip(self._internal.index_map, other._internal.index_map)] return self._get_from_script( session, script, data_columns=[_COLUMN_NAME], index_map=index_map) elif other._is_dataframe_like: raise NotImplementedError() class Index(IndexLike, _InternalAccessor, IndexOpsMixin, IOOpsMixin): """ Accessor for DataFrame and Series. When calling get_select_list, a specific identifier is added before the column. When names are not given, a specific identifier is used instead. """ def __init__(self, data, dtype=None, copy=False, name=None, tupleize_cols=None, session=default_session()): if isinstance(data, _ConstantSP): assert dtype is None assert not copy assert tupleize_cols is None IndexOpsMixin.__init__(self, data, session) self._name = name elif isinstance(data, _InternalFrame): assert dtype is None assert name is None assert not copy assert tupleize_cols is None IndexOpsMixin.__init__(self, data, session) else: if isinstance(data, (pd.Index, pd.Series)): idx = (data if dtype is None and name is None and tupleize_cols is None else pd.Index(data, dtype=dtype, name=name, tupleize_cols=tupleize_cols)) else: idx = pd.Index(data=data, dtype=dtype, copy=False, name=name, tupleize_cols=tupleize_cols) # TODO: copy = True or False ?, freq? # var = _ConstantSP.upload_obj(session, idx.to_numpy()) # var._framize(name=idx.name) # IndexOpsMixin.__init__(self, var, session) # self._name = idx.name odf = _InternalFrame.from_pandas(session, idx) IndexOpsMixin.__init__(self, odf, session) self._where_expr = None def __repr__(self): if self._segmented: return "<.index.Index object representing a column in a DolphinDB segmented table>" else: return self.to_pandas().__repr__() def __eq__(self, other): if type(self) != type(other): return False else: return (self._var_name == other._var_name and self._index_columns == other._index_columns) def __ne__(self, other): return not self.__eq__(other) @classmethod def _from_internal(cls, odf, index=None): """ Create an orca Index indicated by an _InternalFrame and another pandas or orca Index. Parameters ---------- odf : _InternalFrame odf provides the metadata of the represented DolphinDB table and servers as the _internal attribute of the Index index : pd.Index or orca.Index, optional index provides the metadata such as name, frequency, etc. of the Index, by default None """ session = odf._session if index is None or not isinstance(index, pd.DatetimeIndex): if odf.is_any_vector: index = Index(index, session=session) elif len(odf.index_map) == 1: if odf._ddb_dtypes[odf._index_columns[0]] in dolphindb_temporal_types: index = DatetimeIndex._from_internal(odf, index) else: index = Index(odf, session=session) elif len(odf.index_map) == 0: index = Index([], session=session) else: index = MultiIndex(odf, session=session) elif isinstance(index, pd.DatetimeIndex): index = DatetimeIndex._from_internal(odf, index) else: raise TypeError("Unsupported index type") return index @property def name(self): return self._name @name.setter def name(self, value): if value is not None and not isinstance(value, str): raise TypeError("Index.name must be a string") self._name = value @property def names(self): return self._names def rename(self, value, inplace=False): raise NotImplementedError() @property def _index_column(self): assert isinstance(self._internal, _InternalFrame) return self._index_columns[0] @property def _index(self): return self def _get_data_select_list(self): if isinstance(self._internal, _ConstantSP): return [self._var_name] else: return self._index_columns def _to_script_list(self): if isinstance(self._internal, _ConstantSP): assert(self._form != ddb.settings.DF_TABLE) return [self._var_name] else: return [sql_select([col], self._var_name, is_exec=True) for col in self._index_columns] def to_pandas(self): if isinstance(self._internal, _ConstantSP): df = self._session.run(self._to_script()) return pd.Index(df).rename(self._name) elif len(self._index_columns) == 0: raise ValueError("Frame has no default index if it is not in memory") else: df = self._session.run(self._to_script()) return pd.Index(df.iloc[:,0]).rename(self._name) def to_numpy(self): return self.to_pandas().to_numpy() def _get_data_select_list(self): if isinstance(self._internal, _ConstantSP): return [self._var_name] else: return [f"{self._var_name}.{self._index_column}"] def _unary_agg_op(self, func, *args, **kwargs): if isinstance(self._internal, _ConstantSP): script = f"{func}({self._var_name})" else: index_column = self._index_column select_list = [f"{func}({index_column})"] script = sql_select(select_list, self._var_name, is_exec=True) return get_orca_obj_from_script(self._session, script, [], as_index=True) def min(self, axis=None, skipna=True, *args, **kwargs): return self._unary_agg_op("min") def max(self, axis=None, skipna=True, *args, **kwargs): return self._unary_agg_op("max") def unique(self, level=None): pass def nunique(self, dropna=True): pass isna = LogicalOpsMixin.isna notna = LogicalOpsMixin.notna isnull = LogicalOpsMixin.isnull notnull = LogicalOpsMixin.notnull fillna = StatOpsMixin.fillna dropna = StatOpsMixin.dropna # def _binary_op(self, other, func): # from .frame import DataFrame # from .series import Series # if is_dolphindb_uploadable(self): # raise NotImplementedError() # elif not isinstance(self, Index): # raise TypeError("Operand must be a Series") # elif is_dolphindb_uploadable(other): # raise NotImplementedError() # elif isinstance(other, DataFrame): # raise NotImplementedError() # elif isinstance(other, Series): # raise NotImplementedError() # else: # raise TypeError("Operand must be a Series or DataFrame") # def _logical_op(self, other, func): # raise NotImplementedError() # def _logical_unary_op(self, func): # raise NotImplementedError() @property def values(self): #warnings.warn("orca objects does not store data in numpy arrays. Accessing values will retrive whole data from the remote node.", Warning) return self.to_numpy() @property def shape(self): return (len(self),) @property def nbytes(self): session = self._session script = sql_select(["bytes"], "objs()", where_expr=f"name='{self._var_name}'", is_exec=True) script += "[0]" return session.run(script) @property def ndim(self): return 1 @property def T(self): return self @property def is_all_dates(self): return False class MultiIndex(Index): def __init__(self, data, names=None, session=default_session()): if isinstance(data, _InternalFrame): assert names is None Index.__init__(self, data, session=session) elif isinstance(data, pd.MultiIndex): assert names is None frame = data.to_frame() var = _ConstantSP.upload_obj(session, frame) Index.__init__(self, var, session=session) self._names = list(data.names) @staticmethod def _from_pandas_multiindex(session, index): from .frame import DataFrame return DataFrame(data=None, session=session, index=index).index @classmethod def from_arrays(cls, arrays, sortorder=None, names=None, session=default_session()): return cls._from_pandas_multiindex(session, pd.MultiIndex.from_arrays(arrays, sortorder, names)) @classmethod def from_tuples(cls, tuples, sortorder=None, names=None, session=default_session()): return cls._from_pandas_multiindex(session, pd.MultiIndex.from_tuples(tuples, sortorder, names)) @classmethod def from_product(cls, iterables, sortorder=None, names=None, session=default_session()): return cls._from_pandas_multiindex(session, pd.MultiIndex.from_product(iterables, sortorder, names)) @classmethod def from_frame(cls, df, sortorder=None, names=None, session=default_session()): # TODO: directly upload frame return cls._from_pandas_multiindex(session, pd.MultiIndex.from_frame(df, sortorder, names)) @property def names(self): return self._names @names.setter def names(self, value): raise NotImplementedError() # def _to_script(self): # select_list = self._index_columns # return sql_select(select_list, self._var_name) def to_pandas(self): # TODO: dealing with where clause df = self._session.run(self._to_script()) return pd.MultiIndex.from_frame(df).rename(self.names) def _unary_op(self, func): raise TypeError(f"cannot perform {func} with thid index type: MultiIndex") def _binary_op(self, other, func): raise TypeError(f"cannot perform {func} with thid index type: MultiIndex") def _logical_op(self, other, func): raise TypeError(f"cannot perform {func} with thid index type: MultiIndex") def _logical_unary_op(self, func): raise TypeError(f"cannot perform {func} with thid index type: MultiIndex") class RangeIndex(Index): def __init__(self, start=None, stop=None, step=1, name=None, session=default_session()): self._start = start self._stop = stop self._step = step self._name = name self._session = session self._internal = None @classmethod def _from_internal(cls, frame): odf = frame._internal session = frame._session names = odf.index_map[0][1] name = names if names is None else names[0] obj = cls(start=0, stop=len(odf), name=name, session=session) obj._internal = odf return obj @classmethod def _from_internal_frame_and_range(cls, session, internal, index): assert isinstance(index, RangeIndex) assert isinstance(internal, _InternalFrame) start, stop, step, name = index.start, index.stop, index.step, index.name range_index = RangeIndex(start, stop, step, name, session) range_index._internal = internal return range_index def __len__(self): # TODO: step return max(self.stop - self.start, 0) def __eq__(self, other): if isinstance(other, RangeIndex): return (self.start == other.start and self.stop == other.stop and self.step == other.step) else: return False @property def start(self): return self._start @property def stop(self): return self._stop @property def step(self): return self._step @property def dtype(self): return np.dtype(np.int64) @property def id(self): # Pseudo id to be used for reference return f"_orca_range_index_{self.start}_{self.stop}" def _to_script(self): return f"({self.start}..{self.stop - 1})" def __repr__(self): if self.name is None: return f"RangeIndex(start={self.start}, stop={self.stop}, step={self.step})" else: return f"RangeIndex(start={self.start}, stop={self.stop}, step={self.step}, name='{self.name}')" def to_pandas(self): return pd.RangeIndex(self.start, self.stop, self.step, name=self.name) def _unary_func(self, func): script = f"{func}({self.start}..{self.stop - 1})" return self._session.run(script) def _binary_func(self, other, func): session = self._session script = f"{func}({self.start}..{self.stop - 1}, {other})" data = session.run(script) return Index(data, session=session) # def _get_select_list(self, sql=False): # if self._internal is None and sql: # return [] # elif self._internal is None: # name = self._real_column_names[0] # script = f"{self._to_script()} as {name}" # return [script] # else: # return Index._get_select_list(self) # def _get_update_list(self): # if self._internal is None: # name = self._real_column_names[0] # script = f"{name} = {self._to_script()}" # return (script,) # else: # return Index._get_update_list(self) # def append(self, other): # session = self._session # if isinstance(other, RangeIndex) and other.start == self.stop: # return RangeIndex(self.start, other.end, session=session) # script = f"join({self._to_script()}, {other._getter_script})" # data = run_script(session, script) # return Index(data, session=session) def head(self, n=5): if n == 0: return RangeIndex(0, 0, self.name) elif n > 0: if len(self) <= n: return RangeIndex(self.start, self.stop, name=self.name) else: return RangeIndex(self.start, self.start + n, name=self.name) else: if len(self) <= abs(n): return RangeIndex(self.start, self.start, name=self.name) else: return RangeIndex(self.start, self.stop + n, name=self.name) def tail(self, n=5): if n == 0: return RangeIndex(0, 0, self.name) elif n > 0: if len(self) <= n: return RangeIndex(self.start, self.stop, name=self.name) else: return RangeIndex(self.stop - n, self.stop, name=self.name) else: if len(self) <= abs(n): return RangeIndex(self.stop, self.stop, name=self.name) else: return RangeIndex(self.start - n, self.stop, name=self.name) class DatetimeIndex(DatetimeProperties, Index): def __init__(self, data, freq=None, dtype=None, tz=None, session=default_session()): if isinstance(data, _InternalFrame): assert freq is None assert dtype is None assert tz is None index_columns = data._index_columns ddb_dtype = data._ddb_dtypes[index_columns[0]] assert len(index_columns) == 1 assert ddb_dtype in dolphindb_temporal_types Index.__init__(self, data, session=session) self._freq = _to_freq(ddb_dtype) self._dtype = _to_numpy_dtype(ddb_dtype) self._tz = None elif isinstance(data, pd.DatetimeIndex): data = (data if freq is None and dtype is None and tz is None else pd.DatetimeIndex(data, freq=freq, dtype=dtype, tz=tz)) Index.__init__(self, data, session=session) self._freq = data.freq self._dtype = data.dtype self._tz = data.tz else: raise NotImplementedError() # def __eq__(self, other): # if isinstance(other, DatetimeIndex): # raise NotImplementedError() # else: # return False @classmethod def _from_internal(cls, odf, index): obj = cls(odf, session=odf._session) if index is None: # sample_script = sql_select(odf._index_columns, odf._var_name, is_exec=True, limit=3) # sample_data = odf._session.run(sample_script) # try: # obj._freq = pd.infer_freq(pd.DatetimeIndex(sample_data)) # except ValueError: # obj._freq = None obj._freq = None obj._dtype = None obj._tz = None else: try: # FIXME: # oidx = orca.to_datetime(['20130101 09:00:00','20130101 09:00:02','20130101 09:00:03','20130101 09:00:05','20130101 09:00:06']) # odf = orca.DataFrame({'A': ["a", "c", "w", "f", "f"], 'B': [0, 1, 2, np.nan, 4]}, index=orca.Index(data=oidx,name='time')) obj._freq = index.freq except ValueError: obj._freq = None obj._dtype = index.dtype obj._tz = index.tz return obj @property def freq(self): return self._freq @property def tz(self): return self._tz @property def is_all_dates(self): return True # @property # def dtype(self): # return self._dtype # TODO: sophisticated datetime def to_pandas(self): odf = self._internal if isinstance(odf, _ConstantSP): data = self._session.run(self._to_script()) else: pdf = self._session.run(self._to_script()) data = pdf[pdf.columns[0]] return pd.DatetimeIndex(data=data, freq=self._freq, tz=self._tz).set_names(self._name) # return pd.DatetimeIndex(data=pdf, freq=self._freq, dtype=self._dtype) def _logical_unary_op(self, func): from .operator import BooleanExpression return BooleanExpression(self, None, func, 1) def _unary_op(self, func, infered_ddb_dtypestr): from .operator import ArithExpression return ArithExpression(self, None, func, 0, infered_ddb_dtypestr=infered_ddb_dtypestr) class PeriodIndex(Index): def __init__(self): pass ``` #### File: orca/core/internal.py ```python import itertools import warnings from typing import Iterable, List, Optional, Tuple, Union import dolphindb as ddb import pandas as pd from pandas.api.types import is_list_like from .common import (AttachDefaultIndexWarning, _get_verbose, _warn_not_dolphindb_identifier) from .utils import (ORCA_COLUMN_NAME_FORMAT, ORCA_INDEX_NAME_FORMAT, _new_orca_identifier, _to_column_index, _to_index_map, check_key_existence, is_dolphindb_identifier, sql_select, sql_update, to_dolphindb_literal) IndexMap = Tuple[str, Optional[Tuple[str, ...]]] class _ConstantSP(object): """ The internal object which represents DolphinDB objects and works like a smart pointer. When its reference count is reduced to zero (which is automatically controlled by Python's memory management system), the represented object's memory is released. Scripts which modify DolphinDB variables (i.e. assignments and updates) should be encapsulated in methods of this class and called from the _InternalFrame which owns the instance of this class. .. note:: this is an internal class. It is not supposed to be exposed to users and users should not directly access to it. """ ORCA_IDENTIFIER = "ORCA_" def __init__(self, session, id): self._id = id self._session = session self._form, self._type, self._segmented, self._in_memory = None, None, False, False self._update_metadata() def __del__(self): var_name = self.var_name script = f"{var_name} = NULL; undef('{var_name}', VAR)" self._session.run(script) def __len__(self): if not self.segmented: script = f"size({self.var_name})" else: script = f"exec count(*) from {self.var_name}" return self._session.run(script) @property def form(self): return self._form @property def type(self): return self._type @property def schema(self): return self._schema @property def in_memory(self): return self._in_memory @property def segmented(self): return self._segmented @property def id(self): return self._id @property def var_name(self): # TODO: lazyproperty? return _ConstantSP.ORCA_IDENTIFIER + self._id @property def _var_name(self): # TODO: lazyproperty? return _ConstantSP.ORCA_IDENTIFIER + self._id @classmethod def upload_obj(cls, session, obj): obj_id = _new_orca_identifier() var_name = _ConstantSP.ORCA_IDENTIFIER + obj_id session.upload({var_name: obj}) return cls(session, obj_id) @classmethod def run_script(cls, session, script): obj_id = _new_orca_identifier() var_name = _ConstantSP.ORCA_IDENTIFIER + obj_id if _get_verbose(): print(script) session.run(f"&{var_name} = ({script})") return cls(session, obj_id) def _to_script(self): return self.var_name def _update_metadata(self): var_name, session = self.var_name, self._session form, dtype, typestr = session.run(f"[form({var_name}), type({var_name}), typestr({var_name})]") form, dtype, typestr = int(form), int(dtype), str(typestr) self._form, self._type = form, dtype self._segmented = typestr.find("SEGMENTED") >= 0 self._in_memory = typestr.find("IN-MEMORY") >= 0 or not self._segmented self._schema = (session.run(f"schema({self.var_name}).colDefs").set_index("name") if form == ddb.settings.DF_TABLE else None) def _sql_update(self, column_names: List[str], new_values: List[str], from_table_joiner: Optional[str] = None, where_expr=None, contextby_list: Optional[List[str]] = None): session = self._session table_name = self.var_name script = sql_update(table_name, column_names, new_values, from_table_joiner, where_expr, contextby_list) if _get_verbose(): print(script) session.run(script) self._update_metadata() def squeeze(self, index_columns=[], data_columns=None, name=None, as_index=False, squeeze_axis=None): """ Reduce the dimension of a DataFrame or Series if possible. Parameters ---------- index_columns : list[str], optional The index columns of the input DataFrame or Series, used as name of the result data_columns : list[str], optional The data columns of the input DataFrame or Series. Only these columns will be used, by default None, that is, to use all columns name : str, optional The name of the returned Series if squeezed to a Series, by default None as_index : bool, optional Whether to return a Index instead of a Series, by default False squeeze_axis : 0, 1 or None A specific axis to squeeze. 0 for index, 1 for column, None for both. By default None """ from .indexes import Index from .series import Series session = self._session var_name, form = self.var_name, self.form if form == ddb.settings.DF_SCALAR: return session.run(var_name) elif form == ddb.settings.DF_VECTOR: return session.run(f"{var_name}[0]") elif form == ddb.settings.DF_TABLE: all_columns = self.schema.index if index_columns: # TODO: MultiIndex index_column = index_columns[0] name = session.run(f"(exec {index_column} from {var_name})[0]") data_columns = data_columns or [col for col in all_columns if col not in index_columns] assert all(col in self.schema.index for col in data_columns) script = sql_select(data_columns, var_name) if squeeze_axis is None and len(data_columns) == 1: return session.run(f"values({script})[0][0]") index = _ConstantSP.upload_obj(session, data_columns) if len(set(self.schema.typeInt[data_columns])) > 1: # has mixed type self.reset_with_script(f"loop(first, values({script}))") if as_index: return Index(self, name=name, session=session) else: return Series(self, index=index, name=name, session=session) else: if as_index: self.reset_with_script(f"each(first, values({script}))") return Index(self, name=name, session=session) else: self.reset_with_script( f"table({index.var_name} as {ORCA_INDEX_NAME_FORMAT(0)}, " f"each(first, values({script})) as ORCA_EXPRESSION_COLUMN)") index_map = [(ORCA_INDEX_NAME_FORMAT(0), None)] data_columns = ["ORCA_EXPRESSION_COLUMN"] odf = _InternalFrame(session, self, index_map, data_columns) return Series(odf, name=name, session=session) else: raise ValueError(f"Unsupported form: {form}") def rename(self, columns): old_names, new_names = zip(*columns.items()) old_names_literal = to_dolphindb_literal(old_names) new_names_literal = to_dolphindb_literal(new_names) session, var_name = self._session, self.var_name if _get_verbose(): print(f"rename!({var_name}, {old_names_literal}, {new_names_literal})") session.run(f"rename!({var_name}, {old_names_literal}, {new_names_literal})") self._update_metadata() def reset_with_script(self, script): session, var_name = self._session, self.var_name session.run(f"&{var_name} = ({script})") self._update_metadata() def append(self, script): session, var_name = self._session, self.var_name if _get_verbose(): print(f"append!({var_name}, {script})") session.run(f"append!({var_name}, {script})") self._update_metadata() def attach_index(self, index, index_map): script_list = index._to_script_list() replace_column_scripts = [] update_column_list = [] update_column_scripts = [] for (col, _), script in zip(index_map, script_list): if col in self.schema: replace_column_scripts.append(f"replaceColumn!({self.var_name}, {to_dolphindb_literal(col)}, {script})") else: update_column_list.append(col) update_column_scripts.append(script) self._sql_update(update_column_list, update_column_scripts) self._session.run(";".join(replace_column_scripts)) self._update_metadata() def drop_columns(self, column_names): session, var_name = self._session, self.var_name column_names_literal = to_dolphindb_literal(column_names) script = f"{var_name}.drop!({column_names_literal})" if _get_verbose(): print(script) session.run(script) self._update_metadata() def attach_default_index(self): if self.segmented: warnings.warn("Unable to attach an default index to segmented table.", AttachDefaultIndexWarning) return False form, var_name = self._form, self.var_name size = len(self) if size <= 0: return False if form == ddb.settings.DF_TABLE: column_names = [ORCA_INDEX_NAME_FORMAT(0)] new_values = [f"0..{size-1}"] try: self._sql_update(column_names, new_values) except RuntimeError as ex: ex_msg = str(ex) if (ex_msg.startswith("The table is not allowed to update") or ex_msg.startswith("<Server Exception> in run: The table is not allowed to update") or ex_msg.startswith("<Server Exception> in run: The category") or ex_msg.startswith("<Server Exception> in run: The data type") or ex_msg.endswith("the table shouldn't be shared and the size of the new column must equal to the size of the table.")): warnings.warn("Unable to attach an default index to the table.", AttachDefaultIndexWarning) return False else: raise elif form == ddb.settings.DF_VECTOR: script = f"table({var_name}, 0..{size-1} as {ORCA_INDEX_NAME_FORMAT(0)})" self.reset_with_script(script) return True def as_frame(self, name): form, var_name = self._form, self.var_name assert form == ddb.settings.DF_VECTOR if name is None or not is_dolphindb_identifier(name): _warn_not_dolphindb_identifier() name = ORCA_INDEX_NAME_FORMAT(0) script = f"table({var_name} as {name})" self.reset_with_script(script) class _InternalAccessor(object): def __init__(self): self._internal = None @property def _var_name(self): """ The variable name of the DolphinDB object represented by this DataFrame or Series. """ return self._internal._var_name @property def _in_memory(self): """ Whether the DolphinDB object represented by the orca object is in memory. If in_memory is True, modifications to the object are allowed. """ return self._internal.in_memory @property def _segmented(self): """ Whether the DolphinDB object represented by the orca object is segmented. If segmented is True, direct access to the object is not allowed. A SQL query is used instead. """ return self._internal.segmented @property def _data_columns(self): """ The real data column names in the DolphinDB table. """ return self._internal._data_columns @property def _index_columns(self): """ The real index column names in the DolphinDB table. """ return self._internal._index_columns @property def _column_index(self): return self._internal._column_index @property def _column_index_names(self): return self._internal._column_index_names @property def _column_index_level(self): return self._internal._column_index_level def _column_name_for(self, column_name_or_index): return self._internal.column_name_for(column_name_or_index) @property def _index_map(self): return self._internal._index_map @property def _index_names(self): return self._internal._index_names @property def _index_name(self): return self._internal._index_name @property def _schema(self): """ The schema of the DolphinDB table with the column names as the index. """ return self._internal.schema @property def _form(self): return self._internal.form @property def _ddb_dtypes(self): return self._internal._ddb_dtypes @property def _ddb_dtypestr(self): return self._internal._ddb_dtypestr @property def _type(self): """ The type of the DolphinDB object. """ return self._internal.type @property def _var(self): return self._internal.var class _InternalFrame(object): """ The internal DataFrame which represents DolphinDB objects (a DolphinDB table or vector) and manage indices. .. note:: this is an internal class. It is not supposed to be exposed to users and users should not directly access to it. """ def __init__(self, session: ddb.session, var: _ConstantSP, index_map: Optional[List[IndexMap]] = None, data_columns: Optional[List[str]] = None, column_index: Optional[List[Tuple[str, ...]]] = None, column_index_names: Optional[List[str]] = None, index_of_any_vector=None): # index=None, is_any_vector=False): from .indexes import Index self._session = session self._var = var if index_of_any_vector: self._is_any_vector = True self._index = index_of_any_vector return else: self._is_any_vector = False if index_map is None or index_map == []: # TODO: create RangeIndex index_map = [(ORCA_INDEX_NAME_FORMAT(0), None)] if var.attach_default_index() else [] else: self.check_index_map_validity(index_map) assert data_columns is None or all(isinstance(col, str) for col in data_columns) self._index_map = index_map if data_columns is None: index_columns = {index_column for index_column, _ in index_map} self._data_columns = [col for col in var.schema.index if col not in index_columns] else: self._data_columns = data_columns if column_index is None: self._column_index = _to_column_index(self._data_columns) else: assert len(column_index) == len(self._data_columns) assert all(isinstance(i, tuple) for i in column_index), column_index assert len({len(i) for i in column_index}) <= 1, column_index self._column_index = column_index if len(self._column_index) != len(set(self._column_index)): raise ValueError("DolphinDB does not support duplicated column names") if column_index_names is not None and not is_list_like(column_index_names): raise ValueError('column_index_names should be list-like or None for a MultiIndex') if (isinstance(column_index_names, list) and all(name is None for name in column_index_names)): self._column_index_names = None else: self._column_index_names = column_index_names self._update_data_select_list() def _update_data_select_list(self): self._data_select_list = [f"{self.var_name}.{col}" for col in self.data_columns] def __len__(self): return len(self.var) def __getitem__(self, key): keys, _ = check_key_existence(key, self.data_columns) return _InternalFrame(self._session, self.var, index_map=self.index_map, data_columns=keys) # data_columns=keys, index=self.index) @classmethod def create_any_vector(cls, var, index): return cls(var._session, var, index_of_any_vector=index) @classmethod def from_upload_obj(cls, session, obj): var = _ConstantSP.upload_obj(session, obj) return cls(session, var) @classmethod def from_run_script(cls, session, script): var = _ConstantSP.run_script(session, script) return cls(session, var) @classmethod def from_pandas(cls, session, pdf: Union[pd.DataFrame, pd.Index]): if isinstance(pdf, pd.Index): var = _ConstantSP.upload_obj(session, pdf.to_numpy()) var.as_frame(name=pdf.name) index_map = _to_index_map(pdf) return cls(session, var, index_map) columns = pdf.columns if len(columns) == 0 and len(pdf) == 0: # trivial case pdf.index = pd.RangeIndex(0) if isinstance(columns, pd.RangeIndex): _warn_not_dolphindb_identifier() data_columns = [f"{ORCA_COLUMN_NAME_FORMAT(i)}" for i, _ in enumerate(columns)] else: data_columns = ["_".join(column) if isinstance(column, tuple) else column if is_dolphindb_identifier(column) else f"{ORCA_COLUMN_NAME_FORMAT(i)}" for i, column in enumerate(columns)] column_index = _to_column_index(columns) column_index_names = columns.names index_map = _to_index_map(pdf.index) index_columns = [index_column for index_column, _ in index_map] reset_index = pdf.reset_index() reset_index.columns = index_columns + data_columns # TODO: koalas check is datatime try: var = _ConstantSP.upload_obj(session, reset_index) except RuntimeError as e: ex_msg = str(e) if ex_msg.startswith("Unable to cast Python instance of type"): raise RuntimeError(ex_msg + "; You might have created a table with non-string as column names") elif ex_msg.startswith("All columns must have the same size"): raise RuntimeError(ex_msg + "; You might have passed duplicated column names") else: raise return cls(session, var, index_map, data_columns, column_index, column_index_names) @staticmethod def check_index_map_validity(index_map): if all(isinstance(index_field, str) and (index_name is None or isinstance(index_name, tuple)) for index_field, index_name in index_map): return else: raise ValueError(f"Invalid column map: '{index_map}'") @property def _column_index_level(self): """ Return the level of the column index. """ column_index = self._column_index if len(column_index) == 0: return 1 else: levels = set(0 if idx is None else len(idx) for idx in column_index) assert len(levels) == 1, levels return list(levels)[0] @property # TODO: @lazyproperty def _column_index_to_name(self): return dict(zip(self.column_index, self.data_columns)) def column_name_for(self, column_name_or_index): if column_name_or_index in self._column_index_to_name: return self._column_index_to_name[column_name_or_index] else: if not isinstance(column_name_or_index, str): raise KeyError(column_name_or_index) return column_name_or_index @property def data_columns(self): return self._data_columns @property # TODO: @lazyproperty def _index_columns(self): return [col for col, _ in self.index_map] @property def column_index(self): return self._column_index @property def column_index_names(self): return self._column_index_names @property def index_map(self): return self._index_map @property def index_names(self): return [name[0] if isinstance(name, tuple) else name for _, name in self._index_map] # name = self.index_map[0][1] # if name is not None: # return name[0] # else: # return name @property def index_name(self): name = self.index_map[0][1] if name is not None: return name[0] else: return name @property def _index_names(self): return self.index_names @property def _index_name(self): return self.index_name # @property # def use_range_index(self): # return self._use_range_index @property def is_any_vector(self): return self._is_any_vector @property def in_memory(self): return self.var.in_memory @property def segmented(self): return self.var.segmented @property def id(self): return self.var.id @property def _var_name(self): # TODO: lazyproperty return self.var.var_name @property def var_name(self): return self._var_name @property def var(self): return self._var @property def form(self): return self.var.form @property def type(self): return self.var.type @property def schema(self): return self.var.schema @property def _ddb_dtypes(self): return self.schema.typeInt @property def _ddb_dtypestr(self): class _Typestr(object): def __getitem__(this, key): return self.schema.typeString[key].lower() return _Typestr() # @property # def index(self): # return self._index # @property # def dtype(self): # return self._dtype @property def data_select_list(self): return self._data_select_list def _to_script(self, ignore_index=False): index_columns = [] if ignore_index else self._index_columns select_list = itertools.chain(index_columns, self.data_columns) return sql_select(select_list, self.var_name) def set_columns(self, columns): assert len(columns) == len(self.data_columns) column_index = _to_column_index(columns) if len(column_index) != len(set(column_index)): raise ValueError("DolphinDB does not support duplicated column names") if isinstance(columns, pd.Index): column_index_names = columns.names else: column_index_names = None self._column_index = column_index self._column_index_names = column_index_names def copy_as_in_memory_table(self, inplace=False): session = self._session data_columns = self.data_columns column_index = self.column_index column_index_names = self.column_index_names select_list = itertools.chain(self._index_columns, data_columns) script = sql_select(select_list, self._var_name) if inplace: if self.segmented: script = f"loadTableBySQL(<{script}>)" self._var.reset_with_script(script) return else: return if self.segmented: script = f"loadTableBySQL(<{script}>)" var = _ConstantSP.run_script(session, script) return _InternalFrame(session, var, self.index_map, data_columns, column_index, column_index_names) def attach_index(self, index): from .indexes import Index assert isinstance(index, Index) var = self.var all_columns = self._data_columns + self._index_columns index_map = _to_index_map(index, all_columns) var.drop_columns(self._index_columns) var.attach_index(index, index_map) self._index_map = index_map self._index = Index._from_internal(self, index) def append(self, other, ignore_index, sort): # TODO: align columns and sort select_list = self.schema.index other_script = sql_select(select_list, other._var_name) self.var.append(other_script) if ignore_index: index_map = [(ORCA_INDEX_NAME_FORMAT(0), None)] if self.var.attach_default_index() else [] self._index_map = index_map def rename(self, columns, level): self._var.rename(columns=columns) column_index_level = self._column_index_level new_data_columns = [] new_column_index = [] # new_column_index_names = [] # TODO: check correctness # for data_column, col_idx, name in \ # zip(self._data_columns, self._column_index, self._column_index_names): for data_column, col_idx in zip(self._data_columns, self._column_index): new_col = columns.get(data_column) if new_col is not None: if level is None: new_col_idx = tuple([new_col] * column_index_level) else: new_col_idx = list(col_idx) new_col_idx[level] = new_col new_col_idx = tuple(new_col_idx) new_data_columns.append(new_col) new_column_index.append(new_col_idx) # new_column_index_names.append(name) else: new_data_columns.append(data_column) new_column_index.append(col_idx) # new_column_index_names.append(name) self._data_columns = new_data_columns self._column_index = new_column_index self._update_data_select_list() def get_script_with_unary_op(self, func): data_columns = self.data_columns select_list = (f"{func}({col}) as {col}" for col in data_columns) return sql_select(select_list, self._var_name, is_exec=True) # def get_select_clause(self): # return ",".join(self.column_names) # def get_to_pandas_script(self, select=True): # if not self.segmented and self.is_table_like: # return "{}.{}".format(self.var_name, self.column_names[0]) # elif self.is_table_like: # select_or_exec = "select" if select else "exec" # return "{select_or_exec} {select_clause} from {var_name}".format( # select_or_exec=select_or_exec, # select_clause=self.get_select_clause(), # var_name=self.var_name # ) # else: # return self.var_name ``` #### File: benchmark/testPerformance/driver.py ```python import argparse import json import sys import csv import time import os.path as path from contexttimer import Timer from setup.settings import * from pandas_driver import PandasDriver from orca_driver import OrcaDriver from orca_partition_driver import OrcaPartitionDriver if __name__ == "__main__": parser = argparse.ArgumentParser(description='Pandas operations') parser.add_argument('n', help='rows of records in a file') parser.add_argument('program', help='one of pandas, orca or orcapartition') args = parser.parse_args() csvfile = open(path.abspath(path.join(__file__, "../../../reports/benchmark_report_" + time.strftime('%Y-%m-%d', time.localtime(time.time())))) + ".csv", 'a') writer = csv.writer(csvfile) writer.writerow([time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))]) writer.writerow(["'program':" + args.program, "'n':" + args.n]) results = {'program': args.program, 'n': args.n} def reportToCsv(operation, timecost): lines = [operation, timecost] writer.writerow(lines) dataDir = path.abspath(path.join(__file__, "../setup/data")) employee_file = dataDir + "/ticker_" + args.n + ".csv" bonus_file = dataDir + "/value_" + args.n + ".csv" # functions = [s for s in dir(OrcaDriver) if not s.startswith("__") and s!='join'] functions = ('a_load', 'filter', 'groupby', 'select', 'sort', 'resample_M', 'resample_3M', 'resample_A', 'resample_3A', 'resample_Q', 'resample_3Q') # functions = ['a_load', 'resample_D'] if args.program == "pandas": driver = PandasDriver(employee_file, bonus_file) elif args.program == "orca": driver = OrcaDriver(employee_file, bonus_file) elif args.program == "orcapartition": driver = OrcaPartitionDriver(employee_file, bonus_file) functions = ('a_load', 'filter', 'groupby', 'select', 'sort', 'resample_M', 'resample_3M', 'resample_A', 'resample_3A', 'resample_Q', 'resample_3Q') # functions = [s for s in dir(OrcaDriver) if not s.startswith("__") and s != 'join'] else: raise ValueError("bad value for program") for task in functions: with Timer() as timer: getattr(driver, task)() results[task] = timer.elapsed reportToCsv(task, results[task]) csvfile.close() # json.dump(results, sys.stdout) ``` #### File: benchmark/testPerformance/orca_partition_driver.py ```python from columns import value_columns, ticker_columns from setup.settings import * import orca orca.connect(HOST, PORT, "admin", "123456") class OrcaPartitionDriver(object): def __init__(self, ticker_file, value_file): self.ticker_file = ticker_file self.value_file = value_file self.df_ticker = None self.df_value = None script = """ login('admin', '123456') if(existsDatabase('dfs://testOrcaTicker')) dropDatabase('dfs://testOrcaTicker') schema=extractTextSchema('{data1}') db=database('dfs://testOrcaTicker', HASH, [DATE,20]) loadTextEx(db,`tickers,`date, '{data1}') if(existsDatabase('dfs://testOrcaValue')) dropDatabase('dfs://testOrcaValue') schema=extractTextSchema('{data2}') db=database('dfs://testOrcaValue', HASH, [INT, 4]) loadTextEx(db,`values,`id, '{data2}') """.format(data1=ticker_file, data2=value_file) s = orca.default_session() s.run(script) def a_load(self): self.df_ticker = orca.read_table("dfs://testOrcaTicker", 'tickers') self.df_ticker.columns = ticker_columns self.df_value = orca.read_table("dfs://testOrcaValue", 'values') self.df_value.columns = value_columns def groupby(self): self.df_ticker.groupby("type").agg({'svalue': 'mean', 'price': 'sum'}) def filter(self): _ = self.df_ticker[self.df_ticker['type'] == 'a'].compute() def select(self): _ = self.df_ticker[["ticker", "type"]].compute() def sort(self): self.df_ticker.sort_values(by='ticker') def join(self): joined = self.df_ticker.merge(self.df_value, on='type') joined['total'] = joined['value'] + joined['svalue'] def resample_D(self): self.df_ticker.resample('D', on='date')['svalue'].mean() def resample_3D(self): self.df_ticker.resample('3D', on='date')['svalue'].mean() def resample_Q(self): self.df_ticker.resample('Q', on='date')['svalue'].mean() def resample_3Q(self): self.df_ticker.resample('3Q', on='date')['svalue'].mean() def resample_A(self): self.df_ticker.resample('A', on='date')['svalue'].mean() def resample_3A(self): self.df_ticker.resample('3A', on='date')['svalue'].mean() ``` #### File: tests/numpy_unit_testing/test_array_attributes.py ```python import unittest from setup.settings import * from numpy.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class ArrayAttributesTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_array_attributes_itemsize(self): npa = np.array([1, 2, 3, 4, 5]) dnpa = dnp.array([1, 2, 3, 4, 5]) self.assertEqual(dnpa.itemsize, npa.itemsize) # TODO: dtype bug # npa = np.array([1, 2, 3, 4, 5], dtype=np.int8) # dnpa = dnp.array([1, 2, 3, 4, 5], dtype=np.int8) # self.assertEqual(dnpa.itemsize, npa.itemsize) if __name__ == '__main__': unittest.main() ``` #### File: tests/numpy_unit_testing/test_function_binary_operator_true_divide.py ```python import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionTruedivideTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_binary_true_divide_scalar(self): self.assertEqual(dnp.true_divide(1.2 + 1j, 1.2 - 1j), np.true_divide(1.2 + 1j, 1.2 - 1j)) self.assertEqual(dnp.true_divide(0.5, 9), np.true_divide(0.5, 9)) self.assertEqual(dnp.true_divide(-1, 8.5), np.true_divide(-1, 8.5)) self.assertEqual(dnp.true_divide(1, 4), np.true_divide(1, 4)) self.assertEqual(dnp.true_divide(1, -5), np.true_divide(1, -5)) self.assertEqual(dnp.true_divide(0, 9), np.true_divide(0, 9)) self.assertEqual(dnp.isnan(dnp.true_divide(dnp.nan, -5)), True) self.assertEqual(np.isnan(np.true_divide(dnp.nan, -5)), True) def test_function_math_binary_true_divide_list(self): lst1 = [1, 2, 3] lst2 = [4, 6, 9] assert_array_equal(dnp.true_divide(lst1, lst2), np.true_divide(lst1, lst2)) def test_function_math_binary_true_divide_array_with_scalar(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) assert_array_equal(dnp.true_divide(dnpa, 1), np.true_divide(npa, 1)) assert_array_equal(dnp.true_divide(dnpa, dnp.nan), np.true_divide(npa, np.nan)) assert_array_equal(dnp.true_divide(1, dnpa), np.true_divide(1, npa)) def test_function_math_binary_true_divide_array_with_array(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) assert_array_equal(dnp.true_divide(dnpa1, dnpa2), np.true_divide(npa1, npa2)) def test_function_math_binary_true_divide_array_with_array_param_out(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) npa = np.zeros(shape=(1, 3)) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) dnpa = dnp.zeros(shape=(1, 3)) np.true_divide(npa1, npa2, out=npa) dnp.true_divide(dnpa1, dnpa2, out=dnpa) assert_array_equal(dnpa, npa) def test_function_math_binary_true_divide_array_with_series(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) ps = pd.Series([4, 6, 9]) os = orca.Series([4, 6, 9]) assert_series_equal(dnp.true_divide(dnpa, os).to_pandas(), np.true_divide(npa, ps)) assert_series_equal(dnp.true_divide(os, dnpa).to_pandas(), np.true_divide(ps, npa)) def test_function_math_binary_true_divide_array_with_dataframe(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) pdf = pd.DataFrame({'A': [4, 6, 9]}) odf = orca.DataFrame({'A': [4, 6, 9]}) # TODO: orca true_divide bug # assert_frame_equal(odf.true_divide(dnpa, axis=0).to_pandas(), pdf.true_divide(npa, axis=0)) if __name__ == '__main__': unittest.main() ``` #### File: tests/numpy_unit_testing/test_function_creation_linspace.py ```python import unittest from setup.settings import * from numpy.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionLinspaceTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_linspace(self): npa = np.linspace(2.0, 3.0, num=5) # TODO: NOT IMPLEMENTED # dnpa = dnp.linspace(2.0, 3.0, num=5) # assert_equal(dnpa, npa) if __name__ == '__main__': unittest.main() ``` #### File: tests/numpy_unit_testing/test_function_statistical_bincount.py ```python import unittest from setup.settings import * from numpy.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionBincountTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_bincount_list(self): npa = np.bincount([1, 8, 27, 0, 5]) dnpa = dnp.bincount([1, 8, 27, 0, 5,]) assert_array_equal(dnpa, npa) def test_function_math_bincount_array(self): npa = np.bincount(np.array([1, 8, 27, 0, 5])) dnpa = dnp.bincount(dnp.array([1, 8, 27, 0, 5,])) assert_array_equal(dnpa, npa) def test_function_math_bincount_series(self): ps = pd.Series([8, 27, 0, 5]) os = orca.Series(ps) assert_array_equal(dnp.bincount(os), np.bincount(ps)) if __name__ == '__main__': unittest.main() ``` #### File: tests/numpy_unit_testing/test_function_statistical_median.py ```python import unittest from setup.settings import * from numpy.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionMedianTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_median_scalar(self): self.assertEqual(dnp.median(0.5), np.median(0.5)) self.assertEqual(dnp.median(1), np.median(1)) self.assertEqual(dnp.median(-1), np.median(-1)) self.assertEqual(dnp.median(0), np.median(0)) self.assertEqual(dnp.isnan(dnp.median(dnp.nan)), True) self.assertEqual(np.isnan(np.median(np.nan)), True) def test_function_math_median_list(self): npa = np.median([1, 8, 27, -27, 0, 5, np.nan]) dnpa = dnp.median([1, 8, 27, -27, 0, 5, dnp.nan]) assert_array_equal(dnpa, npa) def test_function_math_median_array(self): npa = np.median(np.array([1, 8, 27, -27, 0, 5, np.nan])) dnpa = dnp.median(dnp.array([1, 8, 27, -27, 0, 5, dnp.nan])) assert_array_equal(dnpa, npa) def test_function_math_median_series(self): ps = pd.Series([-1, 8, 27, -27, 0, 5, np.nan]) os = orca.Series(ps) self.assertEqual(dnp.isnan(dnp.median(os)), True) self.assertEqual(np.isnan(np.median(ps)), True) ps = pd.Series([-1, 8, 27, -27, 0, 5]) os = orca.Series(ps) self.assertEqual(dnp.median(os), np.median(ps)) def test_function_math_median_dataframe(self): pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, 2.0, np.nan], "colb": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, np.nan, 2.0]}) odf = orca.DataFrame(pdf) self.assertEqual(dnp.isnan(dnp.median(odf)), True) self.assertEqual(np.isnan(np.median(pdf)), True) pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0], "colb": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0]}) odf = orca.DataFrame(pdf) self.assertEqual(dnp.median(odf), np.median(pdf)) if __name__ == '__main__': unittest.main() ``` #### File: tests/numpy_unit_testing/test_function_statistical_percentile.py ```python import unittest from setup.settings import * from numpy.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionPercentileTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_percentile_scalar(self): self.assertEqual(dnp.percentile(0.5, 30), np.percentile(0.5, 30)) self.assertEqual(dnp.percentile(1, 30), np.percentile(1, 30)) self.assertEqual(dnp.percentile(-1, 30), np.percentile(-1, 30)) self.assertEqual(dnp.percentile(0, 30), np.percentile(0, 30)) self.assertEqual(dnp.isnan(dnp.percentile(dnp.nan, 30)), True) self.assertEqual(np.isnan(np.percentile(np.nan, 30)), True) def test_function_math_percentile_list(self): npa = np.percentile([1, 8, 27, -27, 0, 5, np.nan], 60) dnpa = dnp.percentile([1, 8, 27, -27, 0, 5, dnp.nan], 60) assert_array_equal(dnpa, npa) def test_function_math_percentile_array(self): npa = np.percentile(np.array([1, 8, 27, -27, 0, 5, np.nan]), 60) dnpa = dnp.percentile(dnp.array([1, 8, 27, -27, 0, 5, dnp.nan]), 60) assert_array_equal(dnpa, npa) def test_function_math_percentile_series(self): ps = pd.Series([-1, 8, 27, -27, 0, 5, np.nan]) os = orca.Series(ps) self.assertEqual(dnp.isnan(dnp.percentile(os, 30)), True) self.assertEqual(np.isnan(np.percentile(ps, 30)), True) ps = pd.Series([-1, 8, 27, -27, 0, 5]) os = orca.Series(ps) self.assertEqual(dnp.percentile(os, 60), np.percentile(ps, 60)) def test_function_math_percentile_dataframe(self): pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, 2.0, np.nan], "colb": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, np.nan, 2.0]}) odf = orca.DataFrame(pdf) self.assertEqual(dnp.isnan(dnp.percentile(odf, 30)), True) self.assertEqual(np.isnan(np.percentile(pdf, 30)), True) pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0], "colb": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0]}) odf = orca.DataFrame(pdf) self.assertEqual(dnp.percentile(odf, 60), np.percentile(pdf, 60)) def test_function_math_percentile_param_q_list_X_scalar(self): assert_array_equal(dnp.percentile(0.5, [60, 45, 20]), np.percentile(0.5, [60, 45, 20])) assert_array_equal(dnp.percentile(1, [60, 45, 20]), np.percentile(1, [60, 45, 20])) assert_array_equal(dnp.percentile(-1, [60, 45, 20]), np.percentile(-1, [60, 45, 20])) assert_array_equal(dnp.percentile(0, [60, 45, 20]), np.percentile(0, [60, 45, 20])) assert_array_equal(dnp.isnan(dnp.percentile(dnp.nan, [60, 45, 20])), True) assert_array_equal(np.isnan(np.percentile(np.nan, [60, 45, 20])), True) def test_function_math_percentile_param_q_list_X_list(self): npa = np.percentile([1, 8, 27, -27, 0, 5, np.nan], [60, 45, 20]) dnpa = dnp.percentile([1, 8, 27, -27, 0, 5, dnp.nan], [60, 45, 20]) assert_array_equal(dnpa, npa) def test_function_math_percentile_param_q_list_X_array(self): npa = np.percentile(np.array([1, 8, 27, -27, 0, 5, np.nan]), [60, 45, 20]) dnpa = dnp.percentile(dnp.array([1, 8, 27, -27, 0, 5, dnp.nan]), [60, 45, 20]) assert_array_equal(dnpa, npa) def test_function_math_percentile_param_q_list_X_series(self): ps = pd.Series([-1, 8, 27, -27, 0, 5, np.nan]) os = orca.Series(ps) assert_array_equal(dnp.isnan(dnp.percentile(os, [60, 45, 20])), True) assert_array_equal(np.isnan(np.percentile(ps, [60, 45, 20])), True) ps = pd.Series([-1, 8, 27, -27, 0, 5]) os = orca.Series(ps) assert_array_equal(dnp.percentile(os, [60, 45, 20]), np.percentile(ps, [60, 45, 20])) def test_function_math_percentile_param_q_list_X_dataframe(self): pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, 2.0, np.nan], "colb": [-1, 8, 27, -27, 0, 5, np.nan, 1.5, 1.7, np.nan, 2.0]}) odf = orca.DataFrame(pdf) assert_array_equal(dnp.isnan(dnp.percentile(odf, [60, 45, 20])), True) assert_array_equal(np.isnan(np.percentile(pdf, [60, 45, 20])), True) pdf = pd.DataFrame({"cola": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0], "colb": [-1, 8, 27, -27, 0, 5, 1.5, 1.7, 2.0]}) odf = orca.DataFrame(pdf) assert_array_equal(dnp.percentile(odf, [60, 45, 20]), np.percentile(pdf, [60, 45, 20])) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_combining_merge_asof_partition.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * def _create_odf_csv(datal, datar): dfsDatabase = "dfs://testMergeAsofDB" s = orca.default_session() dolphindb_script = """ login('admin', '<PASSWORD>') if(existsDatabase('{dbPath}')) dropDatabase('{dbPath}') db=database('{dbPath}', VALUE, 2010.01M..2010.05M) stb1=extractTextSchema('{data1}') update stb1 set type="SYMBOL" where name="type" stb2=extractTextSchema('{data2}') update stb2 set type="SYMBOL" where name="ticker" loadTextEx(db,`tickers,`date, '{data1}',,stb1) loadTextEx(db,`values,`date, '{data2}',,stb2) """.format(dbPath=dfsDatabase, data1=datal, data2=datar) s.run(dolphindb_script) class Csv: odfs_csv_left = None odfs_csv_right = None pdf_csv_left = None pdf_csv_right = None class DfsMergeTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) left_fileName = 'test_merge_asof_left_table.csv' right_fileName = 'test_merge_asof_right_table.csv' datal = os.path.join(DATA_DIR, left_fileName) datal= datal.replace('\\', '/') datar = os.path.join(DATA_DIR, right_fileName) datar = datar.replace('\\', '/') dfsDatabase = "dfs://testMergeAsofDB" # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") _create_odf_csv(datal, datar) # import Csv.odfs_csv_left = orca.read_table(dfsDatabase, 'tickers') Csv.pdf_csv_left = pd.read_csv(datal, parse_dates=[0]) Csv.odfs_csv_right = orca.read_table(dfsDatabase, 'values') Csv.pdf_csv_right = pd.read_csv(datar, parse_dates=[0]) @property def odfs_csv_left(self): return Csv.odfs_csv_left @property def odfs_csv_right(self): return Csv.odfs_csv_right @property def pdf_csv_left(self): return Csv.pdf_csv_left @property def pdf_csv_right(self): return Csv.pdf_csv_right @property def odfs_csv_left_index(self): return Csv.odfs_csv_left.set_index("date") @property def odfs_csv_right_index(self): return Csv.odfs_csv_right.set_index("date") @property def pdf_csv_left_index(self): return Csv.pdf_csv_left.set_index("date") @property def pdf_csv_right_index(self): return Csv.pdf_csv_right.set_index("date") @property def odfs_bid_csv_left(self): return self.odfs_csv_left.sort_values(by=['bid', 'date']).reset_index(drop=True) @property def odfs_bid_csv_right(self): return self.odfs_csv_right.sort_values(by=['bid', 'date']).reset_index(drop=True) @property def pdf_bid_csv_left(self): return self.pdf_csv_left.sort_values(by=['bid', 'date']).reset_index(drop=True) @property def pdf_bid_csv_right(self): return self.pdf_csv_right.sort_values(by=['bid', 'date']).reset_index(drop=True) @property def odfs_bid_csv_left_index(self): return self.odfs_csv_left.sort_values(by=['bid', 'date']).set_index('bid') @property def odfs_bid_csv_right_index(self): return self.odfs_csv_right.sort_values(by=['bid', 'date']).set_index('bid') @property def pdf_bid_csv_left_index(self): return self.pdf_csv_left.sort_values(by=['bid', 'date']).set_index('bid') @property def pdf_bid_csv_right_index(self): return self.pdf_csv_right.sort_values(by=['bid', 'date']).set_index('bid') def test_assert_original_dataframe_equal(self): assert_frame_equal(self.odfs_csv_left.to_pandas(), self.pdf_csv_left, check_dtype=False) assert_frame_equal(self.odfs_csv_right.to_pandas(), self.pdf_csv_right, check_dtype=False) assert_frame_equal(self.odfs_csv_left_index.to_pandas(), self.pdf_csv_left_index, check_dtype=False) assert_frame_equal(self.odfs_csv_right_index.to_pandas(), self.pdf_csv_right_index, check_dtype=False) assert_frame_equal(self.odfs_bid_csv_left.to_pandas(), self.pdf_bid_csv_left, check_dtype=False) assert_frame_equal(self.odfs_bid_csv_right.to_pandas(), self.pdf_bid_csv_right, check_dtype=False) assert_frame_equal(self.odfs_bid_csv_left_index.to_pandas(), self.pdf_bid_csv_left_index, check_dtype=False) assert_frame_equal(self.odfs_bid_csv_right_index.to_pandas(), self.pdf_bid_csv_right_index, check_dtype=False) def test_merge_asof_from_dfs_param_on(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date') odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date') assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid') odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid') assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, left_on='date', right_on='date') odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, left_on='date', right_on='date') assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, left_on='bid', right_on='bid') odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, left_on='bid', right_on='bid') assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True) odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True) odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_by(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', by='ticker') odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', by='ticker') odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftbyrightby(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton_param_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, left_on='date', right_on='date', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, left_on='date', right_on='date', suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, left_on='bid', right_on='bid', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, left_on='bid', right_on='bid', suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton_param_by(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, left_on='date', right_on='date', by='ticker') odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, left_on='date', right_on='date', by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, left_on='bid', right_on='bid', by='ticker') odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, left_on='bid', right_on='bid', by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton_param_leftbyrightby(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', left_by='ticker', right_by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', left_by='ticker', right_by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', left_by='ticker', right_by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index_param_by(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True, by='ticker') odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True, by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True, by='ticker') odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True, by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index_param_leftbyrightby(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker') odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker') odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker') # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index_param_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_on_param_by_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', by='ticker', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', by='ticker', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_on_param_leftbyrightby_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, on='date', left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, on='date', # left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, on='bid', left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, on='bid', left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton_param_by_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, left_on='date', right_on='date', by='ticker', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, left_on='date', right_on='date', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, left_on='bid', right_on='bid', by='ticker', suffixes=('_left', '_right')) pdf.fillna("", inplace=True) odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, left_on='bid', right_on='bid', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_leftonrighton_param_leftbyrightby_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right, left_on='date', right_on='date', left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right, left_on='date', right_on='date', # left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right, left_on='bid', right_on='bid', left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right, left_on='bid', right_on='bid', # left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index_param_by_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True, by='ticker', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True, by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True, by='ticker', suffixes=('_left', '_right')) odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True, by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_index_param_leftbyrightby_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_index=True, # left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right_index, left_index=True, right_index=True, left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right_index, left_index=True, right_index=True, # left_by='ticker', right_by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_on_param_index(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right, left_index=True, right_on='date') # TODO:ORCA error left_index, right_on not supported # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_on='date') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right_index, right_index=True, left_on='date') # TODO:ORCA error left_index, right_on not supported # odf = orca.merge_asof(self.odfs_csv_left, self.odfs_csv_right_index, right_index=True, left_on='date') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right, left_index=True, right_on='bid') # TODO:ORCA error left_index, right_on not supported # odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right, left_index=True, right_on='bid') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right_index, right_index=True, left_on='bid') # TODO:ORCA error left_index, right_on not supported # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right_index, right_index=True, left_on='bid') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_on_param_index_param_by(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right, left_index=True, right_on='date', by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_on='date', by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right_index, right_index=True, left_on='date', by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, right_index=True, left_on='date', by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right, left_index=True, right_on='bid', by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right, left_index=True, right_on='bid', by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right_index, right_index=True, left_on='bid', by='ticker') # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right_index, right_index=True, left_on='bid', by='ticker') # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) def test_merge_asof_from_dfs_param_on_param_index_param_by_param_suffixes(self): pdf = pd.merge_asof(self.pdf_csv_left_index, self.pdf_csv_right, left_index=True, right_on='date', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, left_index=True, right_on='date', # by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_csv_left, self.pdf_csv_right_index, right_index=True, left_on='date', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_csv_left_index, self.odfs_csv_right_index, right_index=True, left_on='date', # by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False) pdf = pd.merge_asof(self.pdf_bid_csv_left_index, self.pdf_bid_csv_right, left_index=True, right_on='bid', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left_index, self.odfs_bid_csv_right, left_index=True, right_on='bid', # by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) pdf = pd.merge_asof(self.pdf_bid_csv_left, self.pdf_bid_csv_right_index, right_index=True, left_on='bid', by='ticker', suffixes=('_left', '_right')) # TODO:ORCA by bug # odf = orca.merge_asof(self.odfs_bid_csv_left, self.odfs_bid_csv_right_index, right_index=True, left_on='bid', # by='ticker', suffixes=('_left', '_right')) # assert_frame_equal(odf.to_pandas().fillna(""), pdf.fillna(""), check_dtype=False, check_like=False) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_combining_merge.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class Csv: pdf_csv_left = None pdf_csv_right = None odf_csv_left = None odf_csv_right = None class MergeTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) left_fileName = 'test_merge_left_table.csv' right_fileName = 'test_merge_right_table.csv' data_left = os.path.join(DATA_DIR, left_fileName) data_left = data_left.replace('\\', '/') data_right = os.path.join(DATA_DIR, right_fileName) data_right = data_right.replace('\\', '/') # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") # import Csv.odf_csv_left = orca.read_csv(data_left) Csv.pdf_csv_left = pd.read_csv(data_left, parse_dates=[0, 1]) Csv.odf_csv_right = orca.read_csv(data_right) Csv.pdf_csv_right = pd.read_csv(data_right) @property def odf_csv_left(self): return Csv.odf_csv_left @property def odf_csv_right(self): return Csv.odf_csv_right @property def pdf_csv_left(self): return Csv.pdf_csv_left @property def pdf_csv_right(self): return Csv.pdf_csv_right @property def odf_csv_left_index(self): return Csv.odf_csv_left.set_index("type") @property def odf_csv_right_index(self): return Csv.odf_csv_right.set_index("type") @property def pdf_csv_left_index(self): return Csv.pdf_csv_left.set_index("type") @property def pdf_csv_right_index(self): return Csv.pdf_csv_right.set_index("type") @property def pdf_series_right(self): return Csv.pdf_series_left @property def odf_left_small(self): return orca.DataFrame({"type": [1, 2], "val": [1, 2]}, index=[1, 2]) @property def pdf_left_small(self): return pd.DataFrame({"type": [1, 2], "val": [1, 2]}, index=[1, 2]) @property def odf_left_small_index(self): return self.odf_left_small.set_index("type") @property def pdf_left_small_index(self): return self.pdf_left_small.set_index("type") @property def odf_right_small(self): return orca.DataFrame({"type": [2, 3], "vol": [3, 4]}, index=[1, 2]) @property def pdf_right_small(self): return pd.DataFrame({"type": [2, 3], "vol": [3, 4]}, index=[1, 2]) @property def odf_right_small_index(self): return self.odf_right_small.set_index("type") @property def pdf_right_small_index(self): return self.pdf_right_small.set_index("type") def test_assert_original_dataframe_equal(self): assert_frame_equal(self.odf_csv_left.to_pandas(), self.pdf_csv_left, check_dtype=False) assert_frame_equal(self.odf_csv_right.to_pandas(), self.pdf_csv_right, check_dtype=False) assert_frame_equal(self.odf_csv_left_index.to_pandas(), self.pdf_csv_left_index, check_dtype=False) assert_frame_equal(self.odf_csv_right_index.to_pandas(), self.pdf_csv_right_index, check_dtype=False) def test_merge_from_csv_param_suffix(self): odf_merge = self.odf_csv_left.merge(self.odf_csv_right, on="type", suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, on="type", suffixes=('_left', '_right')) # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.sort_values("date").to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_param_how(self): # how = left odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="left", on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="left", on="type") assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = right odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="right", on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="right", on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # default how = inner odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="inner", on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="inner", on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = outer odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="outer", on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="outer", on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_param_on(self): odf_merge = self.odf_csv_left.merge(self.odf_csv_right, on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_param_leftonrighton(self): odf_merge = self.odf_csv_left.merge(self.odf_csv_right, left_on="type", right_on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, left_on="type", right_on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_param_index(self): odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, left_index=True, right_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, left_index=True, right_index=True) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_csv_index_param_suffix(self): odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_csv_index_param_on(self): odf_merge = self.odf_csv_left.merge(self.odf_csv_right_index, left_on="type", right_index=True) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right_index, left_on="type", right_index=True) assert_frame_equal(odf_merge.sort_values(by=["id", "value"]).to_pandas(), pdf_merge.sort_values(by=["id", "value"]), check_dtype=False, check_like=False) odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right, right_on="type", left_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right, right_on="type", left_index=True) assert_frame_equal(odf_merge.sort_values(by=["id", "value"]).to_pandas(), pdf_merge.sort_values(by=["id", "value"]), check_dtype=False, check_like=False) def test_merge_small_param_on(self): odf_merge = self.odf_left_small.merge(self.odf_right_small_index, left_on="type", right_index=True) pdf_merge = self.pdf_left_small.merge(self.pdf_right_small_index, left_on="type", right_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # odf_merge = self.odf_left_small.merge(self.odf_right_small, left_on="type", right_index=True) # pdf_merge = self.pdf_left_small.merge(self.pdf_right_small, left_on="type", right_index=True) # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) odf_merge = self.odf_left_small_index.merge(self.odf_right_small, right_on="type", left_index=True) pdf_merge = self.pdf_left_small_index.merge(self.pdf_right_small, right_on="type", left_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_index_param_how(self): # how = left odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="left", left_index=True, right_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="left", left_index=True, right_index=True) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) # how = right odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="right", left_index=True, right_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="right", left_index=True, right_index=True) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) # default how = inner odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, left_index=True, right_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, left_index=True, right_index=True) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) # how = outer odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="outer", left_index=True, right_index=True) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="outer", left_index=True, right_index=True) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_csv_param_suffix_param_how(self): # how = left odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="left", on="type", suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="left", on="type", suffixes=('_left', '_right')) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = right odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="right", on="type", suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="right", on="type", suffixes=('_left', '_right')) # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # default how = inner odf_merge = self.odf_csv_left.merge(self.odf_csv_right, on="type", suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, on="type", suffixes=('_left', '_right')) # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = outer odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="outer", on="type", suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="outer", on="type", suffixes=('_left', '_right')) # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_param_how_param_leftonrighton(self): # how = left odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="left", left_on="type", right_on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="left", left_on="type", right_on="type") assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = right odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="right", left_on="type", right_on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="right", left_on="type", right_on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # default how = inner odf_merge = self.odf_csv_left.merge(self.odf_csv_right, left_on="type", right_on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, left_on="type", right_on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = outer odf_merge = self.odf_csv_left.merge(self.odf_csv_right, how="outer", left_on="type", right_on="type") pdf_merge = self.pdf_csv_left.merge(self.pdf_csv_right, how="outer", left_on="type", right_on="type") # TODO: PARTITIONED TABLE IS IN RANDOM ORDER # assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_csv_index_param_suffix_param_how(self): # how = left odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="left", left_index=True, right_index=True, suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="left", left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False, check_like=True) # how = right odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="right", left_index=True, right_index=True, suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="right", left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False, check_like=False) # default how = inner odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False, check_like=False) # how = outer odf_merge = self.odf_csv_left_index.merge(self.odf_csv_right_index, how="outer", left_index=True, right_index=True, suffixes=('_left', '_right')) pdf_merge = self.pdf_csv_left_index.merge(self.pdf_csv_right_index, how="outer", left_index=True, right_index=True, suffixes=('_left', '_right')) assert_frame_equal(odf_merge.sort_index().to_pandas(), pdf_merge, check_dtype=False, check_like=False) def test_merge_from_dataframe_param_suffix(self): odf = orca.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) odf_other = orca.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) odf_merge = odf.merge(odf_other, on="key", suffixes=('_left', '_right')) pdf = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) pdf_other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) pdf_merge = pdf.merge(pdf_other, on="key", suffixes=('_left', '_right')) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_dataframe_param_leftonrighton(self): odf = orca.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) odf_other = orca.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) odf_merge = odf.merge(odf_other, left_on="key", right_on="key") pdf = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) pdf_other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) pdf_merge = pdf.merge(pdf_other, left_on="key", right_on="key") assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_dataframe_how(self): odf = orca.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) odf_other = orca.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) pdf = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': [1, 2, 3, 4, 5, 6]}) pdf_other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': [11, 22, 33]}) # how = left odf_merge = odf.merge(odf_other, how="left", on='key') pdf_merge = pdf.merge(pdf_other, how="left", on="key") assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = right odf_merge = odf.merge(odf_other, how="right", on='key') pdf_merge = pdf.merge(pdf_other, how="right", on="key") assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = inner odf_merge = odf.merge(odf_other, how="inner", on='key') pdf_merge = pdf.merge(pdf_other, how="inner", on='key') assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = outer odf_merge = odf.merge(odf_other, how="outer", on='key') pdf_merge = pdf.merge(pdf_other, how="outer", on='key') assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_dataframe_index(self): orca_left = orca.DataFrame({'A': [1, 2, 3], 'B': [11, 22, 33]}, index=['K0', 'K1', 'K2']) orca_right = orca.DataFrame({'C': [111, 222, 333], 'D': [1111, 2222, 3333]}, index=['K0', 'K2', 'K3']) odf_merge = orca_left.merge(orca_right, left_index=True, right_index=True) pd_left = pd.DataFrame({'A': [1, 2, 3], 'B': [11, 22, 33]}, index=['K0', 'K1', 'K2']) pd_right = pd.DataFrame({'C': [111, 222, 333], 'D': [1111, 2222, 3333]}, index=['K0', 'K2', 'K3']) pdf_merge = pd_left.merge(pd_right, left_index=True, right_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) def test_merge_from_dataframe_index_param_how(self): orca_left = orca.DataFrame({'A': [1, 2, 3], 'B': [11, 22, 33]}, index=['K0', 'K1', 'K2']) orca_right = orca.DataFrame({'C': [111, 222, 333], 'D': [1111, 2222, 3333]}, index=['K0', 'K2', 'K3']) pd_left = pd.DataFrame({'A': [1, 2, 3], 'B': [11, 22, 33]}, index=['K0', 'K1', 'K2']) pd_right = pd.DataFrame({'C': [111, 222, 333], 'D': [1111, 2222, 3333]}, index=['K0', 'K2', 'K3']) # by default, how = left # how = right odf_merge = orca_left.merge(orca_right, how="right", left_index=True, right_index=True) pdf_merge = pd_left.merge(pd_right, how="right", left_index=True, right_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = inner odf_merge = orca_left.merge(orca_right, how="inner", left_index=True, right_index=True) pdf_merge = pd_left.merge(pd_right, how="inner", left_index=True, right_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) # how = outer odf_merge = orca_left.merge(orca_right, how="outer", left_index=True, right_index=True) pdf_merge = pd_left.merge(pd_right, how="outer", left_index=True, right_index=True) assert_frame_equal(odf_merge.to_pandas(), pdf_merge, check_dtype=False) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_dataframe_function_application.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class Csv: pdf_csv = None odf_csv = None class DataFrameFuncApplicationTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'USPricesSample.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") # Csv.odf_csv = orca.read_csv(data, dtype={"DLSTCD": np.float32, "DLPRC": np.float32}) Csv.odf_csv = orca.read_csv(data, dtype={"PERMNO": np.int32, "date": 'DATE', "TRDSTAT": 'SYMBOL', "DLSTCD": np.float32, "DLPRC": np.float32, "VOL": np.float32, "SHROUT": np.float32, "CFACPR":np.float32, "CFACSHR": np.float32}) # pdf from import Csv.pdf_csv = pd.read_csv(data, parse_dates=[1], dtype={"PERMNO": np.int32, "SHRCD": np.int32, "HEXCD": np.int32, "DLSTCD": np.float32, "DLPRC": np.float32, "VOL": np.float32, "SHROUT": np.float32}) Csv.odf_csv = Csv.odf_csv.drop(columns=['DLRET']) Csv.pdf_csv.drop(columns=['DLRET'], inplace=True) @property def pdf_csv(self): return Csv.pdf_csv @property def odf_csv(self): return Csv.odf_csv @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def odf(self): return orca.DataFrame(self.pdf) def test_dataframe_function_application_apply(self): pdf = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) odf = orca.DataFrame([[4, 9]] * 3, columns=['A', 'B']) assert_frame_equal(odf.apply(np.sqrt).to_pandas(), pdf.apply(np.sqrt)) assert_frame_equal(odf.apply(np.sum, axis=0).to_pandas(), pdf.apply(np.sum, axis=0).to_frame()) def test_dataframe_function_application_applymap(self): pdf = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) odf = orca.DataFrame([[4, 9]] * 3, columns=['A', 'B']) assert_frame_equal(odf.applymap(np.sqrt).to_pandas(), pdf.applymap(np.sqrt)) def test_dataframe_function_application_pipe(self): # TODO NOT IMPLEMENTED ERROR pass def test_dataframe_function_application_agg(self): pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) odf = orca.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) assert_frame_equal(odf.agg(['sum', 'min']).to_pandas(), pdf.agg(['sum', 'min'])) def test_dataframe_function_application_aggregate(self): pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) odf = orca.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) assert_frame_equal(odf.aggregate(['sum', 'min']).to_pandas(), pdf.aggregate(['sum', 'min'])) assert_frame_equal(odf.aggregate({'A': ['sum', 'min'], 'B': ['min', 'max']}).to_pandas(), pdf.aggregate({'A': ['sum', 'min'], 'B': ['min', 'max']})) # TODO:DIFFS # assert_frame_equal(odf.aggregate("mean", axis="columns").to_pandas(), pdf.aggregate("mean", axis="columns")) def test_dataframe_function_application_transform(self): pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) odf = orca.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=['A', 'B', 'C']) assert_frame_equal(odf.transform([np.sqrt, np.exp]).to_pandas(), pdf.transform([np.sqrt, np.exp])) def test_dataframe_function_application_expanding(self): # pdf = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) # odf = orca.DataFrame({'B': [0, 1, 2, np.nan, 4]}) # assert_frame_equal(pdf.expanding(2).sum(), odf.expanding(2).sum().to_pandas()) # TODO NOT IMPLEMENTED ERROR pass if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_dataframe_reindexing_selection.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class Csv: pdf_csv = None odf_csv = None class DataFrameReindexingTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'USPricesSample.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") Csv.odf_csv = orca.read_csv(data, dtype={"DLSTCD": np.float32, "DLPRC": np.float32}) # pdf from import Csv.pdf_csv = pd.read_csv(data, parse_dates=[1], dtype={"DLSTCD": np.float32, "DLPRC": np.float32}) Csv.odf_csv = Csv.odf_csv.drop(columns=['DLRET']) Csv.pdf_csv.drop(columns=['DLRET'], inplace=True) @property def pdf_csv(self): return Csv.pdf_csv @property def odf_csv(self): return Csv.odf_csv @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def odf(self): return orca.DataFrame(self.pdf) def test_dataframe_reindexing_selection_label_mainpulation_between_time(self): idx = pd.date_range('2018-04-09', periods=4, freq='1D20min') pdf = pd.DataFrame({'A': [1, 2, 3, 4]}, index=idx) odf = orca.DataFrame(pdf) assert_frame_equal(odf.between_time('0:15', '0:45').to_pandas(), pdf.between_time('0:15', '0:45')) assert_frame_equal(odf.between_time('0:45', '0:15').to_pandas(), pdf.between_time('0:45', '0:15')) def test_dataframe_reindexing_selection_label_mainpulation_take(self): n = np.array([0, 1, 4]) assert_frame_equal(self.odf.take(n).to_pandas(), self.pdf.take(n)) assert_frame_equal(self.odf.take([]).to_pandas(), self.pdf.take([])) assert_frame_equal(self.odf.take([0, 1], axis=1).to_pandas(), self.pdf.take([0, 1], axis=1)) assert_frame_equal(self.odf.take([-1, -2], axis=0).to_pandas(), self.pdf.take([-1, -2], axis=0)) n = np.random.randint(0, 2999, 100) assert_frame_equal(self.odf_csv.take(n).to_pandas(), self.pdf_csv.take(n), check_dtype=False) assert_frame_equal(self.odf_csv.take([0, 1, 5, 7, 11, 15], axis=1).to_pandas(), self.pdf_csv.take([0, 1, 5, 7, 11, 15], axis=1), check_dtype=False) def test_dataframe_reindexing_selection_label_mainpulation_equals(self): pdf = pd.DataFrame({1: [10], 2: [20]}) p_exactly_equal = pd.DataFrame({1: [10], 2: [20]}) p_different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) p_different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) odf = orca.DataFrame(pdf) o_exactly_equal = orca.DataFrame(p_exactly_equal) o_different_column_type = orca.DataFrame(p_different_column_type) o_different_data_type = orca.DataFrame(p_different_data_type) self.assertEqual(odf.equals(o_exactly_equal), pdf.equals(p_exactly_equal)) self.assertEqual(odf.equals(o_different_column_type), pdf.equals(p_different_column_type)) self.assertEqual(odf.equals(o_different_data_type), pdf.equals(p_different_data_type)) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_filtering.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class Csv: pdf_csv = None odf_csv = None pdf_csv_re = None odf_csv_re = None class FilteringTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'USPricesSample.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # Orca connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") # odf from import Csv.odf_csv = orca.read_csv(data, dtype={"PERMNO": np.int32, "date": 'DATE', "TRDSTAT": 'SYMBOL', "DLSTCD": np.float32, "DLPRC": np.float32, "VOL": np.float32, "SHROUT": np.float32}) Csv.odf_csv_re = Csv.odf_csv.set_index("PERMNO") Csv.odf_csv.set_index("date", inplace=True) # pdf from import Csv.pdf_csv = pd.read_csv(data, parse_dates=[1], dtype={"PERMNO": np.int32, "SHRCD": np.int32, "HEXCD": np.int32, "DLSTCD": np.float32, "DLPRC": np.float32, "VOL": np.float32, "SHROUT": np.float32}) Csv.pdf_csv_re = Csv.pdf_csv.set_index("PERMNO") Csv.pdf_csv.set_index("date", inplace=True) # set column 'date' as index @property def pdf_csv(self): return Csv.pdf_csv @property def odf_csv(self): return Csv.odf_csv # set column 'PERMNO' as index @property def pdf_re(self): return Csv.pdf_csv_re @property def odf_re(self): return Csv.odf_csv_re # drop literal columns (temporal column 'date' has been set as index) @property def pdf_d(self): return self.pdf_csv.drop(columns=['TICKER', 'CUSIP', 'TRDSTAT', 'DLRET']) @property def odf_d(self): return self.odf_csv.drop(columns=['TICKER', 'CUSIP', 'TRDSTAT', 'DLRET']) @property def pdf(self): n = 100 # note that n should be a multiple of 10 re = n / 10 return pd.DataFrame({ 'date': np.repeat(pd.date_range('2019.08.01', periods=10, freq='D'), re), 'tsymbol': np.repeat(['a', 'b', 'c', 'd', 'e', 'QWW', 'FEA', 'FFW', 'DER', 'POD'], re), 'tbool': np.repeat(np.repeat(np.arange(2, dtype='bool'), 5), re), 'tchar': np.repeat(np.arange(1, 11, 1, dtype='int8'), re), 'tshort': np.repeat(np.arange(1, 11, 1, dtype='int16'), re), 'tint': np.repeat(np.arange(1, 11, 1, dtype='int32'), re), 'tlong': np.repeat(np.arange(1, 11, 1, dtype='int64'), re), 'tfloat': np.repeat(np.arange(1, 11, 1, dtype='float32'), re), 'tdouble': np.repeat(np.arange(1, 11, 1, dtype='float64'), re) }, index=pd.Index(np.arange(1, n + 1, 1, dtype='int32'), name="id")) @property def odf(self): return orca.DataFrame(self.pdf) # drop temporal, literal and logical columns @property def pdf_dr(self): return self.pdf.drop(columns=['date', 'tsymbol', 'tbool']) @property def odf_dr(self): return self.odf.drop(columns=['date', 'tsymbol', 'tbool']) def test_from_pandas_filtering_param_cond_equal(self): # filtering == a = self.odf[self.odf["tsymbol"] == 'a'].to_pandas() b = self.pdf[self.pdf["tsymbol"] == 'a'] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_param_cond_not_equal(self): # filtering != a = self.odf[self.odf["tsymbol"] != 'a'].to_pandas() b = self.pdf[self.pdf["tsymbol"] != 'a'] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_param_cond_less_than_or_equal(self): # filtering <= a = self.odf[self.odf["tfloat"] <= 3.0].to_pandas() b = self.pdf[self.pdf["tfloat"] <= 3.0] assert_frame_equal(a, b, check_dtype=False) a = self.odf[(self.odf["date"] < orca.Timestamp("2019.08.05"))].to_pandas() b = self.pdf[(self.pdf["date"] < pd.Timestamp("2019.08.05"))] assert_frame_equal(a, b, check_dtype=False) a = self.odf[(self.odf["date"] < "2019.08.05")].to_pandas() b = self.pdf[(self.pdf["date"] < "2019.08.05")] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_param_cond_greater_than_or_equal(self): # filtering >= a = self.odf[self.odf["tfloat"] >= 3.0].to_pandas() b = self.pdf[self.pdf["tfloat"] >= 3.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_param_cond_less_than(self): # filtering < a = self.odf[self.odf["tfloat"] < 3.0].to_pandas() b = self.pdf[self.pdf["tfloat"] < 3.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_param_cond_greater_than(self): # filtering > a = self.odf[self.odf["tfloat"] > 3.0].to_pandas() b = self.pdf[self.pdf["tfloat"] > 3.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_and(self): # filtering & odf = self.odf pdf = self.pdf a = odf[(odf["tfloat"] < 3.0) & (odf["tfloat"] > 1.0)].to_pandas() b = pdf[(pdf["tfloat"] < 3.0) & (pdf["tfloat"] > 1.0)] ad = odf[(odf["tfloat"] < 3.0), (odf["tfloat"] > 1.0)].to_pandas() assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, b, check_dtype=False) def test_from_pandas_filtering_and_and(self): # filtering & & odf = self.odf pdf = self.pdf a = odf[(odf["tfloat"] < 3.0) & (odf["tfloat"] > 1.0) & (odf["tint"] > 2)].to_pandas() b = pdf[(pdf["tfloat"] < 3.0) & (pdf["tfloat"] > 1.0) & (pdf["tint"] > 2)] ad = odf[(odf["tfloat"] < 3.0), (odf["tfloat"] > 1.0), (odf["tint"] > 2)].to_pandas() assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, b, check_dtype=False) def test_from_pandas_filtering_and_or(self): # filtering & | odf = self.odf pdf = self.pdf a = odf[(odf["tfloat"] < 3.0) & (odf["tfloat"] > 1.0) | (odf["tfloat"] == 4.0)].to_pandas() b = pdf[(pdf["tfloat"] < 3.0) & (pdf["tfloat"] > 1.0) | (pdf["tfloat"] == 4.0)] ad = odf[(odf["tfloat"] < 3.0), (odf["tfloat"] > 1.0) | (odf["tfloat"] == 4.0)].to_pandas() bd = pdf[(pdf["tfloat"] < 3.0) & ((pdf["tfloat"] > 1.0) | (pdf["tfloat"] == 4.0))] assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, bd, check_dtype=False) def test_from_pandas_filtering_or(self): # filtering | odf = self.odf pdf = self.pdf b = pdf[(pdf["tfloat"] < 3.0) | (pdf["tfloat"] > 4.0)] a = odf[(odf["tfloat"] < 3.0) | (odf["tfloat"] > 4.0)].to_pandas() assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_or_and(self): # filtering | & odf = self.odf pdf = self.pdf a = odf[(odf["tfloat"] == 3.0) | (odf["tfloat"] > 1.0) & (odf["tint"] > 2)].to_pandas() b = pdf[(pdf["tfloat"] == 3.0) | (pdf["tfloat"] > 1.0) & (pdf["tint"] > 2)] ad = odf[(odf["tfloat"] == 3.0) | (odf["tfloat"] > 1.0), (odf["tint"] > 2)].to_pandas() assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, b, check_dtype=False) def test_from_pandas_filtering_or_or(self): # filtering | | odf = self.odf pdf = self.pdf a = odf[(odf["tfloat"] < 3.0) | (odf["tfloat"] > 1.0) | (odf["tfloat"] == 4.0)].to_pandas() b = pdf[(pdf["tfloat"] < 3.0) | (pdf["tfloat"] > 1.0) | (pdf["tfloat"] == 4.0)] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_add(self): # filtering + a = (self.odf_dr[self.odf_dr["tfloat"] < 3.0] + self.odf_dr[self.odf_dr["tfloat"] > 1.0]).to_pandas() b = self.pdf_dr[self.pdf_dr["tfloat"] < 3.0] + self.pdf_dr[self.pdf_dr["tfloat"] > 1.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_sub(self): # filtering - a = (self.odf_dr[self.odf_dr["tfloat"] < 3.0] - self.odf_dr[self.odf_dr["tfloat"] > 1.0]).to_pandas() b = self.pdf_dr[self.pdf_dr["tfloat"] < 3.0] - self.pdf_dr[self.pdf_dr["tfloat"] > 1.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_mul(self): # filtering * a = (self.odf_dr[self.odf_dr["tfloat"] < 3.0] * self.odf_dr[self.odf_dr["tfloat"] > 1.0]).to_pandas() b = self.pdf_dr[self.pdf_dr["tfloat"] < 3.0] * self.pdf_dr[self.pdf_dr["tfloat"] > 1.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_div(self): # filtering / # note that operation div is only allowed for numbers, exclusive of temporal, literal and logical # columns in Orca. a = (self.odf_dr[self.odf_dr["tfloat"] < 3.0] / self.odf_dr[self.odf_dr["tfloat"] > 1.0]).to_pandas() b = self.pdf_dr[self.pdf_dr["tfloat"] < 3.0] / self.pdf_dr[self.pdf_dr["tfloat"] > 1.0] assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_groupby(self): # filtering groupby sum a = self.odf[self.odf["tfloat"] < 3.0].groupby("tsymbol").sum().to_pandas() b = self.pdf[self.pdf["tfloat"] < 3.0].groupby("tsymbol").sum() b['tbool'] = b['tbool'].astype(int) assert_frame_equal(a, b, check_dtype=False) # filtering groupby count a = self.odf[self.odf["tfloat"] < 3.0].groupby("tsymbol").count().to_pandas() b = self.pdf[self.pdf["tfloat"] < 3.0].groupby("tsymbol").count() b['tbool'] = b['tbool'].astype(int) assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_resample(self): # filtering groupby sum a = self.odf[self.odf["tfloat"] < 5.0].resample("d", on="date").sum().to_pandas() b = self.pdf[self.pdf["tfloat"] < 5.0].resample("d", on="date").sum() b['tbool'] = b['tbool'].astype(int) assert_frame_equal(a, b, check_dtype=False) def test_from_pandas_filtering_operation_rolling(self): # filtering groupby sum a = self.odf[self.odf["tfloat"] < 5.0].rolling(window=2, on="date").sum().to_pandas() b = self.pdf[self.pdf["tfloat"] < 5.0].rolling(window=2, on="date").sum() assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_equal(self): # filtering == a = self.odf_csv[self.odf_csv["TICKER"] == "EGAS"].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["TICKER"] == "EGAS"].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_not_equal(self): # filtering != a = self.odf_csv[self.odf_csv["TICKER"] != "EGAS"].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["TICKER"] != "EGAS"].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_less_than_or_equal(self): # filtering <= a = self.odf_csv[self.odf_csv["PRC"] <= 10.25].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["PRC"] <= 10.25].fillna(value="") # DIFFS # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_greater_than_or_equal(self): # filtering >= a = self.odf_csv[self.odf_csv["PRC"] >= 10.25].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["PRC"] >= 10.25].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_less_than(self): # filtering < a = self.odf_csv[self.odf_csv["PRC"] < 10.25].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["PRC"] < 10.25].fillna(value="") # DIFFS # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_param_cond_greater_than(self): # filtering > a = self.odf_csv[self.odf_csv["PRC"] > 10.25].to_pandas().fillna(value="") b = self.pdf_csv[self.pdf_csv["PRC"] > 10.25].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_and(self): # filtering & a = self.odf_csv[(self.odf_csv["CFACPR"] > 1.4) & (self.odf_csv["SHROUT"] > 5000)].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["CFACPR"] > 1.4) & (self.pdf_csv["SHROUT"] > 5000)].fillna(value="") ad = self.odf_csv[(self.odf_csv["CFACPR"] > 1.4), (self.odf_csv["SHROUT"] > 5000)].to_pandas().fillna(value="") assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, b, check_dtype=False) def test_from_import_filtering_or(self): # filtering | a = self.odf_csv[(self.odf_csv["SHROUT"] > 16600) | (self.odf_csv["CFACPR"] > 0.1)].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["SHROUT"] > 16600) | (self.pdf_csv["CFACPR"] > 0.1)].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_and_and(self): # filtering & & a = self.odf_csv[(self.odf_csv["OPENPRC"] > 40) & (self.odf_csv["SHROUT"] > 15000) & (self.odf_csv["CFACPR"] > 1)].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["OPENPRC"] > 40) & (self.pdf_csv["SHROUT"] > 15000) & (self.pdf_csv["CFACPR"] > 1)].fillna(value="") ad = self.odf_csv[(self.odf_csv["OPENPRC"] > 40), (self.odf_csv["SHROUT"] > 15000), (self.odf_csv["CFACPR"] > 1)].to_pandas().fillna(value="") assert_frame_equal(a, b, check_dtype=False) assert_frame_equal(ad, b, check_dtype=False) def test_from_import_filtering_and_or(self): # filtering & | a = self.odf_csv[(self.odf_csv["OPENPRC"] > 40) & (self.odf_csv["SHROUT"] > 15000) | (self.odf_csv["TRDSTAT"] == "A")].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["OPENPRC"] > 40) & (self.pdf_csv["SHROUT"] > 15000) | (self.pdf_csv["TRDSTAT"] == "A")].fillna(value="") assert_frame_equal(a, b, check_dtype=False) ad = self.odf_csv[(self.odf_csv["OPENPRC"] > 40), (self.odf_csv["SHROUT"] > 15000) | (self.odf_csv["TRDSTAT"] == "A")].to_pandas().fillna(value="") bd = self.pdf_csv[(self.pdf_csv["OPENPRC"] > 40) & ((self.pdf_csv["SHROUT"] > 15000) | (self.pdf_csv["TRDSTAT"] == "A"))].fillna(value="") assert_frame_equal(ad, bd, check_dtype=False) def test_from_import_filtering_or_or(self): # filtering | | a = self.odf_csv[(self.odf_csv["OPENPRC"] > 40) | (self.odf_csv["SHROUT"] > 15000) | (self.odf_csv["TRDSTAT"] == "A")].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["OPENPRC"] > 40) | (self.pdf_csv["SHROUT"] > 15000) | (self.pdf_csv["TRDSTAT"] == "A")].fillna(value="") assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_or_and(self): # filtering | & a = self.odf_csv[(self.odf_csv["OPENPRC"] > 40) | (self.odf_csv["SHROUT"] > 15000) & (self.odf_csv["TRDSTAT"] == "A")].to_pandas().fillna(value="") b = self.pdf_csv[(self.pdf_csv["OPENPRC"] > 40) | (self.pdf_csv["SHROUT"] > 15000) & (self.pdf_csv["TRDSTAT"] == "A")].fillna(value="") assert_frame_equal(a, b, check_dtype=False) ad = self.odf_csv[(self.odf_csv["OPENPRC"] > 40) | (self.odf_csv["SHROUT"] > 15000), (self.odf_csv["TRDSTAT"] == "A")].to_pandas().fillna(value="") assert_frame_equal(ad, b, check_dtype=False) def test_from_import_filtering_operation_add(self): # filtering + a = (self.odf_d[self.odf_d["OPENPRC"] > 40] + self.odf_d[self.odf_d["SHROUT"] > 15000]).to_pandas() b = self.pdf_d[self.pdf_d["OPENPRC"] > 40] + self.pdf_d[self.pdf_d["SHROUT"] > 15000] # TODO: ASSERT RANDOM ORDER # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_operation_sub(self): # filtering - a = (self.odf_d[self.odf_d["OPENPRC"] > 40] - self.odf_d[self.odf_d["SHROUT"] > 15000]).to_pandas() b = self.pdf_d[self.pdf_d["OPENPRC"] > 40] - self.pdf_d[self.pdf_d["SHROUT"] > 15000] # TODO: ASSERT RANDOM ORDER # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_operation_mul(self): # filtering * a = (self.odf_d[self.odf_d["OPENPRC"] > 40] * self.odf_d[self.odf_d["SHROUT"] > 15000]).to_pandas() b = self.pdf_d[self.pdf_d["OPENPRC"] > 40] * self.pdf_d[self.pdf_d["SHROUT"] > 15000] # TODO: ASSERT RANDOM ORDER # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_operation_div(self): # filtering / # note that operation div is only allowed for numbers, exclusive of temporal, literal and logical # columns in Orca. a = (self.odf_d[self.odf_d["OPENPRC"] > 40] / self.odf_d[self.odf_d["SHROUT"] > 15000]).to_pandas() b = self.pdf_d[self.pdf_d["OPENPRC"] > 40] / self.pdf_d[self.pdf_d["SHROUT"] > 15000] # TODO: ASSERT RANDOM ORDER # assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_operation_groupby(self): # filtering groupby sum a = self.odf_csv[self.odf_csv["OPENPRC"] > 40].groupby("date").sum().to_pandas() b = self.pdf_csv[self.pdf_csv["OPENPRC"] > 40].groupby("date").sum() assert_frame_equal(a, b, check_dtype=False) def test_from_import_filtering_operation_resample(self): # filtering groupby sum a = self.odf_re[self.odf_re["OPENPRC"] > 40] b = self.pdf_re[self.pdf_re["OPENPRC"] > 40] assert_frame_equal(a.to_pandas().iloc[:, 0:8], b.iloc[:, 0:8], check_dtype=False, check_index_type=False) assert_frame_equal(a.to_pandas().iloc[:, 9:], b.iloc[:, 9:], check_dtype=False, check_index_type=False) a = self.odf_re[self.odf_re["OPENPRC"] > 40].resample("d", on="date").sum().to_pandas().sort_index() b = self.pdf_re[self.pdf_re["OPENPRC"] > 40].resample("d", on="date").sum().sort_index() # TODO: FILTER.RESAMPLE # assert_frame_equal(a, b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_from_import_filtering_operation_rolling(self): # filtering groupby sum a = self.odf_re[self.odf_re["OPENPRC"] > 40].rolling(window=2, on="date").sum().to_pandas() b = self.pdf_re[self.pdf_re["OPENPRC"] > 40].rolling(window=2, on="date").sum() # TODO: ASSERT RANDOM ORDER # assert_frame_equal(a, b, check_dtype=False, check_index_type=False, check_less_precise=1) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_func_application_groupby_partition.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * def _create_odf_csv(data, dfsDatabase): # call function default_session() to get session object s = orca.default_session() dolphindb_script = """ login("admin", "<PASSWORD>") dbPath="dfs://groupbyDateDB" if(existsDatabase(dbPath)) dropDatabase(dbPath) schema = extractTextSchema('{data}') cols = exec name from schema types = ["INT", "DATE", "SYMBOL", "BOOL", "SHORT", "INT", "LONG", "FLOAT", "DOUBLE"] schema = table(50000:0, cols, types) tt=schema(schema).colDefs tt.drop!(`typeInt) tt.rename!(`name`type) db = database(dbPath, RANGE, 1 501 1001 1501 2001 2501 3001) tb = db.createPartitionedTable(schema, `tb, `id) db.loadTextEx(`tb,`id, '{data}' ,, tt)""".format(data=data) s.run(dolphindb_script) return orca.read_table(dfsDatabase, 'tb') class Csv: pdf_csv = None odfs_csv = None class DfsGroupByTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'groupbyDate.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') dfsDatabase = "dfs://groupbyDateDB" # Orca connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") Csv.pdf_csv = pd.read_csv(data, parse_dates=[1], dtype={"id": np.int32, "tbool": np.bool, "tshort": np.int16, "tint": np.int32, "tlong": np.int64, "tfloat": np.float32, "tdouble": np.float64}) Csv.pdf_csv['tbool'] = Csv.pdf_csv["tbool"].astype(np.bool) Csv.odfs_csv = _create_odf_csv(data, dfsDatabase) Csv.odfs_csv.set_index("id", inplace=True) Csv.pdf_csv.set_index("id", inplace=True) @property def pdf_csv(self): return Csv.pdf_csv @property def odfs_csv(self): return Csv.odfs_csv def test_dfs_groupby_param_by_date_all(self): pass # TODO: NOT SUPPORTED FOR PARTITIONED TABLE # a = self.odfs_csv.groupby('date').all() # b = self.pdf_csv.groupby('date').all() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_any(self): pass # TODO: NOT SUPPORTED FOR PARTITIONED TABLE # a = self.odfs_csv.groupby('date').any() # b = self.pdf_csv.groupby('date').any() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_bfill(self): a = self.odfs_csv.groupby('date').bfill() b = self.pdf_csv.groupby('date').bfill() # TODO: bfill for strings is not allowed in Orca assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_count(self): a = self.odfs_csv.groupby('date').count() b = self.pdf_csv.groupby('date').count() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_cumcount(self): a = self.odfs_csv.groupby('date').cumcount() b = self.pdf_csv.groupby('date').cumcount() # TODO: TO MUCH DIFFS self.assertIsInstance(a.to_pandas(), DataFrame) self.assertIsInstance(b, Series) # assert_series_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_cummax(self): a = self.odfs_csv.drop(columns=['tsymbol']).groupby('date').cummax() b = self.pdf_csv.drop(columns=['tsymbol']).groupby('date').cummax() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_dfs_groupby_param_by_date_cummin(self): a = self.odfs_csv.drop(columns=['tsymbol']).groupby('date').cummin() b = self.pdf_csv.drop(columns=['tsymbol']).groupby('date').cummin() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_cumprod(self): a = self.odfs_csv.groupby('date').cumprod() b = self.pdf_csv.groupby('date').cumprod() # TODO: TO MUCH DIFFS assert_frame_equal(a.to_pandas().iloc[0:5].reset_index(drop=True), b.iloc[0:5].reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_cumsum(self): a = self.odfs_csv.groupby('date').cumsum() b = self.pdf_csv.groupby('date').cumsum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_ffill(self): a = self.odfs_csv.groupby('date').ffill() b = self.pdf_csv.groupby('date').ffill() assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_first(self): a = self.odfs_csv.groupby('date').first() b = self.pdf_csv.groupby('date').first() b['tbool'] = b['tbool'].astype(np.bool, errors="ignore") assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_head(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('date').head() # b = self.pdf_csv.groupby('date').head() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_last(self): a = self.odfs_csv.groupby('date').last() b = self.pdf_csv.groupby('date').last() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_max(self): a = self.odfs_csv.groupby('date').max() b = self.pdf_csv.groupby('date').max() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_mean(self): a = self.odfs_csv.groupby('date').mean() b = self.pdf_csv.groupby('date').mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_median(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('date').median() # b = self.pdf_csv.groupby('date').median() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_min(self): a = self.odfs_csv.groupby('date').min() b = self.pdf_csv.groupby('date').min() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_ngroup(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('date').ngroup() # b = self.pdf_csv.groupby('date').ngroup() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_nth(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('date').nth(0) # b = self.pdf_csv.groupby('date').nth(0) # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_ohlc(self): a = self.odfs_csv.drop(columns=['tsymbol', "date"]).groupby(['tint', 'tbool']).ohlc() b = self.pdf_csv.drop(columns=['tsymbol', "date"]).groupby(['tint', 'tbool']).ohlc() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_prod(self): a = self.odfs_csv.groupby('date').prod() b = self.pdf_csv.groupby('date').prod() # TODO:DIFFS # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_rank(self): a = self.odfs_csv.groupby('date').rank() # TODO: pandas doesn't support # b = self.pdf_csv.groupby('date').rank() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_pct_change(self): a = self.odfs_csv.drop(columns=["tbool", "tsymbol"]).groupby('date').pct_change() b = self.pdf_csv.drop(columns=["tbool", "tsymbol"]).groupby('date').pct_change() assert_frame_equal(a.to_pandas(), b.replace(np.inf, np.nan), check_dtype=False, check_index_type=False, check_less_precise=2) def test_dfs_groupby_param_by_date_size(self): a = self.odfs_csv.groupby('date').size() b = self.pdf_csv.groupby('date').size() assert_series_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_sem(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('date').sem() # b = self.pdf_csv.groupby('date').sem() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_std(self): a = self.odfs_csv.groupby('date').std() b = self.pdf_csv.groupby('date').std() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_sum(self): a = self.odfs_csv.groupby('date').sum() b = self.pdf_csv.groupby('date').sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_var(self): a = self.odfs_csv.groupby('date').var() b = self.pdf_csv.groupby('date').var() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_date_tail(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('date').tail() # b = self.pdf_csv.groupby('date').tail() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_all(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tsymbol').all() # b = self.pdf_csv.groupby('tsymbol').all() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_any(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tsymbol').any() # b = self.pdf_csv.groupby('tsymbol').any() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_bfill(self): a = self.odfs_csv.groupby('tsymbol').bfill() b = self.pdf_csv.groupby('tsymbol').bfill() assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_count(self): a = self.odfs_csv.groupby('tsymbol').count() b = self.pdf_csv.groupby('tsymbol').count() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_cumcount(self): a = self.odfs_csv.groupby('tsymbol').cumcount() b = self.pdf_csv.groupby('tsymbol').cumcount() # TODO: TO MUCH DIFFS self.assertIsInstance(a.to_pandas(), DataFrame) self.assertIsInstance(b, Series) # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_cummax(self): a = self.odfs_csv.drop(columns=['date']).groupby('tsymbol').cummax() b = self.pdf_csv.drop(columns=['date']).groupby('tsymbol').cummax() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_dfs_groupby_param_by_symbol_cummin(self): a = self.odfs_csv.drop(columns=['date']).groupby('tsymbol').cummin() b = self.pdf_csv.drop(columns=['date']).groupby('tsymbol').cummin() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_dfs_groupby_param_by_symbol_cumprod(self): a = self.odfs_csv.groupby('tsymbol').cumprod() b = self.pdf_csv.groupby('tsymbol').cumprod() assert_frame_equal(a.to_pandas().iloc[0:5].reset_index(drop=True), b.iloc[0:5].reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_cumsum(self): a = self.odfs_csv.groupby('tsymbol').cumsum() b = self.pdf_csv.groupby('tsymbol').cumsum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_ffill(self): a = self.odfs_csv.groupby('tsymbol').ffill() b = self.pdf_csv.groupby('tsymbol').ffill() assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_first(self): a = self.odfs_csv.groupby('tsymbol').first() b = self.pdf_csv.groupby('tsymbol').first() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_head(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('tsymbol').head() # b = self.pdf_csv.groupby('tsymbol').head() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_last(self): a = self.odfs_csv.groupby('tsymbol').last() b = self.pdf_csv.groupby('tsymbol').last() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_max(self): a = self.odfs_csv.groupby('tsymbol').max() b = self.pdf_csv.groupby('tsymbol').max() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_mean(self): a = self.odfs_csv.groupby('tsymbol').mean() b = self.pdf_csv.groupby('tsymbol').mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_median(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tsymbol').median() # b = self.pdf_csv.groupby('tsymbol').median() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_min(self): a = self.odfs_csv.groupby('tsymbol').min() b = self.pdf_csv.groupby('tsymbol').min() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_ngroup(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('tsymbol').ngroup() # b = self.pdf_csv.groupby('tsymbol').ngroup() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_nth(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('tsymbol').nth(0) # b = self.pdf_csv.groupby('tsymbol').nth(0) # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_ohlc(self): a = self.odfs_csv.groupby('tsymbol').ohlc() # pandas doesn't support # b = self.pdf_csv.groupby('tsymbol').ohlc() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_prod(self): a = self.odfs_csv.groupby('tsymbol').prod() b = self.pdf_csv.groupby('tsymbol').prod() assert_frame_equal(a.to_pandas(), b.fillna(0), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_rank(self): a = self.odfs_csv.groupby('tsymbol').rank() b = self.pdf_csv.groupby('tsymbol').rank() # TODO: DIFFERENT METHOD # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_pct_change(self): a = self.odfs_csv.drop(columns=["tbool", "date"]).groupby('tsymbol').pct_change() b = self.pdf_csv.drop(columns=["tbool", "date"]).groupby('tsymbol').pct_change() assert_frame_equal(a.to_pandas(), b.replace(np.inf, np.nan), check_dtype=False, check_index_type=False, check_less_precise=2) def test_dfs_groupby_param_by_symbol_size(self): a = self.odfs_csv.groupby('tsymbol').size() b = self.pdf_csv.groupby('tsymbol').size() assert_series_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_sem(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tsymbol').sem() # b = self.pdf_csv.groupby('tsymbol').sem() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_std(self): a = self.odfs_csv.groupby('tsymbol').std() b = self.pdf_csv.groupby('tsymbol').std() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_sum(self): a = self.odfs_csv.groupby('tsymbol').sum() b = self.pdf_csv.groupby('tsymbol').sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_var(self): a = self.odfs_csv.groupby('tsymbol').var() b = self.pdf_csv.groupby('tsymbol').var() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_symbol_tail(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('tsymbol').tail() # b = self.pdf_csv.groupby('tsymbol').tail() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_all(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tlong').all() # b = self.pdf_csv.groupby('tlong').all() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_any(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tlong').any() # b = self.pdf_csv.groupby('tlong').any() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_bfill(self): a = self.odfs_csv.groupby('tlong').bfill() b = self.pdf_csv.groupby('tlong').bfill() assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_count(self): a = self.odfs_csv.groupby('tlong').count() b = self.pdf_csv.groupby('tlong').count() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_cumcount(self): a = self.odfs_csv.groupby('tlong').cumcount() b = self.pdf_csv.groupby('tlong').cumcount() # TODO: TO MUCH DIFFS self.assertIsInstance(a.to_pandas(), DataFrame) self.assertIsInstance(b, Series) # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_cummax(self): a = self.odfs_csv.drop(columns=['date', 'tsymbol']).groupby('tlong').cummax() b = self.pdf_csv.drop(columns=['date', 'tsymbol']).groupby('tlong').cummax() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_dfs_groupby_param_by_long_cummin(self): a = self.odfs_csv.drop(columns=['date', 'tsymbol']).groupby('tlong').cummin() b = self.pdf_csv.drop(columns=['date', 'tsymbol']).groupby('tlong').cummin() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_dfs_groupby_param_by_long_cumprod(self): a = self.odfs_csv.groupby('tlong').cumprod() b = self.pdf_csv.groupby('tlong').cumprod() # TODO: TO MUCH DIFFS assert_frame_equal(a.to_pandas().iloc[0:50].reset_index(drop=True), b.iloc[0:50].reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_cumsum(self): a = self.odfs_csv.groupby('tlong').cumsum() b = self.pdf_csv.groupby('tlong').cumsum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_ffill(self): a = self.odfs_csv.groupby('tlong').ffill() b = self.pdf_csv.groupby('tlong').ffill() assert_frame_equal(a.to_pandas().sort_index().reset_index(drop=True).iloc[:, 1:], b.sort_index().reset_index(drop=True).iloc[:, 1:], check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_first(self): a = self.odfs_csv.groupby('tlong').first() b = self.pdf_csv.groupby('tlong').first() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_head(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('tlong').head() # b = self.pdf_csv.groupby('tlong').head() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_last(self): a = self.odfs_csv.groupby('tlong').last() b = self.pdf_csv.groupby('tlong').last() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_max(self): a = self.odfs_csv.groupby('tlong').max() b = self.pdf_csv.groupby('tlong').max() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_mean(self): a = self.odfs_csv.groupby('tlong').mean() b = self.pdf_csv.groupby('tlong').mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_median(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tlong').median() # b = self.pdf_csv.groupby('tlong').median() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_min(self): a = self.odfs_csv.groupby('tlong').min() b = self.pdf_csv.groupby('tlong').min() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_ngroup(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('tlong').ngroup() # b = self.pdf_csv.groupby('tlong').ngroup() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_nth(self): # TODO: NOT IMPLEMENTED pass # a = self.odfs_csv.groupby('tlong').nth() # b = self.pdf_csv.groupby('tlong').nth() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_ohlc(self): a = self.odfs_csv.drop(columns=['tsymbol', "date"]).groupby('tlong').ohlc() b = self.pdf_csv.drop(columns=['tsymbol', "date"]).groupby('tlong').ohlc() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_prod(self): a = self.odfs_csv.groupby('tlong').prod() b = self.pdf_csv.groupby('tlong').prod() # TODO:DIFFS # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_rank(self): a = self.odfs_csv.groupby('tlong').rank() # b = self.pdf_csv.groupby('tlong').rank() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_pct_change(self): a = self.odfs_csv.drop(columns=["tbool", "tsymbol", "date"]).groupby('tlong').pct_change() b = self.pdf_csv.drop(columns=["tbool", "tsymbol", "date"]).groupby('tlong').pct_change() assert_frame_equal(a.to_pandas(), b.replace(np.inf, np.nan), check_dtype=False, check_index_type=False, check_less_precise=2) def test_dfs_groupby_param_by_long_size(self): a = self.odfs_csv.groupby('tlong').size().loc[0:] b = self.pdf_csv.groupby('tlong').size() assert_series_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_sem(self): # TODO: NOT SUPPORTED FOR PARTITIONED TABLE pass # a = self.odfs_csv.groupby('tlong').sem() # b = self.pdf_csv.groupby('tlong').sem() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_std(self): a = self.odfs_csv.groupby('tlong').std() b = self.pdf_csv.groupby('tlong').std() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_sum(self): a = self.odfs_csv.groupby('tlong').sum() b = self.pdf_csv.groupby('tlong').sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_var(self): a = self.odfs_csv.groupby('tlong').var() b = self.pdf_csv.groupby('tlong').var() assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) def test_dfs_groupby_param_by_long_tail(self): # TODO: NOT SUPPORTED FOR groupby pass # a = self.odfs_csv.groupby('tlong').tail() # b = self.pdf_csv.groupby('tlong').tail() # assert_frame_equal(a.to_pandas(), b, check_dtype=False, check_index_type=False, check_less_precise=1) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_func_application_rolling.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class Csv: pdf_csv = None odf_csv = None class RollingTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'onlyNumericalColumns.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # Orca connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") Csv.pdf_csv = pd.read_csv(data) Csv.odf_csv = orca.read_csv(data) @property def pdf_csv(self): return Csv.pdf_csv @property def odf_csv(self): return Csv.odf_csv @property def pdf(self): n = 100 # note that n should be a multiple of 10 re = n / 10 pdf_da = pd.DataFrame({'id': np.arange(1, n + 1, 1, dtype='int32'), 'date': np.repeat(pd.date_range('2019.08.01', periods=10, freq='D'), re), 'tchar': np.repeat(np.arange(1, 11, 1, dtype='int8'), re), 'tshort': np.repeat(np.arange(1, 11, 1, dtype='int16'), re), 'tint': np.repeat(np.arange(1, 11, 1, dtype='int32'), re), 'tlong': np.repeat(np.arange(1, 11, 1, dtype='int64'), re), 'tfloat': np.repeat(np.arange(1, 11, 1, dtype='float32'), re), 'tdouble': np.repeat(np.arange(1, 11, 1, dtype='float64'), re) }) return pdf_da.set_index("id") @property def pdf_da(self): n = 9 # note that n should be a multiple of 10 ps = pd.to_datetime( ["20170101", "20170103", "20170105", "20170106", "20171231", "20180615", "20181031", "20190501", "20190517"]).to_series() pdf_da = pd.DataFrame({'id': np.arange(1, n + 1, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) return pdf_da.set_index("id") @property def odf(self): return orca.DataFrame(self.pdf) @property def odf_da(self): return orca.DataFrame(self.pdf_da) def test_rolling_allocation_verification(self): self.assertIsInstance(self.odf.rolling(window=5, on="date")['date'].count().to_pandas(), Series) with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")['hello'].count() with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")[['dare', 5, 0]].count() with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")[['hello', 'world']].count() with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")[np.array([1, 2, 3])].count() with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")[5].count() with self.assertRaises(KeyError): self.odf.rolling(window=5, on="date")[[16.5, 5]].count() def test_rolling_from_pandas_param_window_sum(self): a = self.odf.rolling(window=5, on="date").sum() b = self.pdf.rolling(window=5, on="date").sum() assert_frame_equal(a.to_pandas(), b) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).sum() b = pdf_dai.rolling(window=5).sum() assert_frame_equal(a.to_pandas(), b) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_sum(self): a = self.odf_da.rolling(window='d', on="date").sum() b = self.pdf_da.rolling(window='d', on="date").sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').sum() b = pdf_dai.rolling(window='d').sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_sum(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h.set_index("id", inplace=True) odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").sum() b = pdf_h.rolling(window='h', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").sum() b = pdf_h.rolling(window='2h', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').sum() # b = pdf_dai.rolling(window='h').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_sum(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t.set_index("id", inplace=True) odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").sum() b = pdf_t.rolling(window='t', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').sum() # b = pdf_dai.rolling(window='t').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_sum(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s.set_index("id", inplace=True) odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").sum() b = pdf_s.rolling(window='s', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").sum() b = pdf_s.rolling(window='2s', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').sum() # b = pdf_dai.rolling(window='s').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_sum(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l.set_index("id", inplace=True) odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL # a = odf_l.rolling(window='l', on="date").sum() # b = pdf_l.rolling(window='l', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # # a = odf_l.rolling(window='2l', on="date").sum() # b = pdf_l.rolling(window='2l', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').sum() # b = pdf_dai.rolling(window='l').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_sum(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").sum() b = pdf_u.rolling(window='u', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").sum() b = pdf_u.rolling(window='2u', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').sum() # b = pdf_dai.rolling(window='u').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_sum(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").sum() b = pdf_n.rolling(window='n', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").sum() b = pdf_n.rolling(window='2n', on="date").sum() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').sum() # b = pdf_dai.rolling(window='n').sum() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_count(self): a = self.odf.rolling(window=5, on="date").count() b = self.pdf.rolling(window=5, on="date").count() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).count() b = pdf_dai.rolling(window=5).count() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_count(self): a = self.odf_da.rolling(window='d', on="date").count() b = self.pdf_da.rolling(window='d', on="date").count() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].count() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').count() b = pdf_dai.rolling(window='d').count() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_count(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").count() b = pdf_h.rolling(window='h', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").count() b = pdf_h.rolling(window='2h', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].count() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').count() # b = pdf_dai.rolling(window='h').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_count(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").count() b = pdf_t.rolling(window='t', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').count() # b = pdf_dai.rolling(window='t').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_count(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").count() b = pdf_s.rolling(window='s', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").count() b = pdf_s.rolling(window='2s', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').count() # b = pdf_dai.rolling(window='s').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_count(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").count() b = pdf_l.rolling(window='l', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").count() b = pdf_l.rolling(window='2l', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').count() # b = pdf_dai.rolling(window='l').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_count(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").count() b = pdf_u.rolling(window='u', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").count() b = pdf_u.rolling(window='2u', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').count() # b = pdf_dai.rolling(window='u').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_count(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").count() b = pdf_n.rolling(window='n', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").count() b = pdf_n.rolling(window='2n', on="date").count() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').count() # b = pdf_dai.rolling(window='n').count() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_mean(self): a = self.odf.rolling(window=5, on="date").mean() b = self.pdf.rolling(window=5, on="date").mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).mean() b = pdf_dai.rolling(window=5).mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_mean(self): a = self.odf_da.rolling(window='d', on="date").mean() b = self.pdf_da.rolling(window='d', on="date").mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].mean() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').mean() b = pdf_dai.rolling(window='d').mean() assert_frame_equal(a.to_pandas(), b) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_mean(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").mean() b = pdf_h.rolling(window='h', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").mean() b = pdf_h.rolling(window='2h', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].mean() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').mean() # b = pdf_dai.rolling(window='h').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_mean(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").mean() b = pdf_t.rolling(window='t', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').mean() # b = pdf_dai.rolling(window='t').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_mean(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").mean() b = pdf_s.rolling(window='s', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").mean() b = pdf_s.rolling(window='2s', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').mean() # b = pdf_dai.rolling(window='s').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_mean(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").mean() b = pdf_l.rolling(window='l', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").mean() b = pdf_l.rolling(window='2l', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').mean() # b = pdf_dai.rolling(window='l').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_mean(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").mean() b = pdf_u.rolling(window='u', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").mean() b = pdf_u.rolling(window='2u', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').mean() # b = pdf_dai.rolling(window='u').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_mean(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").mean() b = pdf_n.rolling(window='n', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").mean() b = pdf_n.rolling(window='2n', on="date").mean() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').mean() # b = pdf_dai.rolling(window='n').mean() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_max(self): a = self.odf.rolling(window=5, on="date").max() b = self.pdf.rolling(window=5, on="date").max() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).max() b = pdf_dai.rolling(window=5).max() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_max(self): a = self.odf_da.rolling(window='d', on="date").max() b = self.pdf_da.rolling(window='d', on="date").max() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').max() b = pdf_dai.rolling(window='d').max() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_max(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").max() b = pdf_h.rolling(window='h', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").max() b = pdf_h.rolling(window='2h', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].max() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').max() # b = pdf_dai.rolling(window='h').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_max(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").max() b = pdf_t.rolling(window='t', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').max() # b = pdf_dai.rolling(window='t').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_max(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").max() b = pdf_s.rolling(window='s', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").max() b = pdf_s.rolling(window='2s', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').max() # b = pdf_dai.rolling(window='s').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_max(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").max() b = pdf_l.rolling(window='l', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").max() b = pdf_l.rolling(window='2l', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').max() # b = pdf_dai.rolling(window='l').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_max(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").max() b = pdf_u.rolling(window='u', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").max() b = pdf_u.rolling(window='2u', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').max() # b = pdf_dai.rolling(window='u').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_max(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").max() b = pdf_n.rolling(window='n', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").max() b = pdf_n.rolling(window='2n', on="date").max() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').max() # b = pdf_dai.rolling(window='n').max() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_min(self): a = self.odf.rolling(window=5, on="date").min() b = self.pdf.rolling(window=5, on="date").min() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).min() b = pdf_dai.rolling(window=5).min() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_min(self): a = self.odf_da.rolling(window='d', on="date").min() b = self.pdf_da.rolling(window='d', on="date").min() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').min() b = pdf_dai.rolling(window='d').min() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_min(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").min() b = pdf_h.rolling(window='h', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").min() b = pdf_h.rolling(window='2h', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].min() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').min() # b = pdf_dai.rolling(window='h').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_min(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").min() b = pdf_t.rolling(window='t', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').min() # b = pdf_dai.rolling(window='t').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_min(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").min() b = pdf_s.rolling(window='s', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").min() b = pdf_s.rolling(window='2s', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').min() # b = pdf_dai.rolling(window='s').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_min(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").min() b = pdf_l.rolling(window='l', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").min() b = pdf_l.rolling(window='2l', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').min() # b = pdf_dai.rolling(window='l').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_min(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").min() b = pdf_u.rolling(window='u', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").min() b = pdf_u.rolling(window='2u', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').min() # b = pdf_dai.rolling(window='u').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_min(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").min() b = pdf_n.rolling(window='n', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").min() b = pdf_n.rolling(window='2n', on="date").min() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').min() # b = pdf_dai.rolling(window='n').min() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_std(self): a = self.odf.rolling(window=5, on="date").std() b = self.pdf.rolling(window=5, on="date").std() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).std() b = pdf_dai.rolling(window=5).std() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_std(self): a = self.odf_da.rolling(window='d', on="date").std() b = self.pdf_da.rolling(window='d', on="date").std() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').std() b = pdf_dai.rolling(window='d').std() assert_frame_equal(a.to_pandas(), b) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_std(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").std() b = pdf_h.rolling(window='h', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").std() b = pdf_h.rolling(window='2h', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].std() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').std() # b = pdf_dai.rolling(window='h').