metadata
dict
text
stringlengths
60
3.49M
{ "source": "Johnson-Su/Certi-Chain", "score": 4 }
#### File: Certi-Chain/LocalBlockChain/Blockchain.py ```python import Block as bl import time class Blockchain: DIFFICULTY = 4 def __init__(self): self.chain = [] self.unconfirmed_transactions = [] # data not yet validated def create_genesis_block(self): genesis_block = bl.Block(0, [], 0, "0") genesis_block.hash = genesis_block.compute_hash() self.chain.append(genesis_block) @property def last_block(self): """ The last block in the chain, ie. the most recent block added """ return self.chain[-1] @staticmethod def proof_of_work(block): """ A proof of work is the process of adding a constraint to a block's hash. By adding the constraint, it makes it difficult for a valid hash to be computed. """ block.nonce = 0 computed_hash = block.compute_hash() while (not computed_hash.startswith('0' * Blockchain.DIFFICULTY)): block.nonce += 1 computed_hash = block.compute_hash() return computed_hash def add_block(self, block, proof): """ To add a block into the blockchain, we must determine if the block to be added is in the correct chronological order (no adding transactions that occured before the last block), and we must determine if the data has not been tampered with. """ previous_hash = self.last_block.hash # is the block in the right chronological order? if (previous_hash != block.previous_hash): return False # has the block been tampered with if (not Blockchain.is_valid_proof(block, proof)): return False # if the above constraints are satisfied, add the block block.hash = proof self.chain.append(block) return True @classmethod def is_valid_proof(self, block, block_hash): # does the hash satisfy the contraints? # does the hash of the block match the proof provided? return (block_hash.startswith('0' * Blockchain.DIFFICULTY) and block_hash == block.compute_hash()) def add_transaction(self, transaction): # Add a transaction to the list self.unconfirmed_transactions.append(transaction) def mine(self): # is the list of unconfirmed transactions empty? if (not self.unconfirmed_transactions): return False # get the last block to determine the index and previous_hash of # the new block last_block = self.last_block new_block = bl.Block(last_block.index + 1, self.unconfirmed_transactions, time.time(), last_block.hash) # do work to find a valid hash proof = self.proof_of_work(new_block) self.add_block(new_block, proof) # reset the transactions self.unconfirmed_transactions = [] return True @classmethod def check_chain_validity(cls, chain): result = True previous_hash = "0" # Iterate through every block for block in chain: block_hash = block.hash # remove the hash field in order to compute it again delattr(block, "hash") if not cls.is_valid_proof(block, block.hash) or \ previous_hash != block.previous_hash: result = False break block.hash, previous_hash = block_hash, block_hash return result ``` #### File: Certi-Chain/LocalBlockChain/Node_Server.py ```python from flask import Flask, request import requests, json, time, re import Blockchain, Block # init flask app = Flask(__name__) # init blockchain blockchain = Blockchain.Blockchain() blockchain.create_genesis_block() # The last thing requested tx_search = None # List of accepted accounts accounts = ["1001"] # Number of transactions in the current block to be tx_number = 1 # Set of adresses of peers within the network peers = set() @app.route('/new_transaction', methods=['POST']) def new_transaction(): """ Defines the endpoint to create a new transaction to add to the chain. Checks if a transaction has the valid information before adding it to the list of transactions to add """ global tx_number # Get the tx data tx_data = request.get_json() # Required information required_fields = ["name", "description", "materials", "location", "brand", "year", "journey", "key"] for field in required_fields: # If informtaion is missing, do not add this transaction if (not tx_data.get(field)): return "Invalid transaction data", 404 if (not tx_data["key"] in accounts): return "Invalid user", 405 # Time tx was made tx_data["timestamp"] = time.time() # Block tx will belong to tx_data["block_num"] = blockchain.last_block.index + 1 # the number the tx has within the block tx_data["tx_num"] = tx_number # increment tx number tx_number += 1 blockchain.add_transaction(tx_data) return "Success", 201 @app.route('/chain', methods=['GET']) def get_chain(): """ The end point for the data of the chain """ # Data for every block in the chain chain_data = [] for block in blockchain.chain: chain_data.append(block.__dict__) return json.dumps({"length": len(chain_data), "chain": chain_data, "peers": list(peers)}) @app.route('/pending_tx', methods=["GET"]) def get_pending_tx(): """ The end point for the number of pending transactions. """ return json.dumps(blockchain.unconfirmed_transactions) @app.route('/check', methods=['POST']) def add_check(): """ Check if the given transaction id is in the blockchain. Set the /check endpoint to have the information of the given transaction id, if it exists. Leave an error if there does not exists a tx with the given id, or if the id is not in the correct format. """ global tx_search # Get the tx id tx_data = request.get_json() # If there is no id if (not tx_data.get("tx_id")): tx_search = {"error": "inv_tx_id"} return "Invalid", 404 # If the id is not in the correct format tx_id = tx_data["tx_id"] if not re.match("[0-9]+b[0-9]+t", tx_id): tx_search = {"error": "inv_tx_id"} return "Invalid", 404 # Parse out the block number from the id block_num = tx_id[0:tx_id.index("b")] # Parse out the tx number from the id tx_num = tx_id[tx_id.index("b") + 1 : tx_id.index("t")] # Find the block with the given block number for block in blockchain.chain: if block.index == int(block_num): # Find the transaction for tx in block.transactions: if tx["tx_num"] == int(tx_num): # Grab the relevant info tx_search = tx tx_search["error"] = "None" return "Success", 201 # There does not exists a transaction with the given id tx_search = {"error": "no_tx"} return "Cannot find", 400 @app.route('/checkout', methods=['GET']) def output_validity(): """ The endpoint for the needed product info. """ return json.dumps(tx_search) # Now establish decentralization and concensus # Endpoint to add new peers @app.route('/register_node', methods=['POST']) def register_new_peers(): """ Add a new peer to the list. """ # The host address to the peer node node_address = request.get_json()["node_address"] if not node_address: return "Invalid data", 400 # Add the node to the peer list peers.add(node_address) # Return the blockchain to the newly registered node so that it can sync return get_chain() @app.route('/register_with', methods=['POST']) def register_with_existing_node(): """ Internally calls the `register_node` endpoint to register current node with the remote node specified in the request, and sync the blockchain as well with the remote node. """ node_address = request.get_json()["node_address"] if not node_address: return "Invalid data", 400 data = {"node_address": request.host_url} headers = {'Content-Type': "application/json"} # Make a request to register with remote node and obtain information response = requests.post(node_address + "/register_node", data=json.dumps(data), headers=headers) if response.status_code == 200: global blockchain global peers # update chain and the peers chain_dump = response.json()['chain'] blockchain = create_chain_from_dump(chain_dump) peers.update(response.json()['peers']) return "Registration successful", 200 else: # if something goes wrong, pass it on to the API response return response.content, response.status_code def create_chain_from_dump(chain_dump): """ Create a blockchain from the json object of a block chain. (Init a copy of the parent blockchain to the node) """ generated_blockchain = Blockchain.Blockchain() generated_blockchain.create_genesis_block() for idx, block_data in enumerate(chain_dump): if idx == 0: continue # skip genesis block block = Block.Block(block_data["index"], block_data["transactions"], block_data["timestamp"], block_data["previous_hash"], block_data["nonce"]) proof = block_data['hash'] added = generated_blockchain.add_block(block, proof) if not added: raise Exception("The chain dump is tampered!!") return generated_blockchain def consensus(): """ Consensus algorithm. If a longer valid chain is found, our chain is replaced with it. """ global blockchain longest_chain = None current_len = len(blockchain.chain) for node in peers: response = requests.get(f'{node}chain') length = response.json()['length'] chain = response.json()['chain'] if length > current_len and blockchain.check_chain_validity(chain): # Longer valid chain found! current_len = length longest_chain = chain if longest_chain: blockchain = longest_chain return True return False @app.route('/add_block', methods=['POST']) def verify_and_add_block(): """ Once the blockchain is updated, add the updated block and check if that block is valid before updating the local chain. """ block_data = request.get_json() block = Block.Block(block_data["index"], block_data["transactions"], block_data["timestamp"], block_data["previous_hash"], block_data["nonce"]) proof = block_data['hash'] added = blockchain.add_block(block, proof) if not added: return "The block was discarded by the node", 400 return "Block added to the chain", 201 def announce_new_block(block): """ Announce to the network once a block has been mined. Other blocks can simply verify the proof of work and add it to their respective chains. """ for peer in peers: url = f"{peer}add_block" headers = {'Content-Type': "application/json"} requests.post(url, data=json.dumps(block.__dict__, sort_keys=True), headers=headers) @app.route('/mine', methods=['GET']) def mine_unconfirmed_transactions(): """ Mine all pending transactions and announce to all nodes there is a new block. """ result = blockchain.mine() global tx_number tx_number = 1 if not result: return "No transactions to mine" else: # Making sure we have the longest chain before announcing to the network chain_length = len(blockchain.chain) consensus() if chain_length == len(blockchain.chain): # announce the recently mined block to the network announce_new_block(blockchain.last_block) return f"Block #{blockchain.last_block.index} is mined." # if __name__ == "__main__": # app.run(debug=True, port=8000) ```
{ "source": "johnsons-ux/100-days-of-python", "score": 4 }
#### File: 100-days-of-python/Day 12 - Guessing Number Games/day12.py ```python from art import logo import random from replit import clear # Allow the player to submit a guess for a number between 1 and 100. def choose_level(): global invalid_level difficulty = input("Before we start, what difficulty would you like - easy or hard? For easy 🥸, type 'easy' for hard 🥵, type 'hard'. Goodluck! 🎊🎉 ").lower().strip() if difficulty == 'easy': invalid_level = True return 'easy' elif difficulty == 'hard': invalid_level = True return 'hard' else: # != 'easy' or choose_level() != 'hard': print("Please enter a valid difficulty. 👀 : ") invalid_level = False invalid_level = False game_over = False def continue_game(): global invalid_level global game_over clear() random_number = random.randint(1,100) while game_over is not True: #Welcome the player to the game using ASCII art and a nice welcome message. Player has to choose a difficulty. print(logo) print("Welcome to Johnsons' Number Guessing Game!\n I'm thinking of a number between 1 and 100. Can you guess it? ") print(f"Pssst the number is {random_number}.") #Create a while loop condition to ensure that a valid difficulty is chosen. This is to avoid an error being produced and while invalid_level is not True: level = choose_level() if level == 'easy': lives = 10 elif level == 'hard': lives = 5 else: print(f"You have {lives} attempts remaining to guess the number.") stil_play = True while stil_play is True: user_guess = int(input("Make a guess: ")) if lives > 1 and user_guess != random_number: if user_guess > random_number: print("Too high.") lives -= 1 print(f"You have {lives} attempts remaining to guess the number.") elif user_guess < random_number: print("Too low.") lives -= 1 print(f"You have {lives} attempts remaining to guess the number.") elif lives >= 1 and user_guess == random_number: print("You win! 🤯") stil_play = False game_over = True else: print("You've run out of guesses. You lose. 😭 ") stil_play = False game_over = True if game_over is True: play_again = input("Would you like to play again? Y for yes or N for no. 🤓 ").lower().strip() if play_again == 'y': invalid_level = False game_over = False continue_game() elif play_again == 'n': game_over = True continue_game() ``` #### File: Day_17/quiz-game-start/question_model.py ```python class Question: def __init__(self, text, answer): self.text = text self.answer = answer new_q = Question("lkajsdkf", "False") ``` #### File: Day_25/us-states-game-start/main.py ```python import turtle screen = turtle.Screen() screen.title("U.S. States Game") image = "blank_states_img.gif" screen.addshape(image) turtle.shape(image) # The following code is used to get the x and y coordinates of the states in the map image. # def get_mouse_click_coor(x, y): # print(x, y) # # # turtle.onscreenclick(get_mouse_click_coor) # turtle.mainloop() answer_state = screen.textinput(title="Guess the State", prompt="What's another state's name?") print(answer_state) screen.exitonclick() ```
{ "source": "johnson-tay09/data-structures-and-algorithms", "score": 4 }
#### File: fifo_animal_shelter/fifo_animal_shelter/fifo_animal_shelter.py ```python class Node: def __init__(self, value, next_=None): self.value = value self.next = next_ class Queue: def __init__(self, front=None, back=None): self.front = front self.back = back def enqueue(self, value): node = Node(value) # is the list empty? if not self.front: self.front = node self.back = node return # current back next value becomes new node self.back.next = node # the new back is the new node self.back = node def peek(self): if not self.front: raise InvalidOperationError( "Method not allowed on empty collection") return self.front.value def is_empty(self): # return boolean true as self.front is falsys return not self.front def dequeue(self): if not self.front: raise InvalidOperationError( "Method not allowed on empty collection") # save front node into a variable target_node = self.front # reassign front node to to old front.next self.front = target_node.next # return stored node return target_node.value class AnimalShelter: # initiate class with a queue for each cats and dogs def __init__(self): self.dog_q = Queue() self.cat_q = Queue() # add dogs to dog queue and cats to cat queue or return null def enqueue(self, value): if value == "dog": self.dog_q.enqueue(value) return elif value == "cat": self.cat_q.enqueue(value) return return "Null" # return preferred animal def dequeue(self, preference): if preference.lower == "dog": return self.dog_q.dequeue() elif preference.lower == "cat": return self.cat_q.dequeue() return "Null" ``` #### File: code_challenges/hashtable/test_hashtable.py ```python from hashtable import Hashtable def test_create(): hashtable = Hashtable() assert hashtable def test_predictable_hash(): hashtable = Hashtable() initial = hashtable._hash('spam') secondary = hashtable._hash('spam') assert initial == secondary def test_in_range_hash(): hashtable = Hashtable() actual = hashtable._hash('spam') # assert actual >= 0 # assert actual < hashtable._size assert 0 <= actual < hashtable._size def test_same_hash(): hashtable = Hashtable() initial = hashtable._hash('listen') secondary = hashtable._hash('silent') assert initial == secondary def test_different_hash(): hashtable = Hashtable() initial = hashtable._hash('glisten') secondary = hashtable._hash('silent') assert initial != secondary def test_get_apple(): hashtable = Hashtable() hashtable.set("apple", "Used for apple sauce") actual = hashtable.get("apple") expected = "Used for apple sauce" assert actual == expected def test_get_silent_and_listen(): hashtable = Hashtable() hashtable.set('listen', 'to me') hashtable.set('silent', 'so quiet') assert hashtable.get('listen') == 'to me' assert hashtable.get('silent') == 'so quiet' ``` #### File: code_challenges/pascals-triangle/test_pascal.py ```python from pascals_triangle import printPascal def test_zero(): actual = printPascal(0) expected = "Not a valid input" assert actual == expected def test_one(): actual = printPascal(1) expected = print(1) assert actual == expected # def test_two(): # actual = printPascal(2) # expected = print(1), print("1 1") # assert actual == expected # def test_many(): # actual = printPascal(12) # expected = 1 # assert actual == expected ``` #### File: stack_and_queue/stacks_and_queues/stacks_and_queues.py ```python class InvalidOperationError(Exception): pass class Node: def __init__(self, value, next_=None): self.value = value self.next = next_ class Stack: def __init__(self): self.top = None def push(self, value): node = Node(value) # new node on top of stack gets next value of previous top stack node node.next = self.top # new node becomes top self.top = node def pop(self): if self.top: value = self.top.value self.top = self.top.next return value raise InvalidOperationError("Method not allowed on empty collection") def is_empty(self): if self.top: return False return True # (return not self.top) most pythonic def peek(self): if not self.top: raise InvalidOperationError( "Method not allowed on empty collection") return self.top.value class Queue: def __init__(self, front=None, back=None): self.front = front self.back = back def enqueue(self, value): node = Node(value) # is the list empty? if not self.front: self.front = node self.back = node return # current back next value becomes new node self.back.next = node # the new back is the new node self.back = node def peek(self): if not self.front: raise InvalidOperationError( "Method not allowed on empty collection") return self.front.value def is_empty(self): # return boolean true as self.front is falsy return not self.front def dequeue(self): if not self.front: raise InvalidOperationError( "Method not allowed on empty collection") # save front node into a variable target_node = self.front # reassign front node to to old front.next self.front = target_node.next # return stored node return target_node.value ``` #### File: code_challenges/tree-intersection/tree_intersection.py ```python class Node: def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: def __init__(self): self.root = None def pre_order(self): # return list of values ordered correctly values = [] def traverse(root): if not root: return values.append(root.value) traverse(root.left) traverse(root.right) traverse(self.root) print(values) return values def in_order(self): values = [] def traverse(root): if not root: return traverse(root.left) values.append(root.value) traverse(root.right) traverse(self.root) print(values) return values def post_order(self): values = [] def traverse(root): if not root: return traverse(root.left) traverse(root.right) # print(root.value) values.append(root.value) traverse(self.root) print(values) return values class BinarySearchTree(BinaryTree): def add(self, value): node = Node(value) # check if there is no root, if so make the new node root. if not self.root: self.root = node return def traverse(root): if value < root.value: # check if the node already has a left, if not add our new node if not root.left: root.left = node else: # keep traverseing traverse(root.left) else: # check if the node already has a right, if not add our new node if not root.right: root.right = node else: # keep traverseing traverse(root.right) traverse(self.root) def contains(self, value): def search(root): if value == root.value: return True if value < root.value: if not root.left: return False else: # keep searching onto the next node search(root.left) else: if not root.right: return False else: # keep searching onto the next node search(root.right) def tree_intersection(self, tree_two): # array to hold the shared values shared_values = [] # traverse the tree def traversal(root): if not root: return # use contains method to see if tree two has current value if tree_two.contains(root.value): # add value in common to array shared_values.append(root.value) # check left branch traversal(root.left) # check right branch traversal(root.right) traversal(self.root) return shared_values ```
{ "source": "JohnsonWang0319/MystanCodeProjects", "score": 4 }