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_std(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").std() b = pdf_t.rolling(window='t', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').std() # b = pdf_dai.rolling(window='t').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_std(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").std() b = pdf_s.rolling(window='s', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").std() b = pdf_s.rolling(window='2s', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').std() # b = pdf_dai.rolling(window='s').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_std(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").std() b = pdf_l.rolling(window='l', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").std() b = pdf_l.rolling(window='2l', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').std() # b = pdf_dai.rolling(window='l').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_std(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").std() b = pdf_u.rolling(window='u', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").std() b = pdf_u.rolling(window='2u', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').std() # b = pdf_dai.rolling(window='u').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_std(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").std() b = pdf_n.rolling(window='n', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").std() b = pdf_n.rolling(window='2n', on="date").std() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').std() # b = pdf_dai.rolling(window='n').std() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_var(self): a = self.odf.rolling(window=5, on="date").var() b = self.pdf.rolling(window=5, on="date").var() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() b = self.pdf.rolling(window=5, on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.reset_index() pdf_dai = self.pdf.reset_index() a = odf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window=5, on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf.set_index('date') pdf_dai = self.pdf.set_index('date') a = odf_dai.rolling(window=5).var() b = pdf_dai.rolling(window=5).var() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window=5)[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_day_var(self): a = self.odf_da.rolling(window='d', on="date").var() b = self.pdf_da.rolling(window='d', on="date").var() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() b = self.pdf_da.rolling(window='3d', on="date")[ 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() b = self.pdf_da.rolling(window='d', on="date")[ 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.reset_index() pdf_dai = self.pdf_da.reset_index() a = odf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window='d', on="date")[ 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_da.set_index('date') pdf_dai = self.pdf_da.set_index('date') a = odf_dai.rolling(window='d').var() b = pdf_dai.rolling(window='d').var() assert_frame_equal(a.to_pandas(), b) a = odf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window='d')[ 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_hour_var(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 10:10:15", "20170101 11:10:15", "20170101 11:20:15", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_h = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_h = pdf_h.set_index("id") odf_h = orca.DataFrame(pdf_h) # TODO: ALL ASSERT FAIL a = odf_h.rolling(window='h', on="date").var() b = pdf_h.rolling(window='h', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_h.rolling(window='2h', on="date").var() b = pdf_h.rolling(window='2h', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_hrolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].var() # b = pdf_h.rolling(window='h', on="date")[ # 'date', 'tdouble','tchar', 'tint', 'tlong', 'tfloat','tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.reset_index() # pdf_dai = pdf_h.reset_index() # a = odf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='h', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_h.set_index('date') # pdf_dai = pdf_h.set_index('date') # a = odf_dai.rolling(window='h').var() # b = pdf_dai.rolling(window='h').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='h')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_minute_var(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:11:10", "20170101 9:11:17", "20170101 11:21:00", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_t = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_t = pdf_t.set_index("id") odf_t = orca.DataFrame(pdf_t) # TODO: ALL ASSERT FAIL a = odf_t.rolling(window='t', on="date").var() b = pdf_t.rolling(window='t', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # b = pdf_t.rolling(window='t', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.reset_index() # pdf_dai = pdf_t.reset_index() # a = odf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='t', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_t.set_index('date') # pdf_dai = pdf_t.set_index('date') # a = odf_dai.rolling(window='t').var() # b = pdf_dai.rolling(window='t').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='t')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_second_var(self): ps = pd.to_datetime( ["20170101 9:10:15", "20170101 9:10:16", "20170101 9:10:16", "20170101 9:11:17", "20170101 9:11:17", "20180615 9:10:15", "20181031 9:10:15", "20190501 9:10:15", "20190517 9:10:15"]).to_series() pdf_s = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_s = pdf_s.set_index("id") odf_s = orca.DataFrame(pdf_s) # TODO: ALL ASSERT FAIL a = odf_s.rolling(window='s', on="date").var() b = pdf_s.rolling(window='s', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_s.rolling(window='2s', on="date").var() b = pdf_s.rolling(window='2s', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # b = pdf_s.rolling(window='s', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.reset_index() # pdf_dai = pdf_s.reset_index() # a = odf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='s', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_s.set_index('date') # pdf_dai = pdf_s.set_index('date') # a = odf_dai.rolling(window='s').var() # b = pdf_dai.rolling(window='s').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='s')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_milli_var(self): ps = pd.to_datetime( ["20170101 9:10:15.000", "20170101 9:10:15.000", "20170101 9:10:15.001", "20170101 9:11:17.015", "20170101 9:11:17.015", "20180615 9:10:15.015", "20181031 9:10:15.015", "20190501 9:10:15.015", "20190517 9:10:15.015"]).to_series() pdf_l = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_l = pdf_l.set_index("id") odf_l = orca.DataFrame(pdf_l) # TODO: ALL ASSERT FAIL a = odf_l.rolling(window='l', on="date").var() b = pdf_l.rolling(window='l', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_l.rolling(window='2l', on="date").var() b = pdf_l.rolling(window='2l', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_l.rolling(window='l', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_l.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # b = pdf.rolling(window='l', on="date")[ # 'date'_l, 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.reset_index() # pdf_dai = pdf_l.reset_index() # a = odf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='l', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_l.set_index('date') # pdf_dai = pdf_l.set_index('date') # a = odf_dai.rolling(window='l').var() # b = pdf_dai.rolling(window='l').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='l')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_micro_var(self): ps = pd.to_datetime( ["20170101 9:10:15.000000", "20170101 9:10:15.000000", "20170101 9:10:15.000001", "20170101 9:11:17.015001", "20170101 9:11:17.015002", "20180615 9:10:15.015000", "20181031 9:10:15.015000", "20190501 9:10:15.015000", "20190517 9:10:15.015000"]).to_series() pdf_u = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_u = pdf_u.set_index("id") odf_u = orca.DataFrame(pdf_u) # TODO: ALL ASSERT FAIL a = odf_u.rolling(window='u', on="date").var() b = pdf_u.rolling(window='u', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_u.rolling(window='2u', on="date").var() b = pdf_u.rolling(window='2u', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # b = pdf_u.rolling(window='u', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.reset_index() # pdf_dai = pdf_u.reset_index() # a = odf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='u', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_u.set_index('date') # pdf_dai = pdf_u.set_index('date') # a = odf_dai.rolling(window='u').var() # b = pdf_dai.rolling(window='u').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='u')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_pandas_param_window_rule_nano_var(self): ps = pd.to_datetime( ["20170101 9:10:15.000000000", "20170101 9:10:15.000000000", "20170101 9:10:15.000000001", "20170101 9:11:17.015000001", "20170101 9:11:17.015002001", "20180615 9:10:15.015000001", "20181031 9:10:15.015000001", "20190501 9:10:15.015000001", "20190517 9:10:15.015000001"]).to_series() pdf_n = pd.DataFrame({'id': np.arange(1, 10, 1, dtype='int32'), 'date': ps, 'tchar': np.arange(1, 10, 1, dtype='int8'), 'tshort': np.arange(1, 10, 1, dtype='int16'), 'tint': np.arange(1, 10, 1, dtype='int32'), 'tlong': np.arange(1, 10, 1, dtype='int64'), 'tfloat': np.arange(1, 10, 1, dtype='float32'), 'tdouble': np.arange(1, 10, 1, dtype='float64') }) pdf_n = pdf_n.set_index("id") odf_n = orca.DataFrame(pdf_n) # TODO: ALL ASSERT FAIL a = odf_n.rolling(window='n', on="date").var() b = pdf_n.rolling(window='n', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = odf_n.rolling(window='2n', on="date").var() b = pdf_n.rolling(window='2n', on="date").var() # assert_frame_equal(a.to_pandas(), b, check_dtype=False) # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tchar', 'tint', 'tlong', 'tfloat'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # a = odf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # b = pdf_n.rolling(window='n', on="date")[ # 'date', 'tdouble', 'tchar', 'tint', 'tlong', 'tfloat', 'tshort'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.reset_index() # pdf_dai = pdf_n.reset_index() # a = odf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='n', on="date")[ # 'date', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) # # odf_dai = odf_n.set_index('date') # pdf_dai = pdf_n.set_index('date') # a = odf_dai.rolling(window='n').var() # b = pdf_dai.rolling(window='n').var() # assert_frame_equal(a.to_pandas(), b) # # a = odf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # b = pdf_dai.rolling(window='n')[ # 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() # assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_sum(self): a = self.odf_csv.rolling(window=5).sum() b = self.pdf_csv.rolling(window=5).sum() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id','tchar','tshort','tint','tlong','tfloat'].sum() b = self.pdf_csv.rolling(window=5)[ 'id','tchar','tshort','tint','tlong','tfloat'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id','tdouble','tbool','tchar','tshort','tint','tlong','tfloat'].sum() b = self.pdf_csv.rolling(window=5)[ 'id','tdouble','tbool','tchar','tshort','tint','tlong','tfloat'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].sum() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_count(self): a = self.odf_csv.rolling(window=5).count() b = self.pdf_csv.rolling(window=5).count() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].count() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].count() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].count() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_mean(self): a = self.odf_csv.rolling(window=5).mean() b = self.pdf_csv.rolling(window=5).mean() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].mean() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].mean() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].mean() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_max(self): a = self.odf_csv.rolling(window=5).max() b = self.pdf_csv.rolling(window=5).max() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].max() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].max() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].max() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_min(self): a = self.odf_csv.rolling(window=5).min() b = self.pdf_csv.rolling(window=5).min() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].min() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].min() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].min() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_std(self): a = self.odf_csv.rolling(window=5).std() b = self.pdf_csv.rolling(window=5).std() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].std() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].std() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].std() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) def test_rolling_from_import_param_window_var(self): a = self.odf_csv.rolling(window=5).var() b = self.pdf_csv.rolling(window=5).var() assert_frame_equal(a.to_pandas(), b, check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].var() b = self.pdf_csv.rolling(window=5)[ 'id', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) a = self.odf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].var() b = self.pdf_csv.rolling(window=5)[ 'id', 'tdouble', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.reset_index() pdf_dai = self.pdf_csv.reset_index() a = odf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window=5, on="id")[ 'id', 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) odf_dai = self.odf_csv.set_index('id') pdf_dai = self.pdf_csv.set_index('id') a = odf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() b = pdf_dai.rolling(window=5)[ 'tbool', 'tchar', 'tshort', 'tint', 'tlong', 'tfloat', 'tdouble'].var() assert_frame_equal(a.to_pandas().reset_index(drop=True), b.reset_index(drop=True), check_dtype=False) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_io.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * class InputOutputTest(unittest.TestCase): def setUp(self): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def loadData(self, filename): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) data = os.path.join(DATA_DIR, filename) data = data.replace('\\', '/') return data def test_read_csv_param_sep(self): data = self.loadData('USPricesSample.csv') pdf = pd.read_csv(data, parse_dates=[1]) pdf.iloc[:, 9].fillna("", inplace=True) odf = orca.read_csv(data, dtype={"DLSTCD": "DOUBLE", "DLPRC": "DOUBLE"}).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # test white space data = self.loadData('test_io.csv') pdf = pd.read_csv(data, parse_dates=[1], sep=" ") odf = orca.read_csv(data, sep=" ").to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # test delimiter odf = orca.read_csv(data, delimiter=" ").to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) def test_read_csv_param_names(self): # whitout header data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C']) odf = orca.read_csv(data, names=['A', 'B', 'C']).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # with header # pandas will parse the header to data, but orca will delete it. data = self.loadData('test_io.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C'], sep=' ') odf = orca.read_csv(data, names=['A', 'B', 'C'], sep=' ').to_pandas() # assert_frame_equal(pdf, odf, check_dtype=False) def test_read_csv_param_index_col(self): # test white space data = self.loadData('test_io.csv') pdf = pd.read_csv(data, parse_dates=[1], sep=" ", index_col=[1]) odf = orca.read_csv(data, sep=" ", index_col=1).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) data = self.loadData('test_io.csv') pdf = pd.read_csv(data, parse_dates=[1], sep=" ", index_col=['date']) odf = orca.read_csv(data, sep=" ", index_col=['date']).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # whitout header data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C'], index_col=1) odf = orca.read_csv(data, names=['A', 'B', 'C'], index_col=1).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # whitout header and use set names data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C'], index_col=['A']) odf = orca.read_csv(data, names=['A', 'B', 'C'], index_col=['A']).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) def test_read_csv_param_index_engine(self): # just to test where engine to use data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C'], index_col=['A']) odf = orca.read_csv(data, names=['A', 'B', 'C'], index_col=['A'], engine='c', parse_dates=[1]).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) def test_read_csv_param_usecols(self): # tip:parse_dates choose the data of order dertermine by usecols data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[0], names=['A', 'B', 'C'], usecols=[1, 2]) odf = orca.read_csv(data, names=['A', 'B', 'C'], usecols=[1, 2]).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # without the header and use the names data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[0], names=['A', 'B', 'C'], usecols=['B']) odf = orca.read_csv(data, names=['A', 'B', 'C'], usecols=['B']).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) data = self.loadData('test_io.csv') pdf = pd.read_csv(data, parse_dates=[0], sep=" ", usecols=['date']) odf = orca.read_csv(data, sep=" ", usecols=['date']).to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) def test_read_csv_param_squeeze(self): # TODO pandas的Seires是有name的,而orca的没有name data = self.loadData('test_io_squeeze.csv') pdf = pd.read_csv(data, squeeze=True) odf = orca.read_csv(data, squeeze=True).to_pandas() assert_series_equal(pdf, odf, check_dtype=False, check_names=False) # without the header and use the names data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[0], names=['A', 'B', 'C'], usecols=['B'], squeeze=True) odf = orca.read_csv(data, names=['A', 'B', 'C'], usecols=['B'], squeeze=True).to_pandas() assert_series_equal(pdf, odf, check_dtype=False, check_names=False) def test_read_csv_param_prefix(self): # whitout header and use set names, the prefix is not used data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], names=['A', 'B', 'C'], prefix='X') odf = orca.read_csv(data, names=['A', 'B', 'C'], prefix='X').to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) # without header and names data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1], header=None, prefix='X') odf = orca.read_csv(data, prefix='X').to_pandas() assert_frame_equal(pdf, odf, check_dtype=False) def test_read(self): data = self.loadData('test_io_names.csv') pdf = pd.read_csv(data, parse_dates=[1]) # feather to_parquet need dependency pyarraw file = pdf.to_html() # assert_equal(pd.read_html(file)[0], orca.read_html(file)[0]) # pdf.to_pickle("test.pickle") data = self.loadData('test.pickle') # assert_frame_equal(pd.read_pickle(data), orca.read_pickle(data)) file = pdf.to_msgpack() # assert_frame_equal(pd.read_msgpack(file), orca.read_msgpack(file)) ''' pdf.to_parquet("test.parquet") data = self.loadData('test.parquet') assert_frame_equal(pd.read_parquet(data), orca.read_parquet(data)) pdf.to_feather("test.feather") data=self.loadData('test.feather') assert_frame_equal(pd.read_hdf(file), orca.read_hdf(file)) ''' if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_orca_general_functions.py ```python import unittest import orca import os.path as path from setup.settings import * from pandas.util.testing import * WORK_DIR = WORK_DIR.replace('\\', '/') class Csv: pdf_csv = None odf_csv = None class DBNames: disk = WORK_DIR + "onDiskUnpartitionedDB" diskPRange = WORK_DIR + "onDiskPartitionedRangeDB" diskPValue = WORK_DIR + "onDiskPartitionedValueDB" dfsRange = "dfs://RangeDB" dfsValue = "dfs://ValueDB" class TBNames: shared = "tshared" streamShared = "tStreamShared" diskTB = "tb1" dfsTB = "tb1" def _clear(dbName): s = orca.default_session() s.run(""" login("admin", "<PASSWORD>") dbPath='{dir}' if(exists(dbPath)) dropDatabase(dbPath) """.format(dir=dbName)) def _create_tables(DATA_DIR): s = orca.default_session() dolphindb_script = """ login("admin", "<PASSWORD>") names=`id`date`month`time`minute`second`datetime`timestamp`nanotime`nanotimestamp`tstring`tsymbol`tbool`tchar`tshort`tint`tlong`tfloat`tdouble types=`INT`DATE`DATE`TIME`SECOND`SECOND`DATETIME`TIMESTAMP`NANOTIME`NANOTIMESTAMP`STRING`SYMBOL`BOOL`CHAR`SHORT`INT`LONG`FLOAT`DOUBLE schema=table(names as name, types as typeString) // in-memory t=loadText('{datadir}',,schema) // shared share t as {shared} //stream shared share streamTable(100:0, names, types) as {streamShared} {streamShared}.append!(t) //disk dbPath='{disk}' if(exists(dbPath)) dropDatabase(dbPath) //saveTable(dbPath, t, `{disktb}) //disk range partition dbPath='{diskPR}' if(existsDatabase(dbPath)) dropDatabase(dbPath) db=database(dbPath, RANGE, 1 21 41 61 81 101) tb=db.createPartitionedTable(t,`{disktb},`id) tb.append!(t) //disk value partition dbPath='{diskPV}' if(existsDatabase(dbPath)) dropDatabase(dbPath) db=database(dbPath, VALUE, `A`B`C`D`E`F`G) tb=db.createPartitionedTable(t,`{disktb},`tstring) tb.append!(t) //dfs range partition dbPath='{dfsR}' if(existsDatabase(dbPath)) dropDatabase(dbPath) db=database(dbPath, RANGE, 1 21 41 61 81 101) tb=db.createPartitionedTable(t,`{dfstb},`id) tb.append!(t) //dfs value partition dbPath='{dfsV}' if(existsDatabase(dbPath)) dropDatabase(dbPath) db=database(dbPath, VALUE, `A`B`C`D`E`F`G) tb=db.createPartitionedTable(t,`{dfstb},`tstring) tb.append!(t)""".format(datadir=DATA_DIR, shared=TBNames.shared, streamShared=TBNames.streamShared, disk=DBNames.disk, diskPR=DBNames.diskPRange, diskPV=DBNames.diskPValue, dfsR=DBNames.dfsRange, dfsV=DBNames.dfsValue, disktb=TBNames.diskTB, dfstb=TBNames.dfsTB) s.run(dolphindb_script) class GeneralFunctionsTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) DATA_DIR = DATA_DIR.replace('\\', '/') fileName = 'testTables.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") Csv.odf_csv = orca.read_csv(data, dtype={"date": 'DATE', "tstring": "STRING", "tsymbol": "SYMBOL", "tbool": "BOOL", "tchar": np.int8, "tshort": np.int16, "tlong": np.int64, "tfloat": np.float32}) Csv.pdf_csv = pd.read_csv(data, parse_dates=[1, 2, 3, 4, 5, 6, 7, 8, 9], dtype={"id": np.int32, "tbool": np.bool, "tchar": np.int8, "tshort": np.int16, "tint": np.int32, "tfloat": np.float32}) _create_tables(data) @property def pdf_csv(self): return Csv.pdf_csv @property def odf_csv(self): return Csv.odf_csv @property def odf_disk(self): return orca.read_table(DBNames.disk, 'tb1') @property def odf_disk_partitioned_range(self): return orca.read_table(DBNames.diskPRange, 'tb1') @property def odf_disk_partitioned_value(self): return orca.read_table(DBNames.diskPValue, 'tb1') @property def odfs_range(self): return orca.read_table(DBNames.dfsRange, 'tb1') @property def odfs_value(self): return orca.read_table(DBNames.dfsValue, 'tb1') @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def odf(self): return orca.DataFrame(self.pdf) def test_orca_to_datetime(self): lt = ['3/11/2000', '3/12/2000', '3/13/2000'] * 100 assert_index_equal(orca.to_datetime(lt), pd.to_datetime(lt)) # ps = pd.Series(lt) # os = orca.Series(ps) # self.assertEqual(pd.to_datetime(ps, infer_datetime_format=True), # orca.to_datetime(os, infer_datetime_format=True)) def test_orca_concat_series(self): s1 = pd.Series(['a', 'b']) s2 = pd.Series(['c', 'd']) o1 = orca.Series(['a', 'b']) o2 = orca.Series(['c', 'd']) assert_series_equal(pd.concat([s1, s2]), orca.concat([o1, o2]).to_pandas()) assert_series_equal(pd.concat([s1, s2], ignore_index=True), orca.concat([o1, o2], ignore_index=True).to_pandas()) def test_orca_concat_dataframe(self): pdf1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number']) pdf2 = pd.DataFrame([['c', 3], ['d', 4]], columns=['letter', 'number']) odf1 = orca.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number']) odf2 = orca.DataFrame([['c', 3], ['d', 4]], columns=['letter', 'number']) assert_frame_equal(pd.concat([pdf1, pdf2]), orca.concat([odf1, odf2]).to_pandas()) # assert_frame_equal(pd.concat([pdf1, pdf1]), orca.concat([odf1, odf1]).to_pandas()) assert_frame_equal(pd.concat([pdf1, pdf2], join="inner"), orca.concat([odf1, odf2], join="inner").to_pandas()) assert_frame_equal(pd.concat([pdf1, pdf2], ignore_index=True), orca.concat([odf1, odf2], ignore_index=True).to_pandas()) pdf1 = pd.DataFrame([[3, 1], [6, 2]], columns=['letter', 'number']) odf1 = orca.DataFrame([[3, 1], [6, 2]], columns=['letter', 'number']) pdf3 = pd.DataFrame([[100, 3, 16], [90, 4, 7]], columns=['letter', 'number', 'animal']) odf3 = orca.DataFrame([[100, 3, 16], [90, 4, 7]], columns=['letter', 'number', 'animal']) assert_frame_equal(pd.concat([pdf1, pdf3], join="inner"), orca.concat([odf1, odf3], join="inner").to_pandas()) assert_frame_equal(pd.concat([pdf1, pdf3], join="outer", sort=False), orca.concat([odf1, odf3], join="outer", sort=False).to_pandas()) assert_frame_equal(pd.concat([pdf1, pdf3], ignore_index=True, sort=False), orca.concat([odf1, odf3], ignore_index=True, sort=False).to_pandas()) tuples = [('cobra', 'mark i'), ('cobra', 'mark ii'), ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ('viper', 'mark ii'), ('viper', 'mark iii')] index = pd.MultiIndex.from_tuples(tuples) values = [[12, 2], [0, 4], [10, 20], [1, 4], [7, 1], [16, 36]] pdf = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) index = orca.MultiIndex.from_tuples(tuples) odf = orca.DataFrame(values, columns=['max_speed', 'shield'], index=index) assert_frame_equal(pd.concat([pdf, pdf1], ignore_index=True, sort=False), orca.concat([odf, odf1], ignore_index=True, sort=False).to_pandas()) def test_orca_read_shared_table(self): odf = orca.read_shared_table(TBNames.shared) assert_frame_equal(odf.to_pandas(), self.odf_csv.to_pandas()) orca.default_session().run("undef(`{sh},SHARED)".format(sh=TBNames.shared)) def test_orca_read_shared_streamtable(self): odf = orca.read_shared_table(TBNames.streamShared) assert_frame_equal(odf.to_pandas(), self.odf_csv.to_pandas()) orca.default_session().run("undef(`{sh},SHARED)".format(sh=TBNames.streamShared)) def test_orca_save_table_disk(self): orca.save_table(DBNames.disk, TBNames.diskTB, self.odf) odf_disk = orca.read_table(DBNames.disk, TBNames.diskTB) # index will be reset assert_frame_equal(self.pdf.reset_index(drop=True), odf_disk.to_pandas()) _clear(DBNames.disk) def test_orca_save_table_disk_patition(self): odf = self.odf_csv # range orca.save_table(DBNames.diskPRange, TBNames.diskTB, self.odf_csv) x = orca.read_table(DBNames.diskPRange, TBNames.diskTB) assert_frame_equal(odf.to_pandas(), x.to_pandas()) _clear(DBNames.diskPRange) # value orca.save_table(DBNames.diskPValue, TBNames.diskTB, self.odf_csv) x = orca.read_table(DBNames.diskPValue, TBNames.diskTB) assert_frame_equal(odf.to_pandas(), x.to_pandas()) _clear(DBNames.diskPValue) def test_orca_save_table_dfs(self): odf = self.odf_csv # range orca.save_table(DBNames.dfsRange, TBNames.dfsTB, self.odf_csv) x = orca.read_table(DBNames.dfsRange, TBNames.dfsTB) assert_frame_equal(odf.append(odf).to_pandas().sort_values("id").reset_index(drop=True), x.to_pandas().sort_values("id").reset_index(drop=True), check_index_type=False) # value orca.save_table(DBNames.dfsValue, TBNames.dfsTB, self.odf_csv) x = orca.read_table(DBNames.dfsValue, TBNames.dfsTB) assert_frame_equal(odf.append(odf).to_pandas().sort_values("id").reset_index(drop=True), x.to_pandas().sort_values("id").reset_index(drop=True), check_index_type=False) if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_plotting.py ```python import unittest import os import orca import pandas as pd import matplotlib.pyplot as plt import os.path as path import base64 from io import BytesIO from setup.settings import * class Csv(object): pdf_csv = None odf_csv = None class PLottingTest(unittest.TestCase): @classmethod def setUpClass(cls): # configure data directory DATA_DIR = path.abspath(path.join(__file__, "../setup/data")) fileName = 'USPricesSample.csv' data = os.path.join(DATA_DIR, fileName) data = data.replace('\\', '/') # Orca connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") # import Csv.odf_csv = orca.read_csv(data) Csv.odf_csv.set_index('date', inplace=True) Csv.pdf_csv = pd.read_csv(data) Csv.pdf_csv.set_index('date', inplace=True) @property def odf_series_plot(self): return Csv.odf_csv.groupby('date').sum()['BID'] @property def odf_frame_plot(self): return Csv.odf_csv.groupby('date').sum() @property def pdf_series_plot(self): return Csv.pdf_csv.groupby('date').sum()['BID'] @property def pdf_frame_plot(self): return Csv.pdf_csv.groupby('date').sum() # def test_plot_area(self): # self.odf_series_plot.plot.area(x='date', y='BID') # # plt.show() # self.pdf_series_plot.plot.area(x='date', y='BID') # # plt.show() def test_plot_bar(self): self.odf_series_plot.plot.bar(x='date', y='BID') # plt.show() self.pdf_series_plot.plot.bar(x='date', y='BID') # plt.show() def test_plot_barh(self): self.odf_series_plot.plot.barh(x='date', y='BID') # plt.show() self.pdf_series_plot.plot.barh(x='date', y='BID') # plt.show() def test_plot_box(self): self.odf_series_plot.plot.box(by='date') # plt.show() self.pdf_series_plot.plot.box(by='date') # plt.show() def test_plot_density(self): self.odf_series_plot.plot.density(bw_method=0.3) # plt.show() self.pdf_series_plot.plot.density(bw_method=0.3) # plt.show() def test_plot_hexbin(self): self.odf_frame_plot.plot.hexbin(x='SHRCD', y='BID', gridsize=20) # plt.show() self.pdf_frame_plot.plot.hexbin(x='SHRCD', y='BID', gridsize=20) # plt.show() def test_plot_hist(self): self.odf_series_plot.plot.hist(by='date', bins=10) # plt.show() self.pdf_series_plot.plot.hist(by='date', bins=10) # plt.show() def test_series_hist(self): # TODO: NOT IMPLEMENTED pass # pdf = pd.DataFrame({ # 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], # }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10]) # # odf = orca.DataFrame(pdf) # # def plot_to_base64(ax): # bytes_data = BytesIO() # ax.figure.savefig(bytes_data, format='png') # bytes_data.seek(0) # b64_data = base64.b64encode(bytes_data.read()) # plt.close(ax.figure) # return b64_data # # _, ax1 = plt.subplots(1, 1) # # Using plot.hist() because pandas changes ticos props when called hist() # ax1 = pdf['a'].plot.hist() # _, ax2 = plt.subplots(1, 1) # ax2 = odf['a'].hist() # self.assertEqual(plot_to_base64(ax1), plot_to_base64(ax2)) def test_plot_kde(self): self.odf_series_plot.plot.kde(bw_method=0.3) # plt.show() self.pdf_series_plot.plot.kde(bw_method=0.3) # plt.show() # def test_plot_line(self): # self.odf_series_plot.plot.line(x='date', y='BID') # # plt.show() # self.pdf_series_plot.plot.line(x='date', y='BID') # # plt.show() def test_plot_pie(self): self.odf_series_plot.plot.pie(y='date', figsize=(6, 3)) # plt.show() self.pdf_series_plot.plot.pie(y='date', figsize=(6, 3)) # plt.show() def test_plot_scatter(self): self.odf_frame_plot.plot.scatter(x='SHRCD', y='BID') # plt.show() self.pdf_frame_plot.plot.scatter(x='SHRCD', y='BID') # plt.show() def test_boxplot(self): self.odf_frame_plot.boxplot() # plt.show() self.pdf_frame_plot.boxplot() # plt.show() def test_hist(self): self.pdf_series_plot.hist() # plt.show() self.odf_series_plot.hist() # plt.show() if __name__ == '__main__': unittest.main() ``` #### File: tests/orca_unit_testing/test_series_str.py ```python import unittest import orca from setup.settings import * from pandas.util.testing import * class SeriesStrTest(unittest.TestCase): def setUp(self): self.PRECISION = 5 @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") @property def ps(self): return pd.Series(['Foo', 'ss ', 'sW', 'qa'], name='x') @property def os(self): return orca.Series(self.ps) @property def psa(self): return pd.Series([10, 1, 19, np.nan], index=['a', 'b', 'c', 'd']) @property def psb(self): return pd.Series([-1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) def test_series_str_count(self): assert_series_equal(self.ps.str.count('a'), self.os.str.count("a").to_pandas(),check_dtype=False) def test_series_str_startsWith(self): assert_series_equal(self.ps.str.startswith('Fo'), self.os.str.startswith('Fo').to_pandas(), check_dtype=False) def test_series_str_endswith(self): assert_series_equal(self.ps.str.endswith('W'), self.os.str.endswith('W').to_pandas(), check_dtype=False) def test_series_str_find(self): assert_series_equal(self.ps.str.find('Fo'), self.os.str.find('Fo').to_pandas(), check_dtype=False) def test_series_str_get(self): assert_series_equal(self.ps.str.get(1), self.os.str.get(1).to_pandas(), check_dtype=False) def test_series_str_just(self): # TODO: pandas not cut the str when length is not enough # assert_series_equal(self.ps.str.ljust(1), self.os.str.ljust(1).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.ljust(10), self.os.str.ljust(10).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.ljust(10,'A'), self.os.str.ljust(10,'A').to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.rjust(10), self.os.str.rjust(10).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.rjust(10, 'A'), self.os.str.rjust(10, 'A').to_pandas(), check_dtype=False) def test_series_str_is(self): assert_series_equal(self.ps.str.isalnum(),self.os.str.isalnum().to_pandas()) assert_series_equal(self.ps.str.isalpha(), self.os.str.isalpha().to_pandas()) assert_series_equal(self.ps.str.isdigit(), self.os.str.isdigit().to_pandas()) assert_series_equal(self.ps.str.isspace(), self.os.str.isspace().to_pandas()) assert_series_equal(self.ps.str.islower(), self.os.str.islower().to_pandas()) assert_series_equal(self.ps.str.isupper(), self.os.str.isupper().to_pandas()) assert_series_equal(self.ps.str.istitle(), self.os.str.istitle().to_pandas()) assert_series_equal(self.ps.str.isnumeric(), self.os.str.isnumeric().to_pandas()) assert_series_equal(self.ps.str.isdecimal(), self.os.str.isdecimal().to_pandas()) ```
{ "source": "jiajic/Giotto_site_suite", "score": 2 }
#### File: inst/python/silhouette_rank_wrapper.py ```python import sys import os import re import numpy as np import subprocess import math import scipy import silhouetteRank.spatial_genes as spatial_genes from shutil import copyfile from operator import itemgetter from scipy.spatial.distance import squareform, pdist from scipy.stats import percentileofscore from sklearn.metrics import roc_auc_score import pandas as pd import argparse import silhouetteRank import silhouetteRank.prep as prep import silhouetteRank.evaluate_exact_one_2b as evaluate_exact_one_2b import silhouetteRank.use_previous_cluster as use_previous_cluster import silhouetteRank.combine as combine import logging def silhouette_rank(expr="expression.txt", centroid="Xcen.good", overwrite_input_bin=True, rbp_ps=[0.95, 0.99], examine_tops=[0.005, 0.010, 0.050, 0.100, 0.300], matrix_type="dissim", num_core=4, parallel_path="/usr/bin", output=".", query_sizes=10, verbose=True): args = argparse.Namespace(expr=expr, centroid=centroid, rbp_ps=rbp_ps, examine_tops=examine_tops, matrix_type=matrix_type, output=output, query_sizes=query_sizes, overwrite_input_bin=overwrite_input_bin, parallel_path=parallel_path, num_core=num_core, verbose=verbose) if not os.path.isdir(args.output): os.mkdir(args.output) logdir = "%s/logs" % args.output if not os.path.isdir(logdir): os.mkdir(logdir) verbose = args.verbose log_file = "%s/master.log" % args.output logger = logging.getLogger("master") logger.setLevel(logging.DEBUG) if not logger.hasHandlers(): handler = logging.FileHandler(log_file) handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) logger.addHandler(handler) if verbose: logger.addHandler(logging.StreamHandler()) args1 = argparse.Namespace(expr=args.expr, centroid=args.centroid, rbp_ps=args.rbp_ps, examine_tops=args.examine_tops, matrix_type=args.matrix_type, output=args.output, query_sizes=args.query_sizes, overwrite_input_bin=args.overwrite_input_bin, verbose=verbose, log_file="master.prep.log") prep.do_one(args1) fw = open("%s/args" % args.output, "w") for rbp_p in args.rbp_ps: for examine_top in args.examine_tops: freq_file = "%s/result_5000_%.2f_%.3f/gene.freq.good.txt" % (args.output, rbp_p, examine_top) if args.matrix_type=="sim": freq_file = "%s/result_sim_5000_%.2f_%.3f/gene.freq.good.txt" % (args.output, rbp_p, examine_top) uniq_freq = 0 f = open(freq_file) for l in f: l = l.rstrip("\n") uniq_freq+=1 f.close() num_query_sizes = args.query_sizes if uniq_freq<=num_query_sizes: num_query_sizes = uniq_freq for i in range(num_query_sizes): fw.write("%.2f\n" % rbp_p) fw.write("%.3f\n" % examine_top) fw.write("%d\n" % i) fw.close() fw = open("%s/args.basic" % args.output, "w") for rbp_p in args.rbp_ps: for examine_top in args.examine_tops: fw.write("%.2f\n" % rbp_p) fw.write("%.3f\n" % examine_top) fw.close() bin_path = os.path.dirname(silhouetteRank.__file__) for i in range(4): bin_path = os.path.dirname(bin_path) bin_path = os.path.join(bin_path, "bin") logger.info("Start calculating silhouette rank, saving logs to log directory (check progress here)...") cmd = "cat '%s'/args.basic | '%s'/parallel --jobs %d --max-args=2 \\''%s'\\'''/silhouette_rank_main -x \\''%s'\\''' -c \\''%s'\\''' -r {1} -e {2} -m %s -o \\''%s'\\'''" % (args.output, args.parallel_path, args.num_core, bin_path, args.expr, args.centroid, args.matrix_type, args.output) os.system(cmd) logger.info("Start randomization, saving logs to log directory (check progress here)...") cmd="cat '%s'/args | '%s'/parallel --jobs %d --max-args=3 \\''%s'\\'''/silhouette_rank_random -r {1} -e {2} -m %s -o \\''%s'\\''' -q {3}" % (args.output, args.parallel_path, args.num_core, bin_path, args.matrix_type, args.output) os.system(cmd) logger.info("Start computing P-values...") for rbp_p in args.rbp_ps: for examine_top in args.examine_tops: random_dir = "%s/result_sim_5000_%.2f_%.3f" % (args.output, rbp_p, examine_top) score_file = "%s/silhouette.sim.exact.rbp.%.2f.top.%.3f.txt" % (args.output, rbp_p, examine_top) output_score_file = "%s/silhouette.sim.exact.rbp.%.2f.top.%.3f.pval.txt" % (args.output, rbp_p, examine_top) if args.matrix_type=="dissim": random_dir = "%s/result_5000_%.2f_%.3f" % (args.output, rbp_p, examine_top) score_file = "%s/silhouette.exact.rbp.%.2f.top.%.3f.txt" % (args.output, rbp_p, examine_top) output_score_file = "%s/silhouette.exact.rbp.%.2f.top.%.3f.pval.txt" % (args.output, rbp_p, examine_top) args1 = argparse.Namespace(expr=args.expr, centroid=args.centroid, examine_top=examine_top, input=score_file, input_random=random_dir, output=output_score_file, outdir=args.output, query_sizes=args.query_sizes, overwrite_input_bin=False, verbose=verbose, log_file="master.pvalue.log") use_previous_cluster.do_one(args1) combined_file = "%s/silhouette.overall.pval.txt" % args.output if args.matrix_type=="sim": combined_file = "%s/silhouette.sim.overall.pval.txt" % args.output args1 = argparse.Namespace(rbp_ps=args.rbp_ps, examine_tops=args.examine_tops, matrix_type=args.matrix_type, input=args.output, output=combined_file) combine.do_one(args1) res = {"gene":[], "chisq":[], "pval":[], "qval":[]} f = open(combined_file) for l in f: l = l.rstrip("\n") ll = l.split() res["gene"].append(ll[0]) res["chisq"].append(float(ll[1])) res["pval"].append(float(ll[2])) res["qval"].append(float(ll[3])) f.close() df = pd.DataFrame(res, columns=["gene", "chisq", "pval", "qval"]) return df ```
{ "source": "jiajlin/TrickHLA", "score": 2 }
#### File: Modified_data/SpaceFOM/SpaceFOMRefFrameObject.py ```python import trick from ..TrickHLA.TrickHLAObjectConfig import * from ..TrickHLA.TrickHLAAttributeConfig import * class SpaceFOMRefFrameObject(TrickHLAObjectConfig): trick_frame_sim_obj_name = None def __init__( self, create_frame_object, frame_instance_name, frame_S_define_instance, frame_S_define_instance_name, frame_lag_comp = None, frame_ownership = None, frame_thla_manager_object = None ): # The Reference Frame FOM name is fixed for the SpaceFOM. frame_FOM_name = 'ReferenceFrame' # Copy the frame federation execution instance name. frame_federation_instance_name = str( frame_instance_name ) # Save the frame name to use for trick_data_name generation. self.trick_frame_sim_obj_name = str( frame_S_define_instance_name ) # By SpaceFOM rule 5-1 the Reference Frame instance name must exactly # match the Reference Frame name in the data. if ( create_frame_object ) : frame_S_define_instance.set_name( frame_instance_name ) else: frame_S_define_instance.set_name( '' ) # Call the base class constructor. TrickHLAObjectConfig.__init__( self, create_frame_object, frame_instance_name, frame_FOM_name, frame_lag_comp, frame_ownership, frame_S_define_instance, frame_thla_manager_object ) # Build the object attribute list. self.add_attributes() return def initialize( self, thla_object ): # Call the base class initialization utility function. TrickHLAObjectConfig.initialize( self, thla_object ) return def add_attributes( self ): # Short cut the sim_object name for the frame data. frame_instance_name = self.trick_frame_sim_obj_name ## Set up the map to the reference frame's name. trick_data_name = str(frame_instance_name) + '.name' attribute = TrickHLAAttributeConfig( 'name', trick_data_name, self.hla_create, not self.hla_create, self.hla_create, trick.TrickHLA.CONFIG_INITIALIZE + trick.TrickHLA.CONFIG_CYCLIC, trick.TrickHLA.ENCODING_UNICODE_STRING ) self.add_attribute( attribute ) ## Set up the map to the name of the reference frame's parent frame. trick_data_name = str(frame_instance_name) + '.parent_name' attribute = TrickHLAAttributeConfig( 'parent_name', trick_data_name, self.hla_create, not self.hla_create, self.hla_create, trick.TrickHLA.CONFIG_INITIALIZE + trick.TrickHLA.CONFIG_CYCLIC, trick.TrickHLA.ENCODING_UNICODE_STRING ) self.add_attribute( attribute ) ## Set up the map to the reference frame's space/time coordinate state. trick_data_name = str(frame_instance_name) + '.stc_encoder.buffer' attribute = TrickHLAAttributeConfig( 'state', trick_data_name, self.hla_create, not self.hla_create, self.hla_create, trick.TrickHLA.CONFIG_INITIALIZE + trick.TrickHLA.CONFIG_CYCLIC, trick.TrickHLA.ENCODING_OPAQUE_DATA ) self.add_attribute( attribute ) return ``` #### File: Modified_data/TrickHLA/TrickHLAAttributeConfig.py ```python import trick class TrickHLAAttributeConfig( object ): FOM_name = None trick_name = None publish = True subscribe = False locally_owned = True config = trick.TrickHLA.CONFIG_CYCLIC rti_encoding = trick.TrickHLA.ENCODING_UNICODE_STRING def __init__( self, FOM_name, trick_name, publish = True, subscribe = True, locally_owned = True, config = trick.TrickHLA.CONFIG_CYCLIC, rti_encoding = trick.TrickHLA.ENCODING_UNICODE_STRING ): self.FOM_name = FOM_name self.trick_name = trick_name self.publish = publish self.subscribe = subscribe self.locally_owned = locally_owned self.config = config self.rti_encoding = rti_encoding return def initialize( self, attribute ): attribute.FOM_name = self.FOM_name attribute.trick_name = self.trick_name attribute.publish = self.publish attribute.subscribe = self.subscribe attribute.locally_owned = self.locally_owned attribute.config = self.config attribute.rti_encoding = self.rti_encoding return ```
{ "source": "jiajudu/qa2sent", "score": 2 }
#### File: jiajudu/qa2sent/qa2sent.py ```python import json import os from pattern import en as patten from stanza.server import CoreNLPClient from tqdm import tqdm # Map to pattern.en aliases # http://www.clips.ua.ac.be/pages/pattern-en#conjugation POS_TO_PATTERN = { 'vb': 'inf', # Infinitive 'vbp': '1sg', # non-3rd-person singular present 'vbz': '3sg', # 3rd-person singular present 'vbg': 'part', # gerund or present participle 'vbd': 'p', # past 'vbn': 'ppart', # past participle } # Tenses prioritized by likelihood of arising PATTERN_TENSES = ['inf', '3sg', 'p', 'part', 'ppart', '1sg'] class ConstituencyParse(object): """A CoreNLP constituency parse (or a node in a parse tree). Word-level constituents have |word| and |index| set and no children. Phrase-level constituents have no |word| or |index| and have at least one child. """ def __init__(self, tag, children=None, word=None, index=None): self.tag = tag if children: self.children = children else: self.children = None self.word = word self.index = index @classmethod def _recursive_parse_corenlp(cls, tokens, i, j): orig_i = i if tokens[i] == '(': tag = tokens[i + 1] children = [] i = i + 2 while True: child, i, j = cls._recursive_parse_corenlp(tokens, i, j) if isinstance(child, cls): children.append(child) if tokens[i] == ')': return cls(tag, children), i + 1, j else: if tokens[i] != ')': raise ValueError('Expected ")" following leaf') return cls(tag, word=child, index=j), i + 1, j + 1 else: # Only other possibility is it's a word return tokens[i], i + 1, j @classmethod def from_corenlp(cls, s): """Parses the "parse" attribute returned by CoreNLP parse annotator.""" # "parse": "(ROOT\n (SBARQ\n (WHNP (WDT What)\n (NP (NN portion)\n (PP (IN of)\n (NP\n (NP (NNS households))\n (PP (IN in)\n (NP (NNP Jacksonville)))))))\n (SQ\n (VP (VBP have)\n (NP (RB only) (CD one) (NN person))))\n (. ? )))", s_spaced = s.replace('\n', ' ').replace('(', ' ( ').replace(')', ' ) ') tokens = [t for t in s_spaced.split(' ') if t] tree, index, num_words = cls._recursive_parse_corenlp(tokens, 0, 0) if index != len(tokens): raise ValueError('Only parsed %d of %d tokens' % (index, len(tokens))) return tree def is_singleton(self): if self.word: return True if len(self.children) > 1: return False return self.children[0].is_singleton() def print_tree(self, indent=0): spaces = ' ' * indent if self.word: print(('%s%s: %s (%d)' % (spaces, self.tag, self.word, self.index)).encode('utf-8')) else: print('%s%s:' % (spaces, self.tag)) for c in self.children: c.print_tree(indent=indent + 1) def get_phrase(self): if self.word: return self.word toks = [] for i, c in enumerate(self.children): p = c.get_phrase() if i == 0 or p.startswith("'"): toks.append(p) else: toks.append(' ' + p) return ''.join(toks) def get_start_index(self): if self.index is not None: return self.index return self.children[0].get_start_index() def get_end_index(self): if self.index is not None: return self.index + 1 return self.children[-1].get_end_index() @classmethod def _recursive_replace_words(cls, tree, new_words, i): if tree.word: new_word = new_words[i] return (cls(tree.tag, word=new_word, index=tree.index), i + 1) new_children = [] for c in tree.children: new_child, i = cls._recursive_replace_words(c, new_words, i) new_children.append(new_child) return cls(tree.tag, children=new_children), i @classmethod def replace_words(cls, tree, new_words): """Return a new tree, with new words replacing old ones.""" new_tree, i = cls._recursive_replace_words(tree, new_words, 0) if i != len(new_words): raise ValueError('len(new_words) == %d != i == %d' % (len(new_words), i)) return new_tree def read_const_parse(parse_str): tree = ConstituencyParse.from_corenlp(parse_str) new_tree = compress_whnp(tree) return new_tree def compress_whnp(tree, inside_whnp=False): if not tree.children: return tree for i, c in enumerate(tree.children): tree.children[i] = compress_whnp(c, inside_whnp=inside_whnp or tree.tag == 'WHNP') if tree.tag != 'WHNP': if inside_whnp: return ConstituencyParse('NP', children=[tree]) return tree wh_word = None new_np_children = [] new_siblings = [] for i, c in enumerate(tree.children): if i == 0: if c.tag in ('WHNP', 'WHADJP', 'WHAVP', 'WHPP'): wh_word = c.children[0] new_np_children.extend(c.children[1:]) elif c.tag in ('WDT', 'WP', 'WP$', 'WRB'): wh_word = c else: return tree else: if c.tag == 'SQ': new_siblings = tree.children[i:] break new_np_children.append(ConstituencyParse('NP', children=[c])) if new_np_children: new_np = ConstituencyParse('NP', children=new_np_children) new_tree = ConstituencyParse('WHNP', children=[wh_word, new_np]) else: new_tree = tree if new_siblings: new_tree = ConstituencyParse('SBARQ', children=[new_tree] + new_siblings) return new_tree class ConversionRule(object): def convert(self, q, a, tokens, const_parse, run_fix_style=True): raise NotImplementedError class ConstituencyRule(ConversionRule): """A rule for converting question to sentence based on constituency parse.""" def __init__(self, in_pattern, out_pattern, postproc=None): self.in_pattern = in_pattern self.out_pattern = str(out_pattern) self.name = in_pattern if postproc: self.postproc = postproc else: self.postproc = {} def convert(self, q, a, tokens, const_parse, run_fix_style=True): pattern_toks = self.in_pattern.split(' ') match = match_pattern(self.in_pattern, const_parse) appended_clause = False if not match: appended_clause = True new_pattern = '$PP , ' + self.in_pattern pattern_toks = new_pattern.split(' ') match = match_pattern(new_pattern, const_parse) if not match: new_pattern = '$SBAR , ' + self.in_pattern pattern_toks = new_pattern.split(' ') match = match_pattern(new_pattern, const_parse) if not match: return None appended_clause_match = None fmt_args = [a] for t, m in zip(pattern_toks, match): if t.startswith('$') or '/' in t: phrase = convert_whp(m, q, a, tokens) if not phrase: phrase = m.get_phrase() fmt_args.append(phrase) if appended_clause: appended_clause_match = fmt_args[1] fmt_args = [a] + fmt_args[2:] for i in range(len(fmt_args)): if i in self.postproc: fmt_args[i] = run_postprocessing(fmt_args[i], self.postproc[i], fmt_args) output = self.gen_output(fmt_args) if appended_clause: output = appended_clause_match + ', ' + output if run_fix_style: output = fix_style(output) return output def gen_output(self, fmt_args): """By default, use self.out_pattern. Can be overridden.""" return self.out_pattern.format(*fmt_args) def run_postprocessing(s, rules, all_args): rule_list = rules.split(',') for rule in rule_list: if rule == 'lower': s = s.lower() elif rule.startswith('tense-'): ind = int(rule[6:]) orig_vb = all_args[ind] tenses = patten.tenses(orig_vb) for tense in PATTERN_TENSES: # Prioritize by PATTERN_TENSES if tense in tenses: break else: # Default to first tense tense = PATTERN_TENSES[0] s = patten.conjugate(s, tense) elif rule in POS_TO_PATTERN: s = patten.conjugate(s, POS_TO_PATTERN[rule]) return s class FindWHPRule(ConversionRule): """A rule that looks for $WHP's from right to left and does replacements.""" name = 'FindWHP' def _recursive_convert(self, node, q, a, tokens, found_whp): if node.word: return node.word, found_whp if not found_whp: whp_phrase = convert_whp(node, q, a, tokens) if whp_phrase: return whp_phrase, True child_phrases = [] for c in node.children[::-1]: c_phrase, found_whp = self._recursive_convert(c, q, a, tokens, found_whp) child_phrases.append(c_phrase) out_toks = [] for i, p in enumerate(child_phrases[::-1]): if i == 0 or p.startswith("'"): out_toks.append(p) else: out_toks.append(' ' + p) return ''.join(out_toks), found_whp def convert(self, q, a, tokens, const_parse, run_fix_style=True): out_phrase, found_whp = self._recursive_convert(const_parse, q, a, tokens, False) if found_whp: if run_fix_style: out_phrase = fix_style(out_phrase) return out_phrase return None CONVERSION_RULES = [ ConstituencyRule('$WHP:what $Be $NP called that $VP', '{2} that {3} {1} called {1}'), ConstituencyRule('how $JJ $Be $NP $IN $NP', '{3} {2} {0} {1} {4} {5}'), ConstituencyRule('how $JJ $Be $NP $SBAR', '{3} {2} {0} {1} {4}'), ConstituencyRule('how $JJ $Be $NP', '{3} {2} {0} {1}'), ConstituencyRule('$WHP:when/where $Do $NP', '{3} occurred in {1}'), ConstituencyRule('$WHP:when/where $Do $NP $Verb', '{3} {4} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Do $NP $Verb $NP/$PP', '{3} {4} {5} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Do $NP $Verb $NP $PP', '{3} {4} {5} {6} in {1}', {4: 'tense-2'}), ConstituencyRule('$WHP:when/where $Be $NP', '{3} {2} in {1}'), ConstituencyRule('$WHP:when/where $Verb $NP $VP/$ADJP', '{3} {2} {4} in {1}'), ConstituencyRule("$WHP:what/which/who $Do $NP do", '{3} {1}', {0: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb", '{3} {4} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $IN/$NP", '{3} {4} {5} {1}', {4: 'tense-2', 0: 'vbg'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $PP", '{3} {4} {1} {5}', {4: 'tense-2', 0: 'vbg'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb $NP $VP", '{3} {4} {5} {6} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb to $VB", '{3} {4} to {5} {1}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Do $NP $Verb to $VB $VP", '{3} {4} to {5} {1} {6}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $NP $IN $VP", '{3} {4} {5} {6} {1} {7}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $PP/$S/$VP/$SBAR/$SQ", '{3} {4} {1} {5}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who/how $Do $NP $Verb $PP $PP/$S/$VP/$SBAR", '{3} {4} {1} {5} {6}', {4: 'tense-2'}), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP of $NP $Verb/$Part $IN", '{3} of {4} {2} {5} {6} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $NP $IN", '{3} {2} {4} {5} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $VP/$IN", '{3} {2} {4} {1}'), ConstituencyRule("$WHP:what/which/who $Be/$MD $NP $IN $NP/$VP", '{1} {2} {3} {4} {5}'), ConstituencyRule('$WHP:what/which/who $Be/$MD $NP $Verb $PP', '{3} {2} {4} {1} {5}'), ConstituencyRule('$WHP:what/which/who $Be/$MD $NP/$VP/$PP', '{1} {2} {3}'), ConstituencyRule("$WHP:how $Be/$MD $NP $VP", '{3} {2} {4} by {1}'), ConstituencyRule("$WHP:what/which/who $VP", '{1} {2}'), ConstituencyRule('$IN what/which $NP $Do $NP $Verb $NP', '{5} {6} {7} {1} the {3} of {0}', {1: 'lower', 6: 'tense-4'}), ConstituencyRule('$IN what/which $NP $Be $NP $VP/$ADJP', '{5} {4} {6} {1} the {3} of {0}', {1: 'lower'}), ConstituencyRule('$IN what/which $NP $Verb $NP/$ADJP $VP', '{5} {4} {6} {1} the {3} of {0}', {1: 'lower'}), FindWHPRule(), ] def fix_style(s): """Minor, general style fixes for questions.""" s = s.replace('?', '') s = s.strip(' .') if s[0] == s[0].lower(): s = s[0].upper() + s[1:] return s + '.' def match_pattern(pattern, const_parse): pattern_toks = pattern.split(' ') whole_phrase = const_parse.get_phrase() if whole_phrase.endswith('?') or whole_phrase.endswith('.'): pattern_toks.append(whole_phrase[-1]) matches = [] success = _recursive_match_pattern(pattern_toks, [const_parse], matches) if success: return matches else: return None def _check_match(node, pattern_tok): if pattern_tok in CONST_PARSE_MACROS: pattern_tok = CONST_PARSE_MACROS[pattern_tok] if ':' in pattern_tok: lhs, rhs = pattern_tok.split(':') match_lhs = _check_match(node, lhs) if not match_lhs: return False phrase = node.get_phrase().lower() retval = any(phrase.startswith(w) for w in rhs.split('/')) return retval elif '/' in pattern_tok: return any(_check_match(node, t) for t in pattern_tok.split('/')) return ((pattern_tok.startswith('$') and pattern_tok[1:] == node.tag) or (node.word and pattern_tok.lower() == node.word.lower())) CONST_PARSE_MACROS = { '$Noun': '$NP/$NN/$NNS/$NNP/$NNPS', '$Verb': '$VB/$VBD/$VBP/$VBZ', '$Part': '$VBN/$VG', '$Be': 'is/are/was/were', '$Do': "do/did/does/don't/didn't/doesn't", '$WHP': '$WHADJP/$WHADVP/$WHNP/$WHPP', } def convert_whp(node, q, a, tokens): if node.tag in ('WHNP', 'WHADJP', 'WHADVP', 'WHPP'): cur_phrase = node.get_phrase() cur_tokens = tokens[node.get_start_index():node.get_end_index()] for r in WHP_RULES: phrase = r.convert(cur_phrase, a, cur_tokens, node, run_fix_style=False) if phrase: return phrase return None def _recursive_match_pattern(pattern_toks, stack, matches): """Recursively try to match a pattern, greedily.""" if len(matches) == len(pattern_toks): return len(stack) == 0 if len(stack) == 0: return False cur_tok = pattern_toks[len(matches)] node = stack.pop() is_match = _check_match(node, cur_tok) if is_match: cur_num_matches = len(matches) matches.append(node) new_stack = list(stack) success = _recursive_match_pattern(pattern_toks, new_stack, matches) if success: return True while len(matches) > cur_num_matches: matches.pop() if not node.children: return False stack.extend(node.children[::-1]) return _recursive_match_pattern(pattern_toks, stack, matches) class ReplaceRule(ConversionRule): """A simple rule that replaces some tokens with the answer.""" def __init__(self, target, replacement='{}', start=False): self.target = target self.replacement = str(replacement) self.name = 'replace(%s)' % target self.start = start def convert(self, q, a, tokens, const_parse, run_fix_style=True): t_toks = self.target.split(' ') q_toks = q.rstrip('?.').split(' ') replacement_text = self.replacement.format(a) for i in range(len(q_toks)): if self.start and i != 0: continue if ' '.join(q_toks[i:i + len(t_toks)]).rstrip(',').lower() == self.target: begin = q_toks[:i] end = q_toks[i + len(t_toks):] output = ' '.join(begin + [replacement_text] + end) if run_fix_style: output = fix_style(output) return output return None class AnswerRule(ConversionRule): """Just return the answer.""" name = 'AnswerRule' def convert(self, q, a, tokens, const_parse, run_fix_style=True): return a WHP_RULES = [ ConstituencyRule('$IN what/which type/sort/kind/group of $NP/$Noun', '{1} {0} {4}'), ConstituencyRule('$IN what/which type/sort/kind/group of $NP/$Noun $PP', '{1} {0} {4} {5}'), ConstituencyRule('$IN what/which $NP', '{1} the {3} of {0}'), ConstituencyRule('$IN $WP/$WDT', '{1} {0}'), ConstituencyRule('what/which type/sort/kind/group of $NP/$Noun', '{0} {3}'), ConstituencyRule('what/which type/sort/kind/group of $NP/$Noun $PP', '{0} {3} {4}'), ConstituencyRule('what/which $NP', 'the {2} of {0}'), ConstituencyRule('how many/much $NP', '{0} {2}'), ReplaceRule('what'), ReplaceRule('who'), ReplaceRule('how many'), ReplaceRule('how much'), ReplaceRule('which'), ReplaceRule('where'), ReplaceRule('when'), ReplaceRule('why'), ReplaceRule('how'), AnswerRule(), ] def run_conversion(qas, corenlp_home): os.environ['CORENLP_HOME'] = 'stanford-corenlp-full-2018-10-05' ret = list() with CoreNLPClient(annotators=['tokenize','ssplit','pos','lemma','ner', 'parse'], timeout=30000, memory='16G', properties={'ssplit.eolonly': True, 'ssplit.newlineIsSentenceBreak': 'always', 'outputFormat':'json'}, endpoint='http://localhost:9001') as client: for question, answer in tqdm(qas): parse = client.annotate(question)['sentences'][0] tokens = parse['tokens'] const_parse = read_const_parse(parse['parse']) for rule in CONVERSION_RULES: sent = rule.convert(question, answer, tokens, const_parse) if sent: ret.append([question, answer, sent]) break else: ret.append([question, answer, None]) return ret def main(): qas = [["What is the current series where the new series began in June 2011?", "CB\u00b706\u00b7ZZ"], ["What is the format for South Australia?", "Snnn\u00b7aaa"]] sents = run_conversion(qas, 'stanford-corenlp-full-2018-10-05') print(sents) if __name__ == '__main__': main() ```
{ "source": "JiajunBao/neural-dimension-reduction", "score": 2 }
#### File: neural-dimension-reduction/examples/train.py ```python from src.models.DenseNetwork.models import Net, Solver from pathlib import Path def train(): args = Solver.get_solver_arguments() dim_in = 200 dim_out = 20 hidden_dims_list = [int(x) for x in args.hidden_dims_list.split('-')] model = Net.from_scratch(dim_in, hidden_dims_list, dim_out, args.add_shortcut) solver = Solver.from_scratch(model, input_dir=args.input_dir, output_dir=args.output_dir, learning_rate=args.learning_rate, n_epoch=args.n_epoch, per_gpu_batch_size=args.per_gpu_batch_size, weight_decay=args.weight_decay, seed=args.seed, top_k=args.top_k) solver.fit(num_eval_per_epoch=args.num_eval_per_epoch) if __name__ == '__main__': train() ``` #### File: src/data/make_sample.py ```python from argparse import ArgumentParser import logging from pathlib import Path from src.data.utils import import_raw_data, export_processed_data def downsample_data(df, num_rows, seed): sampled_train_df = df.sample(n=num_rows, random_state=seed) sampled_test_df = df.sample(n=num_rows // 3, random_state=(seed + 10)) return sampled_train_df, sampled_test_df def main(): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) # get arguments parser = ArgumentParser(description='Arguments for dataset processing') parser.add_argument('--input_path', type=Path, required=True, default=None, help='the input path to the input data') parser.add_argument('--output_dir', type=Path, required=True, default=None, help='the output directory to save sampled data') parser.add_argument('--num_rows', type=int, required=True, default=1000, help='the number of rows to sample') parser.add_argument('--seed', type=int, default=42, help='the random seed of the whole process') args = parser.parse_args() logger.info(f'reading data from {args.input_path}') df = import_raw_data(args.input_path) sampled_train_df, sampled_test_df = downsample_data(df, args.num_rows, args.seed) export_processed_data(sampled_train_df, args.output_dir / 'sample' / 'train.csv') export_processed_data(sampled_test_df, args.output_dir / 'sample' / 'dev.csv') logger.info(f'saved data at {args.output_dir / "sample"}') if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) main() ``` #### File: models/DenseNetwork/models.py ```python import argparse import os import random from collections import OrderedDict from pathlib import Path import numpy import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset from runx.logx import logx from torch.utils.data import DataLoader from tqdm.auto import tqdm from src.models.DenseNetwork.loss import kl_div_add_mse_loss, input_inverse_similarity, output_inverse_similarity, \ nearest_neighbors # TOP_K = 20 class VecDataSet(Dataset): def __init__(self, x, top_k): device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # device = 'cpu' self.anchor_idx, self.q, self.ground_min_dist_square, self.topk_dists = \ self.precomputing(x, top_k=top_k, device=device) self.top_k = top_k self.x = x.cpu() @classmethod def from_df(cls, path_to_dataframe, top_k): print(f'Generate dataset top_k = {top_k}') x = torch.from_numpy(pd.read_csv(path_to_dataframe).to_numpy()).to(torch.float32) return cls(x, top_k) @classmethod def from_dataset(cls, path_to_tensor): return torch.load(path_to_tensor) @staticmethod def precomputing(x, top_k, device): """ compute ground true nearest neighbors :param x: :param top_k: top-k neighbors that are considered :param device: device used during computation :return: anchor_idx: each point has m points as anchors (in the case, we pick m near neighbors of x as anchors) q: input_similarity """ ground_min_dist_square, anchor_idx, topk_dists = nearest_neighbors(x, top_k, device) q = input_inverse_similarity(x.to(device), anchor_idx=anchor_idx, # (n, n - 1) min_dist_square=ground_min_dist_square.to(device)).cpu() return anchor_idx, q, ground_min_dist_square, topk_dists def __len__(self): return self.x.shape[0] def __getitem__(self, idx): return self.x[idx] class Net(nn.Module): def __init__(self, hidden_layers: nn.ModuleList, model_construct_dict: dict, shortcut_layers: nn.ModuleList, block_size: int): super(Net, self).__init__() self.hidden_layers = hidden_layers self.model_construct_dict = model_construct_dict self.shortcut_layers = shortcut_layers self.block_size = block_size @classmethod def from_scratch(cls, dim_in, hidden_dims_list, dim_out, add_shortcut: bool): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ in_dims = [dim_in] + hidden_dims_list out_dims = hidden_dims_list + [dim_out] hidden_layers = nn.ModuleList( [nn.Linear(in_features=i, out_features=o) for i, o in zip(in_dims, out_dims)]) model_construct_dict = { 'dim_in': dim_in, 'hidden_dims_list': hidden_dims_list, 'dim_out': dim_out, } shortcut_layers = None block_size = 4 if add_shortcut: tmp = list() for i in range(len(in_dims) // block_size): tmp.append(nn.Linear(in_features=in_dims[i * block_size], out_features=out_dims[(i + 1) * block_size - 1])) if len(tmp) > 0: shortcut_layers = nn.ModuleList(tmp) return cls(hidden_layers, model_construct_dict, shortcut_layers, block_size) @classmethod def from_pretrained(cls, path_to_checkpoints): checkpoints = torch.load(path_to_checkpoints) model = cls(**checkpoints['model_construct_dict']) model.load_state_dict(checkpoints['model_state_dict']) model.eval() return model def forward(self, x): """ In the forward function we accept a Tensor of input data and we must return a Tensor of output data. We can use Modules defined in the constructor as well as arbitrary operators on Tensors. """ out = x if self.shortcut_layers is None: for layer in self.hidden_layers: out = F.relu(layer.forward(out)) else: block_out = x for block_idx in range(len(self.hidden_layers) // self.block_size): for layer_idx in range(block_idx * self.block_size, (block_idx + 1) * self.block_size): out = self.hidden_layers[layer_idx].forward(out) out = out + self.shortcut_layers[block_idx].forward(block_out) block_out = out return out class Solver(object): def __init__(self, input_dir, output_dir, model, device, per_gpu_batch_size, n_gpu, batch_size, learning_rate, weight_decay, n_epoch, seed, top_k, **kwargs): # construct param dict self.construct_param_dict = OrderedDict({ "input_dir": str(input_dir), "output_dir": str(output_dir), "learning_rate": learning_rate, "n_epoch": n_epoch, "per_gpu_batch_size": per_gpu_batch_size, "weight_decay": weight_decay, "seed": seed, "top_k": top_k, }) # build log logx.initialize(logdir=output_dir, coolname=True, tensorboard=True, no_timestamp=False, hparams={"solver_construct_dict": self.construct_param_dict, "model_construct_dict": model.model_construct_dict}, eager_flush=True) # arguments self.record_training_loss_per_epoch = kwargs.pop("record_training_loss_per_epoch", False) self.input_dir = input_dir self.output_dir = output_dir self.top_k = top_k # training utilities self.model = model # data utilities self.train_dataloader = kwargs.pop("train_dataloader", None) self.dev_dataloader = kwargs.pop("dev_dataloader", None) self.batch_size = batch_size self.n_epoch = n_epoch self.seed = seed # device self.device = device self.n_gpu = n_gpu logx.msg(f'Number of GPU: {self.n_gpu}.') self.criterion = kl_div_add_mse_loss # optimizer and scheduler if self.train_dataloader: self.optimizer, self.scheduler = self.get_optimizer(named_parameters=self.model.named_parameters(), learning_rate=learning_rate, weight_decay=weight_decay, train_dataloader=self.train_dataloader, n_epoch=n_epoch) # set up random seeds and model location self.setup() @classmethod def from_scratch(cls, model, input_dir, output_dir, learning_rate, n_epoch, per_gpu_batch_size, weight_decay, seed, top_k): # check the validity of the directory if os.path.exists(output_dir) and os.listdir(output_dir): raise ValueError(f"Output directory ({output_dir}) already exists " "and is not empty") output_dir.mkdir(parents=True, exist_ok=True) # data utilities device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") n_gpu = torch.cuda.device_count() batch_size = per_gpu_batch_size * max(1, n_gpu) # dataloader train_dataloader = cls.get_train_dataloader(input_dir, batch_size, top_k) dev_dataloader = cls.get_dev_dataloader(input_dir, batch_size, top_k) return cls(input_dir, output_dir, model, device, per_gpu_batch_size, n_gpu, batch_size, learning_rate, weight_decay, n_epoch, seed, top_k, train_dataloader=train_dataloader, dev_dataloader=dev_dataloader) @classmethod def from_pretrained(cls, model_constructor, pretrained_system_name_or_path, resume_training=False, input_dir=None, output_dir=None, top_k=None, **kwargs): # load checkpoints checkpoint = torch.load(pretrained_system_name_or_path) meta = {k: v for k, v in checkpoint.items() if k != 'state_dict'} # load model model = model_constructor.from_pretrained(pretrained_system_name_or_path) # # load arguments solver_args = meta["solver_construct_params_dict"] solver_args["model"] = model # update some parameters solver_args["device"] = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") solver_args["n_gpu"] = torch.cuda.device_count() old_batch_size = solver_args["per_gpu_batch_size"] * max(1, solver_args["n_gpu"]) solver_args["batch_size"] = kwargs.pop("batch_size", old_batch_size) # load dataset if resume_training: if input_dir is None or output_dir is None or top_k is None: raise AssertionError("Either input_dir and output_dir (for resuming) is None!") solver_args["input_dir"] = input_dir solver_args["output_dir"] = output_dir solver_args["train_dataloader"] = cls.get_train_dataloader(input_dir, solver_args["batch_size"], top_k) solver_args["dev_dataloader"] = cls.get_dev_dataloader(input_dir, solver_args["batch_size"], top_k) solver_args["top_k"] = top_k return cls(**solver_args) def fit(self, num_eval_per_epoch=5): steps_per_eval = len(self.train_dataloader) // num_eval_per_epoch steps_per_eval = steps_per_eval if steps_per_eval > 0 else 1 self.train(steps_per_eval) # test_dataloader = self.get_test_dataloader(self.input_dir, self.batch_size) # mean_loss, metrics_scores = self.validate(test_dataloader) # logx.msg("Scores on test set: ") # logx.msg(str(metrics_scores)) def setup(self): # put onto cuda self.model = self.model.to(self.device) if self.n_gpu > 1: self.model = torch.nn.DataParallel(self.model) # fix random seed self.fix_random_seed() def fix_random_seed(self): # Set seed random.seed(self.seed) numpy.random.seed(self.seed) torch.manual_seed(self.seed) if self.n_gpu > 0: torch.cuda.manual_seed_all(self.seed) def train(self, steps_per_eval): # TensorBoard for epoch_idx in tqdm(range(self.n_epoch)): self.__train_per_epoch(epoch_idx, steps_per_eval) def validate(self, dataloader): outputs = self.__forward_batch_plus(dataloader) metrics_scores, p = self.get_scores(q=dataloader.dataset.q, output_embeddings=outputs, anchor_idx=dataloader.dataset.anchor_idx, ground_min_dist_square=dataloader.dataset.ground_min_dist_square) return outputs, metrics_scores, p def __train_per_epoch(self, epoch_idx, steps_per_eval): # with tqdm(total=len(self.train_dataloader), desc=f"Epoch {epoch_idx}") as pbar: for batch_idx, batch in enumerate(self.train_dataloader): # assume that the whole input matrix fits the GPU memory global_step = epoch_idx * len(self.train_dataloader) + batch_idx training_set_loss, training_set_outputs, training_set_p = self.__training_step(batch) if batch_idx + 1 == len(self.train_dataloader): # validate and save checkpoints developing_set_outputs, developing_set_metrics_scores, developing_set_p = \ self.validate(self.dev_dataloader) # TODO: this part can be optimized to batchwise computing if self.record_training_loss_per_epoch: training_set_metrics_scores, training_set_p = \ self.get_scores(q=self.train_dataloader.dataset.q, output_embeddings=training_set_outputs, anchor_idx=self.train_dataloader.dataset.anchor_idx, ground_min_dist_square=self.train_dataloader.dataset.ground_min_dist_square) training_set_metrics_scores['train_p'] = training_set_p.cpu(), else: training_set_metrics_scores = dict() training_set_metrics_scores['tr_loss'] = training_set_loss.item() if self.scheduler: training_set_metrics_scores['learning_rate'] = self.scheduler.get_last_lr()[0] logx.metric('train', training_set_metrics_scores, global_step) logx.metric('val', developing_set_metrics_scores, global_step) if self.n_gpu > 1: save_dict = {"model_construct_dict": self.model.model_construct_dict, "model_state_dict": self.model.module.state_dict(), "solver_construct_params_dict": self.construct_param_dict, "optimizer": self.optimizer.state_dict(), "train_metrics_scores": training_set_metrics_scores, "train_output_embeddings": training_set_outputs.cpu(), "train_q": self.train_dataloader.dataset.q.cpu(), "train_anchor_idx": self.train_dataloader.dataset.anchor_idx.cpu(), "dev_metrics_scores": developing_set_metrics_scores, "dev_output_embeddings": developing_set_outputs.cpu(), "dev_q": self.dev_dataloader.dataset.q.cpu(), "dev_p": developing_set_p.cpu(), "dev_anchor_idx": self.dev_dataloader.dataset.anchor_idx.cpu()} else: save_dict = {"model_construct_dict": self.model.model_construct_dict, "model_state_dict": self.model.state_dict(), "solver_construct_params_dict": self.construct_param_dict, "optimizer": self.optimizer.state_dict(), "train_metrics_scores": training_set_metrics_scores, "train_output_embeddings": training_set_outputs.cpu(), "train_q": self.train_dataloader.dataset.q.cpu(), "train_anchor_idx": self.train_dataloader.dataset.anchor_idx.cpu(), "dev_metrics_scores": developing_set_metrics_scores, "dev_output_embeddings": developing_set_outputs.cpu(), "dev_q": self.dev_dataloader.dataset.q.cpu(), "dev_p": developing_set_p.cpu(), "dev_anchor_idx": self.dev_dataloader.dataset.anchor_idx.cpu()} logx.save_model(save_dict, metric=developing_set_metrics_scores['Recall@1'], epoch=global_step, higher_better=True) # pbar.update(1) def batch_to_device(self, batch): return batch.to(self.device) def __training_step(self, batch): """ a single forwarding step for training :param self: a solver :param batch: a batch of input for model :return: training loss for this batch """ self.model.zero_grad() # reset gradient self.model.train() outputs = self.__forwarding_step(batch) # p = input_inverse_similarity(x=outputs.to(self.device), # anchor_idx=self.train_dataloader.dataset.anchor_idx.to(self.device), # min_dist_square=self.train_dataloader.dataset.ground_min_dist_square.to(self.device), # approximate_min_dist=False).cpu() p = output_inverse_similarity(y=outputs.to(self.device), anchor_idx=self.train_dataloader.dataset.anchor_idx.to(self.device)).cpu() loss = self.criterion(p.to(self.device), self.train_dataloader.dataset.q.to(self.device), lam=1) if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. loss.backward() # pbar.set_postfix_str(f"tr_loss: {loss.item():.5f}") # update weights self.optimizer.step() # self.scheduler.step() # Update learning rate schedule return loss.cpu().detach(), outputs.cpu().detach(), p.cpu().detach() def __forwarding_step(self, batch): """ a single forwarding pass e.g. meta_features, input_ids, input_mask, segment_ids, labels = batch batch_input = {'meta_features': meta_features.to(self.device), 'input_ids': input_ids.to(self.device), 'attention_mask': input_mask.to(self.device), 'token_type_ids': segment_ids.to(self.device), 'labels': labels} logits = self.model(**batch_input) return logits, labels :param self: a solver :param batch: a batch of input for model :return: logits and ground true label for this batch """ batch_inputs = self.batch_to_device(batch) outputs = self.model(batch_inputs) return outputs.cpu() @staticmethod def static_get_scores(q, output_embeddings, anchor_idx, device, criterion, top_k, ground_min_dist_square): """ :param q: torch.tensor (n, ) input similarity :param output_embeddings: torch.tensor (n, d2) output embeddings from the network :param anchor_idx: (n, m) each point has m points as anchors :param device: device for computation :param criterion: evaluation criterion :param top_k: the top-k considered :return: """ scores = dict() # calculate loss # p = input_inverse_similarity(x=output_embeddings.to(device), # anchor_idx=anchor_idx, # min_dist_square=ground_min_dist_square.to(device), # approximate_min_dist=False).cpu() p = output_inverse_similarity(y=output_embeddings.to(device), anchor_idx=anchor_idx).cpu() scores['loss'] = criterion(p.to(device), q.to(device), lam=1).cpu().detach().item() # recalls _, topk_neighbors, _ = nearest_neighbors(x=output_embeddings, top_k=max(20, top_k), device=device) ground_nn = anchor_idx[:, 0].unsqueeze(dim=1) for r in [1, 5, 10, 20]: # r should < 20 top_predictions = topk_neighbors[:, :r] # (n, r) scores[f'Recall@{r}'] = \ torch.sum(top_predictions == ground_nn, dtype=torch.float).item() / ground_nn.shape[0] return scores, p def get_scores(self, q, output_embeddings, anchor_idx, ground_min_dist_square=None): """ :param q: torch.tensor (n, ) input similarity :param output_embeddings: torch.tensor (n, d2) output embeddings from the network :param anchor_idx: (n, m) each point has m points as anchors :return: """ return self.static_get_scores(q, output_embeddings, anchor_idx, self.device, self.criterion, self.top_k, ground_min_dist_square) def __forward_batch_plus(self, dataloader, verbose=False): preds_list = list() if verbose: with tqdm(total=len(dataloader), desc=f"Evaluating: ") as pbar: with torch.no_grad(): for batch_idx, batch in enumerate(dataloader): outputs = self.__forwarding_step(batch) preds_list.append(outputs) pbar.update(1) else: with torch.no_grad(): for batch_idx, batch in enumerate(dataloader): outputs = self.__forwarding_step(batch) preds_list.append(outputs) # collect the whole chunk reduced_embeddings = torch.cat(preds_list, dim=0) return reduced_embeddings @classmethod def get_train_dataloader(cls, input_dir, batch_size, top_k): return cls.__set_dataset(input_dir, 'train', batch_size, top_k) @classmethod def get_dev_dataloader(cls, input_dir, batch_size, top_k): return cls.__set_dataset(input_dir, 'dev', batch_size, top_k) @classmethod def get_test_dataloader(cls, input_dir, batch_size, top_k): return cls.__set_dataset(input_dir, 'test', batch_size, top_k) @classmethod def __set_dataset(cls, input_dir, split_name, batch_size, top_k): encoded_data_path = input_dir / f'{split_name}.pth.tar' if encoded_data_path.is_file(): dataset = torch.load(encoded_data_path) print(f'load dataset from {encoded_data_path}') if dataset.top_k >= top_k and dataset.top_k >= 20: return DataLoader(dataset, shuffle=False, batch_size=batch_size, pin_memory=True) else: print(f'inconsistent top_k: {dataset.top_k} vs {top_k}') dataset = VecDataSet.from_df(input_dir / f'{split_name}.csv', max(top_k, 20)) torch.save(dataset, encoded_data_path) print(f'construct dataset from dataframe and save dataset at ({encoded_data_path})') return DataLoader(dataset, shuffle=False, batch_size=batch_size, pin_memory=True) # def infer(self, data_path): # data_path = Path(data_path) # dataset = cls.__set_dataset(data_, 'test', batch_size) # dataloader = DataLoader(dataset, shuffle=False, batch_size=self.batch_size) # preds, golds = self.__forward_batch_plus(dataloader, verbose=True) # return preds, golds @staticmethod def get_optimizer(named_parameters, learning_rate, weight_decay, train_dataloader, n_epoch): """ get the optimizer and the learning rate scheduler :param named_parameters: :param learning_rate: :param weight_decay: :param train_dataloader: :param n_epoch: :return: """ # Prepare optimizer and schedule (linear warm-up and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in named_parameters if not any( nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': weight_decay}, {'params': [p for n, p in named_parameters if any( nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0} ] optimizer = torch.optim.AdamW(params=optimizer_grouped_parameters, lr=learning_rate, weight_decay=weight_decay) ''' # get a linear scheduler num_steps_epoch = len(train_dataloader) ReduceLROnPlateau(self.optimizer, 'min') num_train_optimization_steps = int(num_steps_epoch * n_epoch) + 1 warmup_steps = 100 scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps) ''' return optimizer, None @staticmethod def get_solver_arguments(): parser = argparse.ArgumentParser(description='Arguments for Eigenmetric Regression') # model parameters # solver parameters parser.add_argument('--input_dir', type=Path, default=None, help='the input directory to the input data') parser.add_argument('--output_dir', type=Path, default=None, help='the output directory for saving the regressor') parser.add_argument('--learning_rate', type=float, default=1e-5, help='learning rate for training') parser.add_argument('--n_epoch', type=int, default=3, help='the number of epochs for training') parser.add_argument('--num_eval_per_epoch', type=int, default=5, help='number of evaluation per epoch') parser.add_argument('--per_gpu_batch_size', type=int, default=32, help='the batch size per gpu') parser.add_argument('--weight_decay', type=float, default=1e-6, help='weight_decay for the optimizer (l2 regularization)') parser.add_argument('--seed', type=int, default=42, help='the random seed of the whole process') parser.add_argument('--top_k', type=int, default=20, help='the top-k nearest neighbors that are considered.') parser.add_argument('--hidden_dims_list', type=str, help='list of hidden dimensions') parser.add_argument('--add_shortcut', type=bool, default=False, help='whether to add shortcut connections') args = parser.parse_args() return args ``` #### File: src/models/distance_modeling.py ```python from collections import OrderedDict import torch from torch import nn from torch.nn import functional as F import pandas as pd from torch.utils.data import Dataset from tqdm.auto import tqdm STABLE_FACTOR = 1e-8 def far_func(sorted_dist: torch.tensor, indices: torch.tensor): return sorted_dist[:, -1].view(-1, 1), indices[:, -1].view(-1, 1) def close_func(sorted_dist: torch.tensor, indices: torch.tensor): return sorted_dist[:, 1].view(-1, 1), indices[:, 1].view(-1, 1) def calculate_distance(x, close_fn, far_fn): device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") batch_size = 512 x_device = x.to(device) if x.shape[0] * x.shape[1] < batch_size * 200: # direct computes the whole matrix # TODO: we first assume memory fits in memory. Later, we can process the data in batches. dist = torch.cdist(x1=x_device, x2=x_device, p=2) # (n, n) sorted_dist, indices = torch.sort(dist, dim=1, descending=False) sorted_dist, indices = sorted_dist.cpu(), indices.cpu() anchor_idx = torch.arange(x.shape[0]) # (n,) # the 0-th column is the distance to oneself close_distance, close_idx = close_fn(sorted_dist, indices) # (n, r) far_distance, far_idx = far_fn(sorted_dist, indices) # (n, r) else: num_iter = x.shape[0] // batch_size + 1 anchor_idx_list, close_idx_list, far_idx_list = list(), list(), list() close_distance_list, far_distance_list = list(), list() for i in tqdm(torch.arange(num_iter), desc='create triplets'): batch_x = x[i * batch_size: (i + 1) * batch_size, :].to(device) dist = torch.cdist(x1=batch_x, x2=x_device, p=2) # (n, n) sorted_dist, indices = torch.sort(dist, dim=1, descending=False) sorted_dist, indices = sorted_dist, indices anchor_idx = torch.arange(i * batch_size, i * batch_size + batch_x.shape[0]) # (n,) # assert torch.equal(anchor_idx, indices[:, 0].cpu()) # the 0-th column is the distance to oneself close_distance, close_idx = close_fn(sorted_dist, indices) # (n,) far_distance, far_idx = far_fn(sorted_dist, indices) # (n, r) anchor_idx_list.append(anchor_idx.cpu()) close_idx_list.append(close_idx.cpu()) far_idx_list.append(far_idx.cpu()) close_distance_list.append(close_distance.cpu()) far_distance_list.append(far_distance.cpu()) anchor_idx = torch.cat(anchor_idx_list, dim=0) close_idx = torch.cat(close_idx_list, dim=0) far_idx = torch.cat(far_idx_list, dim=0) close_distance = torch.cat(close_distance_list, dim=0) far_distance = torch.cat(far_distance_list, dim=0) return anchor_idx, close_idx, far_idx, close_distance, far_distance def make_pairs(x, close_fn, far_fn): anchor_idx, close_idx, far_idx, close_distance, far_distance = calculate_distance(x, close_fn, far_fn) n, r = close_idx.shape anchor_idx_flatten = anchor_idx.reshape(-1, 1).expand(-1, r).reshape(-1, 1) # (n * r, ) close_idx = close_idx.reshape(-1, 1) # (n * r, 1) positive_pairs = torch.cat((anchor_idx_flatten, close_idx), dim=1) # (n, 2) positive_labels = torch.ones(n * r, dtype=torch.int64) # (n, ) n, r = far_idx.shape far_idx = far_idx.reshape(-1, 1) # (n * r, ) anchor_idx_flatten = anchor_idx.reshape(-1, 1).expand(-1, r).reshape(-1, 1) # (n * r, ) negative_pairs = torch.cat((anchor_idx_flatten, far_idx), dim=1) # (n * r, 2) negative_labels = torch.zeros(n * r, dtype=torch.int64) # (n * r, ) pairs = torch.cat((positive_pairs, negative_pairs), dim=0) labels = torch.cat((positive_labels, negative_labels), dim=0) return pairs, labels, close_distance, far_distance class SurveyorDataSet(Dataset): def __init__(self, data, pairs, labels, q): self.data = data self.pairs = pairs self.labels = labels self.q = q @classmethod def from_df(cls, path_to_dataframe, close_fn=close_func, far_fn=far_func): data = torch.from_numpy(pd.read_csv(path_to_dataframe, header=None).to_numpy()).to(torch.float32) pairs, labels, close_distance, far_distance = make_pairs(data, close_fn, far_fn) if close_distance[pairs[:, 0]].shape[1] == 1: q = thesis_input_inverse_similarity(data[pairs[:, 0]], data[pairs[:, 1]], close_distance[pairs[:, 0]].reshape(-1), close_distance[pairs[:, 1]].reshape(-1)) else: q = thesis_input_inverse_similarity(data[pairs[:, 0]], data[pairs[:, 1]], close_distance[pairs[:, 0], 0].reshape(-1), close_distance[pairs[:, 1], 0].reshape(-1)) return cls(data, pairs, labels, q) @classmethod def from_dataset(cls, path_to_tensor): return torch.load(path_to_tensor) def __len__(self): return len(self.labels) def __getitem__(self, idx): indexs = self.pairs[idx] left = self.data[indexs[0]] right = self.data[indexs[1]] return left, right, self.labels[idx], self.q[idx] class Surveyor(nn.Module): def __init__(self, dim_in=200, dim_out=20): super(Surveyor, self).__init__() self.encoder = nn.Sequential( OrderedDict([ ('bn0', nn.BatchNorm1d(dim_in)), ('relu0', nn.ReLU(inplace=True)), ('fc0', nn.Linear(dim_in, 500)), ('bn1', nn.BatchNorm1d(500)), ('relu1', nn.ReLU(inplace=True)), ('fc1', nn.Linear(500, 100)), ('bn2', nn.BatchNorm1d(100)), ('relu2', nn.ReLU(inplace=True)), ('fc2', nn.Linear(100, 20)), ('bn3', nn.BatchNorm1d(20)), ('relu3', nn.ReLU(inplace=True)), ('fc3', nn.Linear(20, 20)), ('bn4', nn.BatchNorm1d(20)), ('relu4', nn.ReLU(inplace=True)), ('fc4', nn.Linear(20, 20)), ('bn5', nn.BatchNorm1d(20)), ('relu5', nn.ReLU(inplace=True)), ('fc5', nn.Linear(20, dim_out)), ]) ) self.decoder = nn.Sequential( OrderedDict([ ('bn1', nn.BatchNorm1d(2 * dim_out)), ('relu1', nn.ReLU()), ('fc1', nn.Linear(2 * 20, 20)), ('bn2', nn.BatchNorm1d(20)), ('relu2', nn.ReLU()), ('fc2', nn.Linear(20, 2)), ])) def encode_batch(self, x): return self.encoder(x) def decode_batch(self, out1, out2): p = thesis_output_inverse_similarity(out1, out2) x = torch.cat((out1, out2), dim=1) out = self.decoder(x) logits = F.softmax(out, dim=1) return logits, p def forward(self, x1, x2, q, labels=None, lam=1): out1 = self.encode_batch(x1) out2 = self.encode_batch(x2) logits, p = self.decode_batch(out1, out2) if labels is not None: loss_fn = nn.CrossEntropyLoss() loss = loss_fn(logits, labels) + lam * thesis_kl_div_add_mse_loss(p, q) return logits, p, out1, out2, loss return logits, p, out1, out2 def thesis_output_inverse_similarity(y1, y2): dout = torch.sum((y1 - y2) ** 2, dim=1) return 1 / (dout + 1) def thesis_input_inverse_similarity(x1, x2, x1_min_dist, x2_min_dist): din = torch.sum((x1 - x2) ** 2, dim=1) q1 = 1 / ((din / (x1_min_dist ** 2)) + STABLE_FACTOR) q2 = 1 / ((din / (x2_min_dist ** 2)) + STABLE_FACTOR) return (q1 + q2) / 2 def thesis_kl_div_add_mse_loss(p, q, lam=1): """ calculate the sum of kl divergence and mse loss :param p: p in the formula (P20-2) output similarities :param q: q in the formula (P20-2) input similarities :param lam: the constant that balances the influence of two losses :return: torch.tensor of the shape (,) """ return torch.sum(p * torch.log(p / q)) + lam * torch.sum((p - q) ** 2) class RetrieveSystem(object): def __init__(self, distance_measure): self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") distance_measure = distance_measure.to(self.device) self.distance_measure = distance_measure def retrieve_query(self, query, ignore_idx, x_embedded, x_idx, topk=20): query_device = query.reshape(1, -1).to(self.device) cls_distances = list() p_distances = list() with torch.no_grad(): for i, x in zip(x_idx, x_embedded): if ignore_idx is not None and i == ignore_idx: continue x_device = x.reshape(1, -1).to(self.device) logits, p = self.distance_measure.decode_batch(query_device, x_device) cls_distances.append(logits[:, 1].item()) p_distances.append(p.item()) cls_distances = torch.tensor(cls_distances) p_distances = torch.tensor(p_distances) _, cls_nn_idx = cls_distances.sort(descending=True) _, p_nn_idx = p_distances.sort(descending=True) return cls_nn_idx[:topk], p_nn_idx[:topk] def retrieve_corpus(self, corpus, block_list, database): cls_pred_nn_top, p_distances_nn_top = list(), list() x_idx = range(database.shape[0]) for ignore_idx, query in tqdm(zip(block_list, corpus), total=len(block_list), desc='retrieve each query'): cls_distances, p_distances = self.retrieve_query(query, ignore_idx, database, x_idx, 20) cls_pred_nn_top.append(cls_distances.reshape(1, -1)) p_distances_nn_top.append(p_distances.reshape(1, -1)) cls_pred_nn_top = torch.cat(cls_pred_nn_top, dim=0) p_distances_nn_top = torch.cat(p_distances_nn_top, dim=0) return cls_pred_nn_top, p_distances_nn_top def recall(self, pred, gold, at_n=None): results = dict() if at_n is None: at_n = [1, 5, 10, 20] for n in at_n: recall = float((pred[:, :n] == gold.reshape(-1, 1)).sum().item()) / len(gold) results[f'recall@{n}'] = recall return results ``` #### File: models/level_kv_div/network.py ```python from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F class EmbeddingNet(nn.Module): def __init__(self): super(EmbeddingNet, self).__init__() self.fc = nn.Sequential( OrderedDict([ ('bn0', nn.BatchNorm1d(128)), ('relu0', nn.ReLU(inplace=True)), ('fc0', nn.Linear(128, 128)), ('bn1', nn.BatchNorm1d(128)), ('relu1', nn.ReLU(inplace=True)), ('fc1', nn.Linear(128, 64)), ('bn2', nn.BatchNorm1d(64)), ('relu2', nn.ReLU(inplace=True)), ('fc2', nn.Linear(64, 64)), ('bn3', nn.BatchNorm1d(64)), ('relu3', nn.ReLU(inplace=True)), ('fc3', nn.Linear(64, 64)), ('bn4', nn.BatchNorm1d(64)), ('relu4', nn.ReLU(inplace=True)), ('fc4', nn.Linear(64, 32)), ('bn5', nn.BatchNorm1d(32)), ('relu5', nn.ReLU(inplace=True)), ('fc5', nn.Linear(32, 32)), ('bn6', nn.BatchNorm1d(32)), ('relu6', nn.ReLU(inplace=True)), ('fc6', nn.Linear(32, 16)), ('bn7', nn.BatchNorm1d(16)), ('relu7', nn.ReLU(inplace=True)), ('fc7', nn.Linear(16, 16)), ('bn8', nn.BatchNorm1d(16)), ]) ) def forward(self, x): output = self.fc(x) return output def get_embedding(self, x): return self.forward(x) class EmbeddingNetL2(EmbeddingNet): def __init__(self): super(EmbeddingNetL2, self).__init__() def forward(self, x): output = super(EmbeddingNetL2, self).forward(x) output /= output.pow(2).sum(1, keepdim=True).sqrt() return output def get_embedding(self, x): return self.forward(x) class SiameseNet(nn.Module): def __init__(self, embedding_net): super(SiameseNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) return output1, output2 def get_embedding(self, x): return self.embedding_net(x) ``` #### File: models/tSNE/tSNE.py ```python from sklearn.manifold import TSNE from argparse import ArgumentParser from pathlib import Path import joblib import torch from src.data.utils import import_raw_data from src.models.DenseNetwork.loss import nearest_neighbors, input_inverse_similarity, kl_div_add_mse_loss from src.models.DenseNetwork.models import Solver import os def main(): parser = ArgumentParser(description='Arguments for dataset processing') parser.add_argument('--input_path', type=Path, required=True, default=None, help='the input path to the input data') parser.add_argument('--output_dir', type=Path, required=True, default=None, help='the output directory to save sampled data') parser.add_argument('--n_iter', type=int, required=True, default=2000, help='the number of rows to sample') parser.add_argument('--dim_out', type=int, default=20, help='n components to remain') parser.add_argument('--perplexity', type=int, default=40, help='perplexity') parser.add_argument('--seed', type=int, default=42, help='the random seed of the whole process') args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError(f"Output directory ({args.output_dir}) already exists " "and is not empty") input_embeddings = import_raw_data(args.input_path) model = TSNE(n_components=args.dim_out, n_iter=args.n_iter, method='exact', perplexity=40, verbose=2, random_state=args.seed) output_embeddings = model.fit_transform(input_embeddings) output_embeddings = torch.from_numpy(output_embeddings) # evaluation input_embeddings = torch.from_numpy(input_embeddings.to_numpy()) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') ground_min_dist_square, anchor_idx, topk_dists = nearest_neighbors(x=input_embeddings, top_k=20, device=device) q = input_inverse_similarity(input_embeddings, anchor_idx, ground_min_dist_square) scores, p = Solver.static_get_scores(q, output_embeddings, anchor_idx, device, kl_div_add_mse_loss, 20, ground_min_dist_square) for k, v in scores.items(): print(f'{k} = {v}') args.output_dir.mkdir(exist_ok=True, parents=True) torch.save({'output_embeddings': output_embeddings, 'input_embeddings': input_embeddings, 'p': p, 'q': q, 'scores': scores, 'tsne-args': args, 'ground_min_dist_square': ground_min_dist_square, 'anchor_idx': anchor_idx, 'topk_dists': topk_dists }, args.output_dir / 'embeddings.pth.tar') joblib.dump(model, args.output_dir / 'tsne-model.pth.tar') if __name__ == '__main__': main() ``` #### File: models/utils/distance.py ```python import torch from tqdm.auto import tqdm from torch.nn import functional as F def nearest_neighbors(x, top_k, device): """ calculate the nearest neighbors of x, return the :param x: for matrix to calculate nearest neighbor :param top_k: number of the nearest neighbor to be returned :param device: device used during computation :return: ground_min_dist_square: torch.tensor (n, ) distance to the nearest neighbor topk_neighbors: torch.tensor (n, top_k) the index of the top-k nearest neighbors; """ batch_size = 2000 x_to_device = x.to(device) if x_to_device.shape[0] * x_to_device.shape[1] < batch_size * 200: # direct computes the whole matrix dist = torch.cdist(x1=x_to_device, x2=x_to_device, p=2) # (n, n) sorted_dist, indices = torch.sort(dist, dim=1, descending=False) ground_min_dist_square = sorted_dist[:, 1] # the 0-th column is the distance to oneself topk_neighbors = indices[:, 1:1 + top_k] topk_dists = sorted_dist[:, 1:1 + top_k] else: # calculate the nearest neighbors in batches num_iter = x_to_device.shape[0] // batch_size + 1 topk_neighbors_list = list() ground_min_dist_square_list = list() sorted_dist_list = list() for i in tqdm(torch.arange(num_iter), desc='computing nearest neighbors'): batch_x = x_to_device[i * batch_size: (i + 1) * batch_size, :] dist = torch.cdist(x1=batch_x, x2=x_to_device, p=2) # (n, n) sorted_dist, indices = torch.sort(dist, dim=1, descending=False) batch_ground_min_dist_square = sorted_dist[:, 1] # the 0-th column is the distance to oneself batch_topk_neighbors = indices[:, 1:1 + top_k] topk_neighbors_list.append(batch_topk_neighbors.cpu()) ground_min_dist_square_list.append(batch_ground_min_dist_square.cpu()) sorted_dist_list.append(sorted_dist[:, 1:1 + top_k].cpu()) ground_min_dist_square = torch.cat(ground_min_dist_square_list, dim=0) topk_neighbors = torch.cat(topk_neighbors_list, dim=0) topk_dists = torch.cat(sorted_dist_list, dim=0) return ground_min_dist_square.cpu(), topk_neighbors.cpu(), topk_dists.cpu() def euclidean_softmax_similarity(vec_i, vec_j, ground_min_dist_square_i=None, two_eps_square=1): """ calculate inverse similarity for inputs: 1 / ((d_{in}(x_i, x_j))^2 / d_i^2 + eps) :param vec_i: torch.tensor of the shape (n, m) xi :param vec_j: torch.tensor of the shape (n, m) xj :param two_eps_square: 2 * (epsilon)^2 :param ground_min_dist_square_i: :return: q: qij in formula (P20-3) torch.tensor of the shape (n, m) """ din = (vec_i.unsqueeze(dim=1) - vec_j).square().sum(dim=2) # (n, m) sim_j_given_i = F.softmin(din / two_eps_square, dim=1) # (n, m) return sim_j_given_i def kl_div_loss(input_similarity, output_similarity): """ calculate the sum of kl divergence and mse loss :param input_similarity: input similarity :param output_similarity: output similarity :return: torch.tensor of the shape (,) """ return torch.sum(input_similarity * torch.log(input_similarity / output_similarity)) def precomputing(x, top_k, device): """ compute ground true nearest neighbors :param x: :param top_k: top-k neighbors that are considered :param device: device used during computation :return: anchor_idx: each point has m points as anchors (in the case, we pick m near neighbors of x as anchors) input_similarity: input_similarity """ ground_min_dist_square, anchor_idx, topk_dists = nearest_neighbors(x, top_k, device) xi = x xj = x[anchor_idx, :] input_similarity = euclidean_softmax_similarity(xi, xj, ground_min_dist_square) return anchor_idx, input_similarity, ground_min_dist_square, topk_dists ``` #### File: models/vanilla/model.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.manifold import TSNE import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from models.vanilla.settings import Global from models.vanilla.similarity import compute_similarity, compute_distance from models.vanilla.loss import InvLoss from scipy.spatial import distance_matrix from models.vanilla.utils import timer ## CHECK FOR GPU'S ## CUDA = torch.cuda.is_available() if CUDA: device = torch.device("cuda:0") print("Running on the GPU") else: device = torch.device("cpu") print("Running on the CPU") class SortDB: MAX_LEN = 20 def __init__(self): self.array = [] self.n = len(self.array) def add(self, elem): # elem = (dist, index) if self.n == 0 or self.n < SortDB.MAX_LEN or elem[0] < self.array[-1][0]: arr = self.array + [elem] self.array = sorted(arr, key=lambda x: x[0]) if len(self.array) > SortDB.MAX_LEN: self.array = self.array[:-1] self.n = len(self.array) class Module(nn.Module, Global): def __init__(self): super().__init__() Global.__init__(self) class DeepNet(Module): def __init__(self, input_size, output_size, hidden_sizes): super().__init__() self.input_size = input_size self.output_size = output_size self.hidden_layers = [] size_1 = input_size for hidden_size in hidden_sizes: size_2 = hidden_size self.hidden_layers.append(nn.Linear(size_1, size_2).to(device)) size_1 = hidden_size self.output = nn.Linear(size_1, output_size).to(device) def forward(self, out): for layer in self.hidden_layers: out = F.relu(layer(out)) out = self.output(out) return out class Reducer(Global): def __init__(self, name): super().__init__() self.name = name self.correct = {1:[],5:[],10:[],20:[]} self.cross_correct = {1:[],5:[],10:[],20:[]} def fit(self, data_df, args): self.out('Needs to be overriden') def transform(self, data_df): self.out('Needs to be overriden') def create_epoch_plot(self, losses, filename=None): epochs = np.array(list(range(1,len(losses)+1))) self.increase_plots() plt.figure(self.num_of_plots) self.save_plot_name(self.num_of_plots, filename) ####### plt.plot(epochs, losses) plt.grid(True) plt.title('Train Loss Per Epoch') def create_plot(self, data_df, name=None, filename=None): self.increase_plots() plt.figure(self.num_of_plots) self.save_plot_name(self.num_of_plots, filename) ####### projected_data = self.transform(data_df) plt.scatter(projected_data[:, 0], projected_data[:, 1]) plt.grid(True) if name is None: plt.title(self.name) else: plt.title(name) def create_r_plot(self, R, name='Distribution of R values', filename=None): self.increase_plots() plt.figure(self.num_of_plots) self.save_plot_name(self.num_of_plots, filename) ####### plt.hist(R,bins=80) plt.grid(True) if name is None: plt.title(self.name) else: plt.title(name) @timer def find_nearest_neighbors(self, data_df): self.out('\nComputing neighbors.') data_np = data_df.to_numpy() print('data_np shape', data_np.shape) dist = distance_matrix(data_np, data_np) nearest_neighbor_matrix = np.argpartition(dist, 21, axis=1)[:,:21] # d(x,x)=0, so this needs to be ommitted nearest_neighbors = {i:SortDB() for i in range(data_df.shape[0])} for i in range(data_df.shape[0]): for j in range(20): neighbor = nearest_neighbor_matrix[i,j] if not neighbor == i: nearest_neighbors[i].add((dist[i,neighbor]**2, neighbor)) return nearest_neighbors @timer def find_nearest_cross_neighbors(self, train_data_df, test_data_df): self.out('\nComputing cross neighbors.') dist = distance_matrix(test_data_df.to_numpy(), train_data_df.to_numpy()) nearest_neighbor_matrix = np.argpartition(dist, 20, axis=1)[:,:20] nearest_neighbors = {i:SortDB() for i in range(test_data_df.shape[0])} for i in range(test_data_df.shape[0]): for j in range(20): neighbor = nearest_neighbor_matrix[i,j] nearest_neighbors[i].add((dist[i,neighbor]**2, neighbor)) return nearest_neighbors def count_neighbors(self, data_df, test=False): if test: nearest_neighbors = self.actual_test_nearest_neighbors else: nearest_neighbors = self.actual_train_nearest_neighbors N = data_df.shape[0] # project data # projected_data_df = pd.DataFrame(self.transform(data_df)) # find nearest neighbors of projected data # projected_nearest_neighbors = self.find_nearest_neighbors(projected_data_df) # count corrects # correct = [i for i in range(N) if nearest_neighbors[i].array[0][1] == projected_nearest_neighbors[i].array[0][1]] correct_5 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array[:5]]] correct_10 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array[:10]]] correct_20 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array]] if not test: msg = 'Train' else: msg = 'Test' msg1 = '{} correct neighbors: {} / {} ({:.2f}%)'.format(msg, len(correct), N, 100 * len(correct) / N) msg2 = '{} correct neighbors in top 5: {} / {} ({:.2f}%)'.format(msg, len(correct_5), N, 100 * len(correct_5) / N) msg3 = '{} correct neighbors in top 10: {} / {} ({:.2f}%)'.format(msg, len(correct_10), N, 100 * len(correct_10) / N) msg4 = '{} correct neighbors in top 20: {} / {} ({:.2f}%)'.format(msg, len(correct_20), N, 100 * len(correct_20) / N) for msg in [msg1, msg2, msg3, msg4]: self.out(msg) if test: R = [compute_distance(data_df.iloc[i], data_df.iloc[projected_nearest_neighbors[i].array[0][1]]) / compute_distance(data_df.iloc[i], data_df.iloc[nearest_neighbors[i].array[0][1]]) - 1 for i in range(N)] self.R_data = R self.correct[1].append((msg, len(correct), N, 100 * len(correct) / N)) self.correct[5].append((msg, len(correct_5), N, 100 * len(correct_5) / N)) self.correct[10].append((msg, len(correct_10), N, 100 * len(correct_10) / N)) self.correct[20].append((msg, len(correct_20), N, 100 * len(correct_20) / N)) return '\n'.join([msg1, msg2, msg3, msg4]) def count_cross_neighbors(self, train_data_df, test_data_df, test=False): if test: nearest_neighbors = self.actual_test_cross_nearest_neighbors else: nearest_neighbors = self.actual_train_cross_nearest_neighbors N = test_data_df.shape[0] # project data # projected_train_data_df = pd.DataFrame(self.transform(train_data_df)) projected_test_data_df = pd.DataFrame(self.transform(test_data_df)) # find nearest neighbors of projected data # projected_nearest_neighbors = self.find_nearest_cross_neighbors(projected_train_data_df, projected_test_data_df) # count corrects # correct = [i for i in range(N) if nearest_neighbors[i].array[0][1] == projected_nearest_neighbors[i].array[0][1]] correct_5 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array[:5]]] correct_10 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array[:10]]] correct_20 = [i for i in range(N) if nearest_neighbors[i].array[0][1] in [x[1] for x in projected_nearest_neighbors[i].array]] if not test: msg = 'Train' else: msg = 'Test' R = [compute_distance(test_data_df.iloc[i], train_data_df.iloc[projected_nearest_neighbors[i].array[0][1]]) / compute_distance(test_data_df.iloc[i], train_data_df.iloc[nearest_neighbors[i].array[0][1]]) - 1 for i in range(N)] self.cross_R_data = R class Net(Module, Reducer): def __init__(self, hidden_model, input_size, output_size, hidden_sizes): super().__init__() Reducer.__init__(self, 'NET') self.input_size = input_size self.output_size = output_size self.model = hidden_model(input_size, output_size, hidden_sizes).to(device) def forward(self, x): x = x.to(device) out = self.model(x) return out def transform(self, data_df): X = torch.tensor(np.array(data_df)).float() output = self.forward(X) return output.cpu().data.numpy() def fit(self, data_df, args): if Global.IN_SAMPLE_TESTING: self.actual_train_nearest_neighbors = self.find_nearest_neighbors(data_df) # Prepare inputs to fit and params # X = torch.tensor(np.array(data_df)).float() N = X.shape[0] self.train() epochs = args['epochs'] criterion = InvLoss(args['lambda']) optimizer = optim.Adam(self.parameters(), lr=args['learning_rate']) # store the minimum square distances # min_dist_dict = {i:None for i in range(N)} self.out('\nFitting the model...') losses = [] for epoch in range(epochs): running_loss = 0 self.out('EPOCH: {}'.format(epoch+1)) for i in self.tqdm(np.random.permutation(N)): input1 = X[i] # get random elem, diff from i # j = i while j == i: j = random.randint(0,N-1) input2 = X[j] # get minimum distance squares so far # if min_dist_dict[i] is None: min_dist_square_i = None else: min_dist_square_i = min_dist_dict[i][0] if min_dist_dict[j] is None: min_dist_square_j = None else: min_dist_square_j = min_dist_dict[j][0] # compute similarities # sim_i, dist_square = compute_similarity(data_df.iloc[i], data_df.iloc[j], min_dist_square_i) sim_j, _ = compute_similarity(data_df.iloc[j], data_df.iloc[i], min_dist_square_j) sim = (sim_i + sim_j) / 2 sim = sim.reshape((1)) # pass inputs from model # output1 = self.forward(input1) output2 = self.forward(input2) # update storage # if min_dist_dict[i] is None or dist_square < min_dist_dict[i][0]: min_dist_dict[i] = (dist_square, j) if min_dist_dict[j] is None or dist_square < min_dist_dict[j][0]: min_dist_dict[j] = (dist_square, i) # compute loss and backpropagate # loss = criterion(output1, output2, sim) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() self.out('Train loss: {:.2f}'.format(running_loss)) losses.append(running_loss) # test after every epoch # if Global.IN_SAMPLE_TESTING: self.count_neighbors(data_df, test=False) # plot loss per epoch # if args['to_plot']: losses = np.array(losses) self.create_epoch_plot(losses, filename='loss') return self def test(self, train_data_df, test_data_df): self.actual_test_nearest_neighbors = self.find_nearest_neighbors(test_data_df) self.actual_test_cross_nearest_neighbors = self.find_nearest_cross_neighbors(train_data_df, test_data_df) self.count_neighbors(test_data_df, test=True) self.count_cross_neighbors(train_data_df, test_data_df, test=True) self.create_r_plot(self.R_data, filename='r_hist') self.create_r_plot(self.cross_R_data, filename='r_cross_hist') return self.R_data, self.cross_R_data, self.correct ``` #### File: src/toolkit/network.py ```python from collections import OrderedDict import torch.nn as nn import torch import torch.nn.functional as F class EmbeddingNet(nn.Module): def __init__(self): super(EmbeddingNet, self).__init__() self.fc = nn.Sequential( OrderedDict([ ('bn0', nn.BatchNorm1d(128)), ('relu0', nn.ReLU(inplace=True)), ('fc0', nn.Linear(128, 128)), ('bn1', nn.BatchNorm1d(128)), ('relu1', nn.ReLU(inplace=True)), ('fc1', nn.Linear(128, 64)), ('bn2', nn.BatchNorm1d(64)), ('relu2', nn.ReLU(inplace=True)), ('fc2', nn.Linear(64, 64)), ('bn3', nn.BatchNorm1d(64)), ('relu3', nn.ReLU(inplace=True)), ('fc3', nn.Linear(64, 64)), ('bn4', nn.BatchNorm1d(64)), ('relu4', nn.ReLU(inplace=True)), ('fc4', nn.Linear(64, 32)), ('bn5', nn.BatchNorm1d(32)), ('relu5', nn.ReLU(inplace=True)), ('fc5', nn.Linear(32, 32)), ('bn6', nn.BatchNorm1d(32)), ('relu6', nn.ReLU(inplace=True)), ('fc6', nn.Linear(32, 16)), ('bn7', nn.BatchNorm1d(16)), ('relu7', nn.ReLU(inplace=True)), ('fc7', nn.Linear(16, 16)), ('bn8', nn.BatchNorm1d(16)), ]) ) def forward(self, x): output = self.fc(x) return output def get_embedding(self, x): return self.forward(x) class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() self.norm_layer = nn.BatchNorm1d(128) self.encoder = nn.Sequential( OrderedDict([ ('fc0', nn.Linear(128, 128)), ('drop0', nn.Dropout(0.5, True)), ('relu0', nn.ReLU(inplace=True)), ('bn0', nn.BatchNorm1d(128)), ('fc1', nn.Linear(128, 128)), ('drop1', nn.Dropout(0.5, True)), ('relu1', nn.ReLU(inplace=True)), ('bn1', nn.BatchNorm1d(128)), ('fc2', nn.Linear(128, 64)), ('drop2', nn.Dropout(0.5, True)), ('relu2', nn.ReLU(inplace=True)), ('bn2', nn.BatchNorm1d(64)), ('fc3', nn.Linear(64, 32)), ('drop3', nn.Dropout(0.5, True)), ('relu3', nn.ReLU(inplace=True)), ('bn3', nn.BatchNorm1d(32)), ('fc4', nn.Linear(32, 32)), ('drop4', nn.Dropout(0.5, True)), ('relu4', nn.ReLU(inplace=True)), ('bn4', nn.BatchNorm1d(32)), ]) ) self.decoder = nn.Sequential( OrderedDict([ ('fc5', nn.Linear(32, 64)), ('drop5', nn.Dropout(0.5, True)), ('relu5', nn.ReLU(inplace=True)), ('bn5', nn.BatchNorm1d(64)), ('fc6', nn.Linear(64, 128)), ('drop6', nn.Dropout(0.5, True)), ('relu6', nn.ReLU(inplace=True)), ('bn6', nn.BatchNorm1d(128)), ]) ) def forward(self, x): normed_x = self.norm_layer(x) low_embed = self.encoder(normed_x) reconstructed_embed = self.decoder(low_embed) reconstructed_loss = ((normed_x - reconstructed_embed) ** 2).sum(dim=1) return low_embed, reconstructed_loss def get_embedding(self, x): out = self.norm_layer(x) return self.encoder(out) class SiameseNet(nn.Module): def __init__(self, embedding_net): super(SiameseNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) return output1, output2 def get_embedding(self, x): return self.embedding_net(x) class ReconstructSiameseNet(nn.Module): def __init__(self, embedding_net): super(ReconstructSiameseNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2): embedded_x1, reconstruct_loss1 = self.embedding_net(x1) embedded_x2, reconstruct_loss2 = self.embedding_net(x2) assert len(x1.shape) == 2 and len(embedded_x1.shape) == 2 dist1 = torch.sum(((x1 - x2) / x1.shape[1]) ** 2, dim=1) dist2 = torch.sum(((x1 - x2) / embedded_x1.shape[1]) ** 2, dim=1) return (reconstruct_loss1 + reconstruct_loss2 + (dist1 - dist2) ** 2).mean() def get_embedding(self, x): embedded_x, _ = self.embedding_net(x) return embedded_x ```
{ "source": "JiajunBernoulli/douban-short-commentary", "score": 3 }
#### File: douban-short-commentary/utils/cut_sentences.py ```python import re import jieba as jieba from config import IGNORE """ Created by Jiajun·Bernoulli on 2019/1/18 """ ########################传入待切割的句子列表,返回无序的words字典(词-次数)################### def get_words(sentences): words = {} if not IGNORE is None: ignore = IGNORE else: ignore = [] for sentence in sentences: list = jieba.cut(sentence, cut_all=False) for word in list: if word in words: words[str(word)] = int(words.get(str(word)))+1 else: if is_chinese_word(word) and word not in ignore: words[str(word)] = 1 # print(words) return words ########################传入待切割的句子列表,返回从高到低排列的有序words列表前count位(词-次数形成的元组)################### def get_ord_words(sentences, count): words = get_words(sentences) list = words.items() # list.sort(key=cmp_to_key(lambda x, y: cmp(x[1], y[1]))) ord_list = sorted(list, key=lambda tuple: tuple[1], reverse=True) names = [] values = [] for i in range(0, len(ord_list)): names.append(ord_list[i][0]) values.append(ord_list[i][1]) if count is None: return ord_list, names, values return ord_list[0:count], names[0:count], values[0:count] #-*- coding:utf-8 -*- def is_chinese_word(word): if len(word) == 1: return False for char in word: if char < u"\u4e00" or char > u"\u9fa6": return False return True ``` #### File: douban-short-commentary/utils/draw_pic.py ```python import imageio from wordcloud import WordCloud import matplotlib import matplotlib.pyplot as plt from config import TOP_NUM, FONT_PATH, PIC_PATH, FILE_PATH """ Created by Jiajun·Bernoulli on 2019/1/18 """ ###########################绘制柱状图##################### def draw_bar(labels, quants): # -*- coding: utf-8 -*- print(labels) # 指定默认字体 matplotlib.rcParams['font.sans-serif'] = ['SimHei'] matplotlib.rcParams['font.family'] = 'sans-serif' # 解决负号'-'显示为方块的问题 matplotlib.rcParams['axes.unicode_minus'] = False plt.bar(range(len(quants)), quants, color='rgb', tick_label=labels) plt.show() ##########################绘制词云######################## def draw_wordCloud(data): my_wordcloud = WordCloud( background_color='white', # 设置背景颜色 max_words=TOP_NUM, # 设置最大实现的字数 font_path=FONT_PATH, # 设置字体格式,如不设置显示不了中文 mask=imageio.imread(PIC_PATH), # 设置图片样式 width=800, height=800, ).generate_from_frequencies(data) plt.figure() plt.imshow(my_wordcloud) plt.axis('off') plt.show() # 展示词云 my_wordcloud.to_file(FILE_PATH) ```
{ "source": "jiajunfanthu/jiajunfanthu2.github.io", "score": 3 }
#### File: markdown_generator/test/pub.py ```python import pandas as pd articles = pd.read_csv("articles.tsv", sep="\t", header=0) html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;", ">": "&gt;", "<": "&lt;", } def html_escape(text): """Produce entities within text.""" return "".join(html_escape_table.get(c, c) for c in text) import os for row, item in articles.iterrows(): md_filename = str(item.pub_date) + "-" + item.slug + ".md" html_filename = str(item.pub_date) + "-" + item.slug year = item.pub_date[:4] md = "---\ntitle: \"" + item.title + '"\n' md += """collection: publication\npermalink: /publication/""" + html_filename md += "\nexcerpt: '<i>Published in " + item.venue + ", " + str(year) + "</i><br/>" + html_escape(item.summary) + "'" md += "\ndate: " + str(item.pub_date) md += "\nvenue: '" + html_escape(item.venue) + "'" md += "\npaperurl: '" + item.url + "'" md += "\ncitation: '" + html_escape(item.citation) + "'" md += "\n---" md += "\n\n<a href='" + item.url + "'>Download PDF here</a>\n" md += "\nAbstract: " + html_escape(item.description) + "\n" md += "\n Recommended citation: " + item.citation md_filename = os.path.basename(md_filename) with open(md_filename, 'w') as f: f.write(md) ```
{ "source": "jiajunhua/asyml-texar", "score": 2 }
#### File: utils/raml_samples_generation/process_samples.py ```python from __future__ import print_function from nltk.translate.bleu_score import sentence_bleu from nltk.translate.bleu_score import SmoothingFunction import sys import re import argparse import torch from util import read_corpus import numpy as np from scipy.misc import comb from vocab import Vocab, VocabEntry import math from rouge import Rouge def is_valid_sample(sent): tokens = sent.split(' ') return len(tokens) >= 1 and len(tokens) < 50 def sample_from_model(args): para_data = args.parallel_data sample_file = args.sample_file output = args.output tgt_sent_pattern = re.compile(r"^\[(\d+)\] (.*?)$") para_data = [l.strip().split(' ||| ') for l in open(para_data)] f_out = open(output, 'w') f = open(sample_file) f.readline() for src_sent, tgt_sent in para_data: line = f.readline().strip() assert line.startswith('****') line = f.readline().strip() print(line) assert line.startswith('target:') tgt_sent2 = line[len('target:'):] assert tgt_sent == tgt_sent2 line = f.readline().strip() # samples tgt_sent = ' '.join(tgt_sent.split(' ')[1:-1]) tgt_samples = set() for i in range(1, 101): line = f.readline().rstrip('\n') m = tgt_sent_pattern.match(line) assert m, line assert int(m.group(1)) == i sampled_tgt_sent = m.group(2).strip() if is_valid_sample(sampled_tgt_sent): tgt_samples.add(sampled_tgt_sent) line = f.readline().strip() assert line.startswith('****') tgt_samples.add(tgt_sent) tgt_samples = list(tgt_samples) assert len(tgt_samples) > 0 tgt_ref_tokens = tgt_sent.split(' ') bleu_scores = [] for tgt_sample in tgt_samples: bleu_score = sentence_bleu([tgt_ref_tokens], tgt_sample.split(' ')) bleu_scores.append(bleu_score) tgt_ranks = sorted(range(len(tgt_samples)), key=lambda i: bleu_scores[i], reverse=True) print('%d samples' % len(tgt_samples)) print('*' * 50, file=f_out) print('source: ' + src_sent, file=f_out) print('%d samples' % len(tgt_samples), file=f_out) for i in tgt_ranks: print('%s ||| %f' % (tgt_samples[i], bleu_scores[i]), file=f_out) print('*' * 50, file=f_out) f_out.close() def get_new_ngram(ngram, n, vocab): """ replace ngram `ngram` with a newly sampled ngram of the same length """ new_ngram_wids = [np.random.randint(3, len(vocab)) for i in range(n)] new_ngram = [vocab.id2word[wid] for wid in new_ngram_wids] return new_ngram def sample_ngram(args): src_sents = read_corpus(args.src, 'src') tgt_sents = read_corpus(args.tgt, 'src') # do not read in <s> and </s> f_out = open(args.output, 'w') vocab = torch.load(args.vocab) tgt_vocab = vocab.tgt smooth_bleu = args.smooth_bleu sm_func = None if smooth_bleu: sm_func = SmoothingFunction().method3 for src_sent, tgt_sent in zip(src_sents, tgt_sents): src_sent = ' '.join(src_sent) tgt_len = len(tgt_sent) tgt_samples = [] tgt_samples_distort_rates = [] # how many unigrams are replaced # generate 100 samples # append itself tgt_samples.append(tgt_sent) tgt_samples_distort_rates.append(0) for sid in range(args.sample_size - 1): n = np.random.randint(1, min(tgt_len, args.max_ngram_size + 1)) # we do not replace the last token: it must be a period! idx = np.random.randint(tgt_len - n) ngram = tgt_sent[idx: idx + n] new_ngram = get_new_ngram(ngram, n, tgt_vocab) sampled_tgt_sent = list(tgt_sent) sampled_tgt_sent[idx: idx + n] = new_ngram # compute the probability of this sample # prob = 1. / args.max_ngram_size * 1. / (tgt_len - 1 + n) * 1 / (len(tgt_vocab) ** n) tgt_samples.append(sampled_tgt_sent) tgt_samples_distort_rates.append(n) # compute bleu scores or edit distances and rank the samples by bleu scores rewards = [] for tgt_sample, tgt_sample_distort_rate in zip(tgt_samples, tgt_samples_distort_rates): if args.reward == 'bleu': reward = sentence_bleu([tgt_sent], tgt_sample, smoothing_function=sm_func) elif args.reward == 'rouge': rouge = Rouge() scores = rouge.get_scores(hyps=[' '.join(tgt_sample).decode('utf-8')], refs=[' '.join(tgt_sent).decode('utf-8')], avg=True) reward = sum([value['f'] for key, value in scores.items()]) else: reward = -tgt_sample_distort_rate rewards.append(reward) tgt_ranks = sorted(range(len(tgt_samples)), key=lambda i: rewards[i], reverse=True) # convert list of tokens into a string tgt_samples = [' '.join(tgt_sample) for tgt_sample in tgt_samples] print('*' * 50, file=f_out) print('source: ' + src_sent, file=f_out) print('%d samples' % len(tgt_samples), file=f_out) for i in tgt_ranks: print('%s ||| %f' % (tgt_samples[i], rewards[i]), file=f_out) print('*' * 50, file=f_out) f_out.close() def sample_ngram_adapt(args): src_sents = read_corpus(args.src, 'src') tgt_sents = read_corpus(args.tgt, 'src') # do not read in <s> and </s> f_out = open(args.output, 'w') vocab = torch.load(args.vocab) tgt_vocab = vocab.tgt max_len = max([len(tgt_sent) for tgt_sent in tgt_sents]) + 1 for src_sent, tgt_sent in zip(src_sents, tgt_sents): src_sent = ' '.join(src_sent) tgt_len = len(tgt_sent) tgt_samples = [] # generate 100 samples # append itself tgt_samples.append(tgt_sent) for sid in range(args.sample_size - 1): max_n = min(tgt_len - 1, 4) bias_n = int(max_n * tgt_len / max_len) + 1 assert 1 <= bias_n <= 4, 'bias_n={}, not in [1,4], max_n={}, tgt_len={}, max_len={}'.format(bias_n, max_n, tgt_len, max_len) p = [1.0 / (max_n + 5)] * max_n p[bias_n - 1] = 1 - p[0] * (max_n - 1) assert abs(sum(p) - 1) < 1e-10, 'sum(p) != 1' n = np.random.choice(np.arange(1, int(max_n + 1)), p=p) # we do not replace the last token: it must be a period! assert n < tgt_len, 'n={}, tgt_len={}'.format(n, tgt_len) idx = np.random.randint(tgt_len - n) ngram = tgt_sent[idx: idx + n] new_ngram = get_new_ngram(ngram, n, tgt_vocab) sampled_tgt_sent = list(tgt_sent) sampled_tgt_sent[idx: idx + n] = new_ngram tgt_samples.append(sampled_tgt_sent) # compute bleu scores and rank the samples by bleu scores bleu_scores = [] for tgt_sample in tgt_samples: bleu_score = sentence_bleu([tgt_sent], tgt_sample) bleu_scores.append(bleu_score) tgt_ranks = sorted(range(len(tgt_samples)), key=lambda i: bleu_scores[i], reverse=True) # convert list of tokens into a string tgt_samples = [' '.join(tgt_sample) for tgt_sample in tgt_samples] print('*' * 50, file=f_out) print('source: ' + src_sent, file=f_out) print('%d samples' % len(tgt_samples), file=f_out) for i in tgt_ranks: print('%s ||| %f' % (tgt_samples[i], bleu_scores[i]), file=f_out) print('*' * 50, file=f_out) f_out.close() def sample_from_hamming_distance_payoff_distribution(args): src_sents = read_corpus(args.src, 'src') tgt_sents = read_corpus(args.tgt, 'src') # do not read in <s> and </s> f_out = open(args.output, 'w') vocab = torch.load(args.vocab) tgt_vocab = vocab.tgt payoff_prob, Z_qs = generate_hamming_distance_payoff_distribution(max(len(sent) for sent in tgt_sents), vocab_size=len(vocab.tgt), tau=args.temp) for src_sent, tgt_sent in zip(src_sents, tgt_sents): tgt_samples = [] # make sure the ground truth y* is in the samples tgt_sent_len = len(tgt_sent) - 3 # remove <s> and </s> and ending period . tgt_ref_tokens = tgt_sent[1:-1] bleu_scores = [] # sample an edit distances e_samples = np.random.choice(range(tgt_sent_len + 1), p=payoff_prob[tgt_sent_len], size=args.sample_size, replace=True) for i, e in enumerate(e_samples): if e > 0: # sample a new tgt_sent $y$ old_word_pos = np.random.choice(range(1, tgt_sent_len + 1), size=e, replace=False) new_words = [vocab.tgt.id2word[wid] for wid in np.random.randint(3, len(vocab.tgt), size=e)] new_tgt_sent = list(tgt_sent) for pos, word in zip(old_word_pos, new_words): new_tgt_sent[pos] = word bleu_score = sentence_bleu([tgt_ref_tokens], new_tgt_sent[1:-1]) bleu_scores.append(bleu_score) else: new_tgt_sent = list(tgt_sent) bleu_scores.append(1.) # print('y: %s' % ' '.join(new_tgt_sent)) tgt_samples.append(new_tgt_sent) def generate_hamming_distance_payoff_distribution(max_sent_len, vocab_size, tau=1.): """compute the q distribution for Hamming Distance (substitution only) as in the RAML paper""" probs = dict() Z_qs = dict() for sent_len in range(1, max_sent_len + 1): counts = [1.] # e = 0, count = 1 for e in range(1, sent_len + 1): # apply the rescaling trick as in https://gist.github.com/norouzi/8c4d244922fa052fa8ec18d8af52d366 count = comb(sent_len, e) * math.exp(-e / tau) * ((vocab_size - 1) ** (e - e / tau)) counts.append(count) Z_qs[sent_len] = Z_q = sum(counts) prob = [count / Z_q for count in counts] probs[sent_len] = prob # print('sent_len=%d, %s' % (sent_len, prob)) return probs, Z_qs if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=['sample_from_model', 'sample_ngram_adapt', 'sample_ngram'], required=True) parser.add_argument('--vocab', type=str) parser.add_argument('--src', type=str) parser.add_argument('--tgt', type=str) parser.add_argument('--parallel_data', type=str) parser.add_argument('--sample_file', type=str) parser.add_argument('--output', type=str, required=True) parser.add_argument('--sample_size', type=int, default=100) parser.add_argument('--reward', choices=['bleu', 'edit_dist', 'rouge'], default='bleu') parser.add_argument('--max_ngram_size', type=int, default=4) parser.add_argument('--temp', type=float, default=0.5) parser.add_argument('--smooth_bleu', action='store_true', default=False) args = parser.parse_args() if args.mode == 'sample_ngram': sample_ngram(args) elif args.mode == 'sample_from_model': sample_from_model(args) elif args.mode == 'sample_ngram_adapt': sample_ngram_adapt(args) ``` #### File: examples/sequence_tagging/conll_reader.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from collections import defaultdict import numpy as np import tensorflow as tf # pylint: disable=invalid-name, too-many-locals MAX_CHAR_LENGTH = 45 NUM_CHAR_PAD = 2 UNK_WORD, UNK_CHAR, UNK_NER = 0, 0, 0 PAD_WORD, PAD_CHAR, PAD_NER = 1, 1, 1 # Regular expressions used to normalize digits. DIGIT_RE = re.compile(r"\d") def create_vocabs(train_path, dev_path, test_path, normalize_digits=True, min_occur=1, glove_dict=None): word_vocab = defaultdict(lambda: len(word_vocab)) word_count = defaultdict(lambda: 0) char_vocab = defaultdict(lambda: len(char_vocab)) ner_vocab = defaultdict(lambda: len(ner_vocab)) UNK_WORD = word_vocab["<unk>"] PAD_WORD = word_vocab["<pad>"] UNK_CHAR = char_vocab["<unk>"] PAD_CHAR = char_vocab["<pad>"] UNK_NER = ner_vocab["<unk>"] PAD_NER = ner_vocab["<pad>"] print("Creating Vocabularies:") for file_path in [train_path, dev_path, test_path]: with open(file_path, 'r') as file: for line in file: line = line.strip() if len(line) == 0: continue tokens = line.split(' ') for char in tokens[1]: cid = char_vocab[char] word = DIGIT_RE.sub("0", tokens[1]) if normalize_digits else tokens[1] ner = tokens[4] if glove_dict is not None and (word in glove_dict or word.lower() in glove_dict): word_count[word] += min_occur + 1 elif file_path == train_path: word_count[word] += 1 nid = ner_vocab[ner] print("Total Vocabulary Size: %d" % len(word_count)) for word in word_count: if word_count[word] > min_occur: wid = word_vocab[word] print("Word Vocabulary Size: %d" % len(word_vocab)) print("Character Alphabet Size: %d" % len(char_vocab)) print("NER Alphabet Size: %d" % len(ner_vocab)) word_vocab = defaultdict(lambda: UNK_WORD, word_vocab) char_vocab = defaultdict(lambda: UNK_CHAR, char_vocab) ner_vocab = defaultdict(lambda: UNK_NER, ner_vocab) i2w = {v: k for k, v in word_vocab.items()} i2n = {v: k for k, v in ner_vocab.items()} return (word_vocab, char_vocab, ner_vocab), (i2w, i2n) def read_data(source_path, word_vocab, char_vocab, ner_vocab, normalize_digits=True): data = [] print('Reading data from %s' % source_path) counter = 0 reader = CoNLLReader(source_path, word_vocab, char_vocab, ner_vocab) inst = reader.getNext(normalize_digits) while inst is not None: counter += 1 sent = inst.sentence data.append([sent.word_ids, sent.char_id_seqs, inst.ner_ids]) inst = reader.getNext(normalize_digits) reader.close() print("Total number of data: %d" % counter) return data def iterate_batch(data, batch_size, shuffle=False): if shuffle: np.random.shuffle(data) for start_idx in range(0, len(data), batch_size): excerpt = slice(start_idx, start_idx + batch_size) batch = data[excerpt] batch_length = max([len(batch[i][0]) for i in range(len(batch))]) wid_inputs = np.empty([len(batch), batch_length], dtype=np.int64) cid_inputs = np.empty([len(batch), batch_length, MAX_CHAR_LENGTH], dtype=np.int64) nid_inputs = np.empty([len(batch), batch_length], dtype=np.int64) masks = np.zeros([len(batch), batch_length], dtype=np.float32) lengths = np.empty(len(batch), dtype=np.int64) for i, inst in enumerate(batch): wids, cid_seqs, nids = inst inst_size = len(wids) lengths[i] = inst_size # word ids wid_inputs[i, :inst_size] = wids wid_inputs[i, inst_size:] = PAD_WORD for c, cids in enumerate(cid_seqs): cid_inputs[i, c, :len(cids)] = cids cid_inputs[i, c, len(cids):] = PAD_CHAR cid_inputs[i, inst_size:, :] = PAD_CHAR nid_inputs[i, :inst_size] = nids nid_inputs[i, inst_size:] = PAD_NER masks[i, :inst_size] = 1.0 yield wid_inputs, cid_inputs, nid_inputs, masks, lengths def load_glove(filename, emb_dim, normalize_digits=True): """Loads embeddings in the glove text format in which each line is '<word-string> <embedding-vector>'. Dimensions of the embedding vector are separated with whitespace characters. Args: filename (str): Path to the embedding file. vocab (dict): A dictionary that maps token strings to integer index. Tokens not in :attr:`vocab` are not read. word_vecs: A 2D numpy array of shape `[vocab_size, embed_dim]` which is updated as reading from the file. Returns: The updated :attr:`word_vecs`. """ glove_dict = dict() with tf.gfile.Open(filename) as fin: for line in fin: vec = line.strip().split() if len(vec) == 0: continue word, vec = vec[0], vec[1:] word = tf.compat.as_text(word) word = DIGIT_RE.sub("0", word) if normalize_digits else word glove_dict[word] = np.array([float(v) for v in vec]) if len(vec) != emb_dim: raise ValueError("Inconsistent word vector sizes: %d vs %d" % (len(vec), emb_dim)) return glove_dict def construct_init_word_vecs(vocab, word_vecs, glove_dict): for word, index in vocab.items(): if word in glove_dict: embedding = glove_dict[word] elif word.lower() in glove_dict: embedding = glove_dict[word.lower()] else: embedding = None if embedding is not None: word_vecs[index] = embedding return word_vecs class CoNLLReader(object): def __init__(self, file_path, word_vocab, char_vocab, ner_vocab): self.__source_file = open(file_path, 'r', encoding='utf-8') self.__word_vocab = word_vocab self.__char_vocab = char_vocab self.__ner_vocab = ner_vocab def close(self): self.__source_file.close() def getNext(self, normalize_digits=True): line = self.__source_file.readline() # skip multiple blank lines. while len(line) > 0 and len(line.strip()) == 0: line = self.__source_file.readline() if len(line) == 0: return None lines = [] while len(line.strip()) > 0: line = line.strip() lines.append(line.split(' ')) line = self.__source_file.readline() length = len(lines) if length == 0: return None words = [] word_ids = [] char_seqs = [] char_id_seqs = [] ner_tags = [] ner_ids = [] for tokens in lines: chars = [] char_ids = [] for char in tokens[1]: chars.append(char) char_ids.append(self.__char_vocab[char]) if len(chars) > MAX_CHAR_LENGTH: chars = chars[:MAX_CHAR_LENGTH] char_ids = char_ids[:MAX_CHAR_LENGTH] char_seqs.append(chars) char_id_seqs.append(char_ids) word = DIGIT_RE.sub("0", tokens[1]) if normalize_digits else tokens[1] ner = tokens[4] words.append(word) word_ids.append(self.__word_vocab[word]) ner_tags.append(ner) ner_ids.append(self.__ner_vocab[ner]) return NERInstance(Sentence(words, word_ids, char_seqs, char_id_seqs), ner_tags, ner_ids) class NERInstance(object): def __init__(self, sentence, ner_tags, ner_ids): self.sentence = sentence self.ner_tags = ner_tags self.ner_ids = ner_ids def length(self): return self.sentence.length() class Sentence(object): def __init__(self, words, word_ids, char_seqs, char_id_seqs): self.words = words self.word_ids = word_ids self.char_seqs = char_seqs self.char_id_seqs = char_id_seqs def length(self): return len(self.words) ``` #### File: data/data/data_iterators_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # pylint: disable=no-member, invalid-name import tempfile import numpy as np import tensorflow as tf import texar.tf as tx class DataIteratorTest(tf.test.TestCase): """Tests data iterators. """ def setUp(self): tf.test.TestCase.setUp(self) # Create data train_text = list(np.linspace(1, 1000, num=1000, dtype=np.int64)) train_text = [str(x) for x in train_text] train_text_file = tempfile.NamedTemporaryFile() train_text_file.write('\n'.join(train_text).encode("utf-8")) train_text_file.flush() self._train_text_file = train_text_file test_text = list(np.linspace(1001, 2000, num=1000, dtype=np.int64)) test_text = [str(x) for x in test_text] test_text_file = tempfile.NamedTemporaryFile() test_text_file.write('\n'.join(test_text).encode("utf-8")) test_text_file.flush() self._test_text_file = test_text_file vocab_list = train_text + test_text vocab_file = tempfile.NamedTemporaryFile() vocab_file.write('\n'.join(vocab_list).encode("utf-8")) vocab_file.flush() self._vocab_file = vocab_file self._vocab_size = len(vocab_list) self._train_hparams = { "num_epochs": 2, "batch_size": 1, "shuffle": False, "dataset": { "files": self._train_text_file.name, "vocab_file": self._vocab_file.name, "bos_token": '', "eos_token": '' }, "name": "train" } self._test_hparams = { "num_epochs": 1, "batch_size": 1, "shuffle": False, "dataset": { "files": self._test_text_file.name, "vocab_file": self._vocab_file.name, "bos_token": '', "eos_token": '' }, "name": "test" } def test_iterator_single_dataset(self): """Tests iterating over a single dataset. """ data = tx.data.MonoTextData(self._test_hparams) iterator = tx.data.DataIterator(data) data_batch = iterator.get_next() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) for _ in range(2): iterator.switch_to_dataset(sess) i = 1001 while True: try: data_batch_ = sess.run(data_batch) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i)) i += 1 except tf.errors.OutOfRangeError: print('Done -- epoch limit reached') self.assertEqual(i, 2001) break def test_iterator_multi_datasets(self): """Tests iterating over multiple datasets. """ train_data = tx.data.MonoTextData(self._train_hparams) test_data = tx.data.MonoTextData(self._test_hparams) iterator = tx.data.DataIterator([train_data, test_data]) data_batch = iterator.get_next() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) for _ in range(2): # Iterates over train data iterator.switch_to_dataset(sess, train_data.name) i = 0 while True: try: data_batch_ = sess.run(data_batch) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i + 1)) i = (i + 1) % 1000 except tf.errors.OutOfRangeError: print('Train data limit reached') self.assertEqual(i, 0) break # Iterates over test data iterator.switch_to_dataset(sess, test_data.name) i = 1001 while True: try: data_batch_ = sess.run(data_batch) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i)) i += 1 except tf.errors.OutOfRangeError: print('Test data limit reached') self.assertEqual(i, 2001) break def test_train_test_data_iterator(self): """Tests :class:`texar.tf.data.TrainTestDataIterator` """ train_data = tx.data.MonoTextData(self._train_hparams) test_data = tx.data.MonoTextData(self._test_hparams) iterator = tx.data.TrainTestDataIterator(train=train_data, test=test_data) data_batch = iterator.get_next() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) for _ in range(2): iterator.switch_to_train_data(sess) i = 0 while True: try: data_batch_ = sess.run(data_batch) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i + 1)) i = (i + 1) % 1000 except tf.errors.OutOfRangeError: print('Train data limit reached') self.assertEqual(i, 0) break iterator.switch_to_test_data(sess) i = 1001 while True: try: data_batch_ = sess.run(data_batch) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i)) i += 1 except tf.errors.OutOfRangeError: print('Test data limit reached') self.assertEqual(i, 2001) break def test_feedable_iterator_multi_datasets(self): """Tests iterating over multiple datasets with the :class:`FeedableDataIterator`. """ train_data = tx.data.MonoTextData(self._train_hparams) test_data = tx.data.MonoTextData(self._test_hparams) iterator = tx.data.FeedableDataIterator([train_data, test_data]) data_batch = iterator.get_next() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) iterator.initialize_dataset(sess) for _ in range(2): # Iterates over train data iterator.restart_dataset(sess, train_data.name) data_handle = iterator.get_handle(sess, train_data.name) i = 0 while True: try: feed_dict = {iterator.handle: data_handle} data_batch_ = sess.run(data_batch, feed_dict=feed_dict) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i + 1)) i = (i + 1) % 1000 except tf.errors.OutOfRangeError: print('Train data limit reached') self.assertEqual(i, 0) break # Iterates over test data iterator.restart_dataset(sess, test_data.name) data_handle = iterator.get_handle(sess, test_data.name) i = 1001 while True: try: feed_dict = {iterator.handle: data_handle} data_batch_ = sess.run(data_batch, feed_dict=feed_dict) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i)) i += 1 except tf.errors.OutOfRangeError: print('Test data limit reached') self.assertEqual(i, 2001) break def test_train_test_feedable_data_iterator(self): """Tests :class:`texar.tf.data.TrainTestFeedableDataIterator` """ train_data = tx.data.MonoTextData(self._train_hparams) test_data = tx.data.MonoTextData(self._test_hparams) iterator = tx.data.TrainTestFeedableDataIterator(train=train_data, test=test_data) data_batch = iterator.get_next() with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) for _ in range(2): iterator.restart_train_dataset(sess) i = 0 while True: try: feed_dict = { iterator.handle: iterator.get_train_handle(sess) } data_batch_ = sess.run(data_batch, feed_dict=feed_dict) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i + 1)) i = (i + 1) % 1000 except tf.errors.OutOfRangeError: print('Train data limit reached') self.assertEqual(i, 0) break iterator.restart_test_dataset(sess) i = 1001 while True: try: feed_dict = { iterator.handle: iterator.get_test_handle(sess) } data_batch_ = sess.run(data_batch, feed_dict=feed_dict) self.assertEqual( tf.compat.as_text(data_batch_['text'][0][0]), str(i)) i += 1 except tf.errors.OutOfRangeError: print('Test data limit reached') self.assertEqual(i, 2001) break if __name__ == "__main__": tf.test.main() ``` #### File: modules/encoders/conv_encoders_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import tensorflow as tf import texar.tf as tx from texar.tf.modules.encoders.conv_encoders import Conv1DEncoder class Conv1DEncoderTest(tf.test.TestCase): """Tests :class:`~texar.tf.modules.Conv1DEncoder` class. """ def test_encode(self): """Tests encode. """ encoder_1 = Conv1DEncoder() self.assertEqual(len(encoder_1.layers), 4) self.assertTrue(isinstance(encoder_1.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in encoder_1.layers[0].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_1 = tf.ones([64, 16, 300], tf.float32) outputs_1 = encoder_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], "other_conv_kwargs": {"padding": "same"}, # Pooling layers "pooling": "AveragePooling", "pool_size": 2, "pool_strides": 1, # Dense layers "num_dense_layers": 3, "dense_size": [128, 128, 10], "dense_activation": "relu", "other_dense_kwargs": {"use_bias": False}, # Dropout "dropout_conv": [0, 1, 2], "dropout_dense": 2 } encoder_2 = Conv1DEncoder(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(encoder_2.layers), 1 + 1 + 1 + 3 + 4 + 1) self.assertTrue(isinstance(encoder_2.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in encoder_2.layers[1].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_2 = tf.ones([64, 16, 300], tf.float32) outputs_2 = encoder_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) def test_unknown_seq_length(self): """Tests use of pooling layer when the seq_length dimension of inputs is `None`. """ encoder_1 = Conv1DEncoder() inputs_1 = tf.placeholder(tf.float32, [64, None, 300]) outputs_1 = encoder_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], # Pooling layers "pooling": "AveragePooling", "pool_size": [2, None], # Dense layers "num_dense_layers": 1, "dense_size": 10, } encoder = Conv1DEncoder(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(encoder.layers), 1 + 1 + 1 + 1 + 1 + 1) self.assertTrue(isinstance(encoder.layer_by_name('pool_2'), tx.core.AverageReducePooling1D)) inputs = tf.placeholder(tf.float32, [64, None, 300]) outputs = encoder(inputs) self.assertEqual(outputs.shape, [64, 10]) hparams_2 = { # Conv layers "num_conv_layers": 1, "filters": 128, "kernel_size": 4, "other_conv_kwargs": {'data_format': 'channels_first'}, # Pooling layers "pooling": "MaxPooling", "other_pool_kwargs": {'data_format': 'channels_first'}, # Dense layers "num_dense_layers": 1, "dense_size": 10, } encoder_2 = Conv1DEncoder(hparams_2) inputs_2 = tf.placeholder(tf.float32, [64, 300, None]) outputs_2 = encoder_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) if __name__ == "__main__": tf.test.main() ```
{ "source": "jiajunhua/josedolz-HyperDenseNet", "score": 2 }
#### File: josedolz-HyperDenseNet/src/generateROI.py ```python import sys import pdb from os.path import isfile, join import os import numpy as np import nibabel as nib import scipy.io as sio from LiviaNet.Modules.IO.loadData import load_nii from LiviaNet.Modules.IO.loadData import load_matlab from LiviaNet.Modules.IO.saveData import saveImageAsNifti from LiviaNet.Modules.IO.saveData import saveImageAsMatlab # NOTE: Only has been tried on nifti images. However, it should not give any error for Matlab images. """ To print function usage """ def printUsage(error_type): if error_type == 1: print(" ** ERROR!!: Few parameters used.") else: print(" ** ERROR!!: ...") # TODO print(" ******** USAGE ******** ") print(" --- argv 1: Folder containing mr images") print(" --- argv 2: Folder to save corrected label images") print(" --- argv 3: Image type") print(" ------------- 0: nifti format") print(" ------------- 1: matlab format") def getImageImageList(imagesFolder): if os.path.exists(imagesFolder): imageNames = [f for f in os.listdir(imagesFolder) if isfile(join(imagesFolder, f))] imageNames.sort() return imageNames def checkAnotatedLabels(argv): # Number of input arguments # 1: Folder containing label images # 2: Folder to save corrected label images # 3: Image type # 0: nifti format # 1: matlab format # Do some sanity checks if len(argv) < 3: printUsage(1) sys.exit() imagesFolder = argv[0] imagesFolderdst = argv[1] imageType = int(argv[2]) imageNames = getImageImageList(imagesFolder) printFileNames = False for i_d in xrange(len(imageNames)) : if imageType == 0: imageFileName = imagesFolder + '/' + imageNames[i_d] [imageData,img_proxy] = load_nii(imageFileName, printFileNames) else: imageFileName = imagesFolder + '/' + imageNames[i_d] imageData = load_matlab(imageFileName, printFileNames) # Find voxels different to 0 # NOTE: I assume voxels equal to 0 are outside my ROI (like in the skull stripped datasets) idx = np.where(imageData > 0 ) # Create ROI and assign those indexes to 1 roiImage = np.zeros(imageData.shape,dtype=np.int8) roiImage[idx] = 1 print(" ... Saving roi...") nameToSave = imagesFolderdst + '/ROI_' + imageNames[i_d] if imageType == 0: # nifti imageTypeToSave = np.dtype(np.int8) saveImageAsNifti(roiImage, nameToSave, imageFileName, imageTypeToSave) else: # Matlab # Cast to int8 for saving purposes saveImageAsMatlab(labelCorrectedImage.astype('int8'),nameToSave) print " ****************************************** PROCESSING LABELS DONE ******************************************" if __name__ == '__main__': checkAnotatedLabels(sys.argv[1:]) ``` #### File: Modules/IO/loadData.py ```python import numpy as np import pdb # If you are not using nifti files you can comment this line import nibabel as nib import scipy.io as sio from ImgOperations.imgOp import applyPadding # ----- Loader for nifti files ------ # def load_nii (imageFileName, printFileNames) : if printFileNames == True: print (" ... Loading file: {}".format(imageFileName)) img_proxy = nib.load(imageFileName) imageData = img_proxy.get_data() return (imageData,img_proxy) def release_nii_proxy(img_proxy) : img_proxy.uncache() # ----- Loader for matlab format ------- # # Very important: All the volumes should have been saved as 'vol'. # Otherwise, change its name here def load_matlab (imageFileName, printFileNames) : if printFileNames == True: print (" ... Loading file: {}".format(imageFileName)) mat_contents = sio.loadmat(imageFileName) imageData = mat_contents['vol'] return (imageData) """ It loads the images (CT/MRI + Ground Truth + ROI) for the patient image Idx""" def load_imagesSinglePatient(imageIdx, imageNames, imageNames_Bottom, groundTruthNames, roiNames, applyPaddingBool, receptiveField, sampleSizes, imageType ): if imageIdx >= len(imageNames) : print (" ERROR!!!!! : The image index specified is greater than images array size....)") exit(1) # --- Load image data (CT/MRI/...) --- printFileNames = False # Get this from config.ini imageFileName = imageNames[imageIdx] if imageType == 0: [imageData,img_proxy] = load_nii(imageFileName, printFileNames) else: imageData = load_matlab(imageFileName, printFileNames) if applyPaddingBool == True : [imageData, paddingValues] = applyPadding(imageData, sampleSizes, receptiveField) else: paddingValues = ((0,0),(0,0),(0,0)) if len(imageData.shape) > 3 : imageData = imageData[:,:,:,0] if imageType == 0: release_nii_proxy(img_proxy) # --- Load image data for bottom path (CT/MRI/...) --- printFileNames = False # Get this from config.ini imageFileName = imageNames_Bottom[imageIdx] if imageType == 0: [imageData_Bottom,img_proxy] = load_nii(imageFileName, printFileNames) else: imageData_Bottom = load_matlab(imageFileName, printFileNames) if applyPaddingBool == True : [imageData_Bottom, paddingValues] = applyPadding(imageData_Bottom, sampleSizes, receptiveField) else: paddingValues = ((0,0),(0,0),(0,0)) if len(imageData_Bottom.shape) > 3 : imageData_Bottom = imageData_Bottom[:,:,:,0] if imageType == 0: release_nii_proxy(img_proxy) # --- Load ground truth (i.e. labels) --- if len(groundTruthNames) > 0 : GTFileName = groundTruthNames[imageIdx] if imageType == 0: [gtLabelsData, gt_proxy] = load_nii (GTFileName, printFileNames) else: gtLabelsData = load_matlab(GTFileName, printFileNames) # Convert ground truth to int type if np.issubdtype( gtLabelsData.dtype, np.int ) : gtLabelsData = gtLabelsData else: np.rint(gtLabelsData).astype("int32") imageGtLabels = gtLabelsData if imageType == 0: # Release data release_nii_proxy(gt_proxy) if applyPaddingBool == True : [imageGtLabels, paddingValues] = applyPadding(imageGtLabels, sampleSizes, receptiveField) else : imageGtLabels = np.empty(0) # --- Load roi --- if len(roiNames)> 0 : roiFileName = roiNames[imageIdx] if imageType == 0: [roiMaskData, roi_proxy] = load_nii (roiFileName, printFileNames) else: roiMaskData = load_matlab(roiFileName, printFileNames) roiMask = roiMaskData if imageType == 0: # Release data release_nii_proxy(roi_proxy) if applyPaddingBool == True : [roiMask, paddingValues] = applyPadding(roiMask, sampleSizes, receptiveField) else : roiMask = np.ones(imageGtLabels.shape) return [imageData, imageData_Bottom, imageGtLabels, roiMask, paddingValues] # -------------------------------------------------------- # def getRandIndexes(total, maxNumberIdx) : # Generate a shuffle array of a vector containing "total" elements idxs = range(total) np.random.shuffle(idxs) rand_idxs = idxs[0:maxNumberIdx] return rand_idxs ``` #### File: Modules/NeuralNetwork/ActivationFunctions.py ```python import pdb import os import numpy as np import theano import theano.tensor as T import sys # https://github.com/Theano/Theano/issues/689 sys.setrecursionlimit(50000) ##################################################### ## Various activation functions for the CNN layers ## ##################################################### # Sigmoid activations def applyActivationFunction_Sigmoid(inputData): """ inputData is a tensor5D with shape: (batchSize, Number of feature Maps, convolvedImageShape[0], convolvedImageShape[1], convolvedImageShape[2]) """ outputData = T.nnet.sigmoid(inputData) return ( outputData ) # Tanh activations def applyActivationFunction_Tanh(inputData): """inputData is a tensor5D with shape: # (batchSize, # Number of feature Maps, # convolvedImageShape[0], # convolvedImageShape[1], # convolvedImageShape[2])""" outputData= T.tanh(inputData) return ( outputData ) # *** There actually exist several ways to implement ReLU activations *** # --- Version 1 --- def applyActivationFunction_ReLU_v1(inputData): """ inputData is a tensor5D with shape: # (batchSize, # Number of feature Maps, # convolvedImageShape[0], # convolvedImageShape[1], # convolvedImageShape[2]) """ return T.maximum(inputData,0) # --- Version 2 --- def applyActivationFunction_ReLU_v2(inputData): return T.switch(inputData < 0., 0., inputData) # --- Version 3 --- def applyActivationFunction_ReLU_v3(inputData): return ((inputData + abs(inputData))/2.0) # --- Version 4 --- def applyActivationFunction_ReLU_v4(inputData): return (T.sgn(inputData) + 1) * inputData * 0.5 # *** LeakyReLU *** def applyActivationFunction_LeakyReLU( inputData, leakiness ) : """leakiness : float Slope for negative input, usually between 0 and 1. A leakiness of 0 will lead to the standard rectifier, a leakiness of 1 will lead to a linear activation function, and any value in between will give a leaky rectifier. [1] Maas et al. (2013): Rectifier Nonlinearities Improve Neural Network Acoustic Models, http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf - The input is a tensor of shape (batchSize, FeatMaps, xDim, yDim, zDim) """ pos = 0.5 * (1 + leakiness) neg = 0.5 * (1 - leakiness) output = pos * inputData + neg * abs(inputData) return (output) # *** There actually exist several ways to implement PReLU activations *** # PReLU activations (from Kamnitsas) def applyActivationFunction_PReLU( inputData, PreluActivations ) : """Parametric Rectified Linear Unit. It follows: `f(x) = alpha * x for x < 0`, `f(x) = x for x >= 0`, where `alpha` is a learned array with the same shape as x. - The input is a tensor of shape (batchSize, FeatMaps, xDim, yDim, zDim) """ preluActivationsAsRow = PreluActivations.dimshuffle('x', 0, 'x', 'x', 'x') pos = T.maximum(0, inputData) neg = preluActivationsAsRow * (inputData - abs(inputData)) * 0.5 output = pos + neg return (output) # --- version 2 --- def applyActivationFunction_PReLU_v2(inputData,PreluActivations) : """ inputData is a tensor5D with shape: (batchSize, Number of feature Maps, convolvedImageShape[0], convolvedImageShape[1], convolvedImageShape[2]) """ # The input is a tensor of shape (batchSize, FeatMaps, xDim, yDim, zDim) preluActivationsAsRow = PreluActivations.dimshuffle('x', 0, 'x', 'x', 'x') pos = ((inputData + abs(inputData)) / 2.0 ) neg = preluActivationsAsRow * ((inputData - abs(inputData)) / 2.0 ) output = pos + neg return ( output) # --- version 3 --- def applyActivationFunction_PReLU_v3(inputData,PreluActivations) : """ inputData is a tensor5D with shape: (batchSize, Number of feature Maps, convolvedImageShape[0], convolvedImageShape[1], convolvedImageShape[2]) """ # The input is a tensor of shape (batchSize, FeatMaps, xDim, yDim, zDim) preluActivationsAsRow = PreluActivations.dimshuffle('x', 0, 'x', 'x', 'x') pos = 0.5 * (1 + preluActivationsAsRow ) neg = 0.5 * (1 - preluActivationsAsRow ) output = pos * inputData + neg * abs(inputData) return ( output) # Benchmark on ReLU/PReLU activations: # http://gforge.se/2015/06/benchmarking-relu-and-prelu/ # TODO. Implement some other activation functions: # Ex: Randomized ReLU # S-shape Relu # ThresholdedReLU ```
{ "source": "jiajunhua/PyMVPA474833", "score": 2 }
#### File: mvpa2/mappers/wavelet.py ```python from mvpa2.base import externals if externals.exists('pywt', raise_=True): # import conditional to be able to import the whole module while building # the docs even if pywt is not installed import pywt import numpy as np from mvpa2.base import warning from mvpa2.mappers.base import Mapper if __debug__: from mvpa2.base import debug # WaveletPacket and WaveletTransformation mappers share lots of common # functionality at the moment class _WaveletMapper(Mapper): """Generic class for Wavelet mappers (decomposition and packet) """ def __init__(self, dim=1, wavelet='sym4', mode='per', maxlevel=None): """Initialize _WaveletMapper mapper Parameters ---------- dim : int or tuple of int dimensions to work across (for now just scalar value, ie 1D transformation) is supported wavelet : str one from the families available withing pywt package mode : str periodization mode maxlevel : int or None number of levels to use. If None - automatically selected by pywt """ Mapper.__init__(self) self._dim = dim """Dimension to work along""" self._maxlevel = maxlevel """Maximal level of decomposition. None for automatic""" if not wavelet in pywt.wavelist(): raise ValueError, \ "Unknown family of wavelets '%s'. Please use one " \ "available from the list %s" % (wavelet, pywt.wavelist()) self._wavelet = wavelet """Wavelet family to use""" if not mode in pywt.MODES.modes: raise ValueError, \ "Unknown periodization mode '%s'. Please use one " \ "available from the list %s" % (mode, pywt.MODES.modes) self._mode = mode """Periodization mode""" def _forward_data(self, data): data = np.asanyarray(data) self._inshape = data.shape self._intimepoints = data.shape[self._dim] res = self._wm_forward(data) self._outshape = res.shape return res def _reverse_data(self, data): data = np.asanyarray(data) return self._wm_reverse(data) def _wm_forward(self, *args): raise NotImplementedError def _wm_reverse(self, *args): raise NotImplementedError ##REF: Name was automagically refactored def _get_indexes(shape, dim): """Generator for coordinate tuples providing slice for all in `dim` XXX Somewhat sloppy implementation... but works... """ if len(shape) < dim: raise ValueError, "Dimension %d is incorrect for a shape %s" % \ (dim, shape) n = len(shape) curindexes = [0] * n curindexes[dim] = Ellipsis#slice(None) # all elements for dimension dim while True: yield tuple(curindexes) for i in xrange(n): if i == dim and dim == n-1: return # we reached it -- thus time to go if curindexes[i] == shape[i] - 1: if i == n-1: return curindexes[i] = 0 else: if i != dim: curindexes[i] += 1 break class WaveletPacketMapper(_WaveletMapper): """Convert signal into an overcomplete representaion using Wavelet packet """ def __init__(self, level=None, **kwargs): """Initialize WaveletPacketMapper mapper Parameters ---------- level : int or None What level to decompose at. If 'None' data for all levels is provided, but due to different sizes, they are placed in 1D row. """ _WaveletMapper.__init__(self,**kwargs) self.__level = level # XXX too much of duplications between such methods -- it begs # refactoring ##REF: Name was automagically refactored def __forward_single_level(self, data): if __debug__: debug('MAP', "Converting signal using DWP (single level)") wp = None level = self.__level wavelet = self._wavelet mode = self._mode dim = self._dim level_paths = None for indexes in _get_indexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) WP = pywt.WaveletPacket( data[indexes], wavelet=wavelet, mode=mode, maxlevel=level) level_nodes = WP.get_level(level) if level_paths is None: # Needed for reconstruction self.__level_paths = np.array([node.path for node in level_nodes]) level_datas = np.array([node.data for node in level_nodes]) if wp is None: newdim = data.shape newdim = newdim[:dim] + level_datas.shape + newdim[dim+1:] if __debug__: debug('MAP_', "Initializing storage of size %s for single " "level (%d) mapping of data of size %s" % (newdim, level, data.shape)) wp = np.empty( tuple(newdim) ) wp[indexes] = level_datas return wp ##REF: Name was automagically refactored def __forward_multiple_levels(self, data): wp = None levels_length = None # total length at each level levels_lengths = None # list of lengths per each level for indexes in _get_indexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) WP = pywt.WaveletPacket( data[indexes], wavelet=self._wavelet, mode=self._mode, maxlevel=self._maxlevel) if levels_length is None: levels_length = [None] * WP.maxlevel levels_lengths = [None] * WP.maxlevel levels_datas = [] for level in xrange(WP.maxlevel): level_nodes = WP.get_level(level+1) level_datas = [node.data for node in level_nodes] level_lengths = [len(x) for x in level_datas] level_length = np.sum(level_lengths) if levels_lengths[level] is None: levels_lengths[level] = level_lengths elif levels_lengths[level] != level_lengths: raise RuntimeError, \ "ADs of same level of different samples should have same number of elements." \ " Got %s, was %s" % (level_lengths, levels_lengths[level]) if levels_length[level] is None: levels_length[level] = level_length elif levels_length[level] != level_length: raise RuntimeError, \ "Levels of different samples should have same number of elements." \ " Got %d, was %d" % (level_length, levels_length[level]) level_data = np.hstack(level_datas) levels_datas.append(level_data) # assert(len(data) == levels_length) # assert(len(data) >= Ntimepoints) if wp is None: newdim = list(data.shape) newdim[self._dim] = np.sum(levels_length) wp = np.empty( tuple(newdim) ) wp[indexes] = np.hstack(levels_datas) self.levels_lengths, self.levels_length = levels_lengths, levels_length if __debug__: debug('MAP_', "") debug('MAP', "Done convertion into wp. Total size %s" % str(wp.shape)) return wp def _wm_forward(self, data): if __debug__: debug('MAP', "Converting signal using DWP") if self.__level is None: return self.__forward_multiple_levels(data) else: return self.__forward_single_level(data) # # Reverse mapping # ##REF: Name was automagically refactored def __reverse_single_level(self, wp): # local bindings level_paths = self.__level_paths # define wavelet packet to use WP = pywt.WaveletPacket( data=None, wavelet=self._wavelet, mode=self._mode, maxlevel=self.__level) # prepare storage signal_shape = wp.shape[:1] + self._inshape[1:] signal = np.zeros(signal_shape) Ntime_points = self._intimepoints for indexes in _get_indexes(signal_shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) for path, level_data in zip(level_paths, wp[indexes]): WP[path] = level_data signal[indexes] = WP.reconstruct(True)[:Ntime_points] return signal def _wm_reverse(self, data): if __debug__: debug('MAP', "Converting signal back using DWP") if self.__level is None: raise NotImplementedError else: if not externals.exists('pywt wp reconstruct'): raise NotImplementedError, \ "Reconstruction for a single level for versions of " \ "pywt < 0.1.7 (revision 103) is not supported" if not externals.exists('pywt wp reconstruct fixed'): warning("%s: Reverse mapping with this version of 'pywt' might " "result in incorrect data in the tails of the signal. " "Please check for an update of 'pywt', or be careful " "when interpreting the edges of the reverse mapped " "data." % self.__class__.__name__) return self.__reverse_single_level(data) class WaveletTransformationMapper(_WaveletMapper): """Convert signal into wavelet representaion """ def _wm_forward(self, data): """Decompose signal into wavelets's coefficients via dwt """ if __debug__: debug('MAP', "Converting signal using DWT") wd = None coeff_lengths = None for indexes in _get_indexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) coeffs = pywt.wavedec( data[indexes], wavelet=self._wavelet, mode=self._mode, level=self._maxlevel) # <NAME> embedds extraction of statistics right in place #stats = [] #for coeff in coeffs: # stats_ = [np.std(coeff), # np.sqrt(np.dot(coeff, coeff)), # ]# + list(np.histogram(coeff, normed=True)[0])) # stats__ = list(coeff) + stats_[:] # stats__ += list(np.log(stats_)) # stats__ += list(np.sqrt(stats_)) # stats__ += list(np.array(stats_)**2) # stats__ += [ np.median(coeff), np.mean(coeff), scipy.stats.kurtosis(coeff) ] # stats.append(stats__) #coeffs = stats coeff_lengths_ = np.array([len(x) for x in coeffs]) if coeff_lengths is None: coeff_lengths = coeff_lengths_ assert((coeff_lengths == coeff_lengths_).all()) if wd is None: newdim = list(data.shape) newdim[self._dim] = np.sum(coeff_lengths) wd = np.empty( tuple(newdim) ) coeff = np.hstack(coeffs) wd[indexes] = coeff if __debug__: debug('MAP_', "") debug('MAP', "Done DWT. Total size %s" % str(wd.shape)) self.lengths = coeff_lengths return wd def _wm_reverse(self, wd): if __debug__: debug('MAP', "Performing iDWT") signal = None wd_offsets = [0] + list(np.cumsum(self.lengths)) nlevels = len(self.lengths) Ntime_points = self._intimepoints #len(time_points) # unfortunately sometimes due to padding iDWT would return longer # sequences, thus we just limit to the right ones for indexes in _get_indexes(wd.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) wd_sample = wd[indexes] wd_coeffs = [wd_sample[wd_offsets[i]:wd_offsets[i+1]] for i in xrange(nlevels)] # need to compose original list time_points = pywt.waverec( wd_coeffs, wavelet=self._wavelet, mode=self._mode) if signal is None: newdim = list(wd.shape) newdim[self._dim] = Ntime_points signal = np.empty(newdim) signal[indexes] = time_points[:Ntime_points] if __debug__: debug('MAP_', "") debug('MAP', "Done iDWT. Total size %s" % (signal.shape, )) return signal ``` #### File: support/nibabel/surf_gifti.py ```python from mvpa2.base import externals if externals.exists("nibabel", raise_=True): from nibabel.gifti import gifti, giftiio import numpy as np, os, re from mvpa2.support.nibabel import surf import io def _get_single_array(g, intent): ar = g.getArraysFromIntent(intent) n = len(ar) if n != 1: len_str = 'no' if n == 0 else '%d' % n raise ValueError('Found %s arrays matching %s, expected 1' % (len_str, intent)) return ar[0] def read(fn): '''Reads a GIFTI surface file Parameters ---------- fn: str Filename Returns ------- surf_: surf.Surface Surface Notes ----- Any meta-information stored in the GIFTI file is not present in surf_. ''' g = giftiio.read(fn) vertices = _get_single_array(g, 'NIFTI_INTENT_POINTSET').data faces = _get_single_array(g, 'NIFTI_INTENT_TRIANGLE').data return surf.Surface(vertices, faces) def filename2vertices_faces_metadata(fn): '''Attempts to get meta data based on the filename Parameters ---------- fn: str Filename Returns ------- meta: tuple Tuple with two gifti.GiftiMetaData objects for vertices and faces. If the filename contains exactly one of 'lh', 'rh', or 'mh' then it is assumed to be of left, right or merged hemispheres. If the filename contains exactly one of 'pial,'smoothwm', 'intermediate',''inflated','sphere','flat', then the geometric type is set ''' _, fn = os.path.split(fn) vertex_map = dict(AnatomicalStructurePrimary=dict( lh='CortexLeft', rh='CortexRight', mh='CortexRightLeft'), AnatomicalStructureSecondary=dict( pial='Pial', smoothwm='GrayWhite', intermediate='MidThickness'), GeometricType=dict( pial='Anatomical', smoothwm='Anatomical', intermediate='Anatomical', inflated='Inflated', sphere='Spherical', flat='Flat')) def just_one(dict_, fn=fn): vs = [v for k, v in dict_.iteritems() if k in fn] return vs[0] if len(vs) == 1 else None v_meta = [gifti.GiftiNVPairs('Name', fn)] for key, dict_ in vertex_map.iteritems(): v = just_one(dict_) if v is not None: v_meta.append(gifti.GiftiNVPairs(key, v)) f_meta = [gifti.GiftiNVPairs('Name', fn)] # XXX maybe also closed or open topology? that's a bit tricky though v = gifti.GiftiMetaData() v.data.extend(v_meta) f = gifti.GiftiMetaData() f.data.extend(f_meta) return v, f def to_gifti_image(s, add_indices=False, swap_LPI_RAI=False): ''' Converts a surface to nibabel's gifti format. Parameters ---------- s: surf Input surface add_indices: True or False (default: False) if True then indices of the nodes are added. Note: caret may not be able to read these swap_LPI_RAI: True or False (default: False) If True then the diagonal elements of the xform matrix are set to [-1,-1,1,1], otherwise to [1,1,1,1]. Returns ------- img: gifti.GiftiImage Surface representated as GiftiImage ''' vertices = gifti.GiftiDataArray(np.asarray(s.vertices, np.float32)) vertices.intent = gifti.intent_codes.field1['pointset'] vertices.datatype = 16 # this is what gifti likes if add_indices: nvertices = s.nvertices indices = gifti.GiftiDataArray(np.asarray(np.arange(nvertices), np.int32)) indices.datatype = 8 # this is what gifti likes indices.coordsys = None # otherwise SUMA might complain indices.intent = gifti.intent_codes.field1['node index'] faces = gifti.GiftiDataArray(np.asarray(s.faces, np.int32)) faces.intent = gifti.intent_codes.field1['triangle'] faces.datatype = 8 # this is what gifti likes faces.coordsys = None # otherwise SUMA might complain # set some fields common to faces and vertices for arr in (vertices, faces) + ((indices,) if add_indices else ()): arr.ind_ord = 1 arr.encoding = 3 arr.endian = 'LittleEndian' # XXX this does not work (see below) arr.dims = list(arr.data.shape) if externals.versions['nibabel'] < '2.1': # in later versions it is a computed property arr.num_dim = len(arr.dims) # make the image meta = gifti.GiftiMetaData() labeltable = gifti.GiftiLabelTable() img = gifti.GiftiImage(meta=meta, labeltable=labeltable) if swap_LPI_RAI: xform = np.asarray(vertices.coordsys.xform) xform[0, 0] = -1 xform[1, 1] = -1 vertices.coordsys.xform = xform if add_indices: img.add_gifti_data_array(indices) img.add_gifti_data_array(vertices) img.add_gifti_data_array(faces) return img def to_xml(img, meta_fn_hint=None): '''Converts to XML Parameters ---------- img: gifti.GiftiImage or surf Input surface meta_fn_hint: str or None If not None, it should be a string (possibly a filename that describes what kind of surface this is. See filename2vertices_faces_metadata. Returns ------- xml: bytearray Representation of input surface in XML format ''' if isinstance(img, surf.Surface): img = to_gifti_image(img) if meta_fn_hint is not None: vertices = _get_single_array(img, 'pointset') faces = _get_single_array(img, 'triangle') vertices.meta, faces.meta = \ filename2vertices_faces_metadata(meta_fn_hint) # XXX FIXME from here on it's a bit of a hack # The to_xml() method adds newlines in <DATA>...</DATA> segments # and also writes GIFTI_ENDIAN_LITTLE instead of LittleEndian. # For now we just replace these offending parts # TODO: report issue to nibabel developers xml = img.to_xml().encode('utf-8') # split by data segements. Odd elements are data, even are surroudning sps = re.split(b'([<]Data[>][^<]*?[<][/]Data[>])', xml, re.DOTALL) # fix the LittleEndian issue for even segments and newline for odd ones fix_odd_even = lambda x, i: x.replace(b'\n', b'') \ if i % 2 == 1 \ else x.replace(b'Endian="GIFTI_ENDIAN_LITTLE"', b'Endian="LittleEndian"') xml_fixed = b''.join(fix_odd_even(sp, i) for i, sp in enumerate(sps)) return xml_fixed def write(fn, s, overwrite=True): '''Writes a GIFTI surface file Parameters ---------- fn: str Filename s: surf.Surface Surface overwrite: bool (default: False) If set to False an error is raised if the file exists ''' if not overwrite and os.path.exists(fn): raise ValueError("Already exists: %s" % fn) EXT = '.surf.gii' if not fn.endswith(EXT): raise ValueError("Filename %s does not end with required" " extension %s" % (fn, EXT)) xml = to_xml(s, fn) with io.FileIO(fn, 'wb') as f: n = f.write(xml) if n != len(xml): raise ValueError("Not all bytes written to %s" % fn) ```
{ "source": "jiajunhua/qjadud1994-Text_Detector", "score": 2 }
#### File: qjadud1994-Text_Detector/Pytorch/encoder.py ```python import math import torch import numpy as np from utils import meshgrid, box_iou, change_box_order, softmax from nms_poly import non_max_suppression_poly class DataEncoder: def __init__(self, cls_thresh=0.3, nms_thresh=0.1): self.anchor_areas = [16*16., 32*32., 64*64., 128*128., 256*256, 512*512.] # v3 self.aspect_ratios = [1., 2., 3., 5., 1./2., 1./3., 1./5.] # v3 #self.anchor_areas = [30*30., 70*70., 120*120., 250*250., 320*320. ,450*450.] #v5 #self.aspect_ratios = [1.0, 1.5, 2.0, 3.0, 5.0, 0.5, 0.2] #v5 self.anchor_wh = self._get_anchor_wh() self.cls_thresh = cls_thresh self.nms_thresh = nms_thresh def _get_anchor_wh(self): '''Compute anchor width and height for each feature map. Returns: anchor_wh: (tensor) anchor wh, sized [#fm, #anchors_per_cell, 2]. ''' anchor_wh = [] for s in self.anchor_areas: for ar in self.aspect_ratios: # w/h = ar anchor_h = math.sqrt(s/ar) anchor_w = ar * anchor_h anchor_wh.append([anchor_w, anchor_h]) num_fms = len(self.anchor_areas) return torch.FloatTensor(anchor_wh).view(num_fms, -1, 2) def _get_anchor_boxes(self, input_size): '''Compute anchor boxes for each feature map. Args: input_size: (tensor) model input size of (w,h). Returns: boxes: (list) anchor boxes for each feature map. Each of size [#anchors,4], where #anchors = fmw * fmh * #anchors_per_cell ''' num_fms = len(self.anchor_areas) fm_sizes = [(input_size/pow(2.,i+2)).ceil() for i in range(num_fms)] # p2 -> p7 feature map sizes boxes = [] for i in range(num_fms): fm_size = fm_sizes[i] grid_size = input_size / fm_size fm_w, fm_h = int(fm_size[0]), int(fm_size[1]) fm_w *= 2 # add vertical offset xy = meshgrid(fm_w,fm_h) + 0.5 xy = (xy*grid_size).view(fm_w,fm_h,1,2).expand(fm_w,fm_h,len(self.aspect_ratios),2) wh = self.anchor_wh[i].view(1,1,len(self.aspect_ratios),2).expand(fm_w,fm_h,len(self.aspect_ratios),2) box = torch.cat([xy,wh], 3) # [x,y,w,h] boxes.append(box.view(-1,4)) return torch.cat(boxes, 0) def encode(self, gt_quad_boxes, labels, input_size): '''Encode target bounding boxes and class labels. TextBoxes++ quad_box encoder: tx_n = (x_n - anchor_x) / anchor_w ty_n = (y_n - anchor_y) / anchor_h Args: gt_quad_boxes: (tensor) bounding boxes of (xyxyxyxy), sized [#obj, 8]. labels: (tensor) object class labels, sized [#obj, ]. input_size: (int/tuple) model input size of (w,h). Returns: loc_targets: (tensor) encoded bounding boxes, sized [#anchors,8]. cls_targets: (tensor) encoded class labels, sized [#anchors,]. ''' input_size = torch.Tensor([input_size,input_size]) if isinstance(input_size, int) \ else torch.Tensor(input_size) anchor_rect_boxes = self._get_anchor_boxes(input_size) #(num_anchor, 8) anchor_quad_boxes = change_box_order(anchor_rect_boxes, "xywh2quad") #(num_anchor, 4) gt_rect_boxes = change_box_order(gt_quad_boxes, "quad2xyxy") ious = box_iou(anchor_rect_boxes, gt_rect_boxes) max_ious, max_ids = ious.max(1) #Each anchor box matches the largest iou with the gt box gt_quad_boxes = gt_quad_boxes[max_ids] #(num_gt_boxes, 8) gt_rect_boxes = gt_rect_boxes[max_ids] #(num_gt_boxes, 4) # for Rectangle boxes -> using in TextBoxes #gt_rect_boxes = change_box_order(gt_rect_boxes, "xyxy2xywh") #loc_rect_yx = (gt_rect_boxes[:, :2] - anchor_rect_boxes[:, :2]) / anchor_rect_boxes[:, 2:] #loc_rect_hw = torch.log(gt_rect_boxes[:, 2:] / anchor_rect_boxes[:, 2:]) # for Quad boxes -> using in TextBoxes++ anchor_boxes_hw = anchor_rect_boxes[:, 2:4].repeat(1, 4) loc_quad_yx = (gt_quad_boxes - anchor_quad_boxes) / anchor_boxes_hw #loc_targets = torch.cat([loc_rect_yx, loc_rect_hw, loc_quad_yx], dim=1) # (num_anchor, 12) loc_targets = loc_quad_yx cls_targets = labels[max_ids] cls_targets[max_ious<0.5] = -1 # ignore (0.4~0.5) : -1 cls_targets[max_ious<0.4] = 0 # background (0.0~0.4): 0 # positive (0.5~1.0) : 1 return loc_targets, cls_targets def decode(self, loc_preds, cls_preds, input_size): '''Decode outputs back to bouding box locations and class labels. Args: loc_preds: (tensor) predicted locations, sized [#anchors, 8]. cls_preds: (tensor) predicted class labels, sized [#anchors, ]. input_size: (int/tuple) model input size of (w,h). Returns: boxes: (tensor) decode box locations, sized [#obj,8]. labels: (tensor) class labels for each box, sized [#obj,]. ''' input_size = torch.Tensor([input_size,input_size]) if isinstance(input_size, int) \ else torch.Tensor(input_size) anchor_rect_boxes = self._get_anchor_boxes(input_size).cuda() anchor_quad_boxes = change_box_order(anchor_rect_boxes, "xywh2quad") quad_boxes = anchor_quad_boxes + anchor_rect_boxes[:, 2:4].repeat(1, 4) * loc_preds # [#anchor, 8] quad_boxes = torch.clamp(quad_boxes, 0, input_size[0]) score, labels = cls_preds.sigmoid().max(1) # focal loss #score, labels = softmax(cls_preds).max(1) # OHEM+softmax # Classification score Threshold ids = score > self.cls_thresh ids = ids.nonzero().squeeze() # [#obj,] score = score[ids] labels = labels[ids] quad_boxes = quad_boxes[ids].view(-1, 4, 2) quad_boxes = quad_boxes.cpu().data.numpy() score = score.cpu().data.numpy() if len(score.shape) is 0: return quad_boxes, labels, score else: keep = non_max_suppression_poly(quad_boxes, score, self.nms_thresh) return quad_boxes[keep], labels[keep], score[keep] def debug(): encoder = DataEncoder() anchor_wh = encoder._get_anchor_wh() input_size = 32 input_size = torch.Tensor([input_size,input_size]) anchor = encoder._get_anchor_boxes(input_size) print("anchor.size() : ", anchor.size()) for i in anchor: print(i) exit() test = torch.randn((3, 8)) #test2 = torch.reshape(test, (-1, 4, 2)) test2 = test.view((-1, 4, 2)) print("test : ", test, test.size()) print("test2 : ", test2, test2.size()) gt_quad_boxes = torch.randn((1400, 8)) labels = torch.randn((1400, 1)) result_encode = encoder.encode(gt_quad_boxes, labels, input_size) print(result_encode[0].size()) print(result_encode[1].size()) #debug() ``` #### File: Tensorflow/Detector/input_producer.py ```python import os import tensorflow as tf slim = tf.contrib.slim class InputProducer(object): def __init__(self, preprocess_image_fn=None, vertical_image=False): self.vertical_image = vertical_image self._preprocess_image = preprocess_image_fn if preprocess_image_fn is not None \ else self._default_preprocess_image_fn self.ITEMS_TO_DESCRIPTIONS = { 'image': 'A color image of varying height and width.', 'shape': 'Shape of the image', 'object/bbox': 'A list of bounding boxes, one per each object.', 'object/label': 'A list of labels, one per each object.', } self.SPLITS_TO_SIZES = { 'train_IC13': 229, 'val_IC13': 233, 'train_2': 850000, 'val_2': 8750, 'train_quad': 850000, 'val_quad': 8750, 'train_IC15': 1000, 'val_IC15': 500, 'train_IC15_mask': 1000, 'val_IC15_mask': 500 } self.FILE_PATTERN = '%s.record' def num_classes(self): return 20 def get_split(self, split_name, dataset_dir, is_rect=True): """Gets a dataset tuple with instructions for reading Pascal VOC dataset. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in self.SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) file_pattern = os.path.join(dataset_dir, self.FILE_PATTERN % split_name) reader = tf.TFRecordReader if is_rect: # Rect annotations keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'object/bbox': slim.tfexample_decoder.BoundingBox( ['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), } else: #Quad annotations keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'), 'image/object/bbox/y0': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/x0': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/y1': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/x1': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/y2': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/x2': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/y3': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/x3': tf.VarLenFeature(dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'object/quad1': slim.tfexample_decoder.BoundingBox( ['y0', 'x0', 'y1', 'x1'], 'image/object/bbox/'), 'object/quad2': slim.tfexample_decoder.BoundingBox( ['y2', 'x2', 'y3', 'x3'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None #if has_labels(dataset_dir): # labels_to_names = read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=self.SPLITS_TO_SIZES[split_name], items_to_descriptions=self.ITEMS_TO_DESCRIPTIONS, num_classes=self.num_classes(), labels_to_names=labels_to_names) def _default_preprocess_image_fn(self, image, is_train=True): return image ``` #### File: Tensorflow/utils/bbox.py ```python import cv2 import numpy as np import tensorflow as tf from PIL import Image, ImageDraw, ImageFont def get_mean_and_std(dataset, max_load=10000): """Compute the mean and std value of dataset.""" # dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') N = min(max_load, len(dataset)) for i in range(N): print(i) im,_,_ = dataset.load(1) for j in range(3): mean[j] += im[:,j,:,:].mean() std[j] += im[:,j,:,:].std() mean.div_(N) std.div_(N) return mean, std def change_box_order(boxes, order): '''Change box order between (xmin,ymin,xmax,ymax) and (xcenter,ycenter,width,height). Args: boxes: (tensor) bounding boxes, sized [num anchors, 4]. Returns: (tensor) converted bounding boxes, sized [num anchor, 4]. ''' if order is 'yxyx2yxhw': y_min, x_min, y_max, x_max = tf.split(value=boxes, num_or_size_splits=4, axis=1) x = (x_min + x_max) / 2 y = (y_min + y_max) / 2 w = x_max - x_min h = y_max - y_min new_boxes = tf.concat([y,x,h,w], axis=1) elif order is 'yxhw2yxyx': y, x, h, w = tf.split(value=boxes, num_or_size_splits=4, axis=1) x_min = x - w/2 x_max = x + w/2 y_min = y - h/2 y_max = y + h/2 new_boxes = tf.concat([y_min, x_min, y_max, x_max], axis=1) elif order is 'xyxy2yxyx': x_min, y_min, x_max, y_max = tf.split(value=boxes, num_or_size_splits=4, axis=1) new_boxes = tf.concat([y_min, x_min, y_max, x_max], axis=1) elif order is 'yxyx2xyxy': y_min, x_min, y_max, x_max = tf.split(value=boxes, num_or_size_splits=4, axis=1) new_boxes = tf.concat([x_min, y_min, x_max, y_max], axis=1) elif order is "yxhw2quad": """rect : [num_boxes, 4] #yxhw, / quad : [num_boxes, 8]""" y0, x0, h0, w0 = tf.split(value=boxes, num_or_size_splits=4, axis=1) new_boxes = tf.concat([y0-h0/2, x0-w0/2, y0-h0/2, x0+w0/2, y0+h0/2, x0+w0/2, y0+h0/2, x0-w0/2], axis=1) elif order is "quad2yxyx": """quad : [num_boxes, 8] / rect : [num_boxes, 4] #yxyx""" boxes = tf.reshape(boxes, (-1, 4, 2)) new_boxes = tf.concat([tf.reduce_min(boxes[:, :, 0:1], axis=1), tf.reduce_min(boxes[:, :, 1:2], axis=1), tf.reduce_max(boxes[:, :, 0:1], axis=1), tf.reduce_max(boxes[:, :, 1:2], axis=1)], axis=1) return new_boxes def box_iou(box1, box2, order='xyxy'): '''Compute the intersection over union of two set of boxes. The default box order is (xmin, ymin, xmax, ymax). Args: box1: (tensor) bounding boxes, sized [N,4]. box2: (tensor) bounding boxes, sized [M,4]. order: (str) box order, either 'xyxy' or 'xywh'. Return: (tensor) iou, sized [N,M]. Reference: https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py ''' box1 = change_box_order(box1, "xywh2xyxy") lt = tf.reduce_max([box1[:, :2], box2[:, :2]]) # [N,M,2] rb = tf.reduce_max([box1[:, 2:], box2[:, 2:]]) # [N,M,2] print(lt, rb) wh = tf.clip_by_value(rb-lt+1, 0, float('nan')) print(wh) inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] area1 = (box1[:, 2]-box1[:, 0]+1) * (box1[:, 3]-box1[:, 1]+1) # [N,] area2 = (box2[:, 2]-box2[:, 0]+1) * (box2[:, 3]-box2[:, 1]+1) # [M,] iou = inter / (area1[:, None] + area2 - inter) return iou def draw_bboxes(image, boxes, labels): boxes = np.array(boxes, dtype=np.int32) for box, label in zip(boxes, labels): ymin, xmin, ymax, xmax = box image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0,255,0), 3) #image = cv2.putText(image, str(label), (box[0]+15, box[1]), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255), 1) return image def draw_boxes(img, bboxes, classes, scores): if len(bboxes) == 0: return img #height, width, _ = img.shape width, height = img.size #image = Image.fromarray(img) image = img font = ImageFont.truetype( font='/root/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.4).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 draw = ImageDraw.Draw(image) for box, category, score in zip(bboxes, classes, scores): y1, x1, y2, x2 = [int(i) for i in box] p1 = (x1, y1) p2 = (x2, y2) label = '{} {:.1f}% '.format(category, score * 100) label_size = draw.textsize(label) text_origin = np.array([p1[0], p1[1] - label_size[1]]) color = np.array((0,255,0)) for i in range(thickness): draw.rectangle( [p1[0] + i, p1[1] + i, p2[0] - i, p2[1] - i], outline=tuple(color)) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=tuple(color)) draw.text( tuple(text_origin), label, fill=(0, 0, 0), font=font) del draw return np.array(image) def draw_text_boxes(img, bboxes, color=(0,255,0)): if len(bboxes) == 0: return img width, height = img.size image = img draw = ImageDraw.Draw(image) thickness = (image.size[0] + image.size[1]) // 400 for box in bboxes: y1, x1, y2, x2 = [int(i) for i in box] p1 = (x1, y1) p2 = (x2, y2) color = np.array(color) for i in range(thickness): draw.rectangle( [p1[0] + i, p1[1] + i, p2[0] - i, p2[1] - i], outline=tuple(color)) del draw return image def area(boxlist, scope=None): """Computes area of boxes. Args: boxlist: BoxList holding N boxes following order [ymin, xmin, ymax, xmax] scope: name scope. Returns: a tensor with shape [N] representing box areas. """ with tf.name_scope(scope, 'Area'): y_min, x_min, y_max, x_max = tf.split( value=boxlist, num_or_size_splits=4, axis=1) return tf.squeeze((y_max - y_min) * (x_max - x_min), [1]) def intersection(boxlist1, boxlist2, scope=None): """Compute pairwise intersection areas between boxes. Args: boxlist1: BoxList holding N boxes boxlist2: BoxList holding M boxes scope: name scope. Returns: a tensor with shape [N, M] representing pairwise intersections """ with tf.name_scope(scope, 'Intersection'): y_min1, x_min1, y_max1, x_max1 = tf.split( value=boxlist1, num_or_size_splits=4, axis=1) y_min2, x_min2, y_max2, x_max2 = tf.split( value=boxlist2, num_or_size_splits=4, axis=1) all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2)) all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2)) intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2)) all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2)) intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths def iou(boxlist1, boxlist2, scope=None): """Computes pairwise intersection-over-union between box collections. Args: boxlist1: BoxList holding N boxes boxlist2: BoxList holding M boxes scope: name scope. Returns: a tensor with shape [N, M] representing pairwise iou scores. """ boxlist1 = change_box_order(boxlist1, "yxhw2yxyx") with tf.name_scope(scope, 'IOU'): intersections = intersection(boxlist1, boxlist2) areas1 = area(boxlist1) areas2 = area(boxlist2) unions = ( tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections) return tf.where( tf.equal(intersections, 0.0), tf.zeros_like(intersections), tf.truediv(intersections, unions)) def bboxes_jaccard(bbox_ref, bboxes, name=None): """Compute jaccard score between a reference box and a collection of bounding boxes. Args: bbox_ref: (N, 4) or (4,) Tensor with reference bounding box(es). bboxes: (N, 4) Tensor, collection of bounding boxes. Return: (N,) Tensor with Jaccard scores. """ with tf.name_scope(name, 'bboxes_jaccard'): # Should be more efficient to first transpose. bboxes = tf.transpose(bboxes) bbox_ref = tf.transpose(bbox_ref) # Intersection bbox and volume. int_ymin = tf.maximum(bboxes[0], bbox_ref[0]) int_xmin = tf.maximum(bboxes[1], bbox_ref[1]) int_ymax = tf.minimum(bboxes[2], bbox_ref[2]) int_xmax = tf.minimum(bboxes[3], bbox_ref[3]) h = tf.maximum(int_ymax - int_ymin, 0.) w = tf.maximum(int_xmax - int_xmin, 0.) # Volumes. # Volumes. inter_vol = h * w bboxes_vol = (bboxes[2] - bboxes[0]) * (bboxes[3] - bboxes[1]) #jaccard = tfe_math.safe_divide(inter_vol, union_vol, 'jaccard') #return jaccard return tf.where( tf.greater(bboxes_vol, 0), tf.divide(inter_vol, bboxes_vol), tf.zeros_like(inter_vol), name='jaccard') ''' _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) TOTAL_BAR_LENGTH = 86. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % format_time(step_time)) L.append(' | Tot: %s' % format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f ''' ```
{ "source": "jiajunhua/StevenLei2017-AI_projects", "score": 2 }
#### File: 002_目标检测实践_keras版Mask-RCNN训练自己的数据/code/_06_test_one_image.py ```python import os import sys import cv2 import time import numpy as np import json # 工程的根目录 ROOT_DIR = os.path.abspath("../resources/") # 导入Mask RCNN库 sys.path.append(ROOT_DIR) from mrcnn.config import Config import mrcnn.model as modellib from mrcnn import visualize # 获取文件夹中的文件路径 def get_filePathList(dirPath, partOfFileName=''): allFileName_list = next(os.walk(dirPath))[2] fileName_list = [k for k in allFileName_list if partOfFileName in k] filePath_list = [os.path.join(dirPath, k) for k in fileName_list] return filePath_list # 根据配置json文件路径解析出字典 def get_jsonDict(config_jsonFilePath): with open(config_jsonFilePath, 'r', encoding='utf8') as file: fileContent = file.read() json_dict = json.loads(fileContent) className_list = json_dict['className_list'] className_list = [k.strip() for k in className_list] className_list = sorted(className_list, reverse=False) json_dict['className_list'] = className_list return json_dict # 模型测试配置类 class InferenceConfig(Config): def __init__(self, config_dict): super(InferenceConfig, self).__init__() self.NAME = config_dict['source'] self.BACKBONE = config_dict['backbone'] self.GPU_COUNT = 1 self.IMAGES_PER_GPU = 1 self.BATCH_SIZE =1 self.NUM_CLASSES = 1 + len(config_dict['className_list']) self.IMAGE_MIN_DIM = min(config_dict['image_width'], config_dict['image_height']) self.IMAGE_MAX_DIM = max(config_dict['image_width'], config_dict['image_height']) self.IMAGE_SHAPE = np.array([config_dict['image_height'], config_dict['image_width'], 3]) self.IMAGE_META_SIZE = 15 self.RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) self.TRAIN_ROIS_PER_IMAGE = 32 self.STEPS_PER_EPOCH = config_dict['steps_per_epoch'] self.VALIDATION_STEPS = 20 self.LEARNING_RATE = 0.001 # 获取模型对象 def get_model(model_dirPath, config_dict): model = modellib.MaskRCNN(mode="inference", config=InferenceConfig(config_dict), model_dir=model_dirPath) weights_path = model.find_last() print('模型加载权重文件,权重文件的路径:%s' %weights_path) model.load_weights(weights_path, by_name=True) return model # 定义检测函数,并将检测结果用matplotlib库绘制出来 def detect_image(model, imageFilePath, config_dict): image_ndarray = cv2.imread(imageFilePath)[:, :, ::-1] results = model.detect([image_ndarray], verbose=0) r = results[0] className_list = ['BG'] + config_dict['className_list'] visualize.display_instances(image_ndarray, r['rois'], r['masks'], r['class_ids'], className_list, r['scores'], figsize=(8, 8)) # 解析调用代码文件时传入的参数 import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-m', '--model_dirPath', type=str, help='模型权重文件夹路径', default='../download_resources/logs') parser.add_argument('-i', '--image_dirPath', type=str, help='图片文件夹路径', default='../download_resources/n01440764') parser.add_argument('--image_suffix', type=str, help='图片文件的后缀', default='.jpg') parser.add_argument('-c', '--config', type=str, help='模型配置json文件路径', default='../resources/model_config.json') argument_namespace = parser.parse_args() return argument_namespace if __name__ == '__main__': # 解析传入的参数 argument_namespace = parse_args() model_dirPath = argument_namespace.model_dirPath.strip() image_dirPath = argument_namespace.image_dirPath.strip() image_suffix = argument_namespace.image_suffix.strip() config_jsonFilePath = argument_namespace.config.strip() # 获取模型配置字典,并实例化模型对象 config_dict = get_jsonDict(config_jsonFilePath) model = get_model(model_dirPath, config_dict) # 获取图片文件路径 imageFilePath_list = get_filePathList(image_dirPath, image_suffix) assert len(imageFilePath_list), 'no image in image directory path, please check your input parameters: image_dirPath , image_suffix' imageFilePath = np.random.choice(imageFilePath_list, 1)[0] print('对此文件路径的图片做检测:%s'%imageFilePath) # 对单张图片做检测 detect_image(model, imageFilePath, config_dict) ``` #### File: 005_模型部署_在线预测/code/_01_image_server.py ```python # -*- coding: utf-8 -*- # 导入常用的库 import time import os import cv2 import numpy as np # 导入flask库的Flask类和request对象 from flask import request, Flask app = Flask(__name__) # 导入pickle,加载图像数据处理减去的像素均值pixel_mean import pickle with open('../resources/pixel_mean.pickle', 'rb') as file: pixel_mean = pickle.load(file) # 定义字典id2name_dict,把种类索引转换为种类名称 className_list = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] id2name_dict = {a:b for a, b in enumerate(className_list)} # 加载图像分类模型ResNet56 from keras.models import load_model from keras.optimizers import Adam model_filePath = '../resources/cifar10_ResNet56v2_model.162.h5' model = load_model(model_filePath) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) # 根据图片文件路径获取图像数据矩阵 def get_imageNdarray(imageFilePath): image_ndarray = cv2.imread(imageFilePath) resized_image_ndarray = cv2.resize(image_ndarray, (32, 32), interpolation=cv2.INTER_AREA) return resized_image_ndarray # 模型预测前必要的图像处理 def process_imageNdarray(image_ndarray, pixel_mean): rgb_image_ndarray = image_ndarray[:, :, ::-1] image_ndarray_1 = rgb_image_ndarray / 255 image_ndarray_2 = image_ndarray_1 - pixel_mean return image_ndarray_2 # 使用模型对指定图片文件路径完成图像分类,返回值为预测的种类名称 def predict_image(model, imageFilePath, id2name_dict): image_ndarray = get_imageNdarray(imageFilePath) processed_image_ndarray = process_imageNdarray(image_ndarray, pixel_mean) inputs = processed_image_ndarray[np.newaxis, ...] predict_Y = model.predict(inputs)[0] predict_y = np.argmax(predict_Y) predict_className = id2name_dict[predict_y] print('对此图片路径 %s 的预测结果为 %s' %(imageFilePath, predict_className)) return predict_className # 定义回调函数,接收来自/的post请求,并返回预测结果 @app.route("/", methods=['POST']) def anyname_you_like(): startTime = time.time() received_file = request.files['file'] imageFileName = received_file.filename if received_file: received_dirPath = '../resources/received_images' if not os.path.isdir(received_dirPath): os.makedirs(received_dirPath) imageFilePath = os.path.join(received_dirPath, imageFileName) received_file.save(imageFilePath) print('图片文件保存到此路径:%s' % imageFilePath) usedTime = time.time() - startTime print('接收图片并保存,总共耗时%.2f秒' % usedTime) startTime = time.time() predict_className = predict_image(model, imageFilePath, id2name_dict) usedTime = time.time() - startTime print('完成对接收图片的分类预测,总共耗时%.2f秒' % usedTime) return predict_className else: return 'failed' # 主函数 if __name__ == "__main__": print('在开启服务前,先测试predict_image函数') imageFilePath = '../resources/images/001.jpg' predict_className = predict_image(model, imageFilePath, id2name_dict) app.run("127.0.0.1", port=5000) ``` #### File: 005_模型部署_在线预测/code/_11_yolov3_server_3.py ```python from _06_yolov3 import Detector # 导入常用的库 import numpy as np import time import os from PIL import Image # 导入flask库 from flask import Flask, render_template, request, jsonify # 加载把图片文件转换为字符串的base64库 import base64 from yolo3.utils import letterbox_image # 导入代码文件_12_yolov3_client_3.py中的画图方法 from _12_yolov3_client_3 import get_drawedImage # 实例化Flask服务对象,赋值给变量server server = Flask(__name__) # 设置开启web服务后,如果更新html文件,可以使更新立即生效 server.jinja_env.auto_reload = True server.config['TEMPLATES_AUTO_RELOAD'] = True # 实例化检测器对象 detector = Detector( weights_h5FilePath='../resources/yolov3/yolov3_weights.h5', anchor_txtFilePath='../resources/yolov3/yolov3_anchors.txt', category_txtFilePath='../resources/yolov3/coco.names' ) # 获取当前时间表示的字符串的小数部分,精确到0.1毫秒 def get_secondFloat(timestamp): secondFloat = ('%.4f' %(timestamp%1))[1:] return secondFloat # 获取当前时间表示的字符串,精确到0.1毫秒 def get_timeString(): now_timestamp = time.time() now_structTime = time.localtime(now_timestamp) timeString_pattern = '%Y%m%d_%H%M%S' now_timeString_1 = time.strftime(timeString_pattern, now_structTime) now_timeString_2 = get_secondFloat(now_timestamp) now_timeString = now_timeString_1 + now_timeString_2 return now_timeString # 获取使用YOLOv3算法做目标检测的结果 def get_detectResult(image): startTime = time.time() boxed_image = letterbox_image(image, (416, 416)) image_data = np.array(boxed_image).astype('float') / 255 image_data = np.expand_dims(image_data, 0) # Add batch dimension. # 模型网络结构运算 box_ndarray, classId_ndarray, score_ndarray = detector.session.run( [detector.boxes, detector.classes, detector.scores], feed_dict={ detector.yolo_model.input: image_data, detector.input_image_size: [image.size[1], image.size[0]], } ) box_ndarray = box_ndarray[:, [1,0,3,2]] return box_ndarray, classId_ndarray, score_ndarray # 获取请求中的参数字典 from urllib.parse import unquote def get_dataDict(data): data_dict = {} for text in data.split('&'): key, value = text.split('=') value_1 = unquote(value) data_dict[key] = value_1 return data_dict # 网络请求'/'的回调函数 @server.route('/') def index(): htmlFileName = '_14_yolov3_3.html' htmlFileContent = render_template(htmlFileName) return htmlFileContent # 网络请求'/get_detectedResult'的回调函数 @server.route('/get_detectionResult', methods=['POST']) def anyname_you_like(): startTime = time.time() data_bytes = request.get_data() data = data_bytes.decode('utf-8') data_dict = get_dataDict(data) if 'image_base64_string' in data_dict: # 保存接收的图片到指定文件夹 received_dirPath = '../resources/received_images' if not os.path.isdir(received_dirPath): os.makedirs(received_dirPath) timeString = get_timeString() imageFileName = timeString + '.jpg' imageFilePath = os.path.join(received_dirPath, imageFileName) try: image_base64_string = data_dict['image_base64_string'] image_base64_bytes = image_base64_string.encode('utf-8') image_bytes = base64.b64decode(image_base64_bytes) with open(imageFilePath, 'wb') as file: file.write(image_bytes) print('接收图片文件保存到此路径:%s' %imageFilePath) usedTime = time.time() - startTime print('接收图片并保存,总共耗时%.2f秒' %usedTime) # 通过图片路径读取图像数据,并对图像数据做目标检测 startTime = time.time() image = Image.open(imageFilePath) box_ndarray, classId_ndarray, score_ndarray = get_detectResult(image) usedTime = time.time() - startTime print('打开接收的图片文件并做目标检测,总共耗时%.2f秒\n' %usedTime) # 把目标检测结果图保存在服务端指定路径 drawed_image = get_drawedImage(image, box_ndarray, classId_ndarray, score_ndarray) drawed_imageFileName = 'drawed_' + imageFileName drawed_imageFilePath = os.path.join(received_dirPath, drawed_imageFileName) drawed_image.save(drawed_imageFilePath) # 把目标检测结果转化为json格式的字符串 json_dict = { 'box_list' : box_ndarray.astype('int').tolist(), 'classId_list' : classId_ndarray.tolist(), 'score_list' : score_ndarray.tolist() } return jsonify(**json_dict) except Exception as e: print(e) if __name__ == '__main__': server.run('127.0.0.1', port=5000) ``` #### File: 005_模型部署_在线预测/code/_12_yolov3_client_3.py ```python import os import numpy as np import cv2 from PIL import Image # 导入发起网络请求的库requests import requests # 导入加密图片文件为base64数据的库base64 import base64 # 根据图片文件路径获取base64编码后内容 def get_imageBase64String(imageFilePath): assert os.path.exists(imageFilePath), "此图片路径不存在: %" %imageFilePath with open(imageFilePath, 'rb') as file: image_bytes = file.read() image_base64_bytes = base64.b64encode(image_bytes) image_base64_string = image_base64_bytes.decode('utf-8') return image_base64_string # 使用cv2库显示图片 def cv2_display(image_ndarray): windowName = "object_detection_result" # cv2设置窗口可以变化 cv2.namedWindow(windowName, cv2.WINDOW_NORMAL) cv2.imshow(windowName, image_ndarray) while True: pressKey = cv2.waitKey() # 按Esc键或者q键可以关闭显示窗口 if 27 == pressKey or ord('q') == pressKey: cv2.destroyAllWindows() break # 根据图片文件路径获取图像数据,图像缩小后,保存到新图片文件,返回新图片文件路径 import math def resize_image(imageFilePath, max_height=416, max_width=416): image_ndarray = cv2.imread(imageFilePath) old_height, old_width, _ = image_ndarray.shape if old_width > max_width or old_height > max_height: if old_width / old_height >= max_width / max_height: new_width = max_width resized_multiple = new_width / old_width new_height = math.ceil(old_height * resized_multiple) else: new_height = max_height resized_multiple = new_height / old_height new_width = math.ceil(old_width * resized_multiple) else: resized_multiple = 1 new_width = old_width new_height = old_height resized_image_ndarray = cv2.resize( image_ndarray, (new_width, new_height), ) image_dirPath, imageFileName = os.path.split(imageFilePath) resized_imageFileName = 'resized_' + imageFileName resized_imageFilePath = os.path.join(image_dirPath, resized_imageFileName) cv2.imwrite(resized_imageFilePath, resized_image_ndarray) return resized_imageFilePath, resized_multiple # 通过种类的数量,每个种类对应的颜色,颜色变量color为rgb这3个数值组成的元祖 import colorsys def get_colorList(category_quantity): hsv_list = [] for i in range(category_quantity): hue = i / category_quantity saturation = 1 value = 1 hsv = (hue, saturation, value) hsv_list.append(hsv) colorFloat_list = [colorsys.hsv_to_rgb(*k) for k in hsv_list] color_list = [tuple([int(x * 255) for x in k]) for k in colorFloat_list] return color_list # 从文本文件中解析出物体种类列表category_list,要求每个种类占一行 def get_categoryList(category_txtFilePath): with open(category_txtFilePath, 'r', encoding='utf8') as file: fileContent = file.read() line_list = [k.strip() for k in fileContent.split('\n') if k.strip()!=''] category_list = line_list return category_list # 获取绘制检测效果之后的图片 from PIL import Image, ImageDraw, ImageFont def get_drawedImage(image, box_list, classId_list, score_list, category_list=None, show_bbox=True, show_class=True, show_score=True, show_instanceQuantity=True): if category_list == None: category_txtFilePath = '../resources/yolov3/coco.names' category_list = get_categoryList(category_txtFilePath) # 复制原图像数据,赋值给表示绘画图像数据的变量drawed_image,这样可以避免修改原图像数据 drawed_image = image.copy() # 获取图像的宽、高 image_width, image_height = image.size # 获取实例的数量 box_ndarray = np.array(box_list).astype('int') instance_quantity = box_ndarray.shape[0] # 生成随机的颜色 category_quantity = len(category_list) color_list = get_colorList(category_quantity) # 循环遍历每个实例 for index in range(len(box_list)): classId = classId_list[index] className = category_list[classId] color = color_list[classId] x1, y1, x2, y2 = box_ndarray[index] # 增强绘图功能的健壮性 x1 = max(0, x1) y1 = max(0, y1) x2 = min(image_width, x2) y2 = min(image_height, y2) # 方框的左上角坐标、右上角坐标 box_leftTop = x1, y1 box_rightBottom = x2, y2 # 绘制矩形,即检测出的边界框 if show_bbox: drawed_image_ndarray = np.array(drawed_image) thickness = max(1, (image_width + image_height) // 300) cv2.rectangle(drawed_image_ndarray, box_leftTop, box_rightBottom, color, thickness) drawed_image = Image.fromarray(drawed_image_ndarray) # 绘制文字,文字内容为 if show_class: # 实例化图像画图对象、图像字体对象 imageDraw = ImageDraw.Draw(drawed_image) fontSize = max(1, int(0.02 * image_height + 0.5)) imageFont = ImageFont.truetype( font='../resources/yolov3/FiraMono-Medium.otf', size= fontSize ) # 定义文本区域显示的内容 if show_score: score = score_list[index] text = '%s %.2f' %(className, score) else: text = "%s" %className # 根据字体种类和文字内容动态调整绘制 textRegion_size = imageDraw.textsize(text, imageFont) if y1 < 10: textRegion_leftTop = (x1, y1) textRegion_rightBottom = (x1 + textRegion_size[0], y1 + textRegion_size[1]) else: textRegion_leftTop = (x1, y1 - textRegion_size[1]) textRegion_rightBottom = (x1 + textRegion_size[0], y1) # 绘制与边界框颜色相同的文字背景 imageDraw.rectangle( [textRegion_leftTop, textRegion_rightBottom], fill=color ) # 绘制表示种类名称、置信概率的文字 imageDraw.text(textRegion_leftTop, text, fill=(0, 0, 0), font=imageFont) del imageDraw # 绘制文字,文字内容为图片中总共检测出多少个实例物体 if show_instanceQuantity: imageDraw = ImageDraw.Draw(drawed_image) text = '此图片中总共检测出的物体数量:%02d' %instance_quantity fontSize = max(1, int(0.05 * image_height + 0.5)) font = ImageFont.truetype('C:/Windows/Font/STLITI.TTF', fontSize, encoding='utf-8') textRegion_leftTop = (3, 3) textColor = (34, 139, 34) imageDraw.text(textRegion_leftTop, text, textColor, font=font) return drawed_image # 主函数 if __name__ == '__main__': url = "http://127.0.0.1:5000/get_detectionResult" while True: input_content = input('输入图片路径,输入-1退出,默认值(../resources/images/person.jpg): ') if input_content.strip() == "": input_content = '../resources/images/person.jpg' if input_content.strip() == "-1": break elif not os.path.exists(input_content.strip()): print('输入图片路径不正确,请重新输入') else: imageFilePath = input_content.strip() resized_imageFilePath, resized_multiple = resize_image(imageFilePath) image_base64_string = get_imageBase64String(resized_imageFilePath) data_dict = {'image_base64_string' : image_base64_string} # 调用request.post方法发起post请求,并接收返回结果 response = requests.post(url, data=data_dict) # 处理返回的json格式数据,准备好传入get_drawedImageNdarray函数的参数 responseJson_dict = response.json() image = Image.open(imageFilePath) box_ndarray = np.array(responseJson_dict['box_list']) / resized_multiple box_list = box_ndarray.astype('int').tolist() classId_list = responseJson_dict['classId_list'] score_list = responseJson_dict['score_list'] # 根据目标检测结果获取画框图像数据 drawed_image = get_drawedImage( image, box_list, classId_list, score_list ) rgb_image_ndarray = np.array(drawed_image) bgr_image_ndarray = rgb_image_ndarray[..., ::-1] cv2_display(bgr_image_ndarray) ```
{ "source": "jiajunhua/tolstikhin-adagan", "score": 2 }
#### File: jiajunhua/tolstikhin-adagan/pot.py ```python import collections import logging import os import time import tensorflow as tf import utils from utils import ProgressBar from utils import TQDM import numpy as np import ops from metrics import Metrics slim = tf.contrib.slim def vgg_16(inputs, is_training=False, dropout_keep_prob=0.5, scope='vgg_16', fc_conv_padding='VALID', reuse=None): inputs = inputs * 255.0 inputs -= tf.constant([123.68, 116.779, 103.939], dtype=tf.float32) with tf.variable_scope(scope, 'vgg_16', [inputs], reuse=reuse) as sc: end_points_collection = sc.name + '_end_points' end_points = {} # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): end_points['pool0'] = inputs net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') end_points['pool1'] = net net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') end_points['pool2'] = net net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') end_points['pool3'] = net net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') end_points['pool4'] = net net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') end_points['pool5'] = net # # Use conv2d instead of fully_connected layers. # net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') # net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') # net = slim.conv2d(net, num_classes, [1, 1], # activation_fn=None, # normalizer_fn=None, # scope='fc8') # Convert end_points_collection into a end_point dict. # end_points = slim.utils.convert_collection_to_dict(end_points_collection) return net, end_points def compute_moments(_inputs, moments=[2, 3]): """From an image input, compute moments""" _inputs_sq = tf.square(_inputs) _inputs_cube = tf.pow(_inputs, 3) height = int(_inputs.get_shape()[1]) width = int(_inputs.get_shape()[2]) channels = int(_inputs.get_shape()[3]) def ConvFlatten(x, kernel_size): # w_sum = tf.ones([kernel_size, kernel_size, channels, 1]) / (kernel_size * kernel_size * channels) w_sum = tf.eye(num_rows=channels, num_columns=channels, batch_shape=[kernel_size * kernel_size]) w_sum = tf.reshape(w_sum, [kernel_size, kernel_size, channels, channels]) w_sum = w_sum / (kernel_size * kernel_size) sum_ = tf.nn.conv2d(x, w_sum, strides=[1, 1, 1, 1], padding='VALID') size = prod_dim(sum_) assert size == (height - kernel_size + 1) * (width - kernel_size + 1) * channels, size return tf.reshape(sum_, [-1, size]) outputs = [] for size in [3, 4, 5]: mean = ConvFlatten(_inputs, size) square = ConvFlatten(_inputs_sq, size) var = square - tf.square(mean) if 2 in moments: outputs.append(var) if 3 in moments: cube = ConvFlatten(_inputs_cube, size) skewness = cube - 3.0 * mean * var - tf.pow(mean, 3) # Unnormalized outputs.append(skewness) return tf.concat(outputs, 1) def prod_dim(tensor): return np.prod([int(d) for d in tensor.get_shape()[1:]]) def flatten(tensor): return tf.reshape(tensor, [-1, prod_dim(tensor)]) class Pot(object): """A base class for running individual POTs. """ def __init__(self, opts, data, weights): # Create a new session with session.graph = default graph self._session = tf.Session() self._trained = False self._data = data self._data_weights = np.copy(weights) # Latent noise sampled ones to apply decoder while training self._noise_for_plots = opts['pot_pz_std'] * utils.generate_noise(opts, 1000) # Placeholders self._real_points_ph = None self._noise_ph = None # Init ops self._additional_init_ops = [] self._init_feed_dict = {} # Main operations # Optimizers with self._session.as_default(), self._session.graph.as_default(): logging.error('Building the graph...') self._build_model_internal(opts) # Make sure AdamOptimizer, if used in the Graph, is defined before # calling global_variables_initializer(). init = tf.global_variables_initializer() self._session.run(init) self._session.run(self._additional_init_ops, self._init_feed_dict) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): # Cleaning the whole default Graph logging.error('Cleaning the graph...') tf.reset_default_graph() logging.error('Closing the session...') # Finishing the session self._session.close() def train(self, opts): """Train a POT model. """ with self._session.as_default(), self._session.graph.as_default(): self._train_internal(opts) self._trained = True def sample(self, opts, num=100): """Sample points from the trained POT model. """ assert self._trained, 'Can not sample from the un-trained POT' with self._session.as_default(), self._session.graph.as_default(): return self._sample_internal(opts, num) def train_mixture_discriminator(self, opts, fake_images): """Train classifier separating true data from points in fake_images. Return: prob_real: probabilities of the points from training data being the real points according to the trained mixture classifier. Numpy vector of shape (self._data.num_points,) prob_fake: probabilities of the points from fake_images being the real points according to the trained mixture classifier. Numpy vector of shape (len(fake_images),) """ with self._session.as_default(), self._session.graph.as_default(): return self._train_mixture_discriminator_internal(opts, fake_images) def _run_batch(self, opts, operation, placeholder, feed, placeholder2=None, feed2=None): """Wrapper around session.run to process huge data. It is asumed that (a) first dimension of placeholder enumerates separate points, and (b) that operation is independently applied to every point, i.e. we can split it point-wisely and then merge the results. The second placeholder is meant either for is_train flag for batch-norm or probabilities of dropout. TODO: write util function which will be called both from this method and MNIST classification evaluation as well. """ assert len(feed.shape) > 0, 'Empry feed.' num_points = feed.shape[0] batch_size = opts['tf_run_batch_size'] batches_num = int(np.ceil((num_points + 0.) / batch_size)) result = [] for idx in xrange(batches_num): if idx == batches_num - 1: if feed2 is None: res = self._session.run( operation, feed_dict={placeholder: feed[idx * batch_size:]}) else: res = self._session.run( operation, feed_dict={placeholder: feed[idx * batch_size:], placeholder2: feed2}) else: if feed2 is None: res = self._session.run( operation, feed_dict={placeholder: feed[idx * batch_size: (idx + 1) * batch_size]}) else: res = self._session.run( operation, feed_dict={placeholder: feed[idx * batch_size: (idx + 1) * batch_size], placeholder2: feed2}) if len(res.shape) == 1: # convert (n,) vector to (n,1) array res = np.reshape(res, [-1, 1]) result.append(res) result = np.vstack(result) assert len(result) == num_points return result def _build_model_internal(self, opts): """Build a TensorFlow graph with all the necessary ops. """ assert False, 'POT base class has no build_model method defined.' def _train_internal(self, opts): assert False, 'POT base class has no train method defined.' def _sample_internal(self, opts, num): assert False, 'POT base class has no sample method defined.' def _train_mixture_discriminator_internal(self, opts, fake_images): assert False, 'POT base class has no mixture discriminator method defined.' class ImagePot(Pot): """A simple POT implementation, suitable for pictures. """ def __init__(self, opts, data, weights): # One more placeholder for batch norm self._is_training_ph = None Pot.__init__(self, opts, data, weights) def dcgan_like_arch(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape num_units = opts['g_num_filters'] batch_size = tf.shape(noise)[0] num_layers = opts['g_num_layers'] if opts['g_arch'] == 'dcgan': height = output_shape[0] / 2**num_layers width = output_shape[1] / 2**num_layers elif opts['g_arch'] == 'dcgan_mod': height = output_shape[0] / 2**(num_layers-1) width = output_shape[1] / 2**(num_layers-1) else: assert False h0 = ops.linear( opts, noise, num_units * height * width, scope='h0_lin') h0 = tf.reshape(h0, [-1, height, width, num_units]) h0 = tf.nn.relu(h0) layer_x = h0 for i in xrange(num_layers-1): scale = 2**(i+1) if opts['g_stride1_deconv']: # Sylvain, I'm worried about this part! _out_shape = [batch_size, height * scale / 2, width * scale / 2, num_units / scale * 2] layer_x = ops.deconv2d( opts, layer_x, _out_shape, d_h=1, d_w=1, scope='h%d_deconv_1x1' % i) layer_x = tf.nn.relu(layer_x) _out_shape = [batch_size, height * scale, width * scale, num_units / scale] layer_x = ops.deconv2d(opts, layer_x, _out_shape, scope='h%d_deconv' % i) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1)) layer_x = tf.nn.dropout(layer_x, _keep_prob) _out_shape = [batch_size] + list(output_shape) if opts['g_arch'] == 'dcgan': last_h = ops.deconv2d( opts, layer_x, _out_shape, scope='hlast_deconv') elif opts['g_arch'] == 'dcgan_mod': last_h = ops.deconv2d( opts, layer_x, _out_shape, d_h=1, d_w=1, scope='hlast_deconv') else: assert False if opts['input_normalize_sym']: return tf.nn.tanh(last_h) else: return tf.nn.sigmoid(last_h) def began_dec(self, opts, noise, is_training, reuse, keep_prob): """ Architecture reported here: https://arxiv.org/pdf/1703.10717.pdf """ output_shape = self._data.data_shape num_units = opts['g_num_filters'] num_layers = opts['g_num_layers'] batch_size = tf.shape(noise)[0] h0 = ops.linear( opts, noise, num_units * 8 * 8, scope='h0_lin') h0 = tf.reshape(h0, [-1, 8, 8, num_units]) layer_x = h0 for i in xrange(num_layers): if i % 3 < 2: # Don't change resolution layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i) layer_x = tf.nn.elu(layer_x) else: if i != num_layers - 1: # Upsampling by factor of 2 with NN scale = 2 ** (i / 3 + 1) layer_x = ops.upsample_nn(layer_x, [scale * 8, scale * 8], scope='h%d_upsample' % i, reuse=reuse) # Skip connection append = ops.upsample_nn(h0, [scale * 8, scale * 8], scope='h%d_skipup' % i, reuse=reuse) layer_x = tf.concat([layer_x, append], axis=3) last_h = ops.conv2d(opts, layer_x, output_shape[-1], d_h=1, d_w=1, scope='hlast_conv') if opts['input_normalize_sym']: return tf.nn.tanh(last_h) else: return tf.nn.sigmoid(last_h) def conv_up_res(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape num_units = opts['g_num_filters'] batch_size = tf.shape(noise)[0] num_layers = opts['g_num_layers'] data_height = output_shape[0] data_width = output_shape[1] data_channels = output_shape[2] height = data_height / 2**num_layers width = data_width / 2**num_layers h0 = ops.linear( opts, noise, num_units * height * width, scope='h0_lin') h0 = tf.reshape(h0, [-1, height, width, num_units]) h0 = tf.nn.relu(h0) layer_x = h0 for i in xrange(num_layers-1): layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width)) layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_%d' % i) height *= 2 width *= 2 num_units /= 2 if opts['g_3x3_conv'] > 0: before = layer_x for j in range(opts['g_3x3_conv']): layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='conv2d_3x3_%d_%d' % (i, j), conv_filters_dim=3) layer_x = tf.nn.relu(layer_x) layer_x += before # Residual connection. if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1)) layer_x = tf.nn.dropout(layer_x, _keep_prob) layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width)) layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='last_conv2d_%d' % i) if opts['input_normalize_sym']: return tf.nn.tanh(layer_x) else: return tf.nn.sigmoid(layer_x) def ali_deconv(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape batch_size = tf.shape(noise)[0] noise_size = int(noise.get_shape()[1]) data_height = output_shape[0] data_width = output_shape[1] data_channels = output_shape[2] noise = tf.reshape(noise, [-1, 1, 1, noise_size]) num_units = opts['g_num_filters'] layer_params = [] layer_params.append([4, 1, num_units]) layer_params.append([4, 2, num_units / 2]) layer_params.append([4, 1, num_units / 4]) layer_params.append([4, 2, num_units / 8]) layer_params.append([5, 1, num_units / 8]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = noise height = 1 width = 1 for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - 1) * stride + kernel width = height layer_x = ops.deconv2d( opts, layer_x, [batch_size, height, width, channels], d_h=stride, d_w=stride, scope='h%d_deconv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == data_height assert width == data_width # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units / 8, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['input_normalize_sym']: return tf.nn.tanh(layer_x) else: return tf.nn.sigmoid(layer_x) def generator(self, opts, noise, is_training=False, reuse=False, keep_prob=1.): """ Decoder actually. """ output_shape = self._data.data_shape num_units = opts['g_num_filters'] with tf.variable_scope("GENERATOR", reuse=reuse): # if not opts['convolutions']: if opts['g_arch'] == 'mlp': layer_x = noise for i in range(opts['g_num_layers']): layer_x = ops.linear(opts, layer_x, num_units, 'h%d_lin' % i) layer_x = tf.nn.relu(layer_x) if opts['batch_norm']: layer_x = ops.batch_norm( opts, layer_x, is_training, reuse, scope='bn%d' % i) out = ops.linear(opts, layer_x, np.prod(output_shape), 'h%d_lin' % (i + 1)) out = tf.reshape(out, [-1] + list(output_shape)) if opts['input_normalize_sym']: return tf.nn.tanh(out) else: return tf.nn.sigmoid(out) elif opts['g_arch'] in ['dcgan', 'dcgan_mod']: return self.dcgan_like_arch(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'conv_up_res': return self.conv_up_res(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'ali': return self.ali_deconv(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'began': return self.began_dec(opts, noise, is_training, reuse, keep_prob) else: raise ValueError('%s unknown' % opts['g_arch']) def discriminator(self, opts, input_, prefix='DISCRIMINATOR', reuse=False): """Discriminator for the GAN objective """ num_units = opts['d_num_filters'] num_layers = opts['d_num_layers'] nowozin_trick = opts['gan_p_trick'] # No convolutions as GAN happens in the latent space with tf.variable_scope(prefix, reuse=reuse): hi = input_ for i in range(num_layers): hi = ops.linear(opts, hi, num_units, scope='h%d_lin' % (i+1)) hi = tf.nn.relu(hi) hi = ops.linear(opts, hi, 1, scope='final_lin') if nowozin_trick: # We are doing GAN between our model Qz and the true Pz. # We know analytical form of the true Pz. # The optimal discriminator for D_JS(Pz, Qz) is given by: # Dopt(x) = log dPz(x) - log dQz(x) # And we know exactly dPz(x). So add log dPz(x) explicitly # to the discriminator and let it learn only the remaining # dQz(x) term. This appeared in the AVB paper. assert opts['latent_space_distr'] == 'normal' sigma2_p = float(opts['pot_pz_std']) ** 2 normsq = tf.reduce_sum(tf.square(input_), 1) hi = hi - normsq / 2. / sigma2_p \ - 0.5 * tf.log(2. * np.pi) \ - 0.5 * opts['latent_space_dim'] * np.log(sigma2_p) return hi def pz_sampler(self, opts, input_, prefix='PZ_SAMPLER', reuse=False): """Transformation to be applied to the sample from Pz We are trying to match Qz to phi(Pz), where phi is defined by this function """ dim = opts['latent_space_dim'] with tf.variable_scope(prefix, reuse=reuse): matrix = tf.get_variable( "W", [dim, dim], tf.float32, tf.constant_initializer(np.identity(dim))) bias = tf.get_variable( "b", [dim], initializer=tf.constant_initializer(0.)) return tf.matmul(input_, matrix) + bias def get_batch_size(self, opts, input_): return tf.cast(tf.shape(input_)[0], tf.float32)# opts['batch_size'] def moments_stats(self, opts, input_): """ Compute estimates of the first 4 moments of the coordinates based on the sample in input_. Compare them to the desired population values and return a corresponding loss. """ input_ = input_ / float(opts['pot_pz_std']) # If Pz = Qz then input_ should now come from # a product of pz_dim Gaussians N(0, 1) # Thus first moments should be 0 p1 = tf.reduce_mean(input_, 0) center_inp = input_ - p1 # Broadcasting # Second centered and normalized moments should be 1 p2 = tf.sqrt(1e-5 + tf.reduce_mean(tf.square(center_inp), 0)) normed_inp = center_inp / p2 # Third central moment should be 0 # p3 = tf.pow(1e-5 + tf.abs(tf.reduce_mean(tf.pow(center_inp, 3), 0)), 1.0 / 3.0) p3 = tf.abs(tf.reduce_mean(tf.pow(center_inp, 3), 0)) # 4th central moment of any uni-variate Gaussian = 3 * sigma^4 # p4 = tf.pow(1e-5 + tf.reduce_mean(tf.pow(center_inp, 4), 0) / 3.0, 1.0 / 4.0) p4 = tf.reduce_mean(tf.pow(center_inp, 4), 0) / 3. def zero_t(v): return tf.sqrt(1e-5 + tf.reduce_mean(tf.square(v))) def one_t(v): # The function below takes its minimum value 1. at v = 1. return tf.sqrt(1e-5 + tf.reduce_mean(tf.maximum(tf.square(v), 1.0 / (1e-5 + tf.square(v))))) return tf.stack([zero_t(p1), one_t(p2), zero_t(p3), one_t(p4)]) def discriminator_test(self, opts, input_): """Deterministic discriminator using simple tests.""" if opts['z_test'] == 'cramer': test_v = self.discriminator_cramer_test(opts, input_) elif opts['z_test'] == 'anderson': test_v = self.discriminator_anderson_test(opts, input_) elif opts['z_test'] == 'moments': test_v = tf.reduce_mean(self.moments_stats(opts, input_)) / 10.0 elif opts['z_test'] == 'lks': test_v = self.discriminator_lks_test(opts, input_) else: raise ValueError('%s Unknown' % opts['z_test']) return test_v def discriminator_cramer_test(self, opts, input_): """Deterministic discriminator using Cramer von Mises Test. """ add_dim = opts['z_test_proj_dim'] if add_dim > 0: dim = int(input_.get_shape()[1]) proj = np.random.rand(dim, add_dim) proj = proj - np.mean(proj, 0) norms = np.sqrt(np.sum(np.square(proj), 0) + 1e-5) proj = tf.constant(proj / norms, dtype=tf.float32) projected_x = tf.matmul(input_, proj) # Shape [batch_size, add_dim]. # Shape [batch_size, z_dim+add_dim] all_dims_x = tf.concat([input_, projected_x], 1) else: all_dims_x = input_ # top_k can only sort on the last dimension and we want to sort the # first one (batch_size). batch_size = self.get_batch_size(opts, all_dims_x) transposed = tf.transpose(all_dims_x, perm=[1, 0]) values, indices = tf.nn.top_k(transposed, k=tf.cast(batch_size, tf.int32)) values = tf.reverse(values, [1]) #values = tf.Print(values, [values], "sorted values") normal_dist = tf.contrib.distributions.Normal(0., float(opts['pot_pz_std'])) # normal_cdf = normal_dist.cdf(values) #normal_cdf = tf.Print(normal_cdf, [normal_cdf], "normal_cdf") expected = (2 * tf.range(1, batch_size+1, 1, dtype="float") - 1) / (2.0 * batch_size) #expected = tf.Print(expected, [expected], "expected") # We don't use the constant. # constant = 1.0 / (12.0 * batch_size * batch_size) # stat = constant + tf.reduce_sum(tf.square(expected - normal_cdf), 1) / batch_size stat = tf.reduce_sum(tf.square(expected - normal_cdf), 1) / batch_size stat = tf.reduce_mean(stat) #stat = tf.Print(stat, [stat], "stat") return stat def discriminator_anderson_test(self, opts, input_): """Deterministic discriminator using the <NAME> test. """ # A-D test says to normalize data before computing the statistic # Because true mean and variance are known, we are supposed to use # the population parameters for that, but wiki says it's better to # still use the sample estimates while normalizing means = tf.reduce_mean(input_, 0) input_ = input_ - means # Broadcasting stds = tf.sqrt(1e-5 + tf.reduce_mean(tf.square(input_), 0)) input_= input_ / stds # top_k can only sort on the last dimension and we want to sort the # first one (batch_size). batch_size = self.get_batch_size(opts, input_) transposed = tf.transpose(input_, perm=[1, 0]) values, indices = tf.nn.top_k(transposed, k=tf.cast(batch_size, tf.int32)) values = tf.reverse(values, [1]) normal_dist = tf.contrib.distributions.Normal(0., float(opts['pot_pz_std'])) normal_cdf = normal_dist.cdf(values) # ln_normal_cdf is of shape (z_dim, batch_size) ln_normal_cdf = tf.log(normal_cdf) ln_one_normal_cdf = tf.log(1.0 - normal_cdf) w1 = 2 * tf.range(1, batch_size + 1, 1, dtype="float") - 1 w2 = 2 * tf.range(batch_size - 1, -1, -1, dtype="float") + 1 stat = -batch_size - tf.reduce_sum(w1 * ln_normal_cdf + \ w2 * ln_one_normal_cdf, 1) / batch_size # stat is of shape (z_dim) stat = tf.reduce_mean(tf.square(stat)) return stat def discriminator_lks_lin_test(self, opts, input_): """Deterministic discriminator using Kernel Stein Discrepancy test refer to LKS test on page 3 of https://arxiv.org/pdf/1705.07673.pdf The statistic basically reads: \[ \frac{2}{n}\sum_{i=1}^n \left( frac{<x_{2i}, x_{2i - 1}>}{\sigma_p^4} + d/\sigma_k^2 - \|x_{2i} - x_{2i - 1}\|^2\left(\frac{1}{\sigma_p^2\sigma_k^2} + \frac{1}{\sigma_k^4}\right) \right) \exp( - \|x_{2i} - x_{2i - 1}\|^2/2/\sigma_k^2) \] """ # To check the typical sizes of the test for Pz = Qz, uncomment # input_ = opts['pot_pz_std'] * utils.generate_noise(opts, 100000) batch_size = self.get_batch_size(opts, input_) batch_size = tf.cast(batch_size, tf.int32) half_size = batch_size / 2 # s1 = tf.slice(input_, [0, 0], [half_size, -1]) # s2 = tf.slice(input_, [half_size, 0], [half_size, -1]) s1 = input_[:half_size, :] s2 = input_[half_size:, :] dotprods = tf.reduce_sum(tf.multiply(s1, s2), axis=1) distances = tf.reduce_sum(tf.square(s1 - s2), axis=1) sigma2_p = opts['pot_pz_std'] ** 2 # var = std ** 2 # Median heuristic for the sigma^2 of Gaussian kernel # sigma2_k = tf.nn.top_k(distances, half_size).values[half_size - 1] # Maximum heuristic for the sigma^2 of Gaussian kernel # sigma2_k = tf.nn.top_k(distances, 1).values[0] sigma2_k = opts['latent_space_dim'] * sigma2_p if opts['verbose'] == 2: sigma2_k = tf.Print(sigma2_k, [tf.nn.top_k(distances, 1).values[0]], 'Maximal squared pairwise distance:') sigma2_k = tf.Print(sigma2_k, [tf.reduce_mean(distances)], 'Average squared pairwise distance:') sigma2_k = tf.Print(sigma2_k, [sigma2_k], 'Kernel width:') # sigma2_k = tf.Print(sigma2_k, [sigma2_k], 'Kernel width:') res = dotprods / sigma2_p ** 2 \ - distances * (1. / sigma2_p / sigma2_k + 1. / sigma2_k ** 2) \ + opts['latent_space_dim'] / sigma2_k res = tf.multiply(res, tf.exp(- distances / 2./ sigma2_k)) stat = tf.reduce_mean(res) return stat def discriminator_lks_test(self, opts, input_): """Deterministic discriminator using Kernel Stein Discrepancy test refer to the quadratic test of https://arxiv.org/pdf/1705.07673.pdf The statistic basically reads: \[ \frac{1}{n^2 - n}\sum_{i \neq j} \left( frac{<x_i, x__j>}{\sigma_p^4} + d/\sigma_k^2 - \|x_i - x_j\|^2\left(\frac{1}{\sigma_p^2\sigma_k^2} + \frac{1}{\sigma_k^4}\right) \right) \exp( - \|x_i - x_j\|^2/2/\sigma_k^2) \] """ n = self.get_batch_size(opts, input_) n = tf.cast(n, tf.int32) half_size = (n * n - n) / 2 nf = tf.cast(n, tf.float32) norms = tf.reduce_sum(tf.square(input_), axis=1, keep_dims=True) dotprods = tf.matmul(input_, input_, transpose_b=True) distances = norms + tf.transpose(norms) - 2. * dotprods sigma2_p = opts['pot_pz_std'] ** 2 # var = std ** 2 # Median heuristic for the sigma^2 of Gaussian kernel # sigma2_k = tf.nn.top_k(tf.reshape(distances, [-1]), half_size).values[half_size - 1] # Maximal heuristic for the sigma^2 of Gaussian kernel # sigma2_k = tf.nn.top_k(tf.reshape(distances, [-1]), 1).values[0] sigma2_k = opts['latent_space_dim'] * sigma2_p if opts['verbose'] == 2: sigma2_k = tf.Print(sigma2_k, [tf.nn.top_k(tf.reshape(distances, [-1]), 1).values[0]], 'Maximal squared pairwise distance:') sigma2_k = tf.Print(sigma2_k, [tf.reduce_mean(distances)], 'Average squared pairwise distance:') sigma2_k = tf.Print(sigma2_k, [sigma2_k], 'Kernel width:') res = dotprods / sigma2_p ** 2 \ - distances * (1. / sigma2_p / sigma2_k + 1. / sigma2_k ** 2) \ + opts['latent_space_dim'] / sigma2_k res = tf.multiply(res, tf.exp(- distances / 2./ sigma2_k)) res = tf.multiply(res, 1. - tf.eye(n)) stat = tf.reduce_sum(res) / (nf * nf - nf) # stat = tf.reduce_sum(res) / (nf * nf) return stat def discriminator_mmd_test(self, opts, sample_qz, sample_pz): """U statistic for MMD(Qz, Pz) with the RBF kernel """ sigma2_p = opts['pot_pz_std'] ** 2 # var = std ** 2 kernel = 'IM' n = self.get_batch_size(opts, sample_qz) n = tf.cast(n, tf.int32) nf = tf.cast(n, tf.float32) half_size = (n * n - n) / 2 # Pz norms_pz = tf.reduce_sum(tf.square(sample_pz), axis=1, keep_dims=True) dotprods_pz = tf.matmul(sample_pz, sample_pz, transpose_b=True) distances_pz = norms_pz + tf.transpose(norms_pz) - 2. * dotprods_pz # Qz norms_qz = tf.reduce_sum(tf.square(sample_qz), axis=1, keep_dims=True) dotprods_qz = tf.matmul(sample_qz, sample_qz, transpose_b=True) distances_qz = norms_qz + tf.transpose(norms_qz) - 2. * dotprods_qz # Pz vs Qz dotprods = tf.matmul(sample_qz, sample_pz, transpose_b=True) distances = norms_qz + tf.transpose(norms_pz) - 2. * dotprods if opts['verbose'] == 2: distances = tf.Print(distances, [tf.nn.top_k(tf.reshape(distances_qz, [-1]), 1).values[0]], 'Maximal Qz squared pairwise distance:') distances = tf.Print(distances, [tf.reduce_mean(distances_qz)], 'Average Qz squared pairwise distance:') distances = tf.Print(distances, [tf.nn.top_k(tf.reshape(distances_pz, [-1]), 1).values[0]], 'Maximal Pz squared pairwise distance:') distances = tf.Print(distances, [tf.reduce_mean(distances_pz)], 'Average Pz squared pairwise distance:') distances = tf.Print(distances, [tf.nn.top_k(tf.reshape(distances, [-1]), 1).values[0]], 'Maximal squared pairwise distance:') distances = tf.Print(distances, [tf.nn.top_k(tf.reshape(distances, [-1]), n * n).values[n * n - 1]], 'Minimal squared pairwise distance:') distances = tf.Print(distances, [tf.reduce_mean(distances)], 'Average squared pairwise distance:') if kernel == 'RBF': # RBF kernel # Median heuristic for the sigma^2 of Gaussian kernel sigma2_k = tf.nn.top_k(tf.reshape(distances, [-1]), half_size).values[half_size - 1] sigma2_k += tf.nn.top_k(tf.reshape(distances_qz, [-1]), half_size).values[half_size - 1] # Maximal heuristic for the sigma^2 of Gaussian kernel # sigma2_k = tf.nn.top_k(tf.reshape(distances_qz, [-1]), 1).values[0] # sigma2_k += tf.nn.top_k(tf.reshape(distances, [-1]), 1).values[0] # sigma2_k = opts['latent_space_dim'] * sigma2_p sigma2_k = tf.Print(sigma2_k, [sigma2_k], 'Kernel width:') res1 = tf.exp( - distances_qz / 2. / sigma2_k) res1 += tf.exp( - distances_pz / 2. / sigma2_k) res1 = tf.multiply(res1, 1. - tf.eye(n)) res1 = tf.reduce_sum(res1) / (nf * nf - nf) res2 = tf.exp( - distances / 2. / sigma2_k) res2 = tf.reduce_sum(res2) * 2. / (nf * nf) stat = res1 - res2 # stat = tf.reduce_sum(res) / (nf * nf) elif kernel == 'IM': # C = tf.nn.top_k(tf.reshape(distances, [-1]), half_size).values[half_size - 1] # C += tf.nn.top_k(tf.reshape(distances_qz, [-1]), half_size).values[half_size - 1] C = 2 * opts['latent_space_dim'] * sigma2_p res1 = C / (C + distances_qz) res1 += C / (C + distances_pz) res1 = tf.multiply(res1, 1. - tf.eye(n)) res1 = tf.reduce_sum(res1) / (nf * nf - nf) res1 = tf.Print(res1, [res1], 'First two terms:') res2 = C / (C + distances) res2 = tf.reduce_sum(res2) * 2. / (nf * nf) res2 = tf.Print(res2, [res2], 'Negative term:') stat = res1 - res2 # stat = tf.reduce_sum(res) / (nf * nf) return stat def correlation_loss(self, opts, input_): """ Independence test based on Pearson's correlation. Keep in mind that this captures only linear dependancies. However, for multivariate Gaussian independence is equivalent to zero correlation. """ batch_size = self.get_batch_size(opts, input_) dim = int(input_.get_shape()[1]) transposed = tf.transpose(input_, perm=[1, 0]) mean = tf.reshape(tf.reduce_mean(transposed, axis=1), [-1, 1]) centered_transposed = transposed - mean # Broadcasting mean cov = tf.matmul(centered_transposed, centered_transposed, transpose_b=True) cov = cov / (batch_size - 1) #cov = tf.Print(cov, [cov], "cov") sigmas = tf.sqrt(tf.diag_part(cov) + 1e-5) #sigmas = tf.Print(sigmas, [sigmas], "sigmas") sigmas = tf.reshape(sigmas, [1, -1]) sigmas = tf.matmul(sigmas, sigmas, transpose_a=True) #sigmas = tf.Print(sigmas, [sigmas], "sigmas") # Pearson's correlation corr = cov / sigmas triangle = tf.matrix_set_diag(tf.matrix_band_part(corr, 0, -1), tf.zeros(dim)) #triangle = tf.Print(triangle, [triangle], "triangle") loss = tf.reduce_sum(tf.square(triangle)) / ((dim * dim - dim) / 2.0) #loss = tf.Print(loss, [loss], "Correlation loss") return loss def encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): if opts['e_add_noise']: def add_noise(x): shape = tf.shape(x) return x + tf.truncated_normal(shape, 0.0, 0.01) def do_nothing(x): return x input_ = tf.cond(is_training, lambda: add_noise(input_), lambda: do_nothing(input_)) num_units = opts['e_num_filters'] num_layers = opts['e_num_layers'] with tf.variable_scope("ENCODER", reuse=reuse): if not opts['convolutions']: hi = input_ for i in range(num_layers): hi = ops.linear(opts, hi, num_units, scope='h%d_lin' % i) if opts['batch_norm']: hi = ops.batch_norm(opts, hi, is_training, reuse, scope='bn%d' % i) hi = tf.nn.relu(hi) if opts['e_is_random']: latent_mean = ops.linear( opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1)) log_latent_sigmas = ops.linear( opts, hi, opts['latent_space_dim'], 'h%d_lin_sigma' % (i + 1)) return latent_mean, log_latent_sigmas else: return ops.linear(opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1)) elif opts['e_arch'] == 'dcgan': return self.dcgan_encoder(opts, input_, is_training, reuse, keep_prob) elif opts['e_arch'] == 'ali': return self.ali_encoder(opts, input_, is_training, reuse, keep_prob) elif opts['e_arch'] == 'began': return self.began_encoder(opts, input_, is_training, reuse, keep_prob) else: raise ValueError('%s Unknown' % opts['e_arch']) def dcgan_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] num_layers = opts['e_num_layers'] layer_x = input_ for i in xrange(num_layers): scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units / scale, scope='h%d_conv' % i) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / num_layers) layer_x = tf.nn.dropout(layer_x, _keep_prob) if opts['e_3x3_conv'] > 0: before = layer_x for j in range(opts['e_3x3_conv']): layer_x = ops.conv2d(opts, layer_x, num_units / scale, d_h=1, d_w=1, scope='conv2d_3x3_%d_%d' % (i, j), conv_filters_dim=3) layer_x = tf.nn.relu(layer_x) layer_x += before # Residual connection. if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') def ali_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] layer_params = [] layer_params.append([5, 1, num_units / 8]) layer_params.append([4, 2, num_units / 4]) layer_params.append([4, 1, num_units / 2]) layer_params.append([4, 2, num_units]) layer_params.append([4, 1, num_units * 2]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = input_ height = int(layer_x.get_shape()[1]) width = int(layer_x.get_shape()[2]) assert height == width for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - kernel) / stride + 1 width = height # print((height, width)) layer_x = ops.conv2d( opts, layer_x, channels, d_h=stride, d_w=stride, scope='h%d_conv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == 1 assert width == 1 # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units * 2, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') def began_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] assert num_units == opts['g_num_filters'], 'BEGAN requires same number of filters in encoder and decoder' num_layers = opts['e_num_layers'] layer_x = ops.conv2d(opts, input_, num_units, scope='h_first_conv') for i in xrange(num_layers): if i % 3 < 2: if i != num_layers - 2: ii = i - (i / 3) scale = (ii + 1 - ii / 2) else: ii = i - (i / 3) scale = (ii - (ii - 1) / 2) layer_x = ops.conv2d(opts, layer_x, num_units * scale, d_h=1, d_w=1, scope='h%d_conv' % i) layer_x = tf.nn.elu(layer_x) else: if i != num_layers - 1: layer_x = ops.downsample(layer_x, scope='h%d_maxpool' % i, reuse=reuse) # Tensor should be [N, 8, 8, filters] right now if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') def _data_augmentation(self, opts, real_points, is_training): if not opts['data_augm']: return real_points height = int(real_points.get_shape()[1]) width = int(real_points.get_shape()[2]) depth = int(real_points.get_shape()[3]) # logging.error("real_points shape", real_points.get_shape()) def _distort_func(image): # tf.image.per_image_standardization(image), should we? # Pad with zeros. image = tf.image.resize_image_with_crop_or_pad( image, height+4, width+4) image = tf.random_crop(image, [height, width, depth]) image = tf.image.random_flip_left_right(image) image = tf.image.random_brightness(image, max_delta=0.1) image = tf.minimum(tf.maximum(image, 0.0), 1.0) image = tf.image.random_contrast(image, lower=0.8, upper=1.3) image = tf.minimum(tf.maximum(image, 0.0), 1.0) image = tf.image.random_hue(image, 0.08) image = tf.minimum(tf.maximum(image, 0.0), 1.0) image = tf.image.random_saturation(image, lower=0.8, upper=1.3) image = tf.minimum(tf.maximum(image, 0.0), 1.0) return image def _regular_func(image): # tf.image.per_image_standardization(image)? return image distorted_images = tf.cond( is_training, lambda: tf.map_fn(_distort_func, real_points, parallel_iterations=100), lambda: tf.map_fn(_regular_func, real_points, parallel_iterations=100)) return distorted_images def _recon_loss_using_disc_encoder( self, opts, reconstructed_training, encoded_training, real_points, is_training_ph, keep_prob_ph): """Build an additional loss using the encoder as discriminator.""" reconstructed_reencoded_sg = self.encoder( opts, tf.stop_gradient(reconstructed_training), is_training=is_training_ph, keep_prob=keep_prob_ph, reuse=True) if opts['e_is_random']: reconstructed_reencoded_sg = reconstructed_reencoded_sg[0] reconstructed_reencoded = self.encoder( opts, reconstructed_training, is_training=is_training_ph, keep_prob=keep_prob_ph, reuse=True) if opts['e_is_random']: reconstructed_reencoded = reconstructed_reencoded[0] # Below line enforces the forward to be reconstructed_reencoded and backwards to NOT change the encoder.... crazy_hack = reconstructed_reencoded - reconstructed_reencoded_sg +\ tf.stop_gradient(reconstructed_reencoded_sg) encoded_training_sg = self.encoder( opts, tf.stop_gradient(real_points), is_training=is_training_ph, keep_prob=keep_prob_ph, reuse=True) if opts['e_is_random']: encoded_training_sg = encoded_training_sg[0] adv_fake_layer = ops.linear(opts, reconstructed_reencoded_sg, 1, scope='adv_layer') adv_true_layer = ops.linear(opts, encoded_training_sg, 1, scope='adv_layer', reuse=True) adv_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=adv_fake_layer, labels=tf.zeros_like(adv_fake_layer)) adv_true = tf.nn.sigmoid_cross_entropy_with_logits( logits=adv_true_layer, labels=tf.ones_like(adv_true_layer)) adv_fake = tf.reduce_mean(adv_fake) adv_true = tf.reduce_mean(adv_true) adv_c_loss = adv_fake + adv_true emb_c = tf.reduce_sum(tf.square(crazy_hack - tf.stop_gradient(encoded_training)), 1) emb_c_loss = tf.reduce_mean(tf.sqrt(emb_c + 1e-5)) # Normalize the loss, so that it does not depend on how good the # discriminator is. emb_c_loss = emb_c_loss / tf.stop_gradient(emb_c_loss) return adv_c_loss, emb_c_loss def _recon_loss_using_disc_conv(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a discriminator in X space.""" def _conv_flatten(x, kernel_size): height = int(x.get_shape()[1]) width = int(x.get_shape()[2]) channels = int(x.get_shape()[3]) w_sum = tf.eye(num_rows=channels, num_columns=channels, batch_shape=[kernel_size * kernel_size]) w_sum = tf.reshape(w_sum, [kernel_size, kernel_size, channels, channels]) w_sum = w_sum / (kernel_size * kernel_size) sum_ = tf.nn.conv2d(x, w_sum, strides=[1, 1, 1, 1], padding='SAME') size = prod_dim(sum_) assert size == height * width * channels, size return tf.reshape(sum_, [-1, size]) def _gram_scores(tensor, kernel_size): assert len(tensor.get_shape()) == 4, tensor ttensor = tf.transpose(tensor, [3, 1, 2, 0]) rand_indices = tf.random_shuffle(tf.range(ttensor.get_shape()[0])) shuffled = tf.gather(ttensor, rand_indices) shuffled = tf.transpose(shuffled, [3, 1, 2, 0]) cross_p = _conv_flatten(tensor * shuffled, kernel_size) # shape [batch_size, height * width * channels] diag_p = _conv_flatten(tf.square(tensor), kernel_size) # shape [batch_size, height * width * channels] return cross_p, diag_p def _architecture(inputs, reuse=None): with tf.variable_scope('DISC_X_LOSS', reuse=reuse): num_units = opts['adv_c_num_units'] num_layers = 1 filter_sizes = opts['adv_c_patches_size'] if isinstance(filter_sizes, int): filter_sizes = [filter_sizes] else: filter_sizes = [int(n) for n in filter_sizes.split(',')] embedded_outputs = [] linear_outputs = [] for filter_size in filter_sizes: layer_x = inputs for i in xrange(num_layers): # scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv%d' % (i, filter_size), conv_filters_dim=filter_size, padding='SAME') # if opts['batch_norm']: # layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d_%d' % (i, filter_size)) layer_x = ops.lrelu(layer_x, 0.1) last = ops.conv2d( opts, layer_x, 1, d_h=1, d_w=1, scope="last_lin%d" % filter_size, conv_filters_dim=1, l2_norm=True) if opts['cross_p_w'] > 0.0 or opts['diag_p_w'] > 0.0: cross_p, diag_p = _gram_scores(layer_x, filter_size) embedded_outputs.append(cross_p * opts['cross_p_w']) embedded_outputs.append(diag_p * opts['diag_p_w']) fl = flatten(layer_x) # fl = tf.Print(fl, [fl], "fl") embedded_outputs.append(fl) size = int(last.get_shape()[1]) linear_outputs.append(tf.reshape(last, [-1, size * size])) if len(embedded_outputs) > 1: embedded_outputs = tf.concat(embedded_outputs, 1) else: embedded_outputs = embedded_outputs[0] if len(linear_outputs) > 1: linear_outputs = tf.concat(linear_outputs, 1) else: linear_outputs = linear_outputs[0] return embedded_outputs, linear_outputs reconstructed_embed_sg, adv_fake_layer = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed, _ = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed_sg, adv_true_layer = _architecture(tf.stop_gradient(real_points), reuse=True) real_p_embed, _ = _architecture(real_points, reuse=True) adv_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=adv_fake_layer, labels=tf.zeros_like(adv_fake_layer)) adv_true = tf.nn.sigmoid_cross_entropy_with_logits( logits=adv_true_layer, labels=tf.ones_like(adv_true_layer)) adv_fake = tf.reduce_mean(adv_fake) adv_true = tf.reduce_mean(adv_true) adv_c_loss = adv_fake + adv_true emb_c = tf.reduce_mean(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) real_points_shuffle = tf.stop_gradient(tf.random_shuffle(real_p_embed)) emb_c_shuffle = tf.reduce_mean(tf.square(real_points_shuffle - tf.stop_gradient(reconstructed_embed)), 1) raw_emb_c_loss = tf.reduce_mean(emb_c) shuffled_emb_c_loss = tf.reduce_mean(emb_c_shuffle) emb_c_loss = raw_emb_c_loss / shuffled_emb_c_loss emb_c_loss = emb_c_loss * 40 return adv_c_loss, emb_c_loss def _recon_loss_using_disc_conv_eb(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a discriminator in X space, using Energy Based approach.""" def copy3D(height, width, channels): m = np.zeros([height, width, channels, height, width, channels]) for i in xrange(height): for j in xrange(width): for c in xrange(channels): m[i, j, c, i, j, c] = 1.0 return tf.constant(np.reshape(m, [height, width, channels, -1]), dtype=tf.float32) def _architecture(inputs, reuse=None): dim = opts['adv_c_patches_size'] height = int(inputs.get_shape()[1]) width = int(inputs.get_shape()[2]) channels = int(inputs.get_shape()[3]) with tf.variable_scope('DISC_X_LOSS', reuse=reuse): num_units = opts['adv_c_num_units'] num_layers = 1 layer_x = inputs for i in xrange(num_layers): # scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i, conv_filters_dim=dim, padding='SAME') # if opts['batch_norm']: # layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) #tf.nn.relu(layer_x) copy_w = copy3D(dim, dim, channels) duplicated = tf.nn.conv2d(inputs, copy_w, strides=[1, 1, 1, 1], padding='SAME') decoded = ops.conv2d( opts, layer_x, channels * dim * dim, d_h=1, d_w=1, scope="decoder", conv_filters_dim=1, padding='SAME') reconstruction = tf.reduce_mean(tf.square(tf.stop_gradient(duplicated) - decoded), [1, 2, 3]) assert len(reconstruction.get_shape()) == 1 return flatten(layer_x), reconstruction reconstructed_embed_sg, adv_fake_layer = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed, _ = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed_sg, adv_true_layer = _architecture(tf.stop_gradient(real_points), reuse=True) real_p_embed, _ = _architecture(real_points, reuse=True) adv_fake = tf.reduce_mean(adv_fake_layer) adv_true = tf.reduce_mean(adv_true_layer) adv_c_loss = tf.log(adv_true) - tf.log(adv_fake) emb_c = tf.reduce_sum(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) emb_c_loss = tf.reduce_mean(emb_c) return adv_c_loss, emb_c_loss def _recon_loss_using_vgg(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a pretrained VGG in X space.""" def _architecture(_inputs, reuse=None): _, end_points = vgg_16(_inputs, is_training=is_training, dropout_keep_prob=keep_prob, reuse=reuse) layer_name = opts['vgg_layer'] if layer_name == 'concat': outputs = [] for ln in ['pool1', 'pool2', 'pool3']: output = end_points[ln] output = flatten(output) outputs.append(output) output = tf.concat(outputs, 1) elif layer_name.startswith('concat_w'): weights = layer_name.split(',')[1:] assert len(weights) == 5 outputs = [] for lnum in range(5): num = lnum + 1 ln = 'pool%d' % num output = end_points[ln] output = flatten(output) # We sqrt the weight here because we use L2 after. outputs.append(np.sqrt(float(weights[lnum])) * output) output = tf.concat(outputs, 1) else: output = end_points[layer_name] output = flatten(output) if reuse is None: variables_to_restore = slim.get_variables_to_restore(include=['vgg_16']) path = os.path.join(opts['data_dir'], 'vgg_16.ckpt') # '/tmpp/models/vgg_16.ckpt' init_assign_op, init_feed_dict = slim.assign_from_checkpoint(path, variables_to_restore) self._additional_init_ops += [init_assign_op] self._init_feed_dict.update(init_feed_dict) return output reconstructed_embed_sg = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed = _architecture(real_points, reuse=True) emb_c = tf.reduce_mean(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) emb_c_loss = tf.reduce_mean(tf.sqrt(emb_c + 1e-5)) # emb_c_loss = tf.Print(emb_c_loss, [emb_c_loss], "emb_c_loss") # # Normalize the loss, so that it does not depend on how good the # # discriminator is. # emb_c_loss = emb_c_loss / tf.stop_gradient(emb_c_loss) return emb_c_loss def _recon_loss_using_moments(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using moments.""" def _architecture(_inputs): return compute_moments(_inputs, moments=[2]) # TODO reconstructed_embed = _architecture(reconstructed_training) real_p_embed = _architecture(real_points) emb_c = tf.reduce_mean(tf.square(reconstructed_embed - tf.stop_gradient(real_p_embed)), 1) # emb_c = tf.Print(emb_c, [emb_c], "emb_c") emb_c_loss = tf.reduce_mean(emb_c) return emb_c_loss * 100.0 * 100.0 # TODO: constant. def _recon_loss_using_vgg_moments(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a pretrained VGG in X space.""" def _architecture(_inputs, reuse=None): _, end_points = vgg_16(_inputs, is_training=is_training, dropout_keep_prob=keep_prob, reuse=reuse) layer_name = opts['vgg_layer'] output = end_points[layer_name] # output = flatten(output) output /= 255.0 # the vgg_16 method scales everything by 255.0, so we divide back here. variances = compute_moments(output, moments=[2]) if reuse is None: variables_to_restore = slim.get_variables_to_restore(include=['vgg_16']) path = os.path.join(opts['data_dir'], 'vgg_16.ckpt') # '/tmpp/models/vgg_16.ckpt' init_assign_op, init_feed_dict = slim.assign_from_checkpoint(path, variables_to_restore) self._additional_init_ops += [init_assign_op] self._init_feed_dict.update(init_feed_dict) return variances reconstructed_embed_sg = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed = _architecture(real_points, reuse=True) emb_c = tf.reduce_mean(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) emb_c_loss = tf.reduce_mean(emb_c) # emb_c_loss = tf.Print(emb_c_loss, [emb_c_loss], "emb_c_loss") # # Normalize the loss, so that it does not depend on how good the # # discriminator is. # emb_c_loss = emb_c_loss / tf.stop_gradient(emb_c_loss) return emb_c_loss # TODO: constant. def add_least_gaussian2d_ops(self, opts): """ Add ops searching for the 2d plane in z_dim hidden space corresponding to the 'least Gaussian' look of the sample """ with tf.variable_scope('leastGaussian2d'): # Projection matrix which we are going to tune sample_ph = tf.placeholder( tf.float32, [None, opts['latent_space_dim']], name='sample_ph') v = tf.get_variable( "proj_v", [opts['latent_space_dim'], 1], tf.float32, tf.random_normal_initializer(stddev=1.)) u = tf.get_variable( "proj_u", [opts['latent_space_dim'], 1], tf.float32, tf.random_normal_initializer(stddev=1.)) npoints = tf.cast(tf.shape(sample_ph)[0], tf.int32) # First we need to make sure projection matrix is orthogonal v_norm = tf.nn.l2_normalize(v, 0) dotprod = tf.reduce_sum(tf.multiply(u, v_norm)) u_ort = u - dotprod * v_norm u_norm = tf.nn.l2_normalize(u_ort, 0) Mproj = tf.concat([v_norm, u_norm], 1) sample_proj = tf.matmul(sample_ph, Mproj) a = tf.eye(npoints) - tf.ones([npoints, npoints]) / tf.cast(npoints, tf.float32) b = tf.matmul(sample_proj, tf.matmul(a, a), transpose_a=True) b = tf.matmul(b, sample_proj) # Sample covariance matrix covhat = b / (tf.cast(npoints, tf.float32) - 1) # covhat = tf.Print(covhat, [covhat], 'Cov:') with tf.variable_scope('leastGaussian2d'): gcov = opts['pot_pz_std'] * opts['pot_pz_std'] * tf.eye(2) # l2 distance between sample cov and the Gaussian cov projloss = tf.reduce_sum(tf.square(covhat - gcov)) # Also account for the first moment, i.e. expected value projloss += tf.reduce_sum(tf.square(tf.reduce_mean(sample_proj, 0))) # We are maximizing projloss = -projloss optim = tf.train.AdamOptimizer(0.001, 0.9) optim = optim.minimize(projloss, var_list=[v, u]) self._proj_u = u_norm self._proj_v = v_norm self._proj_sample_ph = sample_ph self._proj_covhat = covhat self._proj_loss = projloss self._proj_optim = optim def least_gaussian_2d(self, opts, X): """ Given a sample X of shape (n_points, n_z) find 2d plain such that projection looks least gaussian. """ with self._session.as_default(), self._session.graph.as_default(): sample_ph = self._proj_sample_ph optim = self._proj_optim loss = self._proj_loss u = self._proj_u v = self._proj_v covhat = self._proj_covhat proj_mat = tf.concat([v, u], 1).eval() dot_prod = -1 best_of_runs = 10e5 # Any positive value would do updated = False for _start in xrange(3): # We will run 3 times from random inits loss_prev = 10e5 # Any positive value would do proj_vars = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope="leastGaussian2d") self._session.run(tf.variables_initializer(proj_vars)) step = 0 for _ in xrange(5000): self._session.run(optim, feed_dict={sample_ph:X}) step += 1 if step % 10 == 0: loss_cur = loss.eval(feed_dict={sample_ph: X}) rel_imp = abs(loss_cur - loss_prev) / abs(loss_prev) if rel_imp < 1e-2: break loss_prev = loss_cur loss_final = loss.eval(feed_dict={sample_ph: X}) if loss_final < best_of_runs: updated = True best_of_runs = loss_final proj_mat = tf.concat([v, u], 1).eval() dot_prod = tf.reduce_sum(tf.multiply(u, v)).eval() if not updated: logging.error('WARNING: possible bug in the worst 2d projection') return proj_mat, dot_prod def _build_model_internal(self, opts): """Build the Graph corresponding to POT implementation. """ data_shape = self._data.data_shape additional_losses = collections.OrderedDict() # Placeholders real_points_ph = tf.placeholder( tf.float32, [None] + list(data_shape), name='real_points_ph') noise_ph = tf.placeholder( tf.float32, [None] + [opts['latent_space_dim']], name='noise_ph') enc_noise_ph = tf.placeholder( tf.float32, [None] + [opts['latent_space_dim']], name='enc_noise_ph') lr_decay_ph = tf.placeholder(tf.float32) is_training_ph = tf.placeholder(tf.bool, name='is_training_ph') keep_prob_ph = tf.placeholder(tf.float32, name='keep_prob_ph') # Operations if opts['pz_transform']: assert opts['z_test'] == 'gan', 'Pz transforms are currently allowed only for POT+GAN' noise = self.pz_sampler(opts, noise_ph) else: noise = noise_ph real_points = self._data_augmentation( opts, real_points_ph, is_training_ph) if opts['e_is_random']: # If encoder is random we map the training points # to the expectation of Q(Z|X) and then add the scaled # Gaussian noise corresponding to the learned sigmas enc_train_mean, enc_log_sigmas = self.encoder( opts, real_points, is_training=is_training_ph, keep_prob=keep_prob_ph) # enc_log_sigmas = tf.Print(enc_log_sigmas, [tf.reduce_max(enc_log_sigmas), # tf.reduce_min(enc_log_sigmas), # tf.reduce_mean(enc_log_sigmas)], 'Log sigmas:') # enc_log_sigmas = tf.Print(enc_log_sigmas, [tf.slice(enc_log_sigmas, [0,0], [1,-1])], 'Log sigmas:') # stds = tf.sqrt(tf.exp(enc_log_sigmas) + 1e-05) stds = tf.sqrt(tf.nn.relu(enc_log_sigmas) + 1e-05) # stds = tf.Print(stds, [stds[0], stds[1], stds[2], stds[3]], 'Stds: ') # stds = tf.Print(stds, [enc_train_mean[0], enc_train_mean[1], enc_train_mean[2]], 'Means: ') scaled_noise = tf.multiply(stds, enc_noise_ph) encoded_training = enc_train_mean + scaled_noise else: encoded_training = self.encoder( opts, real_points, is_training=is_training_ph, keep_prob=keep_prob_ph) reconstructed_training = self.generator( opts, encoded_training, is_training=is_training_ph, keep_prob=keep_prob_ph) reconstructed_training.set_shape(real_points.get_shape()) if opts['recon_loss'] == 'l2': # c(x,y) = ||x - y||_2 loss_reconstr = tf.reduce_sum( tf.square(real_points - reconstructed_training), axis=1) # sqrt(x + delta) guarantees the direvative 1/(x + delta) is finite loss_reconstr = tf.reduce_mean(tf.sqrt(loss_reconstr + 1e-08)) elif opts['recon_loss'] == 'l2f': # c(x,y) = ||x - y||_2 loss_reconstr = tf.reduce_sum( tf.square(real_points - reconstructed_training), axis=[1, 2, 3]) loss_reconstr = tf.reduce_mean(tf.sqrt(1e-08 + loss_reconstr)) * 0.2 elif opts['recon_loss'] == 'l2sq': # c(x,y) = ||x - y||_2^2 loss_reconstr = tf.reduce_sum( tf.square(real_points - reconstructed_training), axis=[1, 2, 3]) loss_reconstr = tf.reduce_mean(loss_reconstr) * 0.05 elif opts['recon_loss'] == 'l1': # c(x,y) = ||x - y||_1 loss_reconstr = tf.reduce_mean(tf.reduce_sum( tf.abs(real_points - reconstructed_training), axis=[1, 2, 3])) * 0.02 else: assert False # Pearson independence test of coordinates in Z space loss_z_corr = self.correlation_loss(opts, encoded_training) # Perform a Qz = Pz goodness of fit test based on Stein Discrepancy if opts['z_test'] == 'gan': # Pz = Qz test based on GAN in the Z space d_logits_Pz = self.discriminator(opts, noise) d_logits_Qz = self.discriminator(opts, encoded_training, reuse=True) d_loss_Pz = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=d_logits_Pz, labels=tf.ones_like(d_logits_Pz))) d_loss_Qz = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=d_logits_Qz, labels=tf.zeros_like(d_logits_Qz))) d_loss_Qz_trick = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( logits=d_logits_Qz, labels=tf.ones_like(d_logits_Qz))) d_loss = opts['pot_lambda'] * (d_loss_Pz + d_loss_Qz) if opts['pz_transform']: loss_match = d_loss_Qz_trick - d_loss_Pz else: loss_match = d_loss_Qz_trick elif opts['z_test'] == 'mmd': # Pz = Qz test based on MMD(Pz, Qz) loss_match = self.discriminator_mmd_test(opts, encoded_training, noise) d_loss = None d_logits_Pz = None d_logits_Qz = None elif opts['z_test'] == 'lks': # Pz = Qz test without adversarial training # based on Kernel Stein Discrepancy # Uncomment next line to check for the real Pz # loss_match = self.discriminator_test(opts, noise_ph) loss_match = self.discriminator_test(opts, encoded_training) d_loss = None d_logits_Pz = None d_logits_Qz = None else: # Pz = Qz test without adversarial training # (a) Check for multivariate Gaussianity # by checking Gaussianity of all the 1d projections # (b) Run Pearson's test of coordinate independance loss_match = self.discriminator_test(opts, encoded_training) loss_match = loss_match + opts['z_test_corr_w'] * loss_z_corr d_loss = None d_logits_Pz = None d_logits_Qz = None g_mom_stats = self.moments_stats(opts, encoded_training) loss = opts['reconstr_w'] * loss_reconstr + opts['pot_lambda'] * loss_match # Optionally, add one more cost function based on the embeddings # add a discriminator in the X space, reusing the encoder or a new model. if opts['adv_c_loss'] == 'encoder': adv_c_loss, emb_c_loss = self._recon_loss_using_disc_encoder( opts, reconstructed_training, encoded_training, real_points, is_training_ph, keep_prob_ph) loss += opts['adv_c_loss_w'] * adv_c_loss + opts['emb_c_loss_w'] * emb_c_loss additional_losses['adv_c'], additional_losses['emb_c'] = adv_c_loss, emb_c_loss elif opts['adv_c_loss'] == 'conv': adv_c_loss, emb_c_loss = self._recon_loss_using_disc_conv( opts, reconstructed_training, real_points, is_training_ph, keep_prob_ph) additional_losses['adv_c'], additional_losses['emb_c'] = adv_c_loss, emb_c_loss loss += opts['adv_c_loss_w'] * adv_c_loss + opts['emb_c_loss_w'] * emb_c_loss elif opts['adv_c_loss'] == 'conv_eb': adv_c_loss, emb_c_loss = self._recon_loss_using_disc_conv_eb( opts, reconstructed_training, real_points, is_training_ph, keep_prob_ph) additional_losses['adv_c'], additional_losses['emb_c'] = adv_c_loss, emb_c_loss loss += opts['adv_c_loss_w'] * adv_c_loss + opts['emb_c_loss_w'] * emb_c_loss elif opts['adv_c_loss'] == 'vgg': emb_c_loss = self._recon_loss_using_vgg( opts, reconstructed_training, real_points, is_training_ph, keep_prob_ph) loss += opts['emb_c_loss_w'] * emb_c_loss additional_losses['emb_c'] = emb_c_loss elif opts['adv_c_loss'] == 'moments': emb_c_loss = self._recon_loss_using_moments( opts, reconstructed_training, real_points, is_training_ph, keep_prob_ph) loss += opts['emb_c_loss_w'] * emb_c_loss additional_losses['emb_c'] = emb_c_loss elif opts['adv_c_loss'] == 'vgg_moments': emb_c_loss = self._recon_loss_using_vgg_moments( opts, reconstructed_training, real_points, is_training_ph, keep_prob_ph) loss += opts['emb_c_loss_w'] * emb_c_loss additional_losses['emb_c'] = emb_c_loss else: assert opts['adv_c_loss'] == 'none' # Add ops to pretrain the Qz match mean and covariance of Pz loss_pretrain = None if opts['e_pretrain']: # Next two vectors are zdim-dimensional mean_pz = tf.reduce_mean(noise, axis=0, keep_dims=True) mean_qz = tf.reduce_mean(encoded_training, axis=0, keep_dims=True) mean_loss = tf.reduce_mean(tf.square(mean_pz - mean_qz)) cov_pz = tf.matmul(noise - mean_pz, noise - mean_pz, transpose_a=True) cov_pz /= opts['e_pretrain_bsize'] - 1. cov_qz = tf.matmul(encoded_training - mean_qz, encoded_training - mean_qz, transpose_a=True) cov_qz /= opts['e_pretrain_bsize'] - 1. cov_loss = tf.reduce_mean(tf.square(cov_pz - cov_qz)) loss_pretrain = mean_loss + cov_loss # Also add ops to find the least Gaussian 2d projection # this is handy when visually inspection Qz = Pz self.add_least_gaussian2d_ops(opts) # Optimizer ops t_vars = tf.trainable_variables() # Updates for discriminator d_vars = [var for var in t_vars if 'DISCRIMINATOR/' in var.name] # Updates for everything but adversary (encoder, decoder and possibly pz-transform) all_vars = [var for var in t_vars if 'DISCRIMINATOR/' not in var.name] # Updates for everything but adversary (encoder, decoder and possibly pz-transform) eg_vars = [var for var in t_vars if 'GENERATOR/' in var.name or 'ENCODER/' in var.name] # Encoder variables separately if we want to pretrain e_vars = [var for var in t_vars if 'ENCODER/' in var.name] logging.error('Param num in G and E: %d' % \ np.sum([np.prod([int(d) for d in v.get_shape()]) for v in eg_vars])) for v in eg_vars: print v.name, [int(d) for d in v.get_shape()] if len(d_vars) > 0: d_optim = ops.optimizer(opts, net='d', decay=lr_decay_ph).minimize(loss=d_loss, var_list=d_vars) else: d_optim = None optim = ops.optimizer(opts, net='g', decay=lr_decay_ph).minimize(loss=loss, var_list=all_vars) pretrain_optim = None if opts['e_pretrain']: pretrain_optim = ops.optimizer(opts, net='g').minimize(loss=loss_pretrain, var_list=e_vars) generated_images = self.generator( opts, noise, is_training=is_training_ph, reuse=True, keep_prob=keep_prob_ph) self._real_points_ph = real_points_ph self._real_points = real_points self._noise_ph = noise_ph self._noise = noise self._enc_noise_ph = enc_noise_ph self._lr_decay_ph = lr_decay_ph self._is_training_ph = is_training_ph self._keep_prob_ph = keep_prob_ph self._optim = optim self._d_optim = d_optim self._pretrain_optim = pretrain_optim self._loss = loss self._loss_reconstruct = loss_reconstr self._loss_match = loss_match self._loss_z_corr = loss_z_corr self._loss_pretrain = loss_pretrain self._additional_losses = additional_losses self._g_mom_stats = g_mom_stats self._d_loss = d_loss self._generated = generated_images self._Qz = encoded_training self._reconstruct_x = reconstructed_training saver = tf.train.Saver(max_to_keep=10) tf.add_to_collection('real_points_ph', self._real_points_ph) tf.add_to_collection('noise_ph', self._noise_ph) tf.add_to_collection('enc_noise_ph', self._enc_noise_ph) if opts['pz_transform']: tf.add_to_collection('noise', self._noise) tf.add_to_collection('is_training_ph', self._is_training_ph) tf.add_to_collection('keep_prob_ph', self._keep_prob_ph) tf.add_to_collection('encoder', self._Qz) tf.add_to_collection('decoder', self._generated) if d_logits_Pz is not None: tf.add_to_collection('disc_logits_Pz', d_logits_Pz) if d_logits_Qz is not None: tf.add_to_collection('disc_logits_Qz', d_logits_Qz) self._saver = saver logging.error("Building Graph Done.") def pretrain(self, opts): steps_max = 200 batch_size = opts['e_pretrain_bsize'] for step in xrange(steps_max): train_size = self._data.num_points data_ids = np.random.choice(train_size, min(train_size, batch_size), replace=False) batch_images = self._data.data[data_ids].astype(np.float) batch_noise = opts['pot_pz_std'] *\ utils.generate_noise(opts, batch_size) # Noise for the random encoder (if present) batch_enc_noise = utils.generate_noise(opts, batch_size) # Update encoder [_, loss_pretrain] = self._session.run( [self._pretrain_optim, self._loss_pretrain], feed_dict={self._real_points_ph: batch_images, self._noise_ph: batch_noise, self._enc_noise_ph: batch_enc_noise, self._is_training_ph: True, self._keep_prob_ph: opts['dropout_keep_prob']}) if opts['verbose'] == 2: logging.error('Step %d/%d, loss=%f' % (step, steps_max, loss_pretrain)) if loss_pretrain < 0.1: break def _train_internal(self, opts): """Train a POT model. """ logging.error(opts) batches_num = self._data.num_points / opts['batch_size'] train_size = self._data.num_points num_plot = 320 sample_prev = np.zeros([num_plot] + list(self._data.data_shape)) l2s = [] losses = [] losses_rec = [] losses_match = [] wait = 0 start_time = time.time() counter = 0 decay = 1. logging.error('Training POT') # Optionally we first pretrain the Qz to match mean and # covariance of Pz if opts['e_pretrain']: logging.error('Pretraining the encoder') self.pretrain(opts) logging.error('Pretraining the encoder done') for _epoch in xrange(opts["gan_epoch_num"]): if opts['decay_schedule'] == "manual": if _epoch == 30: decay = decay / 2. if _epoch == 50: decay = decay / 5. if _epoch == 100: decay = decay / 10. elif opts['decay_schedule'] != "plateau": assert type(1.0 * opts['decay_schedule']) == float decay = 1.0 * 10**(-_epoch / float(opts['decay_schedule'])) if _epoch > 0 and _epoch % opts['save_every_epoch'] == 0: os.path.join(opts['work_dir'], opts['ckpt_dir']) self._saver.save(self._session, os.path.join(opts['work_dir'], opts['ckpt_dir'], 'trained-pot'), global_step=counter) for _idx in xrange(batches_num): data_ids = np.random.choice(train_size, opts['batch_size'], replace=False, p=self._data_weights) batch_images = self._data.data[data_ids].astype(np.float) # Noise for the Pz=Qz GAN batch_noise = opts['pot_pz_std'] *\ utils.generate_noise(opts, opts['batch_size']) # Noise for the random encoder (if present) batch_enc_noise = utils.generate_noise(opts, opts['batch_size']) # Update generator (decoder) and encoder [_, loss, loss_rec, loss_match] = self._session.run( [self._optim, self._loss, self._loss_reconstruct, self._loss_match], feed_dict={self._real_points_ph: batch_images, self._noise_ph: batch_noise, self._enc_noise_ph: batch_enc_noise, self._lr_decay_ph: decay, self._is_training_ph: True, self._keep_prob_ph: opts['dropout_keep_prob']}) if opts['decay_schedule'] == "plateau": # First 30 epochs do nothing if _epoch >= 30: # If no significant progress was made in last 10 epochs # then decrease the learning rate. if loss < min(losses[-20 * batches_num:]): wait = 0 else: wait += 1 if wait > 10 * batches_num: decay = max(decay / 1.4, 1e-6) logging.error('Reduction in learning rate: %f' % decay) wait = 0 losses.append(loss) losses_rec.append(loss_rec) losses_match.append(loss_match) if opts['verbose'] >= 2: # logging.error('loss after %d steps : %f' % (counter, losses[-1])) logging.error('loss match after %d steps : %f' % (counter, losses_match[-1])) # Update discriminator in Z space (if any). if self._d_optim is not None: for _st in range(opts['d_steps']): if opts['d_new_minibatch']: d_data_ids = np.random.choice( train_size, opts['batch_size'], replace=False, p=self._data_weights) d_batch_images = self._data.data[data_ids].astype(np.float) d_batch_enc_noise = utils.generate_noise(opts, opts['batch_size']) else: d_batch_images = batch_images d_batch_enc_noise = batch_enc_noise _ = self._session.run( [self._d_optim, self._d_loss], feed_dict={self._real_points_ph: d_batch_images, self._noise_ph: batch_noise, self._enc_noise_ph: d_batch_enc_noise, self._lr_decay_ph: decay, self._is_training_ph: True, self._keep_prob_ph: opts['dropout_keep_prob']}) counter += 1 now = time.time() rec_test = None if opts['verbose'] and counter % 500 == 0: # Printing (training and test) loss values test = self._data.test_data[:200] [loss_rec_test, rec_test, g_mom_stats, loss_z_corr, additional_losses] = self._session.run( [self._loss_reconstruct, self._reconstruct_x, self._g_mom_stats, self._loss_z_corr, self._additional_losses], feed_dict={self._real_points_ph: test, self._enc_noise_ph: utils.generate_noise(opts, len(test)), self._is_training_ph: False, self._noise_ph: batch_noise, self._keep_prob_ph: 1e5}) debug_str = 'Epoch: %d/%d, batch:%d/%d, batch/sec:%.2f' % ( _epoch+1, opts['gan_epoch_num'], _idx+1, batches_num, float(counter) / (now - start_time)) debug_str += ' [L=%.5f, Recon=%.5f, GanL=%.5f, Recon_test=%.5f' % ( loss, loss_rec, loss_match, loss_rec_test) debug_str += ',' + ', '.join( ['%s=%.2g' % (k, v) for (k, v) in additional_losses.items()]) logging.error(debug_str) if opts['verbose'] >= 2: logging.error(g_mom_stats) logging.error(loss_z_corr) if counter % opts['plot_every'] == 0: # plotting the test images. metrics = Metrics() merged = np.vstack([rec_test[:8 * 10], test[:8 * 10]]) r_ptr = 0 w_ptr = 0 for _ in range(8 * 10): merged[w_ptr] = test[r_ptr] merged[w_ptr + 1] = rec_test[r_ptr] r_ptr += 1 w_ptr += 2 metrics.make_plots( opts, counter, None, merged, prefix='test_reconstr_e%04d_mb%05d_' % (_epoch, _idx)) if opts['verbose'] and counter % opts['plot_every'] == 0: # Plotting intermediate results metrics = Metrics() # --Random samples from the model points_to_plot, sample_pz = self._session.run( [self._generated, self._noise], feed_dict={ self._noise_ph: self._noise_for_plots[0:num_plot], self._is_training_ph: False, self._keep_prob_ph: 1e5}) Qz_num = 320 sample_Qz = self._session.run( self._Qz, feed_dict={ self._real_points_ph: self._data.data[:Qz_num], self._enc_noise_ph: utils.generate_noise(opts, Qz_num), self._is_training_ph: False, self._keep_prob_ph: 1e5}) # Searching least Gaussian 2d projection proj_mat, check = self.least_gaussian_2d(opts, sample_Qz) # Projecting samples from Qz and Pz on this 2d plain metrics.Qz = np.dot(sample_Qz, proj_mat) # metrics.Pz = np.dot(self._noise_for_plots, proj_mat) metrics.Pz = np.dot(sample_pz, proj_mat) if self._data.labels != None: metrics.Qz_labels = self._data.labels[:Qz_num] else: metrics.Qz_labels = None metrics.l2s = losses[:] metrics.losses_match = [opts['pot_lambda'] * el for el in losses_match] metrics.losses_rec = [opts['reconstr_w'] * el for el in losses_rec] to_plot = [points_to_plot, 0 * batch_images[:16], batch_images] if rec_test is not None: to_plot += [0 * batch_images[:16], rec_test[:64]] metrics.make_plots( opts, counter, None, np.vstack(to_plot), prefix='sample_e%04d_mb%05d_' % (_epoch, _idx) if rec_test is None \ else 'sample_with_test_e%04d_mb%05d_' % (_epoch, _idx)) # --Reconstructions for the train and test points num_real_p = 8 * 10 reconstructed, real_p = self._session.run( [self._reconstruct_x, self._real_points], feed_dict={ self._real_points_ph: self._data.data[:num_real_p], self._enc_noise_ph: utils.generate_noise(opts, num_real_p), self._is_training_ph: True, self._keep_prob_ph: 1e5}) points = real_p merged = np.vstack([reconstructed, points]) r_ptr = 0 w_ptr = 0 for _ in range(8 * 10): merged[w_ptr] = points[r_ptr] merged[w_ptr + 1] = reconstructed[r_ptr] r_ptr += 1 w_ptr += 2 metrics.make_plots( opts, counter, None, merged, prefix='reconstr_e%04d_mb%05d_' % (_epoch, _idx)) sample_prev = points_to_plot[:] if _epoch > 0: os.path.join(opts['work_dir'], opts['ckpt_dir']) self._saver.save(self._session, os.path.join(opts['work_dir'], opts['ckpt_dir'], 'trained-pot-final'), global_step=counter) def _sample_internal(self, opts, num): """Sample from the trained GAN model. """ # noise = opts['pot_pz_std'] * utils.generate_noise(opts, num) # sample = self._run_batch( # opts, self._generated, self._noise_ph, noise, self._is_training_ph, False) sample = None return sample ``` #### File: jiajunhua/tolstikhin-adagan/utils.py ```python import tensorflow as tf import os import sys import copy import numpy as np import logging import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import metrics as metrics_lib # from metrics import Metrics from tqdm import tqdm def generate_noise(opts, num=100): """Generate latent noise. """ noise = None if opts['latent_space_distr'] == 'uniform': noise = np.random.uniform( -1, 1, [num, opts["latent_space_dim"]]).astype(np.float32) elif opts['latent_space_distr'] == 'normal': mean = np.zeros(opts["latent_space_dim"]) cov = np.identity(opts["latent_space_dim"]) noise = np.random.multivariate_normal( mean, cov, num).astype(np.float32) elif opts['latent_space_distr'] == 'mnist': noise = np.random.rand(1, opts['latent_space_dim']) return noise class ArraySaver(object): """A simple class helping with saving/loading numpy arrays from files. This class allows to save / load numpy arrays, while storing them either on disk or in memory. """ def __init__(self, mode='ram', workdir=None): self._mode = mode self._workdir = workdir self._global_arrays = {} def save(self, name, array): if self._mode == 'ram': self._global_arrays[name] = copy.deepcopy(array) elif self._mode == 'disk': create_dir(self._workdir) np.save(o_gfile((self._workdir, name), 'wb'), array) else: assert False, 'Unknown save / load mode' def load(self, name): if self._mode == 'ram': return self._global_arrays[name] elif self._mode == 'disk': return np.load(o_gfile((self._workdir, name), 'rb')) else: assert False, 'Unknown save / load mode' class ProgressBar(object): """Super-simple progress bar. Thanks to http://stackoverflow.com/questions/3160699/python-progress-bar """ def __init__(self, verbose, iter_num): self._width = iter_num self.verbose = verbose if self.verbose: sys.stdout.write("[%s]" % (" " * self._width)) sys.stdout.flush() sys.stdout.write("\b" * (self._width + 1)) def bam(self): if self.verbose: sys.stdout.write("*") sys.stdout.flush() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if self.verbose: sys.stdout.write("\n") def TQDM(opts, myRange, *args, **kwargs): if opts['verbose'] and opts.get('use_tqdm', True): return tqdm(myRange, *args, ncols=80, smoothing=0., **kwargs) else: return myRange def create_dir(d): if not tf.gfile.IsDirectory(d): tf.gfile.MakeDirs(d) class File(tf.gfile.GFile): """Wrapper on GFile extending seek, to support what python file supports.""" def __init__(self, *args): super(File, self).__init__(*args) def seek(self, position, whence=0): if whence == 1: position += self.tell() elif whence == 2: position += self.size() else: assert whence == 0 super(File, self).seek(position) def o_gfile(filename, mode): """Wrapper around file open, using gfile underneath. filename can be a string or a tuple/list, in which case the components are joined to form a full path. """ if isinstance(filename, tuple) or isinstance(filename, list): filename = os.path.join(*filename) return File(filename, mode) def listdir(dirname): return tf.gfile.ListDirectory(dirname) def js_div_uniform(p, num_cat=1000): """ Computes the JS-divergence between p and the uniform distribution. """ phat = np.bincount(p, minlength=num_cat) phat = (phat + 0.0) / np.sum(phat) pu = (phat * .0 + 1.) / num_cat pref = (phat + pu) / 2. JS = np.sum(np.log(pu / pref) * pu) JS += np.sum(np.log(pref / pu) * pref) JS = JS / 2. return JS def debug_mixture_classifier(opts, step, probs, points, num_plot=320, real=True): """Small debugger for the mixture classifier's output. """ num = len(points) if len(probs) != num: return if num < 2 * num_plot: return sorted_vals_and_ids = sorted(zip(probs, range(num))) if real: correct = sorted_vals_and_ids[-num_plot:] wrong = sorted_vals_and_ids[:num_plot] else: correct = sorted_vals_and_ids[:num_plot] wrong = sorted_vals_and_ids[-num_plot:] correct_ids = [_id for val, _id in correct] wrong_ids = [_id for val, _id in wrong] idstring = 'real' if real else 'fake' logging.debug('Correctly classified %s points probs:' %\ idstring) logging.debug([val[0] for val, _id in correct]) logging.debug('Incorrectly classified %s points probs:' %\ idstring) logging.debug([val[0] for val, _id in wrong]) metrics = metrics_lib.Metrics() metrics.make_plots(opts, step, None, points[correct_ids], prefix='c_%s_correct_' % idstring) metrics.make_plots(opts, step, None, points[wrong_ids], prefix='c_%s_wrong_' % idstring) def debug_updated_weights(opts, steps, weights, data): """ Various debug plots for updated weights of training points. """ assert data.num_points == len(weights), 'Length mismatch' ws_and_ids = sorted(zip(weights, range(len(weights)))) num_plot = 20 * 16 if num_plot > len(weights): return ids = [_id for w, _id in ws_and_ids[:num_plot]] plot_points = data.data[ids] metrics = metrics_lib.Metrics() metrics.make_plots(opts, steps, None, plot_points, prefix='d_least_') ids = [_id for w, _id in ws_and_ids[-num_plot:]] plot_points = data.data[ids] metrics = metrics_lib.Metrics() metrics.make_plots(opts, steps, None, plot_points, prefix='d_most_') plt.clf() ax1 = plt.subplot(211) ax1.set_title('Weights over data points') plt.plot(range(len(weights)), sorted(weights)) plt.axis([0, len(weights), 0., 2. * np.max(weights)]) if data.labels is not None: all_labels = np.unique(data.labels) w_per_label = -1. * np.ones(len(all_labels)) for _id, y in enumerate(all_labels): w_per_label[_id] = np.sum( weights[np.where(data.labels == y)[0]]) ax2 = plt.subplot(212) ax2.set_title('Weights over labels') plt.scatter(range(len(all_labels)), w_per_label, s=30) filename = 'data_w{:02d}.png'.format(steps) create_dir(opts['work_dir']) plt.savefig(o_gfile((opts["work_dir"], filename), 'wb')) def one_hot(labels, num_class=10): res = np.zeros((len(labels), num_class)) for idx in xrange(len(labels)): res[idx][labels[idx]] = 1. return res ```
{ "source": "jiajunmao/igvc-software", "score": 2 }