#### File: stanCode_Projects/boggle_game_solver/boggle.py ```python import time # This is the file name of the dictionary txt file # we will be checking if a word exists by searching through it FILE = 'dictionary.txt' # Define the Boggle size LEN_COL = 4 LEN_ROW = 4 # Global Variables count = 0 boggle = [] now_word_lst = [] class TrieNode: """Node in the Trie Structure""" def __init__(self, char: str): # the character stored in the structure self.char = char # whether the end of a word or not self.end_of_word = False # indicate how many times a word is inserted self.counter = 0 # a dictionary of child nodes # keys are characters, values are nodes self.children = {} class Trie: """Trie Object""" def __init__(self): self.output_list = [] # the trie root note does not store any character self.root = TrieNode('') def insert(self, word): node = self.root for char in word: if char in node.children: node = node.children[char] else: # if a character is not found in trie, create a new node new_node = TrieNode(char) node.children[char] = new_node node = new_node # mark the end of a word node.end_of_word = True node.counter += 1 def find(self, node, prefix): """ :param node: TriNode, the node to start with :param prefix: string, for tracing a word while traversing the trie structure """ if node.end_of_word: self.output_list.append((prefix, node.counter)) for child_value in node.children.keys(): self.find(node.children[child_value], prefix + child_value) def query(self, x: str) -> list: """ :param x: string, a input prefix :return: list, retrieve all words stored in the trie with input prefix """ node = self.root for char in x: if char in node.children: node = node.children[char] else: return [] self.find(node, x) return sorted(self.output_list, key=lambda z: z[1], reverse=True) def search(self, word: str): """ :param word: string, a complete word :return: bool, whether this word in the trie structure or not """ node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node.end_of_word def main(): """ Use the Trie structure to find the matched word between dictionary and boggle matrix """ print(f'# of Column = {LEN_COL}.') print(f'# of Row = {LEN_ROW}.') start = time.time() t = Trie() build_boggle() for row in range(LEN_ROW): for column in range(LEN_COL): dict_lst = read_dictionary() for i in range(len(dict_lst)): word = dict_lst[i] if len(word) >= 4 and word[0] == boggle[row][column]: t.insert(word) current = t.root dfs(row, column, [], current.children, '', row, column) end = time.time() print(f'There are {count} words in total.') print('----------------------------------') print(f'The speed of your boggle algorithm: {end - start} seconds.') def dfs(row, column, visited, trie_children, now_word, original_row, original_column): """ :param row: int, the row (neighbors) that we need to update everytime when execute this function :param column: int, the column (neighbors) that we need to update everytime when execute this function :param visited: list, [(row, column)], the index that we have already visited while traverse the boggle :param trie_children: TrieNode, the trie structure that we need to compare during traverse the boggle :param now_word: str, update during the recursion, and if it is the end_of_word, we found answer :param original_row: the row that we traverse in the first round, using this to pruning the trie structure :param original_column: the column that we traverse in the first round, using this to pruning the trie structure :return: """ global count t = Trie() dict_lst = read_dictionary() if (row, column) in visited: return letter = boggle[row][column] original_letter = boggle[original_row][original_column] visited.append((row, column)) # when now_word length >= 3, start to generate trie structure of the dictionary if len(now_word) >= 3: for i in range(len(dict_lst)): word = dict_lst[i] if len(word) >= 4 and word[0] == original_letter: t.insert(word) # if the letter is in the trie_children, keep finding the next children. if letter in trie_children and len(now_word) <= LEN_ROW + 2: now_word += letter current = trie_children[letter] # Because it would be possible that there is the same word in different combination of boggle matrix # Use a if to check whether there is the same matched word in the now_word_lst if len(now_word) >= 4 and now_word not in now_word_lst: # Use t.search to determine whether now_word is a complete word in trie structure or not if t.search(now_word): now_word_lst.append(now_word) print(f'Found \"{now_word}\"') count += 1 # Use recursive to achieve depth-first traversal (each neighbor) neighbors = get_neighbors(row, column) for n in neighbors: dfs(n[0], n[1], visited[:], current.children, now_word, original_row, original_column) def build_boggle(): """ Ask user to input the boggle matrix, user can determine the matrix size by controlling the global variable LEN_ROW and LEN_COL. :return: list, [[X, X, X, X],[X, X, X, X],[X, X, X, X],[X, X, X, X]] """ count_input = 0 while count_input != LEN_ROW: row = input(f'{count_input + 1} row of letters: ').split(' ') if len(row) != LEN_COL: print('Illegal input.') exit() else: boggle.append(row) count_input += 1 return boggle def read_dictionary(): """ This function reads file "dictionary.txt" stored in FILE and appends words in each line into a Python list """ # dict_list = ['apple', 'banana', 'cat', 'dog' ......] dict_list = [] with open(FILE, 'r') as f: for line in f: line = line.strip('\n') dict_list.extend(line.split()) return dict_list def get_neighbors(row, column): """ :param row: int, the row index :param column: int, the column index :return: list, all the neighbors of a specific index, [(),(),(),(),(),(),(),()] """ # Return the neighbors fo a given coordinates neighbors = [] neighbors_index = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)] for neighbor in neighbors_index: new_row = row + neighbor[0] new_column = column + neighbor[1] if new_row >= LEN_ROW or new_column >= LEN_COL or new_row < 0 or new_column < 0: continue neighbors.append((new_row, new_column)) return neighbors if __name__ == '__main__': main() ``` #### File: stanCode_Projects/hangman_game/similarity.py ```python def main(): dna = input('Please give me a DNA sequence to search: ') match = input('What DNA sequence would you like to match? ') dna = dna.upper() match = match.upper() ans = find_match(dna, match) print('The best match is ' + str(ans) + '.') def find_match(dna, match): ''' :param dna: str, the user will input the dna string. :param match: str, the user will input the small facture of dna. :return: str, the similar fracture in the long dna string. ''' score_list = [] # Through for loop, we can compare the original dna for i in range(len(dna) - len(match) + 1): # with the fracture one and give each a score! score = 0 for j in range(len(match)): if match[j] == dna[i + j]: score += 1 score_list.append(score) maximum = score_list[0] # Find the biggest score, which is the most similar for num in score_list: # fracture of dna. if maximum <= num: maximum = num location = score_list.index(maximum) ans = dna[location:location+len(match)] return ans ###### DO NOT EDIT CODE BELOW THIS LINE ###### if __name__ == '__main__': main() ```
{ "source": "johnsonwj/spirit-island-generator", "score": 3 }
#### File: johnsonwj/spirit-island-generator/generator.py ```python import random class GameData: def __init__(self, base_data): self.spirits = base_data.get('spirits', dict()) self.blight_cards = base_data.get('blight-cards', 0) self.scenarios = base_data.get('scenarios', dict()) self.adversaries = base_data.get('adversaries', dict()) self.expansions = [] def add_expansion(self, expansion_id, expansion_data): self.expansions.append(expansion_id) self.spirits.update(expansion_data.get('spirits', dict())) self.blight_cards += expansion_data.get('blight-cards', 0) self.scenarios.update(expansion_data.get('scenarios', dict())) self.adversaries.update(expansion_data.get('adversaries', dict())) def has_expansion(self, expansion_id): return expansion_id in self.expansions class GamePreferences: def __init__(self, prefs, game_data): self.players = prefs.get('players', [None]) self.balance_spirits = prefs.get('balance-spirits', True) self.game_data = GameData(game_data['base']) for expansion in prefs.get('expansions', []): self.game_data.add_expansion(expansion, game_data[expansion]) self.thematic_map = prefs.get('thematic-map', False) self.use_blight_card = prefs.get('blight-card', True) or self.game_data.has_expansion('branch-and-claw') self.difficulty_level = prefs.get('difficulty-level', 2) self.randomize_scenario = not (prefs.get('scenario') or prefs.get('scenario-disabled', False)) self.scenario = prefs.get('scenario') self.randomize_adversary = not (prefs.get('adversary') or prefs.get('adversary-disabled', False)) self.adversary = prefs.get('adversary') self.adversary_level = prefs.get('adversary-level', None) def count_available_blight_cards(self): if self.use_blight_card: return self.game_data.blight_cards return 0 def thematic_map_difficulty(self): if not self.thematic_map: return 0 if self.game_data.has_expansion('branch-and-claw'): return 1 return 3 def generate_invader_deck(): return [random.sample(range(1, 5 + i), 3 + i) for i in range(3)] def pick_boards(player_count, use_thematic_map): if use_thematic_map: return ['NW', 'NE', 'W', 'E'][:player_count] return random.sample(['A', 'B', 'C', 'D'], player_count) def pick_spirit(pref, available_spirits, power_balance): if type(pref) == str: return pref if type(pref) == int: choices = [spirit_id for spirit_id in available_spirits if available_spirits[spirit_id]['complexity'] <= pref] if type(pref) == type(None): choices = list(available_spirits) if power_balance: for p in power_balance[::-1]: choices = sorted(choices, key=lambda s: available_spirits[s]['powers'][p]) return choices[0] return random.choice(choices) class GameConfiguration: def __init__(self, prefs): self.prefs = prefs self.spirits = prefs.players.copy() self.boards = pick_boards(len(self.spirits), prefs.thematic_map) self.blight_card = 'default' self.scenario = None self.adversary = None self.adversary_level = None self.invader_deck = generate_invader_deck() def pick_blight_card(self): n_blight_cards = self.prefs.count_available_blight_cards() if n_blight_cards > 0: self.blight_card = random.randint(1, n_blight_cards) def locked_spirits(self): return [s for s in self.spirits if type(s) == str] def power_balance(self): powers = dict() for spirit_id in self.locked_spirits(): spirit_powers = self.prefs.game_data.spirits[spirit_id]['powers'] for p, v in spirit_powers.items(): powers[p] = powers.get(p, 0) + v if powers: return sorted(powers, key=powers.get) return None def pick_spirits(self): available_spirits = self.prefs.game_data.spirits.copy() print(self.spirits) for i in range(len(self.spirits)): current_balance = self.power_balance() if self.prefs.balance_spirits else None spirit = pick_spirit(self.spirits[i], available_spirits, current_balance) del available_spirits[spirit] self.spirits[i] = spirit def pick_adversary(self): if not self.prefs.randomize_adversary: self.adversary = self.prefs.adversary self.adversary_level = self.prefs.adversary_level return max_adversary_difficulty = self.prefs.difficulty_level - self.difficulty_level() all_adversary_handicaps = dict() for spirit_id in self.locked_spirits(): spirit_handicaps = self.prefs.game_data.spirits[spirit_id].get('adversary-handicaps', dict()) for s, hc in spirit_handicaps.items(): all_adversary_handicaps[s] = all_adversary_handicaps.get(s, 0) + hc effective_difficulties = list() for aid, a in self.prefs.game_data.adversaries.items(): for level in range(len(a['difficulty'])): base_difficulty = a['difficulty'][level] handicap = all_adversary_handicaps.get(aid, 0) effective_difficulties.append((aid, level, base_difficulty + handicap)) possible_adversaries = [(a, l) for (a, l, d) in effective_difficulties if d <= max_adversary_difficulty] if not possible_adversaries: self.adversary = None self.adversary_level = None return a, l = random.choice(possible_adversaries) self.adversary = a self.adversary_level = l def pick_scenario(self): if not self.prefs.randomize_scenario: self.scenario = self.prefs.scenario return max_scenario_difficulty = self.prefs.difficulty_level - self.difficulty_level() all_scenario_handicaps = dict() for spirit_id in self.locked_spirits(): spirit_handicaps = self.prefs.game_data.spirits[spirit_id].get('scenario-handicaps', dict()) for s, hc in spirit_handicaps.items(): all_scenario_handicaps[s] = all_scenario_handicaps.get(s, 0) + hc effective_difficulties = {sid: s['difficulty'] + all_scenario_handicaps.get(sid, 0) for sid, s in self.prefs.game_data.scenarios.items()} possible_scenarios = [s for s, d in effective_difficulties.items() if d <= max_scenario_difficulty] if not possible_scenarios: self.scenario = None return self.scenario = random.choice(possible_scenarios) def difficulty_level(self): difficulty = 0 if self.adversary: difficulty += self.prefs.game_data.adversaries[self.adversary]['difficulty'][self.adversary_level] if self.scenario: scenario = self.prefs.game_data.scenarios[self.scenario] difficulty += scenario['difficulty'] if self.adversary: difficulty += scenario.get('adversary-handicaps', dict()).get(self.adversary, 0) for spirit_id in self.locked_spirits(): spirit = self.prefs.game_data.spirits[spirit_id] if self.adversary: difficulty += spirit.get('adversary-handicaps', dict()).get(self.adversary, 0) if self.scenario: difficulty += spirit.get('scenario-handicaps', dict()).get(self.scenario, 0) difficulty += self.prefs.thematic_map_difficulty() return difficulty def dump(self): return { 'spirits': self.spirits, 'boards': self.boards, 'invader-deck': self.invader_deck, 'blight-card': self.blight_card, 'scenario': self.scenario, 'adversary': self.adversary, 'adversary-level': self.adversary_level, 'thematic-map': self.prefs.thematic_map } def generate_game(prefs): game = GameConfiguration(prefs) game.pick_blight_card() game.pick_spirits() game.pick_adversary() game.pick_scenario() return game ``` #### File: johnsonwj/spirit-island-generator/main.py ```python import generator import yaml import json with open('data.yaml') as data_file: game_data = yaml.safe_load(data_file) def handle(request): prefs = generator.GamePreferences(request.get_json(), game_data) config = generator.generate_game(prefs) return json.dumps(config.dump(), indent=2) ```
{ "source": "Johnson-yue/lffont", "score": 3 }
#### File: models/modules/frn.py ```python from functools import partial import torch import torch.nn as nn class TLU(nn.Module): """ Thresholded Linear Unit """ def __init__(self, num_features): super().__init__() self.num_features = num_features self.tau = nn.Parameter(torch.zeros(1, num_features, 1, 1)) def forward(self, x): return torch.max(x, self.tau) def extra_repr(self): return 'num_features={}'.format(self.num_features) # NOTE generalized version class FilterResponseNorm(nn.Module): """ Filter Response Normalization """ def __init__(self, num_features, ndim, eps=None, learnable_eps=False): """ Args: num_features ndim eps: if None is given, use the paper value as default. from paper, fixed_eps=1e-6 and learnable_eps_init=1e-4. learnable_eps: turn eps to learnable parameter, which is recommended on fully-connected or 1x1 activation map. """ super().__init__() if eps is None: if learnable_eps: eps = 1e-4 else: eps = 1e-6 self.num_features = num_features self.init_eps = eps self.learnable_eps = learnable_eps self.ndim = ndim self.mean_dims = list(range(2, 2+ndim)) self.weight = nn.Parameter(torch.ones([1, num_features] + [1]*ndim)) self.bias = nn.Parameter(torch.zeros([1, num_features] + [1]*ndim)) if learnable_eps: self.eps = nn.Parameter(torch.as_tensor(eps)) else: self.register_buffer('eps', torch.as_tensor(eps)) def forward(self, x): # normalize nu2 = x.pow(2).mean(self.mean_dims, keepdim=True) x = x * torch.rsqrt(nu2 + self.eps.abs()) # modulation x = x * self.weight + self.bias return x def extra_repr(self): return 'num_features={}, init_eps={}, ndim={}'.format( self.num_features, self.init_eps, self.ndim) FilterResponseNorm1d = partial(FilterResponseNorm, ndim=1, learnable_eps=True) FilterResponseNorm2d = partial(FilterResponseNorm, ndim=2) ``` #### File: lffont/trainer/factorize_trainer.py ```python import torch import torch.nn as nn from .base_trainer import BaseTrainer from datasets import cyclize import utils import copy from itertools import chain class FactorizeTrainer(BaseTrainer): def __init__(self, gen, disc, g_optim, d_optim, aux_clf, ac_optim, writer, logger, evaluator, cv_loaders, cfg): super().__init__(gen, disc, g_optim, d_optim, aux_clf, ac_optim, writer, logger, evaluator, cv_loaders, cfg) self.frozen_emb_style = copy.deepcopy(self.gen.emb_style) self.frozen_emb_comp = copy.deepcopy(self.gen.emb_comp) utils.freeze(self.frozen_emb_style) utils.freeze(self.frozen_emb_comp) def sync_g_ema(self, in_style_ids, in_comp_ids, in_imgs, trg_style_ids, trg_comp_ids, content_imgs): org_train_mode = self.gen_ema.training with torch.no_grad(): self.gen_ema.train() self.gen_ema.encode_write_fact(in_style_ids, in_comp_ids, in_imgs) self.gen_ema.read_decode(trg_style_ids, trg_comp_ids, content_imgs=content_imgs, phase="fact") self.gen_ema.train(org_train_mode) def train(self, loader, st_step=1, max_step=100000): self.gen.train() self.disc.train() losses = utils.AverageMeters("g_total", "pixel", "disc", "gen", "fm", "ac", "ac_gen", "dec_const") discs = utils.AverageMeters("real_font", "real_uni", "fake_font", "fake_uni", "real_font_acc", "real_uni_acc", "fake_font_acc", "fake_uni_acc") # etc stats stats = utils.AverageMeters("B_style", "B_target", "ac_acc", "ac_gen_acc") self.step = st_step self.clear_losses() self.logger.info("Start training ...") for (in_style_ids, in_comp_ids, in_imgs, trg_style_ids, trg_uni_ids, trg_comp_ids, trg_imgs, content_imgs) in cyclize(loader): epoch = self.step // len(loader) if self.cfg.use_ddp and (self.step % len(loader)) == 0: loader.sampler.set_epoch(epoch) B = trg_imgs.size(0) stats.updates({ "B_style": in_imgs.size(0), "B_target": B }) in_style_ids = in_style_ids.cuda() in_comp_ids = in_comp_ids.cuda() in_imgs = in_imgs.cuda() trg_style_ids = trg_style_ids.cuda() trg_imgs = trg_imgs.cuda() content_imgs = content_imgs.cuda() if self.cfg.use_half: in_imgs = in_imgs.half() content_imgs = content_imgs.half() feat_styles, feat_comps = self.gen.encode_write_fact( in_style_ids, in_comp_ids, in_imgs, write_comb=True ) feats_rc = (feat_styles * feat_comps).sum(1) ac_feats = feats_rc self.add_dec_const_loss() out = self.gen.read_decode( trg_style_ids, trg_comp_ids, content_imgs=content_imgs, phase="fact", try_comb=True ) trg_uni_disc_ids = trg_uni_ids.cuda() real_font, real_uni, *real_feats = self.disc( trg_imgs, trg_style_ids, trg_uni_disc_ids, out_feats=self.cfg['fm_layers'] ) fake_font, fake_uni = self.disc(out.detach(), trg_style_ids, trg_uni_disc_ids) self.add_gan_d_loss(real_font, real_uni, fake_font, fake_uni) self.d_optim.zero_grad() self.d_backward() self.d_optim.step() fake_font, fake_uni, *fake_feats = self.disc( out, trg_style_ids, trg_uni_disc_ids, out_feats=self.cfg['fm_layers'] ) self.add_gan_g_loss(real_font, real_uni, fake_font, fake_uni) self.add_fm_loss(real_feats, fake_feats) def racc(x): return (x > 0.).float().mean().item() def facc(x): return (x < 0.).float().mean().item() discs.updates({ "real_font": real_font.mean().item(), "real_uni": real_uni.mean().item(), "fake_font": fake_font.mean().item(), "fake_uni": fake_uni.mean().item(), 'real_font_acc': racc(real_font), 'real_uni_acc': racc(real_uni), 'fake_font_acc': facc(fake_font), 'fake_uni_acc': facc(fake_uni) }, B) self.add_pixel_loss(out, trg_imgs) self.g_optim.zero_grad() if self.aux_clf is not None: self.add_ac_losses_and_update_stats( ac_feats, in_comp_ids, out, trg_comp_ids, stats ) self.ac_optim.zero_grad() self.ac_backward() self.ac_optim.step() self.g_backward() self.g_optim.step() loss_dic = self.clear_losses() losses.updates(loss_dic, B) # accum loss stats self.accum_g() if self.is_bn_gen: self.sync_g_ema(in_style_ids, in_comp_ids, in_imgs, trg_style_ids, trg_comp_ids, content_imgs=content_imgs) torch.cuda.synchronize() if self.cfg.gpu <= 0: if self.step % self.cfg['tb_freq'] == 0: self.baseplot(losses, discs, stats) self.plot(losses) if self.step % self.cfg['print_freq'] == 0: self.log(losses, discs, stats) self.logger.debug("GPU Memory usage: max mem_alloc = %.1fM / %.1fM", torch.cuda.max_memory_allocated() / 1000 / 1000, torch.cuda.max_memory_cached() / 1000 / 1000) losses.resets() discs.resets() stats.resets() if self.step % self.cfg['val_freq'] == 0: epoch = self.step / len(loader) self.logger.info("Validation at Epoch = {:.3f}".format(epoch)) if not self.is_bn_gen: self.sync_g_ema(in_style_ids, in_comp_ids, in_imgs, trg_style_ids, trg_comp_ids, content_imgs=content_imgs) self.evaluator.cp_validation(self.gen_ema, self.cv_loaders, self.step, phase="fact", ext_tag="factorize") self.save(loss_dic['g_total'], self.cfg['save'], self.cfg.get('save_freq', self.cfg['val_freq'])) else: pass if self.step >= max_step: break self.step += 1 self.logger.info("Iteration finished.") def add_dec_const_loss(self): loss = self.gen.get_fact_memory_var() self.g_losses['dec_const'] = loss * self.cfg["dec_const_w"] return loss def add_ac_losses_and_update_stats(self, in_sc_feats, in_comp_ids, generated, trg_comp_ids, stats): aux_feats, loss, acc = self.infer_ac(in_sc_feats, in_comp_ids) self.ac_losses['ac'] = loss * self.cfg['ac_w'] stats.ac_acc.update(acc, in_comp_ids.numel()) enc = self.frozen_enc enc.load_state_dict(self.gen.component_encoder.state_dict()) emb_style = self.frozen_emb_style emb_comp = self.frozen_emb_comp emb_style.load_state_dict(self.gen.emb_style.state_dict()) emb_comp.load_state_dict(self.gen.emb_comp.state_dict()) trg_comp_lens = torch.LongTensor([*map(len, trg_comp_ids)]).cuda() trg_comp_ids = torch.LongTensor([*chain(*trg_comp_ids)]).cuda() generated = generated.repeat_interleave(trg_comp_lens, dim=0) feats = enc(generated, trg_comp_ids) gen_feats = feats["last"] gen_emb_style = emb_style(gen_feats.unsqueeze(1)) gen_emb_comp = emb_comp(gen_feats.unsqueeze(1)) gen_recon = (gen_emb_style * gen_emb_comp).sum(1) aux_gen_feats, loss, acc = self.infer_ac(gen_recon, trg_comp_ids) stats.ac_gen_acc.update(acc, trg_comp_ids.numel()) if self.cfg['ac_gen_w'] > 0.: self.ac_losses['ac_gen'] = loss * self.cfg['ac_gen_w'] def plot(self, losses): tag_scalar_dic = { "train/dec_const_loss": losses.dec_const.val } self.writer.add_scalars(tag_scalar_dic, self.step) def log(self, losses, discs, stats): self.logger.info( " Step {step:7d}: L1 {L.pixel.avg:7.4f} D {L.disc.avg:7.3f} G {L.gen.avg:7.3f}" " Dec_Const {L.dec_const.avg:3.3f} FM {L.fm.avg:7.3f} AC {S.ac_acc.avg:5.1%}" " R_font {D.real_font_acc.avg:7.3f} F_font {D.fake_font_acc.avg:7.3f}" " R_uni {D.real_uni_acc.avg:7.3f} F_uni {D.fake_uni_acc.avg:7.3f}" " B_stl {S.B_style.avg:5.1f} B_trg {S.B_target.avg:5.1f}" .format(step=self.step, L=losses, D=discs, S=stats)) ```
{ "source": "Johnson-yue/mmsr", "score": 2 }
#### File: models/archs/DUF_arch.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def adapt_official(Rx, scale=4): '''Adapt the weights translated from the official tensorflow weights Not necessary if you are training from scratch''' x = Rx.clone() x1 = x[:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, :, :] x2 = x[:, fc00:db20:35b:7399::5, :, :] x3 = x[:, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, :, :] Rx[:, :scale**2, :, :] = x1 Rx[:, scale**2:2 * (scale**2), :, :] = x2 Rx[:, 2 * (scale**2):, :, :] = x3 return Rx class DenseBlock(nn.Module): '''Dense block for the second denseblock, t_reduced = True''' def __init__(self, nf=64, ng=32, t_reduce=False): super(DenseBlock, self).__init__() self.t_reduce = t_reduce if self.t_reduce: pad = (0, 1, 1) else: pad = (1, 1, 1) self.bn3d_1 = nn.BatchNorm3d(nf, eps=1e-3, momentum=1e-3) self.conv3d_1 = nn.Conv3d(nf, nf, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.bn3d_2 = nn.BatchNorm3d(nf, eps=1e-3, momentum=1e-3) self.conv3d_2 = nn.Conv3d(nf, ng, (3, 3, 3), stride=(1, 1, 1), padding=pad, bias=True) self.bn3d_3 = nn.BatchNorm3d(nf + ng, eps=1e-3, momentum=1e-3) self.conv3d_3 = nn.Conv3d(nf + ng, nf + ng, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.bn3d_4 = nn.BatchNorm3d(nf + ng, eps=1e-3, momentum=1e-3) self.conv3d_4 = nn.Conv3d(nf + ng, ng, (3, 3, 3), stride=(1, 1, 1), padding=pad, bias=True) self.bn3d_5 = nn.BatchNorm3d(nf + 2 * ng, eps=1e-3, momentum=1e-3) self.conv3d_5 = nn.Conv3d(nf + 2 * ng, nf + 2 * ng, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.bn3d_6 = nn.BatchNorm3d(nf + 2 * ng, eps=1e-3, momentum=1e-3) self.conv3d_6 = nn.Conv3d(nf + 2 * ng, ng, (3, 3, 3), stride=(1, 1, 1), padding=pad, bias=True) def forward(self, x): '''x: [B, C, T, H, W] C: nf -> nf + 3 * ng T: 1) 7 -> 7 (t_reduce=False); 2) 7 -> 7 - 2 * 3 = 1 (t_reduce=True)''' x1 = self.conv3d_1(F.relu(self.bn3d_1(x), inplace=True)) x1 = self.conv3d_2(F.relu(self.bn3d_2(x1), inplace=True)) if self.t_reduce: x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1) else: x1 = torch.cat((x, x1), 1) x2 = self.conv3d_3(F.relu(self.bn3d_3(x1), inplace=True)) x2 = self.conv3d_4(F.relu(self.bn3d_4(x2), inplace=True)) if self.t_reduce: x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1) else: x2 = torch.cat((x1, x2), 1) x3 = self.conv3d_5(F.relu(self.bn3d_5(x2), inplace=True)) x3 = self.conv3d_6(F.relu(self.bn3d_6(x3), inplace=True)) if self.t_reduce: x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1) else: x3 = torch.cat((x2, x3), 1) return x3 class DynamicUpsamplingFilter_3C(nn.Module): '''dynamic upsampling filter with 3 channels applying the same filters filter_size: filter size of the generated filters, shape (C, kH, kW)''' def __init__(self, filter_size=(1, 5, 5)): super(DynamicUpsamplingFilter_3C, self).__init__() # generate a local expansion filter, used similar to im2col nF = np.prod(filter_size) expand_filter_np = np.reshape(np.eye(nF, nF), (nF, filter_size[0], filter_size[1], filter_size[2])) expand_filter = torch.from_numpy(expand_filter_np).float() self.expand_filter = torch.cat((expand_filter, expand_filter, expand_filter), 0) # [75, 1, 5, 5] def forward(self, x, filters): '''x: input image, [B, 3, H, W] filters: generate dynamic filters, [B, F, R, H, W], e.g., [B, 25, 16, H, W] F: prod of filter kernel size, e.g., 5*5 = 25 R: used for upsampling, similar to pixel shuffle, e.g., 4*4 = 16 for x4 Return: filtered image, [B, 3*R, H, W] ''' B, nF, R, H, W = filters.size() # using group convolution input_expand = F.conv2d(x, self.expand_filter.type_as(x), padding=2, groups=3) # [B, 75, H, W] similar to im2col input_expand = input_expand.view(B, 3, nF, H, W).permute(0, 3, 4, 1, 2) # [B, H, W, 3, 25] filters = filters.permute(0, 3, 4, 1, 2) # [B, H, W, 25, 16] out = torch.matmul(input_expand, filters) # [B, H, W, 3, 16] return out.permute(0, 3, 4, 1, 2).view(B, 3 * R, H, W) # [B, 3*16, H, W] class DUF_16L(nn.Module): '''Official DUF structure with 16 layers''' def __init__(self, scale=4, adapt_official=False): super(DUF_16L, self).__init__() self.conv3d_1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.dense_block_1 = DenseBlock(64, 64 // 2, t_reduce=False) # 64 + 32 * 3 = 160, T = 7 self.dense_block_2 = DenseBlock(160, 64 // 2, t_reduce=True) # 160 + 32 * 3 = 256, T = 1 self.bn3d_2 = nn.BatchNorm3d(256, eps=1e-3, momentum=1e-3) self.conv3d_2 = nn.Conv3d(256, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f2 = nn.Conv3d(512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.dynamic_filter = DynamicUpsamplingFilter_3C((1, 5, 5)) self.scale = scale self.adapt_official = adapt_official def forward(self, x): ''' x: [B, T, C, H, W], T = 7. reshape to [B, C, T, H, W] for Conv3D Generate filters and image residual: Fx: [B, 25, 16, H, W] for DynamicUpsamplingFilter_3C Rx: [B, 3*16, 1, H, W] ''' B, T, C, H, W = x.size() x = x.permute(0, 2, 1, 3, 4) # [B, C, T, H, W] for Conv3D x_center = x[:, :, T // 2, :, :] x = self.conv3d_1(x) x = self.dense_block_1(x) x = self.dense_block_2(x) # reduce T to 1 x = F.relu(self.conv3d_2(F.relu(self.bn3d_2(x), inplace=True)), inplace=True) # image residual Rx = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True)) # [B, 3*16, 1, H, W] # filter Fx = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True)) # [B, 25*16, 1, H, W] Fx = F.softmax(Fx.view(B, 25, self.scale**2, H, W), dim=1) # Adapt to official model weights if self.adapt_official: adapt_official(Rx, scale=self.scale) # dynamic filter out = self.dynamic_filter(x_center, Fx) # [B, 3*R, H, W] out += Rx.squeeze_(2) out = F.pixel_shuffle(out, self.scale) # [B, 3, H, W] return out class DenseBlock_28L(nn.Module): '''The first part of the dense blocks used in DUF_28L Temporal dimension remains the same here''' def __init__(self, nf=64, ng=16): super(DenseBlock_28L, self).__init__() pad = (1, 1, 1) dense_block_l = [] for i in range(0, 9): dense_block_l.append(nn.BatchNorm3d(nf + i * ng, eps=1e-3, momentum=1e-3)) dense_block_l.append(nn.ReLU()) dense_block_l.append( nn.Conv3d(nf + i * ng, nf + i * ng, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)) dense_block_l.append(nn.BatchNorm3d(nf + i * ng, eps=1e-3, momentum=1e-3)) dense_block_l.append(nn.ReLU()) dense_block_l.append( nn.Conv3d(nf + i * ng, ng, (3, 3, 3), stride=(1, 1, 1), padding=pad, bias=True)) self.dense_blocks = nn.ModuleList(dense_block_l) def forward(self, x): '''x: [B, C, T, H, W] C: 1) 64 -> 208; T: 1) 7 -> 7; (t_reduce=True)''' for i in range(0, len(self.dense_blocks), 6): y = x for j in range(6): y = self.dense_blocks[i + j](y) x = torch.cat((x, y), 1) return x class DUF_28L(nn.Module): '''Official DUF structure with 28 layers''' def __init__(self, scale=4, adapt_official=False): super(DUF_28L, self).__init__() self.conv3d_1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.dense_block_1 = DenseBlock_28L(64, 16) # 64 + 16 * 9 = 208, T = 7 self.dense_block_2 = DenseBlock(208, 16, t_reduce=True) # 208 + 16 * 3 = 256, T = 1 self.bn3d_2 = nn.BatchNorm3d(256, eps=1e-3, momentum=1e-3) self.conv3d_2 = nn.Conv3d(256, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f2 = nn.Conv3d(512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.dynamic_filter = DynamicUpsamplingFilter_3C((1, 5, 5)) self.scale = scale self.adapt_official = adapt_official def forward(self, x): ''' x: [B, T, C, H, W], T = 7. reshape to [B, C, T, H, W] for Conv3D Generate filters and image residual: Fx: [B, 25, 16, H, W] for DynamicUpsamplingFilter_3C Rx: [B, 3*16, 1, H, W] ''' B, T, C, H, W = x.size() x = x.permute(0, 2, 1, 3, 4) # [B,C,T,H,W] for Conv3D x_center = x[:, :, T // 2, :, :] x = self.conv3d_1(x) x = self.dense_block_1(x) x = self.dense_block_2(x) # reduce T to 1 x = F.relu(self.conv3d_2(F.relu(self.bn3d_2(x), inplace=True)), inplace=True) # image residual Rx = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True)) # [B, 3*16, 1, H, W] # filter Fx = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True)) # [B, 25*16, 1, H, W] Fx = F.softmax(Fx.view(B, 25, self.scale**2, H, W), dim=1) # Adapt to official model weights if self.adapt_official: adapt_official(Rx, scale=self.scale) # dynamic filter out = self.dynamic_filter(x_center, Fx) # [B, 3*R, H, W] out += Rx.squeeze_(2) out = F.pixel_shuffle(out, self.scale) # [B, 3, H, W] return out class DenseBlock_52L(nn.Module): '''The first part of the dense blocks used in DUF_52L Temporal dimension remains the same here''' def __init__(self, nf=64, ng=16): super(DenseBlock_52L, self).__init__() pad = (1, 1, 1) dense_block_l = [] for i in range(0, 21): dense_block_l.append(nn.BatchNorm3d(nf + i * ng, eps=1e-3, momentum=1e-3)) dense_block_l.append(nn.ReLU()) dense_block_l.append( nn.Conv3d(nf + i * ng, nf + i * ng, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)) dense_block_l.append(nn.BatchNorm3d(nf + i * ng, eps=1e-3, momentum=1e-3)) dense_block_l.append(nn.ReLU()) dense_block_l.append( nn.Conv3d(nf + i * ng, ng, (3, 3, 3), stride=(1, 1, 1), padding=pad, bias=True)) self.dense_blocks = nn.ModuleList(dense_block_l) def forward(self, x): '''x: [B, C, T, H, W] C: 1) 64 -> 400; T: 1) 7 -> 7; (t_reduce=True)''' for i in range(0, len(self.dense_blocks), 6): y = x for j in range(6): y = self.dense_blocks[i + j](y) x = torch.cat((x, y), 1) return x class DUF_52L(nn.Module): '''Official DUF structure with 52 layers''' def __init__(self, scale=4, adapt_official=False): super(DUF_52L, self).__init__() self.conv3d_1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.dense_block_1 = DenseBlock_52L(64, 16) # 64 + 21 * 9 = 400, T = 7 self.dense_block_2 = DenseBlock(400, 16, t_reduce=True) # 400 + 16 * 3 = 448, T = 1 self.bn3d_2 = nn.BatchNorm3d(448, eps=1e-3, momentum=1e-3) self.conv3d_2 = nn.Conv3d(448, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.conv3d_f2 = nn.Conv3d(512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) self.dynamic_filter = DynamicUpsamplingFilter_3C((1, 5, 5)) self.scale = scale self.adapt_official = adapt_official def forward(self, x): ''' x: [B, T, C, H, W], T = 7. reshape to [B, C, T, H, W] for Conv3D Generate filters and image residual: Fx: [B, 25, 16, H, W] for DynamicUpsamplingFilter_3C Rx: [B, 3*16, 1, H, W] ''' B, T, C, H, W = x.size() x = x.permute(0, 2, 1, 3, 4) # [B,C,T,H,W] for Conv3D x_center = x[:, :, T // 2, :, :] x = self.conv3d_1(x) x = self.dense_block_1(x) x = self.dense_block_2(x) x = F.relu(self.conv3d_2(F.relu(self.bn3d_2(x), inplace=True)), inplace=True) # image residual Rx = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True)) # [B, 3*16, 1, H, W] # filter Fx = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True)) # [B, 25*16, 1, H, W] Fx = F.softmax(Fx.view(B, 25, self.scale**2, H, W), dim=1) # Adapt to official model weights if self.adapt_official: adapt_official(Rx, scale=self.scale) # dynamic filter out = self.dynamic_filter(x_center, Fx) # [B, 3*R, H, W] out += Rx.squeeze_(2) out = F.pixel_shuffle(out, self.scale) # [B, 3, H, W] return out ``` #### File: codes/models/base_model.py ```python import os from collections import OrderedDict import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel class BaseModel(): def __init__(self, opt): self.opt = opt self.device = torch.device('cuda' if opt['gpu_ids'] is not None else 'cpu') self.is_train = opt['is_train'] self.schedulers = [] self.optimizers = [] def feed_data(self, data): pass def optimize_parameters(self): pass def get_current_visuals(self): pass def get_current_losses(self): pass def print_network(self): pass def save(self, label): pass def load(self): pass def _set_lr(self, lr_groups_l): """Set learning rate for warmup lr_groups_l: list for lr_groups. each for a optimizer""" for optimizer, lr_groups in zip(self.optimizers, lr_groups_l): for param_group, lr in zip(optimizer.param_groups, lr_groups): param_group['lr'] = lr def _get_init_lr(self): """Get the initial lr, which is set by the scheduler""" init_lr_groups_l = [] for optimizer in self.optimizers: init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups]) return init_lr_groups_l def update_learning_rate(self, cur_iter, warmup_iter=-1): for scheduler in self.schedulers: scheduler.step() # set up warm-up learning rate if cur_iter < warmup_iter: # get initial lr for each group init_lr_g_l = self._get_init_lr() # modify warming-up learning rates warm_up_lr_l = [] for init_lr_g in init_lr_g_l: warm_up_lr_l.append([v / warmup_iter * cur_iter for v in init_lr_g]) # set learning rate self._set_lr(warm_up_lr_l) def get_current_learning_rate(self): return [param_group['lr'] for param_group in self.optimizers[0].param_groups] def get_network_description(self, network): """Get the string and total parameters of the network""" if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module return str(network), sum(map(lambda x: x.numel(), network.parameters())) def save_network(self, network, network_label, iter_label): save_filename = '{}_{}.pth'.format(iter_label, network_label) save_path = os.path.join(self.opt['path']['models'], save_filename) if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module state_dict = network.state_dict() for key, param in state_dict.items(): state_dict[key] = param.cpu() torch.save(state_dict, save_path) def load_network(self, load_path, network, strict=True): if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module load_net = torch.load(load_path) load_net_clean = OrderedDict() # remove unnecessary 'module.' for k, v in load_net.items(): if k.startswith('module.'): load_net_clean[k[7:]] = v else: load_net_clean[k] = v network.load_state_dict(load_net_clean, strict=strict) def save_training_state(self, epoch, iter_step): """Save training state during training, which will be used for resuming""" state = {'epoch': epoch, 'iter': iter_step, 'schedulers': [], 'optimizers': []} for s in self.schedulers: state['schedulers'].append(s.state_dict()) for o in self.optimizers: state['optimizers'].append(o.state_dict()) save_filename = '{}.state'.format(iter_step) save_path = os.path.join(self.opt['path']['training_state'], save_filename) torch.save(state, save_path) def resume_training(self, resume_state): """Resume the optimizers and schedulers for training""" resume_optimizers = resume_state['optimizers'] resume_schedulers = resume_state['schedulers'] assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers' assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers' for i, o in enumerate(resume_optimizers): self.optimizers[i].load_state_dict(o) for i, s in enumerate(resume_schedulers): self.schedulers[i].load_state_dict(s) ``` #### File: mmsr/codes/test_Vid4_REDS4_with_GT.py ```python import os import os.path as osp import glob import logging import numpy as np import cv2 import torch import utils.util as util import data.util as data_util import models.archs.EDVR_arch as EDVR_arch def main(): ################# # configurations ################# device = torch.device('cuda') os.environ['CUDA_VISIBLE_DEVICES'] = '0' data_mode = 'Vid4' # Vid4 | sharp_bicubic | blur_bicubic | blur | blur_comp # Vid4: SR # REDS4: sharp_bicubic (SR-clean), blur_bicubic (SR-blur); # blur (deblur-clean), blur_comp (deblur-compression). stage = 1 # 1 or 2, use two stage strategy for REDS dataset. flip_test = False ############################################################################ #### model if data_mode == 'Vid4': if stage == 1: model_path = '../experiments/pretrained_models/EDVR_Vimeo90K_SR_L.pth' else: raise ValueError('Vid4 does not support stage 2.') elif data_mode == 'sharp_bicubic': if stage == 1: model_path = '../experiments/pretrained_models/EDVR_REDS_SR_L.pth' else: model_path = '../experiments/pretrained_models/EDVR_REDS_SR_Stage2.pth' elif data_mode == 'blur_bicubic': if stage == 1: model_path = '../experiments/pretrained_models/EDVR_REDS_SRblur_L.pth' else: model_path = '../experiments/pretrained_models/EDVR_REDS_SRblur_Stage2.pth' elif data_mode == 'blur': if stage == 1: model_path = '../experiments/pretrained_models/EDVR_REDS_deblur_L.pth' else: model_path = '../experiments/pretrained_models/EDVR_REDS_deblur_Stage2.pth' elif data_mode == 'blur_comp': if stage == 1: model_path = '../experiments/pretrained_models/EDVR_REDS_deblurcomp_L.pth' else: model_path = '../experiments/pretrained_models/EDVR_REDS_deblurcomp_Stage2.pth' else: raise NotImplementedError if data_mode == 'Vid4': N_in = 7 # use N_in images to restore one HR image else: N_in = 5 predeblur, HR_in = False, False back_RBs = 40 if data_mode == 'blur_bicubic': predeblur = True if data_mode == 'blur' or data_mode == 'blur_comp': predeblur, HR_in = True, True if stage == 2: HR_in = True back_RBs = 20 model = EDVR_arch.EDVR(128, N_in, 8, 5, back_RBs, predeblur=predeblur, HR_in=HR_in) #### dataset if data_mode == 'Vid4': test_dataset_folder = '../datasets/Vid4/BIx4' GT_dataset_folder = '../datasets/Vid4/GT' else: if stage == 1: test_dataset_folder = '../datasets/REDS4/{}'.format(data_mode) else: test_dataset_folder = '../results/REDS-EDVR_REDS_SR_L_flipx4' print('You should modify the test_dataset_folder path for stage 2') GT_dataset_folder = '../datasets/REDS4/GT' #### evaluation crop_border = 0 border_frame = N_in // 2 # border frames when evaluate # temporal padding mode if data_mode == 'Vid4' or data_mode == 'sharp_bicubic': padding = 'new_info' else: padding = 'replicate' save_imgs = True save_folder = '../results/{}'.format(data_mode) util.mkdirs(save_folder) util.setup_logger('base', save_folder, 'test', level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') #### log info logger.info('Data: {} - {}'.format(data_mode, test_dataset_folder)) logger.info('Padding mode: {}'.format(padding)) logger.info('Model path: {}'.format(model_path)) logger.info('Save images: {}'.format(save_imgs)) logger.info('Flip test: {}'.format(flip_test)) #### set up the models model.load_state_dict(torch.load(model_path), strict=True) model.eval() model = model.to(device) avg_psnr_l, avg_psnr_center_l, avg_psnr_border_l = [], [], [] subfolder_name_l = [] subfolder_l = sorted(glob.glob(osp.join(test_dataset_folder, '*'))) subfolder_GT_l = sorted(glob.glob(osp.join(GT_dataset_folder, '*'))) # for each subfolder for subfolder, subfolder_GT in zip(subfolder_l, subfolder_GT_l): subfolder_name = osp.basename(subfolder) subfolder_name_l.append(subfolder_name) save_subfolder = osp.join(save_folder, subfolder_name) img_path_l = sorted(glob.glob(osp.join(subfolder, '*'))) max_idx = len(img_path_l) if save_imgs: util.mkdirs(save_subfolder) #### read LQ and GT images imgs_LQ = data_util.read_img_seq(subfolder) img_GT_l = [] for img_GT_path in sorted(glob.glob(osp.join(subfolder_GT, '*'))): img_GT_l.append(data_util.read_img(None, img_GT_path)) avg_psnr, avg_psnr_border, avg_psnr_center, N_border, N_center = 0, 0, 0, 0, 0 # process each image for img_idx, img_path in enumerate(img_path_l): img_name = osp.splitext(osp.basename(img_path))[0] select_idx = data_util.index_generation(img_idx, max_idx, N_in, padding=padding) imgs_in = imgs_LQ.index_select(0, torch.LongTensor(select_idx)).unsqueeze(0).to(device) if flip_test: output = util.flipx4_forward(model, imgs_in) else: output = util.single_forward(model, imgs_in) output = util.tensor2img(output.squeeze(0)) if save_imgs: cv2.imwrite(osp.join(save_subfolder, '{}.png'.format(img_name)), output) # calculate PSNR output = output / 255. GT = np.copy(img_GT_l[img_idx]) # For REDS, evaluate on RGB channels; for Vid4, evaluate on the Y channel if data_mode == 'Vid4': # bgr2y, [0, 1] GT = data_util.bgr2ycbcr(GT, only_y=True) output = data_util.bgr2ycbcr(output, only_y=True) output, GT = util.crop_border([output, GT], crop_border) crt_psnr = util.calculate_psnr(output * 255, GT * 255) logger.info('{:3d} - {:25} \tPSNR: {:.6f} dB'.format(img_idx + 1, img_name, crt_psnr)) if img_idx >= border_frame and img_idx < max_idx - border_frame: # center frames avg_psnr_center += crt_psnr N_center += 1 else: # border frames avg_psnr_border += crt_psnr N_border += 1 avg_psnr = (avg_psnr_center + avg_psnr_border) / (N_center + N_border) avg_psnr_center = avg_psnr_center / N_center avg_psnr_border = 0 if N_border == 0 else avg_psnr_border / N_border avg_psnr_l.append(avg_psnr) avg_psnr_center_l.append(avg_psnr_center) avg_psnr_border_l.append(avg_psnr_border) logger.info('Folder {} - Average PSNR: {:.6f} dB for {} frames; ' 'Center PSNR: {:.6f} dB for {} frames; ' 'Border PSNR: {:.6f} dB for {} frames.'