#### File: src/train_eval/train.py ```python import argparse import cv2 import numpy as np import os import pdb import torch import torch.optim as optim from torch.autograd import Variable import torch.nn.functional as F from torchvision import transforms from IGVCDataset import IGVCDataset import models.model import utils np.set_printoptions(threshold=np.nan) torch.set_printoptions(precision=10) # Training settings. parser = argparse.ArgumentParser(description='IGVC segmentation of lines.') # Hyperparameters. parser.add_argument('--batch_size', type=int, default=1, help='input batch size for training.') parser.add_argument('--epochs', type=int, default=5, help='number of epochs to train') parser.add_argument('--im_size', type=int, nargs=3, default=[3,400,400], help='image dimensions for training.') parser.add_argument('--kernel_size', type=int, default=3, help='size of convolution kernels/filters.') parser.add_argument('--lr', type=float, default=1e-3, help='learning rate.') parser.add_argument('--lr_decay', type=float, default=1.0, help='Learning rate decay multiplier.') parser.add_argument('--step_interval', type=int, default=100, help='Update learning rate every <step_interval> epochs.') parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay hyperparameter.') # Other configuration. parser.add_argument('--save_model', action='store_true', default=False, help='Save pytorch model.') parser.add_argument('--save_interval', type=int, default=1, help='Save pytorch model after <save_interval> epochs.') parser.add_argument('--load_model', type=str, default=None, help='Load model from .pt file, either for initialization or evaluation.') parser.add_argument('--log_interval', type=int, default=10, help='number of batches between logging train status.') parser.add_argument('--vis', action='store_true', default=False, help='Visualize model output every log interval.') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--cfgfile', type=str, default='cfg/igvc.cfg', help='Directory containing cfg for train and evaluation.') parser.add_argument('--test', action='store_true', default=False, help='Skip training, and evaluate a loaded model on test data.') parser.add_argument('--val_samples', type=int, default=10, help='Number of validation samples to use from train data.') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: print('Using cuda.') torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} transform = transforms.Compose([ transforms.ToTensor(), ]) cfg_params = utils.read_data_cfg(args.cfgfile) train_txt = cfg_params['train'] test_txt = cfg_params['test'] backup_dir = cfg_params['backup'] if args.load_model is not None: print('Loading model from %s.' % args.load_model) model = models.model.UNet(args.im_size, args.kernel_size) model.load_state_dict(torch.load(args.load_model)) elif args.test: print('Missing model file for evaluating test set.') exit() else: model = models.model.UNet(args.im_size, args.kernel_size) # Datasets and dataloaders. if not args.test: train_dataset = IGVCDataset(train_txt, im_size=args.im_size, split='train', transform=transform, val_samples=args.val_samples) val_dataset = IGVCDataset(train_txt, im_size=args.im_size, split='val', transform=transform, val_samples=args.val_samples) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) # Optmizer lr = args.lr print('Initial lr: %f.' % lr) optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=args.weight_decay) else: test_dataset = IGVCDataset(test_txt, im_size=args.im_size, split='test', transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True, **kwargs) criterion = F.binary_cross_entropy if args.cuda: model.cuda() def train(epoch): iters = [] lrs = [] train_losses = [] val_losses = [] val_accuracies = [] model.train() # train loop for batch_idx, batch in enumerate(train_loader): # prepare data images = Variable(batch[0]) targets = Variable(batch[1]) if args.cuda: images, targets = images.cuda(), targets.cuda() optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, targets) loss.backward() optimizer.step() if args.vis and batch_idx % args.log_interval == 0 and images.shape[0] == 1: cv2.imshow('output: ', outputs.cpu().data.numpy()[0][0]) cv2.imshow('target: ', targets.cpu().data.numpy()[0][0]) cv2.waitKey(10) # Learning rate decay. if epoch % args.step_interval == 0 and epoch != 1 and batch_idx == 0: if args.lr_decay != 1: global lr, optimizer lr *= args.lr_decay for param_group in optimizer.param_groups: param_group['lr'] = lr print('Learning rate decayed to %f.' % lr) if batch_idx % args.log_interval == 0: val_loss, val_acc = evaluate('val', n_batches=80) train_loss = loss.item() iters.append(len(train_loader.dataset)*(epoch-1)+batch_idx) lrs.append(lr) train_losses.append(train_loss) val_losses.append(val_loss) val_accuracies.append(val_acc) examples_this_epoch = batch_idx * len(images) epoch_progress = 100. * batch_idx / len(train_loader) print('Train Epoch: {} [{}/{} ({:.0f}%)]\t' 'Train Loss: {:.6f}\tVal Loss: {:.6f}\tVal Acc: {}'.format( epoch, examples_this_epoch, len(train_loader.dataset), epoch_progress, train_loss, val_loss, val_acc)) return iters, train_losses, val_losses, val_accuracies def evaluate(split, verbose=False, n_batches=None): ''' Compute loss on val or test data. ''' model.eval() loss = 0 acc = 0 correct = 0 n_examples = 0 if split == 'val': loader = val_loader elif split == 'test': loader = test_loader for batch_i, batch in enumerate(loader): data, target = batch if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) loss += criterion(output, target).item() acc += (np.sum(output.cpu().data.numpy()[target.cpu().data.numpy()!=0] > 0.5) \ + np.sum(output.cpu().data.numpy()[target.cpu().data.numpy()==0] < 0.5)) / float(args.im_size[1]*args.im_size[2]) n_examples += output.size(0) if n_batches and (batch_i == n_batches-1): break loss /= n_examples acc /= n_examples return loss, acc if args.test: print("Running evaluation on test set.") test_loss, test_acc = evaluate('test') print('Test loss: %f Test accuracy: %f' % (test_loss, test_acc)) else: # train the model one epoch at a time metrics = {'iters':[], 'train_loss':[], 'val_loss':[], 'val_acc':[]} for epoch in range(1, args.epochs + 1): iters, train_losses, val_losses, val_accuracies = train(epoch) metrics['iters'] += iters metrics['train_loss'] += train_losses metrics['val_loss'] += val_losses metrics['val_acc'] += val_accuracies if (epoch % args.save_interval == 0 and args.save_model): save_path = os.path.join(backup_dir, 'IGVCModel' + '_' + str(epoch) + '.pt') print('Saving model: %s' % save_path) torch.save(model.state_dict(), save_path) metrics_path = os.path.join(backup_dir, 'metrics.npy') np.save(metrics_path, metrics) ``` #### File: igvc_utils/scripts/merge_camera_dirs.py ```python import argparse import os import sys import shutil class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' parser = argparse.ArgumentParser(description='Merge the contents of multiple directories in sequence in order to prevent file naming conflicts.') parser.add_argument('-d','--directories', nargs='+', help='Absolute paths of directories to merge in sequence', required=True) parser.add_argument('-o','--out_dir_path', nargs='?', type=str, help='Absolte path to output dir name. i.e. /PATH/TO/OUTPUT/DIR/DIR_NAME', required=False, default='out') args = parser.parse_args() def copy_rename(old_file_name, new_file_name): src_dir= os.curdir dst_dir= os.path.join(os.curdir , "subfolder") src_file = os.path.join(src_dir, old_file_name) shutil.copy(src_file,dst_dir) dst_file = os.path.join(dst_dir, old_file_name) new_dst_file_name = os.path.join(dst_dir, new_file_name) os.rename(dst_file, new_dst_file_name) if __name__=="__main__": out_dir_path = args.out_dir_path for dir in args.directories: if not os.path.exists(dir): print(bcolors.FAIL + "Directory [" + dir + "] does not exist. Please check supplied path." + bcolors.ENDC) sys.exit() if not os.path.exists(out_dir_path): os.mkdir(out_dir_path) padding = len(str(sum([len(os.listdir(dir)) for dir in args.directories]))) # cycle through directories i = 0 for dir in args.directories: files = os.listdir(dir) print(bcolors.OKBLUE + "Merging " + str(len(files)) + " from " + dir) # cycle through files within directory for file in files: src_file = os.path.join(dir, file) shutil.copy(src_file, out_dir_path) dst_file = os.path.join(out_dir_path, file) extension = os.path.splitext(file)[1] new_dst_file_name = os.path.join(out_dir_path, format(i, '0' + str(padding)) + extension) os.rename(dst_file, new_dst_file_name) i+=1 ```
{ "source": "JiajunQiu/ProNAhot", "score": 3 }
#### File: ProNAhot/pronaHotMod/lib_parser.py ```python import math import sys import re class ParseError(Exception): pass #To indicate a parsing error class EmptyError(Exception): pass #To indicate empty data passed to the parser class NoResultError(Exception): pass #To indicate that a method did not feel like producing a result, used in parse_psic() def parse_sequence(d_in, d_fasta): """ pp returns two sequence files: query.in and query.fasta. No idea why. Here we check that both are the same and return the sequence. """ seq_in = '' seq_fasta = '' for line in d_in.split('\n')[1:]: if not line: continue seq_in += line for line in d_fasta.split('\n')[1:]: if not line: continue seq_fasta += ''.join(line.split()) #Get rid of those strange whitespaces within the sequence! if seq_in != seq_fasta: sys.exit("Error!!!ProNAhot can not be done for protein %s.\nProtein sequence of *in and * fasta are not identical.\npp seems to work with different sequences.\n" % d_fasta.split('\n')[0][1:]) return {'seq':seq_in},d_fasta.split('\n')[0][1:] def parse_blast_reorder(d_blast): ori_order='ARNDCQEGHILKMFPSTWYV' #ress new_order='RKDEQNHSTYCWAILMFVPG' #res # new_order='AVLIPFWMGSTCYNQDEKRH' if d_blast == '': raise EmptyError('Empty pssm file!') pssm_mat = [] perc_mat = [] inf_per_pos = [] rel_weight = [] pssm_seq = '' #First turn pssm into a matrix we can handle for line in d_blast.split('\n'): tokens = line.split() if len(tokens) == 40 and line.strip() != 'A R N D C Q E G H I L K M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V': raise ParseError("It seems that we have an issue now. Blast produces columns with altering meanings!") if len(tokens) != 44: continue pssm_seq += tokens[1] inf_per_pos.append( float(tokens[42]) ) #The second last column in the blast output rel_weight.append( float(tokens[43]) ) #The very last column #The first matrix i.e. pssm pssm_mat_row = [] tmp={} for ind in range(len(ori_order)): tmp[ori_order[ind]]=tokens[2:22][ind] for r in new_order: pssm_mat_row.append(int(tmp[r])) #The second one, i.e. the percentages perc_mat_row = [] tmp={} for ind in range(len(ori_order)): tmp[ori_order[ind]]=tokens[22:42][ind] for r in new_order: perc_mat_row.append(int(tmp[r])) #Check if we are really dealing with 20 values here! if len(pssm_mat_row) != 20 or len(perc_mat_row) != 20: raise ParseError("It seems that we have a situation now. The expected amount of columns is 20, found: %s!" % len(pssm_mat_row)) pssm_mat.append(pssm_mat_row) perc_mat.append(perc_mat_row) #Further consistency check... if len(pssm_mat) != len(pssm_seq) != len(perc_mat) != len(inf_per_pos) != len(rel_weight): raise ParseError("It seems that we have an issue now. Something went wrong during parsing the pssm matrix!") return {'seq':pssm_seq, 'pssm':pssm_mat, 'perc':perc_mat, 'inf_per_pos':inf_per_pos, 'rel_weight':rel_weight} def parse_consurf(consurf): if consurf == '': raise EmptyError('Empty consurf file!') out1 = [] out2 = [] for line in consurf.split('\n'): tokens = line.split('\t') if len(tokens) < 6 or 'COLOR' in line: continue out1.append( float(tokens[2]) ) out2.append( float(tokens[4].lstrip()[0]) ) #Consistency check if len(out1) != len(out2): raise ParseError("Something happened! consurf returns different column lengths!") return {'consurf_score':out1, 'consurf_color':out2} def parse_blast(d_blast): """ Note that we do not parse out the weighted observed percentages part. Meaning of pssm columns: A R N D C Q E G H I L K M F P S T W Y V Returns a dictionary with keys as follows: 'seq': The sequence as blast sees it 'pssm': pssm matrix as a list of lists. Each sublist represents a row in the PSSM matrix. 'perc': perc matrix 'inf_per_pos': The second last column in the blast output 'rel_weight': The last column """ if d_blast == '': raise EmptyError('Empty pssm file!') pssm_mat = [] perc_mat = [] inf_per_pos = [] rel_weight = [] pssm_seq = '' #First turn pssm into a matrix we can handle for line in d_blast.split('\n'): tokens = line.split() if len(tokens) == 40 and line.strip() != 'A R N D C Q E G H I L K M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V': raise ParseError("It seems that we have an issue now. Blast produces columns with altering meanings!") if len(tokens) != 44: continue pssm_seq += tokens[1] inf_per_pos.append( float(tokens[42]) ) #The second last column in the blast output rel_weight.append( float(tokens[43]) ) #The very last column #The first matrix i.e. pssm pssm_mat_row = [] for t in tokens[2:22]: pssm_mat_row.append(int(t)) #The second one, i.e. the percentages perc_mat_row = [] for t in tokens[22:42]: perc_mat_row.append(int(t)) #Check if we are really dealing with 20 values here! if len(pssm_mat_row) != 20 or len(perc_mat_row) != 20: raise ParseError("It seems that we have a situation now. The expected amount of columns is 20, found: %s!" % len(pssm_mat_row)) pssm_mat.append(pssm_mat_row) perc_mat.append(perc_mat_row) #Further consistency check... if len(pssm_mat) != len(pssm_seq) != len(perc_mat) != len(inf_per_pos) != len(rel_weight): raise ParseError("It seems that we have an issue now. Something went wrong during parsing the pssm matrix!") return {'seq':pssm_seq, 'pssm':pssm_mat, 'perc':perc_mat, 'inf_per_pos':inf_per_pos, 'rel_weight':rel_weight} def parse_psic(d_psic): """ Unfortunately, psic returns no sequence. Meaning of psic's columns: A R N D C Q E G H I L K M F P S T W Y V NumSeq This is exactly what could be found in the sublist of each residue. Returns a dictionary with keys as follows: 'psic': psic matrix as a list of lists. Each sublist represents a row in the psic matrix. 'NumSeq': the very last column, denoting NumSeq i.e. number of aligned sequences at that pos """ if d_psic == '': raise EmptyError('Empty psic file!') elif d_psic.startswith('sequence too short'): raise NoResultError('Sequence seems to be too short for psic. No psic output found.') psic_mat = [] numseq = [] for line in d_psic.split('\n'): if line.startswith('Pos') or line == '': continue tokens = line.split() if len(tokens) != 22: raise ParseError('"It seems that we have a situation now. The expected amount of columns is 22, found: %s!" % len(tokens)') psic_mat_row = [ float(t) for t in tokens[1:21] ] numseq.append( int(tokens[21]) ) #The last column is an integer denoting the amount of aligned seqs at that pos. psic_mat.append(psic_mat_row) #Now glue the current column to the matrix #Check! if len(psic_mat) != len(numseq): raise ParseError("It seems that we have an issue now. Something went wrong during parsing the psic matrix!") return {'psic':psic_mat, 'NumSeq':numseq} def parse_disis(d_disis): """ Returns a dictionary with keys as follows: 'seq': The sequence as disis sees it 'prd_bin': binary prdct 'prd_raw': raw prdct """ if d_disis == '': raise EmptyError('Empty disis file!') disis_seq_binprd = [] #Sequence parsed out of the binary prediction part disis_seq_rawprd = [] #...parsed out of the raw (numeric) predictions disis_prd_bin = [] #Binary predictions disis_prd_raw = [] #Raw numeric predictions cnt = 0 for line in d_disis.split('\n'): if line == '': continue tokens = line.split() if len(tokens) == 1: #We are in the upper part of disis' output, i.e. the binary predictions if cnt % 2 == 0: disis_seq_binprd.extend( list(line) ) else: disis_prd_bin.extend( list(line.replace('P','+')) ) elif len(tokens) == 2: #Now we are in the lower part, i.e. the numeric outputs of disis disis_seq_rawprd.append( tokens[0] ) disis_prd_raw.append( int(tokens[1]) ) cnt += 1 #Now do some consistency checks if disis_seq_binprd != disis_seq_rawprd: raise ParseError("It seems that we have an issue now. Disis returns different sequences in the upper and lower part!") if len(disis_seq_binprd) != len(disis_prd_bin) != len(disis_prd_raw): raise ParseError("It seems that we have an issue now. Parsed datastructures have different lengths!") return {'seq':''.join(disis_seq_binprd), 'prd_bin':disis_prd_bin, 'prd_raw':disis_prd_raw} def parse_isis(d_isis): """ Returns a dictionary with keys as follows: 'seq': The sequence as isis sees it 'prd_bin': binary prdct 'prd_raw': raw prdct """ if d_isis == '': raise EmptyError('Empty isis file!') isis_seq_binprd = [] #Sequence parsed out of the binary prediction part isis_seq_rawprd = [] #...parsed out of the raw (numeric) predictions isis_prd_bin = [] #Binary predictions isis_prd_raw = [] #Raw numeric predictions cnt = 0 for line in d_isis.split('\n'): if line == '' or line.startswith('>'): continue tokens = line.split() if len(tokens) == 1: #We are in the upper part of disis' output, i.e. the binary predictions if cnt % 2 == 0: isis_seq_binprd.extend( list(line) ) else: isis_prd_bin.extend( list(line.replace('P','+')) ) elif len(tokens) == 3: #Now we are in the lower part, i.e. the numeric outputs of disis isis_seq_rawprd.append( tokens[1] ) isis_prd_raw.append( int(tokens[2]) ) cnt += 1 #Now do some consistency checks if isis_seq_binprd != isis_seq_rawprd: raise ParseError("It seems that we have an issue now. Isis returns different sequences in the upper and lower part!") if len(isis_seq_binprd) != len(isis_prd_bin) != len(isis_prd_raw): raise ParseError("It seems that we have an issue now. Parsed datastructures have different lengths!") return {'seq':''.join(isis_seq_binprd), 'prd_bin':isis_prd_bin, 'prd_raw':isis_prd_raw} def parse_md(d_md): """ Returns a dictionary with keys as follows: 'seq': sequence as MD sees it 'norsnet_raw': raw norsnet prdct 'norsnet_bin': binary norsnet prdct 'bval_raw': raw bval prdct 'bval_bin': binary bval prdct 'ucon_raw': raw ucon prdct 'ucon_bin': binary ucon prdct 'prd_raw': MD's raw prdct 'prd_ri': MD's reliability index 'prd_bin': MD's binary prdct """ if d_md == '': raise EmptyError('Empty md file!') md_seq = [] md_norsnet_raw = [] md_norsnet_bin = [] md_bval_raw = [] md_bval_bin = [] md_ucon_raw = [] md_ucon_bin = [] md_raw = [] md_ri = [] md_bin = [] for line in d_md.split('\n'): if line.startswith('Number'): continue #The header if line == '': break #We reached the end of the output block tokens = line.split() if len(tokens) != 11: raise ParseError("It seems that we have an issue now. MD returned an unexpected number of columns!") md_seq.append( tokens[1] ) md_norsnet_raw.append( float(tokens[2]) ) md_norsnet_bin.append( tokens[3].replace('D','+') ) md_bval_raw.append( float(tokens[4]) ) md_bval_bin.append( tokens[5].replace('D','+') ) md_ucon_raw.append( float(tokens[6]) ) md_ucon_bin.append( tokens[7].replace('D','+') ) md_raw.append( float(tokens[8]) ) md_ri.append( int(tokens[9]) ) md_bin.append( tokens[10].replace('D','+') ) #Check it! if len(md_seq) != len(md_norsnet_raw) != len(md_norsnet_bin) != len(md_bval_raw) != len(md_bval_bin) != len(md_ucon_raw) != len(md_ucon_bin) != len(md_raw) != len(md_ri) != len(md_bin): raise ParseError("It seems that we have an issue now. MD returned unequal column lengths!") return {'seq':''.join(md_seq), 'norsnet_raw':md_norsnet_raw, 'norsnet_bin':md_norsnet_bin, 'bval_raw':md_bval_raw, 'bval_bin':md_bval_bin, 'ucon_raw':md_ucon_raw, 'ucon_bin':md_ucon_bin, 'prd_raw':md_raw, 'prd_ri':md_ri, 'prd_bin':md_bin} def parse_profsecacc(d_prof): """ Returns a dictionary where keys have the same designation as the column names in prof's tabular output. Values hold lists of per-residue predictions. AA OHEL PHEL RI_S OACC PACC OREL PREL RI_A pH pE pL Obe Pbe Obie Pbie OtH OtE OtL Ot0 Ot1 Ot2 Ot3 Ot4 Ot5 Ot6 Ot7 Ot8 Ot9 Their meaning (taken from prof's output): # NOTATION BODY : PROFsec # NOTATION OHEL : observed secondary structure: H=helix, E=extended (sheet), blank=other (loop) # NOTATION PHEL : PROF predicted secondary structure: H=helix, E=extended (sheet), blank=other (loop) PROF = PROF: Profile network prediction HeiDelberg # NOTATION RI_S : reliability index for PROFsec prediction (0=lo 9=high) Note: for the brief presentation strong predictions marked by '*' # NOTATION pH : 'probability' for assigning helix (1=high, 0=low) # NOTATION pE : 'probability' for assigning strand (1=high, 0=low) # NOTATION pL : 'probability' for assigning neither helix, nor strand (1=high, 0=low) # NOTATION OtH : actual neural network output from PROFsec for helix unit # NOTATION OtE : actual neural network output from PROFsec for strand unit # NOTATION OtL : actual neural network output from PROFsec for 'no-regular' unit # # ------------------------------------------------------------------------ # NOTATION BODY : PROFacc # NOTATION OACC : observed solvent accessibility (acc) in square Angstroem (taken from DSSP: <NAME> and <NAME>, Biopolymers, 22, 2577-2637, 1983) # NOTATION PACC : PROF predicted solvent accessibility (acc) in square Angstroem # NOTATION OREL : observed relative solvent accessibility (acc) in 10 states: a value of n (=0-9) corresponds to a relative acc. of between n*n % and (n+1)*(n+1) % (e.g. for n=5: 16-25%). # NOTATION PREL : PROF predicted relative solvent accessibility (acc) in 10 states: a value of n (=0-9) corresponds to a relative acc. of between n*n % and (n+1)*(n+1) % (e.g. for n=5: 16-25%). # NOTATION RI_A : reliability index for PROFacc prediction (0=low to 9=high) Note: for the brief presentation strong predictions marked by '*' # NOTATION Obe : observerd relative solvent accessibility (acc) in 2 states: b = 0-16%, e = 16-100%. # NOTATION Pbe : PROF predicted relative solvent accessibility (acc) in 2 states: b = 0-16%, e = 16-100%. # NOTATION Obie : observerd relative solvent accessibility (acc) in 3 states: b = 0-9%, i = 9-36%, e = 36-100%. # NOTATION Pbie : PROF predicted relative solvent accessibility (acc) in 3 states: b = 0-9%, i = 9-36%, e = 36-100%. # NOTATION Ot4 : actual neural network output from PROFsec for unit 0 coding for a relative solvent accessibility of 4*4 - 5*5 percent (16-25%). Note: OtN, with N=0-9 give the same information for the other output units! # """ if d_prof == '': raise EmptyError('Empty prof file!') ret = {} for line in d_prof.split('\n'): if not line.startswith('#') and line != '': #First parse the column header if line.startswith('No'): column_names = re.split('\s+', line) #Now the predicted values per line else: value_tokens = re.split('\s+', line) for i in range(len(value_tokens)): #Get its specific column name col = column_names[i] #Try to convert the current value into an integer. #If that fails we are dealing with a string try: val = int(value_tokens[i]) except ValueError: val = value_tokens[i] #Now append it try: ret[col].append(val) except KeyError: ret[col] = [val] #Do some final consistency checks: Has everything the same length? l = len(list(ret.values())[0]) for listt in ret.values(): if len(listt) != l: raise ParseError("Something happened! profsecacc returns different column lengths!") #Add an additional entry containing the concatenated aa sequence seq = ''.join(ret['AA']) ret['seq'] = seq return ret def parse_profbval(d_bval): """ Returns a dictionary with keys and values as follows: 'prd_raw1': list of integers corresponding to first output node 'prd_raw2': list of integers corresponding to second output node Unfortunately, there is neither sequence information nor a binary prediction to be found in the output. """ if d_bval == '': raise EmptyError('Empty bval file!') out1 = [] out2 = [] region_of_interest = False for line in d_bval.split('\n'): if region_of_interest: tokens = line.split() if len(tokens) == 0: continue out1.append( int(tokens[1]) ) out2.append( int(tokens[2]) ) if line.startswith('* out vec:'): region_of_interest = True #Consistency check if len(out1) != len(out2): raise ParseError("Something happened! profbval returns different column lengths!") return {'prd_raw1':out1, 'prd_raw2':out2} def parse_pfam_annotations(d_hmmer): """ This method performs residue-wise domain annotations according to aligned pfam domains. Search against the PfamA database should be performed by means of the new hmmer3 suite, so using the old hmmer2 is strongly discouraged, due to its different output style! The parsing depends on hmmer-3.0rc1 output (as of February 2010), so check that before running a newer hmmer3!!! Each sequence position of the query seq is annotated in a dictionary in the following way: { ... i: {mdl#:[(query_i,domain_i-eval,consensus_i,match_i,pp_i),(...)], mdl#:[(...),(...),...] } , i+j: {mdl#:[(...),(...),...], ...}, ... }, where i: the i-th position in the query seq (starting at 0!!), mdl#: the number of the model query_i: the residue of the query sequence, intended for checking purposes for the function caller domain_i-eval: the domain's i-evalue consensus_i: the aligned residue in the consensus pfam domain match_i: the information of the conservation grade , pp_i: the posterior probability of that specific aligned residue (new to hmmer3) Note, the hierarchy of hmmer output: A query sequence could match to different Pfam models, each consisting of several domains. Furthermore, a residue could be aligned to more than one domain _within_ a model, hence the assigned list to each model number in the nested dictionary: Each entry essentially refers to one domain where that specific residue i is aligned to. A sample hmmer output against PfamA could look like this: ------------------------------------------------------------------------------------------------------------------------------------- Query: query [L=386] Scores for complete sequence (score includes all domains): --- full sequence --- --- best 1 domain --- -#dom- E-value score bias E-value score bias exp N Model Description ------- ------ ----- ------- ------ ----- ---- -- -------- ----------- 3.1e-94 315.1 5.1 1e-78 264.1 0.4 2.7 2 PF00224.14 Pyruvate kinase, barrel domain 5.2e-26 90.1 6.7 6e-26 89.9 3.7 1.8 1 PF02887.9 Pyruvate kinase, alpha/beta domain Domain annotation for each model (and alignments): >> PF00224.14 Pyruvate kinase, barrel domain # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ---- 1 ! 53.2 0.0 2.2e-18 1.3e-14 2 72 .. 24 89 .. 23 90 .. 0.93 2 ! 264.1 0.4 1.7e-82 1e-78 173 344 .. 89 259 .. 88 263 .. 0.96 Alignments for each domain: == domain 1 score: 53.2 bits; conditional E-value: 2.2e-18 --SEEEEEE--TTTSHHHHHHHHH----EEEEETT---HHHHHHHHHHHHHHHHCTTTS-EEEEE------ CS PF00224.14 2 rrtkivctlGPasesvekleklieaGlnvvRlnfshGsheehkeridnvreaeeklgkkvaillDtkGpei 72 ++t+ivctlGPa +sve+l kli+aG+++ R+n she+hke +nv +a+ +l +++llDtkGp i query 24 KKTHIVCTLGPACKSVETLVKLIDAGMDICRFN----SHEDHKEMFNNVLKAQ-ELRCLLGMLLDTKGPPI 89 89******************************9....789*********9986.56788**********76 PP == domain 2 score: 264.1 bits; conditional E-value: 1.7e-82 SS-HHHHHHHH---TT.-SEEEETTE-SHHHHHHHHHHHHHTTTTSEEEEEE-S----TTHHHHHHH----EEE-------S-GGGHHHHHHHHHHHCCC-----EEESSTTGGGGTSSS--HHHHHHHHHHHH----EEEE---------HHHHHHHHHHHHHHHHCTS-H CS PF00224.14 173 alsekDkadlkfgvkqgvdliaasfvRkaedvkevRevleekgkeikiiakienqegvenldeileasdgimvaRGDlGieipaekvvlaqkllikkcnlagkpvitatqmlesmiknPrptRaevsDvanavldGaDavmLsgetakGkyPveavkamaevaleaekalke 344 +sekDk+d+ + ++iaasf+ +a+dv+ +R++l+++g++ikii kien eg+ ++d+il +sdgim+aRGDlG+ei ekv+laqkl+i+kcnl gkp+itatqmlesm+knPrptRaev+DvanavldG+D+vmLsgeta Gk+Pveav++m++++leae+ +++ query 89 IISEKDKNDILNFAIPMCNFIAASFIQSADDVRLIRNLLGPRGRHIKIIPKIENIEGIIHFDKILAESDGIMIARGDLGMEISPEKVFLAQKLMISKCNLQGKPIITATQMLESMTKNPRPTRAEVTDVANAVLDGTDCVMLSGETA-GKFPVEAVTIMSKICLEAEACIDY 259 69******9765555579********************************************************************************************************************************8.*******************99986 PP >> PF02887.9 Pyruvate kinase, alpha/beta domain # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ---- 1 ! 89.9 3.7 1e-29 6e-26 2 116 .. 278 383 .. 277 384 .. 0.94 Alignments for each domain: == domain 1 score: 89.9 bits; conditional E-value: 1e-29 HHHHHHHHHHHHH----EEEEE-----HHHHHHCC---..EEEEE----HHH---EEE---TT---HHHHCHHHHHHHHHCCHHH-----SSS-EEEE--....-------EEEE CS PF02887.9 2 eaiaeaaveaAkelgakaIvvltesGstarlvskyrpgvpIlavtpseetarqlalvwGvhplvgkeraistdeviaealraalkkglikkgdevvvtaglpfgtaggtntikvv 116 ea+a++ave+A++++a+ I++lte+G+tarl++ky+p++ Ila++ s++t + l++++Gv+++ + + td vi++a+++a++++++k gd v++++g +tn++kvv query 278 EAVARSAVETAESIQASLIIALTETGYTARLIAKYKPSCTILALSASDSTVKCLNVHRGVTCIKVGSF---TDIVIRNAIEIAKQRNMAKVGDSVIAIHG------IKTNLMKVV 383 99************************************************************544444...59***************************......589999998 PP ------------------------------------------------------------------------------------------------------------------------------------- Each model is introduced by an '>>', each model could have several domains, introduced by an '=='. Mind e.g. query residue i=88 in the first model (89 in the output above): It is annotated in both domains. Hence its annotation in the return dictionary would look like: 88:{0:[('I','1.3e-14', 'i', 'i', '6'), ('I','1e-78', 'a', ' ', '6')]} If it would align in a domain of the second model, that annotation would accur as another entry in the sub-dictionary, introduced by a 1. Here, you can also see what is actually used as annotation: first the i-evalue of the domain (1.3e-14 or 1e-78) followed by the subject (consensus) residue, the conservation letter (line between query and subject) and the posterior probability (beneath the query line). There could be other information to be extracted (like bit score, start stop positions...). Perhaps in the future. """ if 'No hits detected that satisfy reporting thresholds' in d_hmmer: #raise NoResultError('No significant hit found') raise NoResultError('hmmer3 did not detect any hits.') #First we split up into models #Look for the '>>' at the beginning of the line. rgx = re.compile('^>>', re.M) models_tmp = rgx.split(d_hmmer) models = [] for model in models_tmp[1:-1]: #The first one is the hmmscan header and general information, we aren't interested in that one; the last one models.append(model) #needs to be purged off the footer #Get rid of the last model's footer and append it to models rgx = re.compile('^Internal pipeline statistics summary', re.M) models.append(rgx.split(models_tmp[-1])[0]) #Now handle each single domain within the models and save models and their domains into model_list rgx = re.compile('^ ==', re.M) #Each domain starts with this string mdl_cnt = 0 #How many models are we dealing with? Remember, each model is made up of at least one domain #model_list = {} #Here we store each model along with their domains residues = {} for model in models: if 'No individual domains that satisfy reporting thresholds' in model: continue domains = rgx.split(model) domains_header = domains[0] domains_aligns = domains[1:] #Parse the header first for domain-specific information # # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc dom = [] for line in domains_header.split('\n'): if re.match('\s+\d+\s+', line): tokens = line.strip().split() assert tokens[1] == '!' #If this fails, we didn't fully understand what's going on during parsing! score = tokens[2] #See the docu about the significance of both evalues. i-eval (independent) is the one c_eval = tokens[4] #we're probably interested in later, as well as the bitscore. i_eval = tokens[5] #Yes we are, since pfam website only reports i_eval as _the_ evalue hmm_endpoints = tokens[8] #Is either '..', '.]', '[.' or '[]', indicating if alignment ended internally a domain ('.') or end exactly with domain boundaries ([/]) start_model = tokens[6] end_model = tokens[7] start_query = tokens[9] end_query = tokens[10] #Not all of this is currently needed. info = {'score':score, 'i_eval':i_eval, 'start_model':start_model, 'end_model':end_model, 'start_query':start_query, 'end_query':end_query, 'hmm_endpoints':hmm_endpoints} dom.append(info) #Now handle the alignments in each domain i = 0 feature_string = '' for algn in domains_aligns: lines = algn.strip().split('\n') #There could be up to two additional annotation lines present above the actual alignment (s. hmmer docu p.18). Get rid of those! if len(lines) == 5: lines = lines[1:] elif len(lines) == 6: lines = lines[2:] elif len(lines) == 7: lines = lines[3:] else: raise ParseError('Well, that is indeed interesting. Something went terribly wrong during assuming the amount of possible lines per alignment! I think I will be dying now!') line_model = lines[0] #The line containing the consensus of the domain sequence line_match = lines[1] line_target = lines[2] #Our target sequence for which we just found a homologous domain line_pp = lines[3] name_model = line_model.split()[0] start_query = int(dom[i]['start_query']) end_query = int(dom[i]['end_query']) seq_model = line_model.split()[2] #The domain consensus sequence seq_query = line_target.split()[2] #The query sequence #We need the start index of the match sequence which is the same as from all the others, e.g. seq_model m_start = line_model.index(seq_model) seq_match = line_match[m_start:] #The match sequence between both seq_pp = line_pp.lstrip().split()[0] #The posterior probability sequence #Some semantics checks: each string length has to be the same. Otherwise, something went wrong during parsing! assert len(seq_model) == len(seq_match) == len(seq_query) == len(seq_pp) #Now do the mapping actual_pos = 0 for pos in range(len(seq_query)): if seq_query[pos] == '-': continue try: residues[actual_pos+start_query-1][mdl_cnt].append( (seq_query[pos],dom[i]['i_eval'],seq_model[pos], seq_match[pos], seq_pp[pos]) ) except KeyError: try: residues[actual_pos+start_query-1][mdl_cnt] = [ (seq_query[pos],dom[i]['i_eval'],seq_model[pos], seq_match[pos], seq_pp[pos]) ] except KeyError: residues[actual_pos+start_query-1] = {mdl_cnt: [ (seq_query[pos],dom[i]['i_eval'],seq_model[pos], seq_match[pos], seq_pp[pos]) ] } actual_pos += 1 #A further consistency check! assert end_query == actual_pos+start_query-1 #Proceed with the next residue within the alignment i += 1 #Proceed with the next model mdl_cnt += 1 return residues def parse_prosite(d_prosite): """ """ if d_prosite == '': raise EmptyError('Empty prosite file!') stretches = [] #Here we store the prosite matches: A list of 3-lists, i.e. one per prosite match: start,stop,stretch within = False for line in d_prosite.split('\n'): if line.startswith('Pattern:'): within = True continue if line.startswith('Pattern-ID:') or line.strip() == '': within = False continue if within: tokens = line.strip().split() start = int(tokens[0]) #Prosite starts counting at 1! stretch = tokens[1] stop = start + len(stretch) - 1 #We return sequence positions 0-based! stretches.append( [start-1,stop-1,stretch] ) return stretches if __name__ == '__main__': import os from lib_parser import * import sys pp_path = '/mnt/home/schaefer/SNAPv2/pp/' chains = os.listdir(pp_path) i = 0 N = len(chains) mn = 0 mx = 0 for chain in chains: #print chain i += 1 #print chain, i, N try: #d_blast = open(pp_path+chain+"/query.blastPsiMat").read() #d_disis = open(pp_path+chain+"/query.disis").read() #d_isis = open(pp_path+chain+"/query.isis").read() #d_md = open(pp_path+chain+"/query.mdisorder").read() #d_prof = open(pp_path+chain+"/query.profRdb").read() #d_bval = open(pp_path+chain+"/query.profbval").read() #d_psic = open(pp_path+chain+"/query.psic").read() d_in = open(pp_path+chain+"/query.in").read() d_fasta = open(pp_path+chain+"/query.fasta").read() #d_hmmer = open(pp_path+chain+"/query.hmm3pfam").read() d_prosite = open(pp_path+chain+"/query.prosite").read() except NoResultError: #print 'too short for psic' continue except IOError: print('file not found') continue #print d_hmmer seq = parse_sequence(d_in, d_fasta)['seq'] for stretch in parse_prosite(d_prosite): print (stretch[2]) print (seq[stretch[0]:stretch[1]+1]) assert stretch[2] == seq[stretch[0]:stretch[1]+1] ``` #### File: ProNAhot/pronaHotMod/protvec.py ```python import prona2019Mod.utils as utils import itertools as it from six import iteritems, string_types, PY2, next import numpy as np import sys def _is_single(obj): """ Check whether `obj` is a single document or an entire corpus. Returns (is_single, new) 2-tuple, where `new` yields the same sequence as `obj`. `obj` is a single document if it is an iterable of strings. It is a corpus if it is an iterable of documents. """ obj_iter = iter(obj) temp_iter = obj_iter try: peek = next(obj_iter) obj_iter = it.chain([peek], obj_iter) except StopIteration: # An empty object is a single document return True, obj if isinstance(peek, string_types): # It's a document, return the iterator return True, obj_iter if temp_iter == obj: # Checking for iterator to the object return False, obj_iter else: # If the first item isn't a string, assume obj is a corpus return False, obj ''' def _apply(corpus, chunksize=None, **kwargs): """Apply the transformation to a whole corpus and get the result as another corpus. Parameters ---------- corpus : iterable of list of (int, number) Corpus in BoW format. chunksize : int, optional If provided - more effective processing (by group of documents) will performed. kwargs Arbitrary keyword arguments. Returns ------- :class:`~gensim.interfaces.TransformedCorpus` Transformed corpus. """ return TransformedCorpus(self, corpus, chunksize, **kwargs) ''' def score_item(worda, wordb, components, scorer, phrasegrams): """score is retained from original dataset """ try: return phrasegrams[tuple(components)][1] except KeyError: return -1 def analyze_sentence(sentence, threshold, common_terms, scorer,phrasegrams): """Analyze a sentence `sentence` a token list representing the sentence to be analyzed. `threshold` the minimum score for a bigram to be taken into account `common_terms` the list of common terms, they have a special treatment `scorer` the scorer function, as given to Phrases """ s = [utils.any2utf8(w) for w in sentence] last_uncommon = None in_between = [] # adding None is a trick that helps getting an automatic happy ending # has it won't be a common_word, nor score for word in s + [None]: is_common = word in common_terms if not is_common and last_uncommon: chain = [last_uncommon] + in_between + [word] # test between last_uncommon score = score_item( worda=last_uncommon, wordb=word, components=chain, scorer=scorer, phrasegrams=phrasegrams ) if score > threshold: yield (chain, score) last_uncommon = None in_between = [] else: # release words individually for w in it.chain([last_uncommon], in_between): yield (w, None) in_between = [] last_uncommon = word elif not is_common: last_uncommon = word else: # common term if last_uncommon: # wait for uncommon resolution in_between.append(word) else: yield (word, None) def get_phrase(sentence,phrase_model): is_single, sentence = _is_single(sentence) if not is_single: # if the input is an entire corpus (rather than a single sentence), # return an iterable stream. sys.exit("It is not a protein sequence") delimiter = phrase_model['delimiter'] bigrams = analyze_sentence( sentence, threshold=phrase_model['threshold'], common_terms=phrase_model['common_terms'], scorer=None, phrasegrams=phrase_model['phrasegrams']) # we will use our score_item function redefinition new_s = [] for words, score in bigrams: if score is not None: words = delimiter.join(words) new_s.append(words) return [utils.to_unicode(w) for w in new_s] def split_ngrams(seq, n): """ 'AGAMQSASM' => [['AGA', 'MQS', 'ASM'], ['GAM','QSA'], ['AMQ', 'SAS']] """ all_ngrams=[] for x in range(n): all_ngrams.append(zip(*[iter(seq[x:])]*n)) str_ngrams = [] for ngrams in all_ngrams: x = [] for ngram in ngrams: x.append("".join(ngram)) str_ngrams.append(x) return str_ngrams def to_vecs(seq,phrase_model,kmer,word2vec_index): """ convert sequence to three n-length vectors e.g. 'AGAMQSASM' => [ array([ ... * 100 ], array([ ... * 100 ], array([ ... * 100 ] ] """ ngram_patterns = split_ngrams(seq, kmer) protvecs = [] for ngrams in ngram_patterns: ngram_vecs = [] if phrase_model=='none': ngramss = ngrams else: ngramss=get_phrase(get_phrase(ngrams,phrase_model),phrase_model) for ngram in ngramss: try: ngram_vecs.append(np.array(word2vec_index[ngram])) except KeyError: continue protvecs.append(sum(ngram_vecs)) return protvecs ```
{ "source": "jiajuns/CarND-Capstone", "score": 3 }
#### File: src/waypoint_updater/waypoint_updater.py ```python import rospy import numpy as np import math from geometry_msgs.msg import PoseStamped, TwistStamped from styx_msgs.msg import Lane, Waypoint from std_msgs.msg import Int32 ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' LOOKAHEAD_WPS = 50 #200 # Number of waypoints we will publish. You can change this number NORMAL_DECEL = 4 # m/s^2 MAX_DECEL = 9.5 # m/2^2 NORMAL_ACCEL = 6 # m/s^2 VELOCITY_30MPH = 2.77 # m/s REFRESH_RATE = 10 #50 # Hz STOP_OFFSET = 8 class WaypointUpdater(object): def __init__(self): rospy.init_node('waypoint_updater') self.current_pose = None self.base_waypoints = None self.stop_waypoint_idx = 752 #750 #286 #self.stopped_time = 0.0 rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) # rospy.Subscriber('/obstacle_waypoint', Waypoint, self.obstacle_cb) rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb) self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) # TODO: Add other member variables you need below #rospy.spin() self.rate = rospy.Rate(REFRESH_RATE) # 50hz sampling rate while not rospy.is_shutdown(): # rospy.loginfo("WaypointUpdater goes to loop") self.loop() # rospy.loginfo("Vehicle stopped time: %d", self.stopped_time) # if self.stopped_time >= 10: # vehicle has stopped for over 10 seconds # self.stop_waypoint_idx += 400 # self.stopped_time = 0.0 def loop(self): if (self.current_pose is None) or (self.base_waypoints is None): return # step 1. find out the nearest waypoint to the current position # current x & y coordinates. Shall we include z??? current_pose_x = self.current_pose.pose.position.x current_pose_y = self.current_pose.pose.position.y current_pose_z = self.current_pose.pose.position.z shortest_distance = +np.inf nearest_waypoint_idx = 0 roll, pitch, yaw = quaternion_to_euler_angle(self.current_pose.pose.orientation.w, self.current_pose.pose.orientation.x, self.current_pose.pose.orientation.y, self.current_pose.pose.orientation.z) # for each waypoint of the base_waypoints, calculate the distance from the current position, find out the nearest waypoint index for i in range(len(self.base_waypoints)): # base waypoint x & y coordinates. base_waypoint_x = self.base_waypoints[i].pose.pose.position.x base_waypoint_y = self.base_waypoints[i].pose.pose.position.y base_waypoint_z = self.base_waypoints[i].pose.pose.position.z distance = np.sqrt((current_pose_x - base_waypoint_x)**2 + (current_pose_y - base_waypoint_y)**2 + (current_pose_z - base_waypoint_z)**2) if distance < shortest_distance: shortest_distance = distance nearest_waypoint_idx = i # rospy.loginfo("nearest waypoint index is %d", nearest_waypoint_idx) # step 2. the nearest waypoint might be behind the car, we need to check if the nearest waypoint is at the current heading direction. We need to utilize the orientation info from the PoseStampd message nearest_waypoint_x = self.base_waypoints[nearest_waypoint_idx].pose.pose.position.x nearest_waypoint_y = self.base_waypoints[nearest_waypoint_idx].pose.pose.position.y wp_yaw = np.arctan2((nearest_waypoint_y - current_pose_y), (nearest_waypoint_x - current_pose_x)) # I`m not too sure about this part # calculate the angle between car's yaw and wp_yaw, only accept the waypoint if the angle is less than 45 degree, otherwise, use the next waypoint as the first lookahead waypoint. Then append the next 200 base waypoints as the lookahead waypoints. Rollover to the first base waypoint when the loop reaches the end of the base waypoint list. theta = yaw - wp_yaw lookahead_waypoints = [] if abs(theta) < np.pi/2: for i in range(LOOKAHEAD_WPS): waypoint_idx = (nearest_waypoint_idx + i) % len(self.base_waypoints) lookahead_waypoints.append(self.base_waypoints[waypoint_idx]) else: for i in range(LOOKAHEAD_WPS): waypoint_idx = (nearest_waypoint_idx + 1 + i) % len(self.base_waypoints) lookahead_waypoints.append(self.base_waypoints[waypoint_idx]) # step 3. if self.stop_waypoint_idx is not None: if self.stop_waypoint_idx == -1 - STOP_OFFSET: # no red light detected, adjust current velocity to 30MPH # calculate the distance the vehicle needs to travel from current velocity to 30mph # d=(vc^2-vo^2)/2a dist_to_30mph = (VELOCITY_30MPH**2 - self.current_velocity**2) / (2*NORMAL_ACCEL) accel_per_dist = (VELOCITY_30MPH - self.current_velocity) / (dist_to_30mph + 1e-12) # update the velocity of the lookahead_waypoints for i in range(nearest_waypoint_idx, nearest_waypoint_idx+LOOKAHEAD_WPS): dist_curr_to_i = self.distance(self.base_waypoints, nearest_waypoint_idx, i+1) increased_v = dist_curr_to_i * accel_per_dist velocity_i = self.current_velocity + increased_v velocity_i = velocity_i if velocity_i < VELOCITY_30MPH else VELOCITY_30MPH self.set_waypoint_velocity(lookahead_waypoints, i-nearest_waypoint_idx, velocity_i) else: rospy.loginfo("stop_waypoint_idx is %d", self.stop_waypoint_idx) # red light detected # calculate the normal braking distance from the current_velocity # a=(vc-v0)/t, d=((vc+v0)/2)*t, v0=0 --> d=vc^2/(2*a) normal_brake_dist = (self.current_velocity**2)/(2*NORMAL_DECEL) # calculate the distance between the current position and the red light stop position. use the nearest waypoint as the current position dist_to_stop = self.distance(self.base_waypoints, nearest_waypoint_idx, self.stop_waypoint_idx) # if the car is getting close to the red light, start braking, otherwise, keep constant speed if dist_to_stop <= normal_brake_dist and dist_to_stop > 3: #rospy.loginfo("if cond1: brake, current_velocity is %f", self.current_velocity) decel_per_dist = self.current_velocity / (dist_to_stop + 1e-12) #* 2 # provide a factor of 1.5 to be safe for i in range(nearest_waypoint_idx, self.stop_waypoint_idx): dist_curr_to_i = self.distance(self.base_waypoints, nearest_waypoint_idx, i+1) reduced_v = dist_curr_to_i * decel_per_dist velocity_i = self.current_velocity - reduced_v velocity_i = velocity_i if velocity_i > 0 else 0.0 if i < nearest_waypoint_idx + LOOKAHEAD_WPS: self.set_waypoint_velocity(lookahead_waypoints, i-nearest_waypoint_idx, velocity_i) elif dist_to_stop <= 3: #rospy.loginfo("if cond2: stop, current_velocity is %f", self.current_velocity) for i in range(nearest_waypoint_idx, nearest_waypoint_idx+LOOKAHEAD_WPS): if i < nearest_waypoint_idx + LOOKAHEAD_WPS: self.set_waypoint_velocity(lookahead_waypoints, i-nearest_waypoint_idx, 0.0) # adjust velocity up to 30mph if current velocity is slow and vehicle is still away from red light elif dist_to_stop > 3 and dist_to_stop > 2*normal_brake_dist and self.current_velocity < VELOCITY_30MPH: #rospy.loginfo("if cond2: stop, current_velocity is %f", self.current_velocity) # calculate the distance the vehicle needs to travel from current velocity to 30mph # d=(vc^2-vo^2)/2a dist_to_30mph = (VELOCITY_30MPH**2 - self.current_velocity**2) / (2*NORMAL_ACCEL) accel_per_dist = (VELOCITY_30MPH - self.current_velocity) / (dist_to_30mph + 1e-12) # update the velocity of the lookahead_waypoints for i in range(nearest_waypoint_idx, nearest_waypoint_idx+LOOKAHEAD_WPS): dist_curr_to_i = self.distance(self.base_waypoints, nearest_waypoint_idx, i+1) increased_v = dist_curr_to_i * accel_per_dist velocity_i = self.current_velocity + increased_v velocity_i = velocity_i if velocity_i < VELOCITY_30MPH else VELOCITY_30MPH self.set_waypoint_velocity(lookahead_waypoints, i-nearest_waypoint_idx, velocity_i) # rospy.loginfo("current_velocity: %f", self.current_velocity) # if self.current_velocity <= 1.0: # self.stopped_time = self.stopped_time + 0.02 #1/REFRESH_RATE # if dist_to_stop <= normal_brake_dist: # decel = (self.current_velocity**2)/(2*dist_to_stop + 1e-12) # if decel > MAX_DECEL: # decel = MAX_DECEL # # calculate the velocity for each waypoint between the current position and red light stop line # for i in range(nearest_waypoint_idx, self.stop_waypoint_idx+1): # dist_curr_to_i = self.distance(self.base_waypoints, nearest_waypoint_idx, i) # # vi = sqrt(vc^2-2*a*d) # velocity_i = np.sqrt(self.current_velocity**2 - 2*decel*dist_curr_to_i) # # set velocity for each waypoint in the lookahead_waypoints # if i < nearest_waypoint_idx + LOOKAHEAD_WPS: # self.set_waypoint_velocity(lookahead_waypoints, i-nearest_waypoint_idx, velocity_i) # if i == 0: # rospy.loginfo(velocity_i) # rospy.loginfo(nearest_waypoint_idx) # create an empty Lane message to hold the lookahead_waypoints lane = Lane() lane.waypoints = lookahead_waypoints # rospy.loginfo("waypoint 0 velocity %f", lane.waypoints[0].twist.twist.linear.x) # rospy.loginfo("waypoint 1 velocity %f", lane.waypoints[1].twist.twist.linear.x) # rospy.loginfo("waypoint 2 velocity %f", lane.waypoints[2].twist.twist.linear.x) self.final_waypoints_pub.publish(lane) self.rate.sleep() def pose_cb(self, msg): # TODO: Implement '''msg type geometry_msgs/PoseStamped geometry_msgs/Pose pose geometry_msgs/Point position float64 x float64 y float64 z geometry_msgs/Quaternion orientation float64 x float64 y float64 z float64 w ''' self.current_pose = msg #pass def waypoints_cb(self, waypoints): # TODO: Implement '''waypoints message type styx_msgs/Lane styx_msgs/Waypoint[] waypoints geometry_msgs/PoseStamped pose std_msgs/Header header uint32 seq time stamp string frame_id geometry_msgs/Pose pose geometry_msgs/Point position float64 x float64 y float64 z geometry_msgs/Quaternion orientation float64 x float64 y float64 z float64 w geometry_msgs/TwistStamped twist std_msgs/Header header uint32 seq time stamp string frame_id geometry_msgs/Twist twist geometry_msgs/Vector3 linear float64 x float64 y float64 z geometry_msgs/Vector3 angular float64 x float64 y float64 z ''' # get the waypoint list from the Lane message self.base_waypoints = waypoints.waypoints #pass def traffic_cb(self, msg): # TODO: Callback for /traffic_waypoint message. Implement self.stop_waypoint_idx = msg.data - STOP_OFFSET #pass def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later pass def velocity_cb(self, msg): '''msg type geometry_msgs/TwistStamped geometry_msgs/Twist twist geometry_msgs/Vector3 linear float64 x float64 y float64 z geometry_msgs/Vector3 angular float64 x float64 y float64 z ''' # get the vehicle's current velocity from the simulator self.current_velocity = msg.twist.linear.x #pass def get_waypoint_velocity(self, waypoint): return waypoint.twist.twist.linear.x def set_waypoint_velocity(self, waypoints, waypoint, velocity): waypoints[waypoint].twist.twist.linear.x = velocity def distance(self, waypoints, wp1, wp2): dist = 0 dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) for i in range(wp1, wp2+1): dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position) wp1 = i return dist def quaternion_to_euler_angle(w, x, y, z): """ helper function to convert quaternion to euler angle """ ysqr = y * y t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + ysqr) X = math.degrees(math.atan2(t0, t1)) #roll t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 Y = math.degrees(math.asin(t2)) #pitch t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (ysqr + z * z) Z = math.degrees(math.atan2(t3, t4)) #yaw return X, Y, Z if __name__ == '__main__': try: WaypointUpdater() except rospy.ROSInterruptException: rospy.logerr('Could not start waypoint updater node.') ```
{ "source": "jiajuns/CarND-Semantic-Segmentation", "score": 2 }
#### File: jiajuns/CarND-Semantic-Segmentation/main.py ```python import os.path import re import numpy as np import tensorflow as tf import helper import warnings from distutils.version import LooseVersion import project_tests as tests import scipy.misc from glob import glob # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def load_vgg(sess, vgg_path): """ Load Pretrained VGG Model into TensorFlow. :param sess: TensorFlow Session :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out) """ # TODO: Implement function # Use tf.saved_model.loader.load to load the model and weights vgg_tag = 'vgg16' vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' tf.saved_model.loader.load(sess, [vgg_tag], vgg_path) graph = tf.get_default_graph() input_tensor = graph.get_tensor_by_name(vgg_input_tensor_name) keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) return input_tensor, keep_prob, layer3_out, layer4_out, layer7_out def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): """ Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. :param vgg_layer3_out: TF Tensor for VGG Layer 3 output :param vgg_layer4_out: TF Tensor for VGG Layer 4 output :param vgg_layer7_out: TF Tensor for VGG Layer 7 output :param num_classes: Number of classes to classify :return: The Tensor for the last layer of output """ # TODO: Implement function initializer = tf.contrib.layers.xavier_initializer_conv2d() conv_1x1 = tf.layers.conv2d(inputs=vgg_layer7_out, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_regularizer=tf.contrib.layers.l2_regularizer, kernel_size=1, strides=(1, 1), padding='same') de_conv1 = tf.layers.conv2d_transpose(inputs=conv_1x1, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_size=4, strides=(2, 2), padding='same') vgg_layer4_out = tf.layers.conv2d(inputs=vgg_layer4_out, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_size=1, strides=(1, 1), padding='same') de_conv1_added = tf.add(de_conv1, vgg_layer4_out) vgg_layer3_out = tf.layers.conv2d(inputs=vgg_layer3_out, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_size=1, strides=(1, 1), padding='same') de_conv2 = tf.layers.conv2d_transpose(inputs=de_conv1_added, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_size=4, strides=(2, 2), padding='same') de_conv2_added = tf.add(de_conv2, vgg_layer3_out) output = tf.layers.conv2d_transpose(inputs=de_conv2_added, filters=num_classes, kernel_initializer=initializer, activation=tf.nn.leaky_relu, kernel_size=16, strides=(8, 8), padding='same') return output def optimize(nn_last_layer, correct_label, learning_rate, num_classes): """ Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss) """ # TODO: Implement function logits = tf.reshape(nn_last_layer, (-1, num_classes)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=correct_label, logits=logits)) optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10) train_step = optimizer.minimize(loss) return logits, train_step, loss def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, iou, iou_op, input_placeholder,label_placeholder, keep_prob, keep_prob_value, image_shape): """ Train neural network and print out the loss during training. :param sess: TF Session :param epochs: Number of epochs :param batch_size: Batch size :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) :param train_op: TF Operation to train the neural network :param cross_entropy_loss: TF Tensor for the amount of loss :param input_image: TF Placeholder for input images :param correct_label: TF Placeholder for label images :param keep_prob: TF Placeholder for dropout keep probability :param learning_rate: TF Placeholder for learning rate """ # TODO: Implement function print_every = 5 iter_cnt = 1 if (iou is not None) and (iou_op is not None): best_accuracy = 0 saver = tf.train.Saver() for e in range(epochs): losses = [] for train_data, train_label in get_batches_fn(batch_size): feed_dict = { input_placeholder: train_data, label_placeholder: train_label, keep_prob: keep_prob_value, } loss, _ = sess.run([cross_entropy_loss, train_op], feed_dict) losses.append(loss) if (iter_cnt % print_every) == 0: print("Iteration {0}: with minibatch training loss = {1:.3g}".format(iter_cnt, loss)) iter_cnt += 1 if (iou is not None) and (iou_op is not None): ## validation accuracy = compute_accuracy(sess, input_placeholder, label_placeholder, iou, iou_op, keep_prob, image_shape) print('epoch {0} average accuracy {1}'.format(e, accuracy)) if accuracy > best_accuracy: best_accuracy = accuracy save_path = saver.save(sess, '/tmp/model.ckpt') print('Model saved in path {}'.format(save_path)) def compute_accuracy(sess, input_placeholder, label_placeholder, iou, iou_op, keep_prob, image_shape, data_folder='./data/data_road/valid'): list_accuracy = [] background_color = np.array([255, 0, 0]) image_paths = glob(os.path.join(data_folder, 'image_2', '*.png')) label_paths = { re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))} for image_file in image_paths: gt_image_file = label_paths[os.path.basename(image_file)] image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape) gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape) gt_bg = np.all(gt_image == background_color, axis=2) gt_bg = gt_bg.reshape(*gt_bg.shape, 1) gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2) accuracy, _ = sess.run([iou, iou_op], {keep_prob:1.0, input_placeholder:np.array([image]), label_placeholder:np.array([gt_image])}) list_accuracy.append(accuracy) return np.mean(list_accuracy) def train(learning_rate, epochs, batch_size, keep_prob_value, debug=False): num_classes = 2 image_shape = (160, 576) data_dir = './data' runs_dir = './runs' tests.test_for_kitti_dataset(data_dir) if debug==True: tests.test_load_vgg(load_vgg, tf) tests.test_layers(layers) tests.test_optimize(optimize) tests.test_train_nn(train_nn) # Download pretrained vgg model helper.maybe_download_pretrained_vgg(data_dir) # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset. # You'll need a GPU with at least 10 teraFLOPS to train on. # https://www.cityscapes-dataset.com/ with tf.Session() as sess: # Path to vgg model vgg_path = os.path.join(data_dir, 'vgg') # Create function to get batches get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape) # OPTIONAL: Augment Images for better results # https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network # TODO: Build NN using load_vgg, layers, and optimize function label_placeholder = tf.placeholder(tf.float32, [None, None, None, num_classes]) input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path) output = layers(layer3_out, layer4_out, layer7_out, num_classes) logits, optimizer, loss = optimize(output, label_placeholder, learning_rate, num_classes) prediction = tf.argmax(output, axis=3) ground_truth = tf.argmax(label_placeholder, axis=3) iou, iou_op = tf.metrics.mean_iou(ground_truth, prediction, num_classes) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # TODO: Train NN using the train_nn function train_nn(sess, epochs, batch_size, get_batches_fn, optimizer, loss, iou, iou_op, input_image, label_placeholder, keep_prob, keep_prob_value, image_shape) # TODO: Save inference data using helper.save_inference_samples helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image) def inference(): # OPTIONAL: Apply the trained model to a video pass if __name__ == '__main__': train(learning_rate=1e-4, epochs=30, batch_size=4, keep_prob_value=0.6, debug=True) ```
{ "source": "JiajunWithGreatDream/fritz-models", "score": 3 }
#### File: image_segmentation/image_segmentation/train.py ```python import argparse import keras import logging import time import sys import struct import os from tensorflow.python.lib.io import file_io import tensorflow as tf from image_segmentation.icnet import ICNetModelFactory from image_segmentation.data_generator import ADE20KDatasetBuilder from image_segmentation import dali_config from google.cloud import storage logging.basicConfig(level=logging.INFO) logger = logging.getLogger('train') def _summarize_arguments(args): """Summarize input arguments to ICNet model training. Args: args: """ logger.info('ICNet Model training Parameters') logger.info('-------------------------------') for key, value in vars(args).items(): logger.info(' {key}={value}'.format(key=key, value=value)) def _build_parser(argv): parser = argparse.ArgumentParser( description='Train an ICNet model.' ) # Data options parser.add_argument( '-d', '--data', nargs='+', required=True, help='A TFRecord file containing images and segmentation masks.' ) parser.add_argument( '--tfindex-files', nargs='+', help='TFIndex file for dali pipeline. If not included, will be built' ) parser.add_argument( '-l', '--label-filename', type=str, required=True, help='A file containing a single label per line.' ) parser.add_argument( '-s', '--image-size', type=int, default=768, help=('The pixel dimension of model input and output. Images ' 'will be square.') ) parser.add_argument( '-a', '--alpha', type=float, default=1.0, help='The width multiplier for the network' ) parser.add_argument( '--augment-images', type=bool, default=True, help='turn on image augmentation.' ) parser.add_argument( '--add-noise', action='store_true', help='Add gaussian noise to training.' ) parser.add_argument( '--use-dali', action='store_true', help='turn on image augmentation.' ) parser.add_argument( '--list-labels', action='store_true', help='If true, print a full list of object labels.' ) # Training options parser.add_argument( '-b', '--batch-size', type=int, default=8, help='The training batch_size.' ) parser.add_argument( '--lr', type=float, default=0.001, help='The learning rate.' ) parser.add_argument( '-n', '--num-steps', type=int, default=1000, help='Number of training steps to perform' ) parser.add_argument( '--steps-per-epoch', type=int, default=100, help='Number of training steps to perform between model checkpoints' ) parser.add_argument( '-o', '--output', help='An output file to save the trained model.') parser.add_argument( '--gpu-cores', type=int, default=1, help='Number of GPU cores to run on.') parser.add_argument( '--fine-tune-checkpoint', type=str, help='A Keras model checkpoint to load and continue training.' ) parser.add_argument( '--gcs-bucket', type=str, help='A GCS Bucket to save models too.' ) parser.add_argument( '--parallel-calls', type=int, default=1, help='Number of parallel calss to preprocessing to perform.' ) parser.add_argument( '--model-name', type=str, required=True, help='Short name separated by underscores' ) return parser.parse_known_args() def _prepare_dataset(args, n_classes): dataset = ADE20KDatasetBuilder.build( args.data, n_classes=n_classes, batch_size=args.batch_size, image_size=(args.image_size, args.image_size), augment_images=False, parallel_calls=args.parallel_calls, prefetch=True, ) iterator = dataset.make_one_shot_iterator() example = iterator.get_next() return { 'input': example['image'], 'mask_4': example['mask_4'], 'mask_8': example['mask_8'], 'mask_16': example['mask_16'], } def build_tfindex_file(tfrecord_file, tfindex_file): """Builds a tfindex file used by DALI from a tfrecord file. Args: tfrecord_file: Path to TFRecord file. tfindex_file: output file to write to. """ tfrecord_fp = open(tfrecord_file, 'rb') idx_fp = open(tfindex_file, 'w') while True: current = tfrecord_fp.tell() try: # length byte_len = tfrecord_fp.read(8) if byte_len == '': break # crc tfrecord_fp.read(4) proto_len = struct.unpack('q', byte_len)[0] # proto tfrecord_fp.read(proto_len) # crc tfrecord_fp.read(4) idx_fp.write(str(current) + ' ' + str(tfrecord_fp.tell() - current) + '\n') except Exception: print("Not a valid TFRecord file") break tfrecord_fp.close() idx_fp.close() def _prepare_dali(args, n_classes): if args.gpu_cores > 1: logger.error( 'Have not built in support for more than one GPU at the moment.' ) sys.exit(1) # non NVIDIA cloud environments will not have dali, so we # have to do the import here. from image_segmentation.dali_pipeline import CommonPipeline import nvidia.dali.plugin.tf as dali_tf batch_size = args.batch_size image_size = args.image_size device_id = 0 storage_client = storage.Client() filenames = [] for filename in args.data: if filename.startswith('gs://'): parts = filename[5:].split('/') bucket_name, blob_name = parts[0], '/'.join(parts[1:]) bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(blob_name) download_filename = os.path.basename(blob_name) blob.download_to_filename(download_filename) filenames.append(download_filename) else: filenames.append(filename) tfindex_files = args.tfindex_files or [] if not tfindex_files: for path in filenames: tfindex_file = path.split('.')[0] + '.tfindex' build_tfindex_file(path, tfindex_file) logger.info('Created tfindex file: {input} -> {output}'.format( input=path, output=tfindex_file )) tfindex_files.append(tfindex_file) config = dali_config.DaliConfig() config.summarize() pipe = CommonPipeline( args.batch_size, args.parallel_calls, device_id, args.image_size, filenames, tfindex_files, config ) pipe.build() daliop = dali_tf.DALIIterator() with tf.device('/gpu:0'): results = daliop( serialized_pipeline=pipe.serialize(), shape=[args.batch_size, args.image_size, args.image_size, 3], label_type=tf.int64, ) input_tensor = results.batch results.label.set_shape([batch_size, image_size, image_size, 3]) mask = results.label new_shape = [image_size / 4, image_size / 4] mask_4 = ADE20KDatasetBuilder.scale_mask(mask, 4, new_shape, n_classes) new_shape = [image_size / 8, image_size / 8] mask_8 = ADE20KDatasetBuilder.scale_mask(mask, 8, new_shape, n_classes) new_shape = [image_size / 16, image_size / 16] mask_16 = ADE20KDatasetBuilder.scale_mask(mask, 16, new_shape, n_classes) return { 'input': input_tensor, 'mask_4': mask_4, 'mask_8': mask_8, 'mask_16': mask_16, } def train(argv): """Train an ICNet model.""" args, unknown = _build_parser(argv) _summarize_arguments(args) class_labels = ADE20KDatasetBuilder.load_class_labels( args.label_filename) if args.list_labels: logger.info('Labels:') labels = '' for label in class_labels: labels += '%s\n' % label logger.info(labels) sys.exit() n_classes = len(class_labels) if args.use_dali: data = _prepare_dali(args, n_classes) else: data = _prepare_dataset(args, n_classes) if args.add_noise: logger.info('Adding gaussian noise to input tensor.') noise = tf.random_normal(shape=tf.shape(data['input']), mean=0.0, stddev=0.07, dtype=tf.float32) data['input'] = data['input'] + noise gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8) config = tf.ConfigProto(gpu_options=gpu_options) sess = tf.Session(config=config) keras.backend.set_session(sess) if args.gpu_cores > 1: with tf.device('/CPU:0'): icnet = ICNetModelFactory.build( args.image_size, n_classes, weights_path=args.fine_tune_checkpoint, train=True, input_tensor=data['input'], alpha=args.alpha, ) gpu_icnet = keras.utils.multi_gpu_model(icnet, gpus=args.cores) gpu_icnet.__setattr__('callback_model', icnet) model = gpu_icnet else: with tf.device('/GPU:0'): model = ICNetModelFactory.build( args.image_size, n_classes, weights_path=args.fine_tune_checkpoint, train=True, input_tensor=data['input'], alpha=args.alpha, ) optimizer = keras.optimizers.Adam(lr=args.lr) model.compile( optimizer, loss=keras.losses.categorical_crossentropy, loss_weights=[1.0, 0.4, 0.16], metrics=['categorical_accuracy'], target_tensors=[ data['mask_4'], data['mask_8'], data['mask_16'] ] ) if not args.output: output_filename_fmt = '{model_name}_{size}x{size}_{alpha}_{time}.h5' filename = output_filename_fmt.format( model_name=args.model_name, size=args.image_size, alpha=str(args.alpha).replace('0', '').replace('.', ''), time=int(time.time()) ) else: filename = args.output print("=======================") print("Output file name: {name}".format(name=filename)) print("=======================") callbacks = [ keras.callbacks.ModelCheckpoint( filename, verbose=0, mode='auto', period=1 ), ] if args.gcs_bucket: callbacks.append(SaveCheckpointToGCS(filename, args.gcs_bucket)) model.fit( steps_per_epoch=args.steps_per_epoch, epochs=int(args.num_steps / args.steps_per_epoch) + 1, callbacks=callbacks, ) class SaveCheckpointToGCS(keras.callbacks.Callback): """A callback to save local model checkpoints to GCS.""" def __init__(self, local_filename, gcs_filename): """Save a checkpoint to GCS. Args: local_filename (str): the path of the local checkpoint gcs_filename (str): the GCS bucket to save the model to """ self.gcs_filename = gcs_filename self.local_filename = local_filename @staticmethod def _copy_file_to_gcs(job_dir, file_path): gcs_url = os.path.join(job_dir, file_path) logger.info('Saving models to GCS: %s' % gcs_url) with file_io.FileIO(file_path, mode='rb') as input_f: with file_io.FileIO(gcs_url, mode='w+') as output_f: output_f.write(input_f.read()) def on_epoch_end(self, epoch, logs={}): """Save model to GCS on epoch end. Args: epoch (int): the epoch number logs (dict, optional): logs dict """ basename = os.path.basename(self.local_filename) self._copy_file_to_gcs(self.gcs_filename, basename) if __name__ == '__main__': train(sys.argv[1:]) ```
{ "source": "JiajunX31/fib_py", "score": 3 }
#### File: JiajunX31/fib_py/get_latest_version.py ```python import os import pathlib from typing import Tuple, List, Union import requests def get_latest_version_number() -> str: req = requests.get("https://pypi.org/pypi/fib-py/json") return req.json()["info"]["version"] def unpack_version_number(version_string: str) -> Tuple[int, int, int]: version_buffer: List[str] = version_string.split(".") return int(version_buffer[0]), int(version_buffer[1]), int(version_buffer[2]) def increase_version_number( version_buffer: Union[Tuple[int, int, int], List[int]] ) -> List[int]: first: int = version_buffer[0] second: int = version_buffer[1] third: int = version_buffer[2] third += 1 if third >= 10: third = 0 second += 1 if second >= 10: second = 0 first += 1 return [first, second, third] def pack_version_number(version_buffer: Union[Tuple[int, int, int], List[int]]) -> str: return f"{version_buffer[0]}.{version_buffer[1]}.{version_buffer[2]}" def write_version_to_file(version_number: str) -> None: version_file_path = ( str(pathlib.Path(__file__).parent.absolute()) + "/fib_py/version.py" ) if os.path.exists(version_file_path): os.remove(version_file_path) with open(version_file_path, "w") as f: f.write(f"VERSION='{version_number}'") if __name__ == "__main__": write_version_to_file( pack_version_number( increase_version_number(unpack_version_number(get_latest_version_number())) ) ) ```
{ "source": "jiaju-yang/leetcode", "score": 4 }
#### File: leetcode/src/graph_tools.py ```python class Node: def __init__(self, val=0, neighbors=None): self.val = val self.neighbors = neighbors if neighbors is not None else [] def __eq__(self, other): if isinstance(other, Node): return self.val == other.val return False def __str__(self) -> str: return f'Node({self.val})' def __repr__(self) -> str: return str(self) def construct_graph_from_adj_list(adj_list): if not adj_list: return None nodes = {} for value, adj in enumerate(adj_list, 1): node = nodes[value] if value in nodes else Node(value) nodes[value] = node for adj_node_value in adj: if adj_node_value not in nodes: nodes[adj_node_value] = Node(adj_node_value) node.neighbors.append(nodes[adj_node_value]) return nodes[1] def is_graph_equal(node_a: Node, node_b: Node): if not node_a and not node_b: return True visited = set() def is_equal(node_a, node_b): if node_a.val in visited: return True if node_a != node_b or len(node_a.neighbors) != len(node_b.neighbors): return False visited.add(node_a.val) for adj_of_a, adj_of_b in zip(node_a.neighbors, node_b.neighbors): if not is_equal(adj_of_a, adj_of_b): return False return True return is_equal(node_a, node_b) ``` #### File: leetcode/src/linkedlist_tools.py ```python from typing import List class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def __eq__(self, other): if not isinstance(other, ListNode): return False return self.val == other.val and self.next == other.next def __repr__(self): return f'Node({self.val})' def construct_linkedlist(values: List, pos=None): """ Construct a linked list from list :param pos: if there is a cycle in the linked list, pass the index of the node that the last node should point to. """ previous = head = pos_node = None for i in range(len(values)): current = ListNode(values[i]) if not head: head = current if previous: previous.next = current previous = current if i == pos: pos_node = current if i == len(values) - 1: current.next = pos_node return head def construct_multi_list(values: List[List]) -> List[ListNode]: result = [] for value in values: result.append(construct_linkedlist(value)) return result ``` #### File: leetcode/src/q105-construct-binary-tree-from-preorder-and-inorder-traversal.py ```python from typing import List, Optional from .tree_tools import * # @lc code=start class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: if not preorder: return None node = TreeNode(preorder[0]) length = inorder.index(preorder[0]) node.left = self.buildTree(preorder[1:1+length], inorder[:length]) node.right = self.buildTree(preorder[1+length:], inorder[length+1:]) return node # @lc code=end solve = Solution().buildTree def test_default(): solve([3, 9, 20, 15, 7], [9, 3, 15, 20, 7]) == construct_tree( [3, 9, 20, None, None, 15, 7]) def test_corner_cases(): solve([-1], [-1]) == TreeNode(-1) solve([], []) == None solve([1, 2], [2, 1]) == construct_tree([1, 2]) ``` #### File: leetcode/src/q1143-longest-common-subsequence.py ```python class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: dp = [[0 for _ in range(len(text2) + 1)] for _ in range(len(text1) + 1)] for i in range(1, len(text1) + 1): for j in range(1, len(text2) + 1): if text1[i-1] == text2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[len(text1)][len(text2)] # @lc code=end solve = Solution().longestCommonSubsequence def test_default(): assert solve('ace', 'abcde') == 3 assert solve('abcde', 'ace') == 3 assert solve('abcde', 'aae') == 2 assert solve('hofubmnylkra', 'pqhgxgdofcvmr') == 5 assert solve('ezupkr', 'ubmrapg') == 2 assert solve('oxcpqrsvwf', 'shmtulqrypy') == 2 def test_corner_cases(): assert solve('', 'a') == 0 assert solve('a', '') == 0 assert solve('a', 'a') == 1 assert solve('a', 'b') == 0 assert solve('aa', 'b') == 0 assert solve('aa', 'a') == 1 assert solve('aa', 'aa') == 2 ``` #### File: leetcode/src/q139-word-break.py ```python from typing import List # @lc code=start class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: dp = [False] * (len(s) + 1) dp[0] = True max_word_len = len(max(wordDict, key=len)) last_true = 0 for i in range(1, len(s) + 1): if i > last_true + max_word_len: break for word in wordDict: if i - len(word) >= 0 and dp[i-len(word)]: sub = s[i-len(word):i] if sub == word: dp[i] = True last_true = i break return dp[-1] # @lc code=end solve = Solution().wordBreak def test_default(): assert solve('leetcode', ['leet', 'code']) assert solve('applepenapple', ['apple', 'pen']) assert not solve('catsandog', ['cats', 'dog', 'sand', 'and', 'cat']) def test_corner_cases(): assert solve('a', ['a']) assert solve('aa', ['a']) assert not solve('a', ['b']) assert solve('a', ['a', 'b']) ``` #### File: leetcode/src/q19-remove-nth-node-from-end-of-list.py ```python from typing import Optional from .linkedlist_tools import * # @lc code=start class Solution: def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]: dummy = ListNode(0, head) previous, end = dummy, head for _ in range(n): end = end.next while end: previous = previous.next end = end.next previous.next = previous.next.next return dummy.next # @lc code=end solve = Solution().removeNthFromEnd def test_default(): assert solve(construct_linkedlist( [1, 2, 3, 4, 5]), 2) == construct_linkedlist([1, 2, 3, 5]) def test_corner_cases(): assert solve(construct_linkedlist([1]), 1) == construct_linkedlist([]) assert solve(construct_linkedlist([1, 2]), 1) == construct_linkedlist([1]) ``` #### File: leetcode/src/q242-valid-anagram.py ```python from typing import Counter # @lc code=start class Solution: def isAnagram(self, s: str, t: str) -> bool: return Counter(s) == Counter(t) # @lc code=end solve = Solution().isAnagram def test_default(): assert solve('anagram', 'nagaram') assert not solve('rat', 'car') def test_corner_cases(): assert solve('a', 'a') assert not solve('a', 'b') assert solve('ab', 'ba') assert not solve('a', 'ba') ``` #### File: leetcode/src/q297-serialize-and-deserialize-binary-tree.py ```python from .tree_tools import * from collections import deque # @lc code=start class Codec: def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ return f'{root.val},{self.serialize(root.left)},{self.serialize(root.right)}' if root else '' def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ return self.preorder(deque(data.split(','))) def preorder(self, q): val = q.popleft() if val == '': return None node = TreeNode(int(val)) node.left = self.preorder(q) node.right = self.preorder(q) return node # Your Codec object will be instantiated and called as such: # ser = Codec() # deser = Codec() # ans = deser.deserialize(ser.serialize(root)) # @lc code=end solution = Codec() def test_default(): assert solution.deserialize(solution.serialize(construct_tree( [1, 2, 3, None, None, 4, 5]))) == construct_tree([1, 2, 3, None, None, 4, 5]) def test_corner_cases(): assert solution.deserialize(solution.serialize(None)) == None assert solution.deserialize(solution.serialize(construct_tree( [1]))) == construct_tree([1]) assert solution.deserialize(solution.serialize(construct_tree( [1, 2]))) == construct_tree([1, 2]) ``` #### File: leetcode/src/q371-sum-of-two-integers.py ```python from itertools import zip_longest class Solution: def getSum(self, a: int, b: int) -> int: mask = 0xfff max = 2047 while b: a, b = (a ^ b) & mask, ((a & b) << 1) & mask return a if a <= max else ~(a ^ mask) # # @lc code=end solve = Solution().getSum def test_default(): assert solve(5, 2) == 7 assert solve(0, 1000) == 1000 def test_overflow_cases(): assert solve(1000, 1000) == 2000 def test_negative_cases(): assert solve(-1, -2) == -3 assert solve(-1, 2) == 1 assert solve(-1, 1) == 0 assert solve(-1, 0) == -1 ``` #### File: leetcode/src/q417-pacific-atlantic-water-flow.py ```python from typing import List # @lc code=start class Solution: directions = [[0, 1], [1, 0], [0, -1], [-1, 0]] def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]: m = len(heights) n = len(heights[0]) pacific_ocean_access = [[False] * n for _ in range(m)] for i in range(n): self.dfs((0, i), pacific_ocean_access, heights, m, n) for i in range(m): self.dfs((i, 0), pacific_ocean_access, heights, m, n) atlantic_ocean_access = [[False] * n for _ in range(m)] for i in range(n): self.dfs((m-1, i), atlantic_ocean_access, heights, m, n) for i in range(m): self.dfs((i, n-1), atlantic_ocean_access, heights, m, n) result = [] for i in range(m): for j in range(n): if pacific_ocean_access[i][j] and atlantic_ocean_access[i][j]: result.append([i, j]) return result def dfs(self, node, states, heights, m, n): if states[node[0]][node[1]]: return states[node[0]][node[1]] = True for i, j in self.neighbors(node[0], node[1], heights, m, n): self.dfs((i, j), states, heights, m, n) def neighbors(self, i, j, heights, m, n): for neighbor_i_off, neighbor_j_off in self.directions: neighbor_i, neighbor_j = i + neighbor_i_off, j + neighbor_j_off if 0 <= neighbor_i < m and 0 <= neighbor_j < n and heights[i][j] <= heights[neighbor_i][neighbor_j]: yield (neighbor_i, neighbor_j) # @lc code=end solve = Solution().pacificAtlantic def test_default(): assert solve([[1, 2, 2, 3, 5], [3, 2, 3, 4, 4], [2, 4, 5, 3, 1], [6, 7, 1, 4, 5], [ 5, 1, 1, 2, 4]]) == [[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] def test_corner_cases(): assert solve([[1]]) == [[0, 0]] assert solve([[2, 1], [1, 2]]) == [[0, 0], [0, 1], [1, 0], [1, 1]] ``` #### File: leetcode/src/q435-non-overlapping-intervals.py ```python from typing import List from operator import itemgetter # @lc code=start class Solution: def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int: max_count, end_at = 0, float('-inf') for interval in sorted(intervals, key=itemgetter(1)): if end_at <= interval[0]: max_count += 1 end_at = interval[1] return len(intervals) - max_count # @lc code=end solve = Solution().eraseOverlapIntervals def test_default(): assert solve([[1, 2], [2, 3], [3, 4], [1, 3]]) == 1 def test_corner_cases(): assert solve([[1, 2], [1, 2], [1, 2]]) == 2 assert solve([[1, 2], [2, 3]]) == 0 assert solve([]) == 0 assert solve([[1, 2]]) == 0 assert solve([[1, 5], [2, 3]]) == 1 ``` #### File: leetcode/src/q5-longest-palindromic-substring.py ```python class DPSolution: def longestPalindrome(self, s: str) -> str: dp = [[False] * len(s) for _ in range(len(s))] start, end = 0, 0 for i in range(len(s)): dp[i][i] = True for i in range(len(s)-2, -1, -1): for j in range(i+1, len(s)): if (j == i + 1 or dp[i+1][j-1]) and s[i] == s[j]: dp[i][j] = True if j - i > end - start: start, end = i, j return s[start:end+1] class TwoPointersSolution: def longestPalindrome(self, s: str) -> str: start, end = 0, 0 for i in range(len(s)): start, end = max((start, end), self.extend(i, i, s), self.extend(i, i+1, s), key=lambda pair: pair[1] - pair[0]) return s[start: end + 1] def extend(self, left, right, s): while left >= 0 and right < len(s) and s[left] == s[right]: left -= 1 right += 1 return left+1, right-1 Solution = TwoPointersSolution # @lc code=end solve = Solution().longestPalindrome def test_default(): assert solve('babad') == 'bab' or 'aba' assert solve('cbbd') == 'bb' def test_corner_cases(): assert solve('a') == 'a' assert solve('ab') == 'a' assert solve('aba') == 'aba' ``` #### File: leetcode/src/q91-decode-ways.py ```python class Solution: def numDecodings(self, s: str) -> int: it = iter(s) p_char = next(it) previous, current = 1, (1 if self.is_valid(p_char) else 0) for c in it: previous, current, p_char = current, ( current if self.is_valid(c) else 0) + (previous if self.is_valid(p_char + c) else 0), c return current def is_valid(self, t): if t.startswith('0'): return False return 1 <= int(t) <= 26 # @lc code=end solve = Solution().numDecodings def test_default(): assert solve('11106') == 2 assert solve('12') == 2 assert solve('226') == 3 def test_corners(): assert solve('0') == 0 assert solve('06') == 0 assert solve('6') == 1 ``` #### File: leetcode/src/q98-validate-binary-search-tree.py ```python from .tree_tools import * from typing import Optional # @lc code=start class Solution: def isValidBST(self, root: Optional[TreeNode]) -> bool: return self.dfs(root, float('-inf'), float('inf')) def dfs(self, node, minimum, maximum): if not node: return True if node.val >= maximum or node.val <= minimum: return False return self.dfs(node.left, minimum, node.val) and self.dfs(node.right, node.val, maximum) # @lc code=end solve = Solution().isValidBST def test_default(): assert solve(construct_tree([2, 1, 3])) assert not solve(construct_tree([5, 1, 4, None, None, 3, 6])) def test_corner_cases(): assert solve(construct_tree([1])) assert not solve(construct_tree([1, 2])) assert solve(construct_tree([1, None, 2])) assert not solve(construct_tree([2, 2, 2])) ```
{ "source": "jiakai0419/Curvature-Learning-Framework", "score": 2 }
#### File: curvlearn/optimizers/radagrad.py ```python import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops, state_ops, control_flow_ops from curvlearn.manifolds import euclidean class RAdagrad(tf.train.AdagradOptimizer): """Riemannian Adagrad optimizer """ def __init__(self, manifold, c, learning_rate=1e-3, initial_accumulator_value=0.1, use_locking=False, name="RAdagrad"): """Riemannian Adam optimizer initialization. Args: manifold (class): The manifold. c (float): The manifold curvature. learning_rate (float, optional): The learning rate to use. initial_accumulator_value (float, optional): Starting value for the accumulators, must be positive. use_locking (bool, optional): If True use locks for update operations. name (str, optional): The optimizer name. """ super(RAdagrad, self).__init__(learning_rate=learning_rate, initial_accumulator_value=initial_accumulator_value, use_locking=use_locking, name=name) self._learning_rate = learning_rate self._initial_accumulator_value = initial_accumulator_value self.default_manifold = euclidean.Euclidean() self.manifold = manifold self.default_c = c def _create_slots(self, var_list): """Creates manifold slot for var_list. Args: var_list (list): A list of variables. """ for v in var_list: dtype = v.dtype.base_dtype if v.get_shape().is_fully_defined(): init = tf.constant_initializer( self._initial_accumulator_value, dtype=dtype) else: init = self._init_constant_op(v, dtype) self._get_or_make_slot_with_initializer( v, init, v.get_shape(), dtype, "accumulator", self._name) # TODO: pass manifold attr into trainable_variable list # v.manifold = v.manifold if hasattr(v, "manifold") else self.default_manifold if "RiemannianParameter" in v.name: v.manifold = self.manifold else: v.manifold = self.default_manifold def _init_constant_op(self, v, dtype): def init(): """Use a Tensor instead of initializer if variable does not have static shape. """ init_constant = tf.fill( tf.shape(v), self._initial_accumulator_value) return tf.cast(init_constant, dtype) return init def _prepare(self): learning_rate = self._call_if_callable(self._learning_rate) self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate") def _apply_dense(self, grad, var): """Apply gradients to variables. Args: grad (tensor): The gradient. var (tensor): The variable. Returns: operation: An Operation that applies the specified gradients. """ rgrad = var.manifold.egrad2rgrad(grad, var, c=self.default_c) rgrad_sq = var.manifold.inner( rgrad, rgrad, var, c=self.default_c, keep_shape=True) lr = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype) acc = self.get_slot(var, "accumulator") acc_update = state_ops.assign_add(acc, rgrad_sq) with tf.control_dependencies([acc_update]): new_value = var.manifold.retraction( -lr * rgrad / math_ops.sqrt(acc_update), var, c=self.default_c) var_update = state_ops.assign( ref=var, value=new_value, use_locking=self._use_locking) return control_flow_ops.group(*[var_update, acc_update]) def _apply_sparse(self, grad, var): if var.manifold.name == "Euclidean": return super(RAdagrad, self)._apply_sparse(grad, var) raise NotImplementedError def _resource_apply_dense(self, grad, var): if var.manifold.name == "Euclidean": return super(RAdagrad, self)._resource_apply_dense(grad, var) raise NotImplementedError def _resource_apply_sparse(self, grad, var, indices): if var.manifold.name == "Euclidean": return super(RAdagrad, self)._resource_apply_sparse(grad, var, indices) raise NotImplementedError ``` #### File: examples/tree_pretrain/CateTreeModel.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys sys.path.append('.') import tensorflow as tf import tf_euler from .utils.loss import Loss from .utils.summary import summary_tensor from .utils.clip_gradient import clip_gradient class HyperCateTreeModel(object): def __init__(self, src_node, pos_node, global_step, neg_sample_num, nb_sample_num, embedding_dimension, embedding_space, mid_dim, out_dim, embedding_init_type, embedding_stddev, dense_init_type, dense_stddev, bias_init_val, manifold, decode, l2_decay, l2_enable, soft_c_enable, clip_gradient_enable, c, loss_type, learning_rate, **kwargs): self.src_node = src_node self.pos_node = pos_node self.global_step = global_step self.neg_sample_num = neg_sample_num self.nb_sample_num = nb_sample_num self.embedding_dimension = embedding_dimension self.embedding_space = embedding_space self.mid_dim = mid_dim self.out_dim = out_dim self.embedding_init_type = embedding_init_type self.embedding_stddev = embedding_stddev self.dense_init_type = dense_init_type self.dense_stddev = dense_stddev self.bias_init_val = bias_init_val self.manifold = manifold self.decode = decode self.l2_decay = l2_decay self.l2_enable = l2_enable self.soft_c_enable = soft_c_enable self.clip_gradient_enable = clip_gradient_enable self.init_c = tf.constant(c, dtype=self.manifold.dtype) self.loss_func = Loss(loss_type) self.opt = tf.train.AdagradOptimizer(learning_rate=learning_rate) src_feature, pos_feature, neg_feature = self.cate_tree_feature_without_neighbor(self.src_node, self.pos_node) with tf.variable_scope('embedding_table', reuse=tf.AUTO_REUSE) as scope: cate_feature_names = ['node_id', 'level'] embedding_matrix_map = {} for name in cate_feature_names: embedding_matrix_map[name] = tf.get_variable(name + '_embedding_table', shape=(self.embedding_space, self.embedding_dimension), dtype=self.manifold.dtype, initializer=self.get_initializer( init_val=self.embedding_init_type, stddev=self.embedding_stddev) ) embedding_matrix_map[name] = self.manifold.variable(embedding_matrix_map[name], c=self.init_c) with tf.variable_scope('feature_embedding_layer', reuse=tf.AUTO_REUSE) as scope: src_embedding = self.sparse_feature_embedding(embedding_matrix_map, src_feature, cate_feature_names) src_embedding = self.manifold.concat(src_embedding, axis=1, c=self.init_c) pos_embedding = self.sparse_feature_embedding(embedding_matrix_map, pos_feature, cate_feature_names) pos_embedding = self.manifold.concat(pos_embedding, axis=1, c=self.init_c) neg_embedding_all = self.sparse_feature_embedding(embedding_matrix_map, neg_feature, cate_feature_names) neg_embedding_all = self.manifold.concat(neg_embedding_all, axis=1, c=self.init_c) if self.soft_c_enable is True: with tf.variable_scope('manifold_c', reuse=tf.AUTO_REUSE) as scope: c_mid = tf.get_variable('c_dnn', dtype=self.manifold.dtype, initializer=tf.constant(-1.0, dtype=self.manifold.dtype)) c_out = tf.get_variable('c_dnn', dtype=self.manifold.dtype, initializer=tf.constant(-1.0, dtype=self.manifold.dtype)) else: c_mid = tf.constant(-1.0, dtype=self.manifold.dtype) c_out = tf.constant(-1.0, dtype=self.manifold.dtype) clip = lambda x: tf.clip_by_value(x, clip_value_min=-1e5, clip_value_max=-1e-5) c_mid, c_out = clip(c_mid), clip(c_out) with tf.variable_scope('output_layer', reuse=tf.AUTO_REUSE) as scope: src_output = self.hyper_output_layer(self.init_c, c_mid, c_out, src_embedding, self.embedding_dimension * 2, self.mid_dim, self.out_dim, scope_name='src_output') pos_output = self.hyper_output_layer(self.init_c, c_mid, c_out, pos_embedding, self.embedding_dimension * 2, self.mid_dim, self.out_dim, scope_name='dst_output') neg_output_all = self.hyper_output_layer(self.init_c, c_mid, c_out, neg_embedding_all, self.embedding_dimension * 2, self.mid_dim, self.out_dim, scope_name='dst_output') origin = self.manifold.proj(tf.zeros([self.out_dim], dtype=self.manifold.dtype), c=c_out) l2_penalty = lambda x: self.manifold.distance(x, origin, c=c_out) penalty = [] distance = [] with tf.variable_scope('loss_metric_layer') as scope: if self.decode == 'distance': decode_func = lambda x, y: tf.sigmoid(5.0 - 5.0 * self.manifold.distance(x, y, c=c_out)) else: decode_func = self.cosine_fun pos_sim = decode_func(src_output, pos_output) penalty.append(l2_penalty(src_output)) penalty.append(l2_penalty(pos_output)) distance.append(self.manifold.distance(src_output, pos_output, c=c_out)) att_sim = [pos_sim] node_neg_id_ays_re = tf.reshape(neg_output_all, [-1, self.neg_sample_num * self.out_dim]) node_neg_id_ays_list = tf.split(node_neg_id_ays_re, num_or_size_splits=self.neg_sample_num, axis=1) for neg in node_neg_id_ays_list: neg_sim = decode_func(src_output, neg) att_sim.append(neg_sim) penalty.append(l2_penalty(neg)) distance.append(self.manifold.distance(src_output, neg, c=c_out)) sim = tf.concat(att_sim, 1) tf.summary.scalar('c_final', c_out) l2_penalty = tf.concat(penalty, 1) l2_loss = tf.reduce_mean(tf.reduce_sum(l2_penalty, axis=-1)) distance = tf.concat(distance, 1) pos_distance = tf.slice(distance, [0, 0], [-1, 1]) neg_distance = tf.slice(distance, [0, 1], [-1, -1]) summary_tensor('positive_distance', pos_distance) summary_tensor('negative_distance', neg_distance) summary_tensor('all_distance', distance) tf.summary.scalar('l2_penalty', l2_loss) self.loss = self.loss_func(sim) if self.l2_enable: self.loss += l2_decay * l2_loss gradients, variables = zip(*self.opt.compute_gradients(self.loss)) if self.clip_gradient_enable: gradients = clip_gradient(gradients) self.train_op = self.opt.apply_gradients(zip(gradients, variables), global_step=self.global_step) def get_model_result(self): return self.train_op, self.loss def cosine_fun(self, ays_src, ays_dst): src_norm = tf.sqrt(tf.reduce_sum(tf.square(ays_src), 1, True)) dst_norm = tf.sqrt(tf.reduce_sum(tf.square(ays_dst), 1, True)) prod = tf.reduce_sum(tf.multiply(ays_src, ays_dst), 1, True) norm_prod = tf.multiply(src_norm, dst_norm) cosine = tf.truediv(prod, norm_prod) return cosine def get_initializer(self, init_val=1, stddev=0.1): dtype = self.manifold.dtype if init_val == 1: return tf.truncated_normal_initializer(dtype=dtype, stddev=stddev) elif init_val == 2: return tf.uniform_unit_scaling_initializer(factor=stddev, seed=10, dtype=dtype) elif init_val == 3: return tf.glorot_normal_initializer(dtype=dtype) else: return None def global_sample_cate_tree(self, src, pos): batch_size = tf.shape(src)[0] negs = tf_euler.sample_node(batch_size * self.neg_sample_num, node_type='-1') src_nodes = tf.reshape(src, [-1]) pos_nodes = tf.reshape(pos, [-1]) neg_nodes = tf.reshape(negs, [-1]) return src_nodes, pos_nodes, neg_nodes def local_sample_cate_tree(self, src, pos): negs = tf_euler.sample_node_with_src(pos, self.neg_sample_num) src_nodes = tf.reshape(src, [-1]) pos_nodes = tf.reshape(pos, [-1]) neg_nodes = tf.reshape(negs, [-1]) return src_nodes, pos_nodes, neg_nodes def node_feature_with_neighbor(self, node, etypes, nb_cnt, n_feature_names, cn_feature_names): node_c = tf.reshape(node, [-1]) node_filled = tf_euler.get_sparse_feature(node_c, n_feature_names) n_nodes, _, _ = tf_euler.sample_neighbor(node, edge_types=etypes, count=nb_cnt) n_nodes = tf.reshape(n_nodes, [-1]) n_nodes_filled = tf_euler.get_sparse_feature(n_nodes, cn_feature_names) return node_filled, n_nodes_filled def hyper_convolution_with_neighbor(self, node, c_node_nei, num=5, dim=8): c_node_nei_s = tf.reshape(c_node_nei, [-1, num, dim]) c_nei = self.manifold.mean(c_node_nei_s, axis=1, base=None, c=self.init_c) features = self.manifold.concat([node, c_nei], axis=1, c=self.init_c) return features def cate_tree_feature_with_neighbor(self, source, pos_node): src, pos, neg = self.global_sample_cate_tree(source, pos_node) full_features = ['node_id', 'level'] c_part_features = ['node_id'] src_f, src_c_nb_f = self.node_feature_with_neighbor(node=src, etypes=['1'], nb_cnt=self.nb_sample_num, n_feature_names=full_features, cn_feature_names=c_part_features ) pos_f, pos_c_nb_f = self.node_feature_with_neighbor(node=pos, etypes=['1'], nb_cnt=self.nb_sample_num, n_feature_names=full_features, cn_feature_names=c_part_features ) neg_f, neg_c_nb_f = self.node_feature_with_neighbor(node=neg, etypes=['1'], nb_cnt=self.nb_sample_num, n_feature_names=full_features, cn_feature_names=c_part_features ) return src_f, src_c_nb_f, pos_f, pos_c_nb_f, neg_f, neg_c_nb_f def node_feature_without_neighbor(self, node, n_feature_names): node_c = tf.reshape(node, [-1]) node_filled = tf_euler.get_sparse_feature(node_c, n_feature_names) return node_filled def cate_tree_feature_without_neighbor(self, source, pos_node): src, pos, neg = self.global_sample_cate_tree(source, pos_node) full_features = ['node_id', 'level'] src_f = self.node_feature_without_neighbor(node=src, n_feature_names=full_features) pos_f = self.node_feature_without_neighbor(node=pos, n_feature_names=full_features) neg_f = self.node_feature_without_neighbor(node=neg, n_feature_names=full_features) return src_f, pos_f, neg_f def sparse_feature_embedding(self, embedding_matrix_map, sparse_inputs, names, no_biases=True): l = [] for i in range(len(sparse_inputs)): with tf.variable_scope('sparse_feature_embedding_' + names[i]): emb = tf.nn.embedding_lookup_sparse(embedding_matrix_map[names[i]], sparse_inputs[i], None, combiner='sum') emb_l2 = tf.nn.l2_loss(emb) tf.losses.add_loss(emb_l2, loss_collection=tf.GraphKeys.REGULARIZATION_LOSSES) if not no_biases: biases = tf.get_variable('biases', initializer=tf.constant(self.bias_init_val, dtype=self.manifold.dtype, shape=[self.embedding_dimension]) ) emb = self.manifold.add_bias(emb, biases, c=self.init_c) l.append(emb) return l def hyper_linear_layer(self, train_inputs, in_dim, out_dim, c_in, c_out, activation, scope_name, no_biases=False): with tf.variable_scope(scope_name): weights = tf.get_variable('weights', [in_dim, out_dim], dtype=self.manifold.dtype, initializer=self.get_initializer(init_val=self.dense_init_type, stddev=self.dense_stddev), regularizer=tf.nn.l2_loss ) train = self.manifold.matmul(train_inputs, weights, c=c_in) if not no_biases: biases = tf.get_variable('biases', initializer=tf.constant(self.bias_init_val, dtype=self.manifold.dtype, shape=[out_dim]) ) train = self.manifold.add_bias(train, biases, c=c_in) if activation is not None: train = self.manifold.activation(train, act=activation, c_in=c_in, c_out=c_out) return train def hyper_output_layer(self, c_in, c_mid, c_out, id_embedding, input_dim, mid_dim, out_dim, scope_name): with tf.variable_scope(scope_name): out1 = self.hyper_linear_layer(train_inputs=id_embedding, in_dim=input_dim, out_dim=mid_dim, c_in=c_in, c_out=c_mid, activation=tf.nn.elu, scope_name='output_layer1', no_biases=False ) out2 = self.hyper_linear_layer(train_inputs=out1, in_dim=mid_dim, out_dim=out_dim, c_in=c_mid, c_out=c_out, activation=tf.nn.elu, scope_name='output_layer2', no_biases=False ) return out2 ``` #### File: tree_pretrain/utils/learning_rate.py ```python from tensorflow.python.framework import ops import tensorflow as tf class LearningRate(object): """Gradually warm-up(increasing and decreasing) learning rate in optimizer. Includes three stages: warm up stage, increasing stage and decay stage. """ def __init__(self, lr=1e-2, lr_warm=1e-3, lr_end=1e-4, warm_step=1e5, increase_step=1e6, decay_step=1e8): """Initialize Args: lr_warm (float): The learning rate changes from 0 to lr_warm in the warm up stage. lr (float): The learning rate changes from lr_warm to lr in the increasing stage. lr_end (float): The learning rate changes from lr to lr_end in the decay stage. warm_step (int): The step between 0 and warm_step is in the warm up stage. increase_step (int): The step between warm_step and increase_step is in the increasing stage. decay_step (int): The step between warm_step and decay_step is in the decay stage. """ super(LearningRate, self).__init__() self.lr = float(max(lr, 0.0)) self.lr_warm = float(max(lr_warm, 0.0)) self.lr_end = float(max(lr_end, 0.0)) self.warm_step = float(max(warm_step, 0)) self.increase_step = float(max(increase_step, 0)) self.decay_step = float(max(decay_step, 0)) self.step = 0 def get_step(self): """Gets current training step. Returns: int: current training step. """ return tf.to_float(tf.train.get_or_create_global_step()) def _warm_up_lr(self, step): """Computes learning rate in the warm up stage. Args: step (int): current step. Returns: float: The updated learning rate. """ return self.lr_warm * step / self.warm_step def _increase_lr(self, step): """Computes learning rate in the increasing stage. Args: step (int): current step. Returns: float: The updated learning rate. """ ratio = (step - self.warm_step) / (self.increase_step - self.warm_step) return self.lr_warm + ratio * (self.lr - self.lr_warm) def _decay_lr(self, step): """Computes learning rate in the decay stage. Args: step (int): current step. Returns: float: The updated learning rate. """ ratio = (step - self.increase_step) / \ (self.decay_step - self.increase_step) return self.lr_end + (1.0 - ratio) * (self.lr - self.lr_end) def _end_lr(self, step): """Computes learning rate after the decay stage. Args: step (int): current step. Returns: float: The updated learning rate. """ return self.lr_end def _less_than(self, a, b): """Returns the truth value of (a < b) element-wise. a is a Tensor, b is a float/int. Args: a (tensor): A tensor. b (float/int): A float or int value.` Returns: tensor: A tensor of type bool. """ b = ops.convert_to_tensor(b, dtype=a.dtype.base_dtype) return tf.math.less(a, b) def get_lr(self): """Computes the learning rate according to the training step. Returns: float: The updated learning rate. """ current_step = self.get_step() lr = tf.cond( self._less_than(current_step, self.warm_step), lambda: self._warm_up_lr(current_step), lambda: tf.cond( self._less_than(current_step, self.increase_step), lambda: self._increase_lr(current_step), lambda: tf.cond( self._less_than(current_step, self.decay_step), lambda: self._decay_lr(current_step), lambda: self._end_lr(current_step) ) ) ) return lr def __call__(self): return ops.convert_to_tensor(self.get_lr(), dtype=tf.float32) ``` #### File: tree_pretrain/utils/loss.py ```python import tensorflow as tf class Loss(object): """A set of loss functions """ def __init__(self, name, weight_decay=0.0): """Initialization. Args: name (str): The name of loss function. weight_decay (float, optional): The factor for regularization term. Raises: NotImplementedError: Loss function not implemented. """ super(Loss, self).__init__() self.weight_decay = weight_decay if hasattr(self, name): self.loss = getattr(self, name) else: raise NotImplementedError def softmax_loss(self, sim, ratio=1.0): """Computes the softmax loss. Args: sim (tensor): The sim value for one positive sample and several negative samples. ratio (float, optional): The scale factor. Returns: tensor: The softmax loss """ prob = tf.nn.softmax(ratio * sim) hit_prob = tf.slice(prob, [0, 0], [-1, 1]) loss = -tf.log(hit_prob) return tf.reduce_mean(loss, name='softmax_loss') def bce_loss(self, sim): """Computes the bce (binary cross entropy) loss. Args: sim (tensor): The sim value for one positive sample and several negative samples. Returns: tensor: The bce loss. """ # bce_loss = -log(sigmoid(sim^+)) + -log(1-sigmoid(sim^-)) hit = tf.slice(sim, [0, 0], [-1, 1]) miss = tf.slice(sim, [0, 1], [-1, -1]) labels = tf.concat([tf.ones_like(hit), tf.zeros_like(miss)], axis=-1) loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=sim ) return tf.reduce_mean(loss, name='bce_loss') def triplet_loss(self, sim, margin=0.5): """Computes the triplet loss. Args: sim (tensor): The sim value for one positive sample and several negative samples. margin (float, optional): The margin value. Returns: tensor: The triplet loss. """ # sim = sigmoid(5.0 - 5.0*distance) pos_sim, neg_sim = tf.slice(sim, [0, 0], [-1, 1]), tf.slice(sim, [0, 1], [-1, -1]) # pos_sim has larger similarity than neg_sim triplet_loss = margin + neg_sim - pos_sim triplet_loss = tf.nn.relu(triplet_loss) triplet_loss = tf.reduce_sum(triplet_loss, axis=-1) triplet_loss = tf.reduce_mean(triplet_loss) # wmrb_loss = tf.log(1.0 + margin_loss) return triplet_loss def ranking_loss(self, sim, margin=1.0): """Computes the ranking loss. Args: sim (tensor): The sim value for one positive sample and several negative samples. margin (float, optional): The margin value. Returns: tensor: The ranking loss. """ # sim = 1.0 - distance pos_sim, neg_sim = tf.slice(sim, [0, 0], [-1, 1]), tf.slice(sim, [0, 1], [-1, -1]) pos_dis, neg_dis = 1.0 - pos_sim, 1.0 - neg_sim hinge_loss = tf.nn.relu(margin - neg_dis) ranking_loss = tf.reduce_mean( pos_dis) + tf.reduce_mean(tf.reduce_sum(hinge_loss, axis=-1)) return ranking_loss def bpr_loss(self, sim): """Computes the bpr loss. Args: sim (tensor): The sim value for one positive sample and several negative samples. Returns: tensor: The bpr loss. """ # sim = 1.0 - distance pos_sim, neg_sim = tf.slice(sim, [0, 0], [-1, 1]), tf.slice(sim, [0, 1], [-1, -1]) margin = pos_sim - neg_sim # bpr loss = -log(sigmoid(x)) labels = tf.ones_like(margin) bpr_loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=margin ) return tf.reduce_mean(bpr_loss, name='bpr_loss') def __call__(self, *args, **kwargs): return self.loss(*args, **kwargs) # reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # return self.loss(*args, **kwargs) + self.weight_decay * tf.add_n(reg_losses) ```
{ "source": "jia-kai/minisatcs", "score": 3 }
#### File: SAT/ineq/gen_rand.py ```python import numpy as np import argparse import operator def main(): parser = argparse.ArgumentParser( description='generate random input with inequalities', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('nvar', type=int) parser.add_argument('output', help='output file name') parser.add_argument('--min-incl', type=int, default=5, help='minimal number of clauses containing a given var') parser.add_argument('--cl-size-min', type=int, default=2, help='minimal number of literals in a clause') parser.add_argument('--cl-bias-max', type=int, default=10, help='max clause bias value') parser.add_argument('--cl-bias-offset', type=int, default=3, help='max random offset of bias value') parser.add_argument('--seed', type=int, default=np.random.randint(2**32), help='rng seed') args = parser.parse_args() assignment = np.random.randint(2, size=args.nvar) incl_cnt = np.zeros(args.nvar, dtype=np.uint32) clauses = [] bias_th0 = args.cl_bias_max rng = np.random.RandomState(args.seed) while incl_cnt.max() < args.min_incl: cur_vars = rng.choice( args.nvar, size=rng.randint(args.cl_size_min, args.nvar + 1), replace=False) incl_cnt[cur_vars] += 1 mask = assignment[cur_vars] cur_val = mask.sum() bias_th1 = cur_vars.size - bias_th0 cur_vars += 1 # fix cur_val range by negating some vars if bias_th0 < cur_val < bias_th1: offset = rng.randint(-args.cl_bias_offset, args.cl_bias_offset + 1) if cur_val < (bias_th0 + bias_th1) / 2: # change some true lits to false nr = max(cur_val - bias_th0 + offset, 0) sel, = np.where(mask == 1) cur_val -= nr else: # change some false lits to false nr = max(bias_th1 - cur_val + offset, 0) sel, = np.where(mask == 0) cur_val += nr sel = rng.choice(sel, size=nr, replace=False) cur_vars[sel] *= -1 cur_clause = list(cur_vars) if rng.randint(2): cur_clause.append('<=') cmpr = operator.le else: cur_clause.append('>=') cmpr = operator.ge offset = rng.randint(-args.cl_bias_offset, args.cl_bias_offset + 1) cur_clause.append(cur_val + offset) cur_clause.append('#') dst = rng.randint(1, args.nvar + 1) if int(cmpr(0, offset)) != assignment[dst - 1]: dst = -dst cur_clause.append(dst) clauses.append(' '.join(map(str, cur_clause))) with open(args.output, 'w') as fout: fout.write(f'c args: {args}\n') fout.write('c assignment: ') fout.write(' '.join(str(i + 1) if j else str(-(i + 1)) for i, j in enumerate(assignment))) fout.write('\n') fout.write(f'p cnf {args.nvar} {len(clauses)}\n') for i in clauses: fout.write(i) fout.write('\n') if __name__ == '__main__': main() ```
{ "source": "jia-kai/SANM", "score": 2 }
#### File: SANM/utils/test_svdw_grad.py ```python import numpy as np import itertools rng = np.random.RandomState(42) def svdw(m): n = m.shape[0] assert m.shape == (n, n) u, s, vt = np.linalg.svd(m) w = u @ vt assert np.allclose(u.T @ u, np.eye(n)) assert np.allclose(w.T @ w, np.eye(n)) assert np.allclose(u @ np.diag(s) @ u.T @ w, m) return u, s, w def check_eq(msg, a, b): diff = np.abs(a - b).max() assert diff < 1e-5, (msg, diff) def svdw_jacobian(M, u, s, w): n = M.shape[0] assert M.shape == u.shape == w.shape == (n, n) v = w.T @ u dsdm = np.empty((n, n*n), dtype=M.dtype) for i in range(n): for j in range(n): for k in range(n): dsdm[i, j*n+k] = u.T[i, j] * v[k, i] dwdy = np.empty((n*n, n*n), dtype=M.dtype) dydm = np.empty_like(dwdy) dudx = np.empty_like(dwdy) dxdm = np.empty_like(dwdy) for i, j, k, l in itertools.product(range(n), range(n), range(n), range(n)): cij = u.T[i, k] * v[l, j] cji = u.T[j, k] * v[l, i] dydm[i*n+j, k*n+l] = 0 if i == j else (cij - cji) / (s[i] + s[j]) dwdy[i*n+j, k*n+l] = u[i, k] * v.T[l, j] dudx[i*n+j, k*n+l] = 0 if l != j else u[i, k] dxdm[i*n+j, k*n+l] = 0 if i == j else ( cij * s[j] + cji * s[i]) / (s[j]**2 - s[i]**2) return dudx @ dxdm, dsdm, dwdy @ dydm def svdw_jacobian_num(M, u, s, w, eps=1e-4): n = M.shape[0] assert M.shape == (n, n) dudm = np.zeros((n*n, n*n), dtype=M.dtype) dsdm = np.zeros((n, n*n), dtype=M.dtype) dwdm = np.zeros((n*n, n*n), dtype=M.dtype) grad = lambda x, y: (y - x).flatten() / (eps * 2) for i in range(n): for j in range(n): x0 = M[i, j] M[i, j] = x0 - eps u1, s1, w1 = svdw(M) M[i, j] = x0 + eps u2, s2, w2 = svdw(M) M[i, j] = x0 p = i*n+j dudm[:, p] = grad(u1, u2) dsdm[:, p] = grad(s1, s2) dwdm[:, p] = grad(w1, w2) return dudm, dsdm, dwdm def main(): np.set_printoptions(4, suppress=True) n = 8 m = rng.normal(size=(n, n)) u, s, w = svdw(m) print('det(m):', np.linalg.det(m)) print('s:', s) for gsym, gnum, name in zip(svdw_jacobian(m, u, s, w), svdw_jacobian_num(m, u, s, w), ['dU/dM', 'dS/dM', 'dW/dM']): print(f'====== {name}') if gsym.shape[0] == gsym.shape[1]: print('grad det:', np.linalg.det(gsym)) print('grad rank:', np.linalg.matrix_rank(gsym)) diff = np.abs(gsym - gnum).mean() print(diff, diff / np.abs(gnum).mean()) if __name__ == '__main__': main() ```
{ "source": "jiakechong1991/Surprise", "score": 3 }
#### File: Surprise/tests/test_train2fit.py ```python import os import pytest from surprise import Dataset from surprise import Reader from surprise import AlgoBase from surprise.model_selection import KFold data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') data = Dataset.load_from_file(data_file, Reader('ml-100k')) kf = KFold(n_splits=2) def test_new_style_algo(): '''Test that new algorithms (i.e. algoritms that only define fit()) can support both calls to fit() and to train() - algo.fit() is the new way of doing things - supporting algo.train() is needed for the (unlikely?) case where a user has defined custom tools that use algo.train(). ''' class CustomAlgoFit(AlgoBase): def __init__(self): AlgoBase.__init__(self) self.cnt = -1 def fit(self, trainset): AlgoBase.fit(self, trainset) self.est = 3 self.bu, self.bi = 1, 1 self.cnt += 1 def estimate(self, u, i): return self.est algo = CustomAlgoFit() for i, (trainset, testset) in enumerate(kf.split(data)): algo.fit(trainset) predictions = algo.test(testset) # Make sure AlgoBase.fit has been called assert hasattr(algo, 'trainset') # Make sure CustomAlgoFit.fit has been called assert all(est == 3 for (_, _, _, est, _) in predictions) # Make sure AlgoBase.fit is finished before CustomAlgoFit.fit assert (algo.bu, algo.bi) == (1, 1) # Make sure the rest of fit() is only called once assert algo.cnt == i algo = CustomAlgoFit() for i, (trainset, testset) in enumerate(kf.split(data)): with pytest.warns(UserWarning): algo.train(trainset) predictions = algo.test(testset) # Make sure AlgoBase.fit has been called assert hasattr(algo, 'trainset') # Make sure CustomAlgoFit.fit has been called assert all(est == 3 for (_, _, _, est, _) in predictions) # Make sure AlgoBase.fit is finished before CustomAlgoFit.fit assert (algo.bu, algo.bi) == (1, 1) # Make sure the rest of fit() is only called once assert algo.cnt == i def test_old_style_algo(): '''Test that old algorithms (i.e. algoritms that only define train()) can support both calls to fit() and to train() - supporting algo.fit() is needed so that custom algorithms that only define train() can still use up to date tools (such as evalute, which has been updated to use fit()). - algo.train() is the old way, and must still be supported for custom algorithms and tools. ''' class CustomAlgoTrain(AlgoBase): def __init__(self): AlgoBase.__init__(self) self.cnt = -1 def train(self, trainset): AlgoBase.train(self, trainset) self.est = 3 self.bu, self.bi = 1, 1 self.cnt += 1 def estimate(self, u, i): return self.est with pytest.warns(UserWarning): algo = CustomAlgoTrain() for i, (trainset, testset) in enumerate(kf.split(data)): with pytest.warns(UserWarning): algo.fit(trainset) predictions = algo.test(testset) # Make sure AlgoBase.fit has been called assert hasattr(algo, 'trainset') # Make sure CustomAlgoFit.train has been called assert all(est == 3 for (_, _, _, est, _) in predictions) # Make sure AlgoBase.fit is finished before CustomAlgoTrain.train assert (algo.bu, algo.bi) == (1, 1) # Make sure the rest of train() is only called once assert algo.cnt == i with pytest.warns(UserWarning): algo = CustomAlgoTrain() for i, (trainset, testset) in enumerate(kf.split(data)): with pytest.warns(UserWarning): algo.train(trainset) predictions = algo.test(testset) # Make sure AlgoBase.fit has been called assert hasattr(algo, 'trainset') # Make sure CustomAlgoFit.train has been called assert all(est == 3 for (_, _, _, est, _) in predictions) # Make sure AlgoBase.fit is finished before CustomAlgoTrain.train assert (algo.bu, algo.bi) == (1, 1) # Make sure the rest of train() is only called once assert algo.cnt == i ```
{ "source": "jiakeke/django-ckeditor", "score": 2 }
#### File: ckeditor/image/pillow_backend.py ```python from io import BytesIO import os.path try: from PIL import Image, ImageOps except ImportError: import Image import ImageOps from django.core.files.storage import default_storage from django.core.files.uploadedfile import InMemoryUploadedFile from ckeditor import utils THUMBNAIL_SIZE = (75, 75) def image_verify(f): try: Image.open(f).verify() except IOError: raise utils.NotAnImageException def resize(file_path, max_width): thumbnail_format = utils.get_image_format(os.path.splitext(file_path)[1]) file_format = thumbnail_format.split('/')[1] image = default_storage.open(file_path) image = Image.open(image) if image.mode not in ('L', 'RGB'): image = image.convert('RGB') size_orig = image.size width_orig = size_orig[0] if width_orig <= max_width: size = size_orig return else: height = int(1.0*max_width/width_orig*size_orig[1]) size = (max_width, height) default_storage.delete(file_path) # scale and crop to thumbnail imagefit = ImageOps.fit(image, size, Image.ANTIALIAS) thumbnail_io = BytesIO() imagefit.save(thumbnail_io, format=file_format) thumbnail = InMemoryUploadedFile( thumbnail_io, None, file_path, thumbnail_format, len(thumbnail_io.getvalue()), None) thumbnail.seek(0) return default_storage.save(file_path, thumbnail) def create_thumbnail(file_path): thumbnail_filename = utils.get_thumb_filename(file_path) thumbnail_format = utils.get_image_format(os.path.splitext(file_path)[1]) file_format = thumbnail_format.split('/')[1] image = default_storage.open(file_path) image = Image.open(image) # Convert to RGB if necessary # Thanks to Limodou on DjangoSnippets.org # http://www.djangosnippets.org/snippets/20/ if image.mode not in ('L', 'RGB'): image = image.convert('RGB') # scale and crop to thumbnail imagefit = ImageOps.fit(image, THUMBNAIL_SIZE, Image.ANTIALIAS) thumbnail_io = BytesIO() imagefit.save(thumbnail_io, format=file_format) thumbnail = InMemoryUploadedFile( thumbnail_io, None, thumbnail_filename, thumbnail_format, len(thumbnail_io.getvalue()), None) thumbnail.seek(0) return default_storage.save(thumbnail_filename, thumbnail) def should_create_thumbnail(file_path): image = default_storage.open(file_path) try: Image.open(image) except IOError: return False else: return True ```
{ "source": "jial13/Navigation", "score": 3 }
#### File: jial13/Navigation/dqn_agent.py ```python import random from collections import namedtuple, deque import numpy as np import torch import torch.nn import torch.optim as optim import torch.nn.functional as F from Model import QNetwork device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): def __init__(self, bufferSize, batchSize, gamma, tau, lr, updateEvery, state_size, action_size, seed): print(device) # hyper parameters self.BufferSize = bufferSize self.BatchSize = batchSize self.Gamma = gamma self.Tau = tau self.LR = lr self.UpdateEvery = updateEvery self.State_size = state_size self.Action_size = action_size self.Seed = random.seed(seed) # Q network self.QNetwork_local = QNetwork(state_size, action_size, seed).to(device) self.QNetwork_target = QNetwork(state_size, action_size, seed).to(device) self.Optimizer = optim.Adam(self.QNetwork_local.parameters(), lr=self.LR) # Replay memory self.memory = ReplayBuffer(action_size, self.BufferSize, self.BatchSize, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def act(self, state, eps=0.): state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.QNetwork_local.eval() with torch.no_grad(): action_values = self.QNetwork_local(state) self.QNetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.Action_size)) def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % self.UpdateEvery if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > self.BatchSize: experiences = self.memory.sample() self.learn(experiences, self.Gamma) def learn(self, experiences, gamma): states, actions, rewards, next_states, dones = experiences q_targets_next = self.QNetwork_target(next_states).detach().max(1)[0].unsqueeze(1) # Compute Q targets for current states q_targets = rewards + (gamma * q_targets_next * (1 - dones)) # Get expected Q values from local model q_expected = self.QNetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(q_expected, q_targets) # Minimize the loss self.Optimizer.zero_grad() loss.backward() self.Optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.QNetwork_local, self.QNetwork_target, self.Tau) def soft_update(self, local_model, target_model, tau): for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data) class ReplayBuffer: def __init__(self, action_size, buffer_size, batch_size, seed): self.Action_size = action_size self.Memory = deque(maxlen=buffer_size) self.Batch_size = batch_size self.Experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.Seed = random.seed(seed) def add(self, state, action, reward, next_state, done): e = self.Experience(state, action, reward, next_state, done) self.Memory.append(e) def sample(self): experiences = random.sample(self.Memory, k=self.Batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to( device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to( device) return states, actions, rewards, next_states, dones def __len__(self): return len(self.Memory) ```
{ "source": "jialehuo/ceilometer-ecs", "score": 2 }
#### File: ceilometer-ecs/ceilometer_ecs/discovery.py ```python import dateutil.parser from oslo_config import cfg from oslo_log import log from ceilometer.agent import plugin_base from ceilometer.i18n import _ import ecs_resource from pollsters import ecs_billing_dao LOG = log.getLogger(__name__) cfg.CONF.register_group(cfg.OptGroup( name='ecs', title="Configuration for ECS Meters" )) OPTS = [ cfg.StrOpt('ecs_endpoint'), cfg.StrOpt('ecs_username'), cfg.StrOpt('ecs_password'), cfg.StrOpt('ecs_cert_path'), cfg.StrOpt('sample_start_time'), cfg.StrOpt('sample_interval'), cfg.StrOpt('sample_delay'), cfg.StrOpt('ceilometer_endpoint'), cfg.StrOpt('os_project_name'), cfg.StrOpt('os_project_domain_name'), cfg.StrOpt('os_username'), cfg.StrOpt('os_password'), cfg.StrOpt('os_user_domain_name'), cfg.StrOpt('os_auth_url') ] cfg.CONF.register_opts(OPTS, group='ecs') class ECSDiscovery(plugin_base.DiscoveryBase): def __init__(self): super(ECSDiscovery, self).__init__() def discover(self, manager, param=None): resources = [] resource = ecs_resource.ECSResource( ecs_endpoint=cfg.CONF['ecs'].ecs_endpoint, ecs_username=cfg.CONF['ecs'].ecs_username, ecs_password=cfg.CONF['ecs'].ecs_password, ecs_cert_path=cfg.CONF['ecs'].ecs_cert_path, sample_start_time=dateutil.parser.parse(cfg.CONF['ecs'].sample_start_time), sample_interval=int(cfg.CONF['ecs'].sample_interval), sample_delay=int(cfg.CONF['ecs'].sample_delay), ceilometer_endpoint=cfg.CONF['ecs'].ceilometer_endpoint, os_project_name=cfg.CONF['ecs'].os_project_name, os_project_domain_name=cfg.CONF['ecs'].os_project_domain_name, os_username=cfg.CONF['ecs'].os_username, os_password=cfg.CONF['ecs'].os_password, os_user_domain_name=cfg.CONF['ecs'].os_user_domain_name, os_auth_url=cfg.CONF['ecs'].os_auth_url ) dao = ecs_billing_dao.ECSBillingDAO(resource) resource.ecs_vdc_id = dao.getVDCLocalID() resources.append(resource) return resources ``` #### File: ceilometer_ecs/pollsters/ecs_mgmt_client.py ```python import re from datetime import datetime, timedelta import pytz import requests import xml.etree.ElementTree as ET import dateutil.parser from ceilometerclient.v2 import client as ceiloclient class ECSManagementClient: AUTH_TOKEN = '<PASSWORD>' BUCKET_CREATED_PATTERN = re.compile('Bucket \\S+ has been created') BUCKET_DELETED_PATTERN = re.compile('Bucket \\S+ has been deleted') START_TIME_CACHE = 'ecs_start_time' END_TIME_CACHE = 'ecs_end_time' TIMESTAMP_CACHE = 'ecs_timestamp' def __init__(self, resource): self.resource = resource def isValidElem(self, elem): return (elem is not None) and (elem.text is not None) and bool(elem.text.strip()) def login(self): r = requests.get(self.resource.ecs_endpoint + '/login', auth=(self.resource.ecs_username, self.resource.ecs_password), verify=self.resource.ecs_cert_path) self.headers = {self.AUTH_TOKEN: r.headers[self.AUTH_TOKEN]} def logout(self): r = requests.get(self.resource.ecs_endpoint + '/logout', headers=self.headers, verify=self.resource.ecs_cert_path) def getVDCLocalID(self): r = requests.get(self.resource.ecs_endpoint + '/object/vdcs/vdc/local', headers=self.headers, verify=self.resource.ecs_cert_path) root = ET.fromstring(r.text) if self.isValidElem(root.find('id')): return root.find('id').text.strip() else: return None def getStartTime(self): kwargs = { 'project_name': self.resource.os_project_name, 'project_domain_name': self.resource.os_project_domain_name, 'username': self.resource.os_username, 'password': self.resource.os_password, 'user_domain_name': self.resource.os_user_domain_name, 'auth_url': self.resource.os_auth_url } client = ceiloclient.Client(self.resource.ceilometer_endpoint, **kwargs) filter = "{\"=\": {\"meter\": \"ecs.objects\"}}" orderby = "[{\"timestamp\": \"DESC\"}]" limit = 1 result = client.query_samples.query(filter=filter, orderby=orderby, limit=limit) if (result is not None) and (len(result) > 0) and (result[0].to_dict() is not None) and (result[0].to_dict().get("metadata") is not None) and (result[0].to_dict().get("metadata").get("end_time") is not None): return dateutil.parser.parse(result[0].to_dict().get("metadata").get("end_time")) else: return self.resource.sample_start_time def isSampleTime(self): self.start_time = self.getStartTime() self.end_time = self.start_time + timedelta(minutes=self.resource.sample_interval) sample_time = self.end_time + timedelta(minutes=self.resource.sample_delay) self.timestamp = datetime.now(pytz.utc) if (sample_time > self.timestamp): return False else: return True def getNamespaceSamples(self, manager, cache): namespaces = [] if not self.isSampleTime(): return namespaces cache[self.START_TIME_CACHE] = self.start_time.astimezone(pytz.utc).isoformat() cache[self.END_TIME_CACHE] = self.end_time.astimezone(pytz.utc).isoformat() cache[self.TIMESTAMP_CACHE] = self.timestamp.astimezone(pytz.utc).isoformat() if manager.keystone.version == 'v3': projects = manager.keystone.projects.list() else: projects = manager.keystone.tenants.list() for project in projects: namespace = self.getNamespaceSample(project.id, cache[self.START_TIME_CACHE], cache[self.END_TIME_CACHE]) if namespace is not None: namespaces.append(namespace) return namespaces def getNamespaceSample(self, id, start_time, end_time): namespace = {'id': id, 'total_buckets': 0} next_marker = '' while True: r = requests.get(self.resource.ecs_endpoint + '/object/billing/namespace/' + id + '/sample?sizeunit=KB&include_bucket_detail=true&start_time=' + start_time + '&end_time=' + end_time + next_marker, headers=self.headers, verify=self.resource.ecs_cert_path) root = ET.fromstring(r.text) if root.tag == 'error': return None if self.isValidElem(root.find('total_objects')): namespace['total_objects'] = long(root.find('total_objects').text.strip()) if self.isValidElem(root.find('total_size')): namespace['total_size'] = long(root.find('total_size').text.strip()) if self.isValidElem(root.find('total_size_unit')): namespace['total_size_unit'] = root.find('total_size_unit').text.strip() if self.isValidElem(root.find('objects_created')): namespace['objects_created'] = long(root.find('objects_created').text.strip()) if self.isValidElem(root.find('objects_deleted')): namespace['objects_deleted'] = long(root.find('objects_deleted').text.strip()) if self.isValidElem(root.find('bytes_delta')): namespace['bytes_delta'] = long(root.find('bytes_delta').text.strip()) if self.isValidElem(root.find('ingress')): namespace['ingress'] = long(root.find('ingress').text.strip()) if self.isValidElem(root.find('egress')): namespace['egress'] = long(root.find('egress').text.strip()) if (root.findall('./bucket_billing_sample/name') is not None): namespace['total_buckets'] += len(root.findall('./bucket_billing_sample/name')) if self.isValidElem(root.find('next_marker')): next_marker = '&marker=' + root.find('next_marker').text.strip() else: break # get bucket delta samples through audit events namespace['buckets_created'] = 0 namespace['buckets_deleted'] = 0 next_marker = '' while True: r = requests.get(self.resource.ecs_endpoint + '/vdc/events?namespace=' + id + '&start_time=' + start_time + '&end_time=' + end_time + next_marker, headers=self.headers, verify=self.resource.ecs_cert_path) root = ET.fromstring(r.text) for auditevent in root.findall('./auditevent/description'): if self.BUCKET_CREATED_PATTERN.match(auditevent.text): namespace['buckets_created'] += 1 elif self.BUCKET_DELETED_PATTERN.match(auditevent.text): namespace['buckets_deleted'] += 1 if self.isValidElem(root.find('NextMarker')): next_marker = '&marker=' + root.find('NextMarker').text.strip() else: break return namespace ```
{ "source": "JiaLei123/ML_camp", "score": 3 }