.format(subfolder_name, avg_psnr, (N_center + N_border), avg_psnr_center, N_center, avg_psnr_border, N_border)) logger.info('################ Tidy Outputs ################') for subfolder_name, psnr, psnr_center, psnr_border in zip(subfolder_name_l, avg_psnr_l, avg_psnr_center_l, avg_psnr_border_l): logger.info('Folder {} - Average PSNR: {:.6f} dB. ' 'Center PSNR: {:.6f} dB. ' 'Border PSNR: {:.6f} dB.'.format(subfolder_name, psnr, psnr_center, psnr_border)) logger.info('################ Final Results ################') logger.info('Data: {} - {}'.format(data_mode, test_dataset_folder)) logger.info('Padding mode: {}'.format(padding)) logger.info('Model path: {}'.format(model_path)) logger.info('Save images: {}'.format(save_imgs)) logger.info('Flip test: {}'.format(flip_test)) logger.info('Total Average PSNR: {:.6f} dB for {} clips. ' 'Center PSNR: {:.6f} dB. Border PSNR: {:.6f} dB.'.format( sum(avg_psnr_l) / len(avg_psnr_l), len(subfolder_l), sum(avg_psnr_center_l) / len(avg_psnr_center_l), sum(avg_psnr_border_l) / len(avg_psnr_border_l))) if __name__ == '__main__': main() ```
{ "source": "Johnson-yue/PyTorch-StudioGAN", "score": 2 }
#### File: PyTorch-StudioGAN/utils/sample.py ```python import numpy as np from numpy import random, linalg from math import sin,cos,sqrt import random import torch import torch.nn.functional as F def sample_latents(dist, n_samples, noise_dim, truncated_factor=1, n_categories=None, perturb=None, device=torch.device("cpu")): if n_categories: y_fake = torch.randint(low=0, high=n_categories, size=(n_samples,), dtype=torch.long, device=device) else: y_fake = None if isinstance(perturb, float) and perturb > 0.0: if dist == "gaussian": noise = torch.randn(n_samples, noise_dim, device=device)/truncated_factor e = perturb*torch.randn(n_samples, noise_dim, device=device) noise_perturb = noise + e elif dist == "uniform": noise = torch.FloatTensor(n_samples, noise_dim).uniform_(-1.0, 1.0).to(device) e = perturb*torch.FloatTensor(n_samples, noise_dim).uniform_(-1.0, 1.0).to(device) noise_perturb = noise + e elif dist == "hyper_sphere": noise, noise_perturb = random_ball(n_samples, noise_dim, perturb=perturb) noise, noise_perturb = torch.FloatTensor(noise).to(device), torch.FloatTensor(noise_perturb).to(device) return noise, y_fake, noise_perturb else: if dist == "gaussian": noise = torch.randn(n_samples, noise_dim, device=device)/truncated_factor elif dist == "uniform": noise = torch.FloatTensor(n_samples, noise_dim).uniform_(-1.0, 1.0).to(device) elif dist == "hyper_sphere": noise = random_ball(n_samples, noise_dim, perturb=perturb).to(device) return noise, y_fake def random_ball(batch_size, z_dim, perturb=False): if perturb: normal = np.random.normal(size=(z_dim, batch_size)) random_directions = normal/linalg.norm(normal, axis=0) random_radii = random.random(batch_size) ** (1/z_dim) z = 1.0 * (random_directions * random_radii).T normal_perturb = normal + 0.05*np.random.normal(size=(z_dim, batch_size)) perturb_random_directions = normal_perturb/linalg.norm(normal_perturb, axis=0) perturb_random_radii = random.random(batch_size) ** (1/z_dim) z_perturb = 1.0 * (perturb_random_directions * perturb_random_radii).T return z, z_perturb else: normal = np.random.normal(size=(z_dim, batch_size)) random_directions = normal/linalg.norm(normal, axis=0) random_radii = random.random(batch_size) ** (1/z_dim) z = 1.0 * (random_directions * random_radii).T return z def gaussian_mixture(batch_size, n_labels ,n_dim, x_var=0.5, y_var=0.1): label_indices = np.random.randint(0, n_labels, size=[batch_size]) if n_dim != 2: raise Exception("n_dim must be 2.") def sample(x, y, label, n_labels): shift = 1.4 r = 2.0 * np.pi / float(n_labels) * float(label) new_x = x * cos(r) - y * sin(r) new_y = x * sin(r) + y * cos(r) new_x += shift * cos(r) new_y += shift * sin(r) return np.array([new_x, new_y]).reshape((2,)) x = np.random.normal(0, x_var, (batch_size, (int)(n_dim/2))) y = np.random.normal(0, y_var, (batch_size, (int)(n_dim/2))) z = np.empty((batch_size, n_dim), dtype=np.float32) for batch in range(batch_size): for zi in range((int)(n_dim/2)): if label_indices is not None: z[batch, zi*2:zi*2+2] = sample(x[batch, zi], y[batch, zi], label_indices[batch], n_labels) else: z[batch, zi*2:zi*2+2] = sample(x[batch, zi], y[batch, zi], np.random.randint(0, n_labels), n_labels) return z, label_indices def make_mask(labels, n_cls, device): labels = labels.detach().cpu().numpy() n_samples = labels.shape[0] mask_multi = np.zeros([n_cls, n_samples]) for c in range(n_cls): c_indices = np.where(labels==c) mask_multi[c, c_indices] = +1 mask_multi = torch.tensor(mask_multi).type(torch.long) return mask_multi.to(device) ``` #### File: PyTorch-StudioGAN/utils/utils.py ```python import numpy as np import random import torch import torch.nn.functional as F from torch.nn import DataParallel from datetime import datetime # fix python, numpy, torch seed def fix_all_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def count_parameters(module): return 'Number of parameters: {}'.format(sum([p.data.nelement() for p in module.parameters()])) def elapsed_time(start_time): now = datetime.now() elapsed = now - start_time return str(elapsed).split('.')[0] # remove milliseconds def reshape_weight_to_matrix(weight): weight_mat = weight dim =0 if dim != 0: # permute dim to front weight_mat = weight_mat.permute(dim, *[d for d in range(weight_mat.dim()) if d != dim]) height = weight_mat.size(0) return weight_mat.reshape(height, -1) def find_string(list_, string): for i, s in enumerate(list_): if string == s: return i def calculate_all_sn(model): sigmas = {} with torch.no_grad(): for name, param in model.named_parameters(): if "weight" in name and "bn" not in name and "shared" not in name and "deconv" not in name: if "blocks" in name: splited_name = name.split('.') idx = find_string(splited_name, 'blocks') block_idx = int(splited_name[int(idx+1)]) module_idx = int(splited_name[int(idx+2)]) operation_name = splited_name[idx+3] if isinstance(model, DataParallel): operations = model.module.blocks[block_idx][module_idx] else: operations = model.blocks[block_idx][module_idx] operation = getattr(operations, operation_name) else: splited_name = name.split('.') idx = find_string(splited_name, 'module') if isinstance(model, DataParallel) else -1 operation_name = splited_name[idx+1] if isinstance(model, DataParallel): operation = getattr(model.module, operation_name) else: operation = getattr(model, operation_name) weight_orig = reshape_weight_to_matrix(operation.weight_orig) weight_u = operation.weight_u weight_v = operation.weight_v sigmas[name] = torch.dot(weight_u, torch.mv(weight_orig, weight_v)) return sigmas ```
{ "source": "Johnson-yue/TensorMONK", "score": 3 }
#### File: tensormonk/activations/activations.py ```python __all__ = ["Activations", "maxout", "mish", "squash", "swish"] import torch import torch.nn as nn import torch.nn.functional as F def squash(tensor: torch.Tensor) -> torch.Tensor: if not tensor.dim() == 3: raise ValueError("Squash requires 3D tensors: {}".format( tensor.dim())) sum_squares = (tensor**2).sum(2, True) return (sum_squares/(1+sum_squares)) * tensor / sum_squares.pow(0.5) def swish(tensor: torch.Tensor) -> torch.Tensor: return tensor * torch.sigmoid(tensor) def maxout(tensor: torch.Tensor) -> torch.Tensor: if not tensor.size(1) % 2 == 0: raise ValueError("MaxOut: tensor.size(1) must be divisible by n_splits" ": {}".format(tensor.size(1))) return torch.max(*tensor.split(tensor.size(1)//2, 1)) def mish(tensor: torch.Tensor) -> torch.Tensor: return tensor * tensor.exp().add(1).log().tanh() class Activations(nn.Module): r""" All the usual activations along with maxout, relu + maxout and swish. MaxOut (maxo) - https://arxiv.org/pdf/1302.4389.pdf Swish - https://arxiv.org/pdf/1710.05941v1.pdf Mish - https://arxiv.org/pdf/1908.08681v1.pdf Args: tensor_size: shape of tensor in BCHW (None/any integer >0, channels, height, width) activation: relu/relu6/lklu/elu/prelu/tanh/sigm/maxo/rmxo/swish/mish, default=relu """ def __init__(self, tensor_size: tuple, activation: str = "relu", **kwargs): super(Activations, self).__init__() if activation is not None: activation = activation.lower() self.t_size = tensor_size self.activation = activation self.function = None if activation not in self.available(): raise ValueError("activation: Invalid activation " + "/".join(self.available()) + ": {}".format(activation)) self.function = getattr(self, "_" + activation) if activation == "prelu": self.weight = nn.Parameter(torch.ones(1)) * 0.1 if activation == "lklu": self.negslope = kwargs["lklu_negslope"] if "lklu_negslope" in \ kwargs.keys() else 0.01 if activation == "elu": self.alpha = kwargs["elu_alpha"] if "elu_alpha" in \ kwargs.keys() else 1.0 self.tensor_size = tensor_size if activation not in ["maxo", "rmxo"] \ else (None, tensor_size[1]//2, tensor_size[2], tensor_size[3]) def forward(self, tensor: torch.Tensor): if self.function is None: return tensor return self.function(tensor) def _relu(self, tensor): return F.relu(tensor) def _relu6(self, tensor): return F.relu6(tensor) def _lklu(self, tensor): return F.leaky_relu(tensor, self.negslope) def _elu(self, tensor): return F.elu(tensor, self.alpha) def _prelu(self, tensor): return F.prelu(tensor, self.weight) def _tanh(self, tensor): return torch.tanh(tensor) def _sigm(self, tensor): return torch.sigmoid(tensor) def _maxo(self, tensor): return maxout(tensor) def _rmxo(self, tensor): return maxout(F.relu(tensor)) def _swish(self, tensor): return swish(tensor) def _mish(self, tensor): return mish(tensor) def _squash(self, tensor): return squash(tensor) def __repr__(self): return self.activation @staticmethod def available(): return ["elu", "lklu", "maxo", "mish", "prelu", "relu", "relu6", "rmxo", "sigm", "squash", "swish", "tanh"] def flops(self): import numpy as np flops = 0 numel = np.prod(self.t_size[1:]) if self.activation == "elu": # max(0, x) + min(0, alpha*(exp(x)-1)) flops = numel * 5 elif self.activation in ("lklu", "prelu", "sigm"): flops = numel * 3 elif self.activation == "maxo": # torch.max(*x.split(x.size(1)//2, 1)) flops = numel / 2 elif self.activation == "mish": # x * tanh(ln(1 + e^x)) flops = numel * 5 elif self.activation == "relu": # max(0, x) flops = numel elif self.activation == "relu6": # min(6, max(0, x)) flops = numel * 2 elif self.activation == "rmxo": # maxo(relu(x)) flops = int(numel * 1.5) elif self.activation == "squash": # sum_squares = (tensor**2).sum(2, True) # (sum_squares/(1+sum_squares)) * tensor / sum_squares.pow(0.5) flops = numel*4 + self.t_size[1]*2 elif self.activation == "swish": # x * sigm(x) flops = numel * 4 elif self.activation == "tanh": # (exp(x) - exp(-x)) / (exp(x) + exp(-x)) flops = numel * 7 return flops # Activations.available() # x = torch.rand(3, 4, 10, 10).mul(2).add(-1) # test = Activations("prelu") # test(x).min() ``` #### File: tensormonk/loss/categorical.py ```python import math import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from .center_function import CenterFunction from .utils import compute_n_embedding, compute_top15, one_hot_idx from ..utils import Measures import warnings class Categorical(nn.Module): r""" Categorical with weight's to convert embedding to n_labels categorical responses. Args: tensor_size (int/list/tuple, required) Shape of tensor in (None/any integer >0, channels, height, width) or (None/any integer >0, in_features) or in_features n_labels (int, required) Number of labels loss_type (str, default="entr") "entr" / "smax" log_softmax + negative log likelihood "tsmax" / "taylor_smax" taylor series + log_softmax + negative log likelihood (https://arxiv.org/pdf/1511.05042.pdf) "aaml" / "angular_margin" additive angular margin loss (ArcFace) (https://arxiv.org/pdf/1801.07698.pdf eq-3) "lmcl" / "large_margin" large margin cosine loss (CosFace) (https://arxiv.org/pdf/1801.09414.pdf eq-4) "lmgm" / "gaussian_mixture" large margin gaussian mixture loss https://arxiv.org/pdf/1803.02988.pdf eq-17 "snnl" soft nearest neighbor loss https://arxiv.org/pdf/1902.01889.pdf eq-1 measure (str, default="dot") Options = "cosine" / "dot" / "euclidean". Large angular margin/ large margin cosine loss only use cosine. Gaussian mixture loss only use "cosine" / "euclidean". add_center (bool, default=False) Adds center loss to final loss - https://ydwen.github.io/papers/WenECCV16.pdf center_alpha (float, default = 0.01) Alpha for center loss. center_scale (float, default=0.5) Scale for center loss. add_focal (bool, default=False) Enables focal loss - https://arxiv.org/pdf/1708.02002.pdf focal_alpha (float/Tensor, default=0.5) Alpha for focal loss. Actual focal loss implementation requires alpha as a tensor of length n_labels that contains class imbalance. focal_gamma (float, default=2) Gamma for focal loss, default = 2. add_hard_negative (bool, default=False) Enables hard negative mining hard_negative_p (float, default=0.2) Probability of hard negatives retained. lmgm_alpha (float, default=0.01) Alpha in eq-17. lmgm_coefficient (float, default=0.1) lambda in eq-17 snnl_measure (str, default="euclidean") Squared euclidean or cosine, when cosine the score are subtracted by 1 snnl_alpha (float, default=0.01) Alpha in eq-2, hyper-parameter multiplied to soft nearest nieghbor loss before adding to cross entropy snnl_temperature (float, default=100) Temperature in eq-1. When None, it is a trainable parameter with a deafult temperature of 10. scale (float, default=10) scale, s, for large angular margin/large margin cosine loss margin (float, default=0.3) margin, m, for large angular margin/large margin cosine loss Return: loss, (top1, top5) """ def __init__(self, tensor_size: tuple, n_labels: int, loss_type: str = "entr", measure: str = "dot", add_center: bool = False, center_alpha: float = 0.01, center_scale: float = 0.5, add_focal: bool = False, focal_alpha: (float, Tensor) = 0.5, focal_gamma: float = 2., add_hard_negative: bool = False, hard_negative_p: float = 0.2, lmgm_alpha: float = 0.01, lmgm_coefficient: float = 0.1, snnl_measure: str = "cosine", snnl_alpha: float = 0.01, snnl_temperature: float = 100., scale: float = 10., margin: float = 0.3, **kwargs): super(Categorical, self).__init__() METHODS = ("entr", "smax", "tsmax", "taylor_smax", "aaml", "angular_margin", "lmcl", "large_margin", "lmgm", "gaussian_mixture", "snnl", "soft_nn") MEASURES = ("cosine", "dot", "euclidean") # Checks n_embedding = compute_n_embedding(tensor_size) if not isinstance(n_labels, int): raise TypeError("Categorical: n_labels must be int: " "{}".format(type(n_labels).__name__)) self.n_labels = n_labels if "type" in kwargs.keys(): loss_type = kwargs["type"] warnings.warn("Categorical: 'type' is deprecated, use 'loss_type' " "instead", DeprecationWarning) if not isinstance(loss_type, str): raise TypeError("Categorical: loss_type must be str: " "{}".format(type(loss_type).__name__)) self.loss_type = loss_type.lower() if self.loss_type not in METHODS: raise ValueError("Categorical :: loss_type != " + "/".join(METHODS) + " : {}".format(self.loss_type)) if not isinstance(measure, str): raise TypeError("Categorical: measure must be str: " "{}".format(type(measure).__name__)) self.measure = measure.lower() if self.measure not in MEASURES: raise ValueError("Categorical: measure != " + "/".join(MEASURES) + "{}".format(self.measure)) # loss function if self.loss_type in ("entr", "smax", "tsmax", "taylor_smax"): self.loss_function = self._cross_entropy elif self.loss_type in ("aaml", "angular_margin"): if not isinstance(scale, (int, float)): raise TypeError("Categorical: scale for aaml/angular_margin " "must be int/float") if not isinstance(margin, float): raise TypeError("Categorical: margin for aaml/angular_margin " "must be float") self.scale = scale self.margin = margin self.loss_function = self._angular_margin elif self.loss_type in ("lmgm", "gaussian_mixture"): if not (isinstance(lmgm_alpha, float) and isinstance(lmgm_coefficient, float)): raise TypeError("Categorical: lmgm_alpha/lmgm_coefficient" "/both is not float") if self.loss_type in ("lmgm", "gaussian_mixture"): if self.measure == "dot": raise ValueError("Categorical: measure must be " "cosine/euclidean for loss_type=lmgm") self.lmgm_alpha = lmgm_alpha self.lmgm_coefficient = lmgm_coefficient self.loss_function = self._gaussian_mixture elif self.loss_type in ("lmcl", "large_margin"): if not isinstance(scale, (int, float)): raise TypeError("Categorical: scale for lmcl/large_margin " "must be int/float") if not isinstance(margin, float): raise TypeError("Categorical: margin for lmcl/large_margin " "must be float") self.scale = scale self.margin = margin self.loss_function = self._large_margin elif self.loss_type in ("snnl", "soft_nn"): self.snnl_measure = snnl_measure.lower() if not isinstance(self.snnl_measure, str): raise TypeError("Categorical: snnl_measure must be str") if self.snnl_measure not in ("cosine", "euclidean"): raise ValueError("Categorical: snnl_measure must be " "'cosine'/'euclidean'") if not isinstance(snnl_alpha, float): raise TypeError("Categorical: snnl_alpha must be float") if snnl_temperature is None: self.temperature = nn.Parameter(torch.zeros(1).add(10)) else: if not isinstance(snnl_temperature, (int, float)): raise TypeError("Categorical: snnl_temperature must be " "int/float") self.temperature = snnl_temperature self.snnl_measure = snnl_measure self.snnl_alpha = snnl_alpha self.loss_function = self._soft_nn self.weight = nn.Parameter( F.normalize(torch.randn(n_labels, n_embedding), 2, 1)) # Center loss if "center" in kwargs.keys(): add_center = kwargs["center"] warnings.warn("Categorical: 'center' is deprecated, use " "'add_center' instead", DeprecationWarning) if not isinstance(add_center, bool): raise TypeError("Categorical: add_center must be bool: " "{}".format(type(add_center).__name__)) self.add_center = add_center if self.add_center: if not (isinstance(center_alpha, float) and isinstance(center_scale, float)): raise TypeError("Categorical: center_alpha/center_scale/both " "is not float") self.register_buffer("center_alpha", torch.Tensor([center_alpha]).sum()) self.register_buffer("center_scale", torch.Tensor([center_scale]).sum()) self.centers = nn.Parameter( F.normalize(torch.randn(n_labels, n_embedding), p=2, dim=1)) self.center_function = CenterFunction.apply # Focal loss if not isinstance(add_focal, bool): raise TypeError("Categorical: add_focal must be bool: " "{}".format(type(add_focal).__name__)) self.add_focal = add_focal if self.add_focal: if not isinstance(focal_alpha, (float, Tensor)): raise TypeError("Categorical: focal_alpha must be float/" "torch.Tensor") if isinstance(focal_alpha, Tensor): if focal_alpha.numel() != n_labels: raise ValueError("Categorical: focal_alpha.numel() " "!= n_labels") if not (isinstance(focal_alpha, (float, Tensor)) and isinstance(focal_gamma, float)): raise TypeError("Categorical: focal_alpha/focal_gamma/both " "is not float") if isinstance(focal_alpha, Tensor): self.register_buffer("focal_alpha", focal_alpha) else: self.focal_alpha = focal_alpha self.focal_gamma = focal_gamma # Hard negative mining if not isinstance(add_hard_negative, bool): raise TypeError("Categorical: add_hard_negative must be bool: " "{}".format(type(add_hard_negative).__name__)) self.add_hard_negative = add_hard_negative if self.add_focal and self.add_hard_negative: warnings.warn("Categorical: Both focal and hard negative mining " "can not be True, add_hard_negative is set to " "False") self.add_hard_negative = False if self.add_hard_negative: if not isinstance(hard_negative_p, float): raise TypeError("Categorical: hard_negative_p is not float") if not (0 < hard_negative_p < 1): raise ValueError("Categorical: hard_negative_p must be " "> 0 & < 1: {}".format(hard_negative_p)) self.hard_negative_p = hard_negative_p self.tensor_size = (1, ) def forward(self, tensor: Tensor, targets: Tensor): loss, (top1, top5) = self.loss_function(tensor, targets) if self.add_center: center_loss = self.center_function( tensor, targets.long(), self.centers, self.center_alpha, self.center_scale) loss = loss + center_loss return loss, (top1, top5) def _predictions(self, tensor: Tensor, measure: str = "dot") -> Tensor: if measure == "euclidean": # TODO: euclidean computation is not scalable to larger n_labels # euclidean is squared euclidean for stability return Measures.sqr_euclidean_pairwise(tensor, self.weight) elif measure == "cosine": return Measures.cosine_pairwise(tensor, self.weight) # default is "dot" product return tensor.mm(self.weight.t()) def _cross_entropy(self, tensor: Tensor, targets: Tensor, is_reponses: bool = False): r""" Taylor softmax, and softmax/cross entropy """ if is_reponses: # used by other loss functions (angular_margin/gaussian_mixture/ # large_margin) responses = tensor else: responses = self._predictions(tensor, self.measure) if self.measure == "euclidean": responses.neg_() (top1, top5) = compute_top15(responses.data, targets.data) if self.loss_type == "tsmax": # Taylor series responses = 1 + responses + 0.5*(responses**2) if self.add_hard_negative: responses, targets = self._hard_negative_mining(responses, targets) if self.add_focal: """ The loss function is a dynamically scaled cross entropy loss, where the scaling factor decays to zero as confidence in the correct class increases. """ loss = self._focal_loss(responses, targets) else: loss = F.nll_loss(responses.log_softmax(1), targets) if is_reponses: return loss return loss, (top1, top5) def _angular_margin(self, tensor: Tensor, targets: Tensor): r""" Additive angular margin loss or ArcFace """ cos_theta = self._predictions(tensor, "cosine") (top1, top5) = compute_top15(cos_theta.data, targets.data) m, s = min(0.5, self.margin), max(self.scale, 2.) true_idx = one_hot_idx(targets, self.n_labels) cos_theta = cos_theta.view(-1) if torch.__version__.startswith("1.2."): # pytorch 1.2 inplace issue with torch.no_grad(): true_tensor = torch.zeros_like(cos_theta) true_tensor[true_idx] = 1 cos_theta = cos_theta * (1 - true_tensor) + \ ((cos_theta).mul(math.cos(m)) - (cos_theta).pow(2).neg().add(1).pow(0.5).mul(math.sin(m))) * \ true_tensor else: cos_theta[true_idx] = cos_theta[true_idx].mul(math.cos(m)) - \ cos_theta[true_idx].pow(2).neg().add(1).pow(0.5).mul( math.sin(m)) cos_theta = (cos_theta * s).view(tensor.size(0), -1) return self._cross_entropy(cos_theta, targets, True), (top1, top5) def _gaussian_mixture(self, tensor: Tensor, targets: Tensor): """ Large margin gaussian mixture or lmgm """ # TODO euclidean computation is not scalable to larger n_labels # mahalanobis with identity covariance per paper = squared # euclidean -- does euclidean for stability # Switch to measure="cosine" if you have out of memory issues responses = self._predictions(tensor, self.measure) if self.measure != "euclidean": # invert when not euclidean responses.neg_().add_(1) (top1, top5) = compute_top15(responses.data.neg(), targets.data) true_idx = one_hot_idx(targets, self.n_labels) responses = responses.view(-1) loss = self.lmgm_coefficient * (responses[true_idx]).mean() if torch.__version__.startswith("1.2."): # pytorch 1.2 inplace issue with torch.no_grad(): true_tensor = torch.zeros_like(responses) true_tensor[true_idx] = 1 responses = responses * (1 - true_tensor) + \ responses * true_tensor * (1 + self.lmgm_alpha) else: responses[true_idx] = responses[true_idx] * (1 + self.lmgm_alpha) loss = loss + self._cross_entropy(-responses.view(tensor.size(0), -1), targets, True) return loss, (top1, top5) def _large_margin(self, tensor: Tensor, targets: Tensor): r""" Large margin cosine loss or CosFace """ cos_theta = self._predictions(tensor, "cosine") (top1, top5) = compute_top15(cos_theta.data, targets.data) m, s = min(0.5, self.margin), max(self.scale, 2.) true_idx = one_hot_idx(targets, self.n_labels) cos_theta = cos_theta.view(-1) if torch.__version__.startswith("1.2."): # pytorch 1.2 inplace issue with torch.no_grad(): ms = torch.zeros_like(cos_theta) ms[true_idx] = m cos_theta = cos_theta - ms else: cos_theta[true_idx] = cos_theta[true_idx] - m cos_theta = (cos_theta * s).view(tensor.size(0), -1) return self._cross_entropy(cos_theta, targets, True), (top1, top5) def _soft_nn(self, tensor: Tensor, targets: Tensor): r""" Soft nearest neighbor loss """ loss, (top1, top5) = self._cross_entropy(tensor, targets) # soft nearest -- requires multiple samples per label in a batch same_label = targets.data.view(-1, 1).eq(targets.data.view(1, -1)) valid = torch.eye(targets.numel()).to(targets.device).eq(0) if any((same_label * valid).sum(1)): # soft nearest neighbor loss is valid if self.snnl_measure == "cosine": distance = 1 - Measures.cosine_pairwise(tensor, tensor) else: distance = Measures.sqr_euclidean_pairwise(tensor, tensor) num = distance * (same_label * valid).to(distance.dtype).detach() num = (num).div(self.temperature).neg().exp().sum(1) den = distance * valid.to(distance.dtype).detach() den = (den).div(self.temperature).neg().exp().sum(1) snnl = (num / den.add(1e-6)).log().mean() # eq - 1 loss = loss + self.snnl_alpha * snnl # eq - 2 return loss, (top1, top5) def _hard_negative_mining(self, responses: Tensor, targets: Tensor): # get class probabilities and find n hard negatives p = responses.softmax(1) # zero out the genuine to find hard negatives genuine_idx = one_hot_idx(targets, self.n_labels) p = p.view(-1).contiguous() p[genuine_idx] = 0 p = p.view(-1, self.n_labels) n = max(1, int(self.n_labels * self.hard_negative_p)) hard_negatives = torch.argsort(p.detach(), dim=1)[:, -n:] # actual class prediction and n hard_negatives are computed new_responses = torch.cat( (responses.gather(1, targets.view(-1, 1)), responses.gather(1, hard_negatives.view(-1, n))), 1) # the new target is always zero given the above concatenate new_targets = targets.mul(0) return new_responses, new_targets def _focal_loss(self, responses: Tensor, targets: Tensor) -> Tensor: # https://arxiv.org/pdf/1708.02002.pdf :: eq-5 n, n_labels = responses.shape p = responses.softmax(1) # hot_targets = one_hot(targets, responses.shape[1]) # pt = p * hot_targets + (1 - p) * (1 - hot_targets) # zero out the genuine to find hard negatives genuine_idx = one_hot_idx(targets, n_labels) p = p.view(-1) pt_1st_term = p.mul(0) pt_1st_term[genuine_idx] = p[genuine_idx] pt_2nd_term = 1 - p pt_2nd_term[genuine_idx] = 0 pt = pt_1st_term.view(n, -1) + pt_2nd_term.view(n, -1) if isinstance(self.focal_alpha, Tensor): # alpha is Tensor with per label balance return (- self.focal_alpha.view(1, -1) * (1-pt).pow(self.focal_gamma) * pt.log()).sum(1).mean() return (- self.focal_alpha * (1-pt).pow(self.focal_gamma) * pt.log()).sum(1).mean() # from tensormonk.loss.utils import (compute_n_embedding, compute_top15, # one_hot, one_hot_idx) # from tensormonk.utils import Measures # from tensormonk.loss.center_function import CenterFunction # tensor = torch.rand(3, 256) # targets = torch.tensor([1, 3, 6]) # test = Categorical(256, 10, "aaml", measure="cosine") # test(tensor, targets)[0].backward() ``` #### File: tensormonk/loss/utils.py ```python __all__ = ["compute_n_embedding", "compute_top15", "one_hot", "one_hot_idx"] import torch import numpy as np def compute_n_embedding(tensor_size): if isinstance(tensor_size, list) or isinstance(tensor_size, tuple): if len(tensor_size) > 1: # batch size is not required tensor_size = np.prod(tensor_size[1:]) else: tensor_size = tensor_size[0] return int(tensor_size) def compute_top15(responses, targets): predicted = responses.topk(5, 1, True, True)[1] predicted = predicted.t() correct = predicted.eq(targets.view(1, -1).expand_as(predicted)) top1 = correct[:1].view(-1).float().sum().mul_(100.0 / responses.size(0)) top5 = correct[:5].view(-1).float().sum().mul_(100.0 / responses.size(0)) return top1, top5 def one_hot(targets, n_labels): identity = torch.eye(n_labels, dtype=torch.int8).to(targets.device) onehot_targets = identity.index_select(dim=0, index=targets.long().view(-1)) return onehot_targets.requires_grad_(False) def one_hot_idx(targets, n_labels): targets = targets.view(-1) return targets + \ torch.arange(0, targets.size(0)).to(targets.device) * n_labels ``` #### File: tensormonk/utils/pillow_utils.py ```python import torch import numpy as np import PIL.Image as ImPIL import random from PIL import ImageDraw, ImageOps from torchvision import transforms class PillowUtils: tensor_to_pil = transforms.ToPILImage() @staticmethod def to_pil(image, t_size: tuple = None, ltrb_boxes: np.ndarray = None): r"""Converts file_name or ndarray or 3D torch.Tensor to pillow image. Adjusts the ltrb_boxes when ltrb_boxes are provided along with t_size. Args: image (str/np.ndarray/torch.Tensor): input t_size (tuple, optional) BCHW (Ex: (None, 3, 60, 60)) used to convert to grey scale or resize ltrb_boxes (np.ndarray, optional) Must be pixel locations in (left, top, right, bottom). """ if ImPIL.isImageType(image): o = image elif isinstance(image, str): o = ImPIL.open(image).convert("RGB") elif isinstance(image, np.ndarray): o = ImPIL.fromarray(image) elif isinstance(image, torch.Tensor): o = PillowUtils.tensor_to_pil(image) else: raise TypeError("to_pil: image must be str/np.ndarray/torch.Tensor" ": {}".format(type(image).__name__)) if t_size is not None and len(t_size) == 4: w, h = o.size if t_size[1] == 1: o = o.convert("L") if not (t_size[2] == w and t_size[3] == h): o = o.resize((t_size[3], t_size[2]), ImPIL.BILINEAR) if ltrb_boxes is not None: ltrb_boxes[:, 0::2] *= t_size[3] / w ltrb_boxes[:, 1::2] *= t_size[2] / h return o, ltrb_boxes return o @staticmethod def random_pad(image: ImPIL.Image, ltrb_boxes: np.ndarray = None, points: np.ndarray = None, pad: float = 0.36, fill: int = 0): r"""Does random padding with fill value. When ltrb_boxes and/or points are not None, the boxes and/or points are adjusted to new image. Args: image ({str/np.ndarray/torch.Tensor}): input ltrb_boxes (np.ndarray, optional): Must be pixel locations in (left, top, right, bottom). points (np.ndarray, optional): (x, y) locations of landmarks within a box. Expects a 3D-array with points.shape[0] = ltrb.shape[0] and points.shape[2] = 2 pad (float, optional): (w + h) / 2 * pad is the max padding, must be in the range of 0-1, default=0.2 fill (int, optional): used to fill the extra region, default=0 Return: (image, ltrb_boxes) or image """ # random padding w, h = image.size in_pixels = int((w + h)*0.5 * pad * random.random()) image = ImageOps.expand(image, border=in_pixels, fill=fill) if ltrb_boxes is None: return image ltrb_boxes += in_pixels if points is None: return image, ltrb_boxes points += in_pixels return image, ltrb_boxes, points @staticmethod def random_crop(image: ImPIL.Image, ltrb_boxes: np.ndarray = None, retain: float = 0.5, maintain_aspect_ratio: bool = False): """ Does random crop and adjusts the boxes when not None (crops are limited such that the objects are within the cropped image)! Args: image (pil-image): pillow input image ltrb_boxes (np.ndarray, optional): object locations in ltrb format. Requires 2D-array, with rows of (left, top, right, bottom) in pixels. retain (float, optional): retain pecentage (0.2-0.8) - ignored when boxes is not None. default=0.5 maintain_aspect_ratio (bool, optional): Retains aspect ratio when True Return: image, boxes """ w, h = image.size x_, y_, _x, _y = np.random.rand(4).tolist() if ltrb_boxes is None: retain = max(0.2, retain) retain = min(1.0, retain) x_, _x = int(w * x_*(1-retain)*.5), int(w * (1 - _x*(1-retain)*.5)) y_, _y = int(h * y_*(1-retain)*.5), int(h * (1 - _y*(1-retain)*.5)) else: x_ = int(x_*ltrb_boxes[:, 0].min()) y_ = int(y_*ltrb_boxes[:, 1].min()) _x = w - int(_x * (w - ltrb_boxes[:, 2].max())) _y = h - int(_y * (h - ltrb_boxes[:, 3].max())) if maintain_aspect_ratio and (0.9 < (_x - x_)/(_y - y_) < 1.1): if (_x - x_)/(_y - y_) > 1: extra = (_x - x_) - (_y - y_) y_ -= extra//2 _y += extra//2 else: extra = (_y - y_) - (_x - x_) x_ -= extra//2 _x += extra//2 image = image.crop((x_, y_, _x, _y)) if ltrb_boxes is None: return image ltrb_boxes[:, 0::2] -= x_ ltrb_boxes[:, 1::2] -= y_ return image, ltrb_boxes @staticmethod def extend_random_crop(image, labels, ltrb, points=None, osize: tuple = (320, 320), min_box_side: int = 30, ignore_intersection: tuple = (0.5, 0.9), aspect_ratio_bounds: tuple = (0.5, 2)): r"""Does random crop and adjusts the boxes while maintaining minimum box size. When not None, the points (xy locations within a bounding box) are adjusted. Args: image (pil-image): pillow input image labels (np.ndarray): labels of each box ltrb (np.ndarray): object locations in ltrb format. Requires 2D-array, with rows of (left, top, right, bottom) in pixels. points (np.ndarray, optional): (x, y) locations of landmarks within a box. Expects a 3D-array with points.shape[0] = ltrb.shape[0] and points.shape[2] = 2 osize (tuple/list): Output image size (width, height) min_box_side (int): Minimum size of the box predicted by the model. Default = 30 -- SSD minimum size ignore_intersection (tuple/list of floats): avoids objects within the intersection range in the final crop. aspect_ratio_bounds (tuple/list of floats): allowed crop ratios given an image Return: image, labels, ltrb, points ** requires some speed-up """ valid_points = None # filter boxes with negative width -- not usual but a safe check _valid = np.stack((ltrb[:, 2] - ltrb[:, 0], ltrb[:, 3] - ltrb[:, 1])) _valid = _valid.min(0) > 2 labels, ltrb, points = labels[_valid], ltrb[_valid], points[_valid] w, h = image.size # minimum ltrb side on actual image mbox = min((ltrb[:, 3] - ltrb[:, 1]).min(), (ltrb[:, 2] - ltrb[:, 0]).min()) # min & max possible crop size to maintain min_box_side mincw = int(mbox*1.1) maxcw = int(min(mincw * min(osize) / min_box_side, min(w, h))) if mincw > maxcw: mincw = maxcw - 1 # random width and height given all the above conditions nw = random.randint(mincw, maxcw) nh = random.randint(int(nw*aspect_ratio_bounds[0]), int(nw*aspect_ratio_bounds[1])) nh = min(max(nh, int(mbox*1.1)), h) # find all possible boxes, given nw and nh all_ls, all_ts = np.arange(0, w-nw, 10), np.arange(0, h-nh, 10) all_ls = all_ls.repeat(len(all_ts)) all_ts = np.tile(all_ts[None, :], (len(np.arange(0, w-nw, 10)), 1)).reshape(-1) possible = np.concatenate((all_ls[None, ], all_ts[None, ])).T possible = np.concatenate([possible[:, [0]], possible[:, [1]], possible[:, [0]]+nw, possible[:, [1]]+nh], 1) # intersection in percentage to validate all possible boxes lt = np.maximum(ltrb[:, :2][:, np.newaxis], possible[:, :2][np.newaxis, :]) rb = np.minimum(ltrb[:, 2:][:, np.newaxis], possible[:, 2:][np.newaxis, :]) intersection = np.multiply(*np.split(np.clip(rb - lt, 0, None), 2, 2)) intersection = intersection.squeeze(2) area = ((ltrb[:, 2] - ltrb[:, 0]) * (ltrb[:, 3] - ltrb[:, 1])) intersection = intersection / area[:, None] idx = np.where((intersection > ignore_intersection[1]).sum(0))[0] idx = [x for x in idx if not ((intersection[:, x] > ignore_intersection[0]) * (intersection[:, x] < ignore_intersection[1])).any()] if len(idx) > 0: # randomly pick one valid possible box pick = random.randint(0, len(idx)-1) crop = possible[idx[pick]] valid = intersection[:, idx[pick]] > ignore_intersection[1] valid_ltrb = ltrb[valid].copy() if points is not None: valid_points = points[valid].copy() valid_labels = labels[valid].copy() else: # if the above fails -- fall back to a single object pick = random.randint(0, len(ltrb)-1) crop = ltrb[pick].copy() # adjust crop - add some width and some height rw_ = (crop[2] - crop[0]) * (random.random() * 0.2) + 0.05 _rw = (crop[2] - crop[0]) * (random.random() * 0.2) + 0.05 rh_ = (crop[3] - crop[1]) * (random.random() * 0.2) + 0.05 _rh = (crop[3] - crop[1]) * (random.random() * 0.2) + 0.05 crop[0] -= rw_ crop[1] -= rh_ crop[2] += _rw crop[3] += _rh valid_ltrb = ltrb[[pick]].copy() if points is not None: valid_points = points[[pick]].copy() valid_labels = labels[[pick]].copy() # adjust xy's valid_ltrb[:, 0::2] -= crop[0] valid_ltrb[:, 1::2] -= crop[1] if points is not None: valid_points[:, :, 0] -= crop[0] valid_points[:, :, 1] -= crop[1] image = image.crop(list(map(int, crop))) w, h = image.size image = image.resize(osize) valid_ltrb[:, 0::2] *= osize[0] / w valid_ltrb[:, 1::2] *= osize[1] / h if points is not None: valid_points[:, :, 0] *= osize[0] / w valid_points[:, :, 1] *= osize[1] / h valid_ltrb[:, 0::2] = np.clip(valid_ltrb[:, 0::2], 0, osize[0]-1) valid_ltrb[:, 1::2] = np.clip(valid_ltrb[:, 1::2], 0, osize[1]-1) if points is not None: valid_points[:, :, 0] = np.clip(valid_points[:, :, 0], 0, osize[0]) valid_points[:, :, 1] = np.clip(valid_points[:, :, 1], 0, osize[1]) return image, valid_labels, valid_ltrb, valid_points @staticmethod def random_flip(image: ImPIL.Image, ltrb_boxes: np.ndarray = None, points: np.ndarray = None, probability: float = 0.75, vertical_flip: bool = True): r"""Does random flip and adjusts the boxes & points when not None. Args: image (pil-image): pillow input image ltrb_boxes (np.ndarray, optional): object locations in ltrb format. Requires 2D-array, with rows of (left, top, right, bottom) in pixels. points (np.ndarray, optional): (x, y) locations of landmarks within a box. Expects a 3D-array with points.shape[0] = ltrb.shape[0] and points.shape[2] = 2 probability (float, optional): proability of flip, default=0.75 vertical_flip (bool, optional): When True does, vertical flip, default=True Return: image, boxes """ ph, pv = (0.66, 0.33) if vertical_flip else (1., 1.) if random.random() < probability: w, h = image.size prob = random.random() if prob <= ph: # horizontal image = image.transpose(ImPIL.FLIP_LEFT_RIGHT) if ltrb_boxes is not None: ltrb_boxes[:, 0::2] = w - ltrb_boxes[:, [2, 0]] if points is not None: points[:, :, 0] = w - points[:, :, 0] if prob >= pv: # vertical image = image.transpose(ImPIL.FLIP_TOP_BOTTOM) if ltrb_boxes is not None: ltrb_boxes[:, 1::2] = h - ltrb_boxes[:, [3, 