#### File: ML_camp/daguan/rnn_gluon_daguan_data_iterator.py ```python import math import os import time import numpy as np import mxnet as mx from mxnet import gluon, autograd from mxnet.gluon import nn, rnn, data as gdata import zipfile from MXnet import utils from gensim.models import word2vec import pandas as pd import numpy as np class Dictionary(object): def __init__(self): self.word_to_idx = {} self.idx_to_word = [] def add_word(self, word): if word not in self.word_to_idx: self.idx_to_word.append(word) self.word_to_idx[word] = len(self.idx_to_word) - 1 # 就是返回word在idx_to_word中的index值 return self.word_to_idx[word] def __len__(self): return len(self.idx_to_word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary() self.train, _train = self.tokenize(path + 'train.txt') self.valid, _val = self.tokenize(path + 'valid.txt') self.test, _test = self.tokenize(path + 'test.txt') all_sentences = list() all_sentences.extend(_train) all_sentences.extend(_val) all_sentences.extend(_test) self.w2v = word2vec.Word2Vec(all_sentences) def tokenize(self, path): assert os.path.exists(path) with open(path, 'r') as f: tokens = 0 for line in f: words = line.split() + ['<eos>'] tokens += len(words) for word in words: self.dictionary.add_word(word) with open(path, 'r') as f: indices = np.zeros((tokens,), dtype="int32") idx = 0 all_sentences = list() for line in f: words = line.split() + ['<eos>'] for word in words: indices[idx] = self.dictionary.word_to_idx[word] idx += 1 all_sentences.append(words) return mx.nd.array(indices, dtype='int32'), all_sentences class RNNModel(gluon.Block): def __init__(self, mode, embed_dim, hidden_dim, num_layers, w2v_vec, drop_out=0.5, **kwargs): super(RNNModel, self).__init__(**kwargs) with self.name_scope(): self.drop = nn.Dropout(drop_out) # self.encoder = nn.Embedding(grad_red='null') # self.encoder.weight.set_data(w2v_vec) if mode == "rnn_relu": self.rnn = rnn.RNN(hidden_dim, num_layers, activation='relu', dropout=drop_out, input_size=embed_dim) elif mode == "rnn_tanh": self.rnn = rnn.RNN(hidden_dim, num_layers, activation='tanh', dropout=drop_out, input_size=embed_dim) elif mode == "lstm": self.rnn = rnn.LSTM(hidden_dim, num_layers, dropout=drop_out, input_size=embed_dim) elif mode == "gru": self.rnn = rnn.GRU(hidden_dim, num_layers, dropout=drop_out, input_size=embed_dim) else: raise ValueError("Invalid Mode") self.decoder = nn.Dense(19, in_units=hidden_dim) self.hidden_dim = hidden_dim self.w2v_vec = w2v_vec # def get_vec(self,inputs): # input_vec = [] # for word in enumerate(inputs): # try: # input_vec.append(self.w2v_vec.wv[word]) # except: # input_vec.append(np.random.uniform(-0.25, 0.25, self.w2v_vec.vector_size)) # return mx.nd.array(input_vec).reshape((len(inputs), 1, -1)) def forward(self, inputs, state): # input_node = self.get_vec(inputs) # emb = self.drop(inputs) outputs = [] for input in inputs: step, vec_size = input.shape input = input.reshape(step, 1, -1) output, state = self.rnn(input, state) output = self.drop(output) output = output[-1].reshape((batch_size, -1)) outputs.append(output) outputs = mx.nd.concat(*outputs, dim=0) decoded = self.decoder(outputs.reshape((-1, self.hidden_dim))) return decoded, state def begin_state(self, *args, **kwargs): return self.rnn.begin_state(*args, **kwargs) def get_batch(source, label, i): data = source[i] target = label[i] return data, target def get_data_iter(path, batch_size, w2v_vec): total_data = pd.read_csv(path) data = total_data["article"][0:100] f = lambda x: [w2v_vec.wv.get_vector(xi) for xi in x.split(" ")] # data = data.apply(f) # data = pd.read_pickle("E:\\ML_learning\\Daguan\\data\\train_data_vec.plk", "gzip") label = total_data["class"][0:100] # dataset = gdata.ArrayDataset(data, label) # data_iter = gdata.DataLoader(dataset, batch_size, shuffle=True) return data, label def detach(state): if isinstance(state, (tuple, list)): state = [i.detach() for i in state] else: state = state.detach() return state def model_eval(data_source): total_L = 0.0 ntotal = 0 hidden = model.begin_state(func=mx.nd.zeros, batch_size=batch_size_clas, ctx=context) for i in range(0, data_source.shape[0] - 1, num_steps): data, target = get_batch(data_source, i) output, hidden = model(data, hidden) L = loss(output, target) total_L += mx.nd.sum(L).asscalar() ntotal += L.size return total_L / ntotal def train(): for epoch in range(epochs): total_L = 0 start_time = time.time() hidden = model.begin_state(func=mx.nd.zeros, batch_size=batch_size_clas, ctx=context) batch_num = 0 for X, y in train_data_iter: batch_num += 1 hidden = detach(hidden) with autograd.record(): output, hidden = model(X, hidden) # output = output[-1].reshape((1, -1)) L = loss(output, y) L.backward() grads = [i.grad(context) for i in model.collect_params().values()] gluon.utils.clip_global_norm(grads, clipping_norm * num_steps * batch_size) trainer.step(batch_size) total_L += mx.nd.sum(L).asscalar() if batch_num % eval_period == 0 and batch_num > 0: cur_L = total_L / batch_num train_acc = evaluate_accuracy(train_data_iter, model) print('[Epoch %d Batch %d] loss %.2f, Train acc %f' % (epoch + 1, batch_num, cur_L, train_acc)) cur_L = total_L / len(train_data_iter) train_acc = evaluate_accuracy(train_data_iter, model) print('[Epoch %d loss %.2fm Train acc %f' % (epoch + 1, cur_L, train_acc)) def _get_batch(batch, ctx): """return data and label on ctx""" if isinstance(batch, mx.io.DataBatch): data = batch.data[0] label = batch.label[0] else: data, label = batch return (gluon.utils.split_and_load(data, ctx), gluon.utils.split_and_load(label, ctx), data.shape[0]) def evaluate_accuracy(data_iterator, net, ctx=[mx.cpu()]): if isinstance(ctx, mx.Context): ctx = [ctx] acc = mx.nd.array([0]) n = 0. if isinstance(data_iterator, mx.io.MXDataIter): data_iterator.reset() for batch in data_iterator: data, label, batch_size = _get_batch(batch, ctx) for X, y in zip(data, label): hidden = model.begin_state(func=mx.nd.zeros, batch_size=batch_size_clas, ctx=context) y = y.astype('float32') pred, _ = net(X, hidden) acc += mx.nd.sum(pred.argmax(axis=1) == y).copyto(mx.cpu()) n += y.size acc.wait_to_read() # don't push too many operators into backend return acc.asscalar() / n if __name__=="__main__": model_name = 'rnn_relu' embed_dim = 100 hidden_dim = 100 num_layers = 2 lr = 1 clipping_norm = 0.2 epochs = 10 batch_size = 5 batch_size_clas = 1 num_steps = 1 dropout_rate = 0.2 eval_period = 20 context = utils.try_gpu() train_data_path = "E:\\ML_learning\\Daguan\\data\\train_data.csv" w2v = word2vec.Word2Vec.load("E:\\ML_learning\\Daguan\\data\\mymodel") # test_data_path = "" # train_data, label = get_data_iter(train_data_path, batch_size, w2v) train_data_iter = get_data_iter(train_data_path, batch_size, w2v) model = RNNModel(model_name, embed_dim, hidden_dim, num_layers, w2v, dropout_rate) model.collect_params().initialize(mx.init.Xavier(), ctx=context) trainer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': lr, 'momentum': 0, 'wd': 0}) loss = gluon.loss.SoftmaxCrossEntropyLoss() # model_eval(val_data) train() # test_L = model_eval(test_data_iter) # print('Test loss %.2f, test perplexity %.2f' % (test_L, math.exp(test_L))) ``` #### File: ML_camp/daguan/rnn_gluon_daguan_w2v_lstm.py ```python import math import os import random import time import numpy as np import mxnet as mx from mxnet import gluon, autograd from mxnet.gluon import nn, rnn, data as gdata import zipfile from MXnet import utils from gensim.models import word2vec import pandas as pd import numpy as np high_frequency_word_list = ['1044285', '7368', '856005', '72195', '195449', '359838', '239755', '427848', '316564'] class RNNModel(gluon.Block): def __init__(self, mode, embed_dim, hidden_dim, num_layers, w2v_vec, drop_out=0.5, **kwargs): super(RNNModel, self).__init__(**kwargs) with self.name_scope(): self.drop = nn.Dropout(drop_out) # self.encoder = nn.Embedding(grad_red='null') # self.encoder.weight.set_data(w2v_vec) if mode == "rnn_relu": self.rnn = rnn.RNN(hidden_dim, num_layers, activation='relu', dropout=drop_out, input_size=embed_dim) elif mode == "rnn_tanh": self.rnn = rnn.RNN(hidden_dim, num_layers, activation='tanh', dropout=drop_out, input_size=embed_dim) elif mode == "lstm": self.rnn = rnn.LSTM(hidden_dim, num_layers, dropout=drop_out, input_size=embed_dim) elif mode == "gru": self.rnn = rnn.GRU(hidden_dim, num_layers, dropout=drop_out, input_size=embed_dim) else: raise ValueError("Invalid Mode") self.decoder = nn.Dense(19, in_units=hidden_dim) self.hidden_dim = hidden_dim self.w2v_vec = w2v_vec # def get_vec(self,inputs): # input_vec = [] # for word in enumerate(inputs): # try: # input_vec.append(self.w2v_vec.wv[word]) # except: # input_vec.append(np.random.uniform(-0.25, 0.25, self.w2v_vec.vector_size)) # return mx.nd.array(input_vec).reshape((len(inputs), 1, -1)) def forward(self, inputs, state): outputs = [] for input in inputs: input_node = mx.nd.array(input) step = input_node.shape[0] input_node = input_node.reshape(step, 1, -1) output, out_state = self.rnn(input_node, state) output = self.drop(output) output = output[-1] outputs.append(output) outputs = mx.nd.concat(*outputs, dim=0) decoded = self.decoder(outputs) return decoded, out_state def begin_state(self, *args, **kwargs): return self.rnn.begin_state(*args, **kwargs) def get_batch(source, label, i): data = source[i] target = label[i] return data, target def data_iter(source, target, batch_size): """ get number_example/batch_size data list and each list has batch_size data :return: """ number_example = len(target) idx = list(range(number_example)) random.shuffle(idx) def _data(pos): return source[pos] def _lable(pos): return target[pos] for i in range(0, number_example, batch_size): batch_indices = idx[i: min(i + batch_size, number_example)] data = [_data(j) for j in batch_indices] label = [_lable(j) for j in batch_indices] yield data, label def get_data_iter(path, batch_size, w2v_vec): total_data = pd.read_csv(path) data = total_data["article"][0:60000] f = lambda x: [w2v_vec.wv.get_vector(xi) for xi in [si for si in x.split(" ") if si not in high_frequency_word_list][0:500]] # f = lambda x: [xi for xi in x.split(" ")[0:800] ] # data = data.apply(f) label = total_data["class"][0:60000] # dataset = gdata.ArrayDataset(data, label) # data_iter = gdata.DataLoader(dataset, batch_size, shuffle=True) return np.array(data), np.array(label) def detach(state): if isinstance(state, (tuple, list)): state = [i.detach() for i in state] else: state = state.detach() return state def train(): for epoch in range(epochs): total_L = 0 start_time = time.time() hidden = model.begin_state(func=mx.nd.zeros, batch_size=batch_size_clas, ctx=context) batch_num = 0 for X, y in data_iter(train_data, label, batch_size): # X, y = get_batch(train_data, label, i) hidden = detach(hidden) with autograd.record(): output, hidden = model(X, hidden) L = loss(output, mx.nd.array(y)) L.backward() grads = [i.grad(context) for i in model.collect_params().values()] gluon.utils.clip_global_norm(grads, clipping_norm * num_steps * batch_size) trainer.step(batch_size) total_L += mx.nd.sum(L).asscalar() batch_num += 1 if batch_num % eval_period == 0 and batch_num > 0: cur_L = total_L / batch_num / batch_size # train_acc = evaluate_accuracy(train_data, label, model) print('[Epoch %d Batch %d] loss %.2f' % (epoch + 1, batch_num, cur_L)) cur_L = total_L / len(label) train_acc = evaluate_accuracy(train_data, label, model) print('[Epoch %d loss %.2f Train acc %f' % (epoch + 1, cur_L, train_acc)) model.save_parameters() def evaluate_accuracy(train_data, label, net, ctx=[mx.cpu()]): if isinstance(ctx, mx.Context): ctx = [ctx] acc = mx.nd.array([0]) n = 0. for X, y in data_iter(train_data, label, batch_size): # X, y = get_batch(train_data, label, i) hidden = model.begin_state(func=mx.nd.zeros, batch_size=batch_size_clas, ctx=context) y = mx.nd.array(y) y = y.astype('float32') pred, _ = net(X, hidden) acc += mx.nd.sum(pred.argmax(axis=1) == y) n += y.size acc.wait_to_read() # don't push too many operators into backend return acc.asscalar() / len(label) if __name__ == "__main__": model_name = 'lstm' embed_dim = 100 hidden_dim = 100 num_layers = 2 lr = 0.2 clipping_norm = 0.2 epochs = 10 batch_size = 100 batch_size_clas = 1 num_steps = 1 dropout_rate = 0.2 eval_period = 50 context = utils.try_gpu() train_data_path = "E:\\ML_learning\\Daguan\\data\\train_data.csv" w2v = word2vec.Word2Vec.load("E:\\ML_learning\\Daguan\\data\\mymodel") # test_data_path = "" train_data, label = get_data_iter(train_data_path, batch_size, w2v) # train_data_iter = get_data_iter(train_data_path, batch_size, w2v) model = RNNModel(model_name, embed_dim, hidden_dim, num_layers, w2v, dropout_rate) model.collect_params().initialize(mx.init.Xavier(), ctx=context) trainer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': lr}) loss = gluon.loss.SoftmaxCrossEntropyLoss() # model_eval(val_data) train() # test_L = model_eval(test_data_iter) # print('Test loss %.2f, test perplexity %.2f' % (test_L, math.exp(test_L))) ``` #### File: ML_camp/data_mining_annotation/use_word_vec.py ```python from gensim.models import word2vec from sklearn.decomposition import PCA import numpy as np import matplotlib import matplotlib.pyplot as plt mopdelfilePath = 'D:\\ML_learning\\annotation\\model.bin' model = word2vec.Word2Vec.load(mopdelfilePath) raw_word_vec = model.wv.vectors cent_word1 = "[body]" cent_word2 = "[city]" cent_word3 = "[search_phrase]" cent_word4 = "[named_business]" cent_word5 = "[search_phrase]" wordList1 = model.wv.most_similar_cosmul(cent_word1, topn=20) wordList2 = model.wv.most_similar_cosmul(cent_word2, topn=20) wordList3 = model.wv.most_similar_cosmul(cent_word3, topn=20) wordList4 = model.wv.most_similar_cosmul(cent_word4, topn=20) wordList5 = model.wv.most_similar_cosmul(cent_word5, topn=20) wordList1 = np.append([item[0] for item in wordList1], cent_word1) wordList2 = np.append([item[0] for item in wordList2], cent_word2) wordList3 = np.append([item[0] for item in wordList3], cent_word3) wordList4 = np.append([item[0] for item in wordList4], cent_word4) wordList5 = np.append([item[0] for item in wordList5], cent_word5) def get_word_index(word): index = model.wv.vocab[word].index return index index_list1 = map(get_word_index, wordList1) index_list2 = map(get_word_index, wordList2) index_list3 = map(get_word_index, wordList3) index_list4 = map(get_word_index, wordList4) index_list5 = map(get_word_index, wordList5) vec_reduced = PCA(n_components=2).fit_transform(raw_word_vec) # fig = plt.figure() # ax = fig.add_subplot(111) zhfont = matplotlib.font_manager.FontProperties(fname=r'C:\Nuance\python_env\basic_dev\Lib\site-packages\matplotlib\mpl-data\fonts\ttf\msyh.ttf') x = np.arange(-10, 10, 0.1) y = x plt.plot(x, y) for i in index_list1: plt.text(vec_reduced[i][0], vec_reduced[i][1], model.wv.index2word[i], color='r', fontproperties=zhfont) # for i in index_list2: # plt.text(vec_reduced[i][0], vec_reduced[i][1], model.wv.index2word[i], color='b', fontproperties=zhfont) # # for i in index_list3: # plt.text(vec_reduced[i][0], vec_reduced[i][1], model.wv.index2word[i], color='g', fontproperties=zhfont) # # for i in index_list4: # plt.text(vec_reduced[i][0], vec_reduced[i][1], model.wv.index2word[i], color='k', fontproperties=zhfont) # # for i in index_list5: # plt.text(vec_reduced[i][0], vec_reduced[i][1], model.wv.index2word[i], color='c', fontproperties=zhfont) # plt.axis([40, 160, 0, 0.03]) plt.show() # indexes = model.wv.most_similar_cosmul('中国') # for index in indexes: # print(index) ``` #### File: MXnet/convolutional-neural-networks/cnn-mpl-compare.py ```python from mxnet.gluon import nn from mxnet import gluon import matplotlib.pyplot as plt from MXnet import utils from MXnet.display_utils import show_loss_acc_picture, show_loss_acc_for_two_model def cnn(num_epochs, unit_count): net = nn.Sequential() with net.name_scope(): net.add( nn.Conv2D(channels=20, kernel_size=5, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Conv2D(channels=50, kernel_size=3, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(), nn.Dense(unit_count, activation="relu"), nn.Dense(10) ) net.initialize() ctx = utils.try_gpu() batch_size = 256 train_data, test_data = utils.load_data_fashion_mnist(batch_size) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5}) return utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=num_epochs) def mlp(num_epochs, unit_count): net = nn.Sequential() with net.name_scope(): net.add(gluon.nn.Dense(unit_count, activation="relu")) # net.add(gluon.nn.Dense(28 * 28, activation="relu")) # net.add(gluon.nn.Dense(28 * 28, activation="relu")) # net.add(gluon.nn.Dense(28 * 28, activation="relu")) net.add(gluon.nn.Dense(10)) net.initialize() ctx = utils.try_gpu() batch_size = 256 train_data, test_data = utils.load_data_fashion_mnist(batch_size) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate": 0.5}) return utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=num_epochs) num_epochs = 2 unit_count = 56 * 56 train_loss_list, test_loss_list, train_acc_list, test_acc_list = cnn(num_epochs, 256) train_loss_2_list, test_loss_2_list, train_acc_2_list, test_acc_2_list = mlp(num_epochs, unit_count) show_loss_acc_for_two_model(unit_count, num_epochs, train_loss_list, train_loss_2_list, test_loss_list, test_loss_2_list, train_acc_list, train_acc_2_list, test_acc_list, test_acc_2_list, "cnn", "mpl") ``` #### File: MXnet/supervised-learning/linear-regression-scratch.py ```python import matplotlib as mpl import matplotlib.pyplot as plt import mxnet as mx from mxnet import autograd, nd import numpy as np import random import sys # import utils number_inputs = 2 number_example = 100000 true_w = nd.array([2, -3.4]).reshape((2, 1)) true_b = 4.2 X = nd.random.normal(scale=1, shape=(number_example, number_inputs)) y = nd.dot(X, true_w) + true_b y += 0.01 * nd.random.normal(scale=1, shape=y.shape) # plot # plt.rcParams['figure.figsize'] = (3.5, 2.5) # plt.scatter(X[:, 1].asnumpy(), y.asnumpy(), c="r", marker="v") # plt.show() batch_size = 10 def data_iter(): """ get number_example/batch_size data list and each list has batch_size data :return: """ idx = list(range(number_example)) random.shuffle(idx) for i in range(0, number_example, batch_size): j = nd.array(idx[i: min(i + batch_size, number_example)]) yield X.take(j), y.take(j) for data, label in data_iter(): print(data, label) break w = nd.random.normal(scale=1, shape=(number_inputs, 1)) b = nd.zeros(1) params = [w, b] for param in params: param.attach_grad() def hypothesis_function(X, w, b): """ hypothesis function :param X: :param w: :param b: :return: """ return nd.dot(X, w) + b def squared_loss(yhat, y): """ loss function :param yhat: :param y: :return: """ return (yhat - y.reshape(yhat.shape)) ** 2 / 2 def sgd(params, lr, batch_size): for param in params: param[:] = param - lr * param.grad / batch_size def trainer(): lr = 0.05 num_round = 10 for epoch in range(1, num_round + 1): for X, y in data_iter(): with autograd.record(): output = hypothesis_function(X, w, b) loss = squared_loss(output, y) loss.backward() sgd([w, b], lr, batch_size) print("epoch %d, loss: %f" % (epoch, squared_loss(hypothesis_function(X, w, b), y).mean().asnumpy())) trainer() print(true_w, w) print(true_b, b) ``` #### File: MXnet/supervised-learning/mlp.py ```python from mxnet.gluon import nn from mxnet import gluon import matplotlib.pyplot as plt from MXnet import utils from MXnet.display_utils import show_loss_acc_picture, show_loss_acc_for_two_model def mlp(num_epochs, unit_count, hidden_layer_num=1): net = nn.Sequential() with net.name_scope(): for _ in range(hidden_layer_num): net.add(gluon.nn.Dense(unit_count, activation="relu")) net.add(gluon.nn.Dense(10)) net.initialize() ctx = utils.try_gpu() batch_size = 256 train_data, test_data = utils.load_data_fashion_mnist(batch_size) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate": 0.5}) return utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=num_epochs) ``` #### File: MXnet/supervised-learning/over_fit_under_fit.py ```python from mxnet import ndarray as nd from mxnet import autograd from mxnet import gluon import matplotlib as mpl mpl.rcParams['figure.dpi'] = 120 import matplotlib.pyplot as plt num_train = 1000 num_test = 100 true_w = [1.2, -3.4, 5.6] true_b = 5.0 x = nd.random.normal(shape=(num_train + num_test, 1)) X = nd.concat(x, nd.power(x, 2), nd.power(x, 3)) y = true_w[0] * X[:, 0] + true_w[1] * X[:, 1] + true_w[2] * X[:, 2] + true_b y += 0.1 * nd.random.normal(shape=y.shape) def train(X_train, X_test, y_train, y_test): net = gluon.nn.Sequential() with net.name_scope(): net.add(gluon.nn.Dense(1)) # 只有一个神经元 net.initialize() learning_rate = 0.01 epochs = 100 batch_size = min(10, y_train.shape[0]) dataset_train = gluon.data.ArrayDataset(X_train, y_train) data_iter_train = gluon.data.DataLoader(dataset_train, batch_size, shuffle=True) trainer = gluon.Trainer(net.collect_params(), 'sgd', {"learning_rate": learning_rate}) square_loss = gluon.loss.L2Loss() train_loss = [] test_loss = [] for e in range(epochs): for data, label in data_iter_train: with autograd.record(): output = net(data) loss = square_loss(output, label) loss.backward() trainer.step(batch_size) train_loss.append(square_loss(net(X_train), y_train).mean().asscalar()) test_loss.append(square_loss(net(X_test), y_test).mean().asscalar()) plt.plot(train_loss) plt.plot(test_loss) plt.legend(['train', 'test']) title = 'learned weight' + str(net[0].weight.data()) + 'learned bias' + str(net[0].bias.data()) title = title.replace('\n', '') plt.title(title, color='blue', wrap=True) plt.show() return ('learned weight', net[0].weight.data(), 'learned bias', net[0].bias.data()) train(X[:num_train, :], X[num_train:, :], y[:num_train], y[num_train:]) # train(x[:num_train, :], x[num_train:, :], y[:num_train], y[num_train:]) # train(X[0:2, :], X[num_train:, :], y[0:2], y[num_train:]) ``` #### File: mytensorflow/cp05/adv_mnist.py ```python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 LAYER2_NODE = 100 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEP = 30000 MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, w1, b1, w2, b2): ''' 计算神经网络的前向传播结果 :param input_tensor: :param avg_class: :param w1: :param b1: :param w2: :param b2: :return: ''' if avg_class == None: layer1 = tf.nn.relu(tf.matmul(input_tensor, w1) + b1) return tf.matmul(layer1, w2) + b2 else: # 使用avg_class.average()来获取变量的滑动平均值 layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(w1)) + avg_class.average(b1)) return tf.matmul(layer1, avg_class.average(w2)) + avg_class.average(b2) def train(mnist): x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input') w1 = tf.get_variable('w1', initializer=tf.truncated_normal_initializer(stddev=0.1), shape=[INPUT_NODE, LAYER1_NODE]) b1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) w2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1), name='w2') b2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(x, None, w1, b1, w2, b2) global_step = tf.Variable(0, trainable=False) # 初始化滑动平均 varialbe_average = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) # 在所有神经网络参数的变量上使用滑动平均 # tf.trainable_variables() 获取所有的可训练变量 variable_averages_op = varialbe_average.apply(tf.trainable_variables()) # 计算出滑动平均的y average_y = inference(x, varialbe_average, w1, b1, w2, b2) # 计算loss的时候要使用y,预测的时候使用滑动平均的y cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) cross_entropy_mean = tf.reduce_mean(cross_entropy) regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) regularization = regularizer(w1) + regularizer(w2) loss = cross_entropy_mean + regularization # 使用指数衰减的learning rate learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 将后向传播更新神经网络中的参数和更新每个参数的滑动平均值合并在一个操作中完成 # 也可以使用tg.group()来实现 # train_op = tf.group(train_step, variable_averages_op) with tf.control_dependencies([train_step, variable_averages_op]): train_op = tf.no_op(name='train') # tf.argmax(average_y, 1) 计算每个样例的预测答案,在每行只选取最大值对应的下标 correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} test_feed = {x: mnist.test.images, y_: mnist.test.labels} for i in range(TRAINING_STEP): if i % 1000 == 0: validate_acc = sess.run(accuracy, feed_dict=validate_feed) print("After %d training step(s), validation accuracy using average mode is %g" % (i, validate_acc)) xs, ys = mnist.train.next_batch(BATCH_SIZE) sess.run(train_op, feed_dict={x: xs, y_: ys}) test_acc = sess.run(accuracy, feed_dict=test_feed) print("After %d training step(s), test accuracy using average mode is %g" % (TRAINING_STEP, test_acc)) def main(argv=None): mnist = input_data.read_data_sets("../data", one_hot=True) train(mnist) if __name__ == "__main__": main() # tf.app.run() ``` #### File: cp06/mnist_program_conv/mnist_train.py ```python import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import mnist_inference BATCH_SIZE = 1000 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEPS = 6000 MOVING_AVERAGE_DECAY = 0.99 MODEL_NAME = "model.ckpt" def train(mnist): x = tf.placeholder(tf.float32, [ BATCH_SIZE, mnist_inference.IMAGE_SIZE, mnist_inference.IMAGE_SIZE, mnist_inference.NUM_CHANNELS], name="x-input") y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) y = mnist_inference.inference(x, True, regularizer) global_step = tf.Variable(0, trainable=False) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name="train") saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) reshape_xs = np.reshape(xs, ( BATCH_SIZE, mnist_inference.IMAGE_SIZE, mnist_inference.IMAGE_SIZE, mnist_inference.NUM_CHANNELS )) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshape_xs, y_: ys}) if i % 1000 == 0: print("After %d training step(s), loss on train batch is %g" % (i, loss_value)) saver.save(sess, os.path.join("model", MODEL_NAME), global_step=global_step) def main(): mnist = input_data.read_data_sets("../../data", one_hot=True) train(mnist) if __name__ == "__main__": main() ``` #### File: mytensorflow/cp06/view_lnception_v3.py ```python import tensorflow as tf import os MODEL_PATH = r"E:\ML_learning\tensorFlow\inception_dec_2015" MODEL_FILE = "tensorflow_inception_graph.pb" with tf.Session() as sess: with tf.gfile.FastGFile(os.path.join(MODEL_PATH, MODEL_FILE), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') writer = tf.summary.FileWriter("output1", sess.graph) writer.close() ``` #### File: NG/LinearRessgion_Reg/polyFeatures.py ```python import numpy as np def poly_features(X, p): X_poly=X[:]#第一列为原始输入特征 #第2到p列 是原始输入特征的平方到p次方 for i in range(2,p+1): X_poly=np.c_[X_poly,X**i] return X_poly ``` #### File: NG/LinearRessgion_Reg/validationCurve.py ```python import numpy as np import trainLinearReg as tlr import linearRegCostFunction as lrcf def validation_curve(X, y, Xval, yval): # 尝试不同的lambda值 lambda_vec = np.array([0., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10]) # 每设置一个lambda值,进行训练,返回此时的训练误差和验证误差 error_train = np.zeros(lambda_vec.size) error_val = np.zeros(lambda_vec.size) i=0 for lmd in lambda_vec: theta=tlr.train_linear_reg(X, y, lmd) error_train[i]=lrcf.linear_reg_cost_function(theta, X, y,0)[0]#注意计算误差时lmd=0 error_val[i]=lrcf.linear_reg_cost_function(theta, Xval, yval,0)[0]#注意计算误差时lmd=0 i+=1 return lambda_vec, error_train, error_val ```
{ "source": "JiaLei123/PythonCamp", "score": 2 }
#### File: scrum/board/serializers.py ```python from rest_framework import serializers from django.contrib.auth import get_user_model from rest_framework.reverse import reverse from .models import Sprint, Task User = get_user_model() class SprintSerializer(serializers.ModelSerializer): links = serializers.SerializerMethodField() class Meta: model = Sprint fields = ('id', 'name', 'description', 'end', 'links',) def get_links(self, obj): request = self.context['request'] return { 'self': reverse('sprint-detail', kwargs={'pk': obj.pk}, request=request) } class TaskSerializer(serializers.ModelSerializer): status_display = serializers.SerializerMethodField() assigned = serializers.SlugRelatedField( slug_field=User.USERNAME_FIELD, required=False, allow_null=True, queryset=User.objects.all() ) links = serializers.SerializerMethodField() class Meta: model = Task fields = ( 'id', 'name', 'description', 'sprint', 'status', 'status_display', 'order', 'assigned', 'started', 'due', 'completed', 'links',) def get_status_display(self, obj): return obj.get_status_display() def get_links(self, obj): request = self.context['request'] links = { 'self': reverse('task-detail', kwargs={'pk': obj.pk}, request=request), 'sprint': None, 'assigned': None } if obj.sprint_id: links['sprint'] = reverse('sprint-detail', kwargs={'pk': obj.sprint_id}, request=request) if obj.assigned: links['assigned'] = reverse('user-detail', kwargs={User.USERNAME_FIELD: obj.assigned}, request=request) return links class UserSerializer(serializers.ModelSerializer): full_name = serializers.CharField(source='get_full_name', read_only=True) links = serializers.SerializerMethodField() class Meta: model = User fields = ('id', User.USERNAME_FIELD, 'full_name', 'is_active', 'links',) def get_links(self, obj): request = self.context['request'] username = obj.get_username() return { 'self': reverse('user-detail', kwargs={User.USERNAME_FIELD: username}, request=request) } ```
{ "source": "JiaLei123/PythonCamp_PY3", "score": 3 }
#### File: PythonCamp_PY3/basic_program/basic_generater.py ```python class BasicGenerater(object): def __init__(self): self.first_name = 'Jack' self.last_name = 'Freeman' def my_name(self): print('.'.join((self.first_name, self.last_name))) def __del__(self): print("call del") class AdvaceGenerator(BasicGenerater): def __init__(self): BasicGenerater.__init__(self) self.first_name = 'Bob' class AdvaceGenerator2(BasicGenerater): def __init__(self): super(AdvaceGenerator2, self).__init__() self.first_name = 'Alon' if __name__ == "__main__": basic = AdvaceGenerator2() basic.my_name() print("end") ``` #### File: PythonCamp_PY3/python_profile/benchmark.py ```python import time def primise(n): if n == 2: return [2] elif n < 2: return [] s = [] for i in range(3, n + 1): if i % 2 != 0: s.append(i) mroot = n ** 0.5 half = (n + 1) / 2 - 1 i = 0 m = 3 while m <= mroot: if s[i]: j = int((m * m - 3) / 2) s[j] = 0 while j < half: s[j - 1] = 0 j += m i = i + 1 m = 2 * i + 3 l = [2] for x in s: if x: l.append(x) return l def primise2(n): if n == 2: return [2] elif n < 2: return [] s = list(range(3, n + 1, 2)) mroot = n ** 0.5 half = (n + 1) / 2 - 1 i = 0 m = 3 while m <= mroot: if s[i]: j = int((m * m - 3) / 2) s[j] = 0 while j < half: s[j - 1] = 0 j += m i = i + 1 m = 2 * i + 3 l = [2] + [x for x in s if x] return l def benchmark(): start = time.time() for _ in range(40): count = len(primise(10000)) end = time.time() print("benchmark duration: %r seconds" % (end - start)) print(count) if __name__=="__main__": benchmark() ```
{ "source": "JiaLei123/PythonCamp", "score": 3 }
#### File: PythonCamp/PythonAdvance/encode_passwd.py ```python import sys import uuid from optparse import OptionParser from Crypto.Cipher import AES from binascii import b2a_hex, a2b_hex class prpcrypt(): def __init__(self): self.key = prpcrypt.get_mac_address() self.mode = AES.MODE_CBC # 加密函数,如果text不是16的倍数【加密文本text必须为16的倍数!】,那就补足为16的倍数 @staticmethod def get_mac_address(): return uuid.UUID(int=uuid.getnode()).hex[-16:].upper() def encrypt(self, text): cryptor = AES.new(self.key, self.mode, self.key) # 这里密钥key 长度必须为16(AES-128)、24(AES-192)、或32(AES-256)Bytes 长度.目前AES-128足够用 length = 16 count = len(text) if (count % length != 0): add = length - (count % length) else: add = 0 text = text + ('\0' * add) self.ciphertext = cryptor.encrypt(text) # 因为AES加密时候得到的字符串不一定是ascii字符集的,输出到终端或者保存时候可能存在问题 # 所以这里统一把加密后的字符串转化为16进制字符串 return b2a_hex(self.ciphertext) # 解密后,去掉补足的空格用strip() 去掉 def decrypt(self, text): cryptor = AES.new(self.key, self.mode, self.key) plain_text = cryptor.decrypt(a2b_hex(text)) return str(plain_text, encoding="utf-8").rstrip('\0') usage = """ python %prog [--data] [--file] [--code]""" if __name__ == '__main__': parser = OptionParser() parser.add_option('--data', '-d', dest='data', default='0123456789') parser.add_option('--file', '-f', dest='file', default='pw') options, args = parser.parse_args() pc = prpcrypt() e = pc.encrypt(options.data) with open(options.file, 'w') as pw_file: line = str(e, encoding="utf-8") pw_file.write(line) with open(options.file) as pw_file: e = pw_file.read() d = pc.decrypt(e) print(e, d) ``` #### File: PythonCamp/spiders/china_regional_high_way.py ```python from MyScraperUtil.MyScraperUtil import * high_way_list = [] def preprocessHTML(inputHTML): try: inputHTML = inputHTML.decode('gb2312','ignore') except UnicodeDecodeError: raise BadHTMLError else: return inputHTML.encode('utf8') def processPage(soup, url=None, urlPayload=None, addUrl=None, addListOfUrls=None): if soup: if urlPayload == 'topUrl': province_high_way = soup.findAll("div", {"class":"roadTxt"}) if province_high_way: high_way_links = province_high_way[1].findAll('a') if high_way_links: for high_way_link in high_way_links: if high_way_link.has_key('href') and high_way_link['href'] != "#": addUrl(url + high_way_link['href'], 'highWay') print url + high_way_link['href'] print "parse url: " + url + " payLoad: " + urlPayload if urlPayload == 'highWay': high_way_div_list = soup.findAll("div", {"class": "box bd"}) if high_way_div_list: for high_way_div in high_way_div_list: high_way_name_header = high_way_div.findAll('h2') if high_way_name_header: high_way_name = high_way_name_header[0].text[3:] if not high_way_name.endswith(u"高速"): high_way_name = high_way_name + u"高速" if high_way_name not in high_way_list: high_way_list.append(high_way_name) print high_way_name.encode('utf8', 'ignore') if __name__ == '__main__': url = 'http://gs.cngaosu.com/' urlPayload = "topUrl" #debug url = 'http://gs.cngaosu.com/gaosuluduan/difang/gansu/' urlPayload = "highWay" addUrl(url, urlPayload) run_scraper(processPage, preprocessHTML, websiteEncoding="GB2312") ``` #### File: PythonCamp/spiders/iqiyi_tv.py ```python try: import lmtoolspath except ImportError: pass import os import sys from optparse import OptionParser from lmscraperkit_v02 import * import traceback from lmtoolkit import Logger import re import requests ######################################################################### total_list = list() run_small = False def processPage(soup, url, urlPayload, addUrl, addListOfUrls, printToFile): """ Grab the text from the page as well as links to subsequent pages. Keyword arguments: soup -- BeautifulSoup parsing of webpage url -- URL of the webpage urlPayload -- payload to carry information across webpage scrapes addUrl -- function that adds to the list of URLs to scrape printToFile -- function that prints text to a file stock """ try: if urlPayload[0] == "topUrl": total_page = 30 for p in range(1, total_page + 1): tv_page_url = u"http://list.iqiyi.com/www/2/-------------11-" + str(p) + u"-1-iqiyi--.html" addUrl(tv_page_url, payload=["tv_page"]) # for samll run only need get first page data if run_small: break if urlPayload[0] == "tv_page": p_page_tv_ul = soup.findAll('ul', attrs={'class': 'site-piclist site-piclist-180236 site-piclist-auto'}) p_page_tv_list = p_page_tv_ul[0].findAll('li') for i in range(len(p_page_tv_list)): tv_title_info = p_page_tv_list[i].find('p', attrs={'class': 'site-piclist_info_title '}) tv_url = tv_title_info.find('a')['href'] addUrl(tv_url, payload=["tv_url_page", tv_title_info.find('a').string.strip()]) if urlPayload[0] == "tv_url_page": parse_tv_url_page(soup, urlPayload[1]) except Exception as e: print "Error Happened: ", e def parse_tv_url_page(soup, tv_title): # print soup scr = soup.findAll('script') # print len(scr) ids = re.findall(r"albumId:(.+?),", str(scr[4])) id = '' if len(ids)!=0: id = ids[0] url = 'http://up-video.iqiyi.com/ugc-updown/quud.do?dataid='+ id +\ '&type=1&userid=' response = requests.get(url) scoreinfo = response.text scores = re.findall(r"score\":(.+?),", str(scoreinfo)) score = '0' if len(scores)!=0: score = scores[0] area = '' vv = '0' director = '' language = '' year = '' artist = '' type = '' tv_info = soup.findAll('div', attrs={'class': 'info-intro'}) # style 1 if len(tv_info)!=0: # tv_titles = tv_info[0].find("h1").contents[1].string.strip() # if u'立即播放' in tv_titles: # tv_title=tv_titles[:-4] # else: # tv_title = tv_titles pvnum = soup.findAll('span', attrs={'class': 'effrct-PVNum'}) if len(pvnum) != 0: vv = pvnum[0].string.strip()[:-2] area_info = soup.findAll('p', attrs={'class': 'episodeIntro-area'}) if len(area_info)!=0: area = area_info[0].find('a').string.strip() dir_info = soup.findAll('p', attrs={'class': 'episodeIntro-director'}) if len(dir_info)!=0: director = dir_info[0].find('a').string.strip() type_infos = soup.findAll('p', attrs={'class': 'episodeIntro-type'}) if len(type_infos)!=0: type_info = type_infos[0].findAll('a') if len(type_info)!= 0: type = ','.join([type_name.string.strip() for type_name in type_info]) lang_infos = soup.findAll('p', attrs={'class': 'episodeIntro-lang'}) if len(lang_infos) != 0: lang_info = lang_infos[0].findAll('a') if len(lang_info) != 0: if len(lang_info)<2: year = lang_info[0].string.strip() else: language = lang_info[0].string.strip() year = lang_info[1].string.strip() artist_infos = soup.findAll('ul', attrs={'class': 'headImg-7575 clearfix'}) if len(artist_infos) != 0: artist_info = artist_infos[0].findAll('li') if len(artist_info) != 0: for i in range(len(artist_info)): art = artist_info[i].findAll('p', attrs={'class': 'headImg-bottom-title'}) artist = artist + art[0].find('a').string.strip() + ',' # style 2 else: msg_div = soup.find("div", {"class": "album-msg"}) pvnum = msg_div.find('i', attrs={'id': 'widget-playcount'}) vv = pvnum.string.strip() mini_info = msg_div.findAll('p', attrs={'class': 'li-mini'}) if len(mini_info) != 0: area = mini_info[0].find('a').string.strip() language = mini_info[1].find('a').string.strip() director = mini_info[2].find('a').string.strip() mini_large_info = msg_div.findAll('p', attrs={'class': 'li-large'}) if len(mini_large_info) != 0: type_infos = mini_large_info[0] type_info = type_infos.findAll('a') if len(type_info) != 0: type = ','.join([type_name.string.strip() for type_name in type_info]) artist_infos = mini_large_info[1] artist_info = artist_infos.findAll('a') if len(artist_info) != 0: artist = ','.join([artist_name.string.strip() for artist_name in artist_info]) each_list = [] each_list.append(tv_title) each_list.append(artist[:-1]) if u'万' in vv: vv = vv[:-1] vv = vv.split(".") if len(vv) > 1: play_count_int = int(vv[0]) * 10000 + int(vv[1]) * 1000 else: play_count_int = int(vv[0]) * 10000 elif u'亿' in vv: vv = vv[:-1] vv = vv.split(".") if len(vv) > 1: play_count_int = int(vv[0]) * 100000000 + int(vv[1]) * 10000000 else: play_count_int = int(vv[0]) * 100000000 else: play_count_int = int(vv) each_list.append(play_count_int) each_list.append(score) each_list.append(area) each_list.append(director) each_list.append(type) each_list.append(language) each_list.append(year) total_list.append(each_list) ################################################################################ usage = """ python2.6 %prog [--debug] [--dateTag] [--restart] [--robots] [--basepath] <<NOTE>> basepath and robots should be set for other than /lm/data2/ """ ################################################################################ if __name__ == '__main__': parser = OptionParser() parser.add_option( '--basepath', '-b', dest='basepath', default='/lm/data2/') parser.add_option( '--restart', '-r', default=False, action='store_true', help='Restart the scraper from a previous incomplete run.' ) parser.add_option( '--html', default=None, help='HTML databall that will be used as input' ) parser.add_option( '--robots', default='/lm/data2/scrapers/zho-CHN/epg/iqiyi.com.dianshiju/log.inc/' 'robots.txt.zip', help='robots.zip file' ) parser.add_option( '--delay', type='int', dest='delay', default=2, help='specify delay in seconds between acessing web pages' ) parser.add_option( '--debug', action='store_true', dest='debug', default=False, help='print status messages to stdout' ) parser.add_option( '--dateTag', '-d', dest='dateTag', default=None, help='Date used for path creation; defaults to current date' ) parser.add_option( '--badUrlsFile', dest='badUrlsFile', default='/lm/data2/scrapers/zho-CHN/epg/iqiyi.com.dianshiju' '/log.inc/iqiyi.com.dianshiju.badUrls.lst', help='Prints unusable URLs to external file instead of halting the scraper.' ) parser.add_option( '--small', action='store_true', dest='run_small', default=False, help='if run spider by small data set, this is for debug.' ) options, args = parser.parse_args() log = Logger(options.debug) if options.run_small: run_small = options.run_small if options.html: myScraper = HTMLScraper( scraperType=u'scrapers', topic=u'epg', lang=u'zho-CHN', name=u'iqiyi.com.dianshiju', frequency=u'versions' ) myScraper.inputDataBall(options.html) else: myScraper = WebScraper( scraperType=u'scrapers', topic=u'epg', lang=u'zho-CHN', name=u'iqiyi.com.dianshiju', frequency=u'versions' ) if options.robots: # set the robots.txt for the scraper myScraper.setRobotsTxt(url='http://www.iqiyi.com/', zip=options.robots) # Set the base path ... # over ride the default of /lm/data2 with the --basepath option myScraper.setBasePath(options.basepath) # Use the date specified at the command line if provided if options.dateTag: y, m, d = options.dateTag.split(u'_') else: # otherwise default to current date y, m, d = yearMonthDay() # if restarting scraper, set the rawDirectory if options.restart: myScraper.setRawDirectory( myScraper.generatePath(year=y, month=m, day=d, cleanState='raw') ) outputPath = myScraper.generatePath(year=y, month=m, day=d, cleanState=u'records') output_file = os.path.join(outputPath, myScraper.generateFileName(fileType='tsv')) myScraper.addOutputFile('', output_file, noTemp=False) # add the seed URL to the scraper myScraper.addUrl( u'http://list.iqiyi.com/www/2/-------------11-0-1-iqiyi--.html', payload=['topUrl'] ) # start the scraping job try: log.info('Starting the scrape \n') myScraper.run( processPage, restart=options.restart, badUrlsFile=options.badUrlsFile ) sorted_list = sorted(total_list, key=lambda x: x[2], reverse=True) if len(sorted_list) > 1: op = OpenFile(output_file, 'a', encoding='utf-8') if not options.restart: header = [u'epg_title', u'name_actor_csv', u'number_downloads', u'number_rating', u'address', u'name_director', u'category', u'language', u'date_year'] op.write(u'#scraper01 ' + u'\t'.join(header)) op.write('\n') for i in sorted_list: record = '\t'.join([i[0], i[1], str(i[2]), i[3], i[4], i[5], i[6], i[7], i[8]]) op.write(record) op.write('\n') op.close() else: log.warning('Less output') log.info('Finished the scrape \n') except StandardError, error: traceback.print_exc() log.error(error) if options.debug: raise sys.exit(2) ```
{ "source": "jialeicui/Raspberry_Pi_Web_Player", "score": 3 }
#### File: jialeicui/Raspberry_Pi_Web_Player/song_scan.py ```python import os def get(base_dir, opt_dir = ''): folders = [] songs = [] final_dir = os.path.join(base_dir, opt_dir) for dirs in os.listdir(final_dir): if not dirs.startswith('.'): if os.path.isdir(os.path.join(final_dir, dirs)): folders.append({'name':dirs, 'href':'/ls/' + os.path.join(opt_dir, dirs),'playable':False}) elif _is_audio_file(dirs): songs.append({'name':dirs, 'file_path':os.path.join(opt_dir, dirs), 'href':'/player/play', 'addhref':'/player/add','playable':True}) folders.sort() songs.sort() return folders + songs pass def _is_audio_file(name): valid_ext = ['mp3', 'm4a', 'ape', 'wma', 'flac'] n, ext = os.path.splitext(name) if valid_ext.count(ext[1:].lower()) != 0: return True return False pass ```
{ "source": "jialeli1/From-Voxel-to-Point", "score": 2 }
#### File: models/dense_heads/center_af_head_single.py ```python import torch import torch.nn as nn from .center_af_head_template import CenterAFHeadTemplate from .feature_adaptor.deformable_convs import FeatureAdaption as FeatureAdaptionV1 from .feature_adaptor.mdeformable_convs import FeatureAdaption as FeatureAdaptionV2 class CenterAFHeadSingle(CenterAFHeadTemplate): def __init__(self, model_cfg, input_channels, num_class, class_names, voxel_size, grid_size, point_cloud_range, predict_boxes_when_training=True): super().__init__( model_cfg=model_cfg, num_class=num_class, class_names=class_names, voxel_size=voxel_size, grid_size=grid_size, point_cloud_range=point_cloud_range, predict_boxes_when_training=predict_boxes_when_training ) self.predict_boxes_when_training = True self.iouscore_training_samples = self.model_cfg.NUM_IOUSCORE_TRAINING_SAMPLES self.num_infernce_samples = self.model_cfg.NUM_INFERENCE_SAMPLES # shared conv pre_channel = input_channels shared_conv_list = [] for k in range(0, self.model_cfg.SHARED_FC.__len__()): # hiddens shared_conv_list.extend([ nn.Conv2d(pre_channel, self.model_cfg.SHARED_FC[k], kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(self.model_cfg.SHARED_FC[k]), nn.ReLU() ]) pre_channel = self.model_cfg.SHARED_FC[k] # dropout if k != self.model_cfg.SHARED_FC.__len__() - 1 and self.model_cfg.DP_RATIO > 0: shared_conv_list.append(nn.Dropout(self.model_cfg.DP_RATIO)) self.shared_conv_layer = nn.Sequential(*shared_conv_list) input_channels = pre_channel # adaptation with deformable convs if self.model_cfg.USE_DCN == 'DCN': self.feature_adapt = FeatureAdaptionV1( in_channels=input_channels, out_channels=input_channels, kernel_size=3, deformable_groups=4) elif self.model_cfg.USE_DCN == 'MDCN': self.feature_adapt = FeatureAdaptionV2( in_channels=input_channels, out_channels=input_channels, kernel_size=3, deformable_groups=4) self.num_spatial_features_before_head = input_channels # heads self.head_names = [ cfg['name'] for cfg in self.model_cfg.HEADS_CONFIG ] for head_cfg in self.model_cfg.HEADS_CONFIG: if head_cfg['name'] == 'hm': head_cfg['out_channel'] = self.num_class cur_head = self.make_fc_head(input_channels=input_channels, head_cfg=head_cfg) self.__setattr__(head_cfg['name'], cur_head) def forward(self, data_dict): """ 'points', 'frame_id', 'calib', 'gt_boxes', 'road_plane', 'use_lead_xyz', 'voxels', 'voxel_coords', 'voxel_num_points', 'image_shape', 'batch_size', 'voxel_features', 'encoded_spconv_tensor', 'encoded_spconv_tensor_stride', 'multi_scale_3d_features', 'spatial_features', 'spatial_features_stride', 'spatial_features_2d' """ spatial_features_2d = data_dict['spatial_features_2d'] spatial_features_2d = self.shared_conv_layer(spatial_features_2d) # -------------Second Half of the ADFA Module-------------------- # The second half of the ADFA module follows DCNBEVBackbone, including the final deformable conv layer and mask-guided attention enhancement. # For convenience, the segmentation sub-network in Figure 4 is implemented as a head parallel to the detection head, with the same operation according to the paper. if self.model_cfg.USE_DCN in ['DCN', 'MDCN']: spatial_features_2d = self.feature_adapt(spatial_features_2d) if 'segm' in self.head_names: # segm_pred segm_pred = self.__getattr__('segm')(spatial_features_2d) # (B, C, sizey, sizex) segm_pred_norm = torch.sigmoid(segm_pred.detach()) # (B, 1, sizey, sizex) # res from adding spatial_weight = segm_pred_norm.expand_as(spatial_features_2d) # (B, C, sizey, sizex) spatial_features_2d_res = spatial_weight*spatial_features_2d spatial_features_2d_att = spatial_features_2d + spatial_features_2d_res segm_preds_name = 'segm' + '_pred' self.forward_ret_dict.update({segm_preds_name: segm_pred}) data_dict.update({'spatial_features_before_head': spatial_features_2d_att}) # -------------Anchor-free Detection Head-------------------- for head_name in self.head_names: if head_name != 'segm': cur_preds_name = head_name + '_pred' cur_preds = self.__getattr__(head_name)(spatial_features_2d_att) # (B, C, sizey, sizex) self.forward_ret_dict.update({cur_preds_name: cur_preds}) # -------------Target Assignment-------------------- if self.training: ''' target_dict includs: heatmaps heightmaps ''' targets_dict = self.assign_targets( gt_boxes=data_dict['gt_boxes'] ) self.forward_ret_dict.update(targets_dict) # -------------Decode predicted boxes for loss computation-------------------- if self.training and self.predict_boxes_when_training: # for iouscore loss computation # decode predicted boxes in an inference manner self.forward_ret_dict.update( self.predhm_based_predicted_boxes_generation_ssd(K=self.iouscore_training_samples) ) # for corner loss computation # decode predicted boxes in a training manner self.forward_ret_dict.update( self.gthm_based_predicted_boxes_generation() ) # -------------Decode detections for inference-------------------- if not self.training: # You can compare a variety of NMS by setting different flags, which have slight differences. # NMS-1: max-pooling based nms (default) normal_infer_flag = True if normal_infer_flag: center3d_pred_dict = self.predhm_based_predicted_boxes_generation_ssd(K=self.num_infernce_samples) data_dict.update(center3d_pred_dict) data_dict['cls_preds_normalized'] = False # NMS-2: normal NMS. normal_nms_flag = False # normal_nms_flag = True if normal_nms_flag: center3d_pred_dict = self.predhm_based_predicted_boxes_generation_nomaxpooling(K=100) data_dict.update(center3d_pred_dict) data_dict['cls_preds_normalized'] = False return data_dict ``` #### File: dense_heads/feature_adaptor/deformable_convs.py ```python from torch import nn from torch.nn import functional as F from torch.nn.modules.batchnorm import _BatchNorm try: from pcdet.ops.DeformableConvolutionV2PyTorch.modules.deform_conv import DeformConv # from pcdet.ops.DeformableConvolutionV2PyTorch.modules.modulated_deform_conv import ModulatedDeformConv except: print("Deformable Convolution not built!") class FeatureAdaption(nn.Module): """Feature Adaption Module. Feature Adaption Module is implemented based on DCN v1. It uses anchor shape prediction rather than feature map to predict offsets of deformable conv layer. Args: in_channels (int): Number of channels in the input feature map. out_channels (int): Number of channels in the output feature map. kernel_size (int): Deformable conv kernel size. deformable_groups (int): Deformable conv group size. """ def __init__(self, in_channels, out_channels, kernel_size=3, deformable_groups=4): super(FeatureAdaption, self).__init__() offset_channels = kernel_size * kernel_size * 2 self.conv_offset = nn.Conv2d( in_channels, deformable_groups * offset_channels, 1, bias=True) self.conv_adaption = DeformConv( in_channels, out_channels, stride=1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, deformable_groups=deformable_groups, bias=False) self.relu = nn.ReLU(inplace=True) self.init_offset() def init_offset(self): self.conv_offset.weight.data.zero_() self.conv_offset.bias.data.zero_() def init_weights(self): pass """normal_init(self.conv_offset, std=0.1) normal_init(self.conv_adaption, std=0.01) """ def forward(self, x,): offset = self.conv_offset(x) x = self.relu(self.conv_adaption(x, offset)) return x ``` #### File: models/roi_heads/pointrcnniou_head.py ```python import torch import torch.nn as nn from ...ops.pointnet2.pointnet2_batch import pointnet2_modules from ...ops.roipoint_pool3d import roipoint_pool3d_utils from ...utils import common_utils from ...ops.iou3d_nms import iou3d_nms_utils from .roi_head_template import RoIHeadTemplate class PointRCNNIoUHead(RoIHeadTemplate): def __init__(self, input_channels, model_cfg, num_class=1): super().__init__(num_class=num_class, model_cfg=model_cfg) self.model_cfg = model_cfg use_bn = self.model_cfg.USE_BN self.SA_modules = nn.ModuleList() channel_in = input_channels self.num_prefix_channels = 3 + 2 # xyz + point_scores + point_depth xyz_mlps = [self.num_prefix_channels] + self.model_cfg.XYZ_UP_LAYER shared_mlps = [] for k in range(len(xyz_mlps) - 1): shared_mlps.append(nn.Conv2d(xyz_mlps[k], xyz_mlps[k + 1], kernel_size=1, bias=not use_bn)) if use_bn: shared_mlps.append(nn.BatchNorm2d(xyz_mlps[k + 1])) shared_mlps.append(nn.ReLU()) self.xyz_up_layer = nn.Sequential(*shared_mlps) c_out = self.model_cfg.XYZ_UP_LAYER[-1] self.merge_down_layer = nn.Sequential( nn.Conv2d(c_out * 2, c_out, kernel_size=1, bias=not use_bn), *[nn.BatchNorm2d(c_out), nn.ReLU()] if use_bn else [nn.ReLU()] ) for k in range(self.model_cfg.SA_CONFIG.NPOINTS.__len__()): mlps = [channel_in] + self.model_cfg.SA_CONFIG.MLPS[k] npoint = self.model_cfg.SA_CONFIG.NPOINTS[k] if self.model_cfg.SA_CONFIG.NPOINTS[k] != -1 else None self.SA_modules.append( pointnet2_modules.PointnetSAModule( npoint=npoint, radius=self.model_cfg.SA_CONFIG.RADIUS[k], nsample=self.model_cfg.SA_CONFIG.NSAMPLE[k], mlp=mlps, use_xyz=True, bn=use_bn ) ) channel_in = mlps[-1] # 这个cls_layer是否还需要分类别呢? # CLASS_AGNOSTIC = True,所以self.num_class应该一直是1的 self.cls_layers = self.make_fc_layers( input_channels=channel_in, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC ) # 这个reg_layer好像是分类别进行的? # CLASS_AGNOSTIC = True, 所以还是不分类别的 self.reg_layers = self.make_fc_layers( input_channels=channel_in, output_channels=self.box_coder.code_size * self.num_class, fc_list=self.model_cfg.REG_FC ) self.roipoint_pool3d_layer = roipoint_pool3d_utils.RoIPointPool3d( num_sampled_points=self.model_cfg.ROI_POINT_POOL.NUM_SAMPLED_POINTS, pool_extra_width=self.model_cfg.ROI_POINT_POOL.POOL_EXTRA_WIDTH ) self.init_weights(weight_init='xavier') self.predict_boxes_when_training = self.model_cfg.TARGET_CONFIG.CLS_SCORE_TYPE == 'rcnn_iou' def init_weights(self, weight_init='xavier'): if weight_init == 'kaiming': init_func = nn.init.kaiming_normal_ elif weight_init == 'xavier': init_func = nn.init.xavier_normal_ elif weight_init == 'normal': init_func = nn.init.normal_ else: raise NotImplementedError for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): if weight_init == 'normal': init_func(m.weight, mean=0, std=0.001) else: init_func(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001) def roipool3d_gpu(self, batch_dict): """ Args: batch_dict: batch_size: rois: (B, num_rois, 7 + C) point_coords: (num_points, 4) [bs_idx, x, y, z] point_features: (num_points, C) point_cls_scores: (N1 + N2 + N3 + ..., 1) point_part_offset: (N1 + N2 + N3 + ..., 3) Returns: """ batch_size = batch_dict['batch_size'] batch_idx = batch_dict['point_coords'][:, 0] point_coords = batch_dict['point_coords'][:, 1:4] point_features = batch_dict['point_features'] # print('==> 1. point_features.shape: ', point_features.shape) # (32768, 128), bs=2 rois = batch_dict['rois'] # (B, num_rois, 7 + C) batch_cnt = point_coords.new_zeros(batch_size).int() for bs_idx in range(batch_size): batch_cnt[bs_idx] = (batch_idx == bs_idx).sum() assert batch_cnt.min() == batch_cnt.max() point_scores = batch_dict['point_cls_scores'].detach() point_depths = point_coords.norm(dim=1) / self.model_cfg.ROI_POINT_POOL.DEPTH_NORMALIZER - 0.5 point_features_list = [point_scores[:, None], point_depths[:, None], point_features] point_features_all = torch.cat(point_features_list, dim=1) batch_points = point_coords.view(batch_size, -1, 3) batch_point_features = point_features_all.view(batch_size, -1, point_features_all.shape[-1]) # print('==> batch_point_features.shape: ', batch_point_features.shape) # (2, 16384, 130), 因为增加了scores和depth with torch.no_grad(): pooled_features, pooled_empty_flag = self.roipoint_pool3d_layer( batch_points, batch_point_features, rois ) # pooled_features: (B, num_rois, num_sampled_points, 3 + C), pooled_empty_flag: (B, num_rois) # canonical transformation roi_center = rois[:, :, 0:3] pooled_features[:, :, :, 0:3] -= roi_center.unsqueeze(dim=2) pooled_features = pooled_features.view(-1, pooled_features.shape[-2], pooled_features.shape[-1]) pooled_features[:, :, 0:3] = common_utils.rotate_points_along_z( pooled_features[:, :, 0:3], -rois.view(-1, rois.shape[-1])[:, 6] ) pooled_features[pooled_empty_flag.view(-1) > 0] = 0 # print('==> pooled_features.shape: ', pooled_features.shape) # (256, 512, 133), 因为增加了xyz到前面吗 return pooled_features @staticmethod def get_max_iou_with_same_class(rois, roi_labels, gt_boxes, gt_labels): """ Args: rois: (N, 7) roi_labels: (N) gt_boxes: (N, ) gt_labels: Returns: """ """ :param rois: (N, 7) :param roi_labels: (N) :param gt_boxes: (N, 8) :return: """ max_overlaps = rois.new_zeros(rois.shape[0]) gt_assignment = roi_labels.new_zeros(roi_labels.shape[0]) for k in range(gt_labels.min().item(), gt_labels.max().item() + 1): roi_mask = (roi_labels == k) gt_mask = (gt_labels == k) if roi_mask.sum() > 0 and gt_mask.sum() > 0: cur_roi = rois[roi_mask] cur_gt = gt_boxes[gt_mask] original_gt_assignment = gt_mask.nonzero().view(-1) iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi, cur_gt) # (M, N) cur_max_overlaps, cur_gt_assignment = torch.max(iou3d, dim=1) max_overlaps[roi_mask] = cur_max_overlaps gt_assignment[roi_mask] = original_gt_assignment[cur_gt_assignment] return max_overlaps, gt_assignment @torch.no_grad() def generate_rcnn_iouscore_label(self, rcnn_cls, rcnn_reg, batch_dict): """ Args: rcnn_cls: (BN, num_class) rcnn_reg: (BN, code_size) batch_dict: roi_labels: (B, N), 这个一定要用更新后的 return: rcnn_cls_labels: (B, N) """ batch_size = batch_dict['batch_size'] # 1. 先解出预测得rcnn box, 一定要先clone().detach() batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=batch_size, rois=batch_dict['rois'], cls_preds=rcnn_cls.clone().detach(), box_preds=rcnn_reg.clone().detach() ) # print('==> 0.batch_box_preds.shape: ', batch_box_preds.shape) #(B, N, 7) # 3. 分batch,分类别的计算3D iou batch_gt_boxes = batch_dict['gt_boxes'] # (B, N, c) batch_roi_labels = batch_dict['roi_labels'] # (B, N) # 这个一定要用更新后的 # print('==> 1.batch_gt_boxes.shape: ', batch_gt_boxes.shape) # print('==> 2.batch_roi_labels.shape: ', batch_roi_labels.shape) rcnn_iou3d_list = [] for bs_idx in range(batch_size): cur_box_preds = batch_box_preds[bs_idx] cur_gt_boxes = batch_gt_boxes[bs_idx] cur_roi_labels = batch_roi_labels[bs_idx] max_overlaps, gt_assignment = self.get_max_iou_with_same_class( rois=cur_box_preds, roi_labels=cur_roi_labels, gt_boxes=cur_gt_boxes[:, 0:7], gt_labels=cur_gt_boxes[:, -1].long() ) rcnn_iou3d_list.append(max_overlaps) # print('==> max_overlaps.shape: ', max_overlaps.shape) #(N, ) batch_rcnn_ious = torch.stack(rcnn_iou3d_list, dim=0) #(B, N) # 4. 然后需要直接在这对iou划分,制作cls_label iou_bg_thresh = self.model_cfg.TARGET_CONFIG.CLS_BG_THRESH iou_fg_thresh = self.model_cfg.TARGET_CONFIG.CLS_FG_THRESH fg_mask = batch_rcnn_ious > iou_fg_thresh bg_mask = batch_rcnn_ious < iou_bg_thresh interval_mask = (fg_mask == 0) & (bg_mask == 0) batch_cls_labels = (fg_mask > 0).float() batch_cls_labels[interval_mask] = \ (batch_rcnn_ious[interval_mask] - iou_bg_thresh) / (iou_fg_thresh - iou_bg_thresh) # 5. 再记录一下样本,观察训练过程 distribution_dict = {} num_sample_fg = fg_mask.float().sum() num_sample_bg = bg_mask.float().sum() num_sample_inter = interval_mask.float().sum() distribution_dict['num_sample_fg'] = num_sample_fg / batch_size distribution_dict['num_sample_bg'] = num_sample_bg / batch_size distribution_dict['num_sample_inter'] = num_sample_inter / batch_size # 输出 rcnn_cls_labels = batch_cls_labels return rcnn_cls_labels, distribution_dict def forward(self, batch_dict): """ Args: batch_dict: Returns: """ targets_dict = self.proposal_layer( batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST'] ) if self.training: targets_dict = self.assign_targets(batch_dict) # 这里重新赋值是因为assign_targets里面会对 rois 进行重新采样,此时rois已经发生改变, 故更新之. batch_dict['rois'] = targets_dict['rois'] batch_dict['roi_labels'] = targets_dict['roi_labels'] pooled_features = self.roipool3d_gpu(batch_dict) # (total_rois, num_sampled_points, 3 + C) # 难道这里的 point_features 是包含了xyz的吗? xyz_input = pooled_features[..., 0:self.num_prefix_channels].transpose(1, 2).unsqueeze(dim=3).contiguous() xyz_features = self.xyz_up_layer(xyz_input) point_features = pooled_features[..., self.num_prefix_channels:].transpose(1, 2).unsqueeze(dim=3).contiguous() merged_features = torch.cat((xyz_features, point_features), dim=1) merged_features = self.merge_down_layer(merged_features) l_xyz, l_features = [pooled_features[..., 0:3].contiguous()], [merged_features.squeeze(dim=3).contiguous()] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) shared_features = l_features[-1] # (total_rois, num_features, 1) rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2) rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C) if self.training and self.predict_boxes_when_training: new_rcnn_cls_labels, new_distribution_dict = self.generate_rcnn_iouscore_label( rcnn_cls=rcnn_cls, rcnn_reg=rcnn_reg, batch_dict=batch_dict ) # 先检查一下之前的target分配,再更新为rcnn_iouscore assert targets_dict['rcnn_cls_labels'] == None targets_dict['rcnn_cls_labels'] = new_rcnn_cls_labels targets_dict['distribution_dict'].update(new_distribution_dict) # 这里始终希望使用roi_labels作为最终的类别标签, # 使用rcnn_cls_labels作为检测置信度,以及negative result 过滤 # 强置设置为True batch_dict['has_class_labels'] = True if not self.training: batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg ) batch_dict['batch_cls_preds'] = batch_cls_preds batch_dict['batch_box_preds'] = batch_box_preds batch_dict['cls_preds_normalized'] = False else: targets_dict['rcnn_cls'] = rcnn_cls targets_dict['rcnn_reg'] = rcnn_reg self.forward_ret_dict = targets_dict return batch_dict ``` #### File: DeformableConvolutionV2PyTorch/modules/mdeformable_conv_block.py ```python import numpy as np import torch # from det3d.core import box_torch_ops # from det3d.models.builder import build_loss # from det3d.models.losses import metrics # from det3d.torchie.cnn import constant_init, kaiming_init # from det3d.torchie.trainer import load_checkpoint from torch import nn from torch.nn import functional as F from torch.nn.modules.batchnorm import _BatchNorm # from det3d.models.losses.centernet_loss import FocalLoss, SmoothRegLoss, RegLoss, RegClsLoss, FastFocalLoss # from det3d.core.utils.center_utils import ddd_decode # from det3d.models.utils import Sequential # from .. import builder # from ..losses import accuracy # from ..registry import HEADS # import copy try: # from pcdet.ops.dcn.deform_conv import DeformConv, ModulatedDeformConvPack # from pcdet.ops.DeformableConvolutionV2PyTorch.modules.deform_conv import DeformConv from pcdet.ops.DeformableConvolutionV2PyTorch.modules.modulated_deform_conv import ModulatedDeformConv except: print("Deformable Convolution not built!") class MdeformConvBlock(nn.Module): """Feature Adaption Module. Feature Adaption Module is implemented based on DCN v1. It uses anchor shape prediction rather than feature map to predict offsets of deformable conv layer. Args: in_channels (int): Number of channels in the input feature map. out_channels (int): Number of channels in the output feature map. kernel_size (int): Deformable conv kernel size. deformable_groups (int): Deformable conv group size. """ def __init__(self, in_channels, out_channels, kernel_size=3, deformable_groups=4, ): super(MdeformConvBlock, self).__init__() offset_mask_channels = kernel_size * kernel_size * (2+1) self.conv_offset_mask = nn.Conv2d( in_channels, deformable_groups * offset_mask_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1) // 2, bias=True) self.conv_adaption = ModulatedDeformConv( in_channels, out_channels, stride=1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, deformable_groups=deformable_groups, bias=False) # self.relu = nn.ReLU(inplace=True) self.init_offset() def init_offset(self): self.conv_offset_mask.weight.data.zero_() self.conv_offset_mask.bias.data.zero_() def init_weights(self): pass """normal_init(self.conv_offset, std=0.1) normal_init(self.conv_adaption, std=0.01) """ def forward(self, x): offset_mask = self.conv_offset_mask(x) o1, o2, mask = torch.chunk(offset_mask, 3, dim=1) offset = torch.cat((o1, o2), dim=1) # offset = torch.cat((o1, o2), dim=1).detach() mask = torch.sigmoid(mask) # print('==> offset.size(): ', offset.size()) #torch.Size([1, 72, 200, 176]) # print(offset[0, 0:18, :, :]) # just dcn without actfunc x = self.conv_adaption(x, offset, mask) return x ``` #### File: pointnet2/pointnet2_stack/voxel_pool_trans_modules.py ```python import torch import torch.nn as nn import torch.nn.functional as F from . import voxel_query_utils from typing import List class NeighborVoxelSAModuleMSG(nn.Module): def __init__(self, *, query_ranges: List[List[int]], radii: List[float], nsamples: List[int], mlps: List[List[int]], use_xyz: bool = True, pool_method='max_pool'): """ Args: query_ranges: list of int, list of neighbor ranges to group with nsamples: list of int, number of samples in each ball query mlps: list of list of int, spec of the pointnet before the global pooling for each scale use_xyz: pool_method: max_pool / avg_pool """ super().__init__() assert len(query_ranges) == len(nsamples) == len(mlps) self.groupers = nn.ModuleList() self.mlps_in = nn.ModuleList() self.mlps_pos = nn.ModuleList() self.mlps_out = nn.ModuleList() for i in range(len(query_ranges)): max_range = query_ranges[i] nsample = nsamples[i] radius = radii[i] self.groupers.append(voxel_query_utils.VoxelQueryAndGrouping(max_range, radius, nsample)) mlp_spec = mlps[i] cur_mlp_in = nn.Sequential( nn.Conv1d(mlp_spec[0], mlp_spec[1], kernel_size=1, bias=False), nn.BatchNorm1d(mlp_spec[1]) ) cur_mlp_pos = nn.Sequential( nn.Conv2d(3, mlp_spec[1], kernel_size=1, bias=False), nn.BatchNorm2d(mlp_spec[1]) ) cur_mlp_out = nn.Sequential( nn.Conv1d(mlp_spec[1], mlp_spec[2], kernel_size=1, bias=False), nn.BatchNorm1d(mlp_spec[2]), nn.ReLU() ) self.mlps_in.append(cur_mlp_in) self.mlps_pos.append(cur_mlp_pos) self.mlps_out.append(cur_mlp_out) self.relu = nn.ReLU() self.pool_method = pool_method self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) def forward(self, xyz, xyz_batch_cnt, new_xyz, new_xyz_batch_cnt, \ new_coords, features, voxel2point_indices): """ :param xyz: (N1 + N2 ..., 3) tensor of the xyz coordinates of the features :param xyz_batch_cnt: (batch_size), [N1, N2, ...] :param new_xyz: (M1 + M2 ..., 3) :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...] :param features: (N1 + N2 ..., C) tensor of the descriptors of the the features :param point_indices: (B, Z, Y, X) tensor of point indices :return: new_xyz: (M1 + M2 ..., 3) tensor of the new features' xyz new_features: (M1 + M2 ..., \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ # change the order to [batch_idx, z, y, x] new_coords = new_coords[:, [0, 3, 2, 1]].contiguous() new_features_list = [] neighbor_feature_list = [] # for msg, but maybe only ssg used. neighbor_xyz_list = [] # for msg, but maybe only ssg used. for k in range(len(self.groupers)): # features_in: (1, C, M1+M2) features_in = features.permute(1, 0).unsqueeze(0) features_in = self.mlps_in[k](features_in) # features_in: (1, M1+M2, C) features_in = features_in.permute(0, 2, 1).contiguous() # features_in: (M1+M2, C) features_in = features_in.view(-1, features_in.shape[-1]) # grouped_features: (M1+M2, C, nsample) # grouped_xyz: (M1+M2, 3, nsample) grouped_features, grouped_xyz, empty_ball_mask = self.groupers[k]( new_coords, xyz, xyz_batch_cnt, new_xyz, new_xyz_batch_cnt, features_in, voxel2point_indices ) grouped_features[empty_ball_mask] = 0 # grouped_features: (1, C, M1+M2, nsample) grouped_features = grouped_features.permute(1, 0, 2).unsqueeze(dim=0) # print('==> grouped_features.shape', grouped_features.shape) # print('==> grouped_features[0, :5, 100, :]', grouped_features[0, :5, 100, :]) # print('==> grouped_features[0, :5, 400, :]', grouped_features[0, :5, 400, :]) # print('==> grouped_features[0, :5, 800, :]', grouped_features[0, :5, 800, :]) # torch.cuda.synchronize() # print('==> grouped_xyz.shape', grouped_xyz.shape) # print('==> new_xyz[100, ...]: ', new_xyz[100, ...]) # print('==> grouped_xyz[100, ...]', grouped_xyz[100, ...]) # print('==> new_xyz[10400, ...]: ', new_xyz[10400, ...]) # print('==> grouped_xyz[10400, ...]', grouped_xyz[10400, ...]) # print('==> new_xyz[10800, ...]: ', new_xyz[10800, ...]) # print('==> grouped_xyz[10800, ...]', grouped_xyz[10800, ...]) # grouped_xyz: (M1+M2, 3, nsample) grouped_xyz = grouped_xyz - new_xyz.unsqueeze(-1) grouped_xyz[empty_ball_mask] = 0 # grouped_xyz: (1, 3, M1+M2, nsample) grouped_xyz = grouped_xyz.permute(1, 0, 2).unsqueeze(0) # grouped_xyz: (1, C, M1+M2, nsample) position_features = self.mlps_pos[k](grouped_xyz) grouped_new_features = grouped_features + position_features grouped_new_features = self.relu(grouped_new_features) # 把这个增加了pos的特征保存出来,作为邻域特征,不过是否需要对齐呢,去外面对齐? # 这里或许已经是对齐了的,通过合理配置mlp # (1, C, M1+M2, nsample) neighbor_feature_list.append(grouped_new_features) # (1, 3, M1+M2, nsample) neighbor_xyz_list.append(grouped_xyz) # grouped_new_features -> new_features, # 这里是先pooling了再变换维度,节省一点内存的。 if self.pool_method == 'max_pool': new_features = F.max_pool2d( grouped_new_features, kernel_size=[1, new_features.size(3)] ).squeeze(dim=-1) # (1, C, M1 + M2 ...) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( grouped_new_features, kernel_size=[1, new_features.size(3)] ).squeeze(dim=-1) # (1, C, M1 + M2 ...) else: raise NotImplementedError new_features = self.mlps_out[k](new_features) new_features = new_features.squeeze(dim=0).permute(1, 0) # (M1 + M2 ..., C) new_features_list.append(new_features) # (M1 + M2 ..., C) new_features = torch.cat(new_features_list, dim=1) # (1, C, M1+M2, nsample_s1/nsample_s2...) -> (1, C, M1+M2, nsample_s1 + nsample_s2) neighbor_features = torch.cat(neighbor_feature_list, dim=-1) # (1, C, M1+M2, nsample_s1 + nsample_s2) -> (M1+M2, nsample_s1 + nsample_s2, C) neighbor_features = neighbor_features.squeeze(dim=0).permute(1,2,0).contiguous() neighbor_xyz = torch.cat(neighbor_xyz_list, dim=-1) neighbor_xyz = neighbor_xyz.squeeze(dim=0).permute(1,2,0).contiguous() return new_features, neighbor_features, neighbor_xyz class TransformerDecoderLayerPreNorm(nn.Module): def __init__(self, d_model, nc_mem, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"): super().__init__() # donnt do self_attn # self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, kdim=nc_mem, vdim=nc_mem) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout, inplace=True) self.linear2 = nn.Linear(dim_feedforward, d_model) # self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.norm_mem = nn.LayerNorm(nc_mem) self.dropout1 = nn.Dropout(dropout, inplace=True) self.dropout2 = nn.Dropout(dropout, inplace=True) self.dropout3 = nn.Dropout(dropout, inplace=True) self.activation = nn.ReLU(inplace=True) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super().__setstate__(state) def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None): """ tgt: (B, L1, E1) mem: (B, L2, E2) """ # mem是可以self-atten一下的 # 但是通道太少了, 先不做 """ memory = self.norm1(memory) memory2 = self.self_attn(memory, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] memory = memory + self.dropout1(memory2) """ # tgt attend to mem. tgt = self.norm2(tgt) memory = self.norm_mem(memory) # 在multihead_attn里面会做qkv_proj, 将qkv都投影到d_model上 tgt2, mask = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout2(tgt2) tgt = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) return tgt class PointNeighborTransformer(nn.Module): def __init__(self, dim_in, dim_out, nhead=4, num_layers=1, drop=0.0, dim_feature=32, prenorm=True): super().__init__() self.nc_in = dim_in self.nc_out = dim_out self.nhead = nhead self.pe = nn.Sequential( # conv-bn-relu-conv, no/bias when without/with norm nn.Conv2d(3, self.nc_in // 2, 1, bias=False), nn.BatchNorm2d(self.nc_in // 2), nn.ReLU(), nn.Conv2d(self.nc_in // 2, self.nc_in, 1, bias=True) ) self.chunk = nn.TransformerDecoder( TransformerDecoderLayerPreNorm(d_model=self.nc_in, dim_feedforward=2 * self.nc_in, dropout=drop, nhead=nhead, nc_mem=dim_feature), num_layers=num_layers, ) self.fc = nn.Linear(self.nc_in, self.nc_out, bias=True) def forward(self, xyz_tgt, xyz_mem, features_tgt, features_mem): """ xyz_tgt: (M1+M2+..., 3) xyz_mem: (M1+M2+..., N_mem, 3) features_tgt: (M1+M2+..., C_tgt(=d_model)), 这个应该是已经对齐到d_model上了的特征. features_mem: (M1+M2+..., N_mem, C_mem) """ # (M1+M2+..., 3) -> (M1+M2+..., N_tgt=1, 3) -> (M1+M2+..., 3, N_tgt, 1) xyz_tgt_flipped = xyz_tgt.unsqueeze(1).transpose(1,2).unsqueeze(-1) xyz_mem_flipped = xyz_mem.transpose(1,2).unsqueeze(-1) # (M1+M2+..., C_tgt, N_tgt, 1) tgt = features_tgt.unsqueeze(1).transpose(1,2).unsqueeze(-1) + self.pe(xyz_tgt_flipped) mem = features_mem.transpose(1,2).unsqueeze(-1) + self.pe(xyz_mem_flipped) mem_mask = None # torch.nn.MultiheadAttention requires the (L, B, E) shape. # (N_tgt, M1+M2+..., C_tgt) tgt = tgt.squeeze(-1).permute(2, 0, 1) mem = mem.squeeze(-1).permute(2, 0, 1) # back to (M1+M2+..., N_tgt, C_tgt) transformed_feats = self.chunk(tgt, mem, memory_mask=mem_mask).permute(1,0,2) # one more fc or not? # (M1+M2+..., N_tgt, cout) output = self.fc(transformed_feats) return output ```
{ "source": "jialeyu/somethingw", "score": 3 }
#### File: jialeyu/somethingw/hi.py ```python import time itemf=True items=[] inventory=[] users=[] badges=0 money=500 mode = "unknown" import random print ("Something World v.0.21 by <NAME>") print ("If you wanna see the C++ version, which is a lot faster, you can contact Gabriel, or if you want the Javascript version, contact <NAME>.") print ("") print ("_\~ () |\/| [- ~|~ |-| | |\| (_, \/\/ () /? |_ |) ") print ("") print ("") print ("Welcome! What's your name?") name = input(">") #not used yet if name == "guest session": mode = "guest" elif name not in users: users.append(name) mode = "newuser" else: mode = "ruser" begin = "no" noc=0 commanding = False while begin == "no": print ("Hi " + name + "! Are you ready to begin? Type yes or no, or type credits to type the credits.") begin = input(">") if begin == "command": commanding == True break if begin == "exit": print ("Game aborted. You may now close the window. To play again, please refresh before rerunning.") quit() if begin == "yes": break if noc >= 10: print ("STOP PRESSING THE BUTTON OK?!?!?!?!?") badges=badges+1 if begin == "no": print ("OK, I'll wait!") noc=noc+1 elif begin == "cheat": print ("Congratulations, " + name + "! You have completed BDN World 2D! You have earned the DUMB CHEATER badge! (WINNING THE ACTUAL GAME DOES SOMETHING ELSE)") badges=badges+1 mode = "cheater" print ("Ka-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------") quit() if begin == "credits": print (""" Something World, a Jiale.co side project. Work began Feb something 2016. Work is not copyrighted other than the parts from other things which originally were copyrighted. IDE(s) used, in order of most used: Repl.It, Pythonanywhere, Ideone. I owe a great thanks to Simon, who gave me the original idea and a bunch of ascii art. Also thanks for the error message idea! Copyright for Simon contributed areas: All credits for BDN ascii art goes to me! """) if begin != "yes" and begin != "no" and begin != "cheat" and begin != "command" and begin != "credits": print (""" File "<JCODE>", input, in entering SelectionError: Invalid Command""") print ("") begin = "no" badges=badges+1 continue if commanding == True: while True: command = input(">") if command == "/level": ncommand = input("/level>") print ("Sorry, /level based ncommand is not yet avalible. To test the bug-laden beta, please email me at <EMAIL>") elif command == "/edit": ncommand = input("/edit") if ncommand == "/intf": necommand = input("/edit>/intf>") if necommand == "/badge": print ("Editing badge count. Using this feature may cause the game to break, so use with caution.") yesr=input("Type yes to confirm you want to edit badge count:") if yesr == "yes": badge = input("New badge count:") else: break elif ncommand == "/mode": necommand == input("/edit>/mode>") mode = input("Type new mode:") print ("Are you using c9 or another ide that doesn't support end="" sleeping?") while True: ide=input("[y/n]:") if ide == 'y': break else: A = """Welcome to Something World. In battle, you can use the commands 'attack', 'defend', 'run', 'skip', and 'special'. Here's an example: An a appeared: a attack=0 hp=5 defence=0 special=None Your stats: attack=5 defence=5 hp=15 special=None What do you do? >attack You attacked. a has 0 hp. You defeated a! You earned $0.""" for x in A: time.sleep(0.1) attack=5 origattack=5 defence=5 origdefence=5 hp=15 orighp=15 special="None yet." level=1 def match(money,gainmoney,attackern,ehp,eattack,edefence,especial,hp,attack,defence,special): eallow = True time.sleep(0.5) print ("Stats:") time.sleep(0.5) print ("HP: " + str(ehp)) time.sleep(0.5) print ("Attack: " + str(eattack)) time.sleep(0.5) print ("Defence: " + str(edefence)) time.sleep(0.5) print ("Special: " + especial) time.sleep(0.5) print ("") time.sleep(0.5) print ("Your stats:") time.sleep(0.5) print ("HP: " + str(hp)) time.sleep(0.5) print ("Attack: " + str(attack)) time.sleep(0.5) print ("Defence: " + str(defence)) time.sleep(0.5) print ("Special: " + str(special)) time.sleep(0.5) print ("") print ("") while hp > 0 or ehp > 0: Turn = True edefend = False if Turn == True: if hp <= 0: time.sleep(1) print ("Oh nose! You died. Care to try again?") print (""" __ __ _ _ _ \ \ / / | | (_) | | \ \_/ / ___ _ _ __| | _ ___ __| | \ / / _ \ | | | | / _` | | | / _ \ / _` | | | | (_) | | |_| | | (_| | | | | __/ | (_| | _ |_| \___/ \__,_| \__,_| |_| \___| \__,_| (_) """) quit() else: print ("What do you do?") while True: action = input(">") if action == "attack": if edefend == False: ehp = ehp-attack time.sleep(0.5) print ("You attacked. " + attackern + " now has " + str(ehp) + "hp.") turn = False break else: print ("Hey! You can't do that. The enemy is defended!") continue elif action == "defence" or action == "defend" or action == "defense": if eattack > defence: time.sleep(0.5) print ("Defence failed.") turn = False break else: time.sleep(0.5) print ("Defended!") eallow = False turn = False break elif action == "special": print ("Under Construction! Please choose something else for now.") continue elif action == "run": print ("Under Construction! I'm so sorry for this not being usable. But try your best and you will (hopefully) win!") turn = False break elif action == "skip": time.sleep(0.25) print ("You skipped your turn.") turn = False break elif action == "": print (""" File "<JCODE>", input, in attacking HEY!Error: THATZ A BLANK LINE! THOZEZ R USELESSZ!""") else: print (""" File "<JCODE>", input, in attacking SelectionError: Invalid Command""") #Opponent's Turn number=random.randint(1,2) if ehp <= 0: money = money + gainmoney print (attackern + " was defeated! You won and gained $" + str(gainmoney) + "!") print ("You now have $" + str(money)) break if number == 1: hp = hp - eattack print ("Enemy is thinking...") time.sleep(2) print ("Enemy attacked! Attack is " + str(eattack) +". You have " + str(hp) + " left!") elif number == 2: if edefence >= attack: edefend = True print ("Enemy is thinking...") time.sleep(2) print ("Enemy defended themselves! You cannot attack in your next turn!") elif edefence < attack: print ("Enemy is thinking...") time.sleep(2) print ("Enemy attempted defending and failed! Enemy did nothing.") Turn = True time.sleep(2.5) print ("Game started.") time.sleep(1) print ("Player is " + name) print ("if you would like a custom nickname, type y. If not, type n.") loop = True while loop == True: yesorno=input(">") if yesorno == "y": print ("OK, what would you like me to call you?") name = input(">") print ("OK then! " + name + " it is!") time.sleep(1) loop = False elif yesorno == "n": print ("Sure! Moving on...") loop = False else: print ("") time.sleep(1.5) print ("Battle scene controls: attack, defence, special, run, skip") time.sleep(1) time.sleep(1) print ("") print ("") print ("") time.sleep(2) print ("----------------------------------------------------------") time.sleep(1) print ("You are a kid named " + name + ". One day you decided to walk around in the city.") time.sleep(1) print ("CITY: LEVEL 1, EASY") time.sleep(1) print ("You meet Mario!") print (""" ______██████████████ "MY GAME IS TOO BORING! TIME TO RUIN SOMEONE ELSE'S GAME!" -____██▓▓▓▓▓▓▓▓▓ M ▓████ "Actually, you are making the game more INTRESTING." -__██▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓██ "OH. WATEVA" -__██████░░░░██░░██████ ██░░░░████░░██░░░░░░░░██ ██░░░░████░░░░██░░░░░░██ -__████░░░░░░██████████ -__██░░░░░░░░░░░░░██ _____██░░░░░░░░░██ -______██░░░░░░██ -____██▓▓████▓▓▓█ -_██▓▓▓▓▓▓████▓▓█ ██▓▓▓▓▓▓███░░███░ -__██░░░░░░███████ -____██░░░░███████ -______██████████ -_____██▓▓▓▓▓▓▓▓▓██ -_____█████████████""") attackern="Mario" eattack=5 edefence=0 ehp=10 especial="None yet." gainmoney=100 match(money,gainmoney,attackern,ehp,eattack,edefence,especial,hp,attack,defence,special) print ("") print ("") print ("") print ("") print ("") time.sleep(1.5) print ("Hi! My name is GBot! You make know me from Simon's drawings. If you know me and my slightly unhelpful personality, don't worry, because my creator gave me some software improvements, and now I am as helpful as a thing programmed by a 11-year old can be! *I wonder if that sounds helpful...") time.sleep(1) print ("Anyway, I will tell you about stuff when I feel you need help. Or, you can talk to me by typing GBot in the NexT MenU.") print ("For GBot to work, it must be installed on your system. Would you like to install now?") while True: ha = input("</G>") if ha == "yep" or ha == "yes": print ("Nice! Wait a few seconds...") time.sleep(5) print ("GBot has been installed!") break else: print (""" File "<JCODE>", input, in attacking GBotIsAnnoyingError: Sorry, I don't seem to understand. Please type either yes to install or yep to install.""") print ("") time.sleep(0.5) print ("Thanks for installing me! I hope we get along well. You can request a feature or a bugfix at my creator's email: <EMAIL>. Enough, lets move on.") time.sleep(2) def nextmenu(items,itemf): while True: print (""" """) print ("NexT MenU: Please choose a choice:") time.sleep(0.5) print ("*continue*") print ("*Battleground* Coming Soon") print ("*Go Home* Unlocks at Level 5") print ("*Items*") print ("*Collection*") print ("*Stats*") print ("*GBot*") option = input(">>") if option == "Continue Trip" or option == "continue" or option == "continue trip": print (""" """) break elif option == "items" or option == "Items": print (""" """) print ("ITEMS:") print (""" """) RefillHealth="HealthMax: refills your health to max" AttackDouble="SupaAttack: doubles your attack" DefenceDouble="SupaDefender: doubles your defence" if itemf == True: print ("GBot: Welcome to the items menu! Here you can see your items and use them!") print ("GBot: I've added some starter items for you.") print (""" """) items.append(RefillHealth) items.append(AttackDouble) items.append(DefenceDouble) lengthi=len(items) lindex=0 for i in range (lengthi): time.sleep(0.5) print (items[lindex]) lindex=lindex+1 itemf=False choicei=input("Items>") if choicei == "HealthMax": hp = orighp print ("Your health is now up to max:" + str(hp)) time.sleep(1) elif option == "stats" or option == "Stats": print (""" """) else: print (""" File "<JCODE>", input, in attacking MenuError: Menu could not read your command.""") nextmenu(items,itemf) print ("You come to a fork in the road.") time.sleep(0.5) time.sleep(0.5) print ("What do you do?") wd=input(">") if wd == "l" or wd == "r" or wd == "left" or wd == "right": print ("Oops there is only one path") elif wd == "forward" or wd == "f": print ("There's a fork in the road! Learn to read!") elif wd == "get fork": print ("You removed the fork and put it into your inventory.") time.sleep(1) inventory.append("Fork: seems to do nothing. Maybe good for stabbing people? NoT that I say that's a good idea...") print ("Having taken care of the fork in the road, you decide to be bored. You soon realize being bored is very boring. Oh and also, you realise that it is getting dark, and that it might be a good idea to find a place to sleep.") time.sleep(1) print ("Whenever you are told that it might be a good idea to sleep, you can type sleep now, and your person will find a place to sleep. Unfortunately your person has bad judgement, so if a bed of nails is nearer than a soft, nice bed, he/she will choose the bed of nails.") time.sleep(2.5) print ("You are at a fork in the road again. This time though, it's the kind of fork that looks like this:") time.sleep(1) print (""" \ \ | | / / \ \| |/ / \ / | | | |_|_| """) print ("Type anything to continue") read=input(">") time.sleep(1) print ("There are three paths: ONE------------------------------------------------------------") time.sleep(1) print ("You hear in the distance: THAT's topytighted you ididots you freeziong idiozt garbageonthestreet!d;l") time.sleep(1.5) print ("Anytay,doingpoiseaoshso9s8nfjdopooooooooooooooooooingspriopojgjdsgBDNBDNBDNBDNBDNDBNletzfightdabdn ow that hurt NOTGHT") print ("Type anything to continue") stuf=input(">") time.sleep(1.5) print ("") print ("Err...") time.sleep(1) print ("Well...") time.sleep(1) print ("Um...") time.sleep(1) print ("") time.sleep(1) print (""" File "<Sanity>", storyboard, in fork2, ? RealisticError: Something happened, and we couldn't make sure the game is working properly. You can type exit to continue and disable the workingCheCK.""") print ("01000001 01101110 00100000 01110101 01101110 01101011 01101110 01101111 01110111 01101110 00100000 01100101 01110010 01110010 01101111 01110010 00100000 01101111 01100011 01100011 01110101 01110010 01110010 01100101 01100100 00101110") print ("Type anything if your now bored.") s=input(">") time.sleep(2) print ("I'm now bored.") time.sleep(1) print (""" """) print ("There are three paths: 1 leads to a house, 2 leads to a bed of nails with a health drink nearby, 3 leads to---What? Nothing?!?!?!") print ("Type anything! JUST DO IT") stuff=input(">") print (""" """) print ("YoU FeEl YoUrEsElF gEtTiNg PuShEd InTo PaTh ThReE!?!?!?!") print ("AhHhHhHhHhHhHhHhHhHhHHHHhhhhh h hh hhh h h???") print ("Type anything if your ok with that.") st=input(">") print (""" """) time.sleep(2) ''' Again, same here :( ''' print ("") print ("'Is that a BDN?' you find yourself saying.") time.sleep(1) print ("'I'm sooooo a BDN!!!' replies the um... well... kinda-BDN") time.sleep(1) print ("You feel that you suddenly know that BDNs can't talk. Well at least not in english. Not that you didn't know that already...") time.sleep(1) print ("You find yourself yelling 'Hey! BDNs can't talk! WTF!!!'") time.sleep(1) print ("The kinda-BDN replies 'Well, I am a BDN, Jiale.co allowed me to test their BDN speaker. It enables you to ----- KA------------------------------------------------------------------------------------------------------------------") time.sleep(1) print ("...") time.sleep(1) print ("You hear 'Ka------------------------------------------------------------------------------------------'") time.sleep(1) print (""" """) time.sleep(1) print ("GHhHhhHhHHHHAahahHhhHHHhAHHAHSAHDHAHSHhAHHASIHhoLH is a sound that fills the air.") print ("") time.sleep(1) print ("The BDN attacks you!") time.sleep(1) attackern="BDN" eattack=10 edefence=-1 ehp=35 especial="KA----------------------------" gainmoney=100 print ("You feel a magical power indulge you.") time.sleep(1) print ("You momentarily vanish from the dimention.") print (""" +--------+ +---------------------------------------------------+ | +------+ | | | +------+ | | | | | | +----------------------------------------+ | | +--------+ | | | | | | | | | +---------------+ | | | +-----|-----------|---|----------------------|----+ | +---------|------|-----|-----------|--+| | | | +---------+------------|-----------|---|----------------------+ | +----------------------------+| | | | | | | +-------------||-----|---+ | | | | | | || | | | | | | | +--------+ || | | | | | | +-----|--------|------|------|-----------+ | | +------------|--------|------+|-+ | | | | | | | | +--|---------------|------------------------+ | | +------|-------|--|--|---+ | | | | | | | | | | | | | +--+--|---------------|------------------------+--+ +--------+ +---------------+----------------+ Your defence is now 1000 Your attack is now 10 Your mom is now dead """) defence=1000 attack=10 mom='dead' print (""" """) gainmoney=500 match(money,gainmoney,attackern,ehp,eattack,edefence,especial,hp,attack) print (""" """) print ("Having defeated the BDN, you are satisfied.") time.sleep(1) print ("ACK! You feel the extra power you gained is starting to stick!") time.sleep(1) print ("") print ("Your attack is now 10!!!") origattack=10 attack=10 time.sleep(0.5) print ("") print ("You move forward. A cool breeze starts to blow.") time.sleep(1) ```
{ "source": "JialianLee/open_spiel", "score": 2 }
#### File: JialianLee/open_spiel/noxfile.py ```python import os import sys import sysconfig import nox def get_distutils_tempdir(): return ( f"temp.{sysconfig.get_platform()}-{sys.version_info[0]}.{sys.version_info[1]}" ) @nox.session def tests(session): session.install("-r", "requirements.txt") session.run("python", "setup.py", "build") session.run("python", "setup.py", "install") session.cd(os.path.join("build", get_distutils_tempdir())) session.run( "ctest", f"-j{4*os.cpu_count()}", "--output-on-failure", external=True) ``` #### File: algorithms/alpha_zero/alpha_zero.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from open_spiel.python.algorithms import dqn from open_spiel.python.algorithms.alpha_zero import model as model_lib import pyspiel class AlphaZero(object): """AlphaZero implementation. Follows the pseudocode AlphaZero implementation given in the paper DOI:10.1126/science.aar6404. """ def __init__(self, game, bot, model, replay_buffer_capacity=int(1e6), action_selection_transition=30): """AlphaZero constructor. Args: game: a pyspiel.Game object bot: an MCTSBot object. model: A Model. replay_buffer_capacity: the size of the replay buffer in which the results of self-play games are stored. action_selection_transition: an integer representing the move number in a game of self-play when greedy action selection is used. Before this, actions are sampled from the MCTS policy. Raises: ValueError: if incorrect inputs are supplied. """ game_info = game.get_type() if game.num_players() != 2: raise ValueError("Game must be a 2-player game") if game_info.chance_mode != pyspiel.GameType.ChanceMode.DETERMINISTIC: raise ValueError("The game must be a Deterministic one, not {}".format( game.chance_mode)) if (game_info.information != pyspiel.GameType.Information.PERFECT_INFORMATION): raise ValueError( "The game must be a perfect information one, not {}".format( game.information)) if game_info.dynamics != pyspiel.GameType.Dynamics.SEQUENTIAL: raise ValueError("The game must be turn-based, not {}".format( game.dynamics)) if game_info.utility != pyspiel.GameType.Utility.ZERO_SUM: raise ValueError("The game must be 0-sum, not {}".format(game.utility)) if game.num_players() != 2: raise ValueError("Game must have exactly 2 players.") self.game = game self.bot = bot self.model = model self.replay_buffer = dqn.ReplayBuffer(replay_buffer_capacity) self.action_selection_transition = action_selection_transition def update(self, num_training_epochs=10, batch_size=128, verbose=False): """Trains the neural net. Randomly sampls data from the replay buffer. An update resets the optimizer state. Args: num_training_epochs: An epoch represents one pass over the training data. The total number training iterations this corresponds to is num_training_epochs * len(replay_buffer)/batch_size. batch_size: the number of examples sampled from the replay buffer and used for each net training iteration. verbose: whether to print training metrics during training. Returns: A list of length num_training_epochs. Each element of this list is a Losses tuples, averaged per epoch. """ num_epoch_iters = math.ceil(len(self.replay_buffer) / float(batch_size)) losses = [] for epoch in range(num_training_epochs): epoch_losses = [] for _ in range(num_epoch_iters): train_data = self.replay_buffer.sample(batch_size) epoch_losses.append(self.model.update(train_data)) epoch_losses = (sum(epoch_losses, model_lib.Losses(0, 0, 0)) / len(epoch_losses)) losses.append(epoch_losses) if verbose: print("Epoch {}: {}".format(epoch, epoch_losses)) return losses def self_play(self, num_self_play_games=5000): """Uses the current state of the net with MCTS to play full games against. Args: num_self_play_games: the number of self-play games to play using the current net and MCTS. """ for _ in range(num_self_play_games): self._self_play_single() def _self_play_single(self): """Play a single game and add it to the replay buffer.""" state = self.game.new_initial_state() trajectory = [] while not state.is_terminal(): root = self.bot.mcts_search(state) target_policy = np.zeros(self.game.num_distinct_actions(), dtype=np.float32) for child in root.children: target_policy[child.action] = child.explore_count target_policy /= sum(target_policy) trajectory.append(model_lib.TrainInput( state.observation_tensor(), state.legal_actions_mask(), target_policy, root.total_reward / root.explore_count)) action = self._select_action(root.children, len(trajectory)) state.apply_action(action) terminal_rewards = state.rewards() for state in trajectory: self.replay_buffer.add( model_lib.TrainInput(state.observation, state.legals_mask, state.policy, terminal_rewards[0])) def _select_action(self, children, game_history_len): explore_counts = [(child.explore_count, child.action) for child in children] if game_history_len < self.action_selection_transition: probs = np_softmax(np.array([i[0] for i in explore_counts])) action_index = np.random.choice(range(len(probs)), p=probs) action = explore_counts[action_index][1] else: _, action = max(explore_counts) return action def np_softmax(logits): max_logit = np.amax(logits, axis=-1, keepdims=True) exp_logit = np.exp(logits - max_logit) return exp_logit / np.sum(exp_logit, axis=-1, keepdims=True) ```
{ "source": "jialiasus2/AI-Studio-Contest-Quantum202103", "score": 3 }
#### File: AI-Studio-Contest-Quantum202103/work/ArchitectureSearch.py ```python import time import numpy as np from tqdm import tqdm from utils import RandomCNOT, RandomCNOTs def SimulatedAnnealing(quantum_count, layer_count, solver, epochs=100, save_path=None, global_best_score=0): #TODO: best_score = 0 cnot = RandomCNOTs(quantum_count, layer_count) sc, model = solver(cnot) if sc>best_score: best_score = sc cnot_seed = cnot best_model = model best_cnot = cnot if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) start_time = time.time() for epoch in range(epochs): for i in range(layer_count): cnot_layers = cnot_seed.copy() cnot_layers[i] = RandomCNOT(quantum_count) sc, model = solver(cnot_layers) if sc>best_score or np.random.randint(epochs)>epoch: cnot_seed = cnot_layers if sc>best_score: best_score = sc best_model = model best_cnot = cnot_layers if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) print('epoch %d, iter %d, Score = %g, best_score = %g, global_best_score = %g, time = %gs'%(epoch, i, sc, best_score, global_best_score, time.time()-start_time)) # print(best_model) return best_score, best_model, best_cnot def SequenceJitter(quantum_count, layer_count, solver, init_epochs=10, epochs=100, save_path=None, global_best_score=0): #TODO: best_score = 0 print('Init cnot seed.') for _ in tqdm(range(init_epochs)): cnot = RandomCNOTs(quantum_count, layer_count) sc, model = solver(cnot) if sc>best_score: best_score = sc cnot_seed = cnot best_model = model best_cnot = cnot if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) start_time = time.time() for epoch in range(epochs): for i in range(layer_count): cnot_layers = cnot_seed.copy() cnot_layers[i] = RandomCNOT(quantum_count) sc, model = solver(cnot_layers) if sc>best_score: best_score = sc cnot_seed = cnot_layers best_model = model best_cnot = cnot_layers if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) print('Score = %g, best_score = %g, global_best_score = %g, time = %gs'%(sc, best_score, global_best_score, time.time()-start_time)) # print(best_model) return best_score, best_model, best_cnot def RandomSearch(cnot_creater, solver, epochs=100, save_path=None): ''' 随机搜索 Parameters: cnot_creater: 生成CNOT层的可执行对象 solver: 一个可执行对象,给定网络结构后,求解网络参数的求解器 epochs: 随机搜索的轮数 save_path: 保存最佳结果的路径 ''' best_score = 0 start_time = time.time() for epoch in range(epochs): cnot_layers = cnot_creater() sc, model = solver(cnot_layers) if sc>best_score: best_score = sc best_model = model if save_path is not None: with open(save_path, 'w') as f: f.write(best_model) print('No_%d: score = %g, best_score = %g, time = %gs'%(epoch, sc, best_score, time.time()-start_time)) # print(best_model) return best_score, best_model ```
{ "source": "jialiasus2/AI-Studio-Contest-Remote202110", "score": 2 }
#### File: AI-Studio-Contest-Remote202110/work/predict.py ```python import os import cv2 from tqdm import tqdm import numpy as np import paddle from my_dataset import MyDataset, save_img from my_model import make_model from configs import MODEL_PATH, TEST_DIR, SAVE_DIR, BATCH_SIZE def post_process(result): ''' result: 2*H*W ''' if result.shape[0]<=3: res = cv2.GaussianBlur(result.transpose([1,2,0]),(5,5),1).transpose([2, 0, 1]) else: res = cv2.GaussianBlur(result,(5,5),1) return res if __name__=='__main__': test_ids = [f[:-4] for f in os.listdir(TEST_DIR) if f.endswith('.jpg')] test_dataset = MyDataset(test_ids, TEST_DIR, None, argument=False) test_loader = paddle.io.DataLoader(test_dataset, batch_size=BATCH_SIZE, num_workers=4, shuffle=False) print(len(test_dataset)) model = make_model() params = paddle.load(os.path.join(MODEL_PATH, 'model.pdparams')) print('Load model') model.set_state_dict(params) with paddle.no_grad(): model.eval() fi = 0 for X in tqdm(test_loader): Y = model(X)[0] Y = paddle.argmax(Y, axis=1).numpy().astype(np.uint8) for y in Y: save_path = os.path.join(SAVE_DIR, test_ids[fi]+'.png') save_img(save_path, y) fi += 1 # os.system('zip -qr result.zip result/') pass ```
{ "source": "jiali-ms/JLM", "score": 3 }
#### File: JLM/decoder/model_ngram.py ```python import pickle import numpy as np import os import json from random import shuffle import math import sys sys.path.append('..') from config import data_path, experiment_path class NGramModel(): """N-gram model that take arpa file as input and provide probability with previous words. Arpa parsing code are mainly from https://raw.githubusercontent.com/yohokuno/neural_ime/master/decode_ngram.py """ def __init__(self, ngram_file='lm3', ngram_order=3): self.ngram_order = ngram_order self.model = self.parse_srilm(os.path.join(data_path, ngram_file)) def parse_ngram(self, ngram): for word in ngram.split(' '): if word == '<s>': yield '<eos>' elif word == '</s>': yield '<eos>' else: yield word def parse_srilm(self, file): print('{} loaded'.format(file)) ngrams = {} with open(file, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.rstrip('\n') fields = line.split('\t', 2) if len(fields) < 2: continue if len(fields) == 2: logprob, ngram = fields backoff = None elif len(fields) > 2: logprob, ngram, backoff = fields backoff = -math.log(10 ** float(backoff)) cost = -math.log(10 ** float(logprob)) ngram = tuple(self.parse_ngram(ngram)) ngrams[ngram] = (cost, backoff) print('{} ngrams loaded'.format(len(ngrams))) return ngrams def predict(self, words, debug=False): if type(words) is list: words = tuple(words[-self.ngram_order:]) if words in self.model: cost, _ = self.model[words] if debug: print(words) return cost if len(words) == 1: return 100.0 return self.predict(words[1:], debug) def evaluate(self, words, debug=False): prob = [] words = ['<eos>'] + words for i in range(2, len(words)+1): prob.append(self.predict(words[:i], debug)) if debug: print(prob[-1]) return sum(prob) if __name__ == "__main__": # test the model model = NGramModel(ngram_file='lm3', ngram_order=2) print(model.evaluate(['今日/キョー/名詞-普通名詞-副詞可能', 'は/ワ/助詞-係助詞', 'いい/イー/形容詞-非自立可能', '天気/テンキ/名詞-普通名詞-一般', 'です/デス/助動詞'], debug=True)) ```
{ "source": "jiali-ms/seg", "score": 3 }
#### File: jiali-ms/seg/lexicon_dp.py ```python from collections import defaultdict, deque import math import time import re re_dict = re.compile('^(.+?)( [0-9]+)?( [a-z]+)?$', re.U) re_han = re.compile("([\u4E00-\u9FD5]+)", re.U) re_skip = re.compile("[^a-zA-Z0-9+#\n]", re.U) class Lexicon(): def __init__(self, dict_path): """ Init lexicon with dict path. Format is 'word freq pos' with space separated. Note that we don't handle pos so far. :param dict_path: """ self.total = 0 self.dict = {} with open(dict_path, 'r', encoding='utf-8')as f: for line in f: word, freq, tag = re_dict.match(line).groups() if freq is not None: freq = freq.strip() # give a minimal 1 count for rare words without freq as smoothing freq = max(int(freq), 1) self.dict[word] = freq self.total += freq # prefix but not yet a word will be 0 # mimic of prefix check of trie for acceleration for i in range(len(word)): sub_word = word[:i + 1] if sub_word not in self.dict: self.dict[sub_word] = 0 def check_prob(self, word): """ Return prob in neg log format. :param word: :return: 0 for prefix, neg log for word. Otherwise None """ if word in self.dict: freq = self.dict[word] if freq is not 0: return -math.log(freq/self.total) else: return 0 else: return None def has_prefix(self, word): return word in self.dict def is_word(self, word): return word in self.dict and self.dict[word] != 0 class Decoder(): def __init__(self): # model will provide probability self.lexicon = Lexicon('user_dict.txt') def decode(self, input): """ decode the input sentence. This method cut input sentence into blocks first with non-chinese symbols as natural boundary. It is vital for speed up. In local experiment, 50x faster. :param input: :return: """ blocks = re_han.split(input) for block in blocks: if not block: continue if re_han.match(block): for word in self.decode_(block): yield word else: if block == '': continue else: matched = False tmp = re_skip.split(block) for x in tmp: if re_skip.match(x): matched = True yield x if not matched: yield block def decode_(self, input): """ use dp to find best path. This method decode with backward lookup. Notice that forward lookup is also a choice. :param input: The raw input sequence :return: Best path as list of words """ # build frames # frame is backward lookup with start_idx to key as valid word frames = defaultdict(list) input_size = len(input) for s in range(input_size): e = s + 1 while self.lexicon.has_prefix(input[s:e]) and e <= input_size: if self.lexicon.is_word(input[s:e]): frames[e].append(s) e += 1 # in case of oov symbols, segment to char if s not in frames: frames[s] = [(s-1, 0)] # decode best path with simple dp from start best_path = {} best_path[0] = (0, 0) for i in range(1, input_size + 1): for s in frames[i]: word = input[s:i] prob = self.lexicon.check_prob(word) neg_log = prob + best_path[s][1] if i not in best_path or neg_log < best_path[i][1]: best_path[i] = (s, neg_log) # parse results result = deque() idx = input_size while idx > 0: s = best_path[idx][0] result.appendleft(input[s:idx]) idx = s for x in result: yield x if __name__ == "__main__": decoder = Decoder() start_time = time.time() result = decoder.decode('结婚的和尚未结婚的,都是很nice cool的“靠谱人士”') end_time = time.time() print(' '.join(result)) print('{} s'.format(end_time - start_time)) ```
{ "source": "jialing3/corner_cases", "score": 4 }
#### File: corner_cases/algo_fun/expression.py ```python class Expression: def __init__(self, str1, str2, str3): self.strs = [str1, str2, str3] def getChars(self): return set(self.strs[0]) | set(self.strs[1]) | set(self.strs[2]) def char_to_num(self, m, str): new_str = [] for c in str: # str is a list, ONE new_str.append(m.get(c)) return int(new_str) def evaluate(self, m): # m = {'a': 1, 'b': 2} return self.char_to_num(m, self.strs[0]) + self.char_to_num(m, self.strs[1]) == self.char_to_num(m, self.strs[2]) # Map<Char, Int> solve(Expression e) e = Expression('ONE', 'ONE', 'TWO') def solve(e): chars = e.getChars() n = len(chars) return walk([str(x) for x in range(10)], [], n, e, chars) def walk(remaining, taken, n, e, chars): # n is the total len(getChars) if len(taken) == n: m = dict([(c, num) for c, num in zip(chars, path)]) if e.evaluate(m): return m else: for ind in range(len(remaining)): tmp = walk(remaining[:ind] + remaining[ind+1:], taken + [remaining[ind]], n, e, chars) if tmp is not None: return tmp return None ``` #### File: corner_cases/Relue/Eu55.py ```python def isPanlidrome(num): num = str(num) return num[::-1] == num def addReverse(num): rev = int(str(num)[::-1]) return num + rev def isLychrel(num): counter = 50 while counter > 0: num = addReverse(num) if isPanlidrome(num): return False counter -= 1 return True lst = [x for x in range(1, 10000) if isLychrel(x)] print len(lst) print 349, 349 in lst, '\n', 196, 196 in lst, '\n', 4994, 4994 in lst ``` #### File: corner_cases/Relue/Eu60.py ```python from collections import defaultdict def is_prime(n): if n == 2 or n == 3: return True if n < 2 or n%2 == 0: return False if n < 9: return True if n%3 == 0: return False r = int(n ** .5) f = 5 while f <= r: if n%f == 0: return False if n%(f+2) == 0: return False f +=6 return True concat = lambda x, y: int(''.join(str(x) + str(y))) def concat_check(x, y): return all([is_prime(concat(x, y)), is_prime(concat(y, x))]) nrange = 1e2 nrange_new=1e4 # guaranteed as 1e4*5 > 26033 lst = range(2, int(nrange)) prime_lst = list(set(lst).difference([x * y for x in lst for y in lst if x * y <= max(lst)])) prime_lst += [x for x in range(int(nrange), int(nrange_new) + 1) if is_prime(x)] prime_pair = defaultdict(list) for x in prime_lst: for y in prime_lst: if y > x and concat_check(x, y): prime_pair[x].append(y) lst_of_five = [] for key1 in sorted(prime_pair): new_lst1 = prime_pair[key1] if len(new_lst1) >= 4: for key2 in new_lst1: new_lst2 = set(new_lst1) & set(prime_pair[key2]) if len(new_lst2) >= 3: for key3 in sorted(new_lst2): new_lst3 = new_lst2 & set(prime_pair[key3]) if len(new_lst3) >= 2: for key4 in sorted(new_lst3): new_lst4 = new_lst3 & set(prime_pair[key4]) if len(new_lst4) >= 1: lst_of_five.append( [key1, key2, key3, key4, min(new_lst4)] ) ``` #### File: corner_cases/Relue/Eu61.py ```python triangle = lambda n: n*(n+1)/2 square = lambda n: n**2 pentagonal = lambda n: n*(3*n-1)/2 hexagonal = lambda n: n*(2*n-1) heptagonal = lambda n: n*(5*n-3)/2 octagonal = lambda n: n*(3*n-2) digit_split = lambda num: (num / 100, num % 100) list3 = [digit_split(triangle(x)) for x in range(45, 141)] list4 = [digit_split(square(x)) for x in range(32, 100)] list5 = [digit_split(pentagonal(x)) for x in range(26, 82)] list6 = [digit_split(hexagonal(x)) for x in range(23, 71)] list7 = [digit_split(heptagonal(x)) for x in range(21, 64)] list8 = [digit_split(octagonal(x)) for x in range(19, 59)] AB_3, CD_3 = set([x[0] for x in list3]), set([x[1] for x in list3]) AB_4, CD_4 = set([x[0] for x in list4]), set([x[1] for x in list4]) AB_5, CD_5 = set([x[0] for x in list5]), set([x[1] for x in list5]) AB_6, CD_6 = set([x[0] for x in list6]), set([x[1] for x in list6]) AB_7, CD_7 = set([x[0] for x in list7]), set([x[1] for x in list7]) AB_8, CD_8 = set([x[0] for x in list8]), set([x[1] for x in list8]) def intersect_join(s1, s2, s3, s4, s5, s6): return s1 & (s2 | s3 | s4 | s5 | s6) AB_3 = intersect_join(AB_3, CD_4, CD_5, CD_6, CD_7, CD_8) CD_3 = intersect_join(CD_3, AB_4, AB_5, AB_6, AB_7, AB_8) AB_4 = intersect_join(AB_4, CD_3, CD_5, CD_6, CD_7, CD_8) CD_4 = intersect_join(CD_4, AB_3, AB_5, AB_6, AB_7, AB_8) AB_5 = intersect_join(AB_5, CD_4, CD_3, CD_6, CD_7, CD_8) CD_5 = intersect_join(CD_5, AB_4, AB_3, AB_6, AB_7, AB_8) AB_6 = intersect_join(AB_6, CD_4, CD_5, CD_3, CD_7, CD_8) CD_6 = intersect_join(CD_6, AB_4, AB_5, AB_3, AB_7, AB_8) AB_7 = intersect_join(AB_7, CD_4, CD_5, CD_6, CD_3, CD_8) CD_7 = intersect_join(CD_7, AB_4, AB_5, AB_6, AB_3, AB_8) AB_8 = intersect_join(AB_8, CD_4, CD_5, CD_6, CD_7, CD_3) CD_8 = intersect_join(CD_8, AB_4, AB_5, AB_6, AB_7, AB_3) list3 = [x for x in list3 if x[0] in AB_3 and x[1] in CD_3] list4 = [x for x in list4 if x[0] in AB_4 and x[1] in CD_4] list5 = [x for x in list5 if x[0] in AB_5 and x[1] in CD_5] list6 = [x for x in list6 if x[0] in AB_6 and x[1] in CD_6] list7 = [x for x in list7 if x[0] in AB_7 and x[1] in CD_7] list8 = [x for x in list8 if x[0] in AB_8 and x[1] in CD_8] ans = [] for ind1, lst1 in enumerate([list3, list4, list5, list6, list7, list8]): ind_list = [3, 4, 5, 6, 7, 8] list_used = set([3, 4, 5, 6, 7, 8]) for AB1, CD1 in lst1: list_used = list_used ^ set([8]) for ind2, lst2 in enumerate([list3, list4, list5, list6, list7, list8]): if ind1 != ind2: for AB2, CD2 in lst2: if CD1 == AB2: list_used = list_used ^ set([ind_list[ind2]]) for ind3, lst3 in enumerate([list3, list4, list5, list6, list7, list8]): if ind1 != ind3 and ind2 != ind3: for AB3, CD3 in lst3: if CD2 == AB3: list_used = list_used ^ set([ind_list[ind3]]) for ind4, lst4 in enumerate([list3, list4, list5, list6, list7, list8]): if ind1 != ind4 and ind2 != ind4 and ind3 != ind4: for AB4, CD4 in lst4: if CD3 == AB4: list_used = list_used ^ set([ind_list[ind4]]) for ind5, lst5 in enumerate([list3, list4, list5, list6, list7, list8]): if ind1 != ind5 and ind2 != ind5 and ind3 != ind5 and ind4 != ind5: for AB5, CD5 in lst5: if CD4 == AB5: list_used = list_used ^ set([ind_list[ind5]]) for ind6, lst6 in enumerate([list3, list4, list5, list6, list7, list8]): if ind1 != ind6 and ind2 != ind6 and ind3 != ind6 and ind4 != ind6 and ind5 != ind6: for AB6, CD6 in lst6: if CD5 == AB6 and CD6 == AB1: list_used = list_used ^ set([ind_list[ind6]]) ans.append( [AB1*100+CD1, ind_list[ind1], AB2*100+CD2, ind_list[ind2], AB3*100+CD3, ind_list[ind3], AB4*100+CD4, ind_list[ind4], AB5*100+CD5, ind_list[ind5], AB6*100+CD6, ind_list[ind6]]) from random import randint def recurse(whole_lst=[list3, list4, list5, list6, list7, list8], inds=[3, 4, 5, 6, 7, 8], CD_old=None, AB_new=None): if len(inds) > 1 and CD_old is None: for tmp_ind in range(len(inds)): inds2 = inds[:] whole_lst2 = whole_lst[:] ind = inds2.pop(tmp_ind) lst = whole_lst2.pop(tmp_ind) for AB, CD in lst: AB_new = AB tmp = recurse(whole_lst2, inds2, CD, AB_new) if tmp: return tmp + [AB*100+CD, ind] elif len(inds) > 1 and CD_old is not None: for tmp_ind in range(len(inds)): inds2 = inds[:] whole_lst2 = whole_lst[:] ind = inds2.pop(tmp_ind) lst = whole_lst2.pop(tmp_ind) for AB, CD in lst: if CD_old == AB: tmp = recurse(whole_lst2, inds2, CD, AB_new) if tmp: return tmp + [AB*100+CD, ind] elif len(inds) == 1: ind = inds[0] lst = whole_lst[0] for AB, CD in lst: if CD_old == AB and CD == AB_new: return [AB*100+CD, ind] print recurse() ``` #### File: corner_cases/Relue/Eu64.py ```python from math import sqrt def cycle(n, print_flg=0): count = 0 a, b, c = int(sqrt(n)), 1, int(sqrt(n)) d = [] rep = set() while True: if print_flg: print a, ',', b,'/ ( sqrt(', n, ') -', c, ')' d.append((a,b,c)) expression = b / (sqrt(n) - c) a = int(expression) b = (n - c ** 2) / b c = b * a - c if (a,b,c) in d[:-1]: initial_ind = d.index((a,b,c)) if (a,b,c) in d[initial_ind+1:]: cycle_length = d.index((a,b,c), initial_ind + 1) - initial_ind if d[initial_ind:initial_ind+cycle_length+1] == d[initial_ind+cycle_length:initial_ind+2*cycle_length+1]: return cycle_length count += 1 print n, d def euler64(): counter = 0 for i in range(2, 10001): if not sqrt(i).is_integer(): counter += (cycle(i) % 2) #print i print counter def play(): list1 = [] for i in range(2, 300): if not sqrt(i).is_integer(): if cycle(i) % 2: if not sqrt(i-1).is_integer(): list1.append(i) print list1 def test1(): set1 = set() list1 = [i**2+1 for i in range(1,1000)] for i in range(len(list1)-1): for j in range(i): if not list1[i] % list1[j] and not sqrt(list1[i] / list1[j]).is_integer(): set1.add(list1[i] / list1[j]) #set1.add((list1[i] / list1[j], list1[i], list1[j])) set1 = set1 - set(list1)# - set(test2()) print sorted(set1)[:30] def test2(): set1 = set() list1 = [i**2+1 for i in range(1,100)] for i in range(len(list1)-1): for j in range(i): set1.add(list1[i] * list1[j]) #set1.add((list1[i] * list1[j], list1[i], list1[j])) set1 = set1 - set(list1) return sorted(set1)[:30] #1 2 1 2 4 2 1 2 2 5, 10000 #b_tmp = 23 - c ** 2 #b = b_tmp / b if b_tmp % b == 0 else b_tmp #4 , 1 / (sqrt(23) - 4) # = (sqrt(23) + 4) / 7 # = 1 + (sqrt(23) - 3) / 7 #1, 7 / (sqrt(23) - 3) # = 7 * (sqrt(23) + 3) / 14 # = (sqrt(23) + 3) / 2 # = 3 + (sqrt(23) - 3) / 2 #3, 2 / (sqrt(23) - 3) # = 2 * (sqrt(23) + 3) / 14 # = (sqrt(23) + 3) / 7 # = 1 + (sqrt(23) - 4) / 7 #1, 7 / (sqrt(23) - 4) # = 7 * (sqrt(23) + 4) / 7 # = (sqrt(23) + 4) # = 8 + (sqrt(23) - 8) #8, 1 / (sqrt(23) - 8) ''' sqrt(2) = 1 + sqrt(2) - 1 1, 1 / (sqrt(2) - 1) = (sqrt(2) + 1) / 1 = 2 + (sqrt(2) - 1) / 1 2, 1 / (sqrt(2) - 1) = (sqrt(2) + 1) / 1 = 2 + (sqrt(2) - 1) / 1 sqrt(3) = 1 + sqrt(3) - 1 1, 1 / (sqrt(3) - 1) = (sqrt(3) + 1) / 2 = 1 + (sqrt(3) - 1) / 2 1, 2 / (sqrt(3) - 1) = 2 * (sqrt(3) + 1) / 2 = sqrt(3) + 1 = 2 + (sqrt(3) - 1) 2, 1 / (sqrt(3) - 1) = (sqrt(3) + 1) / 2 sqrt(7) = 2 + sqrt(7) - 2 2, 1 / (sqrt(7) - 2) = (sqrt(7) + 2) / 3 = 1 + (sqrt(7) - 1) / 3 1, 3 / (sqrt(7) - 1) = 3 * (sqrt(7) + 1) / 6 = (sqrt(7) + 1) / 2 = 1 + (sqrt(7) - 1) / 2 1, 2 / (sqrt(7) - 1) = 2 * (sqrt(7) + 1) / 6 = (sqrt(7) + 1) / 3 = 1 + (sqrt(7) - 2) / 3 1, 3 / (sqrt(7) - 2) = 3 * (sqrt(7) + 2) / 3 = sqrt(7) + 2 = 4 + (sqrt(7) - 2) 4, 1 / (sqrt(7) - 2) 1 1 1 4 ''' ``` #### File: corner_cases/Relue/Eu77.py ```python class Solution: def __init__(self): self.memo = {} def break_down(self, n, to_use): if type(n) != int or type(to_use) != list: return 0 else: if len(to_use) == 0: return 1 if n == 0 else 0 elif len(to_use) == 1 and to_use[0] == n: return 1 elif (n, tuple(to_use)) in self.memo: return self.memo[n, tuple(to_use)] else: not_used = self.break_down(n, to_use[:-1]) used = self.break_down(n - to_use[-1], list(filter(lambda x: x <= n - to_use[-1], to_use))) self.memo[n, tuple(to_use)] = not_used + used #print(n, to_use[-1], not_used, used) return not_used + used def sieve_prime(self, n): non_prime = set() for i in range(2, n): for j in range(2, n): non_prime.add(i * j) return [x for x in range(2, n + 1) if x not in non_prime] def break_down_wrapper(self, n): return self.break_down(n, self.sieve_prime(n)) sol = Solution() assert sol.break_down_wrapper(10) == 5 assert sol.sieve_prime(100) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] number_of_ways = [] for n in range(10, 100): number_of_ways.append(sol.break_down_wrapper(n)) if number_of_ways[-1] > 5000: print(n, number_of_ways) break ``` #### File: corner_cases/Relue/Eu79.py ```python class Solution: def __init__(self): self.keylog = self.get_keylog() self.first, self.last, self.all_nums, self.count_of_n1_before_n2 = self.get_first_last_and_counts() self.guess = [self.first, self.last] def check(self): for k in self.keylog: inds = [] for num in k: if num in self.guess: inds.append(self.guess.index(num)) else: print(k) break if sorted(inds) != inds: print(k) else: print('check passed') def make_a_guess(self): last = self.guess.pop() candidates = self.all_nums for i in range(6): candidates.remove(self.guess[i]) flags = {} # flags[n1][n2] indicates whether n1 can go before n2 for n1 in candidates: if n1 != last: flags[n1] = {} for n2 in candidates: if n1 != n2 and last not in (n1, n2): n1_before_n2 = self.count_of_n1_before_n2[n1].get(n2, 0) n2_before_n1 = self.count_of_n1_before_n2[n2].get(n1, 0) flags[n1][n2] = True if n1_before_n2 >= n2_before_n1 else False selected = list(filter(lambda x: all(x[1].values()), flags.items()))[0][0] self.guess.append(selected) self.guess.append(last) print(''.join(self.guess)) return def get_keylog(self): keylog = set() with open('p079_keylog.txt') as f: for row in f.readlines(): row = tuple(list(row.strip())) keylog.add(row) return sorted(keylog) def get_first_last_and_counts(self): count_of_n1_before_n2 = {} non_first = set() non_last = set() all_nums = set() for k in self.keylog: for n1, n2 in zip(k[:-1], k[1:]): if n1 not in count_of_n1_before_n2: count_of_n1_before_n2[n1] = {} if n2 not in count_of_n1_before_n2[n1]: count_of_n1_before_n2[n1][n2] = 0 count_of_n1_before_n2[n1][n2] += 1 for n in k[1:]: non_first.add(n) for n in k[:-1]: non_last.add(n) for n in k: all_nums.add(n) first = (all_nums - non_first).pop() last = (all_nums - non_last).pop() return first, last, all_nums, count_of_n1_before_n2 if __name__ == '__main__': sol = Solution() sol.make_a_guess() sol.check() ``` #### File: corner_cases/Relue/Eu86.py ```python from math import sqrt ''' x = 6 y = 5 z = 3 # 0 <= a <= x dist1 = sqrt((x - a) ** 2 + y ** 2) + sqrt(a ** 2 + z ** 2) # d/da dist1 == 0 a = z * x / (z + y) x - a = x * y / (z + y) sqrt((x - a) ** 2 + y ** 2) = y / (z + y) * sqrt((z + y) ** 2 + x ** 2) sqrt(a ** 2 + z ** 2) = z / (z + y) * sqrt( x ** 2 + (z + y) ** 2) dist1 = sqrt((z + y) ** 2 + x ** 2) # 0 <= a <= y dist2 = sqrt((y - a) ** 2 + x ** 2) + sqrt(a ** 2 + z ** 2) # d/da dist2 == 0 a = z * y / (z + x) dist2 = sqrt((z + x) ** 2 + y ** 2) # dist2 ** 2 - dist1 ** 2 = 2 * z * (x - y) > 0 # 0 <= a <= z dist3 = sqrt((z - a) ** 2 + y ** 2) + sqrt(a ** 2 + x ** 2) # d/da dist3 == 0 a = x * z / (x + y) dist3 = sqrt((x + y) ** 2 + z ** 2) # dist3 ** 2 - dist2 ** 2 = 2 * x * (y - z) > 0 start with z <= y <= x first, build a list of perfect square's a ** 2 + b ** 2 = c ** 2 with a <= b < c then either 1) z + y = a, x = b or 2) z + y = b, x = a ''' def perfect_squares_sieve2(limit): root2 = 2 ** 0.5 a = set() for i in range(3, limit + 1): for j in range(int(i / root2) + 1, i): k = int((i ** 2 - j ** 2) ** 0.5) if (k, j) not in a: if k ** 2 + j ** 2 == i ** 2: a.add((k, j)) for l in range(2, limit // i + 1): a.add((k * l, j * l)) return a perfect_squares = perfect_squares_sieve2(5000) ''' perfect_squares = {(3, 4): 5} for c in range(1, 2000): for b in range(1, c): for a in range(1, b + 1): if a ** 2 + b ** 2 == c ** 2: perfect_squares[(a, b)] = c ''' def count_of_cuboids_given_M(M, c=set()): for x in range(1, M + 1): for y in range(1, x + 1): for z in range(1, y + 1): if (x, y, z) not in c: a = z + y b = x if (a, b) in perfect_squares: for d in range(1, M // x + 1): c.add((x * d, y * d, z * d)) a = x b = z + y if (a, b) in perfect_squares: for d in range(1, M // x + 1): c.add((x * d, y * d, z * d)) l = len(list(filter(lambda k: k[0] <= x, c))) if l > 1000000: print(x, l) break if x % 100 == 0: print(x, l) return c c = count_of_cuboids_given_M(99, c=set()) assert(len(c) == 1975) c = count_of_cuboids_given_M(100, c=c) assert(len(c) == 2060) ''' # determine the upper-bound of the perfect_squares to calculate c = set() i = 1 i2o = {} while i < 101: c = count_of_cuboids_given_M(i, c) i2o[i] = len(c) i += 1 import numpy as np from scipy import stats import matplotlib.pyplot as plt slope, intercept, r_value, p_value, std_err = stats.linregress(np.log2(x[2:]), np.log2(y[2:])) print(slope, intercept, r_value**2, p_value, std_err) # np.log2(y) = intercept + slope * np.log2(x) # np.log2(1M) = 20 # x = 2 ** 11 = 2K plt.plot(np.log2(x), np.log2(y), '.', np.log2(x), intercept + slope * np.log2(x), '.'); plt.show() ''' i = 5000 c = count_of_cuboids_given_M(i, set()) # needs further optimization https://en.wikipedia.org/wiki/Pythagorean_triple ``` #### File: corner_cases/stats_fun/running_total_die_toss.py ```python from pprint import pprint import matplotlib.pyplot as plt def memoize(f): cache = {} def g(x): if x not in cache: cache[x] = f(x) return cache[x] return g def prob_total_equal_n(n): if n < 0: return 0 elif n == 0: return 1 else: return 1. / 6 * sum(prob_total_equal_n(n - i) for i in range(1, 7)) prob_total_equal_n = memoize(prob_total_equal_n) if __name__ == '__main__': P_n = [prob_total_equal_n(j) for j in range(100)] pprint(P_n) plt.plot(range(1, 100), P_n[1:], '.:', alpha=.5) # plateaus at around n = 20 plt.show() ```
{ "source": "jialingt/dowel", "score": 3 }
#### File: src/dowel/simple_outputs.py ```python import abc import datetime import os import sys import dateutil.tz from dowel import LogOutput from dowel.tabular_input import TabularInput from dowel.utils import mkdir_p class StdOutput(LogOutput): """Standard console output for the logger. :param with_timestamp: Whether to log a timestamp before non-tabular data. """ def __init__(self, with_timestamp=True): self._with_timestamp = with_timestamp @property def types_accepted(self): """Accept str and TabularInput objects.""" return (str, TabularInput) def record(self, data, prefix=''): """Log data to console.""" if isinstance(data, str): out = prefix + data if self._with_timestamp: now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y-%m-%d %H:%M:%S') out = '%s | %s' % (timestamp, out) elif isinstance(data, TabularInput): out = str(data) data.mark_str() else: raise ValueError('Unacceptable type') print(out) def dump(self, step=None): """Flush data to standard output stream.""" sys.stdout.flush() class FileOutput(LogOutput, metaclass=abc.ABCMeta): """File output abstract class for logger. :param file_name: The file this output should log to. :param mode: File open mode ('a', 'w', etc). """ def __init__(self, file_name, mode='w'): mkdir_p(os.path.dirname(file_name)) # Open the log file in child class self._log_file = open(file_name, mode) def close(self): """Close any files used by the output.""" if self._log_file and not self._log_file.closed: self._log_file.close() def dump(self, step=None): """Flush data to log file.""" self._log_file.flush() class TextOutput(FileOutput): """Text file output for logger. :param file_name: The file this output should log to. :param with_timestamp: Whether to log a timestamp before the data. """ def __init__(self, file_name, with_timestamp=True): super().__init__(file_name, 'a') self._with_timestamp = with_timestamp self._delimiter = ' | ' @property def types_accepted(self): """Accept str objects only.""" return (str, TabularInput) def record(self, data, prefix=''): """Log data to text file.""" if isinstance(data, str): out = prefix + data if self._with_timestamp: now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y-%m-%d %H:%M:%S') out = '%s | %s' % (timestamp, out) elif isinstance(data, TabularInput): out = str(data) data.mark_str() else: raise ValueError('Unacceptable type.') self._log_file.write(out + '\n') ```
{ "source": "jialinjiao/udacity_CarND", "score": 3 }
#### File: udacity_CarND/CarND-Behavioral-Cloning-P3/model1.py ```python import numpy as np import csv import cv2 import sklearn from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, MaxPooling2D, Dropout from keras.layers.convolutional import Convolution2D # Constants data_path = "data/" image_path = data_path + "IMG/" left_image_angle_correction = 0.20 right_image_angle_correction = -0.20 csv_data = [] processed_csv_data = [] # Reading the content of csv file with open(data_path + 'driving_log.csv') as csv_file: csv_reader = csv.reader(csv_file) # Skipping the headers next(csv_reader, None) for each_line in csv_reader: csv_data.append(each_line) # Method to pre-process the input image def pre_process_image(image): # Since cv2 reads the image in BGR format and the simulator will send the image in RGB format # Hence changing the image color space from BGR to RGB colored_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Cropping the image cropped_image = colored_image[60:140, :] # Downscaling the cropped image resized_image = cv2.resize(cropped_image, None, fx=0.25, fy=0.4, interpolation=cv2.INTER_CUBIC) return resized_image def generator(input_data, batch_size=64): # Since we are augmenting 3 more images for a given input image, so dividing the batch size by 4 processing_batch_size = int(batch_size / 4) number_of_entries = len(input_data) # Shuffling the csv entries input_data = sklearn.utils.shuffle(input_data) while True: for offset in range(0, number_of_entries, processing_batch_size): # Splitting the data set into required batch size batch_data = input_data[offset:offset + processing_batch_size] image_data = [] steering_angle = [] # Iterating over each image in batch_data for each_entry in batch_data: center_image_path = image_path + each_entry[0].split('/')[-1] center_image = cv2.imread(center_image_path) steering_angle_for_centre_image = float(each_entry[3]) if center_image is not None: # Pre-processing the image processed_center_image = pre_process_image(center_image) image_data.append(processed_center_image) steering_angle.append(steering_angle_for_centre_image) # Flipping the image image_data.append(cv2.flip(processed_center_image, 1)) steering_angle.append(- steering_angle_for_centre_image) # Processing the left image left_image_path = image_path + each_entry[1].split('/')[-1] left_image = cv2.imread(left_image_path) if left_image is not None: image_data.append(pre_process_image(left_image)) steering_angle.append(steering_angle_for_centre_image + left_image_angle_correction) # Processing the right image right_image_path = image_path + each_entry[2].split('/')[-1] right_image = cv2.imread(right_image_path) if right_image is not None: image_data.append(pre_process_image(right_image)) steering_angle.append(steering_angle_for_centre_image + right_image_angle_correction) # Shuffling and returning the image data back to the calling function yield sklearn.utils.shuffle(np.array(image_data), np.array(steering_angle)) # Splitting the csv data set into train and validation data train_data, validation_data = train_test_split(csv_data, test_size=0.2) # Creating generator instances for train and validation data set train_generator_instance = generator(train_data) validation_generator_instance = generator(validation_data) # Getting shape of processed image first_img_path = image_path + csv_data[0][0].split('/')[-1] first_image = cv2.imread(first_img_path) processed_image_shape = pre_process_image(first_image).shape # My final model architecture model = Sequential() # Normalizing the input image data model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=processed_image_shape)) # First Convolution2D layer model.add(Convolution2D(24, 5, 5, subsample=(2, 2), activation="relu")) model.add(MaxPooling2D()) model.add(Dropout(0.25)) # Second Convolution2D layer model.add(Convolution2D(32, 5, 5, subsample=(2, 2), activation="relu")) model.add(MaxPooling2D()) # Flattening the output of 2nd Convolution2D layer model.add(Flatten()) # First Dense layer model.add(Dense(32)) model.add(Dropout(0.20)) # Second Dense Layer model.add(Dense(16)) # Third and Final Dense Layer model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') model.fit_generator(train_generator_instance, samples_per_epoch=len(train_data) * 4, verbose=1, validation_data=validation_generator_instance, nb_val_samples=len(validation_data)*4, nb_epoch=3) model.save('model.h5') ``` #### File: udacity_CarND/CarND-Behavioral-Cloning-P3/model_not_working.py ```python import csv import cv2 import utils import argparse import numpy as np from nn import model from sklearn.utils import shuffle from sklearn.model_selection import train_test_split class Pipeline: def __init__(self, model=None, base_path='', epochs=2): self.data = [] self.model = model self.epochs = epochs self.training_samples = [] self.validation_samples = [] self.correction_factor = 0.2 self.base_path = base_path self.image_path = self.base_path + '/IMG/' self.driving_log_path = self.base_path + '/driving_log.csv' def import_data(self): with open(self.driving_log_path) as csvfile: reader = csv.reader(csvfile) # Skip the column names row next(reader) for line in reader: self.data.append(line) return None def process_batch(self, batch_sample): steering_angle = np.float32(batch_sample[3]) images, steering_angles = [], [] for image_path_index in range(3): image_name = batch_sample[image_path_index].split('/')[-1] image = cv2.imread(self.image_path + image_name) rgb_image = utils.bgr2rgb(image) resized = utils.crop_and_resize(rgb_image) images.append(resized) if image_path_index == 1: steering_angles.append(steering_angle + self.correction_factor) elif image_path_index == 2: steering_angles.append(steering_angle - self.correction_factor) else: steering_angles.append(steering_angle) if image_path_index == 0: flipped_center_image = utils.flipimg(resized) images.append(flipped_center_image) steering_angles.append(-steering_angle) return images, steering_angles def data_generator(self, samples, batch_size=128): num_samples = len(samples) while True: shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset + batch_size] images, steering_angles = [], [] for batch_sample in batch_samples: augmented_images, augmented_angles = self.process_batch(batch_sample) images.extend(augmented_images) steering_angles.extend(augmented_angles) X_train, y_train = np.array(images), np.array(steering_angles) yield shuffle(X_train, y_train) def split_data(self): train, validation = train_test_split(self.data, test_size=0.2) self.training_samples, self.validation_samples = train, validation return None def train_generator(self, batch_size=128): return self.data_generator(samples=self.training_samples, batch_size=batch_size) def validation_generator(self, batch_size=128): return self.data_generator(samples=self.validation_samples, batch_size=batch_size) def run(self): self.split_data() self.model.fit_generator(generator=self.train_generator(), validation_data=self.validation_generator(), epochs=self.epochs, steps_per_epoch=len(self.training_samples) * 2, validation_steps=len(self.validation_samples)) self.model.save('model.h5') def main(): parser = argparse.ArgumentParser(description='Train a car to drive itself') parser.add_argument( '--data-base-path', type=str, default='./data', help='Path to image directory and driving log' ) args = parser.parse_args() # Instantiate the pipeline pipeline = Pipeline(model=model(), base_path=args.data_base_path, epochs=2) # Feed driving log data into the pipeline pipeline.import_data() # Start training pipeline.run() if __name__ == '__main__': main() ```
{ "source": "JialinLiOSU/bikeability_ConvNet", "score": 4 }