1]] if points is not None: points[:, :, 1] = h - points[:, :, 1] if ltrb_boxes is None: return image if points is None: return image, ltrb_boxes return image, ltrb_boxes, points @staticmethod def random_rotate(image: ImPIL.Image, ltrb_boxes: np.ndarray = None, points: np.ndarray = None, probability: float = 0.5, vertical_flip: bool = True): r"""Does random 90/-90 rotation and adjusts the boxes & points when not None! Args: image (pil-image): pillow input image ltrb_boxes (np.ndarray, optional): object locations in ltrb format. Requires 2D-array, with rows of (left, top, right, bottom) in pixels. points (np.ndarray, optional): (x, y) locations of landmarks within a box. Expects a 3D-array with points.shape[0] = ltrb.shape[0] and points.shape[2] = 2 probability (float, optional): proability of flip, default=0.75 Return: image, boxes """ if random.random() < probability: w, h = image.size if random.random() > 0.5: # rotate left image = image.rotate(90) if ltrb_boxes is not None: ltrb_boxes = np.concatenate([ltrb_boxes[:, [1]], w - ltrb_boxes[:, [2]], ltrb_boxes[:, [3]], w - ltrb_boxes[:, [0]]], 1) if points is not None: points = np.concatenate((points[:, :, [1]], w - points[:, :, [0]]), 2) else: image = image.rotate(-90) if ltrb_boxes is not None: ltrb_boxes = np.concatenate([h - ltrb_boxes[:, [3]], ltrb_boxes[:, [0]], h - ltrb_boxes[:, [1]], ltrb_boxes[:, [2]]], 1) if points is not None: points = np.concatenate((h - points[:, :, [1]], points[:, :, [0]]), 2) if ltrb_boxes is None: return image if points is None: return image, ltrb_boxes return image, ltrb_boxes, points @staticmethod def annotate_boxes(image, ltrb_boxes, points: list = None, text: list = None, box_color: str = "#F1C40F", point_color: str = "#00FFBB"): r"""Annotates the boxes and points for visualization. Args: image ({pillow image, 3D torch.Tensor}): input image to annotate ltrb_boxes ({2D torch.Tensor/np.ndarray}): annotation boxes points ({2D torch.Tensor/np.ndarray}): annotation points text (list): a list of strings to label Return: annotated pillow image """ if isinstance(image, torch.Tensor): image = PillowUtils.tensor_to_pil(image) if isinstance(ltrb_boxes, torch.Tensor): ltrb_boxes = ltrb_boxes.data.cpu().numpy() if isinstance(points, torch.Tensor): points = points.data.cpu().numpy() _show = image.copy() boxes = ltrb_boxes.copy() if points is not None: points = points.copy() if boxes.max() <= 2: # convert normalized ltrb_boxes to pixel locations boxes[:, 0::2] *= image.size[0] boxes[:, 1::2] *= image.size[1] if points is not None: points[:, 0] *= image.size[0] points[:, 1] *= image.size[1] w, h = _show.size boxes[:, 0::2] = np.clip(boxes[:, 0::2], 0, w) boxes[:, 1::2] = np.clip(boxes[:, 1::2], 0, h) if points is not None: points[:, 0] = np.clip(points[:, 0], 0, w) points[:, 1] = np.clip(points[:, 1], 0, h) draw = ImageDraw.Draw(_show) for i, x in enumerate(boxes.astype(np.int64)): draw.rectangle((tuple(x[:2].tolist()), tuple(x[2:].tolist())), outline=box_color) if text is not None: if isinstance(text[i], str): draw.text(tuple((x[:2]).tolist()), text[i], fill="#E74C3C") if points is not None: r = 2 for pt in points.reshape(-1, 2).astype(np.int64): x, y = pt[0], pt[1] draw.ellipse((int(x)-r, int(y)-r, int(x)+r, int(y)+r), fill=point_color) del draw return _show ```
{ "source": "john-sonz/federated-learning-iot", "score": 2 }
#### File: server/server/main.py ```python import flwr as fl import os from flwr.server.strategy import FedAvg os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" ENV = os.environ FRACTION_FIT = float(ENV.get('FRACTION_FIT', "0.5")) MIN_AVAILABLE_CLIENTS = int(ENV.get('MIN_AVAILABLE_CLIENTS', "5")) NUM_ROUNDS = int(ENV.get('NUM_ROUNDS', "10")) SERVER_ADDRESS = ENV.get('SERVER_ADDRESS', "localhost:8080") def start_server(num_rounds: int, min_available_clients: int, fraction_fit: float): strategy = FedAvg(min_available_clients=min_available_clients, fraction_fit=fraction_fit) fl.server.start_server(SERVER_ADDRESS, strategy=strategy, config={"num_rounds": num_rounds}) if __name__ == "__main__": start_server(NUM_ROUNDS, MIN_AVAILABLE_CLIENTS, FRACTION_FIT) ```
{ "source": "johnsonZhaoxin/ProjectEuler", "score": 4 }
#### File: johnsonZhaoxin/ProjectEuler/007-10001prime.py ```python def isprime(n): for i in range(2,n-1): if n%i == 0: #print("%d can be divided by %d"%(n,i)) return False #print("%d is a prime number"%n) return True n = 1 num = 2 while n <=10001: if isprime(num): print("第%d个质数是%d"%(n,num)) n +=1 num +=1 else: num +=1 ``` #### File: johnsonZhaoxin/ProjectEuler/009-Pythagoreantriplet.py ```python import numpy as np def get_hypo(a,b): err = 1e-7 hypo = np.sqrt(a**2+b**2) if hypo - int(hypo) < err: #print("斜边为整数,为%d"%(int(hypo))) return hypo else: #print("斜边不是整数,为%f" % (hypo)) return hypo for i in range(1,998): for j in range(1,998-i): hypo = get_hypo(i,j) if int(hypo)+i+j == 1000: print(i,j,hypo) ``` #### File: johnsonZhaoxin/ProjectEuler/033-digitcancelling.py ```python def speicalcancel(n, m): # n 和 m都是两位数 numer1 = str(n)[0] numer2 = str(n)[1] deno1 = str(m)[0] deno2 = str(m)[1] # print(numer1,numer2,deno1,deno2) # todo 寻找四个当中相同的元素,分情况讨论,需要排除末尾为0,以及颠倒的情况,还有相同,但是最后为0的情况 if int(deno1)*int(deno2)==0: return 0 else: if numer1 == deno1: return int(numer2)/int(deno2) elif numer1 == deno2: return int(numer2)/int(deno1) elif numer2 == deno1: return int(numer1)/int(deno2) elif numer2 == deno2: return int(numer1)/int(deno1) for num in range(10, 99): for deno in range(num + 1, 100): #print("%d/%d" % (num, deno)) if num / deno == speicalcancel(num, deno): print("%d/%d" % (num, deno)) ``` #### File: johnsonZhaoxin/ProjectEuler/041-selfpower.py ```python import math def selfpower(x): return pow(x,x) sum = 0 for i in range(1,1001): sum += selfpower(i) #为什么这样的数值类运算就很快 print(sum) ```
{ "source": "johnsoong216/PokerOddsCalc", "score": 3 }
#### File: johnsoong216/PokerOddsCalc/ranker.py ```python import multiprocessing from joblib import Parallel, delayed import timeit import logging import numpy as np from collections import Counter class Ranker: @staticmethod def rank_all_hands(hand_combos, return_all=False): # start = timeit.default_timer() rank_res_arr = np.zeros(shape=(hand_combos.shape[1], hand_combos.shape[0])) # if hand_combos.shape[0] >= 100000 and hand_combos.shape[1] > 1: # Parallel(n_jobs=multiprocessing.cpu_count(), backend="threading")\ # (delayed(Ranker.parallel_rank_hand)(sce, hand_combos, rank_res_arr) for sce in range(hand_combos.shape[1])) # else: for sce in range(hand_combos.shape[1]): Ranker.parallel_rank_hand(sce, hand_combos, rank_res_arr) # end = timeit.default_timer() # logging.info(f"Ranking all hands time cost: {end - start}") if return_all: return rank_res_arr else: return np.max(rank_res_arr, axis=0) @staticmethod def parallel_rank_hand(scenario, hand_combos, rank_res_arr): rank_res_arr[scenario, :] = Ranker.rank_one_hand(hand_combos[:, scenario, :, :]) @staticmethod def rank_one_hand(hand_combos): num_combos = hand_combos[:, :, 0] num_combos.sort(axis=1) suit_combos = hand_combos[:, :, 1] suit_arr = gen_suit_arr(suit_combos) straight_arr = gen_straight_arr(num_combos) rank_arr = np.zeros(num_combos.shape[0], dtype=np.int) straight_flush_check(num_combos, rank_arr, straight_arr, suit_arr) four_of_a_kind_check(num_combos, rank_arr) full_house_check(num_combos, rank_arr) flush_check(rank_arr, suit_arr) straight_check(num_combos, rank_arr, straight_arr) three_of_a_kind_check(num_combos, rank_arr) two_pairs_check(num_combos, rank_arr) one_pair_check(num_combos, rank_arr) return rank_arr * (16 ** 5) + np.sum(num_combos * np.power(16, np.arange(0, 5)), axis=1) ### Helper Functions def gen_straight_arr(num_combos): straight_check = np.zeros(len(num_combos), dtype=np.int) for i in range(4): if i <= 2: straight_check += (num_combos[:, i] == (num_combos[:, i + 1] - 1)).astype(int) else: straight_check += (num_combos[:, i] == (num_combos[:, i + 1] - 1)).astype(int) straight_check += ((num_combos[:, i] == 5) & (num_combos[:, i + 1] == 14)).astype(int) return (straight_check == 4) def gen_suit_arr(suit_combos): return np.max(suit_combos, axis=1) == np.min(suit_combos, axis=1) def straight_flush_check(num_combos, rank_arr, straight_arr, suit_arr): rank_arr[(rank_arr == 0) & (straight_arr & suit_arr)] = 8 # Rearrange order of 2345A to A2345 reorder_idx = (rank_arr == 8) & (num_combos[:, 0] == 2) & (num_combos[:, 4] == 14) num_combos[reorder_idx, :] = np.concatenate([num_combos[reorder_idx, 4:], num_combos[reorder_idx, :4]], axis=1) def four_of_a_kind_check(num_combos, rank_arr): small = np.all(num_combos[:, 0:4] == num_combos[:, :1], axis=1) # 22223 large = np.all(num_combos[:, 1:] == num_combos[:, 4:], axis=1) # 24444 rank_arr[(rank_arr == 0) & (small | large)] = 7 reorder_idx = (rank_arr == 7) & small num_combos[reorder_idx, :] = np.concatenate([num_combos[reorder_idx, 4:], num_combos[reorder_idx, :4]], axis=1) def full_house_check(num_combos, rank_arr): small = np.all( (num_combos[:, 0:3] == num_combos[:, :1]) & (num_combos[:, 3:4] == num_combos[:, 4:5]), axis=1) # 22233 large = np.all( (num_combos[:, 0:1] == num_combos[:, 1:2]) & (num_combos[:, 2:5] == num_combos[:, 4:]), axis=1) # 22444 rank_arr[(rank_arr == 0) & (small | large)] = 6 reorder_idx = (rank_arr == 6) & small num_combos[reorder_idx, :] = np.concatenate([num_combos[reorder_idx, 3:], num_combos[reorder_idx, :3]], axis=1) def flush_check(rank_arr, suit_arr): rank_arr[(rank_arr == 0) & suit_arr] = 5 def straight_check(num_combos, rank_arr, straight_arr): rank_arr[(rank_arr == 0) & straight_arr] = 4 # Rearrange order of 2345A to A2345 reorder_idx = (rank_arr == 4) & (num_combos[:, 0] == 2) & (num_combos[:, 4] == 14) num_combos[reorder_idx, :] = np.concatenate([num_combos[reorder_idx, 4:], num_combos[reorder_idx, :4]], axis=1) def three_of_a_kind_check(num_combos, rank_arr): small = np.all( (num_combos[:, 0:3] == num_combos[:, :1]), axis=1) # 22235 middle = np.all( (num_combos[:, 1:4] == num_combos[:, 1:2]), axis=1) # 23335 large = np.all( (num_combos[:, 2:] == num_combos[:, 2:3]), axis=1) # 36AAA rank_arr[(rank_arr == 0) & (small | middle | large)] = 3 reorder_small = (rank_arr == 3) & small reorder_middle = (rank_arr == 3) & large num_combos[reorder_small, :] = np.concatenate([num_combos[reorder_small, 3:], num_combos[reorder_small, :3]], axis=1) num_combos[reorder_middle, :] = np.concatenate([ num_combos[reorder_middle, :1], num_combos[reorder_middle, 4:], num_combos[reorder_middle, 1:4]], axis=1) def two_pairs_check(num_combos, rank_arr): small = np.all( (num_combos[:, 0:2] == num_combos[:, :1]) & (num_combos[:, 2:4] == num_combos[:, 2:3]), axis=1) # 2233A middle = np.all( (num_combos[:, 0:2] == num_combos[:, :1]) & (num_combos[:, 3:] == num_combos[:, 4:]), axis=1) # 223AA large = np.all( (num_combos[:, 1:3] == num_combos[:, 1:2]) & (num_combos[:, 3:] == num_combos[:, 4:]), axis=1) # 233AA rank_arr[(rank_arr == 0) & (small | middle | large)] = 2 reorder_small = (rank_arr == 2) & small reorder_middle = (rank_arr == 2) & large num_combos[reorder_small, :] = np.concatenate([num_combos[reorder_small, 4:], num_combos[reorder_small, :4]], axis=1) num_combos[reorder_middle, :] = np.concatenate([ num_combos[reorder_middle, 2:3], num_combos[reorder_middle, 0:2], num_combos[reorder_middle, 3:]], axis=1) def one_pair_check(num_combos, rank_arr): small = np.all( (num_combos[:, 0:2] == num_combos[:, :1]), axis=1) # 22345 mid_small = np.all( (num_combos[:, 1:3] == num_combos[:, 1:2]), axis=1) # 23345 mid_large = np.all( (num_combos[:, 2:4] == num_combos[:, 2:3]), axis=1) # 23445 large = np.all( (num_combos[:, 3:] == num_combos[:, 3:4]), axis=1) # 23455 rank_arr[(rank_arr == 0) & (small | mid_small | mid_large | large)] = 1 reorder_small = (rank_arr == 1) & small reorder_mid_small = (rank_arr == 1) & mid_small reorder_mid_large = (rank_arr == 1) & mid_large num_combos[reorder_small, :] = np.concatenate([num_combos[reorder_small, 2:], num_combos[reorder_small, :2]], axis=1) num_combos[reorder_mid_small, :] = np.concatenate([ num_combos[reorder_mid_small, :1], num_combos[reorder_mid_small, 3:], num_combos[reorder_mid_small, 1:3]], axis=1) num_combos[reorder_mid_large, :] = np.concatenate([ num_combos[reorder_mid_large, :2], num_combos[reorder_mid_large, 4:], num_combos[reorder_mid_large, 2:4]], axis=1) ```
{ "source": "JohnSounder/AP-API", "score": 3 }
#### File: kuas_api/kuas/job.py ```python import requests import re import time import lxml import json from bs4 import BeautifulSoup import ap from pprint import pprint #Configuration session = requests.session() username = "" password = "" page_Num = 1 show_Full = True url = "http://140.127.113.136/StuPartTime/Announce/stu_announce_view.aspx?VCHASID=" if not ap.login(session, username, password): print "登入失敗" #用lxml 解析 def viewPage_lxml(page_Num, show_Full, username): response = session.get(url+username) tree = lxml.etree.HTML(response.content) #不是第一頁的話,需要抓取google 分析的input if page_Num != 1: X = tree.xpath(u"//input[@name='__VIEWSTATE']")[0].values()[3] Y = tree.xpath(u"//input[@name='__EVENTVALIDATION']")[0].values()[3] form = { "__EVENTTARGET":"GridView1", "__EVENTARGUMENT":"Page$%s"%page_Num, "__VIEWSTATE":X, "__EVENTVALIDATION":Y } response = session.post(url, data=form) tree = lxml.etree.HTML(response.content) #tree.xpath(u"//table[@id='GridView1']//tr//td//span[contains(concat(' ', @id, ' '), 'Label1')]") for x in table[0]: print x.text return 0 if not show_Full: if x.text != "Y": id_list.append(x['id']) else: id_list.append(x['id']) for x in id_list: index = str(x).replace("lblFull", "") data = [] #單號 #data.append(bs.find('span', id=index+"Label1").text) #刊登日 #data.append(bs.find('span', id=index+"Label2").text) #人數 取得刊登日parent.next print bs.find('span', id=index+"Label2").next_sibling #工作時間 #data.append(bs.find('span', id=index+"Label3").text) #條件 #data.append(bs.find('span', id=index+"Label4").text) #需求單位 取得條件parent.next for x in data: print x.encode("utf8") print "==========================" #print tree.xpath(u"//span[@id=re.compile(r'Label2$')]") #".//div[starts-with(@id,'comment-')" #以下開始 # viewPage_lxml(1, show_Full, username) response = session.get(url+username) tree = lxml.etree.HTML(response.content) result = [] #抓取公告編號 ID = [] for x in tree.xpath(u"//table[@id='GridView1']//tr//td//span[contains(concat(' ', @id, ' '), 'Label1')]"): ID.append(x.text) #抓取刊登時間以及需求人數 post_date = [] person = [] for x in tree.xpath(u"//table[@id='GridView1']//tr//td//span[contains(concat(' ', @id, ' '), 'Label2')]"): post_date.append(x.text) person.append(x.getparent().getparent().getnext().getchildren()[0].text) #抓取時間 work_time = [] for x in tree.xpath(u"//table[@id='GridView1']//tr//td//span[contains(concat(' ', @id, ' '), 'Label3')]"): work_time.append(x.text) #抓取需求、聯絡人、電話、需求單位 work_required = [] contact_name = [] contact_number = [] contact_org = [] for x in tree.xpath(u"//table[@id='GridView1']//tr//td//span[contains(concat(' ', @id, ' '), 'Label4')]"): #這個是工作需求,但是中文還沒搞定 work_required.append(x.text) #因為聯絡人、電話、需求單位沒有特徵可以直接取得,所以使用以下方法 contact_name_tag = x.getparent().getparent().getnext() #聯絡人姓名,但是中文還沒搞定 contact_name.append(contact_name_tag.getchildren()[0].text) #取得電話 contact_number_tag = contact_name_tag.getnext() contact_number.append(contact_number_tag.getchildren()[0].text) #取得需求單位,但是中文還沒搞定 contact_org_tag = contact_number_tag.getnext() contact_org.append(contact_org_tag.getchildren()[0].text) total = [ID, post_date, person, work_time, work_required, contact_name, contact_number, contact_org] for i, v in enumerate(total): total[i] = eval(str(v).replace("u\'", "\'")) total = json.dumps(total) ``` #### File: kuas_api/kuas/news.py ```python import random ENABLE = 1 NEWS_ID = 31 NEWS_DEBUG = False DEFAULT_WEIGHT = 10 def random_by_weight(p): choice_id = [] for i in range(len(p)): choice_id += [i for _ in range(DEFAULT_WEIGHT + p[i]["news_weight"])] return p[random.choice(choice_id)] def random_news(): news_list = [ { "news_title": "第八屆泰北團-夢想,「泰」不一樣", "news_image": "http://i.imgur.com/iNbbd4B.jpg", "news_url": "https://docs.google.com/forms/d/11Awcel_MfPeiEkl7zQ0MldvnAw59gXKLecbIODPOaMs/viewform?edit_requested=true", "news_content": "", "news_weight": 3 }, { "news_title": "體委幹部體驗營", "news_image": "http://i.imgur.com/aJyQlJp.jpg", "news_url": "https://www.facebook.com/Kuas%E9%AB%94%E5%A7%94-440439566106678/?fref=ts", "news_content": "", "news_weight": 4 }, { "news_title": "遊戲外掛 原理實戰", "news_image": "http://i.imgur.com/WkI23R2.jpg", "news_url": "https://www.facebook.com/profile.php?id=735951703168873", "news_content": "", "news_weight": 6 }, { "news_title": "好日子育樂營", "news_image": "https://scontent-hkg3-1.xx.fbcdn.net/hphotos-xft1/v/t34.0-0/p206x206/12834566_977348362345349_121675822_n.jpg?oh=e04f6830fdfe5d3a77e05a8b3c32fefc&oe=56E663E6", "news_url": "https://m.facebook.com/kuasYGR/", "news_content": "", "news_weight": 6 } ] if NEWS_DEBUG: return news_list[0] else: return random_by_weight(news_list) def news_status(): return [ENABLE, NEWS_ID] def news(): """ News for kuas. return [enable, news_id, news_title, news_template, news_url] enable: bool news_id: int news_title: string news_tempalte: string news_url: string """ # Get news from random news news = random_news() news_title = news["news_title"] news_template = ( "<div style='text-align:center;'>" "<div><img style='display:block;margin-left:auto;margin-right:auto;max-width:80%;min-height:150px;height:auto;' src='" + news["news_image"] + "'></img>" + news["news_content"] + "</div>" + "</div>" ) news_url = news["news_url"] return [ENABLE, NEWS_ID, news_title, news_template, news_url] ``` #### File: kuas_api/kuas/parse.py ```python from lxml import etree sections_time = [] weekdays_abbr = [] def parse(fncid, content): if fncid in parse_function: return parse_function[fncid](content) else: return content def course(cont): """Parse raw kuas ap course data Return: parse data: json have_saturday: bool have_sunday: bool except_text: string """ root = etree.HTML(cont) try: center = root.xpath("//center")[0] center_text = list(center.itertext())[0] except: center = "" center_text = "" # Return if no course data if center_text.startswith(u'學生目前無選課資料!'): return {} tbody = root.xpath("//table")[-1] course_table = [] for sections, r in enumerate(tbody[1:]): section = "" start_time = "" end_time = "" for weekends, c in enumerate(r.xpath("td")): classes = {"title": "", "date": {}, "location": {}, "instructors": []} r = list( filter( lambda x: x, map(lambda x: x.replace("\xa0", ""), c.itertext()) ) ) if not weekends: section = r[0] start_time = "" end_time = "" if len(r) > 1: start_time, end_time = r[1].split("-") start_time = "%s:%s" % (start_time[: 2], start_time[2:]) end_time = "%s:%s" % (end_time[: 2], end_time[2:]) continue if not r: continue classes["title"] = r[0] classes["date"]["start_time"] = start_time classes["date"]["end_time"] = end_time classes["date"]["weekday"] = " MTWRFSH"[weekends] classes["date"]["section"] = section if len(r) > 1: classes["instructors"].append(r[1]) classes["location"]["building"] = "" classes["location"]["room"] = r[2] if len(r) > 2 else "" course_table.append(classes) timecode = [] for r in tbody[1:]: timecode.append(list(r.itertext())[1]) course_table.append({'timecode': timecode}) return course_table def score(cont): root = etree.HTML(cont) try: tbody = root.xpath("//table")[-1] center = root.xpath("//center") center_text = list(center[-1].itertext())[0] except: tbody = "" center = "" center_text = "" if center_text.startswith(u'目前無學生個人成績資料'): return {} score_table = [] for r_index, r in enumerate(tbody[1:-1]): r = list(map(lambda x: x.replace(u"\xa0", ""), r.itertext())) row = {} row["title"] = r[1] row["units"] = r[2] row["hours"] = r[3] row["required"] = r[4] row["at"] = r[5] row["middle_score"] = r[6] row["final_score"] = r[7] row["remark"] = r[8] score_table.append(row) total_score = root.xpath("//div")[-1].text.replace(u"    ", " ").split(" ") detail = { "conduct": float(total_score[0].split(":")[-1]) if not total_score[0].startswith("操行成績:0") else 0.0, "average": float(total_score[1].split(":")[-1]) if total_score[1] != "總平均:" else 0.0, "class_rank": total_score[2].split(":")[-1] if not total_score[2].startswith("班名次/班人數:/") else "", "class_percentage": float(total_score[3].split(":")[-1][:-1]) if not total_score[3].startswith("班名次百分比:%") else 0.0 } return {"scores": score_table, "detail": detail} parse_function = {"ag222": course, "ag008": score} if __name__ == "__main__": # print(course(open("c.html").read())) pass ``` #### File: kuas_api/kuas/user.py ```python from flask import g import kuas_api.kuas.ap as ap import kuas_api.kuas.cache as cache from lxml import etree AP_QUERY_USER_EXPIRE = 300 def _get_user_info(session): """Get user info return: `lxml.etree._Element` """ content = cache.ap_query( session, "ag003", {}, g.username, expire=AP_QUERY_USER_EXPIRE) root = etree.HTML(content) return root def get_user_info(session): root = _get_user_info(session) td = root.xpath("//td") result = { "education_system": "", "department": "", "class": "", "student_id": g.username, "student_name_cht": "", "student_name_eng": "", "status": 200, "message": "" } if len(td) > 3 : result["education_system"] = td[3].text[5:] result["department"] = td[4].text[5:] result["class"] = td[8].text[5:] result["student_id"] = td[9].text[5:] result["student_name_cht"] = td[10].text[5:] result["student_name_eng"] = td[11].text[5:] else : result["status"] = 204 result["message"] = td[0].text return result def get_user_picture(session): root = _get_user_info(session) try: image = ap.AP_BASE_URL + "/nkust" + \ root.xpath("//img")[0].values()[0][2:] except: image = "" return image ``` #### File: kuas_api/modules/error.py ```python import json def error_handle(status, developer_message, user_message, error_code=-1, more_info=""): """Return error handler json :param status: HTTP status code :type status: int :param developer_message: message for developer :type developer_message: str :param user_message: message for user :type user_message: str :param error_code: internal error code :type error_code: int :param more_info: links for more information :type more_info: str :return: json error handle :rtype: json """ error_handle = { "status": status, "developer_message": developer_message, "user_message": user_message, "error_code": error_code, "more_info": more_info } return json.dumps(error_handle) ``` #### File: views/v2/bus.py ```python import time import json from flask import request, g from flask_cors import * import kuas_api.kuas.cache as cache from kuas_api.modules.stateless_auth import auth import kuas_api.modules.stateless_auth as stateless_auth import kuas_api.modules.error as error from kuas_api.modules.json import jsonify from .doc import auto # Nestable blueprints problem # not sure isn't this a best practice now. # https://github.com/mitsuhiko/flask/issues/593 #from kuas_api.views.v2 import api_v2 routes = [] def route(rule, **options): def decorator(f): url_rule = { "rule": rule, "view_func": f, "options": options if options else {} } routes.append(url_rule) return f return decorator @route('/bus/timetables') @auto.doc(groups=["public"]) #@cross_origin(supports_credentials=True) @auth.login_required def timetables(): """Get KUAS school bus time table. :reqheader Authorization: Using Basic Auth :query string date: Specific date to query timetable. format: yyyy-mm-dd :query string from: The start station you want to query. (not impl yet) :statuscode 200: no error **Request** without date (default the date on server) .. sourcecode:: http GET /latest/bus/timetables HTTP/1.1 Host: kuas.grd.idv.tw:14769 Authorization: Basic xxxxxxxxxxxxx= .. sourcecode:: shell curl -u username:password -X GET https://kuas.grd.idv.tw:14769/v2/bus/timetables with date .. sourcecode:: http GET /latest/bus/timetables?date=2015-9-1 HTTP/1.1 Host: kuas.grd.idv.tw:14769 Authorization: Basic xxxxxxxxxxxxx= .. sourcecode:: shell curl -u username:password -X GET https://kuas.grd.idv.tw:14769/v2/bus/timetables?date=2017-08-09 **Response** .. sourcecode:: http HTTP/1.0 200 OK Content-Type: application/json { "timetable":[ { "endStation":"燕巢", "EndEnrollDateTime":"2015-08-31 17:20", "isReserve":-1, "Time":"08:20", "busId":"27034", "limitCount":"999", "reserveCount":"27", "runDateTime":"2015-09-01 08:20" }, { "endStation":"燕巢", "EndEnrollDateTime":"2015-09-01 08:00", "isReserve":-1, "Time":"13:00", "busId":"27062", "limitCount":"999", "reserveCount":"1", "runDateTime":"2015-09-01 13:00" }, { "endStation":"建工", "EndEnrollDateTime":"2015-09-01 07:15", "isReserve":-1, "Time":"12:15", "busId":"27090", "limitCount":"999", "reserveCount":"5", "runDateTime":"2015-09-01 12:15" }, { "endStation":"建工", "EndEnrollDateTime":"2015-09-01 11:45", "isReserve":-1, "Time":"16:45", "busId":"27118", "limitCount":"999", "reserveCount":"24", "runDateTime":"2015-09-01 16:45" } ], "date":"2015-9-1" } """ date = time.strftime("%Y-%m-%d", time.gmtime()) if request.args.get("date"): date = request.args.get("date") # Restore cookies s = stateless_auth.get_requests_session_with_cookies() return jsonify(date=date, timetable=cache.bus_query(s, date)) @route("/bus/reservations", methods=["GET"]) @route("/bus/reservations/<int:bus_id>", methods=["PUT"]) @route("/bus/reservations/<int:cancel_key>", methods=["DELETE"]) @auth.login_required def bus_reservations(bus_id=None, cancel_key=None): # Restore cookies s = stateless_auth.get_requests_session_with_cookies() # Debugging user_agent = request.user_agent.string user_id = g.username if request.method == "GET": return jsonify(reservation=cache.bus_reserve_query(s)) elif request.method == "PUT": result = cache.bus_booking(s, bus_id, "") try: print("PUT,%s,%s,%s" % (user_agent, user_id, result)) except: print("PUT ERROR, %s, %s" % (user_agent, user_id)) return jsonify(result) elif request.method == "DELETE": result = cache.bus_booking(s, cancel_key, "un") print("DELETE,%s,%s,%s" % (user_agent, user_id, result)) return jsonify(result) return request.method ```
{ "source": "johnspencer98/aa_228_catan", "score": 3 }
#### File: johnspencer98/aa_228_catan/main.py ```python from tkinter import * import math import numpy as np import player import vertex import Edge import tile # ok and we add the vertices! vertices_coordinates = ['top_left', 'top_center', 'top_right', 'mid_left', 'mid_center', 'mid_right', 'bot_left', 'bot_center', 'bot_right'] # now we map vertices to edges, we will use this when building roads because we need to know # which edges we can build our roads on vert2edge = {'top_left': [(1, 1), (2, 1)], 'top_center': [(1, 1), (1, 2), (2, 2)], 'top_right': [(1, 2), (2, 3)], 'mid_left': [(2, 1), (3, 1)], 'mid_center': [(2, 2), (3, 2), (3, 1), (4, 2)], 'mid_right': [(3, 2), (2, 3)], 'bot_left': [(4, 1), (5, 1)], 'bot_center': [(5, 1), (5, 2)], 'bot_right': [(4, 3), (5, 2)], } # now we map vertices to edges, we will use this when building roads because we need to know # which edges we can build our roads on edge2vert = {(1, 1): ['top_left', 'top_center'], (1, 2): ['top_center', 'top_right'], (2, 1): ['top_left', 'mid_left'], (2, 2): ['top_center', 'mid_center'], (2, 3): ['top_right', 'mid_right'], (3, 1): ['mid_left', 'mid_center'], (3, 2): ['mid_center', 'mid_right'], (4, 1): ['mid_left', 'bot_left'], (4, 2): ['mid_center', 'bot_center'], (4, 3): ['mid_right', 'bot_right'], (5, 1): ['bot_left', 'bot_center'], (5, 2): ['bot_center', 'bot_right'], (5, 3): ['bot_right', 'bot_center']} # now we map vertices to tiles, where each key is a vertex and the value is the adjacent tiles # we will use this when collecting resources on the tiles that are adjacent to our settlements vert2tiles = {'top_left': ['tile_2'], 'top_center': ['tile_1', 'tile_2'], 'top_right': ['tile_1'], 'mid_left': ['tile_2', 'tile_3'], 'mid_center': ['tile_1', 'tile_2', 'tile_3', 'tile_4'], 'mid_right': ['tile_1', 'tile_4'], 'bot_left': ['tile_3'], 'bot_center': ['tile_3', 'tile_4'], 'bot_right': ['tile_4'] } def createBoard(tiles_list, vertices_list, edges_list): # now we initiate vertices as objects for coord in vertices_coordinates: new_vertex = vertex.Vertex() new_vertex.coordinate = coord new_vertex.edges = vert2edge[coord] new_vertex.tiles = vert2tiles[coord] vertices_list.append(new_vertex) # now we define edges! lets do some numerical indexing here, so this is what it looks like visually edge_coords = [(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2)] for coord in edge_coords: new_edge = Edge.Edge() new_edge.coordinate = coord new_edge.vertices = edge2vert[coord] edges_list.append(new_edge) # let's create a super simple board tile_coord = ['tile_1', 'tile_2', 'tile_3', 'tile_4'] resources = ['wood', 'brick', 'wood', 'brick'] roll_numbers = [1, 2, 3, 4] resource_assignment = np.random.choice(4, 4, replace=False) roll_assignment = np.random.choice(4, 4, replace=False) for z, t_coord in enumerate(tile_coord): new_tile = tile.Tile() new_tile.coordinate = t_coord new_tile.dice_roll = roll_numbers[resource_assignment[z]] new_tile.resource = resources[roll_assignment[z]] tiles_list.append(new_tile) # let's print what our random board looks like # printBoard() def give_resources(roll): for cur_player in players: for cur_vertex in cur_player.settlements: for cur_tile_coord in cur_vertex.tiles: cur_tile = next((x for x in tiles if x.coordinate == cur_tile_coord), None) if cur_tile.dice_roll == roll: cur_player.hand[cur_tile.resource] += 1 def printBoard(): # top_left <- (1,1) -> top_center <- (1,2) -> top_right # ^ ^ ^ # | | | # (2,2) *tile_2* (2,2) *tile_1* (2,3) # | *roll #* | *roll #* | # v v v # mid_left <- (3,1) -> mid_center <- (3,2) -> mid_right # ^ ^ ^ # | | | # (4,1) *tile_3* (4,2) *tile_4* (4,3) # | *roll #* | *roll #* | # v v v # bot_left <- (5,1) -> bot_center <- (5,2) -> bot_right print('GAME BOARD') print() print(next((x for x in vertices if x.coordinate == 'top_left'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (1, 1)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'top_center'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (1, 2)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'top_right'), None).to_string()) print(' ^ ^ ^') print(' | | |') print(next((x for x in edges if x.coordinate == (2, 1)), None).to_string() + ' ' + next((x for x in tiles if x.coordinate == 'tile_2'), None).resource + ' ' + next((x for x in edges if x.coordinate == (2, 2)), None).to_string() + ' ' + next((x for x in tiles if x.coordinate == 'tile_1'), None).resource + ' ' + next((x for x in edges if x.coordinate == (2, 3)), None).to_string()) print(' | ' + str(next((x for x in tiles if x.coordinate == 'tile_2'), None).dice_roll) + ' | ' + ' ' + str(next((x for x in tiles if x.coordinate == 'tile_1'), None).dice_roll) + ' | ') print(' v v v') print(next((x for x in vertices if x.coordinate == 'mid_left'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (3, 1)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'mid_center'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (3, 2)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'mid_right'), None).to_string()) print(' ^ ^ ^') print(' | | |') print(next((x for x in edges if x.coordinate == (4, 1)), None).to_string() + ' ' + next((x for x in tiles if x.coordinate == 'tile_3'), None).resource + ' ' + next((x for x in edges if x.coordinate == (4, 2)), None).to_string() + ' ' + next((x for x in tiles if x.coordinate == 'tile_4'), None).resource + ' ' + next((x for x in edges if x.coordinate == (4, 3)), None).to_string()) print(' | ' + str(next((x for x in tiles if x.coordinate == 'tile_3'), None).dice_roll) + ' | ' + ' ' + str(next((x for x in tiles if x.coordinate == 'tile_4'), None).dice_roll) + ' | ') print(' v v v') print(next((x for x in vertices if x.coordinate == 'bot_left'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (5, 1)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'bot_center'), None).to_string() + ' <- ' + next((x for x in edges if x.coordinate == (5, 2)), None).to_string() + ' -> ' + next((x for x in vertices if x.coordinate == 'bot_right'), None).to_string()) if __name__ == '__main__': # Welcome to the simulator no_of_games = 1000 pl1_count = 0 pl2_count = 0 for i in range(no_of_games): #print(i) tiles = [] edges = [] vertices = [] #print('Tiles', tiles) createBoard(tiles, vertices, edges) players = [] # let's create player 1 pl1 = player.RandomPlayer('pl1') # lets create player 2 pl2 = player.GreedyPlayer('pl2') players.append(pl1) players.append(pl2) # now let's have both select their first settlements pl1.choose_first_settlement(vertices) pl2.choose_first_settlement(vertices) pl1.choose_first_settlement(vertices) pl2.choose_first_settlement(vertices) # now lets simulate who wins!!! turns = 1 finished = False while (not finished) and turns < 50: pl1_dice_roll = np.random.randint(1, 5) # print('pl1_dice_roll: ', pl1_dice_roll) give_resources(pl1_dice_roll) pl1.take_turn(vertices, edges) if pl1.player_score() > 4: # printBoard() pl1_count += 1 finished = True else: pl2_dice_roll = np.random.randint(1, 5) # print('pl2_dice_roll: ', pl2_dice_roll) pl2.take_turn(vertices, edges) if pl2.player_score() > 4: # printBoard() pl2_count += 1 finished = True turns += 1 #print(turns) del tiles del edges del vertices del players print(pl1_count, pl2_count) print('pl1 Winning %:', float(pl1_count) / (pl1_count + pl2_count) * 100, 'pl2 Winning %:', float(pl2_count) / (pl1_count + pl2_count) * 100) # print(pl1.hand) # print(pl2.hand) ```
{ "source": "JohnSpeno/python-secure-zone", "score": 2 }
#### File: python-secure-zone/psz/models.py ```python from django.db import models from django.db.models import Manager from datetime import datetime import os import sys import config import keygen from errors import PszError KEY_TYPES = ( ('ZSK', 'Zone signing key'), ('KSK', 'Key signing key') ) KEY_ALGOS = [(k, v) for k, v in config.KEY_ALGORITHMS.iteritems()] KEY_STATUSES = ( ('new', 'a newly created key pair. key not in DNS'), ('pre-active', 'key pair in place to sign, but not in DNS'), ('published', 'key in DNS but not signing'), ('active', 'key in DNS and signing records'), ('rolled-stage1', 'key in DNS, ZSK not signing. KSK signing'), ('expired', 'key not in DNS. not signing.'), ('deleted', 'key pair files have been deleted'), ) class DnskeyManager(Manager): """ Provides convenience methods for Dnskey objects. """ def get_zone_keys(self, zone=None): """ Returns the non expired keys for a zone or for all zones if no zone is specified. """ qs = self.get_query_set().exclude(status__in=['expired', 'deleted']) if zone: qs = qs.filter(zone=zone) return qs class BaseDnskey(models.Model): """ A BaseDnskey object. It just handles the ORM bits of a Dnskey. It's abstract, so no tables will be created for this model. """ algorithm = models.CharField(max_length=128, choices=KEY_ALGOS) keytag = models.CharField(max_length=128, db_index=True) zone = models.TextField(db_index=True) type = models.CharField(max_length=32, choices=KEY_TYPES) size = models.IntegerField() status = models.CharField( max_length=128, choices=KEY_STATUSES, default='new' ) updated = models.DateTimeField(default=datetime.now) class Meta: abstract = True objects = DnskeyManager() def __cmp__(self, other): return cmp(self.type, other.type) def __unicode__(self): return "%s %s %s (%s %s bits)" % ( self.zone, self.type, self.keytag, self.algorithm, self.size ) _KEY_LOCATIONS = { 'new': config.DEFAULTS['path_newkeydir'], 'published': config.DEFAULTS['path_newkeydir'], 'pre-active': '', 'active': '', 'ksk+rolled-stage1': '', 'zsk+rolled-stage1': config.DEFAULTS['path_oldkeydir'], 'expired': config.DEFAULTS['path_oldkeydir'], 'deleted': None, } def _key_file_path(zone, keytype, keystatus): """ Returns the directory where a key's files should be located or None if it can't be determined. """ try: subdir = _KEY_LOCATIONS[keystatus] except KeyError: k = '%s+%s' % (keytype.lower(), keystatus) subdir = _KEY_LOCATIONS.get(k, None) if subdir is None: return None return str(os.path.join(config.DEFAULTS['path_zonedir'], zone, subdir)) class Dnskey(BaseDnskey): """ A Dnskey that exists on the filesystem as a keypair. """ def __init__(self, *args, **kwargs): super(Dnskey, self).__init__(*args, **kwargs) self._dnsdata = None self._directory = None self._keyname = None self._path_public = None self._path_private = None @property def dnsdata(self): """Returns the public key portion of the DNSKEY's rdata.""" if self._dnsdata is not None: return self._dnsdata if self.path_public is None: return None try: self._dnsdata = open(self.path_public).read()[:-1] except IOError: pass return self._dnsdata @dnsdata.setter def dnsdata(self, value): self._dnsdata = value @property def keyname(self): if self._keyname is None: if self.algorithm and self.zone and self.keytag: algonum = config.KEY_ALGORITHMS[self.algorithm] keyname = 'K%s.+%s+%s' % (self.zone, algonum, self.keytag) self._keyname = str(keyname) return self._keyname @keyname.setter def keyname(self, value): self._keyname = value @property def directory(self): if not self.zone: return None if self._directory is None: self._directory = _key_file_path(self.zone, self.type, self.status) return self._directory @directory.setter def directory(self, value): self._directory = value @property def path_private(self): if self.directory is None: return None if self._path_private is None: if self.keyname: filename = '%s.private' % self.keyname self._path_private = os.path.join(self.directory, filename) return self._path_private @property def path_public(self): if self.directory is None: return None if self._path_public is None: if self.keyname: filename = '%s.key' % self.keyname self._path_public = os.path.join(self.directory, filename) return self._path_public def move(self, destination): """ Move key's files to destination. """ public_file = '%s.key' % self.keyname new_path_public = os.path.join(destination, public_file) try: os.rename(self.path_public, new_path_public) except OSError, e: raise PszError('%s' % e) self._path_public = new_path_public private_file = '%s.private' % self.keyname new_path_private = os.path.join(destination, private_file) try: os.rename(self.path_private, new_path_private) except OSError, e: raise PszError('%s' % e) self._path_private = new_path_private self.directory = destination def unlink(self): """ Unlinks a key's public and private files. """ if self.path_public and self.path_private: try: os.unlink(self.path_public) except OSError, e: print >>sys.stderr, "%s" % e try: os.unlink(self.path_private) except OSError, e: print >>sys.stderr, "%s" % e self.update('deleted') def update(self, status): """ Saves Dnskey with new status. """ if status == self.status: return self.status = status self.updated = datetime.now() self.save() @classmethod def from_dnssec_keygen(cls, zone, keytype='ZSK', algname=None, size=None): """Create key pair on disk and returns Dnskey instance The instance isn't saved in the ORM by default. XXX move this to keygen directory? """ if algname is None: algname = config.DEFAULTS[keytype.lower() + '_algorithm'] if size is None: size = config.DEFAULTS[keytype.lower() + '_keysize'] keyname, dnsdata = keygen.create_key(zone, algname, size, keytype) nameparts = keyname.split('+') keytag = nameparts[2] inst = cls( algorithm=algname, keytag=keytag, zone=zone, type=keytype, size=size, ) inst.dnsdata = dnsdata inst.keyname = keyname inst.directory = os.getcwd() return inst class LogMessage(models.Model): zone = models.TextField(db_index=True) user = models.CharField(max_length=32, default=config.USER) timestamp = models.DateTimeField(default=datetime.now) message = models.TextField() ``` #### File: python-secure-zone/tests/test_dns.py ```python from psz import named def setup_module(): pass def teardown(): pass def test_dns_defaults(): dns = named.Dns() assert dns.server == '127.0.0.1' def test_dns_resolver_server(): dns = named.Dns(server='ns1') assert 'ns1' in dns._resolver.nameservers def test_dns_update(): dns = named.Dns() assert dns.update is not None ```
{ "source": "john-src/grpc", "score": 2 }
#### File: tests/unit/_logging_test.py ```python import unittest import six from six.moves import reload_module import logging import grpc import functools import sys def patch_stderr(f): @functools.wraps(f) def _impl(*args, **kwargs): old_stderr = sys.stderr sys.stderr = six.StringIO() try: f(*args, **kwargs) finally: sys.stderr = old_stderr return _impl def isolated_logging(f): @functools.wraps(f) def _impl(*args, **kwargs): reload_module(logging) reload_module(grpc) try: f(*args, **kwargs) finally: reload_module(logging) return _impl class LoggingTest(unittest.TestCase): @isolated_logging def test_logger_not_occupied(self): self.assertEqual(0, len(logging.getLogger().handlers)) @patch_stderr @isolated_logging def test_handler_found(self): self.assertEqual(0, len(sys.stderr.getvalue())) @isolated_logging def test_can_configure_logger(self): intended_stream = six.StringIO() logging.basicConfig(stream=intended_stream) self.assertEqual(1, len(logging.getLogger().handlers)) self.assertIs(logging.getLogger().handlers[0].stream, intended_stream) @isolated_logging def test_grpc_logger(self): self.assertIn("grpc", logging.Logger.manager.loggerDict) root_logger = logging.getLogger("grpc") self.assertEqual(1, len(root_logger.handlers)) self.assertIsInstance(root_logger.handlers[0], logging.NullHandler) if __name__ == '__main__': unittest.main(verbosity=2) ```
{ "source": "johnsriot/twilio-text-to-call", "score": 3 }