#### File: GIS_algorithm/geom/line_seg_intersection.py ```python __author__ = "<NAME> <<EMAIL>>" import sys sys.path.append("..") from contrib.bintrees import AVLTree from .point import * from .intersection import * from .line_seg_eventqueue import * def get_edges(t, p): """ Gets the edges (segments) that contain point p as their right endpoint or in the interior """ lr = [] lc = [] for s in AVLTree(t): if s.rp == p: lr.append(s) elif s.lp == p and s.status == INTERIOR: lc.append(s) elif sideplr(p, s.lp, s.rp) == 0: lc.append(s) return lr, lc def get_lr(T, s): """ Returns the left and right neighbors (branches) of s in T. """ try: sl = T.floor_key(s) except KeyError: sl = None try: sr = T.ceiling_key(s) except KeyError: sr = None return sl, sr def get_lrmost(T, segs): """ Finds the leftmost and rightmost segments of segs in T """ l = [] for s in list(T): if s in segs: l.append(s) if len(l) < 1: return None, None return l[0], l[-1] def find_new_event(s1, s2, p, q): """ Tests if s1 intersects s2 at a point that is not in the event queue. When a new intersection point is found, a new event will be created and added to the event queue. Input: s1: line segment s2: line segment p: the point of the current event q: event queue Output: True if a new point is found, False otherwise Change: the content in the queue (q) may change. """ ip = intersectx(s1, s2) if ip is None: return False if q.find(ip) is not -1: return False if ip.x>p.x or (ip.x==p.x and ip.y >= p.y): e0 = Event() e0.p = ip e0.edges = [s1, s2] q.add(e0) return True def intersectx(s1, s2): """ Tests intersection of 2 input segments. If intersection is possible, the actual intersection point will be calculated and returned. """ if not test_intersect(s1, s2): return None p = getIntersectionPoint(s1, s2) # an intersection return p def intersections(psegs): """ Implementation of the Bentley-Ottmann algorithm. Input psegs: a list of segments Output intpoints: a list of intersection points """ eq = EventQueue(psegs) intpoints = [] T = AVLTree() L=[] while not eq.is_empty(): # for all events e = eq.events.pop(0) # remove the event p = e.p # get event point L = e.edges # segments with p as left end R,C = get_edges(T, p) # p: right (R) and interior (C) if len(L+R+C) > 1: # Intersection at p among L+R+C for s in L+R+C: if not s.contains(p): # if p is interior s.lp = p # change lp and s.status = INTERIOR # status intpoints.append(p) R,C = get_edges(T, p) for s in R+C: T.discard(s) for s in L+C: T.insert(s, str(s)) if len(L+C) == 0: s = R[0] if s is not None: sl, sr = get_lr(T, s) find_new_event(sl, sr, p, eq) else: sp, spp = get_lrmost(T, L+C) try: sl = T.prev_key(sp) except KeyError: # only on last key sl = None try: sr = T.succ_key(spp) except KeyError: # only on last key sr = None find_new_event(sl, sp, p, eq) find_new_event(sr, spp, p, eq) return intpoints ``` #### File: GIS_algorithm/geom/polygon_error.py ```python class PolygonError: """Basic error for point-in-polygon algorithms""" def __init__(self, msg): self.message = msg ``` #### File: GIS_algorithm/geom/shapex.py ```python from struct import unpack, calcsize from os.path import isfile from datetime import date shapefile_types = { 0: 'Null Shape', 1: 'Point', 3: 'PolyLine', 5: 'Polygon', 8: 'MultiPoint', 11: 'PointZ', 13: 'PolyLineZ', 15: 'PolygonZ', 18: 'MultiPointZ', 21: 'PointM', 23: 'PolyLineM', 25: 'PolygonM', 28: 'MultiPointM', 31: 'MultiPatch' } supported_types = [ 'Point', 'MultiPoint', 'PolyLine', 'Polygon' ] def clockwise(polygon): '''calculate 2*A polygon: [ [x, y], [x, y], ... ] polygon = [ [1, 0], [2,0], [2,2], [1,2], [1, 0] ] clockwise(polygon) # False polygon.reverse() clockwise(polygon) # True ''' if polygon[0] != polygon[-1]: return num_point = len(polygon) A = 0 for i in range(num_point-1): p1 = polygon[i] p2 = polygon[i+1] ai = p1[0] * p2[1] - p2[0] * p1[1] A += ai return A<0 class shapex: ''' A class for points in Cartesian coordinate systems. Examples >>> fname = '/Users/xiao/lib/gisalgs/data/uscnty48area.shp' >>> shp = shapex(fname) >>> print(shp[60]) ''' def __init__(self, fname): if not fname.endswith('.shp'): raise Exception('Need a .shp file.') self.fname_shp = fname self.fname_shx = fname[:-3]+'shx' self.fname_dbf = fname[:-3]+'dbf' if not isfile(self.fname_shp) or not isfile(self.fname_shx) or not isfile(self.fname_dbf): raise Exception('Need at least three files: .shp, .shx, .dbf') self.open_shapefile() def open_shapefile(self): self.f_shx = open(self.fname_shx, 'rb') h1 = unpack('>7i', self.f_shx.read(28)) h2 = unpack('<2i 8d', self.f_shx.read(72)) file_length = h1[-1] self.num_rec = (file_length-50)//4 self.f_shp = open(self.fname_shp, 'rb') h1 = unpack('>7i', self.f_shp.read(28)) # BIG h2 = unpack('<2i 8d', self.f_shp.read(72)) # LITTLE self.file_length = h1[-1] self.version = h2[0] self.shape_type = shapefile_types[h2[1]] # self.xmin, self.ymin, self.xmax, self.ymax, self.zmin, self.zmax, self.mmin, self.mmax = h2[2:10] self.xmin = h2[2] self.ymin = h2[3] self.xmax = h2[4] self.ymax = h2[5] self.zmin = h2[6] self.zmax = h2[7] self.mmin = h2[8] self.mmax = h2[9] self.this_feature_num = 0 # get (offset, content length) pairs from shx # remember each record has a header of 8 bytes index = unpack('>'+'i'*self.num_rec*2, self.f_shx.read(self.num_rec*4*4)) self.index = [(index[i]*2, index[i+1]*2) for i in range(0, len(index), 2)] # get schema, etc. self.f_dbf = open(self.fname_dbf, 'rb') dbf_numrec, lenheader = unpack('<xxxxLH22x', self.f_dbf.read(32)) self.numfields = (lenheader - 33) // 32 if dbf_numrec != self.num_rec: raise Exception('SHP and DBF have different numbers of records') self.fields = [] for fieldno in range(self.numfields): name, dtype, size, deci = unpack('<11sc4xBB14x', self.f_dbf.read(32)) name = name.replace(b'\0', b'') # take out \x00 self.fields.append((name.decode('ascii'), dtype.decode('ascii'), size, deci)) self.f_dbf.read(1) # skip the terminator self.fields.insert(0, ('DeletionFlag', 'C', 1, 0)) self.formatstr = ''.join(['%ds' % fieldinfo[2] for fieldinfo in self.fields]) self.formatsize = calcsize(self.formatstr) self.dbf_header_length = 32 + 32*self.numfields + 1 def __getitem__(self, i): if not self.shape_type in supported_types: raise Exception(self.shape_type + ' shape type not supported') if isinstance(i, slice): return [self[j] for j in range(*i.indices(len(self)))] elif isinstance(i, int): if i<0: i = self.num_rec + i if i<0 or i+1>self.num_rec: raise Exception('Feature index out of range (' + str(i) + ')') pos = self.index[i] self.f_shp.seek(pos[0] + 8) # skip record hearder, which is not useful if self.shape_type == 'Polygon': feature = self.readpolygon() if self.shape_type == 'PolyLine': feature = self.readpolygon() if feature['geometry']['type'] == 'MultiPolygon': feature['geometry']['type'] = 'MultiLineString' else: feature['geometry']['type'] = 'LineString' if self.shape_type == 'Point': feature = self.readpoint() if self.shape_type == 'MultiPoint': feature = self.readmultipoint() # get properties here. properties = self.read_dbf(i) feature['properties'] = properties feature['id'] = i return feature else: raise TypeError('Invalid index') def robust_decode(self, bs): ''' https://stackoverflow.com/questions/24475393/unicodedecodeerror-ascii-codec-cant-decode-byte-0xc3-in-position-23-ordinal Convert a byte string to unicode. Try UTF8 first, if not working then latin1. ''' cr = None try: cr = bs.decode('utf8') except UnicodeDecodeError: cr = bs.decode('latin1') return cr def read_dbf(self, i): # Note: dtypes of D, L are note tested self.f_dbf.seek(self.dbf_header_length + i * self.formatsize) record = unpack(self.formatstr, self.f_dbf.read(self.formatsize)) if record[0] == ' ': return ' ' * self.formatsize result = [] for (name, dtype, size, deci), value in zip(self.fields, record): value = value.decode('latin1') # value = value.decode('ascii') // works for Python 2 # value = self.robust_decode(value) if name == 'DeletionFlag': continue if dtype == 'N': value = value.replace('\0', '').lstrip() if value == '': value = 0 elif deci: value = float(value) else: value = int(value) elif dtype == 'C': value = value.rstrip() elif dtype == 'D': y, m, d = int(value[:4]), int(value[4:6]), int(value[6:8]) value = date(y, m, d) elif dtype == 'L': value = (value in 'YyTt' and 'T') or (value in 'NnFf' and 'F') or '?' elif dtype == 'F': value = float(value) result.append(value) properties = {} for fi in range(1, len(self.fields)): properties[self.fields[fi][0]] = result[fi-1] return properties def readpoint(self): point = unpack('<idd', self.f_shp.read(4+8+8)) feature = { "type": "Feature", "geometry": { "type": 'Point', "coordinates": (point[1], point[2]) } } return feature def readmultipoint(self): # This function is not tested content_head = unpack('<i 4d i', self.f_shp.read(40)) shape_type = content_head[0] num_points = content_head[5] points = unpack('<'+'d'*num_points*2, self.f_shp.read(8*2*num_points)) multipoints = [(points[i], points[i+1]) for i in range(0, len(points), 2)] feature = { "type": "Feature", "geometry": { "type": 'MultiPoint', "coordinates": multipoints } } return feature def readpolygon(self): content_head = unpack('<i 4d 2i', self.f_shp.read(44)) shape_type = content_head[0] num_parts = content_head[5] num_points = content_head[6] parts = unpack('<'+'i'*num_parts, self.f_shp.read(4*num_parts)) points = unpack('<'+'d'*num_points*2, self.f_shp.read(8*2*num_points)) feature = { "type": "Feature", "geometry": { "type": 'Polygon' } } if num_parts == 1: polygon = [[(points[i], points[i+1]) for i in range(0, len(points), 2)]] feature['geometry']['coordinates'] = polygon else: directions = [] polygons = [] for j in range(num_parts): start = parts[j]*2 if j != num_parts-1: end = parts[j+1]*2 else: end = len(points) polygon = [(points[i], points[i+1]) for i in range(start, end, 2)] polygons.append(polygon) directions.append(clockwise(polygon)) if False in directions: feature['geometry']['type'] = 'Polygon' feature['geometry']['coordinates'] = polygons else: feature['geometry']['type'] = 'MultiPolygon' multipolygon = [] for poly in polygons: multipolygon.append([poly]) feature['geometry']['coordinates'] = multipolygon return(feature) def __len__(self): return self.num_rec def __iter__(self): return self def __next__(self): if self.this_feature_num >= self.num_rec: self.this_feature_num = 0 raise StopIteration feature = self.__getitem__(self.this_feature_num) self.this_feature_num += 1 return feature def close(self): self.f_shp.close() self.f_shx.close() self.f_dbf.close() @property def bounds(self): return(self.xmin, self.ymin, self.xmax, self.ymax) @property def schema(self): myschema = {} myschema['geometry'] = self.shape_type properties = [] for fi in range(1, len(self.fields)): name = self.fields[fi][0] f1 = self.fields[fi][1] f2 = self.fields[fi][2] dci = self.fields[fi][3] if f1 == 'C': fmt = 'str:' + str(f2) elif f1 == 'F': fmt = 'float:' + str(f2) + '.' + str(dci) elif f1 == 'N': if dci == 0: fmt = 'int:' + str(f2) else: fmt = 'float:' + str(f2) + '.' + str(dci) elif f1 == 'D': fmt = 'datetime' else: fmt = 'other' properties.append((name, fmt)) myschema['properties'] = properties return myschema if __name__ == '__main__': fname = '/Users/xiao/lib/gisalgs/data/uscnty48area.shp' fname = '/Users/xiao/lib/gisalgs/data/ne_110m_coastline.shp' # fname = '/Users/xiao/lib/gisalgs/data/ne_110m_populated_places.shp' # fname = '/Users/xiao/lib/gisalgs/data/ne_110m_admin_0_countries.shp' shp = shapex(fname) print('Number of fetures:', len(shp)) # this tests all the geometry types types = {} for f in shp: t = f['geometry']['type'] if t[:5] != 'Multi': if len(f['geometry']['coordinates']) > 1: t = t + '_Parts' if t not in types: types[t] = 1 else: types[t] += 1 print(types) print('Shape type:', shp.shape_type) print('Schema:\n', shp.schema) print('Bunds:\n', shp.bounds) shp.close() ``` #### File: bikeability_ConvNet/GIS_algorithm/lane_width.py ```python def extract_first_three_lanes(polys): """ Extract the first three lanes Input polys: all lanes Ouput the first three lanes """ return polys[:3] def calculate_max_width(poly): """ Calculate the maximum width of a polygon and the cooresponding y coordinate of the vertex used to calculate the maximum width Input poly: a set of vertices of a polygon Ouput width_y: the y coordinate of the vertex used to calculate the maximum width """ width = 0 width_y = 0 for p0 in poly: x0, y0 = p0[0], p0[1] for i in range(len(poly)): x1, y1 = poly[i-1][0], poly[i-1][1] x2, y2 = poly[i][0], poly[i][1] if y0 == y1 == y2: if abs(x1 - x2) > width: width = abs(x1 - x2) width_y = y0 elif y0 != y1 != y2: x = (y0 - y2)/(y1 - y2) * (x1 - x2) + x2 if x > x0 and x - x0 > width: width = x - x0 width_y = y0 return width_y def calculate_max_y(width_ys): """ Calculate the y coordinate of the baseline used for width comparisons Input width_ys: a collection of y coordinates used to calculate the maximum widths Ouput the y coordinate of the baseline """ return max(width_ys) def calculate_compared_width(y_base, poly): """ Calculate the width of each polygon according to the baseline Input y_base: y coordinate of the base line poly: a set of vertices of a polygon Ouput width: the width of a polygon """ width = 0 width_xs = [] for i in range(len(poly)): x1, y1 = poly[i - 1][0], poly[i - 1][1] x2, y2 = poly[i][0], poly[i][1] if y_base == y1 == y2: if abs(x1 - x2) > width: width = abs(x1 - x2) elif y_base != y1 != y2: x = (y_base - y2) / (y1 - y2) * (x1 - x2) + x2 width_xs.append(x) if max(width_xs) - min(width_xs) > width: width = max(width_xs) - min(width_xs) return width def compare_widths(polys): """ Calculate the index of the polygon with the maximum width Input polys: a set of polygons Ouput index and the corresponding width """ # 1. Extract the first three lanes polys = extract_first_three_lanes(polys) # 2. Calculate the y coordinate of the compared baseline width_ys = [] for poly in polys: width_y = calculate_max_width(poly) width_ys.append(width_y) y_base = calculate_max_y(width_ys) # 3. Compare widths width = 0 i = 0 widthList = [] for poly in polys: w = calculate_compared_width(y_base, poly) widthList.append(w) if w > width: width = w i = polys.index(poly) widths = [w for w in widthList if widthList.index(w) != i] indexes = [idx for idx in range(3) if idx != i] polys_results = [poly for poly in polys if polys.index(poly) != i] return indexes, polys_results, widths polygon1 = [[0,0], [4,0], [3,9], [1.5,9], [0,0]] polygon2 = [[1.5,0], [6,0], [8,8], [4,8], [1.5,0]] polygon3 = [[4,0], [8,0], [5,7], [4,7], [4,0]] polygon4 = [[1.5,0], [6,0], [8,8], [4,8], [1.5,0]] polygons = [polygon1, polygon2, polygon3, polygon4] print(polygons) print(compare_widths(polygons)) ```
{ "source": "jialinliu233/WordleMaster", "score": 4 }
#### File: jialinliu233/WordleMaster/compare_word.py ```python def compare_word(truth, guess): results = [0 for i in range(len(truth))] for i, w in enumerate(truth): if w == guess[i]: results[i] = 2 else: if w in guess: results[guess.index(w)] = 1 return results ```
{ "source": "JialinMao/gym-ww", "score": 3 }
#### File: envs/algorithmic/reverse.py ```python import numpy as np from gym.envs.algorithmic import algorithmic_env from gym.envs.algorithmic.algorithmic_env import ha class ReverseEnv(algorithmic_env.AlgorithmicEnv): def __init__(self, base=2): algorithmic_env.AlgorithmicEnv.__init__(self, inp_dim=1, base=base, chars=True) algorithmic_env.AlgorithmicEnv.current_length = 1 self.last = 50 def set_data(self): self.content = {} self.target = {} for i in range(self.total_len): val = self.np_random.randint(self.base) self.content[ha(np.array([i]))] = val self.target[self.total_len - i - 1] = val self.total_reward = self.total_len + 0.9 ``` #### File: envs/doom/doom_corridor.py ```python import logging from gym.envs.doom import doom_env logger = logging.getLogger(__name__) class DoomCorridorEnv(doom_env.DoomEnv): """ ------------ Training Mission 2 - Corridor ------------ This map is designed to improve your navigation. There is a vest at the end of the corridor, with 6 enemies (3 groups of 2). Your goal is to get to the vest as soon as possible, without being killed. Allowed actions: [0] - ATTACK - Shoot weapon - Values 0 or 1 [10] - MOVE_RIGHT - Move to the right - Values 0 or 1 [11] - MOVE_LEFT - Move to the left - Values 0 or 1 [13] - MOVE_FORWARD - Move forward - Values 0 or 1 [14] - TURN_RIGHT - Turn right - Values 0 or 1 [15] - TURN_LEFT - Turn left - Values 0 or 1 Note: see controls.md for details Rewards: + dX - For getting closer to the vest - dX - For getting further from the vest -100 - Penalty for being killed Goal: 1,000 points Reach the vest (or at least get past the guards in the 3rd group) Mode: - env.mode can be 'fast', 'normal' or 'human' (e.g. env.mode = 'fast') - 'fast' (default) will run as fast as possible (~75 fps) (best for simulation) - 'normal' will run at roughly 35 fps (easier for human to watch) - 'human' will let you play the game (keyboard only: Arrow Keys, '<', '>' and Ctrl) Ends when: - Player touches vest - Player is dead - Timeout (1 minutes - 2,100 frames) Actions: actions = [0] * 43 actions[0] = 0 # ATTACK actions[10] = 1 # MOVE_RIGHT actions[11] = 0 # MOVE_LEFT actions[13] = 0 # MOVE_FORWARD actions[14] = 0 # TURN_RIGHT actions[15] = 0 # TURN_LEFT ----------------------------------------------------- """ def __init__(self): super(DoomCorridorEnv, self).__init__(1) ``` #### File: envs/doom/doom_my_way_home.py ```python import logging from gym.envs.doom import doom_env logger = logging.getLogger(__name__) class DoomMyWayHomeEnv(doom_env.DoomEnv): """ ------------ Training Mission 6 - My Way Home ------------ This map is designed to improve navigational skills. It is a series of interconnected rooms and 1 corridor with a dead end. Each room has a separate color. There is a green vest in one of the room. The vest is always in the same room. Player must find the vest. Allowed actions: [13] - MOVE_FORWARD - Move forward - Values 0 or 1 [14] - TURN_RIGHT - Turn right - Values 0 or 1 [15] - TURN_LEFT - Turn left - Values 0 or 1 Note: see controls.md for details Rewards: + 1 - Finding the vest -0.0001 - 35 times per second - Find the vest quick! Goal: 0.50 point Find the vest Mode: - env.mode can be 'fast', 'normal' or 'human' (e.g. env.mode = 'fast') - 'fast' (default) will run as fast as possible (~75 fps) (best for simulation) - 'normal' will run at roughly 35 fps (easier for human to watch) - 'human' will let you play the game (keyboard only: Arrow Keys, '<', '>' and Ctrl) Ends when: - Vest is found - Timeout (1 minutes - 2,100 frames) Actions: actions = [0] * 43 actions[13] = 0 # MOVE_FORWARD actions[14] = 1 # TURN_RIGHT actions[15] = 0 # TURN_LEFT ----------------------------------------------------- """ def __init__(self): super(DoomMyWayHomeEnv, self).__init__(5) ```
{ "source": "jialin-wu-02/aimde", "score": 2 }
#### File: app/commits/utils.py ```python import os from aimrecords import Storage from app.projects.utils import get_project_branches, get_branch_commits from app.db import db from app.commits.models import Commit, Tag from artifacts.artifact import Metric def get_commits(metric, tag=None, experiments=None): project_path = '/store' project_branches = get_project_branches(project_path) commit_storage_path = lambda b, c: os.path.join(b, c, 'objects') # Filter by experiments if experiments and isinstance(experiments, str): experiments = filter(lambda e: e, map(lambda e: e.strip(), experiments.split(','))) project_branches = [e for e in experiments if e in project_branches] # Get all commit objects commit_objects = {} for branch in project_branches: branch_path = os.path.join(project_path, branch) branch_commits = get_branch_commits(branch_path) for c in branch_commits.values(): commit_objects[c['hash']] = { 'branch': branch, 'hash': c['hash'], 'date': c['date'], 'msg': c['message'], } # Filter by tag commit_hashes_by_tag = set() if tag is not None: tags = Tag.query.filter(Tag.name.like('{}%'.format(tag))).all() for t in tags: for tag_commit in t.commits: commit_hashes_by_tag.add(tag_commit.hash) filtered_commits = {c_hash: commit_objects[c_hash] for c_hash in commit_hashes_by_tag} else: filtered_commits = commit_objects # Get commits data length max_commit_len = 0 for commit_hash, commit in filtered_commits.items(): branch_path = os.path.join(project_path, commit['branch']) storage_path = commit_storage_path(branch_path, commit['hash']) records_storage = Storage(storage_path, 'r') try: records_storage.open(metric, uncommitted_bucket_visible=True) commit['num_steps'] = records_storage.get_records_num(metric) records_storage.close() except: commit['num_steps'] = 0 if commit['num_steps'] > max_commit_len: max_commit_len = commit['num_steps'] # Get commits data scaled_steps_len = 50 if scaled_steps_len > max_commit_len: scaled_steps_len = max_commit_len if scaled_steps_len: scaled_steps = slice(0, max_commit_len, max_commit_len // scaled_steps_len) else: scaled_steps = slice(0, 0) # Retrieve actual values from commits for commit_hash, commit in filtered_commits.items(): branch_path = os.path.join(project_path, commit['branch']) storage_path = commit_storage_path(branch_path, commit['hash']) commit['data'] = [] records_storage = Storage(storage_path, 'r') try: records_storage.open(metric, uncommitted_bucket_visible=True) for r in records_storage.read_records(metric, scaled_steps): base, metric_record = Metric.deserialize(r) commit['data'].append({ 'value': metric_record.value, 'epoch': base.epoch, 'step': base.step, }) records_storage.close() except: pass # Remove empty commits filtered_commits = {c_hash: filtered_commits[c_hash] for c_hash in filtered_commits.keys() if len(filtered_commits[c_hash]['data']) > 0} # Get tags and colors commit_models = db.session.query(Commit, Tag) \ .join(Tag, Commit.tags) \ .filter(Commit.hash.in_(filtered_commits.keys())).all() for i in commit_models: if len(i) <= 1 or not i[1].color: continue commit_model = i[0] commit_tag = i[1] for commit_hash, commit in filtered_commits.items(): if commit_hash == commit_model.hash: commit['color'] = commit_tag.color commit['tag'] = commit_tag.name return filtered_commits ```
{ "source": "jialin-wu-02/aimrecords", "score": 2 }
#### File: aimrecords/artifact_storage/storage.py ```python import os from typing import Union, Tuple from collections import Iterator from aimrecords.record_storage.writer import Writer from aimrecords.record_storage.reader import ReaderIterator from aimrecords.artifact_storage.consts import ( STORAGE_DIR_NAME, ) class Storage: WRITING_MODE = 'w' READING_MODE = 'r' MODES = ( WRITING_MODE, READING_MODE, ) def __init__(self, root_path: str, mode: str): self.root_path = root_path self.storage_path = self._get_storage_path() self._artifacts = {} assert mode in self.MODES self._mode = mode if not os.path.isdir(self.storage_path): os.makedirs(self.storage_path) def __iter__(self): return iter(self._artifacts) def __del__(self): self.close() def open(self, artifact_name: str, *args, **kwargs): assert artifact_name not in self._artifacts artifact_path = self._get_artifact_path(artifact_name) if self._mode == self.WRITING_MODE: artifact_instance = Writer(artifact_path, *args, **kwargs) elif self._mode == self.READING_MODE: artifact_instance = ReaderIterator(artifact_path, *args, **kwargs) self._artifacts.update({ artifact_name: artifact_instance, }) def append_record(self, artifact_name: str, data: bytes) -> int: assert self._mode == self.WRITING_MODE artifact = self._get_artifact(artifact_name) artifact.append_record(data) return artifact.records_num def flush(self, artifact_name: str = None): assert self._mode == self.WRITING_MODE if artifact_name: artifact = self._get_artifact(artifact_name) artifact.flush() else: for a in self._artifacts.values(): a.flush() def read_records(self, artifact_name: str, indices: Union[None, int, Tuple[int, ...], slice] = None ) -> Iterator: assert self._mode == self.READING_MODE artifact = self._get_artifact(artifact_name) return artifact[indices] def get_records_num(self, artifact_name: str) -> int: artifact = self._get_artifact(artifact_name) return artifact.get_records_num() def get_modification_time(self, artifact_name: str) -> float: assert self._mode == self.READING_MODE artifact = self._get_artifact(artifact_name) return artifact.get_modification_time() def close(self, artifact_name: str = None): if artifact_name: artifact = self._get_artifact(artifact_name) artifact.close() del self._artifacts[artifact_name] else: while len(self._artifacts): artifact_name = list(self._artifacts.keys())[0] artifact_inst = self._artifacts[artifact_name] artifact_inst.close() del self._artifacts[artifact_name] def _get_artifact(self, artifact_name: str ) -> Union[Writer, ReaderIterator]: artifact = self._artifacts.get(artifact_name) if artifact is None: raise ValueError('artifact {} is not in ' + 'storage'.format(artifact_name)) return artifact def _get_storage_path(self) -> str: return os.path.join(self.root_path, STORAGE_DIR_NAME) def _get_artifact_path(self, name: str) -> str: return os.path.join(self.storage_path, name) ``` #### File: aimrecords/record_storage/utils.py ```python import os import json def get_data_fname(path: str) -> str: return os.path.join(path, 'data_chunk_00000.bin') def get_record_offsets_fname(path: str) -> str: return os.path.join(path, 'record_offsets.bin') def get_bucket_offsets_fname(path: str) -> str: return os.path.join(path, 'bucket_offsets.bin') def get_metadata_fname(path: str) -> str: return os.path.join(path, 'metadata.json') def current_bucket_fname(path: str) -> str: return os.path.join(path, 'current_bucket.bin') def metadata_exists(path: str) -> bool: return os.path.isfile(get_metadata_fname(path)) def write_metadata(path: str, metadata: dict): with open(get_metadata_fname(path), 'w') as f_out: json.dump(metadata, f_out) def read_metadata(path: str) -> dict: if metadata_exists(path): with open(get_metadata_fname(path), 'r') as f_in: return json.load(f_in) return {} def data_version_compatibility(prev_version: str, version: str): assert 0 <= int(version) - int(prev_version) <= 1 ``` #### File: tests/artifact_storage/basic_test.py ```python import tempfile from aimrecords import Storage class TestMulitpleArtifacts(object): def test_simple_int(self): len = 1000 with tempfile.TemporaryDirectory() as temp_dir: storage_writer = Storage(temp_dir, 'w') storage_writer.open('loss') for i in range(len): storage_writer.append_record('loss', str(i).encode()) storage_writer.close('loss') storage_writer.open('accuracy') for i in range(len, 2*len): storage_writer.append_record('accuracy', str(i).encode()) storage_writer.close('accuracy') del storage_writer storage_reader = Storage(temp_dir, 'r') storage_reader.open('loss') assert storage_reader.get_records_num('loss') == len for i, record in enumerate(storage_reader.read_records('loss')): assert i == int(record.decode()) storage_reader.close('loss') storage_reader.open('accuracy') assert storage_reader.get_records_num('accuracy') == len for i, record in enumerate(storage_reader.read_records('accuracy')): assert i + len == int(record.decode()) storage_reader.close('accuracy') del storage_reader ``` #### File: tests/record_storage/basic_test.py ```python import os import tempfile from aimrecords.record_storage.reader import Reader from aimrecords.record_storage.writer import Writer class TestBasicStuff(object): def test_simple_int(self): with tempfile.TemporaryDirectory() as temp_dir: path = os.path.join(temp_dir, 'loss') writer = Writer(path, compression=None) length = 1000 for index in range(length): writer.append_record(str(index).encode()) writer.close() reader = Reader(path) assert reader.get_records_num() == length for index in range(length): assert index == int(reader.get(index).decode()) def test_simple_binary(self): with tempfile.TemporaryDirectory() as temp_dir: path = os.path.join(temp_dir, 'loss') writer = Writer(path, compression=None) length = 5000 for index in range(length): entry = (str(index) * index).encode() writer.append_record(entry) writer.close() reader = Reader(path) assert reader.get_records_num() == length for index in range(length): entry = (str(index) * index).encode() assert entry == reader.get(index) ``` #### File: tests/record_storage/compression_test.py ```python import os import tempfile from aimrecords.record_storage.reader import Reader from aimrecords.record_storage.writer import Writer class TestBucketCompression(object): def test_gzip_compression(self): with tempfile.TemporaryDirectory() as temp_dir: path = os.path.join(temp_dir, 'loss') writer = Writer(path, compression='gzip') length = 1000 for i in range(length): writer.append_record(str(i).encode()) writer.close() reader = Reader(path) assert reader.get_records_num() == length for index in range(length): assert index == int(reader.get(index).decode()) ```
{ "source": "jialin-wu-02/skyportal", "score": 2 }
#### File: handlers/api/filter.py ```python from marshmallow.exceptions import ValidationError from baselayer.app.access import auth_or_token, permissions from ..base import BaseHandler from ...models import ( DBSession, Filter, ) class FilterHandler(BaseHandler): @auth_or_token def get(self, filter_id=None): """ --- single: description: Retrieve a filter parameters: - in: path name: filter_id required: true schema: type: integer responses: 200: content: application/json: schema: SingleFilter 400: content: application/json: schema: Error multiple: description: Retrieve all filters responses: 200: content: application/json: schema: ArrayOfFilters 400: content: application/json: schema: Error """ if filter_id is not None: f = Filter.get_if_owned_by(filter_id, self.current_user) if f is None: return self.error("Invalid filter ID.") return self.success(data=f) filters = ( DBSession.query(Filter) .filter(Filter.group_id.in_([g.id for g in self.current_user.groups])) .all() ) return self.success(data=filters) @permissions(["Manage groups"]) def post(self): """ --- description: POST a new filter. requestBody: content: application/json: schema: FilterNoID responses: 200: content: application/json: schema: allOf: - $ref: '#/components/schemas/Success' - type: object properties: data: type: object properties: id: type: integer description: New filter ID """ data = self.get_json() schema = Filter.__schema__() try: fil = schema.load(data) except ValidationError as e: return self.error( "Invalid/missing parameters: " f"{e.normalized_messages()}" ) DBSession.add(fil) DBSession().commit() return self.success(data={"id": fil.id}) @permissions(["Manage groups"]) def patch(self, filter_id): """ --- description: Update a filter parameters: - in: path name: filter_id required: True schema: type: integer requestBody: content: application/json: schema: FilterNoID responses: 200: content: application/json: schema: Success 400: content: application/json: schema: Error """ data = self.get_json() data["id"] = filter_id schema = Filter.__schema__() try: schema.load(data) except ValidationError as e: return self.error('Invalid/missing parameters: ' f'{e.normalized_messages()}') DBSession().commit() return self.success() @permissions(["Manage groups"]) def delete(self, filter_id): """ --- description: Delete a filter parameters: - in: path name: filter_id required: true schema: type: integer responses: 200: content: application/json: schema: Success """ DBSession.delete(Filter.query.get(filter_id)) DBSession().commit() return self.success() ``` #### File: tests/api/test_groups.py ```python import uuid from skyportal.tests import api from skyportal.model_util import create_token def test_token_user_create_new_group(manage_groups_token, super_admin_user): group_name = str(uuid.uuid4()) status, data = api( 'POST', 'groups', data={'name': group_name, 'group_admins': [super_admin_user.username]}, token=manage_groups_token) assert status == 200 assert data['status'] == 'success' new_group_id = data['data']['id'] status, data = api('GET', f'groups/{new_group_id}', token=manage_groups_token) assert data['status'] == 'success' assert data['data']['name'] == group_name def test_token_user_request_all_groups(manage_groups_token, super_admin_user): group_name = str(uuid.uuid4()) status, data = api( 'POST', 'groups', data={'name': group_name, 'group_admins': [super_admin_user.username]}, token=manage_groups_token) assert status == 200 assert data['status'] == 'success' new_group_id = data['data']['id'] status, data = api('GET', 'groups', token=manage_groups_token) assert data['status'] == 'success' assert data['data']['user_groups'][-1]['name'] == group_name assert data['data']['all_groups'] is None def test_token_user_update_group(manage_groups_token, public_group): new_name = str(uuid.uuid4()) status, data = api( 'PUT', f'groups/{public_group.id}', data={'name': new_name}, token=manage_groups_token) assert status == 200 assert data['status'] == 'success' status, data = api('GET', f'groups/{public_group.id}', token=manage_groups_token) assert data['status'] == 'success' assert data['data']['name'] == new_name def test_token_user_delete_group(manage_groups_token, public_group): status, data = api( 'DELETE', f'groups/{public_group.id}', token=manage_groups_token) assert status == 200 assert data['status'] == 'success' status, data = api('GET', f'groups/{public_group.id}', token=manage_groups_token) assert status == 400 def test_manage_groups_token_get_unowned_group(manage_groups_token, user, super_admin_user): group_name = str(uuid.uuid4()) status, data = api( 'POST', 'groups', data={'name': group_name, 'group_admins': [user.username]}, token=manage_groups_token) assert status == 200 assert data['status'] == 'success' new_group_id = data['data']['id'] token_name = str(uuid.uuid4()) token_id = create_token(permissions=['Manage groups'], created_by_id=super_admin_user.id, name=token_name) status, data = api('GET', f'groups/{new_group_id}', token=token_id) assert data['status'] == 'success' assert data['data']['name'] == group_name ``` #### File: tests/api/test_photometry.py ```python import os import datetime import base64 from skyportal.tests import api from skyportal.models import Thumbnail, DBSession, Photometry import numpy as np import sncosmo def test_token_user_post_get_photometry_data(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' assert data['data']['ra'] is None assert data['data']['dec'] is None assert data['data']['ra_unc'] is None assert data['data']['dec_unc'] is None np.testing.assert_allclose(data['data']['flux'], 12.24 * 10**(-0.4 * (25. - 23.9))) def test_token_user_post_mag_photometry_data_and_convert(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': 21., 'magerr': 0.2, 'limiting_mag': 22.3, 'magsys': 'vega', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' ab = sncosmo.get_magsystem('ab') vega = sncosmo.get_magsystem('vega') correction = 2.5 * np.log10(vega.zpbandflux('ztfg') / ab.zpbandflux('ztfg')) np.testing.assert_allclose(data['data']['flux'], 10**(-0.4 * (21. - correction - 23.9 ))) np.testing.assert_allclose(data['data']['fluxerr'], 0.2 / (2.5 / np.log(10)) * data['data']['flux']) status, data = api( 'GET', f'photometry/{photometry_id}', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['mag'], 21. - correction) np.testing.assert_allclose(data['data']['magerr'], 0.2) def test_token_user_post_and_get_different_systems_mag(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': 21., 'magerr': 0.2, 'limiting_mag': 22.3, 'magsys': 'vega', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=mag&magsys=vega', token=upload_data_token) assert status == 200 assert data['status'] == 'success' ab = sncosmo.get_magsystem('ab') vega = sncosmo.get_magsystem('vega') correction = 2.5 * np.log10(vega.zpbandflux('ztfg') / ab.zpbandflux('ztfg')) np.testing.assert_allclose(data['data']['mag'], 21.) np.testing.assert_allclose(data['data']['magerr'], 0.2) np.testing.assert_allclose(data['data']['limiting_mag'], 22.3) status, data = api( 'GET', f'photometry/{photometry_id}?format=mag&magsys=ab', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['mag'], 21. - correction) np.testing.assert_allclose(data['data']['magerr'], 0.2) np.testing.assert_allclose(data['data']['limiting_mag'], 22.3 - correction) def test_token_user_post_and_get_different_systems_flux(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': 21., 'magerr': 0.2, 'limiting_mag': 22.3, 'magsys': 'vega', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux&magsys=vega', token=upload_data_token) assert status == 200 assert data['status'] == 'success' ab = sncosmo.get_magsystem('ab') vega = sncosmo.get_magsystem('vega') correction = 2.5 * np.log10(vega.zpbandflux('ztfg') / ab.zpbandflux('ztfg')) np.testing.assert_allclose(data['data']['flux'], 10**(-0.4 * (21 - correction - 23.9))) np.testing.assert_allclose(data['data']['fluxerr'], 0.2 / (2.5 / np.log(10)) * data['data']['flux']) np.testing.assert_allclose(data['data']['zp'], 23.9 + correction) status, data = api( 'GET', f'photometry/{photometry_id}?format=flux&magsys=ab', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['flux'], 10**(-0.4 * (21 - correction - 23.9))) np.testing.assert_allclose(data['data']['fluxerr'], 0.2 / (2.5 / np.log(10)) * data['data']['flux']) np.testing.assert_allclose(data['data']['zp'], 23.9) def test_token_user_mixed_photometry_post(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': 21., 'magerr': [0.2, 0.1], 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][1] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['flux'], 10**(-0.4 * (21. - 23.9 ))) np.testing.assert_allclose(data['data']['fluxerr'], 0.1 / (2.5 / np.log(10)) * data['data']['flux']) # should fail as len(mag) != len(magerr) status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': [21.], 'magerr': [0.2, 0.1], 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 400 assert data['status'] == 'error' def test_token_user_mixed_mag_none_photometry_post(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': None, 'magerr': [0.2, 0.1], 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 400 assert data['status'] == 'error' status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': [21.3, None], 'magerr': [0.2, 0.1], 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 400 assert data['status'] == 'error' status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': [21.3, None], 'magerr': [None, 0.1], 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 400 assert data['status'] == 'error' def test_token_user_post_photometry_limits(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': None, 'magerr': None, 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' assert data['data']['flux'] == None np.testing.assert_allclose(data['data']['fluxerr'], 10**(-0.4 * (22.3 - 23.9)) / 5) status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'flux': None, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfg' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' assert data['data']['flux'] == None np.testing.assert_allclose(data['data']['fluxerr'], 0.031 * 10**(-0.4 * (25. - 23.9))) def test_token_user_post_invalid_filter(upload_data_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'mag': None, 'magerr': None, 'limiting_mag': 22.3, 'magsys': 'ab', 'filter': 'bessellv' }, token=upload_data_token) assert status == 400 assert data['status'] == 'error' def test_token_user_post_photometry_data_series(upload_data_token, public_source, ztf_camera): # valid request status, data = api( 'POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': [58000., 58001., 58002.], 'instrument_id': ztf_camera.id, 'flux': [12.24, 15.24, 12.24], 'fluxerr': [0.031, 0.029, 0.030], 'filter': ['ztfg', 'ztfg', 'ztfg'], 'zp': [25., 30., 21.2], 'magsys': ['ab', 'ab', 'ab'], 'ra': 264.1947917, 'dec': [50.5478333, 50.5478333 + 0.00001, 50.5478333], 'dec_unc': 0.2}, token=upload_data_token) assert status == 200 assert data['status'] == 'success' assert len(data['data']['ids']) == 3 photometry_id = data['data']['ids'][1] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' assert np.allclose(data['data']['flux'], 15.24 * 10**(-0.4 * (30 - 23.9))) assert np.allclose(data['data']['dec'], 50.5478333 + 0.00001) assert np.allclose(data['data']['dec_unc'], 0.2) assert data['data']['ra_unc'] is None # invalid request status, data = api( 'POST', 'photometry', data=[{'obj_id': str(public_source.id), 'mjd': 58000, 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'filter': 'ztfg', 'zp': 25., 'magsys': 'ab'}, {'obj_id': str(public_source.id), 'mjd': 58001, 'instrument_id': ztf_camera.id, 'flux': 15.24, 'fluxerr': 0.031, 'filter': 'ztfg', 'zp': 30., 'magsys': 'ab'}, {'obj_id': str(public_source.id), 'mjd': 58002, 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'filter': 'ztfg', 'zp': 21.2, 'magsys': 'vega'}], token=upload_data_token) assert status == 400 assert data['status'] == 'error' def test_post_photometry_no_access_token(view_only_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfg' }, token=view_only_token) assert status == 400 assert data['status'] == 'error' def test_token_user_update_photometry(upload_data_token, manage_sources_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfi' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['flux'], 12.24 * 10**(-0.4 * (25 - 23.9))) status, data = api( 'PUT', f'photometry/{photometry_id}', data={'obj_id': str(public_source.id), 'flux': 11.0, 'mjd': 58000., 'instrument_id': ztf_camera.id, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfi'}, token=manage_sources_token) assert status == 200 assert data['status'] == 'success' status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) np.testing.assert_allclose(data['data']['flux'], 11.0 * 10**(-0.4 * (25 - 23.9))) def test_delete_photometry_data(upload_data_token, manage_sources_token, public_source, ztf_camera): status, data = api('POST', 'photometry', data={'obj_id': str(public_source.id), 'mjd': 58000., 'instrument_id': ztf_camera.id, 'flux': 12.24, 'fluxerr': 0.031, 'zp': 25., 'magsys': 'ab', 'filter': 'ztfi' }, token=upload_data_token) assert status == 200 assert data['status'] == 'success' photometry_id = data['data']['ids'][0] status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 200 assert data['status'] == 'success' np.testing.assert_allclose(data['data']['flux'], 12.24 * 10 ** (-0.4 * (25 - 23.9))) status, data = api( 'DELETE', f'photometry/{photometry_id}', token=manage_sources_token) assert status == 200 status, data = api( 'GET', f'photometry/{photometry_id}?format=flux', token=upload_data_token) assert status == 400 def test_token_user_retrieving_source_photometry_and_convert(view_only_token, public_source): status, data = api('GET', f'sources/{public_source.id}/photometry?format=flux&magsys=ab', token=view_only_token) assert status == 200 assert data['status'] == 'success' assert isinstance(data['data'], list) assert 'mjd' in data['data'][0] assert 'ra_unc' in data['data'][0] mag1_ab = -2.5 * np.log10(data['data'][0]['flux']) + data['data'][0]['zp'] magerr1_ab = 2.5 / np.log(10) * data['data'][0]['fluxerr']/ data['data'][0]['flux'] maglast_ab = -2.5 * np.log10(data['data'][-1]['flux']) + data['data'][-1]['zp'] magerrlast_ab = 2.5 / np.log(10) * data['data'][-1]['fluxerr']/ data['data'][-1]['flux'] status, data = api('GET', f'sources/{public_source.id}/photometry?format=mag&magsys=ab', token=view_only_token) assert status == 200 assert data['status'] == 'success' assert np.allclose(mag1_ab, data['data'][0]['mag']) assert np.allclose(magerr1_ab, data['data'][0]['magerr']) assert np.allclose(maglast_ab, data['data'][-1]['mag']) assert np.allclose(magerrlast_ab, data['data'][-1]['magerr']) status, data = api('GET', f'sources/{public_source.id}/photometry?format=flux&magsys=vega', token=view_only_token) mag1_vega = -2.5 * np.log10(data['data'][0]['flux']) + data['data'][0]['zp'] magerr1_vega = 2.5 / np.log(10) * data['data'][0]['fluxerr']/ data['data'][0]['flux'] maglast_vega = -2.5 * np.log10(data['data'][-1]['flux']) + data['data'][-1]['zp'] magerrlast_vega = 2.5 / np.log(10) * data['data'][-1]['fluxerr']/ data['data'][-1]['flux'] assert status == 200 assert data['status'] == 'success' ab = sncosmo.get_magsystem('ab') vega = sncosmo.get_magsystem('vega') vega_to_ab = { filter: 2.5 * np.log10(ab.zpbandflux(filter) / vega.zpbandflux(filter)) for filter in ['ztfg', 'ztfr', 'ztfi'] } assert np.allclose(mag1_ab, mag1_vega + vega_to_ab[data['data'][0]['filter']]) assert np.allclose(magerr1_ab, magerr1_vega) assert np.allclose(maglast_ab, maglast_vega + vega_to_ab[data['data'][-1]['filter']]) assert np.allclose(magerrlast_ab, magerrlast_vega) ``` #### File: tests/frontend/test_scanning_page.py ```python import uuid import time from skyportal.tests import api def test_candidates_page_render(driver, user, public_candidate): driver.get(f"/become_user/{user.id}") driver.get("/candidates") driver.wait_for_xpath(f'//a[text()="{public_candidate.id}"]') def test_candidate_group_filtering( driver, user, public_candidate, public_filter, public_group, upload_data_token, manage_groups_token, ): candidate_id = str(uuid.uuid4()) for i in range(5): status, data = api( "POST", "candidates", data={ "id": f"{candidate_id}_{i}", "ra": 234.22, "dec": -22.33, "redshift": 3, "altdata": {"simbad": {"class": "RRLyr"}}, "transient": False, "ra_dis": 2.3, "filter_ids": [public_filter.id], }, token=upload_data_token, ) assert status == 200 assert data["data"]["id"] == f"{candidate_id}_{i}" status, data = api( "POST", "groups", data={"name": str(uuid.uuid4()), "group_admins": [user.username]}, token=manage_groups_token, ) assert status == 200 driver.get(f"/become_user/{user.id}") driver.get("/candidates") for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]') group_checkbox = driver.wait_for_xpath( f'//input[starts-with(@name,"groupIDs[0]")]' ) driver.scroll_to_element_and_click(group_checkbox) submit_button = driver.wait_for_xpath('//span[text()="Submit"]') driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath_to_disappear(f'//a[text()="{candidate_id}_{i}"]') driver.scroll_to_element_and_click(group_checkbox) driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]') def test_candidate_unsaved_only_filtering( driver, user, public_candidate, public_filter, public_group, upload_data_token, manage_groups_token, ): candidate_id = str(uuid.uuid4()) for i in range(5): status, data = api( "POST", "sources", data={ "id": f"{candidate_id}_{i}", "ra": 234.22, "dec": -22.33, "redshift": 3, "altdata": {"simbad": {"class": "RRLyr"}}, "transient": False, "ra_dis": 2.3, "group_ids": [public_group.id], }, token=upload_data_token, ) assert status == 200 status, data = api( "POST", "candidates", data={ "id": f"{candidate_id}_{i}", "ra": 234.22, "dec": -22.33, "redshift": 3, "altdata": {"simbad": {"class": "RRLyr"}}, "transient": False, "ra_dis": 2.3, "filter_ids": [public_filter.id], }, token=upload_data_token, ) assert status == 200 assert data["data"]["id"] == f"{candidate_id}_{i}" status, data = api( "POST", "groups", data={"name": str(uuid.uuid4()), "group_admins": [user.username]}, token=manage_groups_token, ) assert status == 200 driver.get(f"/become_user/{user.id}") driver.get("/candidates") for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]') unsaved_only_checkbox = driver.wait_for_xpath('//input[@name="unsavedOnly"]') driver.scroll_to_element_and_click(unsaved_only_checkbox) submit_button = driver.wait_for_xpath('//span[text()="Submit"]') driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath_to_disappear(f'//a[text()="{candidate_id}_{i}"]') driver.scroll_to_element_and_click(unsaved_only_checkbox) driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]') def test_candidate_date_filtering( driver, user, public_candidate, public_filter, public_group, upload_data_token, ztf_camera ): candidate_id = str(uuid.uuid4()) for i in range(5): status, data = api( "POST", "candidates", data={ "id": f"{candidate_id}_{i}", "ra": 234.22, "dec": -22.33, "redshift": 3, "altdata": {"simbad": {"class": "RRLyr"}}, "transient": False, "ra_dis": 2.3, "filter_ids": [public_filter.id], }, token=upload_data_token, ) assert status == 200 assert data["data"]["id"] == f"{candidate_id}_{i}" status, data = api( "POST", "photometry", data={ "obj_id": f"{candidate_id}_{i}", "mjd": 58000., "instrument_id": ztf_camera.id, "flux": 12.24, "fluxerr": 0.031, "zp": 25., "magsys": "ab", "filter": "ztfr", }, token=upload_data_token, ) assert status == 200 driver.get(f"/become_user/{user.id}") driver.get("/candidates") for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]') start_date_input = driver.wait_for_xpath("//input[@name='startDate']") start_date_input.clear() start_date_input.send_keys("20001212") end_date_input = driver.wait_for_xpath("//input[@name='endDate']") end_date_input.clear() end_date_input.send_keys("20011212") time.sleep(0.1) submit_button = driver.wait_for_xpath('//span[text()="Submit"]') driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath_to_disappear(f'//a[text()="{candidate_id}_{i}"]', 10) end_date_input.clear() end_date_input.send_keys("20901212") time.sleep(0.1) driver.scroll_to_element_and_click(submit_button) for i in range(5): driver.wait_for_xpath(f'//a[text()="{candidate_id}_{i}"]', 10) def test_save_candidate(driver, group_admin_user, public_group, public_candidate): driver.get(f"/become_user/{group_admin_user.id}") driver.get("/candidates") driver.wait_for_xpath(f'//a[text()="{public_candidate.id}"]') first_save_button = driver.wait_for_xpath( f'//button[@name="initialSaveCandidateButton{public_candidate.id}"]') driver.scroll_to_element_and_click(first_save_button) driver.wait_for_xpath("//input[@name='group_ids[0]']").click() second_save_button = driver.wait_for_xpath( f'//button[@name="finalSaveCandidateButton{public_candidate.id}"]') second_save_button.click() driver.wait_for_xpath_to_disappear('//span[text()="Save as source"]') driver.wait_for_xpath('//a[text()="Previously Saved"]') def test_save_candidate_no_groups_error_message( driver, group_admin_user, public_group, public_candidate ): driver.get(f"/become_user/{group_admin_user.id}") driver.get("/candidates") driver.wait_for_xpath(f'//a[text()="{public_candidate.id}"]') first_save_button = driver.wait_for_xpath( f'//button[@name="initialSaveCandidateButton{public_candidate.id}"]') driver.scroll_to_element_and_click(first_save_button) second_save_button = driver.wait_for_xpath( f'//button[@name="finalSaveCandidateButton{public_candidate.id}"]') second_save_button.click() driver.wait_for_xpath('//div[contains(.,"Select at least one group")]') ```
{ "source": "jialinwu17/box_cls_reg", "score": 3 }
#### File: lib/roi_data_layer/psroi_layer.py ```python import caffe from fast_rcnn.config import cfg from roi_data_layer.minibatch import get_minibatch import numpy as np import yaml from multiprocessing import Process, Queue import scipy.io as sio class RoIDataLayer(caffe.Layer): """Fast R-CNN data layer used for training.""" def setup(self, bottom, top): """Setup the RoIDataLayer.""" # parse the layer parameter string, which must be valid YAML layer_params = yaml.load(self.param_str) shape = bottom[0].data.shape #1, C, H, W self._tiles = layer_params['tiles'] self._axis = layer_params['axis'] def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" data = bottom[0].data data = data[:,,:,:] data = np.transpose(data,self._order) top[0].reshape(*(data.shape)) top[0].data[...] = data def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" diff = top[0].diff diff = np.transpose(diff, self._order_back) bottom[0].reshape((*diff.shape)) bottom[0].diff = diff def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass ```
{ "source": "jialinwu17/caption_vqa", "score": 2 }
#### File: jialinwu17/caption_vqa/models.py ```python import torch import torch.nn as nn from attention import Att_0, Att_1, Att_2, Att_3, Att_P, Att_PD, Att_3S from language_model import WordEmbedding, QuestionEmbedding from classifier import SimpleClassifier, PaperClassifier from fc import FCNet, GTH from caption_model import CaptionRNN import torch.nn.functional as F import utils from torch.autograd import Variable import shutil import numpy as np import matplotlib.pyplot as plt # Dropout p: probability of an element to be zeroed. Default: 0.5 """ Name: Model Pre written """ class Model(nn.Module): def __init__(self, w_emb, q_emb, v_att, q_net, v_net, classifier): super(Model, self).__init__() self.w_emb = w_emb self.q_emb = q_emb self.v_att = v_att self.q_net = q_net self.v_net = v_net self.classifier = classifier def forward(self, v, b, q, labels): """Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs """ w_emb = self.w_emb(q) # get word embeddings q_emb = self.q_emb(w_emb) # run GRU on word embeddings [batch, q_dim] att = self.v_att(v, q_emb) # [batch, 1, v_dim] v_emb = (att * v).sum(1) # [batch, v_dim] q_repr = self.q_net(q_emb) v_repr = self.v_net(v_emb) joint_repr = q_repr * v_repr logits = self.classifier(joint_repr) return logits class Model_2(nn.Module): def __init__(self, w_emb, q_emb, v_att_1, v_att_2, q_net, v_net, classifier,caption_w_emb, reference_caption_decoder, question_caption_decoder,caption_decoder,v2rc_net,v2qc_net): super(Model_2, self).__init__() self.w_emb = w_emb self.q_emb = q_emb self.v_att_1 = v_att_1 self.v_att_2 = v_att_2 self.q_net = q_net self.v_net = v_net self.classifier = classifier self.reference_caption_decoder = reference_caption_decoder self.question_caption_decoder = question_caption_decoder self.caption_w_emb = caption_w_emb self.caption_decoder = caption_decoder self.v2rc_net = v2rc_net self.v2qc_net = v2qc_net def forward(self, v, b, q, labels, c): """Forward v: [batch,5, num_objs, obj_dim] b: [batch, 5,num_objs, b_dim] q: [batch, 5, seq_length] c: [batch, 5, 20 ] return: logits, not probs """ batch = c.size(0) q = q.view(batch * 5, -1) c = c.view(batch * 5, -1) v = v.view(batch * 5, 36, -1) batch = c.size(0) ''' v: [batch* 5, num_objs, obj_dim] q: [batch* 5, seq_length] c: [batch* 5, 20 ] ''' #print c.shape, type(c) w_emb = self.w_emb(q) # get word embeddings q_emb = self.q_emb(w_emb) # run GRU on word embeddings [batch, q_dim] # [batch* 5, num_hid] #print c.shape, type(c) att_1 = self.v_att_1(v, q_emb) # [batch* 5, 1, v_dim] #print c.shape, type(c) att_2 = self.v_att_2(v, q_emb) # [batch* 5, 1, v_dim] att = att_1 + att_2 #print c.shape, type(c) v_emb = (att * v).sum(1) # [batch, v_dim] #print c.shape, type(c) q_repr = self.q_net(q_emb) #[batch * 5 ,hid_dim] v_repr = self.v_net(v_emb)#[batch *5, hid_dim] #print c.shape, type(c) # v_repr = v_repr.unsqueeze(1).repeat(1,5,1).view(batch*5,-1) joint_repr = q_repr * v_repr #[batch *5,hid_dim ] logits = self.classifier(joint_repr) #print c.shape, type(c) rc_w_emb = self.caption_w_emb(c) qc_w_emb = self.caption_w_emb(c) # [batch * 5, 20 , hid_dim] #print c.shape, type(c) v_rc = self.v2rc_net(v) v_qc = self.v2qc_net(joint_repr) rc_emb = self.reference_caption_decoder(rc_w_emb, v_rc) #[b,5,21,hid_dim] qc_emb = self.question_caption_decoder(v_qc ,qc_w_emb) #[b,5,21,hid_dim] rc_repr = self.caption_decoder(rc_emb) qc_repr = self.caption_decoder(qc_emb) return logits, rc_repr, qc_repr # all three returns are logits class Model_4(nn.Module): def __init__(self, w_emb, q_emb, v_att_1, v_att_2, q_net, v_net, classifier,caption_w_emb, reference_caption_decoder, question_caption_decoder,caption_decoder,v2rc_net, v2qc_net): super(Model_4, self).__init__() self.w_emb = w_emb self.q_emb = q_emb self.v_att_1 = v_att_1 self.v_att_2 = v_att_2 self.q_net = q_net self.v_net = v_net self.classifier = classifier self.reference_caption_rnn = reference_caption_decoder self.question_caption_rnn = question_caption_decoder self.caption_w_emb = caption_w_emb self.caption_decoder = caption_decoder self.v2rc_net = v2rc_net self.v2qc_net = v2qc_net def forward(self, v, b, q, labels, c): """Forward v: [batch,5, num_objs, obj_dim] b: [batch, 5,num_objs, b_dim] q: [batch, 5, seq_length] c: [batch, 5, 20 ] return: logits, not probs """ #print 'haha1' batch = c.size(0) q = q.view(batch * 5, -1) c = c.view(batch * 5, -1) v = v.view(batch * 5, 36, -1) batch = c.size(0) ''' v: [batch* 5, num_objs, obj_dim] q: [batch* 5, seq_length] c: [batch* 5, 20 ] ''' #print c.shape, type(c) w_emb = self.w_emb(q) # get word embeddings q_emb = self.q_emb(w_emb) # run GRU on word embeddings [batch, q_dim] # [batch* 5, num_hid] #print c.shape, type(c) att_1 = self.v_att_1(v, q_emb) # [batch* 5, 1, v_dim] #print c.shape, type(c) att_2 = self.v_att_2(v, q_emb) # [batch* 5, 1, v_dim] att = att_1 + att_2 #print c.shape, type(c) v_emb = (att * v).sum(1) # [batch, v_dim] #print c.shape, type(c) #print 'haha1' q_repr = self.q_net(q_emb) #[batch * 5 ,hid_dim] v_repr = self.v_net(v_emb)#[batch *5, hid_dim] #print c.shape, type(c) # v_repr = v_repr.unsqueeze(1).repeat(1,5,1).view(batch*5,-1) joint_repr = q_repr * v_repr #[batch *5,hid_dim ] logits = self.classifier(joint_repr) #print c.shape, type(c) rc_w_emb = self.caption_w_emb(c) #print c.shape, type(c) v_rc = self.v2rc_net(v.mean(1)) v_qc = self.v2qc_net(joint_repr) rc_emb = self.reference_caption_rnn( v_rc,rc_w_emb) #[b,5,21,hid_dim] rc_repr = self.caption_decoder(rc_emb) #qc_repr = self.caption_decoder(qc_emb) pred_ans = F.sigmoid(logits).contiguous() pred_rc = F.sigmoid(rc_repr).contiguous() #print 'haha2' batch = batch / 5 caption_from_ans = pred_rc[:, : , : 3129 ] # [b*5, 20, 3129] caption_from_ans = caption_from_ans.contiguous().view(batch, 1 ,5, 20, -1).repeat(1,5,1,1,1) # [batch ,5, 5, 20, caption set ] #print 'haha3' similarities_ = (caption_from_ans * (pred_ans.view(batch, 5,1,1,-1).repeat(1, 1, 5, 20, 1))).sum(4) # [batch, 5, 5, 20] [i,j] i th answer with j th caption similarities, _ = similarities_.max(3) # [batch ,5, 5] _, indices = similarities.max(2) # [batch, 5 ] indices = indices.view(-1,1 ) #[batch, 5] #print 'haha3.5' target_qc_mask = torch.zeros(batch*5, 5) #print target_qc_mask.shape, indices.data.shape target_qc_mask.scatter_(1, indices.data.type(torch.LongTensor), 1) #print 'haha5' #target_qc_mask = Variable(target_qc_mask.view(batch, 5, 5, 1).repeat(1,1,1,20), volatile=True).cuda() target_qc_mask = Variable(target_qc_mask.view(batch, 5, 5, 1).repeat(1,1,1,20).type(torch.LongTensor)).cuda() # [b, 5, 5, 20] #print 'haha6' target_qc = c.view(batch,1,5,20).repeat(1,5,1,1) # [b,5,5, 20] #print 'haha7' target_qc = target_qc * target_qc_mask #print 'haha8' target_qc = target_qc.sum(2).view(-1, 20) # [] #print 'haha9' qc_w_emb = self.caption_w_emb(target_qc) # [batch * 5, 20 , hid_dim] #print 'haha10' qc_emb = self.question_caption_rnn(v_qc ,qc_w_emb) #print 'haha11' qc_repr = self.caption_decoder(qc_emb) #print 'haha12' pred_qc = F.sigmoid(qc_repr).contiguous() return logits, pred_rc, pred_qc, target_qc # all three returns are logits class Model_3(nn.Module): def __init__(self, w_emb, q_emb, v_att_1, v_att_2, v_att_3, q_net, v_net, classifier): super(Model_3, self).__init__() self.w_emb = w_emb self.q_emb = q_emb self.v_att_1 = v_att_1 self.v_att_2 = v_att_2 self.v_att_3 = v_att_3 self.q_net = q_net self.v_net = v_net self.classifier = classifier def forward(self, v, b, q, labels): """Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs """ w_emb = self.w_emb(q) # get word embeddings q_emb = self.q_emb(w_emb) # run GRU on word embeddings [batch, q_dim] att_1 = self.v_att_1(v, q_emb) # [batch, 1, v_dim] att_2 = self.v_att_2(v, q_emb) # [batch, 1, v_dim] att_3 = self.v_att_3(v, q_emb) # [batch, 1, v_dim] att = att_1 + att_2 + att_3 v_emb = (att * v).sum(1) # [batch, v_dim] q_repr = self.q_net(q_emb) v_repr = self.v_net(v_emb) joint_repr = q_repr * v_repr logits = self.classifier(joint_repr) return logits # Attn: 1 layer attention, output layer, softmax def build_baseline(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_0(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # Attn: 2 layer attention, output layer, softmax def build_model_A1(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_1(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # Attn: 1 layer seperate, element-wise *, output layer, softmax def build_model_A2(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_2(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # Attn: 1 layer seperate, element-wise *, 1 layer, output layer, softmax def build_model_A3(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_3(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # Attn: 1 layer seperate, element-wise *, 1 layer, output layer, sigmoid def build_model_A3S(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_3S(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # 2*Attn: 1 layer seperate, element-wise *, 1 layer, output layer, softmax # our adopted model # (self, in_dim, num_hid, v_dim, nlayers, bidirect, dropout, rnn_type='LSTM'): # (self, embed_size, hidden_size, vocab_size, num_layers): def build_model_A3x2(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_2 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) # num_hid = 1280 , dataset.v_dim = 2048 classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) v2rc_net = FCNet([dataset.v_dim, 300 ], dropout= dropL, norm= norm, act= activation) v2qc_net = FCNet([num_hid, 300], dropout= dropL, norm= norm, act= activation) caption_w_emb = WordEmbedding(dataset.caption_dictionary.ntoken, emb_dim=300, dropout=dropW) reference_caption_decoder = CaptionRNN(300, 512, num_layers = 1 ) question_caption_decoder = CaptionRNN(300, 512, num_layers = 1 ) caption_decoder = SimpleClassifier( in_dim=512, hid_dim=2 * num_hid, out_dim= dataset.caption_dictionary.ntoken, dropout=dropC, norm= norm, act= activation) return Model_4(w_emb, q_emb, v_att_1, v_att_2, q_net, v_net, classifier,caption_w_emb, reference_caption_decoder, question_caption_decoder, caption_decoder,v2rc_net, v2qc_net) # 2*Attn: 1 layer seperate, element-wise *, output layer, softmax def build_model_A2x2(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_2 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model_2(w_emb, q_emb, v_att_1, v_att_2, q_net, v_net, classifier) def build_model_A23P(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_2 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_3 = Att_P(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model_3(w_emb, q_emb, v_att_1, v_att_2, v_att_3, q_net, v_net, classifier) # 3*Attn: 1 layer seperate, element-wise *, 1 layer, output layer, softmax def build_model_A3x3(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_2 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_3 = Att_3(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model_3(w_emb, q_emb, v_att_1, v_att_2, v_att_3, q_net, v_net, classifier) # 3*Attn: 1 layer seperate, element-wise *, output layer, softmax def build_model_A2x3(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_2 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) v_att_3 = Att_2(v_dim=dataset.v_dim, q_dim=q_emb.num_hid, num_hid=num_hid, dropout=dropout, norm=norm, act=activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model_3(w_emb, q_emb, v_att_1, v_att_2, v_att_3, q_net, v_net, classifier) # Attn: 1 layer seperate, element-wise *, output layer def build_model_AP(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) # 2*Attn: 1 layer seperate, element-wise *, output layer def build_model_APx2(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att_1 = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) v_att_2 = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model_2(w_emb, q_emb, v_att_1, v_att_2, q_net, v_net, classifier) # Attn: 2 layer seperate, element-wise *, output layer def build_model_APD(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_PD(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = SimpleClassifier( in_dim=num_hid, hid_dim=2 * num_hid, out_dim=dataset.num_ans_candidates, dropout=dropC, norm= norm, act= activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) def build_model_AP_PC(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = FCNet([q_emb.num_hid, num_hid], dropout= dropL, norm= norm, act= activation) v_net = FCNet([dataset.v_dim, num_hid], dropout= dropL, norm= norm, act= activation) classifier = PaperClassifier( in_dim=num_hid, hid_dim_1=300, hid_dim_2=2048, out_dim=dataset.num_ans_candidates, dropout=dropC, norm=norm, act=activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) def build_model_P_exact(dataset, num_hid, dropout, norm, activation): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=0.0) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=0, rnn_type='GRU') v_att = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = GTH(q_emb.num_hid, num_hid, dropout=0, norm=norm, act=activation) v_net = GTH(dataset.v_dim, num_hid, dropout=0, norm=norm, act=activation) classifier = PaperClassifier( in_dim=num_hid, hid_dim_1= 300, hid_dim_2= 2048, out_dim=dataset.num_ans_candidates, dropout=0, norm=norm, act=activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) def build_model_P_mod(dataset, num_hid, dropout, norm, activation, dropL , dropG, dropW, dropC): w_emb = WordEmbedding(dataset.dictionary.ntoken, emb_dim=300, dropout=dropW) q_emb = QuestionEmbedding(in_dim=300, num_hid=num_hid, nlayers=1, bidirect=False, dropout=dropG, rnn_type='GRU') v_att = Att_P(v_dim= dataset.v_dim, q_dim= q_emb.num_hid, num_hid= num_hid, dropout= dropout, norm= norm, act= activation) q_net = GTH(q_emb.num_hid, num_hid, dropout=dropL, norm=norm, act=activation) v_net = GTH(dataset.v_dim, num_hid, dropout=dropL, norm=norm, act=activation) classifier = PaperClassifier( in_dim=num_hid, hid_dim_1= 300, hid_dim_2= 2048, out_dim=dataset.num_ans_candidates, dropout=dropC, norm=norm, act=activation) return Model(w_emb, q_emb, v_att, q_net, v_net, classifier) ``` #### File: jialinwu17/caption_vqa/test.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import pdb import time import json import argparse import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from base_model import Model from loader import Data_loader def test(args): # Some preparation torch.manual_seed(1000) if torch.cuda.is_available(): torch.cuda.manual_seed(1000) else: raise SystemExit('No CUDA available, don\'t do this.') print ('Loading data') loader = Data_loader(args.bsize, args.emb, args.multilabel, train=False) print ('Parameters:\n\tvocab size: %d\n\tembedding dim: %d\n\tK: %d\n\tfeature dim: %d\ \n\thidden dim: %d\n\toutput dim: %d' % (loader.q_words, args.emb, loader.K, loader.feat_dim, args.hid, loader.n_answers)) model = Model(vocab_size=loader.q_words, emb_dim=args.emb, K=loader.K, feat_dim=loader.feat_dim, hid_dim=args.hid, out_dim=loader.n_answers, pretrained_wemb=loader.pretrained_wemb) model = model.cuda() if args.modelpath and os.path.isfile(args.modelpath): print ('Resuming from checkpoint %s' % (args.modelpath)) ckpt = torch.load(args.modelpath) model.load_state_dict(ckpt['state_dict']) else: raise SystemExit('Need to provide model path.') result = [] for step in xrange(loader.n_batches): # Batch preparation q_batch, a_batch, i_batch = loader.next_batch() q_batch = Variable(torch.from_numpy(q_batch)) i_batch = Variable(torch.from_numpy(i_batch)) q_batch, i_batch = q_batch.cuda(), i_batch.cuda() # Do one model forward and optimize output = model(q_batch, i_batch) _, ix = output.data.max(1) for i, qid in enumerate(a_batch): result.append({ 'question_id': qid, 'answer': loader.a_itow[ix[i]] }) json.dump(result, open('result.json', 'w')) print ('Validation done') ```
{ "source": "JialinX/404Lab2", "score": 3 }
#### File: JialinX/404Lab2/client.py ```python import socket, sys def main(): try: #define address info, payload, and buffer size host = 'www.google.com' port = 80 payload = f'GET / HTTP/1.0\r\nHost: {host}\r\n\r\n' buffer_size = 4096 #make the socket, get the ip, and connect #create a tcp socket print('Creating socket') s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('Socket created successfully') print(f'Getting IP for {host}') remote_ip = socket.gethostbyname(host) print (f'Ip address of {host} is {remote_ip}') s.connect((remote_ip , port)) print (f'Socket Connected to {host} on ip {remote_ip}') #send the data and shutdown print("Sending payload") s.sendall(payload.encode()) print("Payload sent successfully") s.shutdown(socket.SHUT_WR) #continue accepting data until no more left full_data = b"" while True: data = s.recv(buffer_size) if not data: break full_data += data print(full_data) except Exception as e: print(e) finally: s.close() if __name__ == "__main__": main() ```
{ "source": "JialinX/cgi-lab", "score": 2 }
#### File: JialinX/cgi-lab/secret.py ```python import cgi import cgitb cgitb.enable() class FollowingTheTAsInstructionsError(Exception): def __init__(self): Exception.__init__(self, ( "You must edit secret.py to change the username, password, " "and to delete this error!" )) # Delete this line: # raise FollowingTheTAsInstructionsError # Edit the following two lines: username = "jialin" password = "<PASSWORD>" ```
{ "source": "jialinyi94/matching-bandit", "score": 3 }
#### File: matching_bandit/agents/simple_adaptive_matching.py ```python import numpy as np import gym from gym import logger import matching_bandit import argparse class MDC(object): def __init__(self, n_pairs=3): self.name = 'MDC' self.n_pairs = n_pairs self.n_items = n_pairs*2 self.X = np.zeros(shape=(self.n_items, self.n_items)) self.C = np.zeros(shape=(self.n_items, self.n_items)) self.X_tilda = np.zeros(shape=(self.n_items, self.n_items)) self.C_tilda = np.zeros(shape=(self.n_items, self.n_items)) self.tournament = Tournament() self.tournament.head = Node(list(range(self.n_items))) def reset(self): n_pairs = self.n_pairs self.__init__(n_pairs=n_pairs) def run(self, env, horizon=10000, animated=True): logger.info('Algorithm: '+self.name) for t in range(horizon): action = self.tournament.sample_matching() # observe rewards obs, _, _, _ = env.step(action) feedback = obs['feedback'] for k in range(self.n_pairs): i = action[2*k] j = action[2*k+1] self.X_tilda[i,j] += feedback[k] self.X_tilda[j,i] += feedback[k] self.C_tilda[i,j] += 1 self.C_tilda[j,i] += 1 tmp = self.tournament.head while tmp is not None: s = tmp.cluster for i in s: s_ = s.copy() s_.remove(i) counter = sum(self.C_tilda[i, s_]) if counter == len(s) - 1: self.X[s,:] += self.X_tilda[s,:] self.C[s,:] += self.C_tilda[s,:] self.X_tilda[s,:] = 0 self.C_tilda[s,:] = 0 break tmp = tmp.next # make sure at least every item has been paired with all other pairs. if t >= self.n_items - 1: UCB, LCB = self.tournament.confidence_intervals(self.X, self.C, horizon) self.tournament.split(UCB, LCB) # log regret if (t+1) % env.time_series_frequency == 0: env.log_regret() # rendering if animated: env.render() class Node: def __init__(self, cluster): self.cluster = cluster n_items = len(cluster) n_pairs = n_items // 2 self.group = np.reshape(cluster, (2, n_pairs)).tolist() self.next = None class LinkedList: def __init__(self): self.head = None class Tournament(LinkedList): def sample_matching(self): matching = [] tmp = self.head while tmp is not None: group = tmp.group # extract the matching matching += group2matching(group) # update to the next schedule tmp.group = round_robin_next(group) tmp = tmp.next return matching def confidence_intervals(self, X, C, T): n_items = X.shape[0] UCB = np.zeros(shape=(n_items,)) LCB = np.zeros(shape=(n_items,)) for i in range(n_items): lower_items = self.get_lower_items(i) k_l = sum(C[i,lower_items]) d = sum(X[i,lower_items]) LCB[i] = d/k_l - np.sqrt(np.log(T)/k_l) UCB[i] = d/k_l + np.sqrt(np.log(T)/k_l) return UCB, LCB def get_lower_items(self, idx): lower_items = [] tmp = self.head while tmp is not None: cluster = tmp.cluster lower_items += cluster if idx in cluster: return lower_items tmp = tmp.next def split(self, UCB, LCB): tmp = self.head if tmp is not None: # if the headnode needs to be split TorF, high, low = is_split(tmp.cluster, UCB, LCB) if TorF == True: high_node = Node(high) low_node = Node(low) high_node.next = tmp.next low_node.next = high_node self.head = low_node removed = tmp tmp = tmp.next removed.next = None prev = high_node else: prev = tmp tmp = tmp.next # traverse the nodes left while tmp is not None: TorF, high, low = is_split(tmp.cluster, UCB, LCB) if TorF == True: high_node = Node(high) low_node = Node(low) high_node.next = tmp.next low_node.next = high_node prev.next = low_node prev = high_node tmp = tmp.next else: prev = tmp tmp = tmp.next def __str__(self): info = '' tmp = self.head while tmp is not None: info += tmp.cluster.__str__() tmp = tmp.next return info def round_robin_next(group): ''' Implementation of the round-robin tournament transition: Circle scheduling ''' # rotate entries in group clockwise # with the group[0,0] fixed group[1] = np.flip(group[1]) group_flatten = list(np.concatenate(group).flat) n_items = len(group_flatten) if n_items > 2: new_group_flatten = [0]*n_items new_group_flatten[1:] = group_flatten[:-1] new_group_flatten[0] = group_flatten[-1] n_pairs = n_items // 2 new_group = np.reshape(new_group_flatten, (2,n_pairs)) new_group[1] = np.flip(new_group[1]) tmp = new_group[0,0] new_group[0,0] = new_group[0,1] new_group[0,1] = tmp new_group = new_group.tolist() else: new_group = group return new_group def is_split(cluster, UCB, LCB): l = len(cluster) if l > 2: # sort items in cluster by UCB cluster = sorted(cluster, key=lambda i: UCB[i], reverse=True) for i in range(2, l, 2): item_i = cluster[i] item_im1 = cluster[i-1] if UCB[item_i] < LCB[item_im1]: # larger items put lower in the chain lower = cluster[:i] higher = cluster[i:] return True, higher, lower return False, None, None def matching2group(matching): n_items = len(matching) n_pairs = n_items // 2 group = np.reshape([0]*n_items, (2,n_pairs)) for k in range(n_pairs): group[0,k] = matching[2*k] group[1,k] = matching[2*k+1] return group.tolist() def group2matching(group): n_pairs = len(group[0]) n_items = n_pairs * 2 matching = [0]*n_items for k in range(n_pairs): matching[2*k] = group[0][k] matching[2*k+1] = group[1][k] return matching if __name__ == '__main__': ''' The following code is to replicate the origin_equal_distance problem instance ''' from matching_bandit.utils.p_dist import origin_equal_distance parser = argparse.ArgumentParser() parser.add_argument('--n_pairs', type=int, default=11) parser.add_argument('--Delta', type=float, default=0.1) parser.add_argument('--horizon', type=int, default=200000) args = parser.parse_args() logger.set_level(logger.INFO) # Set up the agent agent = MDC(n_pairs=args.n_pairs) # Set up the environment env = gym.make( 'MatchingSelectionBandit-v0', n_pairs = args.n_pairs, time_series_frequency = args.horizon // 10 ) p = origin_equal_distance(args.n_pairs, args.Delta) env.reset(agent.name, item_dist=p) # Simulation loop agent.run( env=env, horizon=args.horizon, animated=True ) # Render the final state and keep the plot window open env.render(freeze=True) env.close() ```
{ "source": "jialiuGit/Bayes_GGP", "score": 3 }
#### File: jialiuGit/Bayes_GGP/main.py ```python import numpy as np from PN_Bayes import * import pickle import time import argparse from scipy.stats import norm as normal import pdb #run python #for |\bm xi| = 5 #python3 main.py large 8 20000 5000 --Initials_xi 30 3 0.5 6 15 1.0 --Initials_g -18 0 0 --directory results --rstname tk03_test_large #or |\bm xi| = 6 #python3 main.py large 8 20000 5000 --Initials_xi 30 3 0.5 6 15 1.0 3.0 --Initials_g -18 0 0 --beta_model rv --directory results --rstname tk03_test_large_betarv #---data_name ----name of user's data, we need data--- unit (spherical) directional data in cartesian coordinate, and lat --- latitude to run the code #---degree------- degree in SH, l, we use a (default) value is 8, here is an input #---nMCMC ------- number of MCMC runs #---burnin--------number of burnin in MCMC #---Intials_xi----initial values sig10_2, sig11_2,sig20_2,sig21_2, alpha, beta #---Intials_g---- initial values of means of g_1^0 , g_2^0, g_3^0,...,g_l^0 #---mu_ast--------parameter mu star in the Mirror random walk proposal #---beta_model----if beta is treated as a fixed value, |xi| = 5, otherwise |xi| - 6 #---fileformat----file format when saving the results, default is '.pkl' #---GGPmodel-----the exsiting GGPmodel, default is tk03 #---directory----directory where is to save the results #---rstname------name of the results #---method ------ we provide three different solutions to update field variation, 'ab_joint'---update xi where alpha and beta are together; #'ab_ind' --update xi where alpha and beta is independently, 'x2' ---update xi2 . parser = argparse.ArgumentParser(description='main script to run on server') parser.add_argument('data_name', metavar='data_name', nargs='+',help='name of data') # parser.add_argument('degree', metavar='degree', type=int, nargs='+',help='degree in SH') parser.add_argument('nMCMC', metavar='nMCMC', type=int, nargs='+',help='number of MCMC iterations') parser.add_argument('burnin', metavar='burnin', type=int, nargs='+',help='number of burnin in MCMC') parser.add_argument('--Initials_xi', metavar='Initials_xi', type=float, nargs='+',help='initial values of variation parameter') parser.add_argument('--Initials_g', metavar='Initials_g', type=float, nargs=3, help='initial values of field parameter') parser.add_argument('--mu_ast', metavar='mu_ast', type=float, nargs='+',help='mu of RW mirror proposal') parser.add_argument('--beta_model', metavar='beta_model', nargs='+',help='model of beta (fixed/r.v.)') parser.add_argument('--fileformat', metavar='fileformat', nargs='+',help='figure fileformat (pkl)') parser.add_argument('--GGPmodel', metavar='GGPmodel', nargs='+',help='name of GGP model') parser.add_argument('--directory', metavar='directory', nargs='+',help='Subdirectory for output-files') parser.add_argument('--rstname', metavar='rstname', nargs='+',help='result name in pkl-file') parser.add_argument('--method', metavar='method', nargs='+',help='simulation method') # args = parser.parse_args() data_name =str(args.data_name[0]) degree = np.int(args.degree[0]) nMCMC = np.int(args.nMCMC[0]) burnin = np.int(args.burnin[0]) Initials_xi =np.float32(args.Initials_xi) sig10_2, sig11_2, sig20_2, sig21_2, alpha, beta = Initials_xi sig22_2 = sig20_2 Initials_g =np.float32(args.Initials_g) G = Initials_g if args.data_name is None: data_name = 'large' else: data_name=str(args.data_name[0]) if args.beta_model is None: beta_model="fixed" else: beta_model=str(args.beta_model[0]) if args.mu_ast is None: #run the code get mu_ast from burnin or some good choices such as tk03 if beta_model == 'fixed': mu_ast = 2*np.array([6.4, 1.7, 0.6, 2.2, 7.5]) else: mu_ast = 2*np.array([6.4, 1.7, 0.6, 2.2, 7.5, 7.5*3.8]) else: mu_ast=2*np.float32(args.mu_ast) #pdb.set_trace() if args.fileformat is None: fileformat="pkl" else: fileformat=str(args.fileformat[0]) if args.GGPmodel is None: GGPmodel="tk03" else: GGPmodel=str(args.GGPmodel[0]) if args.method is None: method="ab_joint" else: method=str(args.method[0]) #load your data: we need 'data = directional data' and 'lat = latitude' to run the code! if data_name == 'large': with open('simu_large_data.pkl', 'rb') as f: tk03_data, tk03_real_inten, tk03_lat, CJ98_data, CJ98_real_inten, CJ98_lat = pickle.load(f) if GGPmodel == 'tk03': data = tk03_data elif GGPmodel == 'CJ98': data = CJ98_data lat = tk03_lat #pdb.set_trace() if beta_model == 'fixed': cof_K = cof_K1(degree, lat, beta) else: cof_K = cof_K2(degree, lat) directory = str(args.directory[0]) rstname = str(args.rstname[0]) def update_Sigma_AM_onestp(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma0, sd, mu_ast): #update alpha and beta together, alpha * beta is random variables #default method uvec = Y - mu cov_len =cof_K.shape[0] if cov_len ==5: x1 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]) , dtype=float) ,alpha)) x0 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha)) else: x1 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha, alpha*beta)) x0 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha, alpha*beta)) for j in range(cov_len): sampXI = list(x0) #will not change x0 go_on = 1 while go_on: xi_j = np.random.normal(mu_ast[j] - x1[j], sd[j]) if xi_j > 0.0: #positive constraints go_on = 0 sampXI[j] = xi_j #print(xi_j,j) #pdb.set_trace() logMHrat = log_lik_diff(uvec, cof_K, np.array(sampXI)**2, x0**2 ) MHrat = np.exp(logMHrat) vrat = np.random.uniform(0,1) if (MHrat > vrat): x0[j] = xi_j if cov_len == 5: dist = np.abs(np.sum(x0 - x1)) else: #pdb.set_trace() dist = np.abs(np.sum(x0[0:-1] - x1[0:-1])) if (dist) > 1e-5: if cov_len ==6: sig10_2, sig11_2, sig20_2, sig21_2 =x0[0:4]**2 beta = x0[-1]/x0[-2] else: sig10_2, sig11_2, sig20_2, sig21_2 = x0[0:4]**2 alpha = x0[4] sig22_2 = sig20_2 loglik = log_post_fun(uvec, cof_K, x0**2) lat0 = 0 Sigma = np.zeros((n,3,3)) for i in range(len(Y)): if lat[i] != lat0: Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2) Sigma[i] = Sigma_i else: Sigma[i] = Sigma[i-1] lat0 = lat[i] else: sig22_2 = sig20_2 Sigma = Sigma0 loglik = log_post_fun(uvec, cof_K, x1**2) return sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, loglik def update_Sigma_AM_onestp_beta(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma0, sd, mu_ast): #update alpha and beta separately, beta is random variables sig2 = 100 #---prior uvec = Y - mu cov_len =cof_K.shape[0] if cov_len ==5: x1 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]) , dtype=float) ,alpha)) x0 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha)) else: x1 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha, beta)) x0 = np.hstack((np.array(np.sqrt([sig10_2, sig11_2,sig20_2,sig21_2]), dtype=float) ,alpha, beta)) for j in range(cov_len): sampXI = list(x0) #will not change x0 go_on = 1 while go_on: xi_j = np.random.normal(mu_ast[j] - x1[j], sd[j]) if xi_j > 0.0: go_on = 0 sampXI[j] = xi_j if j == 5: xi_new = np.hstack((x0[0:5]**2, (x0[4]*xi_j)**2 )) xi_old = np.hstack((x0[0:5]**2, (x0[4]*x0[j])**2 )) # pdb.set_trace() else: xi_new = np.array(sampXI)**2 xi_old = x0**2 logMHrat = log_lik_diff(uvec, cof_K, xi_new , xi_old) + x0[j]**2/sig2 - xi_j**2/sig2 #pdb.set_trace() MHrat = np.exp(logMHrat) vrat = np.random.uniform(0,1) if (MHrat >= vrat): x0[j] = xi_j dist = np.abs(np.sum(x0 - x1)) if (dist) > 1e-6: alpha = x0[4] if cov_len ==6: sig10_2, sig11_2, sig20_2, sig21_2 =x0[0:4]**2 #alpha = x0[4] beta = x0[-1] else: sig10_2, sig11_2, sig20_2, sig21_2 =x0[0:4]**2 sig22_2 = sig20_2 #alpha = np.sqrt(alpha2) if cov_len == 5: loglik = log_post_fun(uvec, cof_K, x0**2 ) else: loglik = log_post_fun(uvec, cof_K, np.hstack((x0[0:5]**2, (x0[4]*x0[-1])**2 ))) lat0 = 0 Sigma = np.zeros((n,3,3)) for i in range(len(Y)): if lat[i] != lat0: Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2) Sigma[i] = Sigma_i else: Sigma[i] = Sigma[i-1] lat0 = lat[i] else: sig22_2 = sig20_2 Sigma = Sigma0 if cov_len == 5: loglik = log_post_fun(uvec, cof_K, x1**2) else: loglik = log_post_fun(uvec, cof_K, np.hstack((x1[0:5]**2, (x1[4]*x1[-1])**2 ))) return sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, loglik def update_Sigma_AM_onestp2(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma0, sd, mus_ast): #update xi2---- sig10_2, sig11_2,sig20_2,sig21_2, alpha**2, (alpha*beta)**2 def rep_array(XI,x_j,j): XI[j] = x_j return XI def strwhat(x0,sig): tmp = np.random.uniform(0,1,3) u1, u2, u3 = tmp a = 1 b = 1.35 term1 = a/(3*b - 2*a) if u1 < term1: y = a*np.power(u2,1/3) else: y = np.random.uniform(a,b,1)[0] if u3 < 0.5: y = - y xprime = x0 + sig*y return xprime uvec = Y - mu cov_len =cof_K.shape[0] if cov_len ==5: x0 = np.array([sig10_2, sig11_2, sig20_2, sig21_2,alpha**2], dtype=float) x1 = np.array([sig10_2, sig11_2, sig20_2, sig21_2,alpha**2], dtype=float) mu_ast = 2*np.array([40.96, 2.89, 0.36, 4.84, 56.25]) #xi2 or other choices from burnin else: x0 = np.array([sig10_2, sig11_2, sig20_2, sig21_2,alpha**2, (alpha*beta)**2], dtype=float) x1 = np.array([sig10_2, sig11_2, sig20_2, sig21_2,alpha**2, (alpha*beta)**2], dtype=float) mu_ast = 2*np.array([40.96, 2.89, 0.36, 4.84, 56.25,56.25*14.4]) for j in range(cov_len): sampXI = list(x0) #will not change x1 go_on = 1 while go_on: xi_j = np.random.normal(mu_ast[j] - x1[j], sd[j]) if xi_j > 0.0: go_on = 0 sampXI[j] = xi_j #print(xi_j,j) #print(xi_j) logMHrat = log_lik_diff(uvec, cof_K, sampXI, x0 ) MHrat = np.exp(logMHrat) vrat = np.random.uniform(0,1) if (MHrat > vrat): x0[j] = xi_j if (np.abs(np.sum(x0[0:cov_len-1] - x1[0:cov_len-1])) ) > 1e-5: if cov_len ==6: sig10_2, sig11_2, sig20_2, sig21_2,alpha2, tau2 =x0 beta = np.sqrt(tau2/alpha2) else: sig10_2, sig11_2, sig20_2, sig21_2, alpha2 =x0 sig22_2 = sig20_2 alpha = np.sqrt(alpha2) loglik = log_post_fun(uvec, cof_K, x0) lat0 = 0 Sigma = np.zeros((n,3,3)) for i in range(len(Y)): if lat[i] != lat0: Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2) Sigma[i] = Sigma_i else: Sigma[i] = Sigma[i-1] lat0 = lat[i] else: sig22_2 = sig20_2 Sigma = Sigma0 loglik = log_post_fun(uvec, cof_K, x1) return sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, loglik def log_post_diff(u, cof_K, sig_paras, x0, a, b): n = len(u) cov_len = cof_K.shape[0] diffloglik = 0 # def log_inverse_gamma(x, a,b): log_ig = 0 for j in range(len(x)): log_ig = log_ig - ((a[j] + 1)*np.log(x[j]) + b[j]/x[j]) return log_ig # def log_normal(x, mu,sig2): log_norm = 0 for j in range(len(x)): log_norm = log_norm - (x[j]-mu[i])**2/sig2 return log_norm for i in range(n): #This step can be done in parallel! K = 0 K1 = 0 for j in range(cov_len): #covariates j K = K + sig_paras[j]* cof_K[j][i] K1 = K1 + x0[j]* cof_K[j][i] Kpre = Omega_mat(K) Kpre1 = Omega_mat(K1) A = u[i].reshape(3,1)*u[i].reshape(1,3) diffloglik = diffloglik + np.matrix.trace( np.dot(A, Kpre1) ) - np.matrix.trace( np.dot(A, Kpre) ) + np.log(np.linalg.det(K1) ) - np.log(np.linalg.det(K) ) prior = log_normal(np.sqrt(sig_paras), a,b) - log_normal(np.sqrt(x0), a,b) post = 0.5*diffloglik + prior return post def same_sign(x,y): #pdb.set_trace() if abs(x)<= 1e-3 or abs(y) <= 1e-3: sign = 1 elif abs(x) + abs(y) == abs(x + y): sign = 1 else: sign = 0 return sign #----------------------main body------------------------ n = len(data) cov_len = cof_K.shape[0] R = np.ones(n) G4 =0.0 start = time.time() log_fullpost = np.zeros((nMCMC+1,1)) logpost_g = np.zeros((nMCMC+1,1)) Sig_y = np.zeros((nMCMC+1,1)) C0 = np.diag(np.ones(cov_len)) J = len(G) sum_G = np.zeros((1,J)) sum_sig_l_02 = np.zeros((1,7)) t = 0 mu = np.zeros((n,3)) sig_l_02_samp = np.zeros((nMCMC+1,7)) G_samp = np.zeros((nMCMC+1,len(G))) seqJ = np.array(range(J)) #design matrix from data---only compute once X = np.zeros((n,3,len(G))) lat0 =0 Sigma = np.zeros((n,3,3)) #X1 is a design matrix for i in range(n): if lat[i] != lat0: X1 = deg_mat_zonal(lat[i],G4,a_r=1.0) #ith design matrix Xtmp= X1 Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2) Sigma[i] = Sigma_i else: X1 = Xtmp Sigma[i] = Sigma[i-1] #pdb.set_trace() #print(Sigma[i] , Sigma[i-1] ) X1 = np.vstack((X1[0],[0,0,0],X1[1])) X[i] = X1 lat0 = lat[i] while t <= nMCMC: #update length paras R----given G compute mu Y = np.zeros((n,3)) lat0 = 0 for i in range(n): lat_i = lat[i] #print(lat_i, lat0) if lat_i != lat0: mu[i] = np.array([np.sum(G*X[i,0]),0.0, np.sum(G*X[i,2])]) else: mu[i] = mu[i-1] lat0 = lat_i R[i] = slice_samp_r_weight(R[i], data[i],mu[i],Sigma[i],3) Y[i] = R[i]*data[i] #------------------------------------------------------------------------------------- if cov_len == 5: sig_paras = np.array([sig10_2, sig11_2, sig20_2, sig21_2, alpha]) else: sig_paras = np.array([sig10_2, sig11_2, sig20_2, sig21_2, alpha, beta]) print(sig_paras) sig_l_02_samp[t] = np.array([sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta]) sd = 0.35*np.ones(cov_len) if t ==0: if method =='ab_joint': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma, sd, mu_ast) elif method == 'ab_ind': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp_beta(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma, sd, mu_ast) elif method == 'xi2': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp2(Y, mu, lat, degree, cof_K, sig10_2, sig11_2,sig20_2,sig21_2, alpha,beta, Sigma, sd, mu_ast) else: if method =='ab_joint': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp(Y, mu, lat, degree, cof_K, sig_l_02_samp[t,0],sig_l_02_samp[t,1],sig_l_02_samp[t,2],sig_l_02_samp[t,3],sig_l_02_samp[t,5], sig_l_02_samp[t,6], Sigma, sd, mu_ast) elif method == 'ab_ind': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp_beta(Y, mu, lat, degree, cof_K, sig_l_02_samp[t,0],sig_l_02_samp[t,1],sig_l_02_samp[t,2],sig_l_02_samp[t,3],sig_l_02_samp[t,5], sig_l_02_samp[t,6], Sigma, sd, mu_ast) elif method == 'xi2': sig10_2, sig11_2, sig20_2, sig21_2,sig22_2, alpha,beta, Sigma, log_post_Sig = update_Sigma_AM_onestp2(Y, mu, lat, degree, cof_K, sig_l_02_samp[t,0],sig_l_02_samp[t,1],sig_l_02_samp[t,2],sig_l_02_samp[t,3],sig_l_02_samp[t,5], sig_l_02_samp[t,6], Sigma, sd, mu_ast) Sig_y[t] = log_post_Sig #-------------------------------------------------------------------------------------------- sig30_2 = psv.s_lm2(3,0,alpha,beta,sig10_2, sig11_2, sig20_2, sig21_2,sig22_2) if G4 == 0.0: sig_l_02 = np.array([sig10_2, sig20_2, sig30_2]) else: Sig40_2 = psv.s_lm2(4,0,alpha,beta,sig10_2, sig11_2, sig20_2, sig21_2,sig22_2) sig_l_02 = np.array([sig10_2, sig20_2, sig30_2, sig40_2]) #print(Y[0]) #update non-zonal effects G=[g_1^0, g_2^0, g_3^0] given Sig and R sig_l_2_tild = [] m_tild = [] log_post_G = 0 for j in range(len(G)): noJind = np.where(seqJ != j)[0] mu_tild_cof = 0 invsig_tild = 0 for i in range(n): GnoJ = G[noJind] sumXGnotj =np.sum( X[i][:, noJind]*GnoJ.T, axis=1) #dim 2x1 # XSig = np.linalg.solve(Sigma[i],X[i][:,j]) #Sigma^-1 X^T dim = 2x1 XsigX = np.matmul(XSig.T, X[i][:,j]) #scalar XsigXGnoj = np.matmul(XSig.T, sumXGnotj) #scalar XsigY = Y[i].dot(XSig) mu_tild_cof = mu_tild_cof - XsigXGnoj + XsigY invsig_tild = invsig_tild + XsigX sig2 = 1/(invsig_tild + 1/100) #flat prior #pdb.set_trace() if sig2 < 0: sig2 = 0.0 sig_l_2_tild.append(sig2) mu_j = sig2* mu_tild_cof m_tild.append(mu_j) sig = np.sqrt(sig2) # tmp_g = np.random.normal(mu_j, sig) if np.isnan(tmp_g): tmp_g = 0.0 G[j] = tmp_g log_g = np.log(normal.pdf(tmp_g, loc=mu_j, scale=sig) ) log_post_G = log_post_G + log_g G_samp[t] = G print(G) logpost_g[t] = log_post_G new_post = log_post_Sig - log_post_G log_fullpost[t] = new_post if (t > nMCMC): break t += 1 print(t) MCpost_G = np.mean(G_samp[burnin:-1],axis=0) MCpost_sig_l_02 = np.mean(sig_l_02_samp[burnin:-1], axis=0) end = time.time() runtime = end - start print(runtime) Filename=directory + "/" + rstname +"."+fileformat with open(Filename, 'wb') as f: pickle.dump([Y, X, R, cof_K, MCpost_G,MCpost_sig_l_02, G_samp,log_fullpost, sig_l_02_samp, Sig_y, logpost_g, runtime], f) ```
{ "source": "Jiali-Xing/Talaria", "score": 3 }
#### File: models/pbft/message.py ```python from blocksim.utils import kB_to_MB from blocksim.models.pbft_network import MaliciousModel class Message: # Jiali: Copied from Ethereum # Defines a model for the network messages of the PBFT blockchain. def __init__(self, origin_node): self.origin_node = origin_node _env = origin_node.env self._message_size = _env.config['pbft']['message_size_kB'] # Digest is 1 meaning correct/valid, 0 is malicious and modified/invalid message. self.digest = 0 if self.origin_node.is_malicious == MaliciousModel.ACTIVE else 1 def status(self): """ Inform a peer of its current PoA state. This message should be sent `after` the initial handshake and `prior` to any PoA related messages. """ return { 'id': 'status', 'protocol_version': 'ONE', 'network': self.origin_node.network.name, 'td': self.origin_node.chain.head.header.difficulty, 'best_hash': self.origin_node.chain.head.header.hash, 'genesis_hash': self.origin_node.chain.genesis.header.hash, 'size': kB_to_MB(self._message_size['status']) } def transactions(self, transactions: list): """ Specify (a) transaction(s) that the peer should make sure is included on its transaction queue. Nodes must not resend the same transaction to a peer in the same session. This packet must contain at least one (new) transaction. """ num_txs = len(transactions) transactions_size = num_txs * self._message_size['tx'] return { 'id': 'transactions', 'transactions': transactions, 'size': kB_to_MB(transactions_size) } # Ryan: Reformat messages to hold info def pre_prepare(self, seqno, new_blocks: dict, block_bodies: dict, new_view): # Jiali: pre-prepare should be similar to newblock, so I migrate newblock to here. """Advertises one or more new blocks which have appeared on the network""" # Jiali: we can use the number of last block in one message (assume multiple blocks in one pre-prepare is # possible) as seqno! if new_view: return { 'id': 'pre-prepare', 'view': self.origin_node.network.view + 1, 'seqno': seqno, 'digest': self.digest, 'new_blocks': new_blocks, 'block_bodies': block_bodies, 'size': kB_to_MB(self._message_size['tx']) } else: num_new_block_hashes = len(new_blocks) new_blocks_size = num_new_block_hashes * \ self._message_size['hash_size'] txsCount = 0 for block_hash, block_txs in block_bodies.items(): txsCount += len(block_txs) message_size = (txsCount * self._message_size['tx']) + self._message_size['block_bodies'] return { 'id': 'pre-prepare', 'view': self.origin_node.network.view, 'seqno': seqno, 'digest': self.digest, 'new_blocks': new_blocks, 'block_bodies': block_bodies, 'size': kB_to_MB(message_size+new_blocks_size) } def prepare(self, seqno): return { 'id': 'prepare', 'view': self.origin_node.network.view, 'seqno': seqno, 'digest': self.digest, 'replica_id': self.origin_node.replica_id, 'size': kB_to_MB(self._message_size['prepare']) } # Originally copied from "block_bodies()" in the ETH version of message.py def commit(self, seqno): return { 'id': 'commit', 'view': self.origin_node.network.view, 'seqno': seqno, 'digest': self.digest, 'replica_id': self.origin_node.replica_id, 'size': kB_to_MB(self._message_size['commit']) } def client_reply(self, new_block): return { 'id': 'reply', 'view': self.origin_node.network.view, 'timestamp': new_block.header.timestamp, 'client': self.origin_node.network.view % len(self.origin_node.network._list_authority_nodes), 'replica_id': self.origin_node.replica_id, 'result': new_block, 'size': kB_to_MB(self._message_size['reply']) #TODO: Will need to add block size } def checkpoint(self, seqno, replica_id): return { 'id': 'checkpoint', 'seqno': seqno, 'digest': self.digest, 'replica_id': replica_id, 'size': kB_to_MB(self._message_size['checkpoint']) } def view_change(self, ckpt_seqno, checkpoint_msg, prepare_msg): return { 'id': "viewchange", 'nextview': self.origin_node.network.view + 1, 'checkpoint_seqno': ckpt_seqno, 'checkpoint_messages': checkpoint_msg, 'prepare_messages': prepare_msg, 'replica_id': self.origin_node.replica_id, 'size': kB_to_MB(self._message_size['viewchange_base']) + (len(checkpoint_msg) * kB_to_MB(self._message_size['checkpoint'])) + \ (len(prepare_msg) * kB_to_MB(self._message_size['prepare'])) } def new_view(self, viewchange_msg, preprepare_msg): # Jiali: the following line is redundant as per line 425 in node.py: self.network.view += 1 # self.origin_node.network.view = self.origin_node.network.view + 1 return { 'id': "newview", 'newview': self.origin_node.network.view + 1, 'viewchange_messages': viewchange_msg, 'preprepare_messages': preprepare_msg, 'size': kB_to_MB(self._message_size['newview_base']) + (len(viewchange_msg) * kB_to_MB(self._message_size['viewchange_base'])) + \ (len(preprepare_msg) * kB_to_MB(self._message_size['tx'])) } ``` #### File: blocksim/models/permissoned_transaction_queue.py ```python from collections import OrderedDict # from collections import deque # from blocksim.utils import time class TransactionQueue(): def __init__(self, env, node, consensus): self._env = env self._node = node self._consensus = consensus self._transaction_queue = OrderedDict() key = f'{node.address}_number_of_transactions_queue' self._env.data[key] = 0 def put(self, tx): key = f'{self._node.address}_number_of_transactions_queue' self._env.data[key] += 1 self._transaction_queue[tx.signature] = tx def get(self): # TODO: A delay to retrieve a transaction from the Queue # Jiali: FIFO popitem is achieved with the OrderedDict() here return self._transaction_queue.popitem(last=False)[1] def remove(self, tx): # None is the default value for pop, so no exception is raised if given key doesn't exist return self._transaction_queue.pop(tx.signature, None) def remove_txs(self, txs): [self._transaction_queue.pop(tx.signature) for tx in txs] def add_txs(self, txs): for tx in txs: self.put(tx) def is_empty(self): return len(self._transaction_queue) == 0 def size(self): return len(self._transaction_queue) ``` #### File: blocksim/models/simpy_learning.py ```python import simpy def car(env): flag = True while True: print('Start parking at %d' % env.now) parking_duration = 5 yield env.timeout(parking_duration) print('Start driving at %d' % env.now) trip_duration = 2 yield env.timeout(trip_duration) print('now=%d, car need to wait for some time, value=%d' % (env.now, 3)) event = simpy.events.Timeout(env, delay=3, value=3) value = yield event print('now=%d, finish waiting, this happens in main time line' % env.now) if flag: env.process(traffic(env)) # flag = False def traffic(env): print('now=%d, this happens in parallel universe' % env.now) event = simpy.events.Timeout(env, delay=1, value=1) value = yield event print('now=%d, and does not interfere with main time line\'s car, value=%d' % (env.now, value)) if __name__ == '__main__': env = simpy.Environment() env.process(car(env)) env.run(until=50) ``` #### File: Talaria/blocksim/pbft_transaction_factory.py ```python import json import string from pathlib import Path from random import choices, randint, random import simpy import numpy as np from blocksim.utils import time from blocksim.permissioned_transaction_factory import PermTransactionFactory from blocksim.models.ethereum.transaction import Transaction as ETHTransaction from blocksim.models.transaction import Transaction class PBFTTransactionFactory(PermTransactionFactory): """ Responsible to create batches of random transactions. Depending on the blockchain being simulated, transaction factory will create transactions according to the transaction model. Moreover, the created transactions will be broadcasted when simulation is running by a random node on a list. Additionally, the user needs to specify the number of batches, number of transactions per batch and the interval in seconds between each batch. """ def __init__(self, world): super().__init__(world) def broadcast(self, json_file_name, interval, nodes_list): self.verbose = self._world.env.config["verbose"] path = Path.cwd() / 'supply-chain-input-data' / json_file_name if not path.exists(): raise Exception('Wrong working dir. Should be blocksim-dlasc') all_days = True with path.open() as f: all_days_tx = json.load(f) if all_days: today = 'All Days' # only one day's tx is too little... # Thus I decide to use all tx from 180 days, # but that turns out to be too much, so I add only every ten days # ''' node_tx = [] for key, value in all_days_tx.items(): # This part sums tx every ten days, e.g., 10, 20, 30 etc., to make tx larger, but not too large node_tx.append(all_days_tx[key][1:]) # if int(key[-2:-1]) < 9: # pass node_tx_array = np.array(node_tx) # ''' sum_tx = np.sum(node_tx_array, axis=0) else: today = self._world.env.data['day'] sum_tx = all_days_tx[today][1:] # Jiali: Here we implement the paired transaction dictionary to count international tx. paired = False dict_path = Path.cwd() / 'supply-chain-input-data' / 'tx_dict.json' with dict_path.open() as df: paired_tx = json.load(df) blockchain_switcher = { 'poa': self._generate_poa_tx, 'pbft': self._generate_pbft_tx, 'bitcoin': self._generate_bitcoin_tx, 'ethereum': self._generate_ethereum_tx } if paired: international_tx = 0 for sender in paired_tx.keys(): transactions = [] for j in paired_tx[sender].keys(): n_tx = paired_tx[sender][j] i = int(sender) j = int(j) j = min(j, len(nodes_list) - 1) for _i in range(n_tx): sign = '-'.join([nodes_list[i].address, nodes_list[j].address, str(_i)]) tx = blockchain_switcher.get(self._world.blockchain, lambda: "Invalid blockchain")(sign, i) transactions.append(tx) if nodes_list[i].address[7] != nodes_list[j].address[7]: self._world.env.data['international_transactions'] += n_tx self._world.env.process(self._set_interval(nodes_list[i], transactions, interval * i)) else: for i in range(min(len(nodes_list), len(sum_tx))): transactions = [] for _i in range(sum_tx[i]): # Generate a random string to a transaction be distinct from others # rand_sign = ''.join( # choices(string.ascii_letters + string.digits, k=20)) sign = '- '.join( [today, nodes_list[i].address, str(_i), str(self._world.env.data['created_transactions'])]) tx = blockchain_switcher.get(self._world.blockchain, lambda: "Invalid blockchain")(sign, i) transactions.append(tx) self._world.env.process(self._set_interval(nodes_list[i], transactions, interval * i)) def _set_interval(self, node, tx, interval): event = simpy.events.Timeout(self._world.env, delay=interval, value=interval) value = yield event self._world.env.process( node.broadcast_transactions(tx)) if self.verbose: print(f'{time(self._world.env)}, now {value} seconds have passed') self._world.env.data['created_transactions'] += len(tx) # yield self._world.env.timeout(interval) def _generate_pbft_tx(self, rand_sign, i): tx = Transaction('address', 'address', 140, rand_sign, 50) return tx ``` #### File: Talaria/blocksim/permissioned_node_factory.py ```python import csv from pathlib import Path from ast import literal_eval as make_tuple from random import randint from blocksim.models.bitcoin.node import BTCNode from blocksim.models.ethereum.dlasc_node import ETHNode from blocksim.models.poa.node import POANode from blocksim.models.pbft.node import PBFTNode from blocksim.models.pbft_network import MaliciousModel from blocksim.node_factory import NodeFactory class PermNodeFactory(NodeFactory): """ Responsible to create the nodes used during the simulation. Depending on the blockchain being simulated, node factory will create nodes according to the node model. The user can specify the location, number of miners and non-miners, and the range of hash rate for the miner nodes. When nodes are created, is chosen a random hash rate from the range inputed. The location of each node needs to be recognised by the simulator, meaning that it needs to exist input parameters about latency and throughput. """ def __init__(self, world, network): super().__init__(world, network) def create_nodes(self, miners, non_miners): self._check_location(miners, non_miners) # If a new blockchain is modeled it needs to be inserted here blockchain_switcher = { 'bitcoin': self.create_bitcoin_nodes, 'ethereum': self.create_ethereum_nodes, 'poa': self.create_poa_nodes, 'pbft': self.create_pbft_nodes } return blockchain_switcher.get( self._world.blockchain, lambda: "Invalid blockchain")(miners, non_miners) def create_poa_nodes(self, miners, non_miners): # Jiali: miners/non_miners are set by csv instead, so no need to provide above! path = Path.cwd() / 'blocksim' / 'Test_DLA1_Input.csv' if not path.exists(): raise Exception('Wrong working dir. Should be blocksim-dlasc') with path.open('r') as infile: reader = csv.reader(infile) node_region = {rows[0]: rows[3] for rows in reader} print(node_region) # node_id = 0 # Unique ID for each node nodes_list = [] for node_id, region_id in node_region.items(): node_address = f'region_{region_id}-no_{node_id}' if int(region_id) <= 3: # Create the authority nodes if node is in US mega_hashrate_range = make_tuple('(20, 40)') # Jiali: hashrate is no longer needed, but let's keep it in case. # hashrate = randint( # mega_hashrate_range[0], mega_hashrate_range[1]) * 10 ** 6 new = POANode(self._world.env, self._network, region_id, node_address, # hashrate, True) nodes_list.append(new) else: # Creat the non-authority nodes if node is oversea new = POANode(self._world.env, self._network, region_id, node_address, False) nodes_list.append(new) print(f'NodeFactory: Created {len(nodes_list)} PoA nodes') return nodes_list def create_pbft_nodes(self, miners, non_miners): # Jiali: miners/non_miners are set by csv instead, so no need to provide above! path = Path.cwd() / 'blocksim' / 'Test_DLA2_Input.csv' if not path.exists(): raise Exception('Wrong working dir. Should be blocksim-dlasc') with path.open('r') as infile: reader = csv.reader(infile) node_region = {rows[0]: rows[3] for rows in reader} with path.open('r') as infile: # Jiali: Assume the last column in csv represents malicious type. reader = csv.reader(infile) nodes_malicious = {rows[0]: rows[7] for rows in reader} print(node_region) # node_id = 0 # Unique ID for each node nodes_list = [] replica_id = 0 for node_id, region_id in node_region.items(): node_address = f'region_{region_id}-no_{node_id}' is_malicious = int(nodes_malicious[node_id]) if int(region_id) <= 3: # Create the authority nodes if node is in US mega_hashrate_range = make_tuple('(20, 40)') # Jiali: hashrate is no longer needed, but let's keep it in case. # hashrate = randint( # mega_hashrate_range[0], mega_hashrate_range[1]) * 10 ** 6 new = PBFTNode(self._world.env, self._network, region_id, node_address, replica_id, True, MaliciousModel(is_malicious)) nodes_list.append(new) else: # Creat the non-authority nodes if node is oversea new = PBFTNode(self._world.env, self._network, region_id, node_address, replica_id, False) nodes_list.append(new) replica_id = replica_id + 1 print(f'NodeFactory: Created {len(nodes_list)} pBFT nodes') return nodes_list def create_ethereum_nodes(self, miners, non_miners): with open('Test_DLA1_Input.csv', mode='r') as infile: reader = csv.reader(infile) node_region = {rows[0]: rows[3] for rows in reader} print(node_region) # node_id = 0 # Unique ID for each node nodes_list = [] for node_id, region_id in node_region.items(): node_address = f'{region_id}-{node_id}' if int(region_id) <= 3: # Create the miners nodes if node is in US mega_hashrate_range = make_tuple('(20, 40)') # Choose a random value on MH/s range and convert to H/s hashrate = randint( mega_hashrate_range[0], mega_hashrate_range[1]) * 10 ** 6 new = ETHNode(self._world.env, self._network, region_id, node_address, hashrate, True) nodes_list.append(new) else: # Creat the non-miner nodes if node is oversea new = ETHNode(self._world.env, self._network, region_id, node_address, False) nodes_list.append(new) print(f'NodeFactory: Created {len(nodes_list)} ethereum nodes') return nodes_list ```
{ "source": "Jialn/SocialRobot", "score": 2 }
#### File: python/social_bot/keybo_control.py ```python import sys, tty, termios import select import numpy as np from absl import logging from pymouse import PyMouse from pykeyboard import PyKeyboardEvent class KeyboardControl(PyKeyboardEvent): """ This class is used to generate demonstrations from human through keyboard. Some tricks are used to make the keyboard controlling more user friendly. Move the agent around by key "W, A, S, D" and open or close gripper by key "E", and move the robot arm joints (if there is) by mouse and key "R, F". """ def __init__(self): super().__init__(capture=False) self._mouse = PyMouse() x, y = self._mouse.screen_size() self._x_center, self._y_center = x / 2.0, y / 2.0 self._speed = 0 self._turning = 0 self._arm_joints = [0, 0, 0] self._gripper_open = True self._wheel_step = 0.5 self._speed_decay = 0.9 self._turning_decay = 0.6 self._done = False logging.info("Control:" + """ W : increase forward speed S : increase backward speed A : turn left D : turn right E : open/close gripper (if there is one) R/F : move robot arm joint (if there is one) + : increase the step size for W/S/A/D - + decrease the step size for W/S/A/D Q : quit mouse : gripper position (if there is one) """) self.start() def reset(self): self._arm_joints = [0, 0, 0] self._gripper_open = True self._speed = 0 self._turning = 0 def get_agent_actions(self, agent_type): """ Args: agent_type(sting): the agent type Returns: actions generated by the keyboard accroding to agent type """ # decay the speed self._speed *= self._speed_decay self._turning *= self._turning_decay # get gripper pos mouse_x, mouse_y = self._get_mouse_pos() self._arm_joints[0] = mouse_x self._arm_joints[1] = mouse_y return self._convert_to_agent_action(agent_type) def tap(self, keycode, character, press): """ Keyboard event handler. Args: keycode(int): the key code character(string): the key name press(bool): True if the key was pressed and False if the key was released. """ if not press: return if character == "w": self._speed = 0 if self._speed < -0.01 else self._speed + self._wheel_step elif character == "s": self._speed = 0 if self._speed > 0.01 else self._speed - self._wheel_step elif character == "a": self._turning = 0 if self._turning > 0.01 else self._turning - self._wheel_step elif character == "d": self._turning = 0 if self._turning < -0.01 else self._turning + self._wheel_step # arm_joint[2] elif character == "r": self._arm_joints[2] -= 0.1 elif character == "f": self._arm_joints[2] += 0.1 # gripper finger elif character == "e": self._gripper_open = not self._gripper_open # set step size elif character == "+": self._wheel_step *= 1.5 elif character == "-": self._wheel_step *= 0.7 elif character == "q": self._done = True def is_done(self): return self._done def _get_mouse_pos(self): """ Get the mouse position and normalize to (-1, 1). """ x, y = self._mouse.position() x, y = x / self._x_center - 1.0, y / self._y_center - 1.0 return x, y def _convert_to_agent_action(self, agent_type): if agent_type == 'pioneer2dx_noplugin' or agent_type == 'turtlebot': actions = self._to_diff_drive_action() elif agent_type == 'youbot_noplugin': actions = self._to_youbot_action() elif agent_type == 'pr2_noplugin': actions = self._to_pr2_action() elif agent_type == 'kuka_lwr_4plus': actions = self._to_lwr4_action() else: actions = [] logging.info("agent type not supported yet: " + agent_type) return actions def _to_diff_drive_action(self): left_wheel_joint = self._speed + self._turning right_wheel_joint = self._speed - self._turning actions = [left_wheel_joint, right_wheel_joint] return actions def _to_youbot_action(self): """ Convert to the wrapped youbot actions """ if self._gripper_open: finger_joint = 0.5 else: finger_joint = -0.5 actions = [ self._arm_joints[0], self._arm_joints[1], self._arm_joints[2], 0, finger_joint, self._speed, self._turning ] return actions def _to_lwr4_action(self): actions = [ self._speed, self._turning, self._arm_joints[0], self._arm_joints[1], self._arm_joints[2] ] return actions def _to_pr2_action(self): wheel_joint_bl = self._speed + self._turning wheel_joint_br = self._speed - self._turning wheel_joint_fl = self._speed + self._turning wheel_joint_fr = self._speed - self._turning actions = [ wheel_joint_fl, wheel_joint_fl, wheel_joint_fr, wheel_joint_fr, wheel_joint_bl, wheel_joint_bl, wheel_joint_br, wheel_joint_br ] return actions def main(): """ Simple testing of KeyboardControl class. """ import matplotlib.pyplot as plt from social_bot.envs.play_ground import PlayGround from social_bot.tasks import GoalTask, KickingBallTask, ICubAuxiliaryTask, Reaching3D, PickAndPlace, Stack from social_bot.gazebo_agent import YoubotActionWrapper # Avoid the conflict between the keyboard control of the robot and the shortcut # key of pyplot plt.rcParams['keymap.save'].remove('s') plt.rcParams['keymap.fullscreen'].remove('f') plt.rcParams['keymap.quit'].remove('q') use_image_obs = True fig = None agent_type = 'youbot_noplugin' env = PlayGround( with_language=False, use_image_observation=use_image_obs, image_with_internal_states=False, agent_type=agent_type, max_steps=100000, step_time=0.05, real_time_update_rate=500, resized_image_size=(128, 128), tasks=[Stack], action_wrapper=YoubotActionWrapper) env.render() keybo = KeyboardControl() while True: actions = np.array(keybo.get_agent_actions(agent_type)) if keybo.is_done(): break obs, _, done, _ = env.step(actions) if use_image_obs: if fig is None: fig = plt.imshow(obs) else: fig.set_data(obs) plt.pause(0.00001) if done: env.reset() keybo.reset() env.close() if __name__ == "__main__": logging.set_verbosity(logging.INFO) main() ``` #### File: python/social_bot/parser_test.py ```python import unittest from social_bot.parser import ReParser class ParserTest(unittest.TestCase): def test_reparser(self): parser = ReParser() parser.add_word_class("OBJ", ["apple", "orange", "peach"]) parser.add_word_class("COLOR", ["red", "orange", "yellow"]) parser.add_rule("((it is )?an? )?<OBJ>", "OBJ") parser.add_rule("(it is )?<COLOR>", "COLOR") parser.add_rule("<OBJ> is edible", "EDIBLE") parser.add_rule("<OBJ> is <COLOR>", "OBJ_COLOR") parser.add_rule( "an? <OBJ:OBJ_RIGHT> is on the right of an? <OBJ:OBJ_LEFT>", "OBJ_POS") parser.add_rule( "an? <OBJ:OBJ_LEFT> is on the left of an? <OBJ:OBJ_RIGHT>", "OBJ_POS") for sentence in ["orange", "an orange", "it is an orange"]: result = parser.parse(sentence) self.assertIsNotNone(result) self.assertEqual(result.rule_name, "OBJ") self.assertEqual(result.slot_values, {"OBJ": "orange"}) for sentence in ["n orange", "it orange"]: result = parser.parse(sentence) self.assertIsNone(result) for sentence in [ "a peach is on the right of an apple", "an apple is on the left of a peach" ]: result = parser.parse(sentence) self.assertIsNotNone(result) self.assertEqual(result.rule_name, "OBJ_POS") self.assertEqual(result.slot_values, { "OBJ_RIGHT": "peach", "OBJ_LEFT": "apple" }) if __name__ == '__main__': unittest.main() ```
{ "source": "jialongshi1994/SQLAlchemy-challenge", "score": 3 }
#### File: jialongshi1994/SQLAlchemy-challenge/app.py ```python from flask import Flask, render_template, jsonify from flask_sqlalchemy import SQLAlchemy from sqlalchemy import func app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///Resources/hawaii.sqlite' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db = SQLAlchemy(app) db.reflect() all_table = {table_obj.name: table_obj for table_obj in db.get_tables_for_bind()} print(all_table) @app.route('/') def hello_world(): return render_template("home_page.html") @app.route('/api/v1.0/precipitation', methods=['GET']) def list_precipitation(): data = db.session.query(all_table["measurement"].c.date.label('date'), all_table["measurement"].c.prcp.label("prcp")).all() return render_template('list_precipitation.html', data=data) @app.route('/api/v1.0/stations', methods=['GET']) def list_stations(): data = db.session.query(all_table["station"]).all() print(data) return render_template('list_stations.html', data=data) @app.route('/api/v1.0/tobs', methods=['GET']) def list_tobs(): data_sub = db.session.query(all_table["measurement"].c.station.label('station'), func.count(all_table["measurement"].c.station).label('station_count')).group_by( all_table["measurement"].c.station).subquery() data_2_sub = db.session.query(data_sub.c.station.label('station'), func.max(data_sub.c.station_count)).subquery() data = db.session.query(all_table["measurement"].c.date, all_table['measurement'].c.tobs, all_table['measurement'].c.station).filter( all_table['measurement'].c.station == data_2_sub.c.station).all() return render_template('list_tobs.html', data=data) @app.route('/api/v1.0/<start>/<end>', methods=['GET']) def get_data(start, end): sel = [all_table['measurement'].c.station, func.min(all_table['measurement'].c.tobs), func.avg(all_table['measurement'].c.tobs), func.max(all_table['measurement'].c.tobs)] data = db.session.query(*sel).filter(all_table["measurement"].c.date >= start, all_table["measurement"].c.date >= end).group_by( all_table["measurement"].c.station).all() return render_template('static.html', data=data) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jialong-w/gps_api", "score": 4 }
#### File: gps_api/gps_api/gps_api.py ```python import serial import serial.tools.list_ports from haversine import haversine from . import position class GPS: def __init__(self, port): self.port = port # list com ports ports = list(serial.tools.list_ports.comports()) for p in ports: # if port in listed com ports if self.port in p: # connect serial port self.ser = serial.Serial(port, baudrate=9600, timeout=0.5) else: raise Exception('Invalid port') # change NMEA message type and frequency: # set GLL, RMC, VTG and GGA output frequency to be outputting once every position fix self.ser.write(b'\$PMTK314,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n') # initialisation of variables self.nmea_msg = "" self.position = position.Position() self.distance = 0 self.another_location = None def reboot(self): """ reboot involves a full cold start FULL COLD START: time, position, almanacs and ephemeris data will be redownloaded system/user configurations will be cleared process will take approximately 8 minutes, use with patience instantiate GPS class after reboot to apply the configuration of NMEA message type and frequency """ self.ser.write("\$PMTK104*37\r\n") def clean_string(self): """ clear data held in nmea_msg """ self.nmea_msg = "" def get_latitude(self): """ get latitude data from latest nmea message :return: latitude data at current position """ self.clean_string() while "GPGGA" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_latitude() def get_longitude(self): """ get lonitude data from latest nmea message :return: longitude data at current position """ self.clean_string() while "GPGGA" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_longitude() def get_altitude(self): """ get altitude data from latest nmea message :return: altitude data at current position """ self.clean_string() while "GPGGA" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_altitude() def get_current_location(self): """ get current location data from :return: current location data in the form (latitude, longitude) """ self.clean_string() while "GPGGA" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_current_location() def get_UTC_time(self): """ get UTC time data from latest nmea message :return: UTC time at current position """ self.clean_string() while "GPRMC" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_UTC_time() def get_date(self): """ get UTC date data from latest nmea message :return: UTC date at current position """ self.clean_string() while "GPRMC" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_date() def set_another_location(self, latitude, longitude): """ set a location :param latitude: another location's latitude :param longitude: another location's longitude """ self.another_location = (latitude, longitude) def get_distance(self, latitude, longitude): """ get the distance to another location :param latitude: another location's latitude :param longitude: another location's longitude :return: distance to the other position at (latitude, longitude) """ self.set_another_location(latitude, longitude) distance = haversine(self.get_current_location(), self.another_location) return distance def get_speed(self): """ get speed data from latest nmea message :return: current speed in km/h """ self.clean_string() while "GPVTG" not in self.nmea_msg: self.nmea_msg = self.ser.readline().decode("utf-8", "ignore") self.position.update(self.nmea_msg) return self.position.get_speed() def get_time_of_arrival(self, latitude, longitude): """ get time of arrival to destination (latitude, longitude) :param latitude: destination's latitude :param longitude: destination's longitude :return: estimated time of arrival to the destination """ speed = self.get_speed() if speed == 0.0: message = "You are stationary, time of arrival unknown" return message else: time = float(self.get_distance(latitude,longitude))/float(speed)*3600 day = time // (24 * 3600) time = time % (24 * 3600) hour = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time # gettings arrival time and splitting into hours, minutes and seconds current_time = str(self.get_UTC_time()) c_hour = int(current_time[0,2]) c_minutes = int(current_time[2,4]) c_seconds = int(current_time[4,6]) # calculating arival times a_hours = c_hour+hour a_minutes = c_minutes+minutes a_seconds = c_seconds+seconds arrival_time = ("%d:%d:%d" % (a_hours, a_minutes, a_seconds)) return arrival_time ```
{ "source": "jialong-w/NN-Oleander-Detection", "score": 3 }
#### File: jialong-w/NN-Oleander-Detection/download_image.py ```python import requests # to get image from the web import shutil # to save it locally import os import sys import csv import cv2 import argparse from ast import literal_eval # global variables project_name = '' paths = [] label_list = [] image_select = False ID_list = [] size = None def set_paths(): global paths for object_label in object_labels: for item in ['Images', 'Labels', 'Masks']: paths.append(os.path.join(project_name, object_label, item)) def make_directories(): for path in paths: try: os.makedirs(path) # make directories except OSError as e: print ("Creation of the directory %s failed: %s" % (path, format(e))) else: print ("Successfully created the directory %s " % path) def get_IDs(txtfile): try: tf = open(txtfile, 'r') line_list = [line.rstrip('\n') for line in tf] tf.close() except FileNotFoundError: print('File {} does not exist'.format(txtfile)) sys.exit() else: s = set(line_list) # remove deplicates return s def download_images(csv_file): global size try: # read data with open(csv_file, 'rt') as file: data = csv.reader(file) # Sniffer class to deduce the format of a CSV file and detect whether a header row is present # along with the built-in next() function to skip over the first row only when necessary has_header = csv.Sniffer().has_header(file.read(1024)) file.seek(0) if has_header: # skip header row next(data) # if size is given, download the limited number of images # else, download all if size is None: data = list(data) size = len(data) number_of_downloaded = 1 image_no = [] # tracks the number of images under each label for i in range(len(label_list)): image_no.append(1) for row in data: # iterate through the rows if number_of_downloaded <= size: # load data asset_ID = row[0] # load image ID asset_url = row[2] # load original image url labels = literal_eval(row[3]) # label entry converted to dictionary if len(labels) == 0: # if no labels created continue # skip the current row else: objects = labels['objects'] # load label instances if image_select: # if textfile was passed to select image for download if asset_ID in ID_list: # if current ID required ID_list.remove(asset_ID) # remove the asset ID from the list and do the download else: continue # else if not required, skip the current row # iterate through labels to download images and masks of each label for i in range(len(label_list)): image_downloaded = False n = image_no[i] masks = [] mask_index = 1 result = 0 # iterate through the all the labels created on the asset image for object in objects: if object['title'] == label_list[i]: if image_downloaded: pass else: # download original image if did not dir_name = paths[3*i] file_name = '{}{}{}.png'.format(project_name, '0'*(5-len(str(n))), n) save_image(asset_url, dir_name, file_name) image_no[i] += 1 image_downloaded = True # download masks of labeled objects mask_url = object['instanceURI'] # mask instance URI dir_name = paths[3*i+1] file_name = '{}{}{}_mask{}.png'.format(project_name, '0'*(5-len(str(n))), n, mask_index) save_image(mask_url, dir_name, file_name) mask_index += 1 # increment mask index masks.append(file_name) for mask in masks: r = cv2.imread(os.path.join(dir_name, file_name)).astype('float32') result = result + r if image_downloaded: # overlay masks result = 255*result result = result.clip(0, 255).astype('uint8') # save overlaid mask dir_name = paths[3*i+2] file_name = '{}{}{}_mask.png'.format(project_name, '0'*(5-len(str(n))), n) cv2.imwrite(os.path.join(dir_name, file_name), result) print('Mask successfully generated: ', os.path.join(dir_name, file_name)) number_of_downloaded += 1 # increment number of downloaded asset else: break except FileNotFoundError: print('File {} does not exist'.format(txtfile)) sys.exit() if not data: raise ValueError('No data available') def save_image(image_url, dir_name, file_name): # Open the url image, set stream to True, this will return the stream content. # stream = True to guarantee no interruptions r = requests.get(image_url, stream = True) # Check if the image was retrieved successfully if r.status_code == 200: # Set decode_content value to True, otherwise the downloaded image file's size will be zero. r.raw.decode_content = True # Open a local file with wb ( write binary ) permission. with open(os.path.join(dir_name, file_name), 'wb') as f: shutil.copyfileobj(r.raw, f) print('Image sucessfully downloaded: ', os.path.join(dir_name, file_name)) else: print("Image couldn\'t be retreived") if __name__=='__main__': # define the name of the directory to be created parser = argparse.ArgumentParser() # -p PROJECT_NAME -l LABELS -csv CSV_FILE -txt TXT_FILE -size NUMBER OF IMAGES parser.add_argument('-p', '--projname', help = 'Project name') parser.add_argument('-l', '--labels', help = 'Labels (separated by commas)') parser.add_argument('-csv', '--csvfile', help = 'CSV filename') parser.add_argument('-txt', '--txtfile', help = 'Text filename to download specified images') parser.add_argument('-s', '--size', help = 'Number of images to be downloaded', type=int) args = parser.parse_args() if len(sys.argv) == 1: print('-h for help') else: project_name = args.projname project_labels = args.labels.split(',') for label in project_labels: label_list.append(label) set_paths() make_directories() csv_file = args.csvfile if args.txtfile is not None: image_select = True ID_list = get_IDs(args.txtfile) if args.size is not None: size = args.size download_images(csv_file) if ID_list: # if ID list still has items after the download print('Images with the following IDs were not availble:') for item in ID_list: print(item) else: print('All completed') ```
{ "source": "JialongZhou666/Database-system-of-College-Students-restaurant-based-on-Python-GUI-library-Tkinter", "score": 3 }
#### File: Database-system-of-College-Students-restaurant-based-on-Python-GUI-library-Tkinter/src/identity1.py ```python from tkinter import * from tkinter.font import Font from tkinter.ttk import * from tkinter.messagebox import * from PIL import Image,ImageTk import identity2 as iden2 import pymysql class identity1(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master.title('身份验证界面') self.master.geometry('409x300') self.createWidgets() def createWidgets(self): self.top = self.winfo_toplevel() self.style = Style() global img0 self.style.configure('Label4.TLabel',anchor='center', justify='center') photo = Image.open("E:/新桌面/ttttt/background2.png") photo = photo.resize((409,300)) img0 = ImageTk.PhotoImage(photo) self.Label4 = Label(self.top, image=img0, style='Label4.TLabel') self.Label4.pack() self.style.configure('Label1.TLabel',relief=SUNKEN, anchor='center', font=('楷体',16)) self.Label1 = Label(self.top, text='身份验证', style='Label1.TLabel') self.Label1.place(relx=0.02, rely=0.027, relwidth=0.257, relheight=0.083) self.Text1Var = StringVar() self.Text1 = Entry(self.top, textvariable=self.Text1Var) self.Text1.place(relx=0.372, rely=0.32, relwidth=0.374, relheight=0.083) self.style.configure('Label2.TLabel',anchor='center', font=('楷体',15)) self.Label2 = Label(self.top, text='用户名:', style='Label2.TLabel') self.Label2.place(relx=0.117, rely=0.32, relwidth=0.198, relheight=0.083) self.Text2Var = StringVar() self.Text2 = Entry(self.top, textvariable=self.Text2Var) self.Text2.place(relx=0.372, rely=0.507, relwidth=0.374, relheight=0.083) self.style.configure('Label3.TLabel',anchor='center', font=('楷体',15)) self.Label3 = Label(self.top, text='密码:', style='Label3.TLabel') self.Label3.place(relx=0.156, rely=0.507, relwidth=0.159, relheight=0.083) self.style.configure('Command1.TButton',font=('楷体',16)) self.Command1 = Button(self.top, text='登陆', command=self.Command1_Cmd, style='Command1.TButton') self.Command1.place(relx=0.372, rely=0.72, relwidth=0.257, relheight=0.11) def Command1_Cmd(self, event=None): self.identity_in_db() def identity_in_db(self): global db try: db = pymysql.connect("172.16.58.3", "s2018302465", "GaussDB@123", "db_2018302465") except: messagebox.showarning('警告', '连接数据库失败!') cursor = db.cursor() cursor.execute("select username from usr where username={} and pw={}".format(self.Text1.get(),self.Text2.get())) data = cursor.fetchone() if data == None: showwarning("警告","您不是餐厅管理人员!") else: showinfo("成功","已成功确认您的餐厅管理人员身份!") self.top.destroy() iden2.identity2() db.close() ``` #### File: Database-system-of-College-Students-restaurant-based-on-Python-GUI-library-Tkinter/src/main.py ```python from tkinter import * from tkinter.font import Font from tkinter.ttk import * from tkinter.messagebox import * import identity1 as iden1 import pymysql import customer_page as cp class home_page(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master.title('大学餐厅菜品及服务管理系统首页') self.master.geometry('820x538') self.createWidgets() def createWidgets(self): self.top = self.winfo_toplevel() self.style = Style() global photo self.style.configure('Label3.TLabel',anchor='center', justify='center') photo = PhotoImage(file="E:/新桌面/ttttt/background1.png") self.Label3 = Label(self.top, image=photo, style='Label3.TLabel') self.Label3.pack() self.style.configure('Command3.TButton',font=('楷体',16)) self.Command3 = Button(self.top, text='退出', command=self.Command3_Cmd, style='Command3.TButton') self.Command3.place(relx=0.873, rely=0.917, relwidth=0.119, relheight=0.065) self.style.configure('Command2.TButton',font=('楷体',18)) self.Command2 = Button(self.top, text='我是餐厅管理人员', command=self.Command2_Cmd, style='Command2.TButton') self.Command2.place(relx=0.507, rely=0.669, relwidth=0.255, relheight=0.061) self.style.configure('Command1.TButton',font=('楷体',18)) self.Command1 = Button(self.top, text='我是顾客', command=self.Command1_Cmd, style='Command1.TButton') self.Command1.place(relx=0.234, rely=0.669, relwidth=0.255, relheight=0.061) self.style.configure('Label1.TLabel',anchor='center', font=('楷体',18)) self.Label1 = Label(self.top, text='请选择您的身份?', style='Label1.TLabel') self.Label1.place(relx=0.39, rely=0.461, relwidth=0.235, relheight=0.059) self.style.configure('Label2.TLabel',anchor='center', font=('楷体',26)) self.Label2 = Label(self.top, text='大学餐厅菜品及服务管理系统', style='Label2.TLabel') self.Label2.place(relx=0.205, rely=0.193, relwidth=0.572, relheight=0.095) def Command3_Cmd(self, event=None): if askokcancel("确认","是否退出?"): top.destroy() def Command2_Cmd(self, event=None): top.destroy() iden1.identity1() def Command1_Cmd(self, event=None): top.destroy() cp.customer_page() if __name__ == "__main__": top = Tk() home_page(top).mainloop() ``` #### File: Database-system-of-College-Students-restaurant-based-on-Python-GUI-library-Tkinter/src/select_sell_table.py ```python from tkinter import * from tkinter.font import Font from tkinter.ttk import * from tkinter.messagebox import * import pymysql class select_sell_table(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master.title('餐厅管理人员界面') self.master.geometry('889x509') self.createWidgets() def createWidgets(self): self.top = Tk() self.top.title("售卖信息表") self.style = Style() self.tree = Treeview(self.top) self.tree["columns"] = ("菜号", "菜名", "卖出数量") self.tree.column("菜号", width=100) self.tree.column("菜名", width=100) self.tree.column("卖出数量", width=100) self.tree.heading("菜号", text="菜号") self.tree.heading("菜名", text="菜名") self.tree.heading("卖出数量", text="卖出数量") self.select_sell_table_in_db() self.tree.pack() self.top.mainloop() def select_sell_table_in_db(self): global db try: db = pymysql.connect("172.16.31.10", "s2018302465", "GaussDB@123", "db_2018302465") except: messagebox.showarning('警告', '连接数据库失败!') cursor = db.cursor() cursor.execute("select food.fno,fname,sell_num from food,sell where food.fno=sell.fno") data = cursor.fetchall() cnt=1 for row in data: fno = row[0] fname = row[1] sell_num = row[2] self.tree.insert("", cnt, text="line{}".format(cnt), values=(fno, fname, sell_num)) cnt=cnt+1 db.close() ```
{ "source": "jialrs/floris-enhanced", "score": 3 }
#### File: simulation/wake_velocity/jensen.py ```python from ...utilities import setup_logger from .base_velocity_deficit import VelocityDeficit import numpy as np class Jensen(VelocityDeficit): """ The Jensen model computes the wake velocity deficit based on the classic Jensen/Park model :cite:`jvm-jensen1983note`. References: .. bibliography:: /source/zrefs.bib :style: unsrt :filter: docname in docnames :keyprefix: jvm- """ default_parameters = { "we": 0.05 } def __init__(self, parameter_dictionary): """ Stores model parameters for use by methods. Args: parameter_dictionary (dict): Model-specific parameters. Default values are used when a parameter is not included in `parameter_dictionary`. Possible key-value pairs include: - **we** (*float*): The linear wake decay constant that defines the cone boundary for the wake as well as the velocity deficit. D/2 +/- we*x is the cone boundary for the wake. """ super().__init__(parameter_dictionary) self.logger = setup_logger(name=__name__) self.model_string = "jensen" model_dictionary = self._get_model_dict(__class__.default_parameters) self.we = float(model_dictionary["we"]) def function(self, x_locations, y_locations, z_locations, turbine, turbine_coord, deflection_field, flow_field): """ Using the Jensen wake model, this method calculates and returns the wake velocity deficits, caused by the specified turbine, relative to the freestream velocities at the grid of points comprising the wind farm flow field. Args: x_locations (np.array): An array of floats that contains the streamwise direction grid coordinates of the flow field domain (m). y_locations (np.array): An array of floats that contains the grid coordinates of the flow field domain in the direction normal to x and parallel to the ground (m). z_locations (np.array): An array of floats that contains the grid coordinates of the flow field domain in the vertical direction (m). turbine (:py:obj:`floris.simulation.turbine`): Object that represents the turbine creating the wake. turbine_coord (:py:obj:`floris.utilities.Vec3`): Object containing the coordinate of the turbine creating the wake (m). deflection_field (np.array): An array of floats that contains the amount of wake deflection in meters in the y direction at each grid point of the flow field. flow_field (:py:class:`floris.simulation.flow_field`): Object containing the flow field information for the wind farm. Returns: np.array, np.array, np.array: Three arrays of floats that contain the wake velocity deficit in m/s created by the turbine relative to the freestream velocities for the U, V, and W components, aligned with the x, y, and z directions, respectively. The three arrays contain the velocity deficits at each grid point in the flow field. """ # define the boundary of the wake model ... y = mx + b m = self.we x = x_locations - turbine_coord.x1 b = turbine.rotor_radius boundary_line = m * x + b y_upper = boundary_line + turbine_coord.x2 + deflection_field y_lower = -1 * boundary_line + turbine_coord.x2 + deflection_field z_upper = boundary_line + turbine.hub_height z_lower = -1 * boundary_line + turbine.hub_height # calculate the wake velocity c = (turbine.rotor_diameter \ / (2 * self.we * (x_locations - turbine_coord.x1) \ + turbine.rotor_diameter))**2 # filter points upstream and beyond the upper and # lower bounds of the wake c[x_locations - turbine_coord.x1 < 0] = 0 c[y_locations > y_upper] = 0 c[y_locations < y_lower] = 0 c[z_locations > z_upper] = 0 c[z_locations < z_lower] = 0 return 2 * turbine.aI * c * flow_field.u_initial, \ np.zeros(np.shape(flow_field.u_initial)), \ np.zeros(np.shape(flow_field.u_initial)) @property def we(self): """ The linear wake decay constant that defines the cone boundary for the wake as well as the velocity deficit. D/2 +/- we*x is the cone boundary for the wake. **Note:** This is a virtual property used to "get" or "set" a value. Args: value (float): Value to set. Returns: float: Value currently set. Raises: ValueError: Invalid value. """ return self._we @we.setter def we(self, value): if type(value) is not float: err_msg = ('Invalid value type given for we: {}, ' + \ 'expected float.').format(value) self.logger.error(err_msg, stack_info=True) raise ValueError(err_msg) self._we = value if value != __class__.default_parameters['we']: self.logger.info( ('Current value of we, {0}, is not equal to tuned ' + 'value of {1}.').format( value, __class__.default_parameters['we']) ) ``` #### File: floris/tools/interface_utilities.py ```python import inspect def show_params(fi, params=None, verbose=False, wake_velocity_model=True, wake_deflection_model=True, turbulence_model=True): if wake_velocity_model is True: obj = 'fi.floris.farm.wake.velocity_model' props = get_props(obj, fi) if verbose == True: print('='.join(['=']*39)) else: print('='.join(['=']*19)) print('Wake Velocity Model Parameters:', \ fi.floris.farm.wake.velocity_model.model_string, 'model') if params is not None: props_subset = get_props_subset(params, props) if verbose is False: print_props(obj, fi, props_subset) else: print_prop_docs(obj, fi, props_subset) else: if verbose is False: print_props(obj, fi, props) else: print_prop_docs(obj, fi, props) if wake_deflection_model is True: obj = 'fi.floris.farm.wake.deflection_model' props = get_props(obj, fi) if verbose == True: print('='.join(['=']*39)) else: print('='.join(['=']*19)) print('Wake Deflection Model Parameters:', \ fi.floris.farm.wake.deflection_model.model_string, 'model') if params is not None: props_subset = get_props_subset(params, props) if props_subset: # true if the subset is not empty if verbose is False: print_props(obj, fi, props_subset) else: print_prop_docs(obj, fi, props_subset) else: if verbose is False: print_props(obj, fi, props) else: print_prop_docs(obj, fi, props) if turbulence_model is True: obj = 'fi.floris.farm.wake.turbulence_model' props = get_props(obj, fi) if verbose == True: print('='.join(['=']*39)) else: print('='.join(['=']*19)) print('Wake Turbulence Model Parameters:', \ fi.floris.farm.wake.turbulence_model.model_string, 'model') if params is not None: props_subset = get_props_subset(params, props) if props_subset: # true if the subset is not empty if verbose is False: print_props(obj, fi, props_subset) else: print_prop_docs(obj, fi, props_subset) else: if verbose is False: print_props(obj, fi, props) else: print_prop_docs(obj, fi, props) def get_params(fi, params=None, wake_velocity_model=True, wake_deflection_model=True, turbulence_model=True): model_params = {} if wake_velocity_model is True: wake_vel_vals = {} obj = 'fi.floris.farm.wake.velocity_model' props = get_props(obj, fi) if params is not None: props_subset = get_props_subset(params, props) wake_vel_vals = get_prop_values(obj, fi, props_subset) else: wake_vel_vals = get_prop_values(obj, fi, props) model_params['Wake Velocity Parameters'] = wake_vel_vals if wake_deflection_model is True: wake_defl_vals = {} obj = 'fi.floris.farm.wake.deflection_model' props = get_props(obj, fi) if params is not None: props_subset = get_props_subset(params, props) wake_defl_vals = get_prop_values(obj, fi, props_subset) else: wake_defl_vals = get_prop_values(obj, fi, props) model_params['Wake Deflection Parameters'] = wake_defl_vals if turbulence_model is True: wake_defl_vals = {} obj = 'fi.floris.farm.wake.turbulence_model' props = get_props(obj, fi) if params is not None: props_subset = get_props_subset(params, props) wake_defl_vals = get_prop_values(obj, fi, props_subset) else: wake_defl_vals = get_prop_values(obj, fi, props) model_params['Wake Turbulence Parameters'] = wake_defl_vals return model_params def set_params(fi, params, verbose=True): for param_dict in params: if param_dict == 'Wake Velocity Parameters': obj = 'fi.floris.farm.wake.velocity_model' props = get_props(obj, fi) for prop in params[param_dict]: if prop in [val[0] for val in props]: exec(obj + '.' + prop + ' = ' + \ str(params[param_dict][prop])) if verbose is True: print('Wake velocity parameter ' + prop + ' set to ' + \ str(params[param_dict][prop])) else: raise Exception(('Wake deflection parameter \'{}\' ' + \ 'not part of current model. Value \'{}\' was not ' + \ 'used.').format(prop, params[param_dict][prop])) if param_dict == 'Wake Deflection Parameters': obj = 'fi.floris.farm.wake.deflection_model' props = get_props(obj, fi) for prop in params[param_dict]: if prop in [val[0] for val in props]: exec(obj + '.' + prop + ' = ' + \ str(params[param_dict][prop])) if verbose is True: print('Wake deflection parameter ' + prop + \ ' set to ' + str(params[param_dict][prop])) else: raise Exception(('Wake deflection parameter \'{}\' ' + \ 'not part of current model. Value \'{}\' was not ' + \ 'used.').format(prop, params[param_dict][prop])) if param_dict == 'Wake Turbulence Parameters': obj = 'fi.floris.farm.wake.turbulence_model' props = get_props(obj, fi) for prop in params[param_dict]: if prop in [val[0] for val in props]: exec(obj + '.' + prop + ' = ' + \ str(params[param_dict][prop])) if verbose is True: print('Wake turbulence parameter ' + prop + \ ' set to ' + str(params[param_dict][prop])) else: raise Exception(('Wake turbulence parameter \'{}\' ' + \ 'not part of current model. Value \'{}\' was not ' + \ 'used.').format(prop, params[param_dict][prop])) def get_props_subset(params, props): prop_names = [prop[0] for prop in props] try: props_subset_inds = [prop_names.index(param) \ for param in params] except: props_subset_inds = [] print('Parameter(s)', ', '.join(params), 'does(do) not exist.') props_subset = [props[i] for i in props_subset_inds] return props_subset def get_props(obj, fi): return inspect.getmembers(eval(obj + '.__class__'), \ lambda obj: isinstance(obj, property)) def get_prop_values(obj, fi, props): prop_val_dict = {} for val in props: prop_val_dict[val[0]] = eval(obj + '.' + val[0]) return prop_val_dict def print_props(obj, fi, props): print('-'.join(['-']*19)) for val in props: print(val[0] + ' = ' + str(eval(obj + '.' + val[0]))) print('-'.join(['-']*19)) def print_prop_docs(obj, fi, props): for val in props: print('-'.join(['-']*39) + '\n', val[0] + ' = ' + str(eval(obj + '.' \ + val[0])), '\n', eval(obj + '.__class__.' + val[0] + '.__doc__')) print('-'.join(['-']*39)) ``` #### File: optimization/scipy/optimization.py ```python # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # See https://floris.readthedocs.io for documentation import numpy as np import matplotlib.pyplot as plt try: from mpi4py.futures import MPIPoolExecutor except ImportError: pass class Optimization(): """ Optimization is the base optimization class for `~.tools.optimization.scipy` subclasses. Contains some common methods and properties that can be used by the individual optimization classes. """ def __init__(self, fi): """ Initializes an Optimization object by assigning a FlorisInterface object. Args: fi (:py:class:`~.tools.floris_interface.FlorisInterface`): Interface used to interact with the Floris object. """ self.fi = fi # Private methods def _reinitialize(self): pass def _norm(self, val, x1, x2): return (val - x1)/(x2 - x1) def _unnorm(self, val, x1, x2): return np.array(val)*(x2 - x1) + x1 # Properties @property def nturbs(self): """ Number of turbines in the :py:class:`~.farm.Farm` object. Returns: int """ self._nturbs = len(self.fi.floris.farm.turbine_map.turbines) return self._nturbs ``` #### File: preprocessor/src/v2_0_0.py ```python from .version_class import VersionClass from .data_transform import DataTransform class V2_0_0(VersionClass, DataTransform): version_string = "v2.0.0" def __init__(self, meta_dict, turbine_dict, wake_dict, farm_dict): self.base_meta = meta_dict self.base_turbine = turbine_dict self.base_wake = wake_dict self.base_farm = farm_dict self._meta_dict = self.build_meta_dict() self._turbine_dict = self.build_turbine_dict() self._wake_dict = self.build_wake_dict() self._farm_dict = self.build_farm_dict() def build_meta_dict(self): self.base_meta["logging"] = { "console": { "enable": True, "level": "INFO" }, "file": { "enable": False, "level": "INFO" } } self.base_meta["version"] = V2_0_0.version_string return self.base_meta def build_farm_dict(self): # wind_speed, wind_directory becomes a list DataTransform.deep_put( self.base_farm, ["farm", "properties", "wind_speed"], DataTransform.to_list( DataTransform.deep_get(self.base_farm, ["farm", "properties", "wind_speed"]) ) ) DataTransform.deep_put( self.base_farm, ["farm", "properties", "wind_direction"], DataTransform.to_list( DataTransform.deep_get(self.base_farm, ["farm", "properties", "wind_direction"]) ) ) DataTransform.deep_put( self.base_farm, ["farm", "properties", "turbulence_intensity"], DataTransform.to_list( DataTransform.deep_get(self.base_farm, ["farm", "properties", "turbulence_intensity"]) ) ) DataTransform.deep_put( self.base_farm, ["farm", "properties", "wind_x"], [0.0] ) DataTransform.deep_put( self.base_farm, ["farm", "properties", "wind_y"], [0.0] ) DataTransform.deep_put( self.base_farm, ["farm", "properties", "specified_wind_height"], self.base_turbine["turbine"]["properties"]["hub_height"] ) return self.base_farm def build_wake_dict(self): DataTransform.deep_put( self.base_wake, ["wake", "properties", "turbulence_model"], "crespo_hernandez" ) del self.base_wake["wake"]["properties"]["parameters"] return self.base_wake def build_turbine_dict(self): return self.base_turbine @property def meta_dict(self): return self._meta_dict @property def turbine_dict(self): return self._turbine_dict @property def wake_dict(self): return self._wake_dict @property def farm_dict(self): return self._farm_dict ``` #### File: preprocessor/src/version_class.py ```python from .output import Output from abc import ABC, abstractmethod class VersionClass(ABC): version_string = "v0.0.0" @abstractmethod def build_meta_dict(self): pass @abstractmethod def build_farm_dict(self): pass @abstractmethod def build_wake_dict(self): pass @abstractmethod def build_turbine_dict(self): pass @abstractmethod def meta_dict(self): pass @abstractmethod def farm_dict(self): pass @abstractmethod def turbine_dict(self): pass @abstractmethod def wake_dict(self): pass def build_input_file_data(self): return { **self.meta_dict, **self.farm_dict, **self.turbine_dict, **self.wake_dict } def export(self, filename=version_string + ".json"): output = Output(filename) file_data = self.build_input_file_data() output.write_dictionary(file_data) output.end() def input_or_default(self, key, search_dictionary, default_dictionary): if key in search_dictionary: return search_dictionary[key] else: return default_dictionary[key] ```
{ "source": "jials/CS4243-project", "score": 2 }
#### File: jials/CS4243-project/changeDetection.py ```python import numpy as np import cv2 import imageMarker lucas_kanade_params = dict( winSize= (4, 4), maxLevel= 3, #level of pyramids used criteria= (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03) ) def mark_features_on_all_images(images, features_coordinates): marked_images = [] marked_frame_coordinates = [] last_gs_img = cv2.cvtColor(images[0], cv2.COLOR_BGR2GRAY) p0 = [] for coordinate in features_coordinates: p0.append([coordinate,]) p0 = np.float32(p0) mask = np.zeros_like(images[0]) status_arr = [] for fr in range(1, len(images)): marked_coordinates = [] if images[fr] is None: print('change detection problematic frame', fr) print('len of given images', len(images)) frame = images[fr].copy() gs_img = cv2.cvtColor(images[fr], cv2.COLOR_BGR2GRAY) p1, st, err = cv2.calcOpticalFlowPyrLK(last_gs_img, gs_img, p0, None, **lucas_kanade_params) status_arr.append(st) if p1 is None: marked_images.append(frame) marked_frame_coordinates.append(features_coordinates if len(images) == 1 else marked_frame_coordinates[-1]) continue new_points = [] for index in range(len(p1)): if st[index] == 1: new_points.append(p1[index]) else: new_points.append(p0[index]) new_points = np.array(new_points) for index, point in enumerate(new_points): x, y = point.ravel() marked_coordinates.append([x,y]) imageMarker.mark_image_at_point(frame, int(y), int(x), 9, imageMarker.colors[index]) marked_frame_coordinates.append(marked_coordinates) img = cv2.add(frame,mask) marked_images.append(img) # update last frame and point last_gs_img = gs_img.copy() p0 = new_points.reshape(-1,1,2) return marked_images, marked_frame_coordinates, status_arr ``` #### File: jials/CS4243-project/convolution.py ```python import numpy as np def convolve(img, ff): ff = np.flipud(ff) result = np.zeros(img.shape) for y_offset in range(len(img) - 2): for x_offset in range(len(img[0]) - 2): temp_arr = [] for row in img[y_offset : 3 + y_offset]: temp_arr.append(row[x_offset : 3 + x_offset]) filtered_arr = np.array(temp_arr) * ff filtered_sum = sum(map(sum, filtered_arr)) result[y_offset + 1][x_offset + 1] = filtered_sum return result def get_sobel_horizontal_edge_strength(img): horizontal_sobel_filter = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]]) return convolve(img, horizontal_sobel_filter) def get_sobel_vertical_edge_strength(img): vertical_sobel_filter = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]]) return convolve(img, vertical_sobel_filter) ``` #### File: jials/CS4243-project/statistics.py ```python import matplotlib matplotlib.use('TkAgg') import math import numpy as np import matplotlib.pyplot as plt import util def calculate_distance(pointA, pointB): # length of an actual beach volleyball court (in meters) standard_court_length = 16 length_pixel = 718 A_x, A_y = pointA[0], pointA[1] B_x, B_y = pointB[0], pointB[1] return math.sqrt((B_x - A_x) * (B_x - A_x) + (B_y - A_y) * (B_y - A_y)) / length_pixel * standard_court_length def generate_statistics(all_selected_players_feet, all_is_jumping): """ Generate statistics of the match Distance travelled by each players, Number of jumps of each players """ # calculate the distance travelled by 4 different players distance_travelled = [[0] for _ in range(4)] for idx, selected_players_feet in enumerate(all_selected_players_feet[:-1]): for i in range(min(4, len(selected_players_feet))): next_frame_player_position = all_selected_players_feet[idx + 1][i] distance = distance_travelled[i][-1] + calculate_distance(selected_players_feet[i], next_frame_player_position) distance_travelled[i].append(distance) for i in range(len(selected_players_feet), 4): distance_travelled[i].append(0) # calculate the number of time each player jumps each frame num_jumps_of_each_player = [[0] for _ in range(4)] for idx, is_jumping in enumerate(all_is_jumping[:-1]): for i in range(min(4, len(is_jumping))): jump_cnt = num_jumps_of_each_player[i][-1] if all_is_jumping[idx][i] is False and all_is_jumping[idx + 1][i] is True: jump_cnt += 1 num_jumps_of_each_player[i].append(jump_cnt) return distance_travelled, num_jumps_of_each_player def draw_stats_table(distances, jumps, video_file_name): statsImages = [] video_file_name = video_file_name + "_stats" _, N = np.shape(distances) for i in xrange(N): fig = plt.figure() plt.axis('off') ax = plt.gca() colLabels = ['Player', 'Distance(m)', 'Jump'] rowLabels = ['', '', '', ''] tableValues =[['',round(distances[0][i], 2),jumps[0][i]], ['',round(distances[1][i], 2),jumps[1][i]], ['',round(distances[2][i], 2),jumps[2][i]], ['',round(distances[3][i], 2),jumps[3][i]]] # colours for each players in the following order: Red, Yellow, Green, Blue colours = [[(0, 0, 0.8), (1, 1, 1), (1, 1, 1)], [(0, 1, 1), (1, 1, 1), (1, 1, 1)], [(0, 0.8, 0), (1, 1, 1), (1, 1, 1)], [(0.8, 0, 0), (1, 1, 1), (1, 1, 1)]] the_table = plt.table(cellText=tableValues, cellColours=colours, rowLoc='right', rowLabels=rowLabels, colWidths=[.3]*3, colLoc='center', colLabels=colLabels, loc='center') the_table.auto_set_font_size(False) the_table.set_fontsize(20) the_table.scale(1, 6) fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) statsImages.append(data) plt.clf() plt.close(fig) util.images_to_video(statsImages, 60, video_file_name) ```
{ "source": "jialuechen/augustus", "score": 2 }
#### File: builtin/backtest_stock/stock_broker.py ```python from augustus.builtin.backtest_stock.stock_limit_filter_risk_manager import \ StockLimitFilterRiskManager from augustus.system.base_broker import BrokerBase from augustus.system.models.orders.general_order import MarketOrder class StockBroker(BrokerBase): def __init__(self): super().__init__() StockLimitFilterRiskManager() @classmethod def _required_cash_func(cls, order: MarketOrder) -> float: # TODO return order.size * order.execute_price ``` #### File: builtin/backtest_stock/stock_recorder.py ```python from augustus.builtin.backtest_stock import stock_recorder_series from augustus.builtin.backtest_stock.stock_bar import BarAshares from augustus.builtin.backtest_stock.stock_log import StockTradeLog from augustus.system.base_recorder import RecorderBase from augustus.system.components.match_engine import MatchEngine class StockRecorder(RecorderBase): def __init__(self): super().__init__() def _update_cash(self, trading_date: str): total_margin = self.margin.total_value() total_market_value = self.market_value.total_value() new_balance = self.balance.latest() new_frozen_cash = total_margin+total_market_value # 更新frozen_cash new_cash = new_balance - new_frozen_cash # 更新cash self.frozen_cash.append( {'date': trading_date, 'value': new_frozen_cash}) self.cash.append({'date': trading_date, 'value': new_cash}) def set_setting(self, initial_cash=100000, comm=1, comm_pct=None, margin_rate=0.1): self.initial_cash = initial_cash self.per_comm = comm self.per_comm_pct = comm_pct self.margin_rate = margin_rate def settle_match_engine_and_series(self): self.match_engine = MatchEngine(StockTradeLog) self.series = stock_recorder_series @property def bar_class(self): return BarAshares ``` #### File: builtin/plotters/by_plotly.py ```python import pandas as pd import plotly from plotly import offline as py from augustus.system.metabase_env import augustusEnvBase class PlotBase(augustusEnvBase): def __init__(self): super().__init__() self.positions_df = self.env.recorder.position.dataframe() self.holding_pnl_df = self.env.recorder.holding_pnl.dataframe() self.commission_df = self.env.recorder.commission.dataframe() self.margin_df = self.env.recorder.margin.dataframe() self.data = [] self.updatemenus = [] self.balance_df = self.env.recorder.balance.dataframe() self.cash_df = self.env.recorder.cash.dataframe() self.balance_df.columns = ['balance'] self.cash_df.columns = ['cash'] @property def realized_pnl_df(self): trade_log = self.env.recorder.match_engine.generate_trade_log() trade_log.dropna(inplace=True) df = trade_log[['exit_date', 're_pnl']].copy() df.rename(columns=dict(exit_date='date'), inplace=True) df.set_index('date', drop=True, inplace=True) df.index = pd.to_datetime(df.index) return df @property def returns_df(self): returns_df = self.balance_df.pct_change( ).dropna() returns_df.columns = ['returns'] return returns_df def ohlc_df(self, ticker): ohlc = self.env.readers[ticker].load( self.env.fromdate, self.env.todate, self.env.sys_frequency) dataframe = pd.DataFrame((i for i in ohlc)) dataframe.set_index('date', inplace=True) dataframe.index = pd.to_datetime(dataframe.index) return dataframe class Plotly(PlotBase): """ Depreciated """ def plot2(self, ticker=None, notebook=False): returns_df = self.balance_df.pct_change( ).dropna() returns_df.columns = ['returns'] fig = plotly.tools.make_subplots( rows=5, cols=2, shared_xaxes=True, vertical_spacing=0.001) fig['layout'].update(height=1500) self.append_trace(fig, self.positions_df, 2, 1) self.append_trace(fig, self.balance_df, 3, 1) self.append_trace(fig, self.holding_pnl_df, 4, 1) self.append_trace(fig, self.commission_df, 5, 1) self.append_trace(fig, self.margin_df, 1, 1) self.append_trace(fig, returns_df, 2, 2, 'bar') # fig['layout']['showlegend'] = True if notebook: plotly.offline.init_notebook_mode() py.iplot(fig, filename='augustus_plot.html', validate=False) else: py.plot(fig, filename='augustus_plot.html', validate=False) def append_trace(self, figure, df_list, row, col, plot_type='scatter', legendly_visible: bool=False): visible = True if legendly_visible is False else 'legendonly' if not isinstance(df_list, list): df_list = [df_list] for dataframe in df_list: dataframe.sort_index(inplace=True) name = dataframe.columns[0] series = dataframe[name] result = dict( x=series.index, y=series.values, name=name, type=plot_type, visible=visible, legendgroup=f'{name[:4]}') figure.append_trace(result, row, col) def append_candlestick_trace(self, figure, dataframe, row, col, ticker): dataframe.sort_index(inplace=True) result = dict( x=dataframe.index, open=dataframe.open, high=dataframe.high, low=dataframe.low, close=dataframe.close, type='candlestick' ) figure.append_trace(result, row, col) def plot(self, ticker=None, notebook=False): fig = plotly.tools.make_subplots( rows=5, cols=1, shared_xaxes=True, vertical_spacing=0.001, specs=[[{}], [{}], [{'rowspan': 2}], [None], [{}]],) # fig['layout'].update(height=1500) if isinstance(ticker, str): ticker = [ticker] for i in ticker: close_df = self.ohlc_df(i)[['close']] close_df.columns = [i] # volume_df = self.ohlc_df(i)[['volume']] # volume_df.columns = [i+' volume'] self.append_trace(fig, close_df, 3, 1) # self.append_trace(fig, volume_df, 3, 1, # plot_type='bar', legendly_visible=True) # fig['data'][-1].update(dict(yaxis='y6', opacity=0.5)) # for i in ticker: # self.append_candlestick_trace(fig, self.ohlc_df(i), 3, 1, i) self.append_trace(fig, self.balance_df, 1, 1) self.append_trace(fig, self.cash_df, 1, 1) self.append_trace(fig, self.holding_pnl_df, 2, 1) self.append_trace(fig, self.commission_df, 2, 1, legendly_visible=True) self.append_trace(fig, self.positions_df, 5, 1) total_holding_pnl = sum((i[i.columns[0]] for i in self.holding_pnl_df)) total_holding_pnl = pd.DataFrame(total_holding_pnl) total_holding_pnl.columns = ['total_holding_pnl'] self.append_trace(fig, total_holding_pnl, 2, 1) fig['layout']['yaxis'].update( dict(overlaying='y3', side='right', showgrid=False)) # fig['layout']['xaxis']['type'] = 'category' # fig['layout']['xaxis']['rangeslider']['visible'] = False # fig['layout']['xaxis']['tickangle'] = 45 fig['layout']['xaxis']['visible'] = False fig['layout']['hovermode'] = 'closest' fig['layout']['xaxis']['rangeslider']['visible'] = False if notebook: plotly.offline.init_notebook_mode() py.iplot(fig, filename='augustus_plot.html', validate=False) else: py.plot(fig, filename='augustus_plot.html', validate=False) ``` #### File: augustus/custom/cleaner_talib.py ```python from collections import defaultdict, deque from numpy import array, isnan from talib.abstract import Function from augustus.systemeaner import CleanerBase class Talib(CleanerBase): def __init__(self, ind: str, params: dict, frequency: str=None, buffer_day: int = 5) -> None: super().__init__(None, buffer_day, frequency) self.indicator = Function(ind) self.indicator.set_parameters(params) self.rolling_window = self.indicator.lookback+1 self.data = defaultdict(dict) # type:dict[str,dict[str,deque]] @staticmethod def _check_nan(value: float): if isnan(value): raise Exception( 'rolling_window should be longer. Because nan is generated!') def _data_proxy(self, ticker: str) -> dict: key = f'{ticker}_{self.frequency}' return {'open': array(self.data[key]['open']), 'high': array(self.data[key]['high']), 'low': array(self.data[key]['low']), 'close': array(self.data[key]['close']), 'volume': array(self.data[key]['volume'])} def calculate(self, ticker: str) -> dict: self.indicator.set_input_arrays(self._data_proxy(ticker)) value = list(self.indicator.outputs) if len(self.indicator.output_names) > 1: [self._check_nan(i[-1]) for i in value] return {k: v[-1] for k, v in zip(self.indicator.output_names, value)} self._check_nan(value[-1]) return value[-1] ``` #### File: augustus/augustus/environment.py ```python import logging from collections import defaultdict import arrow import augustus as ag from augustus.event_engine import EventEngine from augustus.utils.easy_func import get_day_ratio class Environment(object): # general context sys_date: str = None sys_frequency: str = None instrument: str = None fromdate: str = None todate: str = None tickers: list = [] # general setting execute_on_close_or_next_open: str = 'open' is_save_original: bool = False is_live_trading: bool = False is_show_today_signals: bool = False # backtest modules dict readers: dict = {} feeds: dict = {} cleaners: dict = {} cleaners_feeds: dict = {} strategies: dict = {} brokers: dict = {} risk_managers: dict = {} recorders: dict = {} recorder = None # type: op.RecorderBase # system memory signals_normal: list = [] signals_pending: list = [] signals_trigger: list = [] signals_cancel: list = [] signals_normal_cur: list = [] signals_pending_cur: list = [] signals_trigger_cur: list = [] signals_cancel_cur: list = [] orders_mkt_normal_cur: list = [] orders_child_of_mkt_dict: dict = {} orders_mkt_absolute_cur: list = [] orders_mkt_submitted_cur: list = [] orders_pending: list = [] orders_cancel_cur: list = [] orders_cancel_submitted_cur: list = [] cur_suspended_tickers: list = [] suspended_tickers_record: defaultdict = defaultdict(list) # system modules logger = logging.getLogger("augustus") event_engine = EventEngine() cache: dict = {} @classmethod def initialize_env(cls): cls.signals_normal.clear() cls.signals_pending.clear() cls.signals_trigger.clear() cls.signals_cancel.clear() cls.signals_normal_cur.clear() cls.signals_pending_cur.clear() cls.signals_trigger_cur.clear() cls.signals_cancel_cur.clear() cls.orders_mkt_normal_cur.clear() cls.orders_mkt_absolute_cur.clear() cls.orders_mkt_submitted_cur.clear() cls.orders_pending.clear() cls.orders_child_of_mkt_dict.clear() cls.orders_cancel_cur.clear() cls.orders_cancel_submitted_cur.clear() cls.tickers.clear() cls.cur_suspended_tickers.clear() cls.suspended_tickers_record.clear() cls.cache.clear() if not cls.is_live_trading: ratio = get_day_ratio(cls.sys_frequency) cls.sys_date = arrow.get(cls.fromdate).shift( days=-ratio).format('YYYY-MM-DD HH:mm:ss') cls.reset_all_counters() @classmethod def clear_modules(cls): cls.sys_date: str = None cls.sys_frequency: str = None cls.instrument: str = None cls.fromdate: str = None cls.todate: str = None cls.tickers: list = [] cls.cur_suspended_tickers: list = [] cls.suspended_tickers_record: defaultdict = defaultdict(list) cls.market_maker = None cls.readers: dict = {} cls.feeds: dict = {} cls.cleaners: dict = {} cls.cleaners_feeds: dict = {} cls.strategies: dict = {} cls.brokers: dict = {} cls.risk_managers: dict = {} cls.recorders: dict = {} cls.recorder = None # type: op.RecorderBase cls.event_loop = None # type: List[Dict] cls.cache = {} cls.execute_on_close_or_next_open: str = 'open' cls.is_save_original: bool = False cls.is_live_trading: bool = False cls.is_show_today_signals: bool = False @classmethod def reset_all_counters(cls): from itertools import count from augustus.system.models import signals from augustus.system.base_cleaner import CleanerBase from augustus.system.models.orders.base_order import OrderBase from augustus.system.components.order_generator import OrderGenerator CleanerBase.counter = count(1) signals.Signal.counter = count(1) signals.SignalByTrigger.counter = count(1) signals.SignalForPending.counter = count(1) signals.SignalCancelTST.counter = count(1) signals.SignalCancelPending.counter = count(1) OrderBase.counter = count(1) OrderGenerator.counter = count(1) ``` #### File: augustus/system/base_broker.py ```python import abc from augustus.constants import ActionType from augustus.system.components.order_checker import SubmitOrderChecker from augustus.system.components.order_generator import OrderGenerator from augustus.system.metabase_env import augustusEnvBase from augustus.system.models.orders.general_order import (CancelPendingOrder, CancelTSTOrder, MarketOrder) class BrokerBase(augustusEnvBase, abc.ABC): def __init__(self): self.env.brokers.update({self.__class__.__name__: self}) self._checker = SubmitOrderChecker(self._required_cash_func) self._order_generator = OrderGenerator() def _clear_submited_order(self): self.env.orders_mkt_submitted_cur = [] self.env.orders_cancel_submitted_cur = [] def _generate_order(self): self._order_generator.run() def _check_order(self): self._checker.run() def _submit_order(self): self._process_cancel_order() def _judge_long_or_short(self, order): if order.action_type in [ActionType.Buy, ActionType.Sell]: return 'long' elif order.action_type in [ActionType.Short, ActionType.Cover]: return 'short' def _process_cancel_order(self): for cancel_order in self.env.orders_cancel_submitted_cur: ticker = cancel_order.ticker long_or_short = cancel_order.long_or_short if isinstance(cancel_order, CancelPendingOrder): for order in list(self.env.orders_pending): confirm_ticker = order.ticker == ticker confirm_long_short = self._judge_long_or_short( order) == long_or_short if confirm_ticker and confirm_long_short: if cancel_order.is_target(order): self.env.orders_pending.remove(order) elif isinstance(cancel_order, CancelTSTOrder): for order_list in self.env.orders_child_of_mkt_dict.values(): for order in list(order_list): if cancel_order.is_target(order): order_list.remove(order) @abc.abstractclassmethod def _required_cash_func(cls, order: MarketOrder): raise NotImplementedError def run(self): self._clear_submited_order() self._generate_order() self._check_order() self._submit_order() ``` #### File: system/components/signal_generator.py ```python from typing import Optional from augustus.constants import ActionType from augustus.system.components.exceptions import OrderConflictError from augustus.system.metabase_env import augustusEnvBase from augustus.system.models.orders.base_order import PendingOrderBase from augustus.system.models.signals import (Signal, SignalByTrigger, SignalCancelPending, SignalCancelTST, SignalForPending) class SignalGenerator(augustusEnvBase): def __init__(self, action_type, strategy_name) -> None: self.action_type = action_type # type:ActionType self.strategy_name = strategy_name def settle_price_pct(self, ticker, price, price_pct): if price and price_pct: raise OrderConflictError("$ and pct can't be set together") elif price_pct: price = (price_pct+1) * self.env.feeds[ticker].cur_price price_pct = None return price, None def get_signal(self, kwargs): """ 发送信号分三种情况: 1. 挂单。直接通过。 2. 市价单。 1. 判断当前是否停牌,若停牌,则不生成信号 """ ticker = kwargs['ticker'] if kwargs['price']: return SignalForPending(**kwargs) if ticker in self.env.cur_suspended_tickers: # 停牌不生成信号 return return Signal(**kwargs) def buy_or_short(self, size: int, ticker: str, takeprofit: float = None, takeprofit_pct: float = None, stoploss: float = None, stoploss_pct: float = None, trailingstop: float = None, trailingstop_pct: float = None, price: float = None, price_pct: float = None) -> Signal: """ For Buy, ShortSell size: int, ticker: str, takeprofit: float , 单位为元 takeprofit_pct: float , 范围为(-1,1) stoploss: float , 单位为元 stoploss_pct: float , 范围为(-1,1) trailingstop: float , 单位为元 trailingstop_pct: float , 范围为(-1,1) price: float price_pct: float , 范围为(-1,1) """ price, price_pct = self.settle_price_pct(ticker, price, price_pct) kwargs = { 'strategy_name': self.strategy_name, 'action_type': self.action_type, 'size': size, 'ticker': ticker, 'takeprofit': takeprofit, 'takeprofit_pct': takeprofit_pct, 'stoploss': stoploss, 'stoploss_pct': stoploss_pct, 'trailingstop': trailingstop, 'trailingstop_pct': trailingstop_pct, 'price': price, 'price_pct': price_pct} return self.get_signal(kwargs) def sell_or_cover(self, size: int, ticker: str, price: float = None, price_pct: float = None) -> Signal: """For Sell, ShortCover""" price, price_pct = self.settle_price_pct(ticker, price, price_pct) kwargs = {'strategy_name': self.strategy_name, 'action_type': self.action_type, 'size': size, 'ticker': ticker, 'price': price, 'price_pct': price_pct} return self.get_signal(kwargs) def cancel_tst(self, ticker: str, long_or_short: str, takeprofit: bool = False, stoploss: bool = False, trailingstop: bool = False): if long_or_short not in ['long', 'short']: raise ValueError("long_or_short should be long or short!") kwargs = {'strategy_name': self.strategy_name, 'action_type': self.action_type, 'ticker': ticker, 'long_or_short': long_or_short, 'takeprofit': takeprofit, 'stoploss': stoploss, 'trailingstop': trailingstop} return SignalCancelTST(**kwargs) def cancel_pending(self, ticker: str, long_or_short: str, below_price: float=None, above_price: float=None): if long_or_short not in ['long', 'short']: raise ValueError("long_or_short should be long or short!") kwargs = {'strategy_name': self.strategy_name, 'action_type': self.action_type, 'ticker': ticker, 'long_or_short': long_or_short, 'below_price': below_price, 'above_price': above_price } return SignalCancelPending(**kwargs) class TriggeredSignalGenerator(augustusEnvBase): """为触发的挂单生成挂单触发信号""" @classmethod def _generate_bare_signal(cls, order) -> SignalByTrigger: kwargs = {'action_type': order.action_type, 'strategy_name': order.strategy_name, 'size': order.size, 'ticker': order.ticker, 'execute_price': order.target_price, 'first_cur_price': order.first_cur_price, 'mkt_id': order.mkt_id, 'order_type': order.order_type, 'parent_order': order} return SignalByTrigger(**kwargs) @classmethod def _generate_full_signal(cls, order) -> SignalByTrigger: kwargs = {'action_type': order.action_type, 'strategy_name': order.strategy_name, 'size': order.size, 'ticker': order.ticker, 'execute_price': order.target_price, 'price': None, 'price_pct': None, 'takeprofit': order.signal.takeprofit, 'takeprofit_pct': order.signal.takeprofit_pct, 'stoploss': order.signal.stoploss, 'stoploss_pct': order.signal.stoploss_pct, 'trailingstop': order.signal.trailingstop, 'trailingstop_pct': order.signal.trailingstop_pct, 'order_type': order.order_type} return SignalByTrigger(**kwargs) @classmethod def generate_triggered_signal(cls, order: PendingOrderBase) -> Optional[Signal]: if order.ticker not in cls.env.cur_suspended_tickers: if order.is_triggered: if order.is_with_mkt(): return cls._generate_bare_signal(order) return cls._generate_full_signal(order) ``` #### File: system/models/calendar.py ```python import arrow from augustus.system.components.exceptions import BacktestFinished from augustus.system.metabase_env import augustusEnvBase from augustus.utils.easy_func import get_day_ratio class Calendar(augustusEnvBase): def __init__(self, instrument): if instrument == 'A_shares': self.is_trading_time = self._is_A_shares_trading_time elif instrument == 'Forex': self.is_trading_time = self._is_forex_trading_time def _is_forex_trading_time(self, now: arrow.arrow.Arrow) -> bool: weekday = now.isoweekday() date = now.format('YYYY-MM-DD') if weekday <= 4: return True elif weekday == 5: if now < arrow.get(f'{date} 22:00'): return True elif weekday == 6: return False elif weekday == 7: if now >= arrow.get(f'{date} 21:00'): return True return False def _is_A_shares_trading_time(self, now: arrow.arrow.Arrow) -> bool: weekday = now.isoweekday() date = now.format('YYYY-MM-DD') if self.env.sys_frequency == 'D': if weekday <= 5: return True else: if weekday <= 5: left_1 = arrow.get(f'{date} 09:30') right_1 = arrow.get(f'{date} 11:30') left_2 = arrow.get(f'{date} 13:00') right_2 = arrow.get(f'{date} 15:00') if left_1 <= now <= right_1 or left_2 <= now <= right_2: return True return False def update_calendar(self): if self.env.is_live_trading: self.env.sys_date = arrow.utcnow().format('YYYY-MM-DD HH:mm:ss') else: self._check_todate() ratio = get_day_ratio(self.env.sys_frequency) new_sys_date = arrow.get(self.env.sys_date).shift(days=ratio) self.env.sys_date = new_sys_date.format('YYYY-MM-DD HH:mm:ss') while not self.is_trading_time(new_sys_date): self._check_todate() new_sys_date = arrow.get(self.env.sys_date).shift(days=ratio) self.env.sys_date = new_sys_date.format('YYYY-MM-DD HH:mm:ss') def _check_todate(self): if arrow.get(self.env.sys_date) >= arrow.get(self.env.todate): raise BacktestFinished ```
{ "source": "jialuechen/quantorch", "score": 2 }
#### File: models/vasicek/vasicek.py ```python from textwrap import wrap import torch class Vasicek: def __init__(self,alpha,sigma) -> None: self.alpha=alpha self.sigma=sigma self.init_r=wrap(0.0) def get_params(self): return torch.cat([self.alpha,self.sigma]) def step(self,dt,r0,defl0): numSim=r0.size(0) def simulate(self): pass def zcb_price(self,r,tenor,params=None): pass ``` #### File: quantorch/quantorch/tensor.py ```python import torch def steps(end:float,steps=None,dtype=None,device=None)->torch.Tensor: return torch.linspace(0.0,end,steps+1,dtype=dtype,device=device)[1:] ```
{ "source": "jialuechen/raptor", "score": 2 }
#### File: raptor/raptor/momentum.py ```python import dask as da from raptor.utils import BaseIndicator, _ema class RSIIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 14, fillna: bool = False): self._close = close self._window = window self._fillna = fillna self._run() def _run(self): diff = self._close.diff(1) up_direction = diff.where(diff > 0, 0.0) down_direction = -diff.where(diff < 0, 0.0) min_periods = 0 if self._fillna else self._window emaup = up_direction.ewm( alpha=1 / self._window, min_periods=min_periods, adjust=False ).mean() emadn = down_direction.ewm( alpha=1 / self._window, min_periods=min_periods, adjust=False ).mean() relative_strength = emaup / emadn self._rsi = da.Series( da.where(emadn == 0, 100, 100 - (100 / (1 + relative_strength))), index=self._close.index, ) def rsi(self) -> da.Series: rsi_series = self._check_fillna(self._rsi, value=50) return da.Series(rsi_series, name="rsi") class StochasticOscillator(BaseIndicator): def __init__( self, high: da.Series, low: da.Series, close: da.Series, window: int = 14, smooth_window: int = 3, fillna: bool = False, ): self._close = close self._high = high self._low = low self._window = window self._smooth_window = smooth_window self._fillna = fillna self._run() def _run(self): min_periods = 0 if self._fillna else self._window smin = self._low.rolling(self._window, min_periods=min_periods).min() smax = self._high.rolling(self._window, min_periods=min_periods).max() self._stoch_k = 100 * (self._close - smin) / (smax - smin) def stoch(self) -> da.Series: stoch_k = self._check_fillna(self._stoch_k, value=50) return da.Series(stoch_k, name="stoch_k") def stoch_signal(self) -> da.Series: min_periods = 0 if self._fillna else self._smooth_window stoch_d = self._stoch_k.rolling( self._smooth_window, min_periods=min_periods ).mean() stoch_d = self._check_fillna(stoch_d, value=50) return da.Series(stoch_d, name="stoch_k_signal") class KAMAIndicator(BaseIndicator): def __init__( self, close: da.Series, window: int = 10, pow1: int = 2, pow2: int = 30, fillna: bool = False, ): self._close = close self._window = window self._pow1 = pow1 self._pow2 = pow2 self._fillna = fillna self._run() def _run(self): close_values = self._close.values vol = da.Series(abs(self._close - da.roll(self._close, 1))) min_periods = 0 if self._fillna else self._window er_num = abs(close_values - da.roll(close_values, self._window)) er_den = vol.rolling(self._window, min_periods=min_periods).sum() efficiency_ratio = er_num / er_den smoothing_constant = ( ( efficiency_ratio * (2.0 / (self._pow1 + 1) - 2.0 / (self._pow2 + 1.0)) + 2 / (self._pow2 + 1.0) ) ** 2.0 ).values self._kama = da.zeros(smoothing_constant.size) len_kama = len(self._kama) first_value = True for i in range(len_kama): if da.isnan(smoothing_constant[i]): self._kama[i] = da.nan elif first_value: self._kama[i] = close_values[i] first_value = False else: self._kama[i] = self._kama[i - 1] + smoothing_constant[i] * ( close_values[i] - self._kama[i - 1] ) def kama(self) -> da.Series: kama_series = da.Series(self._kama, index=self._close.index) kama_series = self._check_fillna(kama_series, value=self._close) return da.Series(kama_series, name="kama") class ROCIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 12, fillna: bool = False): self._close = close self._window = window self._fillna = fillna self._run() def _run(self): self._roc = ( (self._close - self._close.shift(self._window)) / self._close.shift(self._window) ) * 100 def roc(self) -> da.Series: roc_series = self._check_fillna(self._roc) return da.Series(roc_series, name="roc") class StochRSIIndicator(BaseIndicator): def __init__( self, close: da.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False, ): self._close = close self._window = window self._smooth1 = smooth1 self._smooth2 = smooth2 self._fillna = fillna self._run() def _run(self): self._rsi = RSIIndicator( close=self._close, window=self._window, fillna=self._fillna ).rsi() lowest_low_rsi = self._rsi.rolling(self._window).min() self._stochrsi = (self._rsi - lowest_low_rsi) / ( self._rsi.rolling(self._window).max() - lowest_low_rsi ) self._stochrsi_k = self._stochrsi.rolling(self._smooth1).mean() def stochrsi(self): stochrsi_series = self._check_fillna(self._stochrsi) return da.Series(stochrsi_series, name="stochrsi") def stochrsi_k(self): stochrsi_k_series = self._check_fillna(self._stochrsi_k) return da.Series(stochrsi_k_series, name="stochrsi_k") def stochrsi_d(self): stochrsi_d_series = self._stochrsi_k.rolling(self._smooth2).mean() stochrsi_d_series = self._check_fillna(stochrsi_d_series) return da.Series(stochrsi_d_series, name="stochrsi_d") def rsi(close, window=14, fillna=False) -> da.Series: return RSIIndicator(close=close, window=window, fillna=fillna).rsi() def stoch(high, low, close, window=14, smooth_window=3, fillna=False) -> da.Series: return StochasticOscillator( high=high, low=low, close=close, window=window, smooth_window=smooth_window, fillna=fillna, ).stoch() def stoch_signal( high, low, close, window=14, smooth_window=3, fillna=False ) -> da.Series: return StochasticOscillator( high=high, low=low, close=close, window=window, smooth_window=smooth_window, fillna=fillna, ).stoch_signal() def roc(close: da.Series, window: int = 12, fillna: bool = False) -> da.Series: return ROCIndicator(close=close, window=window, fillna=fillna).roc() def stochrsi( close: da.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False, ) -> da.Series: return StochRSIIndicator( close=close, window=window, smooth1=smooth1, smooth2=smooth2, fillna=fillna ).stochrsi() def stochrsi_k( close: da.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False, ) -> da.Series: return StochRSIIndicator( close=close, window=window, smooth1=smooth1, smooth2=smooth2, fillna=fillna ).stochrsi_k() def stochrsi_d( close: da.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False, ) -> da.Series: return StochRSIIndicator( close=close, window=window, smooth1=smooth1, smooth2=smooth2, fillna=fillna ).stochrsi_d() ``` #### File: raptor/raptor/trend.py ```python import dask as da from raptor.utils import BaseIndicator, _ema, _sma, _get_min_or_max class AroonIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 25, fillna: bool = False): self._close = close self._window = window self._fillna = fillna self._run() def _run(self): min_periods = 0 if self._fillna else self._window rolling_close = self._close.rolling(self._window, min_periods=min_periods) self._aroon_up = rolling_close.apply( lambda x: float(da.argmax(x) + 1) / self._window * 100, raw=True ) self._aroon_down = rolling_close.apply( lambda x: float(da.argmin(x) + 1) / self._window * 100, raw=True ) def aroon_up(self) -> da.Series: aroon_up_series = self._check_fillna(self._aroon_up, value=0) return da.Series(aroon_up_series, name=f"aroon_up_{self._window}") def aroon_down(self) -> da.Series: aroon_down_series = self._check_fillna(self._aroon_down, value=0) return da.Series(aroon_down_series, name=f"aroon_down_{self._window}") def aroon_indicator(self) -> da.Series: aroon_diff = self._aroon_up - self._aroon_down aroon_diff = self._check_fillna(aroon_diff, value=0) return da.Series(aroon_diff, name=f"aroon_ind_{self._window}") class MACD(BaseIndicator): def __init__( self, close: da.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False, ): self._close = close self._window_slow = window_slow self._window_fast = window_fast self._window_sign = window_sign self._fillna = fillna self._run() def _run(self): self._emafast = _ema(self._close, self._window_fast, self._fillna) self._emaslow = _ema(self._close, self._window_slow, self._fillna) self._macd = self._emafast - self._emaslow self._macd_signal = _ema(self._macd, self._window_sign, self._fillna) self._macd_diff = self._macd - self._macd_signal def macd(self) -> da.Series: macd_series = self._check_fillna(self._macd, value=0) return da.Series( macd_series, name=f"MACD_{self._window_fast}_{self._window_slow}" ) def macd_signal(self) -> da.Series: macd_signal_series = self._check_fillna(self._macd_signal, value=0) return da.Series( macd_signal_series, name=f"MACD_sign_{self._window_fast}_{self._window_slow}", ) def macd_diff(self) -> da.Series: macd_diff_series = self._check_fillna(self._macd_diff, value=0) return da.Series( macd_diff_series, name=f"MACD_diff_{self._window_fast}_{self._window_slow}" ) class EMAIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 14, fillna: bool = False): self._close = close self._window = window self._fillna = fillna def ema_indicator(self) -> da.Series: ema_ = _ema(self._close, self._window, self._fillna) return da.Series(ema_, name=f"ema_{self._window}") class SMAIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int, fillna: bool = False): self._close = close self._window = window self._fillna = fillna def sma_indicator(self) -> da.Series: sma_ = _sma(self._close, self._window, self._fillna) return da.Series(sma_, name=f"sma_{self._window}") class WMAIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 9, fillna: bool = False): self._close = close self._window = window self._fillna = fillna self._run() def _run(self): _weight = da.Series( [ i * 2 / (self._window * (self._window + 1)) for i in range(1, self._window + 1) ] ) def weighted_average(weight): def _weighted_average(x): return (weight * x).sum() return _weighted_average self._wma = self._close.rolling(self._window).apply( weighted_average(_weight), raw=True ) def wma(self) -> da.Series: wma = self._check_fillna(self._wma, value=0) return da.Series(wma, name=f"wma_{self._window}") class TRIXIndicator(BaseIndicator): def __init__(self, close: da.Series, window: int = 15, fillna: bool = False): self._close = close self._window = window self._fillna = fillna self._run() def _run(self): ema1 = _ema(self._close, self._window, self._fillna) ema2 = _ema(ema1, self._window, self._fillna) ema3 = _ema(ema2, self._window, self._fillna) self._trix = (ema3 - ema3.shift(1, fill_value=ema3.mean())) / ema3.shift( 1, fill_value=ema3.mean() ) self._trix *= 100 def trix(self) -> da.Series: trix_series = self._check_fillna(self._trix, value=0) return da.Series(trix_series, name=f"trix_{self._window}") class ADXIndicator(BaseIndicator): def __init__( self, high: da.Series, low: da.Series, close: da.Series, window: int = 14, fillna: bool = False, ): self._high = high self._low = low self._close = close self._window = window self._fillna = fillna self._run() def _run(self): if self._window == 0: raise ValueError("window may not be 0") close_shift = self._close.shift(1) pdm = _get_min_or_max(self._high, close_shift, "max") pdn = _get_min_or_max(self._low, close_shift, "min") diff_directional_movement = pdm - pdn self._trs_initial = da.zeros(self._window - 1) self._trs = da.zeros(len(self._close) - (self._window - 1)) self._trs[0] = diff_directional_movement.dropna()[0 : self._window].sum() diff_directional_movement = diff_directional_movement.reset_index(drop=True) for i in range(1, len(self._trs) - 1): self._trs[i] = ( self._trs[i - 1] - (self._trs[i - 1] / float(self._window)) + diff_directional_movement[self._window + i] ) diff_up = self._high - self._high.shift(1) diff_down = self._low.shift(1) - self._low pos = abs(((diff_up > diff_down) & (diff_up > 0)) * diff_up) neg = abs(((diff_down > diff_up) & (diff_down > 0)) * diff_down) self._dip = da.zeros(len(self._close) - (self._window - 1)) self._dip[0] = pos.dropna()[0 : self._window].sum() pos = pos.reset_index(drop=True) for i in range(1, len(self._dip) - 1): self._dip[i] = ( self._dip[i - 1] - (self._dip[i - 1] / float(self._window)) + pos[self._window + i] ) self._din = da.zeros(len(self._close) - (self._window - 1)) self._din[0] = neg.dropna()[0 : self._window].sum() neg = neg.reset_index(drop=True) for i in range(1, len(self._din) - 1): self._din[i] = ( self._din[i - 1] - (self._din[i - 1] / float(self._window)) + neg[self._window + i] ) def adx(self) -> da.Series: dip = da.zeros(len(self._trs)) for i in range(len(self._trs)): dip[i] = 100 * (self._dip[i] / self._trs[i]) din = da.zeros(len(self._trs)) for i in range(len(self._trs)): din[i] = 100 * (self._din[i] / self._trs[i]) directional_index = 100 * da.abs((dip - din) / (dip + din)) adx_series = da.zeros(len(self._trs)) adx_series[self._window] = directional_index[0 : self._window].mean() for i in range(self._window + 1, len(adx_series)): adx_series[i] = ( (adx_series[i - 1] * (self._window - 1)) + directional_index[i - 1] ) / float(self._window) adx_series = da.concatenate((self._trs_initial, adx_series), axis=0) adx_series = da.Series(data=adx_series, index=self._close.index) adx_series = self._check_fillna(adx_series, value=20) return da.Series(adx_series, name="adx") def adx_pos(self) -> da.Series: dip = da.zeros(len(self._close)) for i in range(1, len(self._trs) - 1): dip[i + self._window] = 100 * (self._dip[i] / self._trs[i]) adx_pos_series = self._check_fillna( da.Series(dip, index=self._close.index), value=20 ) return da.Series(adx_pos_series, name="adx_pos") def adx_neg(self) -> da.Series: din = da.zeros(len(self._close)) for i in range(1, len(self._trs) - 1): din[i + self._window] = 100 * (self._din[i] / self._trs[i]) adx_neg_series = self._check_fillna( da.Series(din, index=self._close.index), value=20 ) return da.Series(adx_neg_series, name="adx_neg") def ema_indicator(close, window=12, fillna=False): return EMAIndicator(close=close, window=window, fillna=fillna).ema_indicator() def sma_indicator(close, window=12, fillna=False): return SMAIndicator(close=close, window=window, fillna=fillna).sma_indicator() def wma_indicator(close, window=9, fillna=False): return WMAIndicator(close=close, window=window, fillna=fillna).wma() def macd(close, window_slow=26, window_fast=12, fillna=False): return MACD( close=close, window_slow=window_slow, window_fast=window_fast, window_sign=9, fillna=fillna, ).macd() def macd_signal(close, window_slow=26, window_fast=12, window_sign=9, fillna=False): return MACD( close=close, window_slow=window_slow, window_fast=window_fast, window_sign=window_sign, fillna=fillna, ).macd_signal() def macd_diff(close, window_slow=26, window_fast=12, window_sign=9, fillna=False): return MACD( close=close, window_slow=window_slow, window_fast=window_fast, window_sign=window_sign, fillna=fillna, ).macd_diff() def adx(high, low, close, window=14, fillna=False): return ADXIndicator( high=high, low=low, close=close, window=window, fillna=fillna ).adx() def adx_pos(high, low, close, window=14, fillna=False): return ADXIndicator( high=high, low=low, close=close, window=window, fillna=fillna ).adx_pos() def adx_neg(high, low, close, window=14, fillna=False): return ADXIndicator( high=high, low=low, close=close, window=window, fillna=fillna ).adx_neg() def trix(close, window=15, fillna=False): return TRIXIndicator(close=close, window=window, fillna=fillna).trix() def aroon_up(close, window=25, fillna=False): return AroonIndicator(close=close, window=window, fillna=fillna).aroon_up() def aroon_down(close, window=25, fillna=False): return AroonIndicator(close=close, window=window, fillna=fillna).aroon_down() ``` #### File: raptor/raptor/volume.py ```python import dask as da from raptor.utils import BaseIndicator, _ema class AccDistIndexIndicator(BaseIndicator): def __init__( self, high: da.Series, low: da.Series, close: da.Series, volume: da.Series, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._fillna = fillna self._run() def _run(self): clv = ((self._close - self._low) - (self._high - self._close)) / ( self._high - self._low ) clv = clv.fillna(0.0) # float division by zero adi = clv * self._volume self._adi = adi.cumsum() def acc_dist_index(self) -> da.Series: adi = self._check_fillna(self._adi, value=0) return da.Series(adi, name="adi") class ForceIndexIndicator(BaseIndicator): def __init__( self, close: da.Series, volume: da.Series, window: int = 13, fillna: bool = False, ): self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): fi_series = (self._close - self._close.shift(1)) * self._volume self._fi = _ema(fi_series, self._window, fillna=self._fillna) def force_index(self) -> da.Series: fi_series = self._check_fillna(self._fi, value=0) return da.Series(fi_series, name=f"fi_{self._window}") class VolumePriceTrendIndicator(BaseIndicator): def __init__(self, close: da.Series, volume: da.Series, fillna: bool = False): self._close = close self._volume = volume self._fillna = fillna self._run() def _run(self): vpt = self._volume * ( (self._close - self._close.shift(1, fill_value=self._close.mean())) / self._close.shift(1, fill_value=self._close.mean()) ) self._vpt = vpt.shift(1, fill_value=vpt.mean()) + vpt def volume_price_trend(self) -> da.Series: vpt = self._check_fillna(self._vpt, value=0) return da.Series(vpt, name="vpt") def acc_dist_index(high, low, close, volume, fillna=False): return AccDistIndexIndicator( high=high, low=low, close=close, volume=volume, fillna=fillna ).acc_dist_index() def force_index(close, volume, window=13, fillna=False): return ForceIndexIndicator( close=close, volume=volume, window=window, fillna=fillna ).force_index() def volume_price_trend(close, volume, fillna=False): return VolumePriceTrendIndicator( close=close, volume=volume, fillna=fillna ).volume_price_trend() ```
{ "source": "Jialu-Huang/python", "score": 4 }
#### File: python/lab5/complex.py ```python from clear_console import clean_the_console """ Name: Complex Description: Generate a object to store, print, and calculate complex numbers Format: (real +- imag * i) """ class Complex: #Constructor of this class when default parameters are 0s def __init__(self, real = 0, imag = 0): self.real = real self.imag = imag #define formatted print def __repr__(self): com_str = "" com_str += "(" + "%s" % ("%g" % self.real) + num_to_str(self.imag) + "i)" #%+-g means display sign return com_str #define formatted string for print() def __str__(self): return self.__repr__() #Overloading operator + OR plus def __add__(self, o): #(binary +) if isinstance(o, (float,int)): #Make sure the type of operands between the operator are the same. o = Complex(o) return Complex(self.real + o.real, self.imag + o.imag) #return as a new assigned complex object def __radd__(self, o): #Solve some equations have a wrong data type at the left side of operator return self.__add__(o) def __sub__(self, o): #(binary -) if isinstance(o, (float,int)): #Make sure the type of operands between the operator are the same. o = Complex(o) return Complex((self.real - o.real),(self.imag - o.imag)) def __rsub__(self,o): return self.__sub__(o) def __mul__(self, o): #(binary *) if isinstance(o, (float,int)): #Make sure the type of operands between the operator are the same. o = Complex(o) return Complex(((self.real * o.real)+ (-1)*(self.imag * o.imag)),(self.real * o.imag)+(self.imag * o.real)) def __rmul__(self, o): return self.__mul__(o) def __truediv__(self, o): #(binary /) if isinstance(o, (float,int)): #Make sure the type of operands between the operator are the same. o = Complex(o) a = (self.real * o.real) + (self.imag * o.imag) b = pow((o.real), 2.0) + pow((o.imag), 2.0) c = (self.imag * o.real) - (self.real * o.imag) return Complex((a / b),(c / b)) def __rtruediv__(self, o): # self/o and o/self are different temp = Complex(o) return temp.__truediv__(self) def __neg__(self): #Get negative complex number (unary -) return Complex(0 - self.real, 0 - self.imag) def __invert__(self): #Get conjugate complex number (unary ~) return Complex(self.real, 0 - self.imag) def __eq__(self, o): #(Binary ==) Determine that the two Complex objects are completely equal if self.real == o.real and self.imag == o.imag: return True else: return False def num_to_str(num): if(num >= 0): return " + " + str(num) else: return " - " + str(abs(num)) def div_line(): print(50 * "/") if __name__ == '__main__': clean_the_console() a = Complex (1,2) b = Complex (3,-4) print(a,b) print(a, " + ", b," = ", a + b) print(a, " - ", b," = ", a - b) print(a, " * ", b," = ", a * b) print(a, " / ", b," = ", a / b) div_line() print(a, " + ", 1.5, " = ", a + 1.5) print(1.5, " + ", a, " = ", 1.5 + a) print(a, " - ", 1.5, " = ", a - 1.5) print(1.5, " - ", a, " = ", 1.5 - a) print(a, " * ", 1.5, " = ", a * 1.5) print(1.5, " * ", a, " = ", 1.5 * a) print(a, " / ", 1.5, " = ", a / 1.5) print(1.5, " / ", a, " = ", 1.5 / a) div_line() print("Negation",-a) print("conjugate",~a) print("a = b ? -> ",a == b) div_line() c = Complex() d = Complex(3,) print (c,d) print(c, " + ", d," = ", c + d) print(c, " - ", d," = ", c - d) print(c, " * ", d," = ", c * d) print(c, " / ", d," = ", c / d) ```
{ "source": "jialuli-luka/EnvEdit", "score": 2 }
#### File: EnvEdit/style_transfer/style_transfer.py ```python from styleaug import StyleAugmentor import torch from torchvision.transforms import ToTensor, ToPILImage from PIL import Image import os import torchvision.transforms as transforms import argparse # PyTorch Tensor <-> PIL Image transforms: toTensor = ToTensor() toPIL = ToPILImage() loader = transforms.Compose([ transforms.Resize((480,640)), # scale imported image transforms.ToTensor()]) # transform it into a torch tensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def image_loader(image_name): image = Image.open(image_name) # print(image.size()) # fake batch dimension required to fit network's input dimensions image = loader(image).unsqueeze(0) return image.to(device, torch.float) def environment_creation(args): path = args.input output_path = args.output files = os.listdir(path) augmentor = StyleAugmentor() unloader = transforms.ToPILImage() for j, scan in enumerate(files): if os.path.isdir(path + "/" + scan): print("scan:", scan, "progress:", j, "/", len(files)) views = os.listdir(path + "/" + scan) # embedding = augmentor.sample_embedding(1) # Sample the same style embedding for all the views in a scan for view in views: print("view:", view) imgs = os.listdir(path + "/" + scan + "/" + view) embedding = augmentor.sample_embedding(1) # Sample the same style embedding for all discretized views in a panorama for i, img in enumerate(imgs): content_img = image_loader(path + "/" + scan + "/" + view + "/" + img) im_restyled = augmentor(content_img, embedding=embedding) image = im_restyled.squeeze(0).cpu().detach() image = unloader(image) dir = "%s/%s" % (output_path, scan+"/"+view) if not os.path.exists(dir): os.makedirs(dir) image.save("%s/%s" % (output_path, scan+"/"+view+"/"+img)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input', default="views_img") parser.add_argument('--output', default='views_img_style_transfer') args = parser.parse_args() environment_creation(args) ```
{ "source": "jialuogao/ECE539FinalProject", "score": 2 }
#### File: ChipGAN/models/model.py ```python import os import sys import torch from torch.autograd import Variable import shutil import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torchvision.models as models class Hed(nn.Module): def __init__(self): super(Hed, self).__init__() self.vgg16 = models.vgg16(pretrained=True) self.vgg16 = self.vgg16.features for param in self.vgg16.parameters(): param.requires_grad = False self.score_dsn1 = nn.Conv2d(64, 1, kernel_size=1, stride=1, padding=0) self.score_dsn2 = nn.Conv2d(128, 1, kernel_size=1, stride=1, padding=0) self.score_dsn3 = nn.Conv2d(256, 1, kernel_size=1, stride=1, padding=0) self.score_dsn4 = nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0) self.score_dsn5 = nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0) self.fuse = nn.Conv2d(5, 1, kernel_size=1, stride=1, padding=0) self.upsample2 = nn.ConvTranspose2d(1, 1, kernel_size=3, stride=2, padding=1, output_padding=1) self.upsample3 = nn.ConvTranspose2d(1, 1, kernel_size=6, stride=4, padding=1) self.upsample4 = nn.ConvTranspose2d(1, 1, kernel_size=12, stride=8, padding=2) self.upsample5 = nn.ConvTranspose2d(1, 1, kernel_size=24, stride=16, padding=4) def forward(self, x): cnt = 1 res = [] for l in self.vgg16: x = l(x) # print(cnt) if cnt == 4: y = self.score_dsn1(x) res += [y] elif cnt == 9: y = self.score_dsn2(x) y = self.upsample2(y) res += [y] elif cnt == 16: y = self.score_dsn3(x) y = self.upsample3(y) res += [y] elif cnt == 23: y = self.score_dsn4(x) y = self.upsample4(y) res += [y] elif cnt == 30: y = self.score_dsn5(x) y = self.upsample5(y) res += [y] cnt += 1 res = self.fuse(torch.cat(res, dim=1)) return res ``` #### File: ECE539FinalProject/models/xdog.py ```python import cv2 import numpy as np def dog(img,size=(0,0),k=1.6,sigma=0.5,gamma=1): img1 = cv2.GaussianBlur(img,size,sigma) print("img:") print(np.max(img1)) img2 = cv2.GaussianBlur(img,size,sigma*k) return (img1-gamma*img2) def xdog(img,sigma=0.5,k=1.6, gamma=1,epsilon=1,phi=1): img = dog(img,sigma=sigma,k=k,gamma=gamma) for i in range(0,img.shape[0]): for j in range(0,img.shape[1]): if(img[i,j] < epsilon): img[i,j] = 1 else: img[i,j] = (1 + np.tanh(phi*(img[i,j]))) return img def xdog_thresh(img, sigma=0.5,k=1.6, gamma=1,epsilon=1,phi=1,alpha=1): img = xdog(img,sigma=sigma,k=k,gamma=gamma,epsilon=epsilon,phi=phi) #cv2.imshow("1",np.uint8(img)) mean = np.mean(img) max = np.max(img) img = cv2.GaussianBlur(src=img,ksize=(0,0),sigmaX=sigma*3) #cv2.imshow("2",np.uint8(img)) for i in range(0,img.shape[0]): for j in range(0,img.shape[1]): if(img[i,j] > mean): img[i,j] = max #cv2.imshow("3",np.uint8(img)) return img/max if __name__ == '__main__': # Open image in grayscale #img = cv2.imread('imgs/lena.jpg',cv2.CV_LOAD_IMAGE_GRAYSCALE) img = cv2.imread('./imgs/horse.png',cv2.IMREAD_GRAYSCALE) print(img.shape) img = cv2.resize(img,(400,400)) print(img.shape) # k = 1.6 as proposed in the paper k = 1.6 #cv2.imshow("Original in Grayscale", img) #cv2.imshow("Edge DoG",edge_dog(img,sigma=0.5,k=200, gamma=0.98)) #cv2.imshow("XDoG GaryGrossi",np.uint8(xdog_garygrossi(img,sigma=0.5,k=200, gamma=0.98,epsilon=0.1,phi=10))) #cv2.imshow("XDoG Project 1",np.uint8(xdog(img,sigma=0.4,k=1.6, gamma=0.5,epsilon=-0.5,phi=10))) cv2.imshow("orig",img) cv2.imshow("thres",np.uint8(255*xdog_thresh(img,sigma=0.5,k=1.6, gamma=0.98,epsilon=-0.1,phi=200))) print(img) print(255*xdog_thresh(img,sigma=0.5,k=1.6, gamma=0.98,epsilon=-0.1,phi=200)) #cv2.imshow("XDoG Project 2",np.uint8(xdog(img,sigma=1.6,k=1.6, gamma=0.5,epsilon=-1,phi=10))) # Natural media (tried to follow parameters of article) #cv2.imshow("XDoG Project 3 - Natural Media",np.uint8(xdog(img,sigma=1,k=1.6, gamma=0.5,epsilon=-0.5,phi=10))) #cv2.imshow("XDoG Project 4 - Hatch",np.uint8(hatchBlend(img))) cv2.waitKey(0) ```
{ "source": "JialuZhang/ConfigV", "score": 3 }
#### File: ConfigV/graphAnalysis/build_graph.py ```python import argparse import json import operator import pprint import sys parser = argparse.ArgumentParser(description=\ 'Build VeriConf post-analysis rule graph') parser.add_argument('input_file') parser.add_argument('edge_file') args = parser.parse_args() with open(args.input_file) as data_file: data = json.load(data_file) # DEFINE RULE PARSING LOGIC def parse_fine_l(x): nodes = x[0] sources = nodes[0:2] targets = [nodes[2]] vals = x[1] label = max(vals.iteritems(), key=operator.itemgetter(1))[0] tru = float(vals[label]) total = float(sum(vals.values())) return { 'PARTICIPANT_A' : sources ,'PARTICIPANT_B' : targets ,'LABEL' : label ,'WEIGHT' : tru / total } def parse_order_l(x): nodes = x[0] sources = [nodes[0]] targets = [nodes[1]] vals = x[1] label = 'order' tru = float( vals['tru'] ) total = float( vals['tru'] + vals['fls'] ) return { 'PARTICIPANT_A' : sources ,'PARTICIPANT_B' : targets ,'LABEL' : label ,'WEIGHT' : tru / total } def parse_missing_l(x): nodes = x[0] sources = [nodes[0]] targets = [nodes[1]] vals = x[1] label = 'missing' tru = float( vals['tru'] ) total = float( vals['tru'] + vals['fls'] ) return { 'PARTICIPANT_A' : sources ,'PARTICIPANT_B' : targets ,'LABEL' : label ,'WEIGHT' : tru / total } def parse_int_rel_l(x): nodes = x[0] sources = [nodes[0]] targets = [nodes[1]] vals = x[1] label = max(vals.iteritems(), key=operator.itemgetter(1))[0] tru = float(vals[label]) total = float(sum(vals.values())) return { 'PARTICIPANT_A' : sources ,'PARTICIPANT_B' : targets ,'LABEL' : label ,'WEIGHT' : tru / total } def parse_type_err_l(x): node = x[0] if not isinstance(node, basestring): sys.exit('ERROR: malformed type rule found in graph construction') sources = [node] targets = [node] vals = x[1] label = max(vals.iteritems(), key=operator.itemgetter(1))[0] tru = float(vals[label]) total = float(sum(vals.values())) if total > 10: return { 'PARTICIPANT_A' : sources ,'PARTICIPANT_B' : targets ,'LABEL' : label ,'WEIGHT' : tru / total } else: return None # add all rule types as targets RULE_TYPES = [ ('finel', parse_fine_l) ,('orderl', parse_order_l) ,('missingl', parse_missing_l) ,('intRell', parse_int_rel_l) ,('typeErrl', parse_type_err_l) ] edges = [] for t, parser in RULE_TYPES: for edge in data[t]: parsed_edge = parser(edge) if parsed_edge: edges.append( parsed_edge ) with open(args.edge_file, 'w') as outfile: json.dump(edges, outfile) ``` #### File: ConfigV/graphAnalysis/calc_complexity.py ```python import argparse import json parser = argparse.ArgumentParser(description=\ 'analyze complexity of configuration file') parser.add_argument('config_opts') parser.add_argument('edge_file') args = parser.parse_args() # # determine the "total weight" between an option # and a set of options # def weight_between(opt, opts, edges): weight = 0 for edge in edges: if (opt in edge['PARTICIPANT_A'] and set(edge['PARTICIPANT_B']) & set(opts)): weight = weight + edge['WEIGHT'] return weight def total_weight(opt, edges): weight = 0 for edge in edges: if (opt in edge['PARTICIPANT_A']): weight = weight + edge['WEIGHT'] return weight # CONFIG FILE COMPLEXITY(opts): # # candidate_complexity = 0 # # for opt_a in opts: # opt_weight = 0; # # all_local_weight = total_weight(opt_a) # # for opt_b in opts: # since self-edges allowed # opt_weight = opt_weight + weight_between(opt_a, [opt_b]) # # # # now how related are they? # # if A is heavily related to other options, count it less. # # candidate_complexity = # candidate_complexity + # 1 * (1 - (opt_weight / all_local_weight)) # with open(args.config_opts) as opts_file: config_options = opts_file.readlines() config_options = [x.strip() for x in config_options] with open(args.edge_file) as edge_file: edges = json.load(edge_file) candidate_complexity = float(0) for opt_a in config_options: opt_weight = 0 all_local_weight = total_weight(opt_a, edges) for opt_b in config_options: opt_weight = opt_weight + weight_between(opt_a, [opt_b], edges) if all_local_weight != 0: candidate_complexity = \ candidate_complexity + \ 1 * (1 - (opt_weight / all_local_weight)) else: # no information available, use naive measure candidate_complexity = candidate_complexity + 1 print ("INFO: config file processing completed") print ("INFO: {} lines, {} total complexity score".format( len(config_options), candidate_complexity)) ```
{ "source": "jialvarez/persystems", "score": 3 }
#### File: jialvarez/persystems/test.py ```python __author__ = "<NAME> <<EMAIL>>" __copyright__ = "Copyright 2011, <NAME> <<EMAIL>>" __license__ = "GPL-2" import csv import time import getopt import imp import os # CSV to process FILENAME = '/tmp/fichero1.csv' class Test: def __init__(self, csv_reader, module): # import backend f, filename, description = imp.find_module(module, ['backends']) try: moduleObj = imp.load_module(module, f, filename, description) finally: f.close() # open test write database for chosen backend test_file = '/tmp/test' + module + '.db' test_db = moduleObj.TestBackend(test_file, "w") # start write test to disk start_write = time.time() i = 0 for row in csv_reader: test_db[str(i)] = str(row) i += 1 test_db.close() end_write = time.time() print module + " writing time: " + str(end_write - start_write) # start read test to memory from disk start_read = time.time() test_db = moduleObj.TestBackend(test_file, "r") # Read records. PyTables uses a different way based on class description for item in test_db.getTestDBItems(): if module == 'pytables': a = item['key'] b = item['value'] else: memvar = item #Another way to read records, unimplemented by now #for (key, value) in test_db.iteritems(): # memvar = value # i += 1 test_db.close() end_read = time.time() print module + " reading time: " + str(end_read - start_read) + "\n" def getCSVReader(): # CSV dialect where lines end in "\n" csv.register_dialect('endline', lineterminator='\n') csv_reader = csv.reader(open(FILENAME,'r'), delimiter=',') return csv_reader # test experiment tester = Test(getCSVReader(), "pytables") tester = Test(getCSVReader(), "pybsddb") tester = Test(getCSVReader(), "pyzodb") tester = Test(getCSVReader(), "pydurus") tester = Test(getCSVReader(), "pyredis") ```
{ "source": "JiamanZhang/Lab_TAD_intactness", "score": 2 }
#### File: Lab_TAD_intactness/codes/get.tad.intactness.value.py ```python import sys import os import numpy as np import gzip def main(): tadfile = sys.argv[1] chr = sys.argv[2] contactfile = sys.argv[3] faifile = sys.argv[4] oup = sys.argv[5] f1 = open(faifile,'r') fai_dict = {} for line1 in f1: info1 = line1.strip().split('\t') fai_dict[info1[0]] = int(info1[1]) f1.close() chr_len = fai_dict[chr] if chr_len%20000 == 0: bin_num = chr_len / 20000 else: bin_num = chr_len / 20000 + 1 bin1 = 0 f2 = gzip.open(contactfile,'r') contact_dict ={} for line2 in f2: info2 = line2.strip().split('\t') if len(info2) != bin_num: print('this is wrong!!!~') sys.exit(0) for bin2 in range(0,len(info2),1): if bin1 > bin2: continue contact_dict[(bin1,bin2)] = float(info2[bin2]) bin1+=1 f2.close() out = open(oup,'w') f3 = open(tadfile,'r') for line3 in f3: info3 = line3.strip().split('\t') if info3[0] != chr: continue start = int(info3[1]) end = int(info3[2]) if end - start <= 20000: info_list = info3 + ['NA'] out.write('{0}\n'.format('\t'.join([str(i) for i in info_list]))) continue bin_s = start / 20000 bin_e = end / 20000 lines = bin_e - bin_s Dscore_dict = {} for i in range(1,lines,1): Dscore_dict[i] = [[],[],[]] for bin1 in range(bin_s,bin_e,1): for bin2 in range(bin_s-lines,bin_s,1): if bin1-lines >= bin2: continue i = abs(bin2 - bin1) try: Dscore_dict[i][0].append(contact_dict[(bin2,bin1)]) except KeyError as reason: continue for bin1 in range(bin_s,bin_e,1): for bin2 in range(bin_e,bin_e+lines,1): if bin1 <= bin2-lines: continue i = abs(bin2 - bin1) try: Dscore_dict[i][1].append(contact_dict[(bin1,bin2)]) except KeyError as reason: continue for bin1 in range(bin_s,bin_e,1): for bin2 in range(bin_s,bin_e,1): if bin1 >= bin2: continue i = abs(bin2 - bin1) Dscore_dict[i][2].append(contact_dict[(bin1,bin2)]) a_list = [] for i in range(1,lines,1): # print(len(Dscore_dict[i][0]),len(Dscore_dict[i][1]),len(Dscore_dict[i][2])) if len(Dscore_dict[i][0]) == 0: mean_val = np.mean(Dscore_dict[i][1]) elif len(Dscore_dict[i][1]) ==0: mean_val = np.mean(Dscore_dict[i][0]) else: mean_val = np.mean([np.mean(Dscore_dict[i][0]),np.mean(Dscore_dict[i][1])]) a_list.append(np.median(Dscore_dict[i][2])/mean_val) value = np.median(a_list) info_list = info3 + [value] out.write('{0}\n'.format('\t'.join([str(i) for i in info_list]))) out.close() # write.close() f3.close() if __name__ == '__main__': main() ```
{ "source": "jiamaozheng/imlab_merging_sqlite_db", "score": 2 }
#### File: imlab_merging_sqlite_db/src/merging_sqlites_v6p_old.py ```python import os, pandas, glob, sqlite3, csv, sys, time, argparse import urllib2, boto3, json, pandas, time, os, sys, logging, argparse from datetime import datetime import uuid as myuuid from botocore.exceptions import ClientError __author__ = "<NAME> <<EMAIL>>" __version__ = "Revision: 0.0.1" __date__ = "Date: 2017-11-28" # usages: # 1) python merging_sqlites_v6p_old.py -m DGN-HapMap-2015.sqlite -i DGN-HapMap-2015 -o DGN-HapMap-2015 -l DGN-HapMap-2015 # 2) python merging_sqlites_v6p_old.py -m GTEx-V6p-1KG-2016-11-16.sqlite -i GTEx-V6p-1KG-2016-11-16 -o GTEx-V6p-1KG-2016-11-16 -l GTEx-V6p-1KG-2016-11-16 # 3) python merging_sqlites_v6p_old.py -m GTEx-V6p-HapMap-2016-09-08.sqlite -l GTEx-V6p-HapMap-2016-09-08 -i GTEx-V6p-HapMap-2016-09-08 -o GTEx-V6p-HapMap-2016-09-08 class SqliteDBMerged(object): def __init_(self): # logger self.logger = '' # input path self.input_path = '' # output path self.output_path = '' # log path self.log_path = '' # merged db name self.merged_sqlite_db_name = '' # Logging function def getLog(self): log_file_name = '' if self.log_path != '': if self.log_path[-1] != '/': self.log_path = self.log_path + '/' log_file_name = self.log_path + str(myuuid.uuid4()) + '.log' self.logger = logging.getLogger() fhandler = logging.FileHandler(filename=log_file_name, mode='w') formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fhandler.setFormatter(formatter) self.logger.addHandler(fhandler) self.logger.setLevel(logging.INFO) # Funtion to get a pretty string for a given number of seconds. def timeString(self, seconds): tuple = time.gmtime(seconds); days = tuple[2] - 1; hours = tuple[3]; mins = tuple[4]; secs = tuple[5]; if sum([days,hours,mins,secs]) == 0: return "<1s"; else: string = str(days) + "d"; string += ":" + str(hours) + "h"; string += ":" + str(mins) + "m"; string += ":" + str(secs) + "s"; return string; # Get arguments def get_args(self): # setup commond line arguments parser = argparse.ArgumentParser() # bucket path parser.add_argument('-m', '--merged_db_name', required=True, default='', type=str, help='e.g. gtex-v6p-1kg-2016-08-18.sqlite') # output path parser.add_argument('-o', '--output_path', required=True, default='', type=str, help='a directory path you choosen to save merged sqlite db output') # log path parser.add_argument('-l', '--log_path', required=True, default='', type=str, help='a directory path you choosen to store log') # input path parser.add_argument('-i', '--input_path', required=True, default='', type=str, help='a directory path that hold all individual sqlite db') # parse the arguments args = parser.parse_args() self.output_path = args.output_path.strip() self.log_path = args.log_path.strip() self.merged_db_name = args.merged_db_name.strip() self.input_path = args.input_path.strip() if self.output_path != '' and not os.path.exists(self.output_path): os.makedirs(self.output_path) if self.log_path != '' and not os.path.exists(self.log_path): os.makedirs(self.log_path) if self.output_path != '': if self.output_path[-1] != '/': self.output_path = self.output_path + '/' if self.input_path != '': if self.input_path[-1] != '/': self.input_path = self.input_path + '/' # merge def merge(self): # create a new database predictdb_all = self.output_path + self.merged_db_name connection = sqlite3.connect(predictdb_all) ccc = connection.cursor() ccc.execute("DROP TABLE IF EXISTS weights") ccc.execute("CREATE TABLE weights (rsid text NOT NULL, gene text NOT NULL, weight real NULL, ref_allele text NULL, eff_allele text NULL, tissue text NOT NULL, PRIMARY KEY(rsid, gene, tissue))") ccc.execute("DROP TABLE IF EXISTS extra") ccc.execute("CREATE TABLE extra (gene text NOT NULL, genename text NOT NULL, pred_perf_R2 text NULL, n_snps_in_model integer NULL, pred_perf_pval real NULL, pred_perf_qval real NULL, tissue text NOT NULL, PRIMARY KEY(gene, tissue))") ccc.execute("DROP TABLE IF EXISTS construction") ccc.execute("CREATE TABLE construction (chr integer NOT NULL, cv_seed integer NOT NULL, tissue text NOT NULL, PRIMARY KEY (chr, tissue))") ccc.execute("DROP TABLE IF EXISTS sample_info") ccc.execute("CREATE TABLE sample_info (n_samples integer NOT NULL, tissue text NOT NULL, PRIMARY KEY (tissue))") # merge all sqlite databases into one sqlite database tableName = ['construction', 'extra', 'sample_info', 'weights'] dbFileList = glob.glob(self.input_path + "*.db") database_names = [] for dbFilename in dbFileList: database_names.append(dbFilename) for i in range(len(database_names)): print(database_names[i]) conn = sqlite3.connect(database_names[i]) c = conn.cursor() tissue_name = database_names[i].split('.')[0][:-2] if 'DGN-WB' in database_names[i].split('/')[-1]: tissue_name = tissue_name.split('/')[len(tissue_name.split('/'))-1] else: tissue_name = tissue_name.split('/')[len(tissue_name.split('/'))-1][3:] print(tissue_name) for table_name in tableName: try: c.execute("alter table '%s' " %table_name + ' add column tissue TEXT') c.execute('update %s' %table_name + " set tissue = '%s' " %tissue_name) except Exception as e: print(e) c.execute('select * from %s' %table_name) output = c.fetchall() # csv csv_writer = '' if table_name == 'construction': csv_writer = csv.writer(open(self.output_path + self.merged_db_name.split('.')[0] + "_" + tissue_name + "_" + table_name + ".csv", "w")) csv_writer.writerow(['chr', 'cv.seed', 'tissue']) elif table_name == 'extra': csv_writer = csv.writer(open(self.output_path + self.merged_db_name.split('.')[0] + "_" + tissue_name + "_" + table_name + ".csv", "w")) csv_writer.writerow(['gene', 'genename', 'pred.perf.R2', 'n.snps.in.model', 'pred.perf.pval', 'pred.perf.qval', 'tissue']) elif table_name == 'weights': csv_writer = csv.writer(open(self.output_path + self.merged_db_name.split('.')[0] + "_" + tissue_name + "_" + table_name + ".csv", "w")) csv_writer.writerow(['rsid', 'gene', 'weight', 'ref_allele', 'eff_allele', 'tissue']) else: csv_writer = csv.writer(open(self.output_path + self.merged_db_name.split('.')[0] + "_" + tissue_name + "_" + table_name + ".csv", "w")) csv_writer.writerow(['n.samples', 'tissue']) csv_writer.writerows(output) # sqlite db for row in output: if table_name == 'construction': ccc.execute("insert into %s VALUES(?, ?, ?)" %table_name, row) elif table_name == 'extra': ccc.execute("insert into %s VALUES(?, ?, ?, ?, ?, ?, ?)" %table_name, row) elif table_name == 'weights': ccc.execute("insert into %s VALUES(?, ?, ?, ?, ?, ?)" %table_name, row) else: ccc.execute("insert into %s VALUES(?, ?)" %table_name, row) # commit and close db conn.commit() conn.close() # commit and close db connection.commit() connection.close() # concat and output combined datasets merged_extra = glob.glob(self.output_path + '*extra.csv') merged_weights = glob.glob(self.output_path + '*weights.csv') merged_sample_info = glob.glob(self.output_path + '*sample_info.csv') merged_construction = glob.glob(self.output_path + '*construction.csv') for list in [merged_extra, merged_construction, merged_weights, merged_sample_info]: merged_final = '' merged = [] for filename in list: merged.append(pandas.read_csv(filename)) os.system('rm %s' %filename) print('remove %s' %filename) merged_final = pandas.concat(merged, axis=0) if 'extra' in list[0]: merged_final.to_csv(self.output_path + self.merged_db_name.split('.')[0] + "_" + 'extra_final.csv', index=None) elif 'weights' in list[0]: merged_final.to_csv(self.output_path + self.merged_db_name.split('.')[0] + "_" + 'weights_final.csv', index=None) elif 'construction' in list[0]: merged_final.to_csv(self.output_path + self.merged_db_name.split('.')[0] + "_" + 'construction_final.csv', index=None) else: merged_final.to_csv(self.output_path + self.merged_db_name.split('.')[0] + "_" + 'sample_info_final.csv', index=None) def main(): # Instantial class start_time = time.time() sqliteDBMerged = SqliteDBMerged() sqliteDBMerged.get_args() sqliteDBMerged.getLog() # merge sqliteDBMerged.merge() msg = "\nElapsed Time: " + sqliteDBMerged.timeString(time.time() - start_time) # calculate how long the program is running sqliteDBMerged.logger.info(msg) print(msg) msg = "\nDate: " + datetime.now().strftime('%Y-%m-%d') + "\n" sqliteDBMerged.logger.info(msg) print(msg) # INITIALIZE if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jiamaozheng/Imlab-syn-aws-s3-tool", "score": 2 }
#### File: jiamaozheng/Imlab-syn-aws-s3-tool/syn_aws_s3.py ```python import sys, os, logging, argparse, json, time, boto3 from pprint import pprint from datetime import datetime import uuid as myuuid from botocore.exceptions import ClientError __author__ = "<NAME> <<EMAIL>>" __version__ = "Revision: 0.0.1" __date__ = "Date: 2017-09-28" class BackupS3(object): def __init_(self): # logger self.logger = ' ' # bucket name self.bucket_name = '' # file name self.file_name = '' # output path self.output_path = '' # log path self.log_path = '' # Logging function def getLog(self): log_file_name = '' if self.log_path != 'l': if self.log_path[-1] != '/': self.log_path = self.log_path + '/' log_file_name = self.log_path + str(myuuid.uuid4()) + '.log' else: currentPath = os.path.abspath(os.path.abspath(sys.argv[0]))[:-13] currentPath = currentPath[:-(len(currentPath.split('/')[-2]) + 1)] log_file_name = currentPath + 'log/' + datetime.now().strftime('%Y-%m-%d') if not os.path.exists(log_file_name): os.makedirs(log_file_name) log_file_name = log_file_name + '/' + str(myuuid.uuid4()) + '.log' self.logger = logging.getLogger() fhandler = logging.FileHandler(filename=log_file_name, mode='w') formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fhandler.setFormatter(formatter) self.logger.addHandler(fhandler) self.logger.setLevel(logging.INFO) # Funtion to get a pretty string for a given number of seconds. def timeString(self, seconds): tuple = time.gmtime(seconds); days = tuple[2] - 1; hours = tuple[3]; mins = tuple[4]; secs = tuple[5]; if sum([days,hours,mins,secs]) == 0: return "<1s"; else: string = str(days) + "d"; string += ":" + str(hours) + "h"; string += ":" + str(mins) + "m"; string += ":" + str(secs) + "s"; return string; def get_args(self): # setup commond line arguments parser = argparse.ArgumentParser() # bucket name if user want to backup a specific bucket parser.add_argument('-b', '--bucket_name', required=False, default='b', type=str, help='aws s3 bucket name or subfolder name e.g imlab-jiamao or imlab-jiamao/labfiles') # a specific file name if user want to backup a specific file parser.add_argument('-f', '--file_name', required=False, default='f', type=str, help='aws s3 bucket name e.g imlab-jiamao/jiamao.txt') # output path parser.add_argument('-o', '--output_path', required=False, default='o', type=str, help='a directory or a s3 bucket/subfolder you choosen to backup aws s3 files') # log path parser.add_argument('-l', '--log_path', required=False, default='l', type=str, help='a directory or a aws s3 bucket/subfolder you choosen to store log files') # parse the arguments args = parser.parse_args() self.bucket_name = args.bucket_name.strip() self.file_name = args.file_name.strip() self.output_path = args.output_path.strip() self.log_path = args.log_path.strip() if self.output_path != 'o' and not os.path.exists(self.output_path): os.makedirs(self.output_path) if self.log_path != 'l' and not os.path.exists(self.log_path): os.makedirs(self.log_path) def synAllBuckets(self): # current path currentPath = os.path.abspath(os.path.abspath(sys.argv[0]))[:-13] currentPath = currentPath[:-(len(currentPath.split('/')[-2]) + 1)] bucket_name_json_file = currentPath + 'log/' + datetime.now().strftime('%Y-%m-%d') if not os.path.exists(bucket_name_json_file): os.makedirs(bucket_name_json_file) bucket_name_json_file = bucket_name_json_file + '/' + str(myuuid.uuid4()) + '.json' cmd = 'aws s3api list-buckets > %s' % bucket_name_json_file msg = "Executing list-buckets s3api command: " + cmd self.logger.info(msg) print(msg) os.system(cmd) jdata = open(bucket_name_json_file) data = json.load(jdata) msg = "Reading a json file containing all aws s3 bucket names: " + bucket_name_json_file self.logger.info(msg) print(msg) for x in range (0, len(data["Buckets"])): cmd = '' if self.output_path[-1] != '/': self.output_path = self.output_path + '/' if currentPath[-1] != '/': currentPath = currentPath + '/' if self.output_path[:-1] != 'o': cmd = 'aws s3 sync s3://%s %s' %(data["Buckets"][x]['Name'], self.output_path + data["Buckets"][x]['Name']) else: cmd = 'aws s3 sync s3://%s %s' %(data["Buckets"][x]['Name'], currentPath + 'aws_s3_buckets/' + data["Buckets"][x]['Name']) msg = "Executing sync s3 command: " + cmd self.logger.info(msg) print(msg) os.system(cmd) msg = "\n" self.logger.info(msg) print(msg) def synOneBucket(self): # current path currentPath = os.path.abspath(os.path.abspath(sys.argv[0]))[:-13] currentPath = currentPath[:-(len(currentPath.split('/')[-2]) + 1)] bucket_name_json_file = currentPath + 'log/' + datetime.now().strftime('%Y-%m-%d') if not os.path.exists(bucket_name_json_file): os.makedirs(bucket_name_json_file) bucket_name_json_file = bucket_name_json_file + '/' + str(myuuid.uuid4()) + '.json' cmd = 'aws s3api list-buckets > %s' % bucket_name_json_file msg = "Executing list-buckets s3api command: " + cmd self.logger.info(msg) print(msg) os.system(cmd) jdata = open(bucket_name_json_file) data = json.load(jdata) msg = "Reading a json file containing all aws s3 bucket names: " + bucket_name_json_file self.logger.info(msg) print(msg) bucket_name = None for x in range (0, len(data["Buckets"])): if self.bucket_name.split('/')[0] == data["Buckets"][x]['Name']: bucket_name = self.bucket_name if bucket_name is None: msg = "\nFAILED! Please check your bucket name - %s which matchs to that of the s3 bucket" % (self.bucket_name.split('/')[0]) self.logger.info(msg) print(msg) else: if self.output_path[-1] != '/': self.output_path = self.output_path + '/' cmd = '' if self.output_path != 'o': cmd = 'aws s3 sync s3://%s %s' %(self.bucket_name, self.output_path + self.bucket_name) os.system(cmd) if int(os.path.getsize(self.output_path + self.bucket_name)) > 500: msg = "\nGreat, you have successfully downloaded %s" % (self.output_path + self.bucket_name) self.logger.info(msg) print(msg) else: # os.system('rm -rf %s' %(self.output_path + self.bucket_name)) msg = '\nFAILED! Please use usage -f or check the existence of your bucket/subfolder name - %s!' %(self.bucket_name) self.logger.info(msg) print(msg) else: cmd = 'aws s3 sync s3://%s %s' %(self.bucket_name, currentPath + 'aws_s3_buckets/' + self.bucket_name) os.system(cmd) if int(os.path.getsize(currentPath + 'aws_s3_buckets/' + self.bucket_name)) > 500: msg = '\nGreat, you have successfully downloaded %s' % (self.output_path + self.bucket_name) self.logger.info(msg) print(msg) else: # os.system('rm -rf %s'%(self.bucket_name, currentPath + 'aws_s3_buckets/' + self.bucket_name)) msg = "\nFAILED! Please use usage -f or check the existence of your bucket/subfolder name - %s!" %(self.bucket_name) self.logger.info(msg) print(msg) def synOneFile(self): # current path currentPath = os.path.abspath(os.path.abspath(sys.argv[0]))[:-13] currentPath = currentPath[:-(len(currentPath.split('/')[-2]) + 1)] bucket_name_json_file = currentPath + 'log/' + datetime.now().strftime('%Y-%m-%d') if not os.path.exists(bucket_name_json_file): os.makedirs(bucket_name_json_file) bucket_name_json_file = bucket_name_json_file + '/' + str(myuuid.uuid4()) + '.json' cmd = 'aws s3api list-buckets > %s' % bucket_name_json_file msg = "Executing list-buckets s3api command: " + cmd self.logger.info(msg) print(msg) os.system(cmd) jdata = open(bucket_name_json_file) data = json.load(jdata) msg = "Reading a json file containing all aws s3 bucket names: " + bucket_name_json_file self.logger.info(msg) print(msg) file_name = None for x in range (0, len(data["Buckets"])): if self.file_name.split('/')[0] == data["Buckets"][x]['Name']: file_name = self.file_name if file_name is None: msg = "\nFAILED! Please check your bucket name - %s which matchs to that of the s3 bucket" % (self.file_name.split('/')[0]) self.logger.info(msg) print(msg) else: # print(self.file_name.split('/')[0] == data["Buckets"][x]['Name']) if self.output_path[-1] != '/': self.output_path = self.output_path + '/' # print(self.output_path) cmd = '' if self.output_path != 'o': cmd = 'aws s3 cp s3://%s %s' %(self.file_name, self.output_path + self.file_name) else: cmd = 'aws s3 cp s3://%s %s' %(self.file_name, currentPath + 'aws_s3_buckets/' + self.file_name) msg = "Executing cp s3 command: " + cmd self.logger.info(msg) print(msg) os.system(cmd) def main(): # Instantial class start_time = time.time() backupS3 = BackupS3() backupS3.get_args() backupS3.getLog() msg = "\n" backupS3.logger.info(msg) print(msg) # backup all buckets, one bucket or one file if backupS3.bucket_name != 'b' and backupS3.file_name == 'f': # one bucket # s3 = boto3.resource('s3') # try: # s3.Object(backupS3.bucket_name).load() # print('success') # except ClientError as e: # print(e) try: backupS3.synOneBucket() except Exception, e: msg = e backupS3.logger.info(msg) print(msg) elif backupS3.bucket_name == 'b' and backupS3.file_name != 'f': # a single file try: backupS3.synOneFile() except Exception, e: msg = e backupS3.logger.info(msg) print(msg) elif backupS3.bucket_name == 'b' and backupS3.file_name == 'f': # all buckets try: backupS3.synAllBuckets() except Exception, e: msg = e backupS3.logger.info(msg) print(msg) msg = "\nElapsed Time: " + backupS3.timeString(time.time() - start_time) # calculate how long the program is running backupS3.logger.info(msg) print(msg) msg = "\nDate: " + datetime.now().strftime('%Y-%m-%d') + "\n" backupS3.logger.info(msg) print(msg) # INITIALIZE if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jiameng1010/pointNet", "score": 2 }
#### File: jiameng1010/pointNet/train_gan.py ```python import tensorflow as tf tfgan = tf.contrib.gan layers = tf.contrib.layers import numpy as np import argparse import provider import importlib import h5py import os import sys from tensorflow.python.ops import variable_scope from tensorflow.contrib.gan.python.losses.python import tuple_losses_impl as tfgan_losses from tensorflow.contrib.data import Dataset, Iterator BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models')) sys.path.append(os.path.join(BASE_DIR, 'utils')) import tf_util from transform_nets import input_transform_net, feature_transform_net parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='pointnet_cls', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]') parser.add_argument('--log_dir', default='log', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=250, help='Epoch to run [default: 250]') parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]') FLAGS = parser.parse_args() FLAGS.noise_dims = 128 FLAGS.max_number_of_steps = 120 MAX_NUM_POINT = 2048 NUM_CLASSES = 40 DECAY_STEP = FLAGS.decay_step BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 MODEL = importlib.import_module(FLAGS.model) def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def provide_data(): while(True): BATCH_SIZE = 32 current_data, current_label = provider.loadDataFile('./data/modelnet40_ply_hdf5_2048/train_all.h5') current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE # mantipulation data rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :]) jittered_data = provider.jitter_point_cloud(rotated_data) # mantipulate labe one_hot_labe = np.zeros((BATCH_SIZE, 40)) one_hot_labe[np.arange(BATCH_SIZE), current_label[start_idx:end_idx]] = 1 #out['data'] = jittered_data #out['labe'] = one_hot_labe yield jittered_data, one_hot_labe def get_model(point_cloud, is_training, one_hot_labels, bn_decay=None,): """ Classification PointNet, input is BxNx3, output Bx40 """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value end_points = {} with tf.variable_scope('transform_net1', reuse=tf.AUTO_REUSE) as sc: transform = input_transform_net(point_cloud, is_training, bn_decay, K=3) point_cloud_transformed = tf.matmul(point_cloud, transform) input_image = tf.expand_dims(point_cloud_transformed, -1) net = tf_util.conv2d(input_image, 64, [1,3], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay) net = tfgan.features.condition_tensor_from_onehot(net, one_hot_labels) net = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay) with tf.variable_scope('transform_net2', reuse=tf.AUTO_REUSE) as sc: transform = feature_transform_net(net, is_training, bn_decay, K=64) end_points['transform'] = transform net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform) net_transformed = tf.expand_dims(net_transformed, [2]) net = tf_util.conv2d(net_transformed, 64, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay) #net = tfgan.features.condition_tensor_from_onehot(net, one_hot_labels) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay) # Symmetric function: max pooling net = tf_util.avg_pool2d(net, [num_point,1], padding='VALID', scope='maxpool') net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp2') net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3') return net, end_points def conditional_discriminator(point_clouds, one_hot_labels): batch = tf.constant([32])#tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', tf.squeeze(bn_decay)) is_training_pl = tf.constant([True]) # Get model and loss with tf.variable_scope('discriminator', reuse=tf.AUTO_REUSE): pred, end_points = get_model(point_clouds, tf.squeeze(is_training_pl), one_hot_labels[1]) return layers.fully_connected(pred, 1, activation_fn=tf.nn.softmax) def generate_cloud(feature, noise): feature = tf.concat([feature, feature], axis=1)#2 feature = tf.concat([feature, feature], axis=1)#4 feature = tf.concat([feature, feature], axis=1)#8 feature = tf.concat([feature, feature], axis=1)#16 feature = tf.concat([feature, feature], axis=1)#32 feature = tf.concat([feature, feature], axis=1)#64 feature = tf.concat([feature, feature], axis=1)#128 feature = tf.concat([feature, feature], axis=1)#256 feature = tf.concat([feature, feature], axis=1)#512 feature = tf.concat([feature, feature], axis=1)#1024 #noise = tf.concat([noise, noise], axis=1)#2 #noise = tf.concat([noise, noise], axis=1)#4 #noise = tf.concat([noise, noise], axis=1)#8 #noise = tf.concat([noise, noise], axis=1)#16 #noise = tf.concat([noise, noise], axis=1)#32 #noise = tf.concat([noise, noise], axis=1)#64 #noise = tf.concat([noise, noise], axis=1)#128 #noise = tf.concat([noise, noise], axis=1)#256 #noise = tf.concat([noise, noise], axis=1)#512 #noise = tf.concat([noise, noise], axis=1)#1024 feature = tf.concat([feature, noise], axis=2) point = layers.fully_connected(feature, 256) point = layers.fully_connected(point, 64) point = layers.fully_connected(point, 32) point = layers.fully_connected(point, 16, activation_fn=tf.nn.softsign) point = layers.fully_connected(point, 3, activation_fn=tf.nn.softsign) return point def conditional_generator(inputs): noise, cloud_labels = inputs #with tf.variable_scope('Generator', reuse=tf.AUTO_REUSE): with tf.contrib.framework.arg_scope( [layers.fully_connected, layers.conv2d_transpose], activation_fn=tf.nn.relu, normalizer_fn=layers.batch_norm, weights_regularizer=layers.l2_regularizer(2.5e-5)): net = layers.fully_connected(noise, 256) net = tfgan.features.condition_tensor_from_onehot(net, cloud_labels) net = layers.fully_connected(net, 512) feature = layers.fully_connected(net, 1024) noise2 = tf.random_normal([32, 1024, 128]) cloud = generate_cloud(tf.expand_dims(feature, axis=1), noise2) return cloud ######################################### main ############################################# ######################################### main ############################################# ######################################### main ############################################# ######################################### main ############################################# ######################################### main ############################################# cloud_provider = tf.data.Dataset.from_generator(provide_data, output_types=(tf.float32, tf.float32), \ output_shapes=(tf.TensorShape([32, 1024, 3]), tf.TensorShape([32,40]))) point_clouds, cloud_labels = cloud_provider.make_one_shot_iterator().get_next() iterator = Iterator.from_structure(cloud_provider.output_types, cloud_provider.output_shapes) training_init_op = iterator.make_initializer(cloud_provider) noise = tf.random_normal([FLAGS.batch_size, FLAGS.noise_dims]) #with tf.variable_scope("my_scope", reuse=tf.AUTO_REUSE): # Build the generator and discriminator. gan_model = tfgan.gan_model( generator_fn=conditional_generator, # you define discriminator_fn=conditional_discriminator, # you define real_data=point_clouds, generator_inputs=(noise, cloud_labels)) # Build the GAN loss. gan_loss = tfgan.gan_loss( gan_model, #gradient_penalty_weight=1.0, #mutual_information_penalty_weight=0.0, generator_loss_fn=tfgan_losses.minimax_generator_loss, discriminator_loss_fn=tfgan_losses.minimax_discriminator_loss, add_summaries=True) # Create the train ops, which calculate gradients and apply updates to weights. gen_lr = 1e-5 dis_lr = 1e-4 train_ops = tfgan.gan_train_ops( gan_model, gan_loss, generator_optimizer=tf.train.AdamOptimizer(gen_lr, 0.5), discriminator_optimizer=tf.train.AdamOptimizer(dis_lr, 0.5)) status_message = tf.string_join( ['Starting train step: ', tf.as_string(tf.train.get_or_create_global_step())], name='status_message') demo_hook = tf.train.FinalOpsHook(final_ops=gan_model.generated_data) g_loss_hook = tf.train.FinalOpsHook(final_ops=gan_loss[0]) d_loss_hook = tf.train.FinalOpsHook(final_ops=gan_loss[1]) for i in range(500): step_count = tfgan.gan_train(train_ops, hooks=[tf.train.StopAtStepHook(num_steps=FLAGS.max_number_of_steps), demo_hook], logdir='./log/gan_log/') print(step_count) generated_demos = demo_hook.final_ops_values savefilename = './log/gan_log/demo' + str(i) + '.h5' h5r = h5py.File(savefilename, 'w') h5r.create_dataset('data', data=generated_demos) h5r.close() g_loss = g_loss_hook.final_ops_values d_loss = d_loss_hook.final_ops_values print(str(g_loss) + ' ' + str(d_loss)) #with tf.variable_scope('Generator'): print('Done!') ```
{ "source": "Jiaming1999/ChainConsumer", "score": 3 }
#### File: ChainConsumer/examples/plot_summary.py ```python import numpy as np from chainconsumer import ChainConsumer def get_instance(): np.random.seed(0) c = ChainConsumer() parameters = ["$x$", r"$\Omega_\epsilon$", "$r^2(x_0)$"] for name in ["Ref. model", "Test A", "Test B", "Test C"]: # Add some random data mean = np.random.normal(loc=0, scale=3, size=3) sigma = np.random.uniform(low=1, high=3, size=3) data = np.random.multivariate_normal(mean=mean, cov=np.diag(sigma**2), size=100000) c.add_chain(data, parameters=parameters, name=name) return c ############################################################################### # If we want the full shape of the distributions, well, thats the default # behaviour! c = get_instance() c.configure(bar_shade=True) c.plotter.plot_summary() ############################################################################### # But lets make some changes. Say we don't like the colourful text. And we # want errorbars, not distributions. And some fun truth values. c = get_instance() c.configure(legend_color_text=False) c.configure_truth(ls=":", color="#FB8C00") c.plotter.plot_summary(errorbar=True, truth=[[0], [-1, 1], [-2, 0, 2]]) ############################################################################### # Even better, lets use our reference model as the truth value and not plot # it with the others c = get_instance() c.configure(legend_color_text=False) c.configure_truth(ls="-", color="#555555") c.plotter.plot_summary(errorbar=True, truth="Ref. model", include_truth_chain=False, extra_parameter_spacing=1.5) ```
{ "source": "Jiaming1999/dotty_dict", "score": 2 }
#### File: Jiaming1999/dotty_dict/setup.py ```python import os import re import subprocess from setuptools import find_packages, setup from setuptools.command.develop import develop from setuptools.command.install import install from setuptools.command.test import test __author__ = '<NAME>' __copyright__ = 'Copyright (c) 2018, Pawelzny' with open('README.rst', 'r') as readme_file: readme = readme_file.read() def get_version(*file_paths): """Retrieves the version from project/__init__.py""" filename = os.path.join(os.path.dirname(__file__), *file_paths) version_file = open(filename).read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version string.') class PostDevelopCommand(develop): """Post-installation for development mode.""" def run(self): subprocess.check_call(['pipenv', 'install', '--dev', '--deploy', '--system']) develop.run(self) class TestCommand(test): """Run tests""" def run(self): subprocess.check_call(['pytest']) test.run(self) setup( name='dotty_dict', version=get_version('dotty_dict', '__init__.py'), description="Dictionary wrapper for quick access to deeply nested keys.", long_description=readme, license="MIT license", author="<NAME> @pawelzny", author_email='<EMAIL>', url='https://github.com/pawelzny/dotty_dict', packages=find_packages(exclude=('tests', 'docs', 'bin', 'example')), package_dir={'dotty_dict': 'dotty_dict'}, include_package_data=True, use_scm_version=True, setup_requires=['setuptools_scm'], zip_safe=False, keywords='dot notation dict wrapper helper utils lib', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'License :: OSI Approved :: MIT License', ], cmdclass={ 'develop': PostDevelopCommand, 'test': TestCommand, }, ) ```
{ "source": "Jiaming1999/kool", "score": 3 }
#### File: contrib/auth/group.py ```python from kool.db.models import Model, where, table from .permission import Permission class Group(Model): """Groups are used to cluster similar users. Extends: Model """ def __init__(self, name): super().__init__() self.name = name self.permissions = [] def __str__(self): return '{}'.format(self.name) def __repr__(self): return '{}'.format(self.name) def add_permission(self, perm_id): """Receives a permission id, queries it and if it exists, adds it to list of permissions of a given group :param perm_id: """ permission = table(Permission) if permission.get(where('_id') == str(perm_id)): if not perm_id in self.permissions: self.permissions.append(perm_id) else: raise ValueError('Topic id not found!') self.update() return self.permissions def del_permission(self, perm_id): """Receives a permission id and deletes it from a list of permissions for a given group :param perm_id: """ if perm_id in self.permissions: self.permissions.remove(perm_id) self.update() return self.permissions ``` #### File: kool/db/models.py ```python from .flatfile import FlatFileDB, Query from kool.utils import camel_to_snake, now class Model(object): db = None # database def __init__(self, * args, ** kwargs): """ Model provides save, delete, purge operations to every class that inherits it. """ # Get class name, so as to set the table name cls_name = self.__class__.__name__ table_name = camel_to_snake(cls_name) self._table = Model.db.create_table(name=table_name) self.last_modified = None self.date_created = None self._id = None def save(self, * args, ** kwargs): """ Saves current object to database. It also updates the `last_modified` and `date_created` fields. """ data = {} self.last_modified = '{}'.format(now()) if not self.date_created: self.date_created = '{}'.format(now()) # Get objects dict data = self.props() if data: # Creates a new instance self._id = self._table.insert(data) return self._id def update(self, * args, ** kwargs): """ Update method provides a way of updating the values of an object. """ data = {} self.last_modified = '{}'.format(now()) if not self.date_created: self.date_created = '{}'.format(now()) # Get objects dict data = self.props() # Fetch exising object obj = self._table.get(rid=self._id) if self._id else None if obj and data: # Updates an existing instance ids = self._table.update(data, rids=[self._id]) self._id = ids[0] return self._id def delete(self, cond=None, rids=None, * args): rids = [] rids = ([self._id,] if self._id else []) or rids or list(args) if rids: self._table.remove(cond=cond, rids=rids) else: raise ValueError('Record must be saved to delete') def purge(self, confirm=False): """ Truncates the table. Operation is irreversible. Keyword Arguments: confirm {bool} -- user confirmation (default: {False}) """ if confirm: self._table.purge() else: raise ValueError('Confirm argument has to be set true') def props(self): """Converts object to dictionary""" return dict( (key, value) for (key, value) in self.__dict__.items() if not (key.startswith('_') or key.startswith('__'))) def __getattr__(self, name): """ Forward all unknown attribute calls to the underlying standard table. """ return getattr(self._table, name) # Instantiate database Model.db = FlatFileDB() def where(key): return Query()[key] def table(cls): """Returns a table object given a class""" cls_name = cls.__name__ table_name = camel_to_snake(cls_name) return Model().db.table(table_name) ```
{ "source": "JiamingBai/InteractiveDataScience.github.io", "score": 3 }
#### File: JiamingBai/InteractiveDataScience.github.io/app.py ```python from flask import Flask, render_template, Response, request, redirect, url_for app = Flask(__name__) @app.route("/") def index(): return render_template('prediction.html') @app.route("/forward/", methods=['POST']) def predict(): #Moving forward code forward_message = "Testing..." return render_template('prediction.html', message=forward_message); @app.route('/json') def json(): return render_template('prediction.html') @app.route('/background_process_test') def background_process_test(): print "Hello" return "nothing" ```
{ "source": "JiamingHu121/Shadowrocket-Config", "score": 2 }
#### File: Shadowrocket-Config/src/srconfig.py ```python import base64 import datetime import urllib.request import os class SRConfig: sep = os.sep __DownloadFilePath = "third_party" + sep __GFWListRuleFileName = "gfw.txt" __BlockRuleFileName = "block.txt" __BaseRuleFileName = "baserule.txt" __RankRuleFileName = "rank.txt" __OutputRuleName = "rule.txt" __OutputSimplifyRuleName = "simplifyrule.txt" __OutputRuleWithAdBlockName = "rulewithad.txt" __SimplifyLength = 2000 __GFWListUrl = "https://raw.githubusercontent.com/gfwlist/gfwlist/master/gfwlist.txt" __BlockRulesUrls = ["https://raw.githubusercontent.com/easylist/easylist/master/easylist/easylist_thirdparty.txt", "https://raw.githubusercontent.com/easylist/easylist/master/easylist/easylist_adservers.txt"] __ProxyList = [] __BlockList = [] __SimplifyList = [] def __init__(self): self.__downloadFile(self.__GFWListUrl, self.__DownloadFilePath + self.__GFWListRuleFileName) self.__downloadFiles(self.__BlockRulesUrls, self.__DownloadFilePath + self.__BlockRuleFileName) def getRules(self): baseRules = open(self.__DownloadFilePath + self.__BaseRuleFileName) proxyRules = self.__getProxyRules(self.__DownloadFilePath + self.__GFWListRuleFileName) blockRules = self.__getBlockRules(self.__DownloadFilePath + self.__BlockRuleFileName) simplfyRules = self.__getSimplifyRules(self.__DownloadFilePath + self.__RankRuleFileName) proxyFile = open(self.__OutputRuleName, 'w') proxyWithAdBlockFile = open(self.__OutputRuleWithAdBlockName, 'w') proxySimplifyFile = open(self.__OutputSimplifyRuleName, 'w') proxyFile.write("# Shadowrocket: " + str(datetime.datetime.now()) + "\n") proxyWithAdBlockFile.write("# Shadowrocket: " + str(datetime.datetime.now()) + "\n") proxySimplifyFile.write("# Shadowrocket: " + str(datetime.datetime.now()) + "\n") for line in baseRules: proxyFile.write(line) proxyWithAdBlockFile.write(line) proxySimplifyFile.write(line) if line == "[Rule]\n": proxyFile.write(proxyRules) proxyWithAdBlockFile.write(proxyRules) proxyWithAdBlockFile.write(blockRules) proxySimplifyFile.write(simplfyRules) proxyFile.close() proxyWithAdBlockFile.close() proxySimplifyFile.close() def __downloadFile(self, fileUrl, fileName): response = urllib.request.urlopen(fileUrl) data = response.read().decode('utf-8') oFile = open(fileName, 'w') oFile.write(data) oFile.close() def __downloadFiles(self, fileUrls, fileName): writeData = "" for url in fileUrls: response = urllib.request.urlopen(url) data = response.read().decode("utf-8") writeData += data + "\n" oFile = open(fileName, 'w') oFile.write(writeData) oFile.close() def __getProxyRules(self, fileName): proxyRules = "" base64file = open(fileName) pureRules = base64.b64decode(base64file.read()).decode('utf-8').split("\n") for rule in pureRules: newLine = self.__processProxyRule(rule) if newLine in self.__ProxyList: continue else: self.__ProxyList.append(newLine) if newLine != "": proxyRules += newLine + "\n" return proxyRules def __getSimplifyRules(self, fileName): simplifyRules = "" cnt = 0 f = open(fileName).readlines() for line in f: domain = line.split(" ")[0] rank = line.split(" ")[1] if rank != '-1\n': rule = "DOMAIN-SUFFIX," + domain + ",Proxy" simplifyRules += rule + "\n" cnt = cnt + 1 if cnt > self.__SimplifyLength: return simplifyRules return simplifyRules def __processProxyRule(self, rule): if rule.startswith('!') or rule.startswith('[') or rule.startswith('@') or rule.startswith('/'): return "" elif rule.startswith('.'): rule = rule[1:] elif rule.startswith('||'): rule = rule[2:] elif rule.startswith('|https'): rule = rule[9:] elif rule.startswith('|http://'): rule = rule[8:] if rule.endswith('\n'): rule = rule[:-1] if "/" in rule: rule = rule[:rule.index("/")] if "*" in rule: rule = rule[rule.index("*") + 1:] if rule == "": return "" return "DOMAIN-SUFFIX," + rule + ",Proxy" def __getBlockRules(self, fileName): blockRules = "" orignRules = open(fileName) for rule in orignRules: newLine = self.__processBlockRule(rule) if newLine in self.__BlockList: continue else: self.__BlockList.append(newLine) if newLine != "": blockRules += newLine + "\n" return blockRules def __processBlockRule(self, rule): if rule.startswith('!') or rule.startswith('-'): return "" if "/" in rule: return "" if rule.startswith('||'): rule = rule[2:] if rule.endswith("\n"): rule = rule[:-1] if rule.endswith("^"): rule = rule[:rule.index("^")] if "^" in rule: if "third-party" in rule: rule = rule[:rule.index("^")] else: return "" if "$" in rule: rule = rule[:rule.index("$")] if "/" in rule: return "" return "DOMAIN-SUFFIX," + rule + ",REJECT" if __name__ == "__main__": sConfig = SRConfig() sConfig.getRules() ```
{ "source": "jiamingli9674/Intelligent-Checkout-System", "score": 3 }
#### File: scripts/utility/video_camera.py ```python import cv2 from face_recog.face_id import FaceId from anti_spoofing.anti_spoofing import check_authenticity class VideoCamera(object): def __init__(self): #self.video = cv2.VideoCapture("../data/test_video_spoofing.mp4") self.video = cv2.VideoCapture(0) self.faceid = FaceId() def __del__(self): self.video.release() def check_identity(self): rtvl, frame = self.video.read() is_real, frame_auth = check_authenticity(frame.copy()) if is_real: frame = self.faceid.match_faces(frame.copy()) else: frame = frame_auth ret, jpeg = cv2.imencode('.jpg', frame) return jpeg.tobytes() def encode_face(self): rtvl, frame = self.video.read() status, face_encoding, frame = self.faceid.encode_face(frame) ret, jpeg = cv2.imencode('.jpg', frame) return status, face_encoding, jpeg.tobytes() def read_frame(self): rtvl, frame = self.video.read() ret, jpeg = cv2.imencode('.jpg', frame) return jpeg.tobytes() ``` #### File: Intelligent-Checkout-System/test/face_recognize.py ```python import cv2 #Method for generating dataset to recognize a person def generate_dataset(img, id, img_id): #write the image in a data dir cv2.imwrite("data/user." + str(id)+"."+str(img_id)+".jpg",img) #Method that draws a boundary around the detected feature def draw_boundary(img, classifier, scaleFactor, minNeighbors, color, text): #Covert image to grayscale gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #detect features in gray-scale, return coordinates, width and height of features features = classifier.detectMultiScale(gray_img, scaleFactor, minNeighbors) coords = [] #draw rectangle around the feature and label it. for (x,y,w,h) in features: cv2.rectangle(img, (x,y), (x+w, y+h), color, 2) cv2.putText(img, text, (x, y-4), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 1, cv2.LINE_AA) coords = [x,y,w,h] return coords #Method for detecting the features def detect(img, faceCascade, img_id): color = {"blue":(255,0,0), "red":(0,0,255), "green":(0,255,0), "white":(255,255,255)} coords = draw_boundary(img, faceCascade, 1.1, 10, color['blue'], "Face") if len(coords)==4: #Update region of interest by cropping the image roi_img = img[coords[1]:coords[1]+coords[3],coords[0]:coords[0]+coords[2]] #Assign a unique id to each user. user_id = 1 #img_id for making name of each unique image. generate_dataset(roi_img, user_id, img_id) return img #Load the classifiers faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') #Capture real time video stream. video_capture = cv2.VideoCapture(0) #Initialize the img_id with 0 img_id = 0 while True: if img_id % 50 == 0: print("Collected ", img_id, " images") #Read image from video stream _, img = video_capture.read() #Call the method defined above. img = detect(img, faceCascade, img_id) #Writing processed image in a new window cv2.imshow("face detection", img) img_id += 1 if cv2.waitKey(1) & 0xFF == ord('q'): break #Turn the webcam off video_capture.release() #Destroy the output window cv2.destroyAllWindows() ```
{ "source": "JiaMingLin/caffe", "score": 2 }
#### File: caffe/act-detector-scripts/ACT_datalayer.py ```python import sys import os import random import numpy as np import cv2 from ACT_utils import iou2d from Dataset import GetDataset sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'python')) import caffe distort_params = { 'brightness_prob': 0.5, 'brightness_delta': 32, 'contrast_prob': 0.5, 'contrast_lower': 0.5, 'contrast_upper': 1.5, 'hue_prob': 0.5, 'hue_delta': 18, 'saturation_prob': 0.5, 'saturation_lower': 0.5, 'saturation_upper': 1.5, 'random_order_prob': 0.0, } expand_params = { 'expand_prob': 0.5, 'max_expand_ratio': 4.0, } batch_samplers = [{ 'sampler': {}, 'max_trials': 1, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'min_jaccard_overlap': 0.1, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'min_jaccard_overlap': 0.3,}, 'max_trials': 50, 'max_sample': 1, },{ 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'min_jaccard_overlap': 0.5,}, 'max_trials': 50, 'max_sample': 1, },{ 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'min_jaccard_overlap': 0.7,}, 'max_trials': 50, 'max_sample': 1, },{ 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'min_jaccard_overlap': 0.9,}, 'max_trials': 50, 'max_sample': 1, },{ 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0,}, 'sample_constraint': {'max_jaccard_overlap': 1.0,}, 'max_trials': 50, 'max_sample': 1, },] def random_brightness(imglist, brightness_prob, brightness_delta): if random.random() < brightness_prob: brig = random.uniform(-brightness_delta, brightness_delta) for i in range(len(imglist)): imglist[i] += brig return imglist def random_contrast(imglist, contrast_prob, contrast_lower, contrast_upper): if random.random() < contrast_prob: cont = random.uniform(contrast_lower, contrast_upper) for i in range(len(imglist)): imglist[i] *= cont return imglist def random_saturation(imglist, saturation_prob, saturation_lower, saturation_upper): if random.random() < saturation_prob: satu = random.uniform(saturation_lower, saturation_upper) for i in range(len(imglist)): hsv = cv2.cvtColor(imglist[i], cv2.COLOR_BGR2HSV) hsv[:, :, 1] *= satu imglist[i] = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return imglist def random_hue(imglist, hue_prob, hue_delta): if random.random() < hue_prob: hue = random.uniform(-hue_delta, hue_delta) for i in range(len(imglist)): hsv = cv2.cvtColor(imglist[i], cv2.COLOR_BGR2HSV) hsv[:, :, 0] += hue imglist[i] = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return imglist def apply_distort(imglist, distort_param): out_imglist = imglist if distort_param['random_order_prob'] != 0: raise NotImplementedError if random.random() > 0.5: out_imglist = random_brightness(out_imglist, distort_param['brightness_prob'], distort_param['brightness_delta']) out_imglist = random_contrast(out_imglist, distort_param['contrast_prob'], distort_param['contrast_lower'], distort_param['contrast_upper']) out_imglist = random_saturation(out_imglist, distort_param['saturation_prob'], distort_param['saturation_lower'], distort_param['saturation_upper']) out_imglist = random_hue(out_imglist, distort_param['hue_prob'], distort_param['hue_delta']) else: out_imglist = random_brightness(out_imglist, distort_param['brightness_prob'], distort_param['brightness_delta']) out_imglist = random_saturation(out_imglist, distort_param['saturation_prob'], distort_param['saturation_lower'], distort_param['saturation_upper']) out_imglist = random_hue(out_imglist, distort_param['hue_prob'], distort_param['hue_delta']) out_imglist = random_contrast(out_imglist, distort_param['contrast_prob'], distort_param['contrast_lower'], distort_param['contrast_upper']) return out_imglist def apply_expand(imglist, tubes, expand_param, mean_values=None): # Tubes: dict of label -> list of tubes with tubes being <x1> <y1> <x2> <y2> out_imglist = imglist out_tubes = tubes if random.random() < expand_param['expand_prob']: expand_ratio = random.uniform(1, expand_param['max_expand_ratio']) oh,ow = imglist[0].shape[:2] h = int(oh * expand_ratio) w = int(ow * expand_ratio) out_imglist = [np.zeros((h, w, 3), dtype=np.float32) for i in range(len(imglist))] h_off = int(np.floor(h - oh)) w_off = int(np.floor(w - ow)) if mean_values is not None: for i in range(len(imglist)): out_imglist[i] += np.array(mean_values).reshape(1, 1, 3) for i in range(len(imglist)): out_imglist[i][h_off:h_off+oh, w_off:w_off+ow, :] = imglist[i] # project boxes for ilabel in tubes: for itube in range(len(tubes[ilabel])): out_tubes[ilabel][itube] += np.array([[w_off, h_off, w_off, h_off]], dtype=np.float32) return out_imglist, out_tubes def sample_cuboids(tubes, batch_samplers, imheight, imwidth): sampled_cuboids = [] for batch_sampler in batch_samplers: max_trials = batch_sampler['max_trials'] max_sample = batch_sampler['max_sample'] itrial = 0 isample = 0 sampler = batch_sampler['sampler'] min_scale = sampler['min_scale'] if 'min_scale' in sampler else 1 max_scale = sampler['max_scale'] if 'max_scale' in sampler else 1 min_aspect = sampler['min_aspect_ratio'] if 'min_aspect_ratio' in sampler else 1 max_aspect = sampler['max_aspect_ratio'] if 'max_aspect_ratio' in sampler else 1 while itrial < max_trials and isample < max_sample: # sample a normalized box scale = random.uniform(min_scale, max_scale) aspect = random.uniform(min_aspect, max_aspect) width = scale * np.sqrt(aspect) height = scale / np.sqrt(aspect) x = random.uniform(0, 1 - width) y = random.uniform(0, 1 - height) # rescale the box sampled_cuboid = np.array([x*imwidth, y*imheight, (x+width)*imwidth, (y+height)*imheight], dtype=np.float32) # check constraint itrial += 1 if not 'sample_constraint' in batch_sampler: sampled_cuboids.append(sampled_cuboid) isample += 1 continue constraints = batch_sampler['sample_constraint'] ious = np.array([np.mean(iou2d(t, sampled_cuboid)) for t in sum(tubes.values(),[])]) if ious.size == 0: # empty gt isample += 1 continue if 'min_jaccard_overlap' in constraints and ious.max() >= constraints['min_jaccard_overlap']: sampled_cuboids.append( sampled_cuboid ) isample += 1 continue if 'max_jaccard_overlap' in constraints and ious.min() >= constraints['max_jaccard_overlap']: sampled_cuboids.append( sampled_cuboid ) isample += 1 continue return sampled_cuboids def crop_image(imglist, tubes, batch_samplers): candidate_cuboids = sample_cuboids(tubes, batch_samplers, imglist[0].shape[0], imglist[0].shape[1]) if not candidate_cuboids: return imglist, tubes crop_cuboid = random.choice(candidate_cuboids) x1, y1, x2, y2 = map(int, crop_cuboid.tolist()) for i in range(len(imglist)): imglist[i] = imglist[i][y1:y2+1, x1:x2+1, :] out_tubes = {} wi = x2 - x1 hi = y2 - y1 for ilabel in tubes: for itube in range(len(tubes[ilabel])): t = tubes[ilabel][itube] t -= np.array([[x1, y1, x1, y1]], dtype=np.float32) # check if valid cx = 0.5 * (t[:, 0] + t[:, 2]) cy = 0.5 * (t[:, 1] + t[:, 3]) if np.any(cx < 0) or np.any(cy < 0) or np.any(cx > wi) or np.any(cy > hi): continue if not ilabel in out_tubes: out_tubes[ilabel] = [] # clip box t[:, 0] = np.maximum(0, t[:, 0]) t[:, 1] = np.maximum(0, t[:, 1]) t[:, 2] = np.minimum(wi, t[:, 2]) t[:, 3] = np.minimum(hi, t[:, 3]) out_tubes[ilabel].append(t) return imglist, out_tubes # Assisting function for finding a good/bad tubelet def tubelet_in_tube(tube, i, K): # True if all frames from i to (i + K - 1) are inside tube # it's sufficient to just check the first and last frame. return (i in tube[: ,0] and i + K - 1 in tube[:, 0]) def tubelet_out_tube(tube, i, K): # True if all frames between i and (i + K - 1) are outside of tube return all([not j in tube[:, 0] for j in range(i, i + K)]) def tubelet_in_out_tubes(tube_list, i, K): # Given a list of tubes: tube_list, return True if # all frames from i to (i + K - 1) are either inside (tubelet_in_tube) # or outside (tubelet_out_tube) the tubes. return all([tubelet_in_tube(tube, i, K) or tubelet_out_tube(tube, i, K) for tube in tube_list]) def tubelet_has_gt(tube_list, i, K): # Given a list of tubes: tube_list, return True if # the tubelet starting spanning from [i to (i + K - 1)] # is inside (tubelet_in_tube) at least a tube in tube_list. return any([tubelet_in_tube(tube, i, K) for tube in tube_list]) class MultiframesLayer(caffe.Layer): def shuffle(self): # shuffle the list of possible starting frames self._order = list(range(self._nseqs)) if self._shuffle: # set seed like that to have exactly the same shuffle even if we restart from a caffemodel random.seed(self._rand_seed + self._nshuffles) random.shuffle(self._order) self._nshuffles += 1 self._next = 0 def setup(self, bottom, top): layer_params = eval(self.param_str) assert 'dataset_name' in layer_params dataset_name = layer_params['dataset_name'] self._dataset = GetDataset(dataset_name) assert 'K' in layer_params self._K = layer_params['K'] assert self._K > 0 # parse optional argument default_values = { 'rand_seed': 0, 'shuffle': True, 'batch_size': 32 // self._K, 'mean_values': [104, 117, 123], 'resize_height': 300, 'resize_width': 300, 'restart_iter': 0, 'flow': False, 'ninput': 1, } for k in default_values.keys(): if k in layer_params: lay_param = layer_params[k] else: lay_param = default_values[k] setattr(self, '_' + k, lay_param) if not self._flow and self._ninput > 1: raise NotImplementedError("ACT-detector: Not implemented: ninput > 1 with rgb frames") d = self._dataset K = self._K # build index (v,i) of valid starting chunk self._indices = [] for v in d.train_vlist(): vtubes = sum(d.gttubes(v).values(), []) self._indices += [(v,i) for i in range(1, d.nframes(v)+2-K) if tubelet_in_out_tubes(vtubes,i,K) and tubelet_has_gt(vtubes,i,K)] # self._indices += [(v,i) for i in range(1, d.nframes(v)+2-K) if all([ (i in t[:,0] and i+K-1 in t[:,0]) or all([not j in t[:,0] for j in xrange(i,i+K)]) for t in vtubes]) and any([ (i in t[:,0] and i+K-1 in t[:,0]) for t in vtubes]) ] self._nseqs = len(self._indices) self._iter = 0 self._nshuffles = 0 self.shuffle() if self._restart_iter > 0: assert self._next == 0 self._iter = self._restart_iter iimages = self._restart_iter * self._batch_size while iimages > self._nseqs: self.shuffle() iimages -= self._nseqs self._next = iimages for i in range(K): top[i].reshape(self._batch_size, 3 * self._ninput, self._resize_height, self._resize_width) top[K].reshape(1, 1, 1, 8) def prepare_blob(self): d = self._dataset K = self._K # Have the same data augmentation, even if restarted random.seed(self._rand_seed + self._iter) data = [np.empty((self._batch_size, 3 * self._ninput, self._resize_height, self._resize_width), dtype=np.float32) for ii in range(K)] alltubes = [] for i in range(self._batch_size): if self._next == self._nseqs: self.shuffle() v,frame = self._indices[self._order[self._next]] # flipping with probability 0.5 do_mirror = random.getrandbits(1) == 1 # load images and tubes and apply mirror images = [] if self._flow: images = [cv2.imread(d.flowfile(v, min(frame+ii, d.nframes(v)))).astype(np.float32) for ii in range(K + self._ninput - 1)] else: images = [cv2.imread(d.imfile(v, frame+ii)).astype(np.float32) for ii in range(K)] if do_mirror: images = [im[:, ::-1, :] for im in images] # reverse the x component of the flow if self._flow: for ii in range(K + self._ninput - 1): images[ii][:, :, 2] = 255 - images[ii][:, :, 2] h, w = d.resolution(v) TT = {} for ilabel, tubes in d.gttubes(v).items(): for t in tubes: if frame not in t[:, 0]: continue assert frame + K - 1 in t[:, 0] if do_mirror: # copy otherwise it will change the gt of the dataset also t = t.copy() xmin = w - t[:, 3] t[:, 3] = w - t[:, 1] t[:, 1] = xmin boxes = t[(t[:, 0] >= frame) * (t[:, 0] < frame + K) ,1:5] assert boxes.shape[0] == K if ilabel not in TT: TT[ilabel] = [] TT[ilabel].append( boxes) # apply data augmentation images = apply_distort(images, distort_params) images, TT = apply_expand(images, TT, expand_params, mean_values=self._mean_values) images, TT = crop_image(images, TT, batch_samplers) hi,wi = images[0].shape[:2] # resize images = [cv2.resize(im, (self._resize_width, self._resize_height), interpolation=cv2.INTER_LINEAR) for im in images] for ii in range(K): for iii in range(self._ninput): data[ii][i, 3*iii:3*iii + 3, :, :] = np.transpose( images[ii + iii], (2, 0, 1)) idxtube = 0 for ilabel in TT: for itube in range(len(TT[ilabel])): for b in TT[ilabel][itube]: alltubes.append([i, ilabel+1, idxtube, b[0]/wi, b[1]/hi, b[2]/wi, b[3]/hi, 0]) idxtube += 1 self._next += 1 self._iter += 1 for ii in range(K): data[ii] -= np.tile(np.array(self._mean_values, dtype=np.float32)[None, :, None, None], (1, self._ninput, 1, 1)) label = np.array(alltubes, dtype=np.float32) # label shape 1x1x1x8; if no boxes, then -1 if label.size == 0: label = -np.ones((1, 1, 1, 8), dtype=np.float32) else: label = label.reshape(1, 1, -1, 8) return data + [label] def forward(self, bottom, top): blobs = self.prepare_blob() for ii in range(len(top) - 1): top[ii].data[...] = blobs[ii].astype(np.float32, copy=False) top[len(top) - 1].reshape(*(blobs[len(top) - 1].shape)) top[len(top) - 1].data[...] = blobs[len(top) - 1].astype(np.float32, copy=False) def backward(self, bottom, propagate_down, top): pass def reshape(self, bottom, top): # done in the forward pass ``` #### File: caffe/act-detector-scripts/ACT.py ```python import sys import os import pickle import cv2 import numpy as np CAFFE_PYTHON_PATH = os.path.join(os.path.dirname(__file__), "../python") sys.path.insert(0, CAFFE_PYTHON_PATH) import caffe from Dataset import GetDataset from ACT_utils import * from copy import deepcopy K = 6 IMGSIZE = 300 MEAN = np.array([[[104, 117, 123]]], dtype=np.float32) NFLOWS = 5 def extract_tubelets(dname, gpu=-1, redo=False): """Extract the tubelets for a given dataset args: - dname: dataset name (example: 'JHMDB') - gpu (default -1): use gpu given in argument, or use cpu if -1 - redo: wheter or not to recompute already computed files save a pickle file for each frame the file contains a tuple (dets, dets_all) - dets is a numpy array with 2+4*K columns containing the tubelets starting at this frame after per-class nms at 0.45 and thresholding the scores at 0.01 the columns are <label> <score> and then <x1> <y1> <x2> <y2> for each of the frame in the tubelet - dets_all contains the tubelets obtained after a global nms at 0.7 and thresholding the scores at 0.01 it is a numpy arrray with 4*K + L + 1 containing the coordinates of the tubelets and the scores for all labels note: this version is inefficient: it is better to estimate the per-frame features once """ d = GetDataset(dname) if gpu >= 0: caffe.set_mode_gpu() caffe.set_device(gpu) model_dir = os.path.join(os.path.dirname(__file__), '../models/ACT-detector/', dname) output_dir = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) # load the RGB network rgb_proto = os.path.join(model_dir, "deploy_RGB.prototxt") rgb_model = os.path.join(model_dir, "RGB.caffemodel") net_rgb = caffe.Net(rgb_proto, caffe.TEST, weights=rgb_model) # load the FLOW5 network flo_proto = os.path.join(model_dir, "deploy_FLOW5.prototxt") flo_model = os.path.join(model_dir, "FLOW5.caffemodel") net_flo = caffe.Net(flo_proto, caffe.TEST, weights=flo_model) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format( iv+1, len(vlist), v)) h, w = d.resolution(v) # network output is normalized between 0,1 ; so we will multiply it by the following array resolution_array = np.array([w,h,w,h]*K, dtype=np.float32) # now process each frame for i in range(1, 1 + d.nframes(v) - K + 1): outfile = os.path.join(output_dir, d.frame_format(v,i) + ".pkl") # skip if already computed if os.path.isfile(outfile) and not redo: continue # read the frames for the forward kwargs_rgb = {} kwargs_flo = {} for j in range(K): im = cv2.imread(d.imfile(v, i + j)) if im is None: print("Image {:s} does not exist".format(d.imfile(v, i+j))) return imscale = cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) kwargs_rgb['data_stream' + str(j)] = np.transpose(imscale-MEAN, (2, 0, 1))[None, :, :, :] imf = [cv2.imread(d.flowfile(v, min(d.nframes(v), i + j + iflow))) for iflow in range(NFLOWS)] if np.any(imf) is None: print("Flow image {:s} does not exist".format(d.flowfile(v, i+j))) return imscalef = [cv2.resize(im, (IMGSIZE, IMGSIZE), interpolation=cv2.INTER_LINEAR) for im in imf] timscale = [np.transpose(im-MEAN, (2, 0, 1))[None, :, :, :] for im in imscalef] kwargs_flo['data_stream' + str(j) + 'flow'] = np.concatenate(timscale, axis=1) # compute rgb and flow scores # two forward passes: one for the rgb and one for the flow net_rgb.forward(end="mbox_conf_flatten", **kwargs_rgb) # forward of rgb with confidence and regression net_flo.forward(end="mbox_conf_flatten", **kwargs_flo) # forward of flow5 with confidence and regression # compute late fusion of rgb and flow scores (keep regression from rgb) # use net_rgb for standard detections, net_flo for having all boxes scores = 0.5 * (net_rgb.blobs['mbox_conf_flatten'].data + net_flo.blobs['mbox_conf_flatten'].data) net_rgb.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_conf_flatten'].data[...] = scores net_flo.blobs['mbox_loc'].data[...] = net_rgb.blobs['mbox_loc'].data # two forward passes, only for the last layer # dets is the detections after per-class NMS and thresholding (stardard) # dets_all contains all the scores and regressions for all tubelets dets = net_rgb.forward(start='detection_out')['detection_out'][0, 0, :, 1:] dets_all = net_flo.forward(start='detection_out_full')['detection_out_full'][0, 0, :, 1:] # parse detections with per-class NMS if dets.shape[0] == 1 and np.all(dets == -1): dets = np.empty((0, dets.shape[1]), dtype=np.float32) dets[:, 2:] *= resolution_array # network output was normalized in [0..1] dets[:, 0] -= 1 # label 0 was background, come back to label in [0..nlabels-1] dets[:, 2::2] = np.maximum(0, np.minimum(w, dets[:, 2::2])) dets[:, 3::2] = np.maximum(0, np.minimum(h, dets[:, 3::2])) # parse detections with global NMS at 0.7 (top 300) # coordinates were normalized in [0..1] dets_all[:, 0:4*K] *= resolution_array dets_all[:, 0:4*K:2] = np.maximum(0, np.minimum(w, dets_all[:, 0:4*K:2])) dets_all[:, 1:4*K:2] = np.maximum(0, np.minimum(h, dets_all[:, 1:4*K:2])) idx = nms_tubelets(np.concatenate((dets_all[:, :4*K], np.max(dets_all[:, 4*K+1:], axis=1)[:, None]), axis=1), 0.7, 300) dets_all = dets_all[idx, :] # save file if not os.path.isdir(os.path.dirname(outfile)): os.system('mkdir -p ' + os.path.dirname(outfile)) with open(outfile, 'wb') as fid: pickle.dump((dets, dets_all), fid) def load_frame_detections(d, vlist, dirname, nms): if isinstance(d, str): d = GetDataset(d) alldets = [] # list of numpy array with <video_index> <frame_index> <ilabel> <score> <x1> <y1> <x2> <y2> for iv, v in enumerate(vlist): h,w = d.resolution(v) # aggregate the results for each frame vdets = {i: np.empty((0,6), dtype=np.float32) for i in range(1, 1 + d.nframes(v))} # x1, y1, x2, y2, score, ilabel # load results for each starting frame for i in range(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v,i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets "+resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) if dets.size == 0: continue for k in range(K): vdets[i+k] = np.concatenate( (vdets[i+k],dets[:,np.array([2+4*k,3+4*k,4+4*k,5+4*k,1,0])] ), axis=0) # Perform NMS in each frame for i in vdets: idx = np.empty((0,), dtype=np.int32) for ilabel in range(d.nlabels): a = np.where(vdets[i][:,5] == ilabel)[0] if a.size == 0: continue idx = np.concatenate((idx, a[nms2d(vdets[i][vdets[i][:, 5] == ilabel, :5], nms)]), axis=0) if idx.size == 0: continue alldets.append(np.concatenate((iv * np.ones((idx.size, 1), dtype=np.float32), i * np.ones((idx.size, 1), dtype=np.float32), vdets[i][idx, :][:, np.array([5, 4, 0, 1, 2, 3], dtype=np.int32)]), axis=1)) return np.concatenate(alldets, axis=0) def frameAP(dname, th=0.5, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameAP{:g}.pkl".format(th)) if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: res = pickle.load(fid) else: vlist = d.test_vlist() # load per-frame detections alldets = load_frame_detections(d, vlist, dirname, 0.3) res = {} # compute AP for each class for ilabel,label in enumerate(d.labels): # detections of this class detections = alldets[alldets[:, 2] == ilabel, :] # load ground-truth of this class gt = {} for iv, v in enumerate(vlist): tubes = d.gttubes(v) if not ilabel in tubes: continue for tube in tubes[ilabel]: for i in range(tube.shape[0]): k = (iv, int(tube[i, 0])) if not k in gt: gt[k] = [] gt[k].append(tube[i, 1:5].tolist()) for k in gt: gt[k] = np.array( gt[k] ) # pr will be an array containing precision-recall values pr = np.empty((detections.shape[0] + 1, 2), dtype=np.float32)# precision,recall pr[0, 0] = 1.0 pr[0, 1] = 0.0 fn = sum([g.shape[0] for g in gt.values()]) # false negatives fp = 0 # false positives tp = 0 # true positives for i, j in enumerate(np.argsort(-detections[:,3])): k = (int(detections[j,0]), int(detections[j,1])) box = detections[j, 4:8] ispositive = False if k in gt: ious = iou2d(gt[k], box) amax = np.argmax(ious) if ious[amax] >= th: ispositive = True gt[k] = np.delete(gt[k], amax, 0) if gt[k].size == 0: del gt[k] if ispositive: tp += 1 fn -= 1 else: fp += 1 pr[i+1, 0] = float(tp) / float(tp + fp) pr[i+1, 1] = float(tp) / float(tp + fn) res[label] = pr # save results with open(eval_file, 'wb') as fid: pickle.dump(res, fid) # display results ap = 100*np.array([pr_to_ap(res[label]) for label in d.labels]) print("frameAP") for il, _ in enumerate(d.labels): print("{:20s} {:8.2f}".format('', ap[il])) print("{:20s} {:8.2f}".format("mAP", np.mean(ap))) print("") def frameAP_error(dname, th=0.5, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameAP{:g}ErrorAnalysis.pkl".format(th)) if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: res = pickle.load(fid) else: vlist = d.test_vlist() # load per-frame detections alldets = load_frame_detections(d, vlist, dirname, 0.3) res = {} # compute AP for each class for ilabel,label in enumerate(d.labels): # detections of this class detections = alldets[alldets[:, 2] == ilabel, :] gt = {} othergt = {} labellist = {} for iv, v in enumerate(vlist): tubes = d.gttubes(v) labellist[v] = tubes.keys() for il in tubes: for tube in tubes[il]: for i in range(tube.shape[0]): k = (iv, int(tube[i, 0])) if il == ilabel: if k not in gt: gt[k] = [] gt[k].append(tube[i, 1:5].tolist()) else: if k not in othergt: othergt[k] = [] othergt[k].append(tube[i, 1:5].tolist()) for k in gt: gt[k] = np.array(gt[k]) for k in othergt: othergt[k] = np.array(othergt[k]) dupgt = deepcopy(gt) # pr will be an array containing precision-recall values and 4 types of errors: # localization, classification, timing, others pr = np.empty((detections.shape[0] + 1, 6), dtype=np.float32)# precision, recall pr[0, 0] = 1.0 pr[0, 1:] = 0.0 fn = sum([g.shape[0] for g in gt.values()]) # false negatives fp = 0 # false positives tp = 0 # true positives EL = 0 # localization errors EC = 0 # classification error: overlap >=0.5 with an another object EO = 0 # other errors ET = 0 # timing error: the video contains the action but not at this frame for i, j in enumerate(np.argsort(-detections[:,3])): k = (int(detections[j, 0]), int(detections[j,1])) box = detections[j, 4:8] ispositive = False if k in dupgt: if k in gt: ious = iou2d(gt[k], box) amax = np.argmax(ious) if k in gt and ious[amax] >= th: ispositive = True gt[k] = np.delete(gt[k], amax, 0) if gt[k].size == 0: del gt[k] else: EL += 1 elif k in othergt: ious = iou2d(othergt[k], box) if np.max(ious) >= th: EC += 1 else: EO += 1 elif ilabel in labellist[k[0]]: ET += 1 else: EO += 1 if ispositive: tp += 1 fn -= 1 else: fp += 1 pr[i+1, 0] = float(tp)/float(tp+fp) pr[i+1, 1] = float(tp)/float(tp+fn) pr[i+1, 2] = float(EL)/float(tp+fp) pr[i+1, 3] = float(EC)/float(tp+fp) pr[i+1, 4] = float(ET)/float(tp+fp) pr[i+1, 5] = float(EO)/float(tp+fp) res[label] = pr # save results with open(eval_file, 'wb') as fid: pickle.dump(res, fid) # display results AP = 100*np.array([pr_to_ap(res[label][:,[0, 1]]) for label in d.labels]) othersap = [100*np.array([pr_to_ap(res[label][:,[j, 1]]) for label in d.labels]) for j in range(2, 6)] EL = othersap[0] EC = othersap[1] ET = othersap[2] EO = othersap[3] EM = 100 - 100*np.array([res[label][-1, 1] for label in d.labels]) # missed detections = 1 - recall LIST = [AP, EL, EC, ET, EO, EM] print("Error Analysis") print("") print("{:20s} {:8s} {:8s} {:8s} {:8s} {:8s} {:8s}".format('label', ' AP ', ' Loc. ', ' Cls. ', ' Time ', ' Other ', ' missed ')) print("") for il, label in enumerate(d.labels): print("{:20s} ".format(label) + " ".join(["{:8.2f}".format(L[il]) for L in LIST])) print("") print("{:20s} ".format("mean") + " ".join(["{:8.2f}".format(np.mean(L)) for L in LIST])) print("") def frameMABO(dname, redo=False): d = GetDataset(dname) dirname = os.path.join( os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameMABO.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: BO = pickle.load(fid) else: vlist = d.test_vlist() BO = {l: [] for l in d.labels} # best overlap for v in vlist: gt = d.gttubes(v) h, w = d.resolution(v) # load per-frame detections vdets = {i: np.empty((0,4), dtype=np.float32) for i in range(1, 1+d.nframes(v))} # load results for each chunk for i in range(1, 1 + d.nframes(v) - K + 1): resname = os.path.join(dirname, d.frame_format(v,i) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: dets, _ = pickle.load(fid) for k in range(K): vdets[i+k] = np.concatenate((vdets[i + k], dets[:, 2+4*k:6+4*k]), axis=0) # for each frame for i in range(1, 1 + d.nframes(v)): for ilabel in gt: label = d.labels[ilabel] for t in gt[ilabel]: # the gt tube does not cover frame i if not i in t[:,0]: continue gtbox = t[t[:,0] == i, 1:5] # box of gt tube at frame i if vdets[i].size == 0: # we missed it BO[label].append(0) continue ious = iou2d(vdets[i], gtbox) BO[label].append( np.max(ious) ) # save file with open(eval_file, 'wb') as fid: pickle.dump( BO, fid) # print MABO results ABO = {la: 100 * np.mean(np.array(BO[la])) for la in d.labels} # average best overlap for la in d.labels: print("{:20s} {:6.2f}".format(la, ABO[la])) print("{:20s} {:6.2f}".format("MABO", np.mean(np.array(ABO.values())))) def frameCLASSIF(dname, redo=False): d = GetDataset(dname) dirname = os.path.join(os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "frameCLASSIF.pkl") if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: CLASSIF = pickle.load(fid) else: vlist = d.test_vlist() CORRECT = [0 for ilabel in range(d.nlabels)] TOTAL = [0 for ilabel in range(d.nlabels)] for v in vlist: nframes = d.nframes(v) # load all tubelets VDets = {} for startframe in range(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) # iterate over ground-truth tubes = d.gttubes(v) for ilabel in tubes: for g in tubes[ilabel]: for i in range(g.shape[0]): frame = int(g[i, 0]) # just in case a tube is longer than the video if frame > nframes: continue gtbox = g[i, 1:5] scores = np.zeros((d.nlabels,), dtype=np.float32) # average the score over the 6 frames for sf in range(max(1, frame - K + 1), min(nframes - K + 1, frame) + 1): overlaps = iou2d(VDets[sf][:, 4*(frame-sf):4*(frame-sf)+4], gtbox) scores += np.sum(VDets[sf][overlaps >= 0.7, 4*K + 1:],axis=0) # check classif if np.argmax(scores) == ilabel: CORRECT[ilabel] += 1 TOTAL[ilabel] += 1 CLASSIF = [float(CORRECT[ilabel]) / float(TOTAL[ilabel]) for ilabel in range(d.nlabels)] with open(eval_file, 'wb') as fid: pickle.dump(CLASSIF, fid) # print classif results for il, la in enumerate(d.labels): print("{:20s} {:6.2f}".format(la, 100*CLASSIF[il])) print("{:20s} {:6.2f}".format("CLASSIF", 100*np.mean(np.array(CLASSIF)))) def BuildTubes(dname, redo=False): d = GetDataset(dname) dirname = os.path.join( os.path.dirname(__file__), '../results/ACT-detector/', dname) vlist = d.test_vlist() for iv, v in enumerate(vlist): print("Processing video {:d}/{:d}: {:s}".format(iv + 1, len(vlist), v)) outfile = os.path.join(dirname, v + "_tubes.pkl") if os.path.isfile(outfile) and not redo: continue RES = {} nframes = d.nframes(v) # load detected tubelets VDets = {} for startframe in range(1, nframes + 2 - K): resname = os.path.join(dirname, d.frame_format(v, startframe) + '.pkl') if not os.path.isfile(resname): print("ERROR: Missing extracted tubelets " + resname) sys.exit() with open(resname, 'rb') as fid: _, VDets[startframe] = pickle.load(fid) for ilabel in range(d.nlabels): FINISHED_TUBES = [] CURRENT_TUBES = [] # tubes is a list of tuple (frame, lstubelets) def tubescore(tt): return np.mean(np.array([tt[i][1][-1] for i in range(len(tt))])) for frame in range(1, d.nframes(v) + 2 - K): # load boxes of the new frame and do nms while keeping Nkeep highest scored ltubelets = VDets[frame][:,range(4*K) + [4*K + 1 + ilabel]] # Nx(4K+1) with (x1 y1 x2 y2)*K ilabel-score idx = nms_tubelets(ltubelets, 0.3, top_k=10) ltubelets = ltubelets[idx,:] # just start new tubes if frame == 1: for i in range(ltubelets.shape[0]): CURRENT_TUBES.append( [(1,ltubelets[i,:])] ) continue # sort current tubes according to average score avgscore = [tubescore(t) for t in CURRENT_TUBES ] argsort = np.argsort(-np.array(avgscore)) CURRENT_TUBES = [CURRENT_TUBES[i] for i in argsort] # loop over tubes finished = [] for it, t in enumerate(CURRENT_TUBES): # compute ious between the last box of t and ltubelets last_frame, last_tubelet = t[-1] ious = [] offset = frame - last_frame if offset < K: nov = K - offset ious = sum([iou2d(ltubelets[:, 4*iov:4*iov+4], last_tubelet[4*(iov+offset):4*(iov+offset+1)]) for iov in range(nov)])/float(nov) else: ious = iou2d(ltubelets[:, :4], last_tubelet[4*K-4:4*K]) valid = np.where(ious >= 0.2)[0] if valid.size>0: # take the one with maximum score idx = valid[ np.argmax(ltubelets[valid, -1])] CURRENT_TUBES[it].append((frame, ltubelets[idx,:])) ltubelets = np.delete(ltubelets, idx, axis=0) else: # skip if offset>=5: finished.append(it) # finished tubes that are done for it in finished[::-1]: # process in reverse order to delete them with the right index FINISHED_TUBES.append( CURRENT_TUBES[it][:]) del CURRENT_TUBES[it] # start new tubes for i in range(ltubelets.shape[0]): CURRENT_TUBES.append([(frame,ltubelets[i,:])]) # all tubes are not finished FINISHED_TUBES += CURRENT_TUBES # build real tubes output = [] for t in FINISHED_TUBES: score = tubescore(t) # just start new tubes if score< 0.01: continue beginframe = t[0][0] endframe = t[-1][0]+K-1 length = endframe+1-beginframe # delete tubes with short duraton if length < 15: continue # build final tubes by average the tubelets out = np.zeros((length, 6), dtype=np.float32) out[:, 0] = np.arange(beginframe,endframe+1) n_per_frame = np.zeros((length, 1), dtype=np.int32) for i in range(len(t)): frame, box = t[i] for k in range(K): out[frame-beginframe+k, 1:5] += box[4*k:4*k+4] out[frame-beginframe+k, -1] += box[-1] n_per_frame[frame-beginframe+k ,0] += 1 out[:,1:] /= n_per_frame output.append((out, score)) RES[ilabel] = output with open(outfile, 'wb') as fid: pickle.dump(RES, fid) def videoAP(dname, th=0.5, redo=False): d = GetDataset(dname) dirname = os.path.join( os.path.dirname(__file__), '../results/ACT-detector/', dname) eval_file = os.path.join(dirname, "videoAP{:g}.pkl".format(th)) if os.path.isfile(eval_file) and not redo: with open(eval_file, 'rb') as fid: res = pickle.load(fid) else: vlist = d.test_vlist() # load detections # alldets = for each label in 1..nlabels, list of tuple (v,score,tube as Kx5 array) alldets = {ilabel: [] for ilabel in range(d.nlabels)} for v in vlist: tubename = os.path.join(dirname, v + '_tubes.pkl') if not os.path.isfile(tubename): print("ERROR: Missing extracted tubes " + tubename) sys.exit() with open(tubename, 'rb') as fid: tubes = pickle.load(fid) for ilabel in range(d.nlabels): ltubes = tubes[ilabel] idx = nms3dt(ltubes, 0.3) alldets[ilabel] += [(v,ltubes[i][1], ltubes[i][0]) for i in idx] # compute AP for each class res = {} for ilabel in range(d.nlabels): detections = alldets[ilabel] # load ground-truth gt = {} for v in vlist: tubes = d.gttubes(v) if not ilabel in tubes: continue gt[v] = tubes[ilabel] if len(gt[v])==0: del gt[v] # precision,recall pr = np.empty((len(detections) + 1, 2), dtype=np.float32) pr[0,0] = 1.0 pr[0,1] = 0.0 fn = sum([ len(g) for g in gt.values()]) # false negatives fp = 0 # false positives tp = 0 # true positives for i, j in enumerate( np.argsort(-np.array([dd[1] for dd in detections]))): v, score, tube = detections[j] ispositive = False if v in gt: ious = [iou3dt(g, tube) for g in gt[v]] amax = np.argmax(ious) if ious[amax] >= th: ispositive = True del gt[v][amax] if len(gt[v]) == 0: del gt[v] if ispositive: tp += 1 fn -= 1 else: fp += 1 pr[i+1,0] = float(tp) / float(tp + fp) pr[i+1,1] = float(tp) / float(tp + fn) res[d.labels[ilabel]] = pr # save results with open(eval_file, 'wb') as fid: pickle.dump(res, fid) # display results ap = 100 * np.array([pr_to_ap(res[label]) for label in d.labels]) print("frameAP") for il, _ in enumerate(d.labels): print("{:20s} {:8.2f}".format('', ap[il])) print("{:20s} {:8.2f}".format("mAP", np.mean(ap))) print("") if __name__=="__main__": exec(sys.argv[1]) ```
{ "source": "JiaMingLin/DesignSpaceExplore", "score": 2 }
#### File: DesignSpaceExplore/workloads/resnet18.py ```python from .common import ops def network(res, num_class = 101): nix = res["nix"] niy = res["niy"] network_template = { "conv1": {"nix": nix, "niy": niy, "nif": 3, "nof": 64, "stride":2, "kernel": 7, "type": "conv"}, ############################# block 1 ############################# "conv2_1": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"},#1 "conv2_2": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"},#1 "conv3_1": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"},#1 "conv3_2": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"},#1 "conv3_3": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 128, "kernel": 3, "stride": 2, "type": "conv"},#1 ############################# block 2 ############################# "conv4_1": {"nix": nix/16, "niy": niy/16, "nif": 128, "nof": 128, "kernel": 3, "type": "conv"},#1 "scale_conv_1": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 128, "kernel": 1, "stride": 2, "type": "conv"},#1 "conv5_1": {"nix": nix/16, "niy": niy/16, "nif": 128, "nof": 128, "kernel": 3, "type": "conv"},#1 "conv5_2": {"nix": nix/16, "niy": niy/16, "nif": 128, "nof": 128, "kernel": 3, "type": "conv"},#1 "conv5_3": {"nix": nix/16, "niy": niy/16, "nif": 128, "nof": 256, "kernel": 3, "stride": 2, "type": "conv"},#1 ############################# block 3 ############################# "conv6_1": {"nix": nix/8, "niy": niy/8, "nif": 256, "nof": 256, "kernel": 3, "type": "conv"},#1 "conv6_2": {"nix": nix/8, "niy": niy/8, "nif": 256, "nof": 256, "kernel": 3, "type": "conv"},#1 "conv7_1": {"nix": nix/8, "niy": niy/8, "nif": 256, "nof": 256, "kernel": 3, "type": "conv"},#1 "conv7_2": {"nix": nix/8, "niy": niy/8, "nif": 256, "nof": 512, "kernel": 3, "stride": 2, "type": "conv"},#1 ############################# block 4 ############################# "conv8_1": {"nix": nix/16, "niy": niy/16, "nif": 512, "nof": 512, "kernel": 3, "type": "conv"},#1 "conv8_2": {"nix": nix/16, "niy": niy/16, "nif": 512, "nof": 512, "kernel": 3, "type": "conv"},#1 "conv9_1": {"nix": nix/16, "niy": niy/16, "nif": 512, "nof": 512, "kernel": 3, "type": "conv"},#1 "conv9_2": {"nix": nix/16, "niy": niy/16, "nif": 512, "nof": 512, "kernel": 3, "stride": 2, "type": "conv"},#1 "fc1": {"nix": 1, "niy": 1, "nif": int(niy/32)*int(niy/32)*512, "nof": num_class, "kernel": 1, "type":"fc"}, #13 } operations = ops(network_template) print("ResNet-18 OPs = ", operations) return network_template ``` #### File: DesignSpaceExplore/workloads/simple_net.py ```python def network(res, num_class = 101): nix = res["nix"] niy = res["niy"] network_template = { "conv1_1": {"nix": nix, "niy": niy, "nif": 3, "nof": 32, "kernel": 3, "type": "conv"}, #0 "conv1_2": {"nix": nix/2, "niy": niy/2, "nif": 32, "nof": 64, "kernel": 3, "type": "conv"},#1 "conv2_1": {"nix": nix/4, "niy": niy/4, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"}, #2 "conv2_2": {"nix": nix/8, "niy": niy/8, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"}, #3 "conv3_1": {"nix": nix/16, "niy": niy/16, "nif": 64, "nof": 64, "kernel": 3, "type": "conv"}, #4 # "fc1": {"nix": 1, "niy": 1, "nif": int(niy/32)*int(niy/32)*64, "nof": 512, "kernel": 1, "type":"fc"}, #13 # "fc2": {"nix": 1, "niy": 1, "nif": 512, "nof": 4096, "kernel": 1, "type":"fc"}, #14 } return network_template ```
{ "source": "JiaMingLin/dlcv_adda", "score": 3 }
#### File: dlcv_adda/core/pretrain.py ```python import os import torch import torch.nn as nn import torch.optim as optim import params from utils import make_variable, save_model from .test import evaluation from tensorboardX import SummaryWriter def train_src(exp, encoder, classifier, data_loader, data_loader_eval): """Train classifier for source domain.""" #################### # 1. setup network # #################### src_acc = 0 # set train state for Dropout and BN layers encoder.train() classifier.train() # setup criterion and optimizer optimizer = optim.Adam( list(encoder.parameters()) + list(classifier.parameters()), lr=params.c_learning_rate, betas=(params.beta1, params.beta2)) criterion = nn.CrossEntropyLoss() #################### # 2. train network # #################### writer = SummaryWriter( log_dir = os.path.join('runs', exp) ) for epoch in range(params.num_epochs_pre): for step, (images, labels) in enumerate(data_loader): # make images and labels variable images = make_variable(images) labels = make_variable(labels.squeeze_()) # zero gradients for optimizer optimizer.zero_grad() # compute loss for critic preds = classifier(encoder(images)) loss = criterion(preds, labels) # optimize source classifier loss.backward() optimizer.step() # print step info if ((step + 1) % params.log_step_pre == 0): print("Epoch [{}/{}] Step [{}/{}]: loss={}" .format(epoch + 1, params.num_epochs_pre, step + 1, len(data_loader), loss.item())) # save model parameters if ((epoch + 1) % params.save_step_pre == 0): save_model(exp, encoder, "ADDA-source-encoder-{}.pt".format(epoch + 1)) save_model(exp, classifier, "ADDA-source-classifier-{}.pt".format(epoch + 1)) # eval model on test set if ((epoch + 1) % params.eval_step_pre == 0): acc = evaluation(encoder, classifier, data_loader_eval) writer.add_scalar('src_acc', acc*100, (epoch + 1)) if acc > src_acc: print("============== Save Best Model =============") save_model(exp, encoder, "ADDA-source-encoder-best.pt") save_model(exp, classifier, "ADDA-source-classifier-best.pt") src_acc = acc writer.close() return encoder, classifier ``` #### File: dlcv_adda/datasets/datagen.py ```python import torch.utils.data as data import os from PIL import Image class DataGenerator(data.Dataset): def __init__(self, data_root, train = True, transform=None): """ Args: 1. image folder 2. data name, label list 3. if train, loading data from train folder, or test folder 4. """ self.root = data_root self.transform = transform self.train = train if train: data_list = os.path.join(self.root, 'train.csv') else: data_list = os.path.join(self.root, 'test.csv') with open(data_list) as fin: data_list = fin.readlines() self.img_paths = [] self.img_labels = [] self.n_data = 0 for data in data_list[1:]: data = data.strip('\n').split(',') self.img_paths.append(data[0]) self.img_labels.append(data[1]) self.n_data += 1 def __getitem__(self, idx): img_path, label = self.img_paths[idx], self.img_labels[idx] if self.train is True: img_path = os.path.join(self.root, 'train', img_path) else: img_path = os.path.join(self.root, 'test', img_path) with open(img_path, 'rb') as f: img = Image.open(f) img = img.convert('RGB') if self.transform is not None: img = self.transform(img) label = int(label) return img, label def __len__(self): return len(self.img_paths) ```
{ "source": "JiaMingLin/residual_adapters", "score": 2 }
#### File: JiaMingLin/residual_adapters/models.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.nn.parameter import Parameter import config_task import math def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1_fonc(in_planes, out_planes=None, stride=1, bias=False): if out_planes is None: return nn.Conv2d(in_planes, in_planes, kernel_size=1, stride=stride, padding=0, bias=bias) else: return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=bias) class conv1x1(nn.Module): def __init__(self, planes, out_planes=None, stride=1): super(conv1x1, self).__init__() if config_task.mode == 'series_adapters': self.conv = nn.Sequential(nn.BatchNorm2d(planes), conv1x1_fonc(planes)) elif config_task.mode == 'parallel_adapters': self.conv = conv1x1_fonc(planes, out_planes, stride) else: self.conv = conv1x1_fonc(planes) def forward(self, x): y = self.conv(x) if config_task.mode == 'series_adapters': y += x return y class conv_task(nn.Module): def __init__(self, in_planes, planes, stride=1, nb_tasks=1, is_proj=1, second=0): super(conv_task, self).__init__() self.is_proj = is_proj self.second = second self.conv = conv3x3(in_planes, planes, stride) if config_task.mode == 'series_adapters' and is_proj: self.bns = nn.ModuleList([nn.Sequential(conv1x1(planes), nn.BatchNorm2d(planes)) for i in range(nb_tasks)]) elif config_task.mode == 'parallel_adapters' and is_proj: self.parallel_conv = nn.ModuleList([conv1x1(in_planes, planes, stride) for i in range(nb_tasks)]) self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)]) else: self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)]) def forward(self, x): task = config_task.task y = self.conv(x) if self.second == 0: if config_task.isdropout1: x = F.dropout2d(x, p=0.5, training = self.training) else: if config_task.isdropout2: x = F.dropout2d(x, p=0.5, training = self.training) if config_task.mode == 'parallel_adapters' and self.is_proj: y = y + self.parallel_conv[task](x) y = self.bns[task](y) return y # No projection: identity shortcut class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, shortcut=0, nb_tasks=1): super(BasicBlock, self).__init__() self.conv1 = conv_task(in_planes, planes, stride, nb_tasks, is_proj=int(config_task.proj[0])) self.conv2 = nn.Sequential(nn.ReLU(True), conv_task(planes, planes, 1, nb_tasks, is_proj=int(config_task.proj[1]), second=1)) self.shortcut = shortcut if self.shortcut == 1: self.avgpool = nn.AvgPool2d(2) def forward(self, x): residual = x y = self.conv1(x) y = self.conv2(y) if self.shortcut == 1: residual = self.avgpool(x) residual = torch.cat((residual, residual*0),1) y += residual y = F.relu(y) return y class ResNet(nn.Module): def __init__(self, block, nblocks, num_classes=[10]): super(ResNet, self).__init__() nb_tasks = len(num_classes) blocks = [block, block, block] factor = config_task.factor self.in_planes = int(32*factor) self.pre_layers_conv = conv_task(3,int(32*factor), 1, nb_tasks) self.layer1 = self._make_layer(blocks[0], int(64*factor), nblocks[0], stride=2, nb_tasks=nb_tasks) self.layer2 = self._make_layer(blocks[1], int(128*factor), nblocks[1], stride=2, nb_tasks=nb_tasks) self.layer3 = self._make_layer(blocks[2], int(256*factor), nblocks[2], stride=2, nb_tasks=nb_tasks) self.end_bns = nn.ModuleList([nn.Sequential(nn.BatchNorm2d(int(256*factor)),nn.ReLU(True)) for i in range(nb_tasks)]) self.avgpool = nn.AdaptiveAvgPool2d(1) self.linears = nn.ModuleList([nn.Linear(int(256*factor), num_classes[i]) for i in range(nb_tasks)]) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, nblocks, stride=1, nb_tasks=1): shortcut = 0 if stride != 1 or self.in_planes != planes * block.expansion: shortcut = 1 layers = [] layers.append(block(self.in_planes, planes, stride, shortcut, nb_tasks=nb_tasks)) self.in_planes = planes * block.expansion for i in range(1, nblocks): layers.append(block(self.in_planes, planes, nb_tasks=nb_tasks)) return nn.Sequential(*layers) def forward(self, x): x = self.pre_layers_conv(x) task = config_task.task x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.end_bns[task](x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.linears[task](x) return x def resnet26(num_classes=10, blocks=BasicBlock): return ResNet(blocks, [4,4,4],num_classes) ```
{ "source": "JiaMingLin/tsn-pytorch", "score": 3 }
#### File: tsn-pytorch/customized_models/model_utils.py ```python import os import hashlib import requests from tqdm import tqdm import torch def deploy_model(model, cfg): """ Deploy model to multiple GPUs for DDP training. """ if cfg.DDP_CONFIG.DISTRIBUTED: if cfg.DDP_CONFIG.GPU is not None: torch.cuda.set_device(cfg.DDP_CONFIG.GPU) model.cuda(cfg.DDP_CONFIG.GPU) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[cfg.DDP_CONFIG.GPU], find_unused_parameters=True) else: model.cuda() model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True) elif cfg.DDP_CONFIG.GPU is not None: torch.cuda.set_device(cfg.DDP_CONFIG.GPU) model.cuda(cfg.DDP_CONFIG.GPU) else: # DataParallel will divide and allocate batch_size to all available GPUs model = torch.nn.DataParallel(model).cuda() return model def load_model(model, cfg, load_fc=True): """ Load pretrained model weights. """ if os.path.isfile(cfg.CONFIG.MODEL.PRETRAINED_PATH): print("=> loading checkpoint '{}'".format(cfg.CONFIG.MODEL.PRETRAINED_PATH)) if cfg.DDP_CONFIG.GPU is None: checkpoint = torch.load(cfg.CONFIG.MODEL.PRETRAINED_PATH) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(cfg.DDP_CONFIG.GPU) checkpoint = torch.load(cfg.CONFIG.MODEL.PRETRAINED_PATH, map_location=loc) model_dict = model.state_dict() if not load_fc: del model_dict['module.fc.weight'] del model_dict['module.fc.bias'] pretrained_dict = {k: v for k, v in checkpoint['state_dict'].items() if k in model_dict} unused_dict = {k: v for k, v in checkpoint['state_dict'].items() if not k in model_dict} not_found_dict = {k: v for k, v in model_dict.items() if not k in checkpoint['state_dict']} print("unused model layers:", unused_dict.keys()) print("not found layers:", not_found_dict.keys()) model_dict.update(pretrained_dict) model.load_state_dict(model_dict) print("=> loaded checkpoint '{}' (epoch {})" .format(cfg.CONFIG.MODEL.PRETRAINED_PATH, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(cfg.CONFIG.MODEL.PRETRAINED_PATH)) return model, None def save_model(model, optimizer, epoch, cfg): # pylint: disable=line-too-long """ Save trained model weights. """ model_save_dir = os.path.join(cfg.CONFIG.LOG.BASE_PATH, cfg.CONFIG.LOG.EXP_NAME, cfg.CONFIG.LOG.SAVE_DIR) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) ckpt_name = "f{}_s{}_ckpt_epoch{}.pth".format(cfg.CONFIG.DATA.CLIP_LEN, cfg.CONFIG.DATA.FRAME_RATE, epoch) checkpoint = os.path.join(model_save_dir, ckpt_name) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_acc1': None, 'optimizer': optimizer.state_dict(), }, filename=checkpoint) def save_checkpoint(state, filename='checkpoint.pth'): torch.save(state, filename) def check_sha1(filename, sha1_hash): """Check whether the sha1 hash of the file content matches the expected hash. Parameters ---------- filename : str Path to the file. sha1_hash : str Expected sha1 hash in hexadecimal digits. Returns ------- bool Whether the file content matches the expected hash. """ sha1 = hashlib.sha1() with open(filename, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) sha1_file = sha1.hexdigest() l = min(len(sha1_file), len(sha1_hash)) return sha1.hexdigest()[0:l] == sha1_hash[0:l] def download(url, path=None, overwrite=False, sha1_hash=None): """Download an given URL Parameters ---------- url : str URL to download path : str, optional Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite : bool, optional Whether to overwrite destination file if already exists. sha1_hash : str, optional Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. Returns ------- str The file path of the downloaded file. """ if path is None: fname = url.split('/')[-1] else: path = os.path.expanduser(path) if os.path.isdir(path): fname = os.path.join(path, url.split('/')[-1]) else: fname = path if overwrite or not os.path.exists(fname) or (sha1_hash and not check_sha1(fname, sha1_hash)): dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) if not os.path.exists(dirname): os.makedirs(dirname) print('Downloading %s from %s...'%(fname, url)) r = requests.get(url, stream=True) if r.status_code != 200: raise RuntimeError("Failed downloading url %s"%url) total_length = r.headers.get('content-length') with open(fname, 'wb') as f: if total_length is None: # no content length header for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) else: total_length = int(total_length) for chunk in tqdm(r.iter_content(chunk_size=1024), total=int(total_length / 1024. + 0.5), unit='KB', unit_scale=False, dynamic_ncols=True): f.write(chunk) if sha1_hash and not check_sha1(fname, sha1_hash): raise UserWarning('File {} is downloaded but the content hash does not match. ' \ 'The repo may be outdated or download may be incomplete. ' \ 'If the "repo_url" is overridden, consider switching to ' \ 'the default repo.'.format(fname)) return fname ``` #### File: tsn-pytorch/multi-task/train_val.py ```python import sys sys.path.append("../") import argparse import os import time import shutil import torch import torchvision import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim from torch.nn.utils import clip_grad_norm from dataset import TSNDataSet from multi_task_model import TSN from transforms import * from opts import parser from tensorboardX import SummaryWriter from math import ceil # import warnings # warnings.filterwarnings("ignore") best_prec1 = 0 def main(): global args, best_prec1, tb_writer_train, tb_writer_val, log_dir args = parser.parse_args() if args.dataset == 'ucf101': num_class = 101 # elif args.dataset == 'hmdb51': # num_class = 51 # elif args.dataset == 'kinetics': # num_class = 400 else: raise ValueError('Unknown dataset '+args.dataset) log_dir = 'logs/{}'.format(args.save_path) tb_writer_train = SummaryWriter(os.path.join(log_dir, 'train')) tb_writer_val = SummaryWriter(os.path.join(log_dir, 'val')) model = TSN(num_class, args.num_segments, base_model=args.arch, new_length=args.new_length, consensus_type=args.consensus_type, dropout=args.dropout, partial_bn=not args.no_partialbn, modality=args.modality, resume=args.resume, project_mode = args.project_mode) crop_size = model.crop_size scale_size = model.scale_size input_mean = model.input_mean input_std = model.input_std policies = model.get_optim_policies() # train_augmentation = model.get_augmentation() device_ids = [int(id) for id in args.gpus.split(',')] model = torch.nn.DataParallel(model, device_ids=device_ids).cuda() cudnn.benchmark = True # Data loading code if args.modality != 'RGBDiff': normalize = GroupNormalize(input_mean, input_std) else: normalize = IdentityTransform() naming_pattern = "frame{:06d}.jpg" rgb_data_root_path = os.path.join(args.data_root_path, 'jpegs_256') tvl1_data_root_path = os.path.join(args.data_root_path, 'tvl1_flow') rgb_train_list = '../settings/ucf101/train_rgb_split1.txt' tvl1_train_list = '../settings/ucf101/train_flow_split1.txt' rgb_val_list = '../settings/ucf101/val_rgb_split1.txt' tvl1_val_list = '../settings/ucf101/val_flow_split1.txt' rgb_train_loader = torch.utils.data.DataLoader( TSNDataSet(rgb_data_root_path, rgb_train_list, num_segments=args.num_segments, new_length=4, modality="RGB", image_tmpl=naming_pattern, transform=torchvision.transforms.Compose([ torchvision.transforms.Compose([GroupMultiScaleCrop(224, [1, .875, .75, .66]), GroupRandomHorizontalFlip(is_flow=False)]), Stack(roll=args.arch == 'BNInception'), ToTorchFormatTensor(div=args.arch != 'BNInception'), normalize, ])), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) tvl1_train_loader = torch.utils.data.DataLoader( TSNDataSet(tvl1_data_root_path, tvl1_train_list, num_segments=args.num_segments, new_length=6, modality="tvl1", image_tmpl=naming_pattern, transform=torchvision.transforms.Compose([ torchvision.transforms.Compose([GroupMultiScaleCrop(224, [1, .875, .75]), GroupRandomHorizontalFlip(is_flow=True)]), Stack(roll=args.arch == 'BNInception'), ToTorchFormatTensor(div=args.arch != 'BNInception'), normalize, ])), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) rgb_val_loader = torch.utils.data.DataLoader( TSNDataSet(rgb_data_root_path, rgb_val_list, num_segments=args.num_segments, new_length=4, modality="RGB", image_tmpl=naming_pattern, random_shift=False, transform=torchvision.transforms.Compose([ GroupScale(int(scale_size)), GroupCenterCrop(crop_size), Stack(roll=args.arch == 'BNInception'), ToTorchFormatTensor(div=args.arch != 'BNInception'), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) tvl1_val_loader = torch.utils.data.DataLoader( TSNDataSet(tvl1_data_root_path, tvl1_val_list, num_segments=args.num_segments, new_length=6, modality="tvl1", image_tmpl=naming_pattern, random_shift=False, transform=torchvision.transforms.Compose([ GroupScale(int(scale_size)), GroupCenterCrop(crop_size), Stack(roll=args.arch == 'BNInception'), ToTorchFormatTensor(div=args.arch != 'BNInception'), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) train_loaders = [rgb_train_loader, tvl1_train_loader] val_loaders = [rgb_val_loader, tvl1_val_loader] # define loss function (criterion) and optimizer if args.loss_type == 'nll': criterion = torch.nn.CrossEntropyLoss().cuda() else: raise ValueError("Unknown loss type") for group in policies: print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format( group['name'], len(group['params']), group['lr_mult'], group['decay_mult']))) optimizer = torch.optim.SGD(policies, args.lr, momentum=args.momentum, weight_decay=args.weight_decay) for epoch in range(args.start_epoch, args.epochs): adjust_learning_rate(optimizer, epoch, args.lr_steps) # train for one epoch avg_loss, avg_top1, avg_top5 = train(train_loaders, model, criterion, optimizer, epoch) tb_writer_train.add_scalar('Monitor/RGB Training Loss', avg_loss[0], epoch) tb_writer_train.add_scalar('Monitor/RGB Training Top1', avg_top1[0], epoch) tb_writer_train.add_scalar('Monitor/RGB Training Top5', avg_top5[0], epoch) tb_writer_train.add_scalar('Monitor/Flow Training Loss', avg_loss[1], epoch) tb_writer_train.add_scalar('Monitor/Flow Training Top1', avg_top1[1], epoch) tb_writer_train.add_scalar('Monitor/Flow Training Top5', avg_top5[1], epoch) # evaluate on validation set if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1: avg_loss, avg_top1, avg_top5 = validate(val_loaders, model, criterion) tb_writer_val.add_scalar('Monitor/RGB Validation Loss', avg_loss[0], epoch) tb_writer_val.add_scalar('Monitor/RGB Validation Top1', avg_top1[0], epoch) tb_writer_val.add_scalar('Monitor/RGB Validation Top5', avg_top5[0], epoch) tb_writer_val.add_scalar('Monitor/Flow Validation Loss', avg_loss[1], epoch) tb_writer_val.add_scalar('Monitor/Flow Validation Top1', avg_top1[1], epoch) tb_writer_val.add_scalar('Monitor/Flow Validation Top5', avg_top5[1], epoch) # remember best prec@1 and save checkpoint is_best = avg_top1[1] > best_prec1 best_prec1 = max(avg_top1[1], best_prec1) save_checkpoint(log_dir, { 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.module.state_dict(), 'best_prec1': best_prec1, }, is_best) def train(train_loaders, model, criterion, optimizer, epoch): batch_time = [AverageMeter(), AverageMeter()] data_time = [AverageMeter(), AverageMeter()] losses = [AverageMeter(), AverageMeter()] top1 = [AverageMeter(), AverageMeter()] top5 = [AverageMeter(), AverageMeter()] model.module.partialBN(False) # switch to train mode model.train() end = time.time() train_loader_iter = [iter(loader) for loader in train_loaders] data_length = len(train_loaders)*(len(train_loaders[0])) for i in range(data_length): domain = i%len(train_loaders) data_time[domain].update(time.time() - end) loader_iter = train_loader_iter[domain] input_data, target = next(loader_iter) target = target.cuda() input_var = torch.autograd.Variable(input_data) target_var = torch.autograd.Variable(target) # compute output for a given domain output = model([input_var, domain]) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1,5)) losses[domain].update(loss.item(), input_data.size(0)) top1[domain].update(prec1.item(), input_data.size(0)) top5[domain].update(prec5.item(), input_data.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() if args.clip_gradient is not None: total_norm = clip_grad_norm(model.parameters(), args.clip_gradient) #if total_norm > args.clip_gradient: # print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm)) optimizer.step() # measure elapsed time batch_time[domain].update(time.time() - end) end = time.time() if ceil(i/len(train_loaders)) % args.print_freq == 0 and i > 0: print(('Domain: {0}, Epoch: [{1}][{2}/{3}], lr: {lr:.5f}\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( "RGB" if domain == 0 else "tvl1", epoch, ceil(i/len(train_loaders)), len(train_loaders[domain]), batch_time=batch_time[domain], data_time=data_time[domain], loss=losses[domain], top1=top1[domain], top5=top5[domain], lr=optimizer.param_groups[-1]['lr']))) return [loss.avg for loss in losses], [t1.avg for t1 in top1], [t5.avg for t5 in top5] def validate(val_loaders, model, criterion, logger=None): batch_time = [AverageMeter(), AverageMeter()] losses = [AverageMeter(), AverageMeter()] top1 = [AverageMeter(), AverageMeter()] top5 = [AverageMeter(), AverageMeter()] # switch to evaluate mode model.eval() val_loader_iters = [iter(loader) for loader in val_loaders] data_length = len(val_loaders) * len(val_loaders[0]) end = time.time() with torch.no_grad(): for domain, loader in enumerate(val_loaders): for i, (input_data, target) in enumerate(loader): target = target.cuda() input_var = torch.autograd.Variable(input_data) target_var = torch.autograd.Variable(target) # compute output output = model([input_var, domain]) loss = criterion(output, target_var) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1,5)) losses[domain].update(loss.data.item(), input_data.size(0)) top1[domain].update(prec1.item(), input_data.size(0)) top5[domain].update(prec5.item(), input_data.size(0)) # measure elapsed time batch_time[domain].update(time.time() - end) end = time.time() if i % args.print_freq == 0: print(('Domain: {0},Test: [{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( "RGB" if domain == 0 else "tvl1", i, len(val_loaders[domain]), batch_time=batch_time[domain], loss=losses[domain], top1=top1[domain], top5=top5[domain]))) print(('Domain: {0}, Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}' .format("RGB" if domain == 0 else "tvl1", top1=top1[domain], top5=top5[domain], loss=losses[domain]))) return [loss.avg for loss in losses], [t1.avg for t1 in top1], [t5.avg for t5 in top5] def save_checkpoint(log_dir, state, is_best, filename='checkpoint.pth.tar'): filename = '_'.join( ( 'epoch_{}'.format(state['epoch']), '{:0.2f}'.format(state['best_prec1']), state['arch'], args.modality.lower(), filename) ) save_path = os.path.join(log_dir, filename) torch.save(state, save_path) if is_best: best_name = '_'.join( ( 'best', 'epoch_{}'.format(state['epoch']), '{:0.2f}'.format(state['best_prec1']), args.modality.lower(), '.pth.tar') ) best_path = os.path.join(log_dir, best_name) shutil.copyfile(save_path, best_path) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, lr_steps): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" decay = 0.1 ** (sum(epoch >= np.array(lr_steps))) lr = args.lr * decay decay = args.weight_decay for param_group in optimizer.param_groups: param_group['lr'] = lr * param_group['lr_mult'] param_group['weight_decay'] = decay * param_group['decay_mult'] def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': ## Log directory main() ``` #### File: JiaMingLin/tsn-pytorch/utils.py ```python import torch import os import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import average_precision_score, confusion_matrix from matplotlib.pyplot import figure def class_acc_mapping(acc, dataset): with open(os.path.join('settings', dataset, 'actions.txt'), 'r') as f: actions = f.readlines() class_acc_map = [(item[0].strip(),item[1]) for item in zip(actions, acc)] return class_acc_map def eval_video(net, video_data, num_class, modality, args): i, data, label = video_data num_crop = args.test_crops if modality == 'RGB': length = 12 elif modality == 'Flow' or modality == 'tvl1': length = 12 elif modality == 'RGBDiff': length = 18 else: raise ValueError("Unknown modality "+modality) with torch.no_grad(): input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)), volatile=True) rst = net(input_var).data.cpu().numpy().copy() return i, rst.reshape((num_crop, args.test_segments, num_class)).mean(axis=0).reshape( (args.test_segments, 1, num_class) ), label[0] def save_output(output, video_labels, acc_class_map, args): # reorder before saving name_list = [x.strip().split()[0] for x in open(args.test_list)] order_dict = {e:i for i, e in enumerate(sorted(name_list))} reorder_output = [None] * len(output) reorder_label = [None] * len(output) for i in range(len(output)): idx = order_dict[name_list[i]] reorder_output[idx] = output[i] reorder_label[idx] = video_labels[i] np.savez(args.save_scores, scores=reorder_output, labels=reorder_label, acc_class_map=acc_class_map) def softmax(raw_score, T=1): exp_s = np.exp((raw_score - raw_score.max(axis=-1)[..., None])*T) sum_s = exp_s.sum(axis=-1) return exp_s / sum_s[..., None] def default_aggregation_func(score_arr, normalization=True, crop_agg=None): """ This is the default function for make video-level prediction :param score_arr: a 3-dim array with (frame, crop, class) layout :return: """ crop_agg = np.mean if crop_agg is None else crop_agg if normalization: return softmax(crop_agg(score_arr, axis=1).mean(axis=0)) else: return crop_agg(score_arr, axis=1).mean(axis=0) def mean_class_accuracy(pred, labels): cf = confusion_matrix(labels, pred).astype(float) cls_cnt = cf.sum(axis=1) cls_hit = np.diag(cf) overall_acc = np.mean(cls_hit/cls_cnt) class_acc = cls_hit/cls_cnt return overall_acc, class_acc def draw_summary(rgb_class_acc, flow_class_acc, fusion_class_acc, path): print("Draw Summaries...") acc_gain_fusion = [[item[1][0], (float(item[1][1]) - float(item[0][1]))] for item in zip(rgb_class_acc, fusion_class_acc)] figure(figsize=(20, 24), dpi=80) cnt = 0 for t in [rgb_class_acc, flow_class_acc, fusion_class_acc, acc_gain_fusion]: actions = [item[0] for item in t] acc = [float(item[1]) for item in t] x = np.arange(len(actions)) plt.subplot(411+cnt) plt.bar(x, acc); plt.xticks(x, actions) plt.xlabel('Actions') plt.ylabel('Accuracy') plt.xticks(rotation=90) cnt+=1 plt.savefig(os.path.join(path, 'summary.png')) ```
{ "source": "JiaMingLin/two-stream-pytorch", "score": 3 }
#### File: scripts/eval_ucf101_pytorch/VideoTemporalPrediction.py ```python import glob import os import sys import numpy as np import math import cv2 import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models sys.path.insert(0, "../../") import video_transforms def VideoTemporalPrediction( vid_name, net, num_categories, start_frame=0, num_frames=0, num_samples=25, optical_flow_frames=10 ): if num_frames == 0: # print(vid_name) imglist = glob.glob(os.path.join(vid_name, '*flow_x*.jpg')) duration = len(imglist) else: duration = num_frames clip_mean = [0.5] * 20 clip_std = [0.226] * 20 normalize = video_transforms.Normalize(mean=clip_mean, std=clip_std) val_transform = video_transforms.Compose([ video_transforms.ToTensor(), normalize, ]) # selection step = int(math.floor((duration-optical_flow_frames+1)/num_samples)) #dims = (256,340,optical_flow_frames*2,num_samples) dims = (272,360,optical_flow_frames*2,num_samples) flow = np.zeros(shape=dims, dtype=np.float64) flow_flip = np.zeros(shape=dims, dtype=np.float64) for i in range(num_samples): for j in range(optical_flow_frames): #flow_x_file = os.path.join(vid_name, 'flow_x_{0:04d}.jpg'.format(i*step+j+1 + start_frame)) flow_x_file = os.path.join(vid_name, 'flow_x_{0:05d}.jpg'.format(i*step+j+1 + start_frame)) #flow_y_file = os.path.join(vid_name, 'flow_y_{0:04d}.jpg'.format(i*step+j+1 + start_frame)) flow_y_file = os.path.join(vid_name, 'flow_y_{0:05d}.jpg'.format(i*step+j+1 + start_frame)) img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) img_x = cv2.resize(img_x, dims[1::-1]) img_y = cv2.resize(img_y, dims[1::-1]) flow[:,:,j*2 ,i] = img_x flow[:,:,j*2+1,i] = img_y flow_flip[:,:,j*2 ,i] = 255 - img_x[:, ::-1] flow_flip[:,:,j*2+1,i] = img_y[:, ::-1] # crop flow_1 = flow[:256, :256, :,:] flow_2 = flow[:256, -256:, :,:] flow_3 = flow[8:264, 52:308, :,:] flow_4 = flow[-256:, :256, :,:] flow_5 = flow[-256:, -256:, :,:] flow_f_1 = flow_flip[:256, :256, :,:] flow_f_2 = flow_flip[:256, -256:, :,:] flow_f_3 = flow_flip[8:264, 52:308, :,:] flow_f_4 = flow_flip[-256:, :256, :,:] flow_f_5 = flow_flip[-256:, -256:, :,:] # print(flow_1.shape,flow_2.shape,flow_3.shape,flow_4.shape,flow_5.shape,flow_f_1.shape,flow_f_2.shape,flow_f_3.shape,flow_f_4.shape,flow_f_5.shape) flow = np.concatenate((flow_1,flow_2,flow_3,flow_4,flow_5,flow_f_1,flow_f_2,flow_f_3,flow_f_4,flow_f_5), axis=3) _, _, _, c = flow.shape flow_list = [] for c_index in range(c): cur_img = flow[:,:,:,c_index].squeeze() cur_img_tensor = val_transform(cur_img) flow_list.append(np.expand_dims(cur_img_tensor.numpy(), 0)) flow_np = np.concatenate(flow_list,axis=0) batch_size = 45 #25 prediction = np.zeros((num_categories,flow.shape[3])) num_batches = int(math.ceil(float(flow.shape[3])/batch_size)) for bb in range(num_batches): span = range(batch_size*bb, min(flow.shape[3],batch_size*(bb+1))) input_data = flow_np[span,:,:,:] imgDataTensor = torch.from_numpy(input_data).type(torch.FloatTensor).cuda() imgDataVar = torch.autograd.Variable(imgDataTensor) output = net(imgDataVar) result = output.data.cpu().numpy() prediction[:, span] = np.transpose(result) return prediction ```
{ "source": "jiamings/d2c", "score": 3 }
#### File: diffusion/datasets/__init__.py ```python import os import torch import numbers import torchvision.transforms as transforms import torchvision.transforms.functional as F from torch.utils.data import Subset, TensorDataset import numpy as np def get_dataset(args, config): if config.data.random_flip is False: tran_transform = test_transform = transforms.Compose( [transforms.Resize(config.data.image_size), transforms.ToTensor()] ) else: tran_transform = transforms.Compose( [ transforms.Resize(config.data.image_size), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), ] ) test_transform = transforms.Compose( [transforms.Resize(config.data.image_size), transforms.ToTensor()] ) train_samples = np.load(args.train_fname) train_labels = np.zeros(len(train_samples)) data_mean = np.mean(train_samples, axis=(0, 2, 3), keepdims=True) data_std = np.std(train_samples, axis=(0, 2, 3), keepdims=True) train_samples = (train_samples - data_mean)/data_std print("train data shape are - ", train_samples.shape, train_labels.shape) print("train data stats are - ", np.mean(train_samples), np.std(train_samples), np.min(train_samples), np.max(train_samples)) dataset = torch.utils.data.TensorDataset( torch.from_numpy(train_samples).float(), torch.from_numpy(train_labels).float()) return dataset def logit_transform(image, lam=1e-6): image = lam + (1 - 2 * lam) * image return torch.log(image) - torch.log1p(-image) def data_transform(config, X): if config.data.uniform_dequantization: X = X / 256.0 * 255.0 + torch.rand_like(X) / 256.0 if config.data.gaussian_dequantization: X = X + torch.randn_like(X) * 0.01 if config.data.rescaled: X = 2 * X - 1.0 elif config.data.logit_transform: X = logit_transform(X) if hasattr(config, "image_mean"): return X - config.image_mean.to(X.device)[None, ...] return X def inverse_data_transform(config, X): if hasattr(config, "image_mean"): X = X + config.image_mean.to(X.device)[None, ...] if config.data.logit_transform: X = torch.sigmoid(X) elif config.data.rescaled: X = (X + 1.0) / 2.0 return torch.clamp(X, 0.0, 1.0) ``` #### File: d2c/diffusion/main.py ```python import argparse import traceback import shutil import logging import yaml import sys import os import torch import numpy as np import torch.utils.tensorboard as tb from runners.diffusion import Diffusion torch.set_printoptions(sci_mode=False) def parse_args_and_config(): parser = argparse.ArgumentParser(description=globals()["__doc__"]) parser.add_argument( "--config", type=str, required=True, help="Path to the config file" ) parser.add_argument("--seed", type=int, default=1234, help="Random seed") parser.add_argument( "--exp", type=str, default="exp", help="Path for saving running related data." ) parser.add_argument( "--ckpt_path", type=str, default="", help="The checkpoint path to load" ) parser.add_argument( "--doc", type=str, required=True, help="A string for documentation purpose. " "Will be the name of the log folder.", ) parser.add_argument( "--comment", type=str, default="", help="A string for experiment comment" ) parser.add_argument( "--verbose", type=str, default="info", help="Verbose level: info | debug | warning | critical", ) parser.add_argument("--test", action="store_true", help="Whether to test the model") parser.add_argument( "--sample", action="store_true", help="Whether to produce samples from the model", ) parser.add_argument("--fid", action="store_true") parser.add_argument("--interpolation", action="store_true") parser.add_argument( "--resume_training", action="store_true", help="Whether to resume training" ) parser.add_argument( "-i", "--image_folder", type=str, default="images", help="The folder name of samples", ) parser.add_argument( "--ni", action="store_true", help="No interaction. Suitable for Slurm Job launcher", ) parser.add_argument("--use_pretrained", action="store_true") parser.add_argument( "--sample_type", type=str, default="generalized", help="sampling approach (generalized or ddpm_noisy)", ) parser.add_argument( "--skip_type", type=str, default="uniform", help="skip according to (uniform or quadratic)", ) parser.add_argument( "--timesteps", type=int, default=1000, help="number of steps involved" ) parser.add_argument( "--eta", type=float, default=0.0, help="eta used to control the variances of sigma", ) parser.add_argument('--train_fname', type=str, default="", help='Training file') parser.add_argument('--latent_fname', type=str, default="", help='latent fname') parser.add_argument( "--out_fname", type=str, default="images/moco_to_ddim.png", help="output fname of samples" ) parser.add_argument( "--inp_fname", type=str, default="", help="the path of input images to read" ) parser.add_argument( "--mean_file", type=str, default="", help="the mean filename" ) parser.add_argument( "--std_file", type=str, default="", help="the std filename" ) parser.add_argument('--n_samples', type=int, default=5000, help='number of samples to generate') parser.add_argument("--sequence", action="store_true") parser.add_argument('--dataset', action='store_true') parser.add_argument('--autoencoder', action='store_true') parser.add_argument('--reconstruct', action='store_true') parser.add_argument('--noise_add_steps', type=int, default=0) parser.add_argument('--noise_skip_steps', type=int, default=1) args = parser.parse_args() args.log_path = os.path.join(args.exp, "logs", args.doc) if not os.path.exists(args.log_path): os.makedirs(args.log_path) # parse config file with open(os.path.join("configs", args.config), "r") as f: config = yaml.safe_load(f) new_config = dict2namespace(config) tb_path = os.path.join(args.exp, "tensorboard", args.doc) new_config.tb_logger = tb.SummaryWriter(log_dir=tb_path) level = getattr(logging, args.verbose.upper(), None) if not isinstance(level, int): raise ValueError("level {} not supported".format(args.verbose)) handler1 = logging.StreamHandler() formatter = logging.Formatter( "%(levelname)s - %(filename)s - %(asctime)s - %(message)s" ) handler1.setFormatter(formatter) logger = logging.getLogger() logger.addHandler(handler1) logger.setLevel(level) # add device device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") logging.info("Using device: {}".format(device)) new_config.device = device # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.benchmark = True return args, new_config def dict2namespace(config): namespace = argparse.Namespace() for key, value in config.items(): if isinstance(value, dict): new_value = dict2namespace(value) else: new_value = value setattr(namespace, key, new_value) return namespace def main(): args, config = parse_args_and_config() logging.info("Writing log file to {}".format(args.log_path)) logging.info("Exp instance id = {}".format(os.getpid())) logging.info("Exp comment = {}".format(args.comment)) try: runner = Diffusion(args, config) if args.sample: runner.sample() elif args.test: runner.test() else: runner.train() except Exception: logging.error(traceback.format_exc()) return 0 if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jiamings/lagvae", "score": 3 }
#### File: lagvae/utils/__init__.py ```python import tensorflow as tf import GPUtil import numpy as np import os from collections import namedtuple Datasets = namedtuple('datasets', ['train', 'test']) PREFIX = os.environ['DATA_PREFIX'] def sample_binary(x): r = tf.random_uniform(tf.shape(x), minval=0.0, maxval=1.0) return tf.cast(x > r, tf.float32) def sample_binary_label(x, y): r = tf.random_uniform(tf.shape(x), minval=0.0, maxval=1.0) return tf.cast(x > r, tf.float32), y def read_mnist(path='mnist', label=False, binarized=True, batch_sizes=(250, 250)): """ Returns train and test sets for MNIST. :param path: path to read / download MNIST dataset. :param label: whether there is label or not. :param binarized: if the dataset is stochastically binarized. :param batch_sizes: batch sizes of train and test. :return: Two tf.data.Datasets, train and test. """ # from .mnist import make_train, make_test path = os.path.join(PREFIX, path) # train, test = make_train(path, label), make_test(path, label) fn = sample_binary_label if label else sample_binary from tensorflow.examples.tutorials.mnist import input_data mnists = input_data.read_data_sets(path) if label: train = tf.data.Dataset.from_tensor_slices((mnists.train.images, mnists.train.labels)) test = tf.data.Dataset.from_tensor_slices((mnists.test.images, mnists.test.labels)) else: train = tf.data.Dataset.from_tensor_slices(mnists.train.images) test = tf.data.Dataset.from_tensor_slices(mnists.test.images) train, test = train.batch(batch_sizes[0]), test.batch(batch_sizes[1]) if binarized: train, test = train.map(fn), test.map(fn) return train, test def find_avaiable_gpu(max_load=0.3, max_memory=0.5): gpu_avail = GPUtil.getFirstAvailable(attempts=10000, maxLoad=max_load, maxMemory=max_memory, interval=199) return gpu_avail[0] def gpu_session(): gpu_options = tf.GPUOptions(allow_growth=True) return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) def obtain_log_path(path): import os prefix = os.environ['EXP_LOG_PATH'] assert len(prefix) > 0, 'Please set environment variable EXP_LOG_PATH' return os.path.join(prefix, path) def compute_kernel(x, y): x_size = tf.shape(x)[0] y_size = tf.shape(y)[0] dim = tf.shape(x)[1] tiled_x = tf.tile(tf.reshape(x, tf.stack([x_size, 1, dim])), tf.stack([1, y_size, 1])) tiled_y = tf.tile(tf.reshape(y, tf.stack([1, y_size, dim])), tf.stack([x_size, 1, 1])) return tf.exp(-tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=2) / tf.cast(dim, tf.float32)) def compute_mmd(x, y): """ Compute kernel-estimated MMD between two variables, both with size [batch_size, dim] :param x: :param y: :return: """ x_kernel = compute_kernel(x, x) y_kernel = compute_kernel(y, y) xy_kernel = compute_kernel(x, y) return tf.reduce_mean(x_kernel) + tf.reduce_mean(y_kernel) - 2 * tf.reduce_mean(xy_kernel) ```
{ "source": "jiaming-wang/MIP", "score": 2 }
#### File: MIP/model/base_net.py ```python import torch import math import torch.optim as optim import torch.nn as nn from importlib import import_module import torch.nn.functional as F import numpy as np from model.utils import * ###################################### # common model ###################################### class Upsampler(torch.nn.Module): def __init__(self, scale, n_feat, bn=False, activation='prelu', bias=True): super(Upsampler, self).__init__() modules = [] if scale == 3: modules.append(ConvBlock(n_feat, 9 * n_feat, 3, 1, 1, bias, activation=None, norm=None)) modules.append(torch.nn.PixelShuffle(3)) if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) else: for _ in range(int(math.log(scale, 2))): modules.append(ConvBlock(n_feat, 4 * n_feat, 3, 1, 1, bias, activation=None, norm=None)) modules.append(torch.nn.PixelShuffle(2)) if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) self.up = torch.nn.Sequential(*modules) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU(init=0.5) elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): out = self.up(x) if self.activation is not None: out = self.act(out) return out class MeanShift(nn.Conv2d): def __init__( self, rgb_range, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std for p in self.parameters(): p.requires_grad = False class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None, pad_model=None): super(ConvBlock, self).__init__() self.pad_model = pad_model self.norm = norm if self.norm =='batch': self.norm = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.norm = torch.nn.InstanceNorm2d(output_size) else: self.norm = None self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU(init=0.5) elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() else: self.act = None if self.pad_model == None: self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.padding = None elif self.pad_model == 'reflection': self.padding = nn.Sequential(nn.ReflectionPad2d(padding)) self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, 0, bias=bias) layers = filter(lambda x: x is not None, [self.padding, self.conv, self.norm, self.act]) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) ###################################### # loss function ###################################### class TVLoss(nn.Module): def __init__(self, TVLoss_weight = 1): super(TVLoss, self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = (x.size()[2] - 1) * x.size()[3] count_w = x.size()[2] * (x.size()[3] - 1) h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum() w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum() return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size class CycleLoss(nn.Module): def __init__(self, scale = 1/2, loss_type = 'MSE'): super(CycleLoss, self).__init__() self.scale = scale if loss_type == "MSE": self.loss = nn.MSELoss() elif loss_type == "L1": self.loss = nn.L1Loss() else: raise ValueError def forward(self, x_sr, x_lr): downsampler = Downsampler(n_planes=3, factor=4, phase=0.5, preserve_size=True).cuda(0) down_x = downsampler(x_sr) # down_x = F.interpolate(x_hr, scale_factor=self.scale, mode='bicubic') return self.loss(down_x, x_lr), down_x ###################################### # resnet_block ###################################### class ResnetBlock(torch.nn.Module): def __init__(self, input_size, kernel_size=3, stride=1, padding=1, bias=True, scale=1, activation='prelu', norm='batch', pad_model=None): super().__init__() self.norm = norm self.pad_model = pad_model self.input_size = input_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.bias = bias self.scale = scale if self.norm =='batch': self.normlayer = torch.nn.BatchNorm2d(input_size) elif self.norm == 'instance': self.normlayer = torch.nn.InstanceNorm2d(input_size) else: self.normlayer = None self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU(init=0.5) elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() else: self.act = None if self.pad_model == None: self.conv1 = torch.nn.Conv2d(input_size, input_size, kernel_size, stride, padding, bias=bias) self.conv2 = torch.nn.Conv2d(input_size, input_size, kernel_size, stride, padding, bias=bias) self.pad = None elif self.pad_model == 'reflection': self.pad = nn.Sequential(nn.ReflectionPad2d(padding)) self.conv1 = torch.nn.Conv2d(input_size, input_size, kernel_size, stride, 0, bias=bias) self.conv2 = torch.nn.Conv2d(input_size, input_size, kernel_size, stride, 0, bias=bias) layers = filter(lambda x: x is not None, [self.pad, self.conv1, self.normlayer, self.act, self.pad, self.conv2, self.normlayer, self.act]) self.layers = nn.Sequential(*layers) def forward(self, x): residual = x out = x out = self.layers(x) out = out * self.scale out = torch.add(out, residual) return out class ResnetBlock_triple(ResnetBlock): def __init__(self, *args, middle_size, output_size, **kwargs): ResnetBlock.__init__(self, *args, **kwargs) if self.norm =='batch': self.normlayer1 = torch.nn.BatchNorm2d(middle_size) self.normlayer2 = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.normlayer1 = torch.nn.InstanceNorm2d(middle_size) self.normlayer2 = torch.nn.BatchNorm2d(output_size) else: self.normlayer1 = None self.normlayer2 = None if self.pad_model == None: self.conv1 = torch.nn.Conv2d(self.input_size, middle_size, self.kernel_size, self.stride, self.padding, bias=self.bias) self.conv2 = torch.nn.Conv2d(middle_size, output_size, self.kernel_size, self.stride, self.padding, bias=self.bias) self.pad = None elif self.pad_model == 'reflection': self.pad= nn.Sequential(nn.ReflectionPad2d(self.padding)) self.conv1 = torch.nn.Conv2d(self.input_size, middle_size, self.kernel_size, self.stride, 0, bias=self.bias) self.conv2 = torch.nn.Conv2d(middle_size, output_size, self.kernel_size, self.stride, 0, bias=self.bias) layers = filter(lambda x: x is not None, [self.pad, self.conv1, self.normlayer1, self.act, self.pad, self.conv2, self.normlayer2, self.act]) self.layers = nn.Sequential(*layers) def forward(self, x): residual = x out = x out= self.layers(x) out = out * self.scale out = torch.add(out, residual) return out ``` #### File: MIP/model/utils.py ```python import torch import torch.nn as nn import numpy as np # from .downsampler import Downsampler def add_module(self, module): self.add_module(str(len(self) + 1), module) torch.nn.Module.add = add_module class Concat(nn.Module): def __init__(self, dim, *args): super(Concat, self).__init__() self.dim = dim for idx, module in enumerate(args): self.add_module(str(idx), module) def forward(self, input): inputs = [] for module in self._modules.values(): inputs.append(module(input)) inputs_shapes2 = [x.shape[2] for x in inputs] inputs_shapes3 = [x.shape[3] for x in inputs] if np.all(np.array(inputs_shapes2) == min(inputs_shapes2)) and np.all(np.array(inputs_shapes3) == min(inputs_shapes3)): inputs_ = inputs else: target_shape2 = min(inputs_shapes2) target_shape3 = min(inputs_shapes3) inputs_ = [] for inp in inputs: diff2 = (inp.size(2) - target_shape2) // 2 diff3 = (inp.size(3) - target_shape3) // 2 inputs_.append(inp[:, :, diff2: diff2 + target_shape2, diff3:diff3 + target_shape3]) return torch.cat(inputs_, dim=self.dim) def __len__(self): return len(self._modules) class GenNoise(nn.Module): def __init__(self, dim2): super(GenNoise, self).__init__() self.dim2 = dim2 def forward(self, input): a = list(input.size()) a[1] = self.dim2 # print (input.data.type()) b = torch.zeros(a).type_as(input.data) b.normal_() x = torch.autograd.Variable(b) return x class Swish(nn.Module): """ https://arxiv.org/abs/1710.05941 The hype was so huge that I could not help but try it """ def __init__(self): super(Swish, self).__init__() self.s = nn.Sigmoid() def forward(self, x): return x * self.s(x) def act(act_fun = 'LeakyReLU'): ''' Either string defining an activation function or module (e.g. nn.ReLU) ''' if isinstance(act_fun, str): if act_fun == 'LeakyReLU': return nn.LeakyReLU(0.2, inplace=True) elif act_fun == 'Swish': return Swish() elif act_fun == 'ELU': return nn.ELU() elif act_fun == 'none': return nn.Sequential() else: assert False else: return act_fun() def bn(num_features): return nn.BatchNorm2d(num_features) def conv(in_f, out_f, kernel_size, stride=1, bias=True, pad='zero', downsample_mode='stride'): downsampler = None if stride != 1 and downsample_mode != 'stride': if downsample_mode == 'avg': downsampler = nn.AvgPool2d(stride, stride) elif downsample_mode == 'max': downsampler = nn.MaxPool2d(stride, stride) elif downsample_mode in ['lanczos2', 'lanczos3']: downsampler = Downsampler(n_planes=out_f, factor=stride, kernel_type=downsample_mode, phase=0.5, preserve_size=True) else: assert False stride = 1 padder = None to_pad = int((kernel_size - 1) / 2) if pad == 'reflection': padder = nn.ReflectionPad2d(to_pad) to_pad = 0 convolver = nn.Conv2d(in_f, out_f, kernel_size, stride, padding=to_pad, bias=bias) layers = filter(lambda x: x is not None, [padder, convolver, downsampler]) return nn.Sequential(*layers) class Downsampler(nn.Module): ''' http://www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf ''' def __init__(self, n_planes, factor, phase=0, kernel_width=None, support=None, sigma=None, preserve_size=False): super(Downsampler, self).__init__() assert phase in [0, 0.5], 'phase should be 0 or 0.5' support = 2 kernel_width = 4 * factor + 1 kernel_type_ = 'lanczos' preserve_size= True # note that `kernel width` will be different to actual size for phase = 1/2 self.kernel = get_kernel(factor, kernel_type_, phase, kernel_width, support=support, sigma=sigma) downsampler = nn.Conv2d(n_planes, n_planes, kernel_size=self.kernel.shape, stride=factor, padding=0) downsampler.weight.data[:] = 0 downsampler.bias.data[:] = 0 kernel_torch = torch.from_numpy(self.kernel) for i in range(n_planes): downsampler.weight.data[i, i] = kernel_torch self.downsampler_ = downsampler if preserve_size: if self.kernel.shape[0] % 2 == 1: pad = int((self.kernel.shape[0] - 1) / 2.) else: pad = int((self.kernel.shape[0] - factor) / 2.) self.padding = nn.ReplicationPad2d(pad) self.preserve_size = preserve_size def forward(self, input): if self.preserve_size: x = self.padding(input) else: x= input self.x = x return self.downsampler_(x) def get_kernel(factor, kernel_type, phase, kernel_width, support=None, sigma=None): assert kernel_type in ['lanczos', 'gauss', 'box'] # factor = float(factor) if phase == 0.5 and kernel_type != 'box': kernel = np.zeros([kernel_width - 1, kernel_width - 1]) else: kernel = np.zeros([kernel_width, kernel_width]) if kernel_type == 'box': assert phase == 0.5, 'Box filter is always half-phased' kernel[:] = 1./(kernel_width * kernel_width) elif kernel_type == 'gauss': assert sigma, 'sigma is not specified' assert phase != 0.5, 'phase 1/2 for gauss not implemented' center = (kernel_width + 1.)/2. print(center, kernel_width) sigma_sq = sigma * sigma for i in range(1, kernel.shape[0] + 1): for j in range(1, kernel.shape[1] + 1): di = (i - center)/2. dj = (j - center)/2. kernel[i - 1][j - 1] = np.exp(-(di * di + dj * dj)/(2 * sigma_sq)) kernel[i - 1][j - 1] = kernel[i - 1][j - 1]/(2. * np.pi * sigma_sq) elif kernel_type == 'lanczos': assert support, 'support is not specified' center = (kernel_width + 1) / 2. for i in range(1, kernel.shape[0] + 1): for j in range(1, kernel.shape[1] + 1): if phase == 0.5: di = abs(i + 0.5 - center) / factor dj = abs(j + 0.5 - center) / factor else: di = abs(i - center) / factor dj = abs(j - center) / factor pi_sq = np.pi * np.pi val = 1 if di != 0: val = val * support * np.sin(np.pi * di) * np.sin(np.pi * di / support) val = val / (np.pi * np.pi * di * di) if dj != 0: val = val * support * np.sin(np.pi * dj) * np.sin(np.pi * dj / support) val = val / (np.pi * np.pi * dj * dj) kernel[i - 1][j - 1] = val else: assert False, 'wrong method name' kernel /= kernel.sum() return kernel def fill_noise(x, noise_type): """Fills tensor `x` with noise of type `noise_type`.""" if noise_type == 'u': x.uniform_() elif noise_type == 'n': x.normal_() else: assert False def get_noise(input_depth, method, spatial_size, noise_type='u', var=1./10): """Returns a pytorch.Tensor of size (1 x `input_depth` x `spatial_size[0]` x `spatial_size[1]`) initialized in a specific way. Args: input_depth: number of channels in the tensor method: `noise` for fillting tensor with noise; `meshgrid` for np.meshgrid spatial_size: spatial size of the tensor to initialize noise_type: 'u' for uniform; 'n' for normal var: a factor, a noise will be multiplicated by. Basically it is standard deviation scaler. """ if isinstance(spatial_size, int): spatial_size = (spatial_size, spatial_size) if method == 'noise': shape = [1, input_depth, spatial_size[0], spatial_size[1]] net_input = torch.zeros(shape) fill_noise(net_input, noise_type) net_input *= var elif method == 'meshgrid': assert input_depth == 2 X, Y = np.meshgrid(np.arange(0, spatial_size[1])/float(spatial_size[1]-1), np.arange(0, spatial_size[0])/float(spatial_size[0]-1)) meshgrid = np.concatenate([X[None,:], Y[None,:]]) net_input= np_to_torch(meshgrid) else: assert False return net_input """ Parts of the U-Net model """ import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class Up_my(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1): x1 = self.up(x1) # input is CHW # diffY = x2.size()[2] - x1.size()[2] # diffX = x2.size()[3] - x1.size()[3] # x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, # diffY // 2, diffY - diffY // 2]) # x = torch.cat([x2, x1], dim=1) return self.conv(x1) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) ``` #### File: MIP/solver/basesolver.py ```python import os, torch, time from utils.utils import draw_curve_and_save, save_config from data.dataset import data from data.data import get_data from torch.utils.data import DataLoader class BaseSolver: def __init__(self, cfg): self.cfg = cfg self.nEpochs = cfg['nEpochs'] self.checkpoint_dir = cfg['checkpoint'] self.epoch = 1 self.timestamp = int(time.time()) if cfg['gpu_mode']: self.num_workers = cfg['threads'] else: self.num_workers = 0 self.records = {'Epoch': [], 'PSNR': [], 'SSIM': [], 'Loss': []} if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) def load_checkpoint(self, model_path): if os.path.exists(model_path): ckpt = torch.load(model_path) self.epoch = ckpt['epoch'] self.records = ckpt['records'] else: raise FileNotFoundError def save_checkpoint(self): self.ckp = { 'epoch': self.epoch, 'records': self.records, } def train(self): raise NotImplementedError def eval(self): raise NotImplementedError def run(self): while self.epoch <= self.nEpochs: self.train() self.eval() self.save_checkpoint() self.save_records() self.epoch += 1 #self.logger.log('Training done.') ``` #### File: MIP/solver/solver.py ```python import os, importlib, torch, shutil, cv2 from solver.basesolver import BaseSolver from utils.utils import maek_optimizer, make_loss, calculate_psnr, calculate_ssim, save_config, save_net_config import torch.backends.cudnn as cudnn from tqdm import tqdm import numpy as np from importlib import import_module from torch.autograd import Variable from data.data import DatasetFromHdf5 from torch.utils.data import DataLoader import torch.nn as nn from tensorboardX import SummaryWriter from utils.config import save_yml from model.base_net import CycleLoss from model.utils import * from PIL import Image from pylab import * from data.data import get_data class Solver(BaseSolver): def __init__(self, cfg, name): super(Solver, self).__init__(cfg) self.init_epoch = self.cfg['schedule'] net_name = self.cfg['algorithm'].lower() lib = importlib.import_module('model.' + net_name) net = lib.Net self.model = net( num_channels=self.cfg['data']['n_colors'], base_filter=64, scale_factor=self.cfg['data']['upsacle'], args = self.cfg ) self.train_dataset = get_data(self.cfg, str(self.cfg['train_dataset'])+'/'+str(name)+'.png', str(self.cfg['train_dataset'])+'/'+str(name)+'.png', self.cfg['data']['upsacle']) self.train_loader = DataLoader(self.train_dataset, self.cfg['data']['batch_size'], shuffle=False, num_workers=self.num_workers) for iteration, batch in enumerate(self.train_loader, 1): lr, hr, bic, hr_ref, bic_ref, file_name = Variable(batch[0]), Variable(batch[1]), Variable(batch[2]), Variable(batch[4]), Variable(batch[5]), (batch[6]) self.hr_ref = hr_ref self.lr = lr self.file_name = file_name self.noise_init = get_noise(32, 'noise', (48*4, 48*4)) self.noise = self.noise_init.detach().clone() self.optimizer = maek_optimizer(self.cfg['schedule']['optimizer'], cfg, self.model.parameters()) self.loss = CycleLoss(scale=1/4, loss_type = 'MSE') self.log_name = self.cfg['algorithm'] + '_' + str(self.cfg['data']['upsacle']) + '_' + str(self.timestamp) # save log self.writer = SummaryWriter('log/' + str(self.log_name)) save_net_config(self.log_name, self.model) save_yml(cfg, os.path.join('log/' + str(self.log_name), 'config.yml')) def train(self): epoch_loss = 0 if self.cuda: self.noise = self.noise_init.cuda(self.gpu_ids[0]) + (self.noise.normal_() * 0.03).cuda(self.gpu_ids[0]) self.optimizer.zero_grad() self.model.train() self.sr, out = self.model(self.noise, self.hr_ref) self.noise = out.detach() loss, _ = self.loss(self.sr, self.lr) epoch_loss = epoch_loss + loss.data loss.backward() self.optimizer.step() self.records['Loss'].append(epoch_loss / len(self.train_loader)) self.writer.add_scalar('loss',self.records['Loss'][-1], self.epoch) print(str(self.epoch) + '/'+str(self.nEpochs), self.file_name, self.records['Loss'][-1]) def save_img(self, img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_dir=os.path.join('results/',self.cfg['test']['type']) if not os.path.exists(save_dir): os.makedirs(save_dir) save_fn = save_dir +'/'+ img_namezhengru cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0]) def check_gpu(self): self.cuda = self.cfg['gpu_mode'] torch.manual_seed(self.cfg['seed']) if self.cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") if self.cuda: torch.cuda.manual_seed(self.cfg['seed']) cudnn.benchmark = True gups_list = self.cfg['gpus'] self.gpu_ids = [] for str_id in gups_list: gid = int(str_id) if gid >=0: self.gpu_ids.append(gid) torch.cuda.set_device(self.gpu_ids[0]) self.loss = self.loss.cuda(self.gpu_ids[0]) self.model = self.model.cuda(self.gpu_ids[0]) self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu_ids) self.hr_ref = self.hr_ref.cuda(self.gpu_ids[0]) self.lr = self.lr.cuda(self.gpu_ids[0]) def check_pretrained(self): checkpoint = os.path.join(self.cfg['pretrain']['pre_folder'], self.cfg['pretrain']['pre_sr']) if os.path.exists(checkpoint): self.model.load_state_dict(torch.load(checkpoint, map_location=lambda storage, loc: storage)['net']) self.epoch = torch.load(checkpoint, map_location=lambda storage, loc: storage)['epoch'] if self.epoch > self.nEpochs: raise Exception("Pretrain epoch must less than the max epoch!") else: raise Exception("Pretrain path error!") def save_checkpoint(self): super(Solver, self).save_checkpoint() if self.records['Loss'] != [] and self.records['Loss'][-1] == np.array(self.records['Loss']).min(): self.save_img(self.sr[0].cpu().data, self.file_name[0]) def run(self): self.check_gpu() while self.epoch <= self.nEpochs: self.train() self.epoch += 1 self.save_img(self.sr[0].cpu().data, self.file_name[0]) # save_config(self.log_name, 'Training done.') ```
{ "source": "jiaming-wang/N_SR", "score": 2 }
#### File: N_SR/data/data.py ```python from os.path import join from torchvision.transforms import Compose, ToTensor from .dataset import Data, Data_test, Data_eval from torchvision import transforms import torch, h5py, numpy import torch.utils.data as data def transform(): return Compose([ ToTensor(), ]) def get_data(cfg, data_dir, upscale_factor): data_dir = join(cfg['data_dir'], data_dir) cfg = cfg return Data(data_dir, upscale_factor, cfg, transform=transform()) class DatasetFromHdf5(data.Dataset): def __init__(self, file_path): super(DatasetFromHdf5, self).__init__() hf = h5py.File(file_path) self.data = numpy.array(hf.get('data')) self.target = numpy.array(hf.get('label')) self.data = numpy.transpose(self.data, (0, 3, 1, 2)) self.target = numpy.transpose(self.target, (0, 3, 1, 2)) def __getitem__(self, index): return torch.from_numpy(self.data[index,:,:,:]).float(), torch.from_numpy(self.target[index,:,:,:]).float() def __len__(self): return self.data.shape[0] def get_test_data(cfg, data_dir, upscale_factor): data_dir = join(cfg['test']['data_dir'], data_dir) return Data_test(data_dir, upscale_factor, cfg, transform=transform()) def get_eval_data(cfg, data_dir, upscale_factor): data_dir = join(cfg['test']['data_dir'], data_dir) return Data_eval(data_dir, upscale_factor, cfg, transform=transform()) ``` #### File: N_SR/model/edsr.py ```python import os import torch import torch.nn as nn import torch.optim as optim from model.base_net import * # from torchvision.transforms import * from torch.autograd import Variable class Net(nn.Module): def __init__(self, args): super(Net, self).__init__() self.args = args num_channels = self.args['data']['n_colors'] scale_factor = self.args['data']['upsacle'] base_filter = 256 n_resblocks = 32 # self.sub_mean = MeanShift(args['data']['rgb_range']) # self.add_mean = MeanShift(args['data']['rgb_range'], sign=1) self.head = ConvBlock(num_channels, base_filter, 3, 1, 1, activation='relu', norm=None) body = [ ResnetBlock(base_filter, 3, 1, 1, 0.1, activation='relu', norm=None) for _ in range(n_resblocks) ] body.append(ConvBlock(base_filter, base_filter, 3, 1, 1, activation='relu', norm=None)) self.up = Upsampler(scale_factor, base_filter, activation=None) self.output_conv = ConvBlock(base_filter, num_channels, 3, 1, 1, activation='relu', norm=None) self.body = nn.Sequential(*body) # for m in self.modules(): # classname = m.__class__.__name__ # if classname.find('Conv2d') != -1: # # torch.nn.init.kaiming_normal_(m.weight) # torch.nn.init.xavier_uniform_(m.weight, gain=1) # if m.bias is not None: # m.bias.data.zero_() # elif classname.find('ConvTranspose2d') != -1: # # torch.nn.init.kaiming_normal_(m.weight) # torch.nn.init.xavier_uniform_(m.weight, gain=1) # if m.bias is not None: # m.bias.data.zero_() def forward(self, x): #x = self.sub_mean(x) x = self.head(x) res = x x = self.body(x) x = res + x x = self.up(x) x = self.output_conv(x) #x = self.add_mean(x) return x if __name__ == "__main__": input = Variable(torch.FloatTensor(1, 3, 40, 40)) model = Net(num_channels= 3,base_filter=1,scale_factor= 1,args= 1) out = model(input) print(out.shape) ``` #### File: N_SR/solver/testsolver.py ```python from solver.basesolver import BaseSolver import os, torch, time, cv2, importlib import torch.backends.cudnn as cudnn from data.data import * from torch.utils.data import DataLoader from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" class Testsolver(BaseSolver): def __init__(self, cfg): super(Testsolver, self).__init__(cfg) net_name = self.cfg['algorithm'].lower() lib = importlib.import_module('model.' + net_name) net = lib.Net self.model = net( args = self.cfg ) self.fmap_block = list() self.input_block = list() ## define hook def forward_hook(self, module, data_input, data_output): self.fmap_block.append(data_output) self.input_block.append(data_input) def check(self): self.cuda = self.cfg['gpu_mode'] torch.manual_seed(self.cfg['seed']) if self.cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") if self.cuda: torch.cuda.manual_seed(self.cfg['seed']) cudnn.benchmark = True gups_list = self.cfg['gpus'] self.gpu_ids = [] for str_id in gups_list: gid = int(str_id) if gid >=0: self.gpu_ids.append(gid) torch.cuda.set_device(self.gpu_ids[0]) self.model_path = os.path.join(self.cfg['checkpoint'], self.cfg['test']['model']) self.model = self.model.cuda(self.gpu_ids[0]) self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu_ids) self.model.load_state_dict(torch.load(self.model_path, map_location=lambda storage, loc: storage)['net']) def test(self): self.model.eval() avg_time= [] for batch in self.data_loader: input, target, bicubic, name = Variable(batch[0]), Variable(batch[1]), Variable(batch[2]), batch[3] if self.cuda: input = input.cuda(self.gpu_ids[0]) target = target.cuda(self.gpu_ids[0]) bicubic = bicubic.cuda(self.gpu_ids[0]) if self.cfg['algorithm'] == 'VDSR' or self.cfg['algorithm'] == 'SRCNN': input = bicubic ## hook # if self.cuda: # hadle_hook = self.model.module.res_b1.register_forward_hook(self.forward_hook) # else: # hadle_hook = self.model.res_b1.register_forward_hook(self.forward_hook) t0 = time.time() with torch.no_grad(): prediction = self.model(input) t1 = time.time() if self.cfg['data']['normalize'] : target = (target+1) /2 prediction = (prediction+1) /2 bicubic = (bicubic+1) /2 ## remove hook, save feature maps # hadle_hook.remove() # self.fmap_block = self.fmap_block[0].squeeze().detach().cpu() # self.fmap_block = (self.fmap_block*255).numpy().astype(np.uint8) # for i in range(0, self.fmap_block[0].shape[1]-1): # plt.imsave('./1/{}.png'.format(str(i)), self.fmap_block[i,:,:], cmap = plt.cm.jet) # self.fmap_block = list() # self.input_block = list() print("===> Processing: %s || Timer: %.4f sec." % (name[0], (t1 - t0))) avg_time.append(t1 - t0) self.save_img(bicubic.cpu().data, name[0][0:-4]+'_bic.png') self.save_img(target.cpu().data, name[0][0:-4]+'_gt.png') self.save_img(prediction.cpu().data, name[0][0:-4]+'.png') print("===> AVG Timer: %.4f sec." % (np.mean(avg_time))) def eval(self): self.model.eval() avg_time= [] for batch in self.data_loader: input, bicubic, name = Variable(batch[0]), Variable(batch[1]), batch[2] if self.cuda: input = input.cuda(self.gpu_ids[0]) bicubic = bicubic.cuda(self.gpu_ids[0]) t0 = time.time() with torch.no_grad(): prediction = self.model(input) t1 = time.time() print("===> Processing: %s || Timer: %.4f sec." % (name[0], (t1 - t0))) avg_time.append(t1 - t0) self.save_img(bicubic.cpu().data, name[0][0:-4]+'_Bic.png') self.save_img(prediction.cpu().data, name[0][0:-4]+'.png') print("===> AVG Timer: %.4f sec." % (np.mean(avg_time))) def save_img(self, img, img_name): save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0) # save img save_dir=os.path.join('results/',self.cfg['test']['type']) if not os.path.exists(save_dir): os.makedirs(save_dir) save_fn = save_dir +'/'+ img_name cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0]) def run(self): self.check() if self.cfg['test']['type'] == 'test': self.dataset = get_test_data(self.cfg, self.cfg['test']['test_dataset'], self.cfg['data']['upsacle']) self.data_loader = DataLoader(self.dataset, shuffle=False, batch_size=1, num_workers=self.cfg['threads']) self.test() elif self.cfg['test']['type'] == 'eval': self.dataset = get_eval_data(self.cfg, self.cfg['test']['test_dataset'], self.cfg['data']['upsacle']) self.data_loader = DataLoader(self.dataset, shuffle=False, batch_size=1, num_workers=self.cfg['threads']) self.eval() else: raise ValueError('Mode error!') ```
{ "source": "jiaming-wang/STP", "score": 2 }
#### File: STP/pytorch_code/two-stream.py ```python import numpy as np import os import scipy.io as scio import csv import pandas as pd def main(): path = './txt' path1 = './txt-rgb' all_num = 0 true_num = 0 for root, dirs, files in os.walk(path1): for filespath in files: txt_name = filespath rgb_txt = path1 + '/' + txt_name flow_txt = path + '/' + txt_name rgb_list = [] flow_list = [] all_list = [] csv_rgb = pd.read_csv(rgb_txt) csv_flow = pd.read_csv(flow_txt) result = np.array(csv_rgb)[1:,:] + np.array(csv_flow) probs = np.argmax(result/2, axis=1) label = txt_name.split('_')[1] if label == 'Inshore': num_label = 0 elif label == 'Offshore': num_label = 1 elif label == 'Neg': num_label = 2 elif label == 'Traffic': num_label = 3 probs = probs - num_label all_num = all_num + len(probs) true_num = true_num + np.sum(probs == 0) print(true_num/all_num) def load_mat(): path = './mat' for root, dirs, files in os.walk(path): for filespath in files: all_list = scio.loadmat(path + '/' + filespath)['data'] rgb_list1 = all_list[0][0] flow_list = all_list[0][1] rgb_list = rgb_list1[1:] for i in range(0, len(rgb_list)): result = np.add(np.array(rgb_list[i]) + np.array(flow_list[i])) if __name__ == '__main__': main() # load_mat() ```
{ "source": "jiamin-he/CSE-258", "score": 3 }
#### File: ref/code/pca.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import csv as csv from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.cross_validation import train_test_split from math import * from datetime import datetime import sklearn.cluster as cluster from sklearn.decomposition import PCA def split_list(alist, wanted_parts=1): length = len(alist) return [ alist[i*length // wanted_parts: (i+1)*length // wanted_parts] for i in range(wanted_parts) ] def rmsle(predicted, actual): error = 0 for i in range(len(actual)): error += pow(log(actual[i]+1)-log(predicted[i]+1), 2) return sqrt(error/len(actual)) def remove_negative(items): newlist = [] for item in items: if item>0: newlist.append(item) else: newlist.append(0) return newlist def getTimeData(df): datetime_values = df['datetime'].values hour_values = [] for datetime_value in datetime_values: datetime_object = datetime.strptime(datetime_value, '%Y-%m-%d %H:%M:%S') hour_values.append(datetime_object.hour) df['hour'] = hour_values return df def getMonthData(df): datetime_values = df['datetime'].values month_values = [] for datetime_value in datetime_values: datetime_object = datetime.strptime(datetime_value, '%Y-%m-%d %H:%M:%S') month_values.append(datetime_object.month) df['month'] = month_values return df def transform_data(df): epoch = datetime.utcfromtimestamp(0) datetime_values = df['datetime'].values time_values = [] date_values = [] month_values = [] year_values =[] weekday_values = [] isSunday_values = [] time_since_epoch_values = [] hour_cluster_values = [] month_cluster_values = [] for datetime_value in datetime_values: datetime_object = datetime.strptime(datetime_value, '%Y-%m-%d %H:%M:%S') time_values.append(datetime_object.hour) date_values.append(datetime_object.day) month_values.append(datetime_object.month) year_values.append(datetime_object.year-2011) weekday_values.append(datetime_object.weekday()) isSunday_values.append(1 if datetime_object.weekday() == 6 else 0) time_since_epoch_values.append(int((datetime_object-epoch).total_seconds()/3600)) hour_cluster_values.append(hour_clusters[datetime_object.hour]) month_cluster_values.append(month_clusters[datetime_object.month-1]) df['time'] = time_values df['date'] = date_values df['month'] = month_values df['year'] = year_values df['weekday'] = weekday_values df['isSunday'] = isSunday_values df['time_since_epoch'] = time_since_epoch_values df['hourCluster'] = hour_cluster_values df['monthCluster'] = month_cluster_values return df if __name__ == '__main__': df = pd.read_csv('../data/train.csv') test_df = pd.read_csv('../data/test.csv') hour_df = getTimeData(df) hour_cluster_data = hour_df.groupby(['hour']).agg(lambda x: x.mean())[['count']] hour_clust = cluster.KMeans(n_clusters=6) hour_clusters = np.array(hour_clust.fit_predict(split_list(hour_cluster_data.iloc[:,0].values,24))) month_df = getMonthData(df) month_cluster_data = month_df.groupby(['month']).agg(lambda x: x.mean())[['count']] month_clust = cluster.KMeans(n_clusters=4) month_clusters = np.array(month_clust.fit_predict(split_list(month_cluster_data.iloc[:,0].values,12))) df = transform_data(df) test_df = transform_data(test_df) df['count'] = [log(1+x) for x in df['count']] df['casual'] = [log(1+x) for x in df['casual']] df['registered'] = [log(1+x) for x in df['registered']] features = ['season','holiday','workingday','weather','temp','atemp','humidity','windspeed','time','weekday','year','monthCluster', 'hourCluster', 'isSunday', 'month', 'date'] X_train_date = df[['date']].values X_train_data = df[features].values y_train_data = df[['count', 'casual', 'registered']].values test_data = test_df[features].values pca = PCA(n_components=5) pca.fit(X_train_data) PCA(copy=True, n_components=2, whiten=False) print(pca.explained_variance_ratio_) ```
{ "source": "jiamo/aiobloom", "score": 2 }
#### File: aiobloom/aiobloom/aiobloom.py ```python import aioredis import math import hashlib from struct import unpack, pack # modify from https://github.com/jaybaird/python-bloomfilter/blob/master/pybloom/pybloom.py import sys try: import StringIO import cStringIO except ImportError: from io import BytesIO running_python_3 = sys.version_info[0] == 3 def range_fn(*args): return range(*args) def is_string_io(instance): return isinstance(instance, BytesIO) def make_hashfuncs(num_slices, num_bits): if num_bits >= (1 << 31): fmt_code, chunk_size = 'Q', 8 elif num_bits >= (1 << 15): fmt_code, chunk_size = 'I', 4 else: fmt_code, chunk_size = 'H', 2 total_hash_bits = 8 * num_slices * chunk_size if total_hash_bits > 384: hashfn = hashlib.sha512 elif total_hash_bits > 256: hashfn = hashlib.sha384 elif total_hash_bits > 160: hashfn = hashlib.sha256 elif total_hash_bits > 128: hashfn = hashlib.sha1 else: hashfn = hashlib.md5 fmt = fmt_code * (hashfn().digest_size // chunk_size) num_salts, extra = divmod(num_slices, len(fmt)) if extra: num_salts += 1 salts = tuple(hashfn(hashfn(pack('I', i)).digest()) for i in range_fn(num_salts)) def _make_hashfuncs(key): if isinstance(key, str): key = key.encode('utf-8') else: key = str(key).encode('utf-8') i = 0 for salt in salts: h = salt.copy() h.update(key) for uint in unpack(fmt, h.digest()): yield uint % num_bits i += 1 if i >= num_slices: return return _make_hashfuncs REDIS_MAX = 1 << 32 class BloomFilter(object): def __init__(self, capacity, error_rate=0.001, bloom_key='bloom_key', redis_pool=None): if not (0 < error_rate < 1): raise ValueError("Error_Rate must be between 0 and 1.") if not capacity > 0: raise ValueError("Capacity must be > 0") # given M = num_bits, k = num_slices, P = error_rate, n = capacity # k = log2(1/P) # solving for m = bits_per_slice # n ~= M * ((ln(2) ** 2) / abs(ln(P))) # n ~= (k * m) * ((ln(2) ** 2) / abs(ln(P))) # m ~= n * abs(ln(P)) / (k * (ln(2) ** 2)) num_slices = int(math.ceil(math.log(1.0 / error_rate, 2))) bits_per_slice = int(math.ceil( (capacity * abs(math.log(error_rate))) / (num_slices * (math.log(2) ** 2)))) self._setup(error_rate, num_slices, bits_per_slice, capacity, 0) self.bloom_key = bloom_key self.pool = redis_pool def _setup(self, error_rate, num_slices, bits_per_slice, capacity, count): self.error_rate = error_rate self.num_slices = num_slices self.bits_per_slice = bits_per_slice self.capacity = capacity self.num_bits = num_slices * bits_per_slice if self.num_bits >= REDIS_MAX: raise Exception(f"Can't use number of bits bigger than 2^32," f"you may need add error_rate or reduce capacity") self.count = count self.make_hashes = make_hashfuncs(self.num_slices, self.bits_per_slice) async def connect(self, redis_url='127.0.0.1:6379'): if self.pool: return host, _, port = redis_url.partition(':') if not port: port = 6379 try: port = int(port) except ValueError: raise ValueError(port) self.pool = await aioredis.create_redis_pool( (host, port), minsize=10, maxsize=60) print("redis_pool", self.pool, id(self.pool)) async def exist(self, key): hashes = self.make_hashes(key) hashes = list(hashes) offset = 0 with await self.pool as redis: bloom_filter = await redis.get(self.bloom_key) if not bloom_filter: return False # mean we don't add any key , just think no exists include = True for hash_position in hashes: index = offset + hash_position hash_byte_index = index // 8 if hash_byte_index >= len(bloom_filter): # the hash key is big then total it should not exist: return False bit_is_set = bloom_filter[hash_byte_index] >> (7 - index % 8) & 1 if not bit_is_set: include = False break offset += self.bits_per_slice return include async def add(self, key, skip_check=False): hashes = self.make_hashes(key) if self.count > self.capacity: raise IndexError("BloomFilter is at capacity") offset = 0 with await self.pool as redis: pipe = redis.pipeline() for hash_position in hashes: index = offset + hash_position pipe.setbit(self.bloom_key, index, 1) offset += self.bits_per_slice await pipe.execute() def __getstate__(self): d = self.__dict__.copy() del d['make_hashes'] return d def __setstate__(self, d): self.__dict__.update(d) self.make_hashes = make_hashfuncs(self.num_slices, self.bits_per_slice) ```
{ "source": "JiamoLiu/DEAL_Twitter", "score": 3 }
#### File: DEAL_Twitter/baseline_code/create_dataset.py ```python import json import itertools from typing import ValuesView import pandas as pd import sys import numpy from scipy import sparse from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix import scipy.sparse import ELMO import math from_link_file = "bidirectional_test.txt" from_data_file = "test_node_data.json" adj_file_name = "A_sp.npz" train_adj_file_name = "ind_train_A.npz" train_attr_file_name = "ind_train_X.npz" attr_file_name = "X_sp.npz" nodes_file_name = "nodes_keep.npy" ones_zeroes_file = "pv0.10_pt0.00_pn0.10_arrays.npz" number_of_samples = 170 train_range = 0.72 val_range = 0.08 def read_json_as_dict(filename, items_needed): with open(filename) as handle: jsondict = json.loads(handle.read()) return dict(itertools.islice(jsondict.items(),items_needed)) def read_txt_pandas(filename,deli = " ",first_n = 100): f = pd.read_csv(filename, delimiter = deli,names= ["A","B"]).head(first_n) return f def get_unique_node_ids(pandas_in): column_values = pandas_in[["A","B"]].values.ravel() unique_values = pd.unique(column_values) #print(unique_values) return unique_values def get_number_of_unique_nodes(pandas_in): column_values = pandas_in[["A","B"]].values.ravel() unique_values = pd.unique(column_values) return unique_values.shape[0] def index_id_as_dict(input_array): res = {} for i in range(len(input_array)): res[input_array[i]] = i #print(res) return res def get_adj_as_sparse(node_index, pandas_in): input_rows = pandas_in.shape[0] unique_nodes_number = get_number_of_unique_nodes(pandas_in) row_1s = numpy.zeros(input_rows*2) col_1s = numpy.zeros(input_rows*2) for index, row in pandas_in.iterrows(): row_1s[index] = node_index[row["A"]] col_1s[index] = node_index[row["B"]] row_1s[index +input_rows] = node_index[row["B"]] col_1s[index + input_rows] = node_index[row["A"]] values = numpy.ones(2*input_rows) return coo_matrix((values, (row_1s, col_1s)), shape=(unique_nodes_number,unique_nodes_number)).tocsr() def get_node_attr_as_array(sparse_adj, node_index, attr_dict): reverse_node_index = {value:key for key, value in node_index.items()} res = [] for i in range(sparse_adj.shape[0]): res.append(attr_dict[str(reverse_node_index[i])]) return res def get_elmo_embedding_as_sparse(text_aray): res = [] counter = 0 for node_data in text_aray: res.append(ELMO.embed_sentence(node_data).detach().numpy()) counter = counter + 1 return csr_matrix(res) def save_node_index(node_dict): value = list(node_dict.values()) with open(nodes_file_name, 'wb') as f: numpy.save(f, numpy.array(value)) def get_link_ones(pandas_in, node_index): res = [] for index, row in pandas_in.iterrows(): res.append([node_index[row["A"]],node_index[row["B"]]]) return numpy.array(res) def get_linked_nodes_and_links_from_sparse(sparse_adj): res = [] connected = [] disconnected = [] for i in range(sparse_adj.shape[0]): for j in range(sparse_adj.shape[1]): if i == j: continue if (sparse_adj[i,j] == 1): if i not in res: res.append(i) if j not in res: res.append(j) if ([i,j] not in connected and [j,i] not in connected): connected.append([i,j]) if (sparse_adj[i,j] == 0): if ([i,j] not in disconnected and [j,i] not in disconnected): disconnected.append([i,j]) print(sparse_adj.shape) return numpy.array(sorted(res)), numpy.array(connected), numpy.array(disconnected) def generate_train_val_test_samples(sparse_adj,node_index,node_data): number_of_nodes = sparse_adj.shape[0] train_stop = math.floor(number_of_nodes * (train_range + val_range)) val_start = math.floor(number_of_nodes * (train_range)) #print(train_stop) #print(val_start) train_adj_matrix = sparse_adj[0:train_stop,0:train_stop] train_linked_nodes,train_ones,train_zeroes = get_linked_nodes_and_links_from_sparse(train_adj_matrix) val_adj_matrix = sparse_adj[val_start: train_stop, 0:train_stop] linked_nodes,val_ones,val_zeroes = get_linked_nodes_and_links_from_sparse(val_adj_matrix) #print(val_adj_matrix) test_adj_matrix = sparse_adj[train_stop : sparse_adj.shape[0],:] linked_nodes,test_ones,test_zeroes = get_linked_nodes_and_links_from_sparse(test_adj_matrix) attr_arr = get_node_attr_as_array(train_adj_matrix, node_index, node_data) train_sentence_embed_matrix = get_elmo_embedding_as_sparse(attr_arr) print(train_sentence_embed_matrix.shape) numpy.savez(ones_zeroes_file, train_ones,val_ones,val_zeroes,test_ones,test_zeroes) scipy.sparse.save_npz(train_adj_file_name,train_adj_matrix) scipy.sparse.save_npz(train_attr_file_name,train_sentence_embed_matrix) #print(train_pandas) if __name__ == "__main__": dict = read_json_as_dict(from_data_file, sys.maxsize) links = read_txt_pandas(from_link_file,first_n= number_of_samples) node_ids = get_unique_node_ids(links) node_index = index_id_as_dict(node_ids) adj_matrix = get_adj_as_sparse(node_index,links) save_node_index(node_index) generate_train_val_test_samples(adj_matrix, node_index, dict) #get_training_adj_attr(links, dict, adj_matrix) ```
{ "source": "jiamo/pcc", "score": 3 }
#### File: pcc/ast/ast.py ```python class ASTNode(object): def dump(self, indent=0): raise NotImplementedError class ExprAST(ASTNode): pass class NumberExprAST(ExprAST): def __init__(self, val): self.val = val def dump(self, indent=0): return '{0}{1}[{2}]'.format( ' ' * indent, self.__class__.__name__, self.val) class VariableExprAST(ExprAST): def __init__(self, name): self.name = name def dump(self, indent=0): return '{0}{1}[{2}]'.format( ' ' * indent, self.__class__.__name__, self.name) class VarExprAST(ExprAST): def __init__(self, vars, body): # vars is a sequence of (name, init) pairs self.vars = vars self.body = body def dump(self, indent=0): prefix = ' ' * indent s = '{0}{1}\n'.format(prefix, self.__class__.__name__) for name, init in self.vars: s += '{0} {1}'.format(prefix, name) if init is None: s += '\n' else: s += '=\n' + init.dump(indent+2) + '\n' s += '{0} Body:\n'.format(prefix) s += self.body.dump(indent + 2) return s class UnaryExprAST(ExprAST): def __init__(self, op, operand): self.op = op self.operand = operand def dump(self, indent=0): s = '{0}{1}[{2}]\n'.format( ' ' * indent, self.__class__.__name__, self.op) s += self.operand.dump(indent + 2) return s class BinaryExprAST(ExprAST): def __init__(self, op, lhs, rhs): self.op = op self.lhs = lhs self.rhs = rhs def dump(self, indent=0): s = '{0}{1}[{2}]\n'.format( ' ' * indent, self.__class__.__name__, self.op) s += self.lhs.dump(indent + 2) + '\n' s += self.rhs.dump(indent + 2) return s class IfExprAST(ExprAST): def __init__(self, cond_expr, then_expr, else_expr): self.cond_expr = cond_expr self.then_expr = then_expr self.else_expr = else_expr def dump(self, indent=0): prefix = ' ' * indent s = '{0}{1}\n'.format(prefix, self.__class__.__name__) s += '{0} Condition:\n{1}\n'.format( prefix, self.cond_expr.dump(indent + 2)) s += '{0} Then:\n{1}\n'.format( prefix, self.then_expr.dump(indent + 2)) s += '{0} Else:\n{1}'.format( prefix, self.else_expr.dump(indent + 2)) return s class ForExprAST(ExprAST): def __init__(self, id_name, start_expr, end_expr, step_expr, body): self.id_name = id_name self.start_expr = start_expr self.end_expr = end_expr self.step_expr = step_expr self.body = body def dump(self, indent=0): prefix = ' ' * indent s = '{0}{1}\n'.format(prefix, self.__class__.__name__) s += '{0} Start [{1}]:\n{2}\n'.format( prefix, self.id_name, self.start_expr.dump(indent + 2)) s += '{0} End:\n{1}\n'.format( prefix, self.end_expr.dump(indent + 2)) s += '{0} Step:\n{1}\n'.format( prefix, self.step_expr.dump(indent + 2)) s += '{0} Body:\n{1}\n'.format( prefix, self.body.dump(indent + 2)) return s class CallExprAST(ExprAST): def __init__(self, callee, args): self.callee = callee self.args = args def dump(self, indent=0): s = '{0}{1}[{2}]\n'.format( ' ' * indent, self.__class__.__name__, self.callee) for arg in self.args: s += arg.dump(indent + 2) + '\n' return s[:-1] # snip out trailing '\n' class PrototypeAST(ASTNode): def __init__(self, name, argnames, isoperator=False, prec=0): self.name = name self.argnames = argnames self.isoperator = isoperator self.prec = prec def is_unary_op(self): return self.isoperator and len(self.argnames) == 1 def is_binary_op(self): return self.isoperator and len(self.argnames) == 2 def get_op_name(self): assert self.isoperator return self.name[-1] def dump(self, indent=0): s = '{0}{1} {2}({3})'.format( ' ' * indent, self.__class__.__name__, self.name, ', '.join(self.argnames)) if self.isoperator: s += '[operator with prec={0}]'.format(self.prec) return s class FunctionAST(ASTNode): def __init__(self, proto, body): self.proto = proto self.body = body _anonymous_function_counter = 0 @classmethod def create_anonymous(klass, expr): """Create an anonymous function to hold an expression.""" klass._anonymous_function_counter += 1 return klass( PrototypeAST('_anon{0}'.format(klass._anonymous_function_counter), []), expr) def is_anonymous(self): return self.proto.name.startswith('_anon') def dump(self, indent=0): s = '{0}{1}[{2}]\n'.format( ' ' * indent, self.__class__.__name__, self.proto.dump()) s += self.body.dump(indent + 2) + '\n' return s ``` #### File: pcc/codegen/c_codegen.py ```python import llvmlite.ir as ir from collections import ChainMap from contextlib import contextmanager from llvmlite.ir import IRBuilder from ..ast import c_ast as c_ast bool_t = ir.IntType(1) int8_t = ir.IntType(8) int32_t = ir.IntType(32) int64_t = ir.IntType(64) voidptr_t = int8_t.as_pointer() int64ptr_t = int64_t.as_pointer() true_bit = bool_t(1) false_bit = bool_t(0) true_byte = int8_t(1) false_byte = int8_t(0) cstring = voidptr_t class CodegenError(Exception): pass def get_ir_type(type_str): # only support int and double if type_str == "int": ir_type = int64_t else: ir_type = ir.DoubleType() return ir_type def get_ir_type_from_node(node): if isinstance(node.type, c_ast.PtrDecl): # only support one level ptr just for simple use return_type_str = node.type.type.type.names[0] if return_type_str == "int": data_ir_type = ir.IntType(64) else: data_ir_type = ir.DoubleType() ir_type = ir.PointerType(data_ir_type) else: return_type_str = node.type.type.names[0] if return_type_str == "int": ir_type = ir.IntType(64) else: ir_type = ir.DoubleType() return ir_type class LLVMCodeGenerator(object): def __init__(self): self.module = ir.Module() # self.builder = None self.func_symtab = {} self.func_tyinfo = {} self.global_symtab = {} self.global_tyinfo = {} self.global_builder:IRBuilder = ir.IRBuilder() self.in_builder = None self.env = ChainMap() self.nlabels = 0 self.function = None self.in_global = True fnty = ir.FunctionType(int32_t, [cstring], var_arg=True) callee_func = ir.Function(self.module, fnty, name="printf") fnty1 = ir.FunctionType(int64ptr_t, [int64_t], var_arg=True) callee_func1 = ir.Function(self.module, fnty1, name="malloc") self.define('printf', (fnty, callee_func)) self.define('malloc', (fnty1, callee_func1)) def define(self, name, val): self.env[name] = val def lookup(self, name): return self.env[name] def new_label(self, name): self.nlabels += 1 return f'label_{name}_{self.nlabels}' @contextmanager def new_scope(self): self.env = self.env.new_child() yield self.env = self.env.parents @contextmanager def new_function(self): oldfunc = self.function oldbuilder = self.builder self.in_global = False try: yield finally: self.function = oldfunc self.builder = oldbuilder self.in_global = True def generate_code(self, node): normal = self.codegen(node) # for else end have no instruction if self.builder: if not self.builder.block.is_terminated: self.builder.ret(ir.Constant(ir.IntType(64), int(0))) return normal def create_entry_block_alloca( self, name, type_str, size, array_list=None, point_level=0): ir_type = None if type_str == "int": ir_type = ir.IntType(64) elif type_str == "double": ir_type = ir.DoubleType() if array_list is not None: reversed_list = reversed(array_list) for dim in reversed_list: ir_type = ir.ArrayType(ir_type, dim) ir_type.dim_array = array_list if point_level != 0: for level in range(point_level): ir_type = ir.PointerType(ir_type) if not self.in_global: ret = self.builder.alloca(ir_type, size=None, name=name) self.define(name, (ir_type, ret)) else: ret = ir.GlobalVariable(self.module, ir_type, name) self.define(name, (ir_type, ret)) return ret, ir_type def codegen(self, node): method = 'codegen_' + node.__class__.__name__ return getattr(self, method)(node) def codegen_FileAST(self, node): for ext in node.ext: self.codegen(ext) def codegen_NumberExprAST(self, node): return ir.values.Constant(ir.DoubleType(), float(node.val)), None def codegen_Constant(self, node): node.show() if node.type == "int": return ir.values.Constant(ir.IntType(64), int(node.value)), None elif node.type == 'string': b = bytearray(node.value[1:-1] + '\00', encoding='ascii') n = len(b) array = ir.ArrayType(ir.IntType(8), n) tmp = ir.values.Constant( array, b) return tmp , None else: return ir.values.Constant(ir.DoubleType(), float(node.value)), None def codegen_Assignment(self, node): node.show() lv, lv_addr = self.codegen(node.lvalue) rv, _ = self.codegen(node.rvalue) result = None dispatch_type_double = 1 dispatch_type_int = 0 dispatch_dict = { ("+=", dispatch_type_double): self.builder.fadd, ("+=", dispatch_type_int): self.builder.add, ("-=", dispatch_type_double): self.builder.fsub, ("-=", dispatch_type_int): self.builder.sub, } if isinstance(lv.type, ir.IntType) and isinstance(rv.type, ir.IntType): dispatch_type = dispatch_type_int else: dispatch_type = dispatch_type_double dispatch = (node.op, dispatch_type) handle = dispatch_dict.get(dispatch) if node.op == '=': result = self.builder.store(rv, lv_addr) else: addresult = handle(lv, rv, 'addtmp') result = self.builder.store(addresult, lv_addr) return result, None def codegen_VariableExprAST(self, node): var_addr = self.func_symtab[node.name] return self.builder.load(var_addr, node.name), None def codegen_UnaryExprAST(self, node): operand, _ = self.codegen(node.operand) func = self.module.globals.get('unary{0}'.format(node.op)) return self.builder.call(func, [operand], 'unop'), None def codegen_UnaryOp(self, node): node.show() result = None result_ptr = None # import pdb;pdb.set_trace() # TODO at now just support int ++ if node.op == "p++": _, lv_addr = self.lookup(node.expr.name) lv = self.builder.load(lv_addr, node.expr.name) rv = ir.Constant(ir.IntType(64), 1) addresult = self.builder.add(lv, rv, 'addtmp') result = self.builder.store(addresult, lv_addr), None if node.op == "p--": _, lv_addr = self.lookup(node.expr.name) lv = self.builder.load(lv_addr, node.expr.name) rv = ir.Constant(ir.IntType(64), 1) addresult = self.builder.sub(lv, rv, 'addtmp') result = self.builder.store(addresult, lv_addr) if node.op == '*': name_ir, name_ptr = self.codegen(node.expr) # result_ptr = self.builder.load(name_ptr) result_ptr = name_ir result = self.builder.load(result_ptr) if node.op == '&': name_ir, name_ptr = self.codegen(node.expr) result_ptr = name_ptr result = result_ptr # got point from value is the result return result, result_ptr def codegen_BinaryOp(self, node): lhs, _ = self.codegen(node.left) rhs, _ = self.codegen(node.right) # import pdb;pdb.set_trace() dispatch_type_double = 1 dispatch_type_int = 0 dispatch_dict = { ("+", dispatch_type_double): self.builder.fadd, ("+", dispatch_type_int): self.builder.add, ("-", dispatch_type_double): self.builder.fsub, ("-", dispatch_type_int): self.builder.sub, ("*", dispatch_type_double): self.builder.fmul, ("*", dispatch_type_int): self.builder.mul, } if isinstance(lhs.type, ir.IntType) and isinstance(rhs.type, ir.IntType): dispatch_type = dispatch_type_int else: dispatch_type = dispatch_type_double dispatch = (node.op, dispatch_type) handle = dispatch_dict.get(dispatch) # import pdb;pdb.set_trace() if node.op in ['+', '-', '*']: return handle(lhs, rhs, 'tmp'), None elif node.op in [">", "<", ">=", "<=", "!=", "=="]: if dispatch_type == dispatch_type_int: cmp = self.builder.icmp_signed(node.op, lhs, rhs, 'cmptmp') return self.builder.uitofp(cmp, ir.DoubleType(), 'booltmp'), None else: cmp = self.builder.fcmp_unordered(node.op, lhs, rhs, 'cmptmp') return self.builder.uitofp(cmp, ir.DoubleType(), 'booltmp'), None else: func = self.module.globals.get('binary{0}'.format(node.op)) return self.builder.call(func, [lhs, rhs], 'binop'), None def codegen_If(self, node): node.show() cond_val, _ = self.codegen(node.cond) cmp = self.builder.fcmp_ordered( '!=', cond_val, ir.Constant(ir.DoubleType(), 0.0)) then_bb = self.builder.function.append_basic_block('then') else_bb = self.builder.function.append_basic_block('else') merge_bb = self.builder.function.append_basic_block('ifend') self.builder.cbranch(cmp, then_bb, else_bb) with self.new_scope(): self.builder.position_at_end(then_bb) then_val, _ = self.codegen(node.iftrue) # while true { # n = n + 1; # if n == 5 { # continue; # we cant't reach after continue # } if not then_bb.is_terminated: self.builder.branch(merge_bb) with self.new_scope(): self.builder.position_at_end(else_bb) if node.iffalse: elseval, _ = self.codegen(node.iffalse) if not else_bb.is_terminated: self.builder.branch(merge_bb) # context.builder.branch(merge) self.builder.position_at_end(merge_bb) # begin at end to generate code # self.builder.block = merge_bb return None, None def codegen_NoneType(self, node): return None, None def codegen_For(self, node): saved_block = self.builder.block self.builder.position_at_end( saved_block) # why the save_block at the end start_val, _ = self.codegen(node.init) # The builder is what? loop is a block which begin with loop test_bb = self.builder.function.append_basic_block('test') loop_bb = self.builder.function.append_basic_block('loop') next_bb = self.builder.function.append_basic_block('next') # append by name nor just add it after_loop_label = self.new_label("afterloop") after_bb = ir.Block(self.builder.function, after_loop_label) # self.builder.function.append_basic_block('afterloop') self.builder.branch(test_bb) self.builder.position_at_end(test_bb) endcond, _ = self.codegen(node.cond) cmp = self.builder.fcmp_ordered( '!=', endcond, ir.values.Constant(ir.DoubleType(), 0.0), 'loopcond') self.builder.cbranch(cmp, loop_bb, after_bb) with self.new_scope(): self.define('break', after_bb) self.define('continue', next_bb) self.builder.position_at_end(loop_bb) body_val, _ = self.codegen(node.stmt) # if was ready codegen self.builder.branch(next_bb) self.builder.position_at_end(next_bb) self.codegen(node.next) self.builder.branch(test_bb) # this append_basic_blook change the label # after_bb = self.builder.function.append_basic_block(after_loop_label) self.builder.function.basic_blocks.append(after_bb) self.builder.position_at_end(after_bb) return ir.values.Constant(ir.DoubleType(), 0.0), None def codegen_While(self, node): node.show() saved_block = self.builder.block id_name = node.__class__.__name__ self.builder.position_at_end(saved_block) # The builder is what? loop is a block which begin with loop test_bb = self.builder.function.append_basic_block('test') # just create some block need to be filled loop_bb = self.builder.function.append_basic_block('loop') after_bb = self.builder.function.append_basic_block('afterloop') self.builder.branch(test_bb) self.builder.position_at_start(test_bb) endcond, _ = self.codegen(node.cond) cmp = self.builder.fcmp_ordered( '!=', endcond, ir.values.Constant(ir.DoubleType(), 0.0), 'loopcond') self.builder.cbranch(cmp, loop_bb, after_bb) with self.new_scope(): self.define('break', after_bb) self.define('continue', test_bb) self.builder.position_at_end(loop_bb) body_val, _ = self.codegen(node.stmt) # after eval body we need to goto test_bb # New code will be inserted into after_bb self.builder.branch(test_bb) self.builder.position_at_end(after_bb) # The 'for' expression always returns 0 return ir.values.Constant(ir.DoubleType(), 0.0) def codegen_Break(self, node): self.builder.branch(self.lookup('break')) def codegen_Continue(self, node): self.builder.branch(self.lookup('continue')) def codegen_Cast(self, node): node.show() expr, ptr = self.codegen(node.expr) dest_type_str = node.to_type.type.type.names[0] match (type(expr.type), dest_type_str): # ir.types different from ir.IntType case (ir.types.DoubleType, "int"): return self.builder.fptosi(expr, int64_t), None def codegen_FuncCall(self, node): node.show() callee = None if isinstance(node.name, c_ast.ID): callee = node.name.name _, callee_func = self.lookup(callee) call_args = [] if node.args: call_args = [self.codegen(arg)[0] for arg in node.args.exprs] # just for see and hard code it if callee == "printf": data_fmt = call_args[0] global_fmt = ir.GlobalVariable( self.module, data_fmt.type, "printf_format") global_fmt.initializer = data_fmt format_ptr = self.builder.bitcast(global_fmt, cstring) return self.builder.call( callee_func, [format_ptr]+call_args[1:], 'calltmp'), None elif callee == 'malloc': return self.builder.call( callee_func, call_args[0:], 'calltmp'), None else: if callee_func is None or not isinstance(callee_func, ir.Function): raise CodegenError('Call to unknown function', node.callee) if node.args and len(callee_func.args) != len(node.args.exprs): raise CodegenError('Call argument length mismatch', node.callee) return self.builder.call(callee_func, call_args, 'calltmp'), None def codegen_Decl(self, node): if isinstance(node.type, c_ast.TypeDecl): type_str = node.type.type.names[0] # import pdb;pdb.set_trace() if type_str == "int": ir_type = ir.IntType(64) init = 0 else: ir_type = ir.DoubleType() init = 0.0 # import pdb;pdb.set_trace() if node.init is not None: init_val, _ = self.codegen(node.init) else: init_val = ir.values.Constant(ir_type, init) var_addr, var_ir_type = self.create_entry_block_alloca( node.name, type_str, 1) if isinstance(init_val.type, ir.IntType) and \ isinstance(ir_type, ir.DoubleType): if self.builder: init_val = self.builder.uitofp(init_val, ir.DoubleType(), 'booltmp') if self.in_global: var_addr.initializer = init_val else: self.builder.store(init_val, var_addr) elif isinstance(node.type, c_ast.ArrayDecl): # At now only support Int array_list = [] array_node = node.type while True: array_next_type = array_node.type if isinstance(array_next_type, c_ast.TypeDecl): array_list.append(int(array_node.dim.value)) type_str = array_next_type.type.names[0] break elif isinstance(array_next_type, c_ast.ArrayDecl): array_list.append(int(array_node.dim.value)) array_node = array_next_type continue pass var_addr, var_ir_type = self.create_entry_block_alloca( node.name, type_str, 1, array_list) elif isinstance(node.type, c_ast.PtrDecl): point_level = 1 # the type is recursive. sub_node = node.type while True: sub_next_type = sub_node.type if isinstance(sub_next_type, c_ast.TypeDecl): # pointer_list.append(int(sub_node.dim.value)) # type_str = sub_next_type.type.names[0] break elif isinstance(sub_next_type, c_ast.PtrDecl): # At now I only care about **P not *a[4] # make the easy work done first point_level += 1 sub_node = sub_next_type continue pass var_addr, var_ir_type= self.create_entry_block_alloca( node.name, type_str, 1, point_level=point_level) else: return None, None return None, var_addr def codegen_ID(self, node): node.show() valtype, var = self.lookup(node.name) node.ir_type = valtype return self.builder.load(var), var def codegen_ArrayRef(self, node): node.show() name = node.name subscript = node.subscript name_ir, name_ptr = self.codegen(name) value_ir_type = name.ir_type.element subscript_ir, subscript_ptr = self.codegen(subscript) if len(name.ir_type.dim_array) > 1: level_lenth = name.ir_type.dim_array[-1] * 8 else: level_lenth = 1 * 8 dim_lenth = ir.Constant(ir.IntType(64), level_lenth) subscript_ir = self.builder.fptoui(subscript_ir, ir.IntType(64)) subscript_value_in_array = self.builder.mul( dim_lenth, subscript_ir, "array_add") name_ptr_int = self.builder.ptrtoint(name_ptr, ir.IntType(64)) value_ptr = self.builder.add( subscript_value_in_array, name_ptr_int, 'addtmp') # import pdb;pdb.set_trace() value_ptr = self.builder.inttoptr( value_ptr, ir.PointerType(value_ir_type)) value_result = self.builder.load(value_ptr) # the node.ir_type should be used in somewhere node.ir_type = name.ir_type.gep(ir.Constant(ir.IntType(64), 0)) node.ir_type.dim_array = name.ir_type.dim_array[:-1] return value_result, value_ptr def codegen_stmt(self, node): typ = type(node) if typ in ( c_ast.Decl, c_ast.Assignment, c_ast.Cast, c_ast.UnaryOp, c_ast.BinaryOp, c_ast.TernaryOp, c_ast.FuncCall, c_ast.ArrayRef, c_ast.StructRef): return self.codegen(node)[0], None elif typ in (c_ast.Compound,): # No extra indentation required before the opening brace of a # compound - because it consists of multiple lines it has to # compute its own indentation. return self.codegen(node)[0], None def codegen_Return(self, node): node.show() retval, _ = self.codegen(node.expr) self.builder.ret(retval), None def codegen_Compound(self, node): node.show() if node.block_items: for stmt in node.block_items: self.codegen(stmt) return None, None def codegen_FuncDecl(self, node): node.show() if isinstance(node.type, c_ast.PtrDecl): # only support one level ptr just for simple use return_type_str = node.type.type.type.names[0] if return_type_str == "int": data_ir_type = ir.IntType(64) else: data_ir_type = ir.DoubleType() ir_type = ir.PointerType(data_ir_type) else: return_type_str = node.type.type.names[0] if return_type_str == "int": ir_type = ir.IntType(64) else: ir_type = ir.DoubleType() return ir_type, None def codegen_FuncDef(self, node): node.show() # import pdb;pdb.set_trace() # deep level func have deep level self.in_builder = False # we don't want funcdecl in codegen_decl too ir_type, _ = self.codegen(node.decl.type) funcname = node.decl.name if funcname == "main": self.return_type = ir_type # for call in C arg_types = [] if node.decl.type.args: for arg_type in node.decl.type.args.params: arg_types.append(get_ir_type_from_node(arg_type)) with self.new_function(): self.function = ir.Function( self.module, ir.FunctionType(ir_type, arg_types), name=funcname) self.block = self.function.append_basic_block() self.builder = ir.IRBuilder(self.block) self.define(funcname, (ir_type, self.function)) if node.decl.type.args: for i, p in enumerate(node.decl.type.args.params): arg_type = arg_types[i] # breakpoint() var = self.builder.alloca(arg_type, name=p.name) self.define(p.name, (arg_type, var)) self.builder.store(self.function.args[i], var) self.codegen(node.body) if not self.builder.block.is_terminated: self.builder.ret(ir.Constant(ir.IntType(64), int(0))) return None, None def codegen_FunctionAST(self, node): self.func_symtab = {} func, _ = self.codegen(node.proto) bb_entry = func.append_basic_block('entry') self.builder = ir.IRBuilder(bb_entry) # Add all arguments to the symbol table and create their allocas for i, arg in enumerate(func.args): arg.name = node.proto.argnames[i] alloca = self.builder.alloca(ir.DoubleType(), name=arg.name) self.builder.store(arg, alloca) self.func_symtab[arg.name] = alloca retval, _ = self.codegen(node.body) self.builder.ret(retval) return func, None ``` #### File: pcc/tests/test_array.py ```python import sys import os this_dir = os.path.dirname(__file__) parent_dir = os.path.dirname(this_dir) sys.path.insert(0, parent_dir) from pcc.evaluater.c_evaluator import CEvaluator import unittest class TestArray(unittest.TestCase): # def _assert_body(self, toplevel, expected): # """Assert the flattened body of the given toplevel function""" # self.assertIsInstance(toplevel, FunctionAST) # self.assertEqual(self._flatten(toplevel.body), expected) def test_array(self): # Evaluate some code. pcc = CEvaluator() ret = pcc.evaluate(''' int main(){ int i = 1; int j = 1; int a[100]; int len = 100; int len2 = 10; int sum = 0 ; for(i = 0; i < len ; i++){ a[i] = i + 1; } for(i = 0; i < len ; i++){ sum += a[i]; } return sum ; } ''', llvmdump=True) print("The answer is %d"%ret) assert (ret == 5050) if __name__ == '__main__': unittest.main() ``` #### File: pcc/tests/test_c_evluater.py ```python import sys import os this_dir = os.path.dirname(__file__) parent_dir = os.path.dirname(this_dir) sys.path.insert(0, parent_dir) from pcc.evaluater.c_evaluator import CEvaluator import unittest import unittest class TestCevluatar(unittest.TestCase): def test_simple(self): pcc = CEvaluator() # kalei.evaluate('def binary: 1 (x y) y') ret = pcc.evaluate(''' int add(int x, int y){ return x + y; } int main(){ int a = 3; int b = 4; return add(a, b); } ''', llvmdump=True) print("The answer is {}".format(ret)) assert (ret == 7) # This is a good point to self start main # print(pcc.evaluate('main()')) if __name__ == '__main__': # Evaluate some code # if __name__ == '__main__': unittest.main() ``` #### File: pcc/tests/test_simple_init_func_assign.py ```python import os import sys this_dir = os.path.dirname(__file__) parent_dir = os.path.dirname(this_dir) sys.path.insert(0, parent_dir) from pcc.evaluater.c_evaluator import CEvaluator import unittest class TestSimpleFunc(unittest.TestCase): def test_init_assign_func_call(self): pcc = CEvaluator() ret = pcc.evaluate(''' int f(int x){ return 4; } int main(){ int a = 3; int b = f(3); if (b > a){ b += 3; } return b - a ; } ''', llvmdump=True) print("The answer is %d" % ret) ```
{ "source": "jiamo/pfcm", "score": 2 }
#### File: pfcm/tests/test_async_pfcm.py ```python from pfcm.pfcm import Pfcm, FcmAPI import os import yaml import datetime import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) parent_dir = os.path.dirname(cur_dir) print(parent_dir) private_file = os.path.join(parent_dir, 'service_token.json') with open('config.yml') as f: config = yaml.load(f.read()) print(config) project_name = config["default"]["project_name"] registration_id = config["default"]["one_token"] @pytest.mark.asyncio async def test_pfcm_send_one_device(event_loop): message_title = "one device" message_body = "{} body of message".format(datetime.datetime.now()) fsmapi = FcmAPI(project_name, private_file, event_loop) pfcm = Pfcm(fsmapi) for i in range(10): results = await pfcm.send_msg_async( registration_id=registration_id, message_title=message_title, message_body=message_body) for result in results: print(result) ``` #### File: pfcm/tests/test_pfcm.py ```python from pfcm.pfcm import Pfcm, FcmAPI import os import yaml import datetime cur_dir = os.path.dirname(os.path.abspath(__file__)) parent_dir = os.path.dirname(cur_dir) print(parent_dir) private_file = os.path.join(parent_dir, 'service_token.json') with open('config.yml') as f: config = yaml.load(f.read()) print(config) project_name = config["default"]["project_name"] registration_id = config["default"]["one_token"] def test_pfcm_send_one_device(): message_title = "one device" message_body = "{} body of message".format(datetime.datetime.now()) fsmapi = FcmAPI(project_name, private_file) pfcm = Pfcm(fsmapi) for i in range(10): results = pfcm.send_msg( registration_id=registration_id, message_title=message_title, message_body=message_body) for result in results: print(result) def test_pfcm_send_topic(): message_title = "topic" message_body = "{} body of message".format(datetime.datetime.now()) fsmapi = FcmAPI(project_name, private_file) pfcm = Pfcm(fsmapi) topic = "Global_Topic_Dev" results = pfcm.send_msg( topic=topic, message_title=message_title, message_body=message_body) for result in results: print(result) ```
{ "source": "jiamo/polly_read", "score": 3 }
#### File: polly_read/polly_read/txt_to_ssml.py ```python import boto3 from botocore.exceptions import BotoCoreError, ClientError from contextlib import closing from .ssml_builder import Paragraph import argparse import os import io import sys import textwrap import glob polly = boto3.client("polly") voices = ['Geraint', 'Gwyneth', 'Mads', 'Naja', 'Hans', 'Marlene', 'Nicole', 'Russell', 'Amy', 'Brian', 'Emma', 'Raveena', 'Ivy', 'Joanna', 'Joey', 'Justin', 'Kendra', 'Kimberly', 'Matthew', 'Salli', 'Conchita', 'Enrique', 'Miguel', 'Penelope', 'Chantal', 'Celine', 'Mathieu', 'Dora', 'Karl', 'Carla', 'Giorgio', 'Mizuki', 'Liv', 'Lotte', 'Ruben', 'Ewa', 'Jacek', 'Jan', 'Maja', 'Ricardo', 'Vitoria', 'Cristiano', 'Ines', 'Carmen', 'Maxim', 'Tatyana', 'Astrid', 'Filiz', 'Vicki', 'Takumi', 'Seoyeon', 'Aditi'] default_voice = 'Joey' class TextToMp3: def __init__(self, text, out_bytesio, voice=default_voice): """ The main reason using io.BytesIO here is for aws service and save directly to mp3 in s3 """ self.out_bytesio = out_bytesio self.rules = {} self.voice = voice text = text.replace("&", "&amp;") text = text.replace("<", "&lt;") text = text.replace(">", "&gt;") text = text.replace("\n", "") # only remove \n in paragraph self.pieces = text.split("\n") def start(self): for piece in self.pieces: self.add_paragraph(piece) self.close() def close(self): self.out_bytesio.seek(0) def add_paragraph(self, text): # build new p if len(text) >= 1500: # the TextLengthExceededException of polly # split into different paragraph sentences = text.split(".") print(sentences) p = Paragraph([]) while sentences: # it is strange add . but it need sentence = sentences.pop(0) sentence = sentence.strip(" ") if not sentence: continue if p.add_sentence(sentence + "."): continue else: if not p.is_empty(): self.translate(p.to_ssml()) p.clean() # need handle the failed sentence # print("failed sentence {}".format(sentence)) sentences.insert(0, sentence) continue else: # which mean the sentence it self has 1500 # in this case we need human being to see it print("This is sentence is too much long:\n{}".format( sentence)) sys.exit() if not p.is_empty(): self.translate(p.to_ssml()) else: p = Paragraph.build_from_text(text) self.translate(p.to_ssml()) def translate(self, ssml_string): print("translate {} : {}".format(len(ssml_string), ssml_string)) try: # Request speech synthesis response = polly.synthesize_speech( Text=ssml_string, TextType="ssml", OutputFormat="mp3", VoiceId=self.voice) except (BotoCoreError, ClientError) as error: print(error) sys.exit(-1) # Access the audio stream from the response if "AudioStream" in response: with closing(response["AudioStream"]) as stream: try: self.out_bytesio.write(stream.read()) except IOError as error: print(error) sys.exit(-1) else: print("Could not stream audio") sys.exit(-1) print("translate finish") class DirTranslate(): def __init__(self, indir, voice): self.indir = indir self.voice = voice def start(self): txts = glob.glob(self.indir + "/*.txt") txts = sorted(txts) for txt in txts: print("handing txt {}".format(txt)) with open(txt, "r", errors='ignore') as f: text = f.read() mp3 = txt[:-3] + "mp3" io_outfile = io.BytesIO() txt2mp3 = TextToMp3(text, io_outfile, self.voice) txt2mp3.start() with open(mp3, "wb") as f: f.write(io_outfile.read()) ```
{ "source": "jiamo/ppjson", "score": 2 }
#### File: ppjson/ppjson/ppjson.py ```python from sly import Lexer, Parser import sys from copy import deepcopy class JsonLexer(Lexer): tokens = { LSBRACKET, RSBRACKET, LBRACE, RBRACE, COLON, STRING, SINGLE_STRING, CONSTANT, COMMA, INT, FLOAT, LITERRAL_VALUE, TRUE, FALSE, NULL, } # WS = r'[ \t\n\r]+' # todo how to do it # literals = { '=', '+', '-', '*', '/', '(', ')' } ignore = ' \t\n\r' # Tokens LITERRAL_VALUE = r'[a-zA-Z_][a-zA-Z0-9_]*' LITERRAL_VALUE['true'] = TRUE LITERRAL_VALUE['false'] = FALSE LITERRAL_VALUE['null'] = NULL LSBRACKET = r'\[' RSBRACKET = r'\]' LBRACE = r'\{' RBRACE = r'\}' COLON = r':' COMMA = r',' @_(r'"([ !#-\[\]-\U0010ffff]+|\\(["\/\\bfnrt]|u[0-9A-Fa-f]{4}))*"') def STRING(self, t): t.value = str(t.value[1:-1]) return t @_(r'-?(0|[1-9][0-9]*)(\.[0-9]+)?([Ee][+-]?[0-9]+)?') def FLOAT(self, t): t.value = float(t.value) return t @_(r'-?(0|[1-9][0-9]*)') def INT(self, t): t.value = int(t.value) return t # @_(r"'([^'\n]|(\\'))*'") # def STRING(self, t): # t.value = str(t.value[1:-1]) # return t @_(r'\n+') def newline(self, t): self.lineno += t.value.count('\n') def error(self, t): raise Exception(str(t)) class JsonParser(Parser): debugfile = 'parser.out' tokens = JsonLexer.tokens ARRAY = 1 DICT = 2 def __init__(self): self.names = {} self.value = None self.json_type = None self.json_value = None @_('value') def json_text(self, p): print("json_text") self.json_value = p.value print("self.json_value", p.value) @_('') def empty(self, p): print("empty") @_('object') def value(self, p): print("value-object:", p.object) return p.object @_('array') def value(self, p): print("value-array:", p.array) return p.array @_('STRING') def value(self, p): print("value-string") return p.STRING @_('TRUE') def value(self, p): print("LITERRAL_VALUE", p) return True @_('FALSE') def value(self, p): print("LITERRAL_VALUE", p) return False @_('NULL') def value(self, p): print("LITERRAL_VALUE", p) return None @_('INT') def value(self, p): return p.INT @_('FLOAT') def value(self, p): return p.FLOAT @_('LSBRACKET') def begin_array(self, p): print("begin_array") @_('RSBRACKET') def end_array(self, p): print("end_array") @_('LBRACE') def begin_object(self, p): print("begin_object") @_('RBRACE') def end_object(self, p): print("end_object") @_('begin_object [ member_list ] end_object') def object(self, p): # TODO simple the process may be can just return the p.memlist print("object --- is", p.member_list) result = {} if isinstance(p.member_list, list): for value in p.member_list: result.update(value) elif p.member_list is not None: result = p.member_list return result @_('begin_array [ value_list ] end_array') def array(self, p): # This is not very good. because the value_list may not be list! result = [] if isinstance(p.value_list, list): result = p.value_list elif p.value_list is not None: result.append(p.value_list) return result @_('member') def member_list(self, p): print("member_list-member ---", p.member) return p.member @_('member_list COMMA member') def member_list(self, p): print("member_list - member") result = [] if isinstance(p.member_list, list): p.member_list.append(p.member) result = p.member_list else: result = [p.member_list, p.member] return result # very same as member @_('value') def value_list(self, p): print("array-array") return p.value @_('value_list COMMA value') def value_list(self, p): result = [] if isinstance(p.value_list, list): p.value_list.append(p.value) result = p.value_list else: result = [p.value_list, p.value] print("array-list", p.value_list, p.value, 'r is ', result) return result @_('COLON') def name_separator(self, p): print("name_separator") @_('STRING name_separator value') def member(self, p): print("member, ", type(p.STRING), " ", p.STRING) return { p.STRING: p.value } def error(self, p): raise Exception(str(p)) def loads(s): lexer = JsonLexer() parser = JsonParser() tokens = lexer.tokenize(s) # print(list(tokens)) parser.parse(tokens) return parser.json_value if __name__ == '__main__': lexer = JsonLexer() parser = JsonParser() while True: try: text = input('ppjson > ') except EOFError: break if text: tokens = lexer.tokenize(text) # debug_tokens = list(tokens) # for tok in debug_tokens: # print(tok) # sys.stdout.flush() parser.parse(tokens) print("value is {} and the python type is {}".format( parser.json_value, type(parser.json_value) )) ``` #### File: ppjson/tests/test_empty.py ```python import simplejson as json from ppjson import ppjson def test_empty_dict(): assert json.loads('{}') == ppjson.loads('{}') ```
{ "source": "jian01/api-example-exercise", "score": 3 }
#### File: api-example-exercise/api/__main__.py ```python from contact_databases.ram_database import ContactRamDatabase, UnexistentContact from model.contact import Contact from flask import Flask, render_template, url_for, request import json app = Flask(__name__) contact_database = ContactRamDatabase() @app.route('/contact_list', methods=['GET']) def get_contact_list(): """ Gets the whole contact list Returns a json with the form of: {"contacts": [{"contact_id": 4, "name": "Juanito", "number": "4888-8888"}, ...]} """ contact_list = [] contacts = contact_database.get_contacts() for contact_id, contact in contacts.items(): contact_list.append({"contact_id": contact_id, "name": contact.name, "number": contact.number}) return json.dumps({'contacts': contact_list}), 200 @app.route('/contact/<contact_id>', methods=['GET']) def get_contact(contact_id): """ Gets the contact data for the contact id queried Returns a json with the form of: {"contact_id": 4, "name": "Juanito", "number": "4888-8888"} If the contact does not exists returns "Unexistent Contact" with code 404 :param contact_id: the contact id """ return "Not implemented", 500 @app.route('/contact', methods=['POST']) def add_contact(): """ Add the contact for the data sent Body in json with the form of: {"name": "Juanito", "number": "4888-8888"} Returns a json with the form of: {"contact_id": 4, "name": "Juanito", "number": "4888-8888"} """ body = request.json return "Not implemented", 500 @app.route('/contact/<contact_id>', methods=['PUT']) def modify_contact(contact_id): """ Modifies the contact for the id sent Body in json with the form of: {"name": "Juanito", "number": "4888-8888"} Returns a json with the form of: {"contact_id": contact_id, "name": "Juanito", "number": "4888-8888"} If the contact does not exists returns "Unexistent Contact" with code 404 :param contact_id: the contact id """ body = request.json return "Not implemented", 500 @app.route('/contact/<contact_id>', methods=['DELETE']) def delete_contact(contact_id): """ Deletes the contact for the id sent Returns an "OK" message with code 200. If the contact does not exists returns "Unexistent Contact" with code 404 :param contact_id: the contact id """ return "Not implemented", 500 app.run(host='127.0.0.1', port=8080, debug=True) ```