#### File: johnsriot/twilio-text-to-call/response.py ```python import os import phonenumbers from twilio.twiml.messaging_response import MessagingResponse from twilio.rest import Client class Caller: """ Automated call helper operations """ def __init__(self, phonenumber, message_payload): self.phonenumber = phonenumber self.message_payload = int(message_payload) #Ensure we are passing an int self.dispatch = { 1: 'https://handler.twilio.com/twiml/EHdf6d3bfcb64fa9121736d3ea5d0b2b6a', # Ice cream truck 2: 'https://handler.twilio.com/twiml/EH50d84562bb51478300e08a017371c3e4', # Boom shaka lakka 3: 'https://handler.twilio.com/twiml/EHfa775c7c156e3fb95d642bae052d6e3f', # Rick Rolled 4: 'https://handler.twilio.com/twiml/EH0d97af2131d29ad0ca35a5768452392b' # Brother } def return_message(self): return self.dispatch[self.message_payload] def format_number(self): call_to = str("+1" + self.phonenumber) if self.validate_number(call_to): return call_to def validate_number(self, phonenumber): parse = phonenumbers.parse(phonenumber) return phonenumbers.is_valid_number(parse) def lambda_handler(event, context): # Take raw string and turn into usable variables raw_data = event['Body'].split("+") caller = Caller(raw_data[1], raw_data[2]) url_bin = caller.return_message() #TEST call_to = caller.format_number() # Initialize Twilio Client client = Client(os.environ['ACCOUNT_SID'], os.environ['AUTH_TOKEN']) call = client.calls.create( url=url_bin, to=call_to, from_=os.environ['SOURCE'] ) # Create success message for user resp = MessagingResponse() resp.message('Awesomesauce') return str(resp) ```
{ "source": "JohnStarich/dotfiles", "score": 4 }
#### File: python/johnstarich/interval.py ```python import time class Interval(object): def __init__(self, delay_time: int): self.delay_time = delay_time self.current_time = 0 @staticmethod def now(): return time.gmtime().tm_sec def should_run(self) -> bool: if self.current_time == 0: self.current_time = Interval.now() return True return self.is_done() def is_done(self) -> bool: timestamp = Interval.now() return self.current_time + self.delay_time < timestamp or \ self.current_time > timestamp def start(self) -> int: self.current_time = Interval.now() return self.current_time ``` #### File: johnstarich/weather/__init__.py ```python from johnstarich.weather.parse import raw_weather_info from johnstarich.interval import Interval from johnstarich.segment import segment, segment_default weather_status_icons = { 'clear': '☀️', 'clear night': '🌙', 'few clouds': '⛅️', 'few clouds night': '☁️', 'clouds': '☁️', 'rain': '🌧', 'shower rain': '🌦', 'shower rain night': '🌧', 'thunderstorm': '⛈', 'snow': '🌨', 'mist': '💨', 'disaster': '🌪', 'invalid': '🚫', } # Yahoo! Weather codes: # https://developer.yahoo.com/weather/documentation.html#codes weather_status_mappings = { 0: ['tornado', 'disaster'], 1: ['tropical storm', 'disaster'], 2: ['hurricane', 'disaster'], 3: ['severe thunderstorms', 'thunderstorm'], 4: ['thunderstorms', 'thunderstorm'], 5: ['mixed rain and snow', 'snow'], 6: ['mixed rain and sleet', 'snow'], 7: ['mixed snow and sleet', 'snow'], 8: ['freezing drizzle', 'rain'], 9: ['drizzle', 'shower rain'], 10: ['freezing rain', 'rain'], 11: ['showers', 'shower rain'], 12: ['showers', 'shower rain'], 13: ['snow flurries', 'snow'], 14: ['light snow showers', 'snow'], 15: ['blowing snow', 'snow'], 16: ['snow', 'snow'], 17: ['hail', 'snow'], 18: ['sleet', 'snow'], 19: ['dust', 'mist'], 20: ['foggy', 'mist'], 21: ['haze', 'mist'], 22: ['smoky', 'mist'], 23: ['blustery', 'mist'], 24: ['windy', 'mist'], 25: ['cold', 'clear'], 26: ['cloudy', 'clouds'], 27: ['mostly cloudy (night)', 'clouds'], 28: ['mostly cloudy (day)', 'clouds'], 29: ['partly cloudy (night)', 'few clouds'], 30: ['partly cloudy (day)', 'few clouds'], 31: ['clear (night)', 'clear night'], 32: ['sunny', 'clear'], 33: ['fair (night)', 'clear night'], 34: ['fair (day)', 'clear'], 35: ['mixed rain and hail', 'snow'], 36: ['hot', 'clear'], 37: ['isolated thunderstorms', 'thunderstorm'], 38: ['scattered thunderstorms', 'thunderstorm'], 39: ['scattered thunderstorms', 'thunderstorm'], 40: ['scattered showers', 'shower rain'], 41: ['heavy snow', 'snow'], 42: ['scattered snow showers', 'snow'], 43: ['heavy snow', 'snow'], 44: ['partly cloudy', 'few clouds'], 45: ['thundershowers', 'thunderstorm'], 46: ['snow showers', 'snow'], 47: ['isolated thundershowers', 'thunderstorm'], 3200: ['not available', 'invalid'], } segment_kwargs = { 'highlight_groups': [ 'weather_temp_gradient', 'weather_temp', 'weather' ], } update_interval = Interval(5 * 60) last_status = '' last_gradient = 0 def weather(pl, unit: str='C', temp_low: float=0, temp_high: float=100, **kwargs) -> list: global last_status, last_gradient if not update_interval.should_run(): return segment(last_status, gradient_level=last_gradient, **segment_kwargs) if temp_low >= temp_high: raise ValueError('temp_low cannot be higher then or ' 'the same as temp_high') weather = raw_weather_info() warning_str = None if 'error' in weather and 'location' in weather['error']: warning_str = ' ⚠️ 🌎 ' if len(weather.keys()) == 1: update_interval.start() if not last_status.endswith(warning_str): last_status += warning_str return segment(last_status, gradient_level=last_gradient, **segment_kwargs) elif 'error' in weather: update_interval.start() warning_str = ' ⚠️ ' if '⚠️' not in last_status: last_status += warning_str return segment(last_status, gradient_level=last_gradient, **segment_kwargs) print(weather) temperature = weather['temperature'] input_unit = weather['units']['temperature'] humidity = weather['humidity'] additional_variance = 0 temp_in_fahrenheit = convert_temperature(temperature, input_unit, 'F') if temp_in_fahrenheit >= 80 and humidity >= 40: display_temperature = heat_index(temperature, humidity, input_unit, unit) if display_temperature != temp_in_fahrenheit: additional_variance = convert_temperature(1.3, 'F', unit) - \ convert_temperature(0, 'F', unit) elif temp_in_fahrenheit <= 50: display_temperature = convert_temperature(weather['wind']['chill'], input_unit, unit) else: display_temperature = convert_temperature(temperature, input_unit, unit) gradient = 100 * (display_temperature - temp_low) / (temp_high - temp_low) if display_temperature > temp_high: gradient = 100 elif display_temperature < temp_low: gradient = 0 variance = '' if additional_variance != 0: display_temperature = round(display_temperature) variance = '±' + str(round(abs(additional_variance), 1)) else: display_temperature = round(display_temperature, 1) contents = '{icon} {temp}{var}°{unit}{warning}'.format( icon=extract_icon(weather), temp=display_temperature, unit=unit, var=variance, warning=warning_str if warning_str is not None else '', ) update_interval.start() last_status = contents last_gradient = gradient return segment(contents, gradient_level=gradient, **segment_kwargs) def extract_icon(weather: dict) -> str: weather_code = weather['code'] if weather_code not in weather_status_mappings: return weather_status_icons['invalid'] return weather_status_icons[weather_status_mappings[weather_code][1]] heat_index_constants = [ -42.379, 2.04901523, 10.14333127, -0.22475541, -6.83783e-3, -5.481717e-2, 1.22874e-3, 8.5282e-4, -1.99e-6 ] def heat_index(temperature: float, relative_humidity: float, input_unit: str, output_unit: str) -> float: if input_unit not in 'KCF': raise ValueError('Invalid input unit: ' + input_unit) if output_unit not in 'KCF': raise ValueError('Invalid output unit: ' + output_unit) global heat_index_constants HI_C = heat_index_constants T = temperature_conversions[input_unit + 'F'](temperature) R = relative_humidity HI = HI_C[0] + HI_C[1]*T + HI_C[2]*R + HI_C[3]*T*R + HI_C[4]*T*T + \ HI_C[5]*R*R + HI_C[6]*T*T*R + HI_C[7]*T*R*R + HI_C[8]*T*T*R*R return temperature_conversions['F' + output_unit](HI) temperature_conversions = { 'CC': lambda t: t, 'CF': lambda t: t * 9/5 + 32, 'CK': lambda t: t + 273.15, 'FC': lambda t: (t - 32) * 5/9, 'FF': lambda t: t, 'FK': lambda t: (t + 459.67) * 5/9, 'KC': lambda t: t - 273.15, 'KF': lambda t: t * 9/5 - 459.67, 'KK': lambda t: t, } def convert_temperature(temperature: float, input_unit: str, output_unit: str): if input_unit not in 'KCF': raise ValueError('Input unit is not valid: ' + input_unit) if output_unit not in 'KCF': raise ValueError('Output unit is not valid: ' + output_unit) return temperature_conversions[input_unit + output_unit](temperature) ```
{ "source": "JohnStarich/java-skip-list", "score": 3 }
#### File: JohnStarich/java-skip-list/markdown_filter.py ```python from panflute import * removed_top_header = False def markdown_header(elem, doc): """ Removes the first top level header (h1), sets the document title to that header's contents, and lowers the level of the other headers. """ global removed_top_header if type(elem) != Header: return None if elem.level > 1: elem.level -= 1 return None if removed_top_header is True: return None removed_top_header = True doc.metadata['title'] = MetaInlines(*elem.content) return [] if __name__ == '__main__': run_filter(markdown_header) ```
{ "source": "JohnStarich/python-pool-performance", "score": 2 }
#### File: python-pool-performance/pools/pool.py ```python from requests.adapters import HTTPAdapter from collections.abc import Mapping, Sequence from types import FunctionType from tqdm import tqdm import time import sys import gc class PoolTest(object): def __init__(self, worker_count: int): self.worker_count = worker_count self.pool = self.init_pool(worker_count) self.compute_resource = self.init_compute_resource() self.network_resource = self.init_network_resource() def init_pool(self, worker_count: int) -> object: raise NotImplementedError("{} does not implement init_pool" .format(self.__class__.__name__)) def destroy_pool(self): pass def map(self, work_func: FunctionType, inputs: Sequence) -> Sequence: raise NotImplementedError("{} does not implement map" .format(self.__class__.__name__)) def init_compute_resource(self) -> object: from cmath import sqrt return sqrt def init_network_resource(self) -> object: import requests return requests.Session @staticmethod def do_compute_work(args) -> None: compute_resource, num, *_ = args sqrt = compute_resource sqrt(sqrt(sqrt(num))) @staticmethod def do_network_work(args) -> None: network_resource, *_ = args Session = network_resource with Session() as s: adapter = HTTPAdapter(max_retries=3) s.mount('http://', adapter) s.get('http://localhost:8080/') def run_compute_test(self, jobs: int, trials: int, show_progress: bool=False) -> Mapping: return self._run_test(self.do_compute_work, self.compute_resource, jobs, trials, show_progress=show_progress) def run_network_test(self, jobs: int, trials: int, show_progress: bool=False) -> Mapping: return self._run_test(self.do_network_work, self.network_resource, jobs, trials, show_progress=show_progress) def _run_test(self, work_func: FunctionType, work_resource: object, jobs: int, trials: int, show_progress: bool=False) -> Mapping: results = { 'jobs': jobs, 'trials': trials, 'time': [], 'blocks': [], } # Forcibly evaluate the inputs to prevent time/resources taken up later inputs = list(zip( [work_resource] * jobs, range(jobs) )) trial_iter = range(trials) if show_progress is True and trials > 2: trial_iter = tqdm(trial_iter, desc='trials') gc.collect() for _ in trial_iter: # Run trial of pool map function and measure it gc.collect() blocks_start = sys.getallocatedblocks() time_start = time.time() list(self.map(work_func, inputs)) time_end = time.time() results['time'].append(time_end - time_start) # Get allocated blocks before garbage collection to show peak usage blocks_end = sys.getallocatedblocks() results['blocks'].append(blocks_end - blocks_start) return results ``` #### File: python-pool-performance/pools/standard_library.py ```python from pools import PoolTest from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor class StandardProcessPool(PoolTest): def init_pool(self, worker_count): return ProcessPoolExecutor(worker_count) def map(self, work_func, inputs): return self.pool.map(work_func, inputs) class StandardThreadPool(PoolTest): def init_pool(self, worker_count): return ThreadPoolExecutor(worker_count) def map(self, work_func, inputs): return self.pool.map(work_func, inputs) ```
{ "source": "johnstat101/my-blogsite", "score": 3 }
#### File: my-blogsite/tests/test_comments.py ```python import unittest from app.models import Comment, Blog, User class CommentModelTest(unittest.TestCase): def setUp(self): self.new_comment = Comment(id = 1, comment = 'Test comment', user = self.user_emma, blog_id = self.new_blog) def tearDown(self): Blog.query.delete() User.query.delete() def test_check_instance_variables(self): self.assertEquals(self.new_comment.comment,'Test comment') self.assertEquals(self.new_comment.user,self.user_emma) self.assertEquals(self.new_comment.blog_id,self.new_blog) ```
{ "source": "johnstat101/password-locker", "score": 4 }
#### File: johnstat101/password-locker/user_test.py ```python import unittest # Importing the unittest module from user import UserAccounts # Importing the contact class class TestUserAccounts(unittest.TestCase): """ class to define test cases for the userAccounts class behavior Args: unittest.TestCase: TestCase class that helps in creating test cases """ def setUp(self): """ Set up method to run before each test cases. """ self.new_userAccount = UserAccounts("johnKim", "1234") #create an object of type UserAccounts def test_init(self): """ Test whether the object is initialized correctly """ self.assertEqual(self.new_userAccount.username,"johnKim") self.assertEqual(self.new_userAccount.password,"<PASSWORD>") def test_save_userAccount(self): """ A test case to test if userAccount is saved in userAccountsList """ self.new_userAccount.save_userAccount() self.assertEqual(len(UserAccounts.userAccounts_list),1) def tearDown(self): ''' tearDown method that does clean up after each test case has run. ''' UserAccounts.userAccounts_list = [] def save_multiple_userAccounts(self): """ test saving of multiple userAccounts """ self.new_userAccount.save_userAccount() test_userAccount = UserAccounts("kimJohn","4321") test_userAccount.save_userAccount() self.assertEqual(len(UserAccounts.userAccounts_list),2) def test_delete_userAccounts(self): """ test case for userAccounts deletion """ self.new_userAccount.save_userAccount() test_userAccount = UserAccounts("kimJohn", "4321") test_userAccount.save_userAccount() self.new_userAccount.delete_userAccount() self.assertEqual(len(UserAccounts.userAccounts_list),1) def test_find_userAccounts_by_username(self): """ test case to search for user userAccounts by username """ self.new_userAccount.save_userAccount() test_userAccount = UserAccounts("kimJohn", "4321") test_userAccount.save_userAccount() found_userAccount = UserAccounts.find_userAccounts_by_username("kimJohn") self.assertEqual(found_userAccount.password, test_userAccount.password) def test_userAccount_exist(self): """ return true if a contact exists """ self.new_userAccount.save_userAccount() test_userAccount = UserAccounts("kimJohn", "4321") test_userAccount.save_userAccount() userAccount_exists = UserAccounts.userAccount_exists("kimJohn") self.assertTrue(userAccount_exists) def test_display_userAccounts(self): ''' method that returns a list of all userAccounts saved ''' self.assertEqual(UserAccounts.display_userAccounts(),UserAccounts.userAccounts_list) if __name__ == '__main__': unittest.main() ```
{ "source": "johnstcn/cs7ns6groupF", "score": 3 }
#### File: cs7ns6groupF/booking/raft_rpc_client.py ```python import logging import socket from typing import Tuple, Optional from raft_peer import Peer LOG = logging.getLogger(__name__) LOG.setLevel(logging.DEBUG) class RpcClient(object): def send(self, peer: Peer, msg) -> Tuple[Optional[int], Optional[bool]]: LOG.debug("RpcClient send peer %s msg:%s", peer, msg) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: try: sock.connect(peer.hostport()) sock.sendall(bytes(msg)) resp = sock.recv(1024) LOG.debug("RpcClient response from peer %s: %s", peer, resp) term_str, success_str = resp.strip().split(b' ') term = int(term_str) success = success_str == b'1' return term, success except Exception as e: LOG.warning("Got RpcClient Exception: %s", e) raise ```
{ "source": "johnstcn/whatsnew", "score": 2 }
#### File: whatsnew/templatetags/app_filters.py ```python from django import template from django.contrib.humanize.templatetags.humanize import naturalday, naturaltime from datetime import datetime from pytz import utc register = template.Library() @register.filter(name="custom_natural_date") def custom_natural_date(value): delta = datetime.now(utc) - value if delta.days == 0: return naturaltime(value) else: return naturalday(value) @register.filter(name="get_int_key") def get_int_key(d, key): return d.get(unicode(key)) ``` #### File: whatsnew/whatsnew/views.py ```python from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth import authenticate, login from django.db.models.aggregates import Max from django.http import HttpResponseRedirect from django.shortcuts import redirect from django.views import generic from django.views.decorators.cache import never_cache from django.utils.decorators import method_decorator from .models import * from .forms import * @login_required def watch(request, site_id): return_url = request.META.get('HTTP_REFERER', '/') if not request.user.is_anonymous(): site = Site.objects.get(pk=site_id) us = UserSeen.objects.get(user=request.user) us.seen[site_id] = site.latest_update.id us.save() messages.info(request, 'You are now watching %s' % site.name) else: messages.warning(request, 'You need to sign in to do that!') return redirect(return_url) @login_required def unwatch(request, site_id): return_url = request.META.get('HTTP_REFERER', '/') if not request.user.is_anonymous(): site = Site.objects.get(pk=site_id) us = UserSeen.objects.get(user=request.user) del(us.seen[site_id]) us.save() messages.info(request, 'You are no longer watching %s' % site.name) else: messages.warning(request, 'You need to sign in to do that!') return redirect(return_url) @never_cache def redirect_to_update(request, site_update_id): return_url = request.META.get('HTTP_REFERER', '/') update = SiteUpdate.objects.filter(pk=site_update_id).get() if not request.user.is_anonymous(): try: us = UserSeen.objects.get(user=request.user) if str(update.site_id) in us.seen: us.seen[update.site_id] = site_update_id us.save() except ObjectDoesNotExist: messages.error(request, 'Sorry, something went wrong!') return redirect(return_url) else: messages.info(request, 'Sign up to keep track of the comics you like!') return redirect(update.url) @method_decorator(never_cache, name='dispatch') class SitesView(generic.ListView): template_name = 'all_sites.html' context_object_name = 'sites' model = Site paginate_by = 10 def get_queryset(self): sites = Site.objects.annotate(Max('siteupdate__date')).order_by('-siteupdate__date__max') tag = self.kwargs.get("tag", "all") nsfw = self.kwargs.get("nsfw", "0") watched = self.kwargs.get("watched", "0") if tag != "all": sites = sites.filter(site_tags__name=tag) if nsfw == "0": sites = sites.exclude(site_tags__name="nsfw") if watched == "1": if self.request.user.is_anonymous(): messages.info(self.request, "You need to sign in to do that!") else: seen = self.request.user.userseen.seen sites = sites.filter(pk__in=seen) return sites def get_context_data(self, **kwargs): context = super(SitesView, self).get_context_data(**kwargs) tags = [t.name for t in Tag.objects.all() if t.name != 'nsfw'] context["tags"] = tags context["selected_tag"] = self.kwargs.get("tag", "all") context["show_nsfw"] = self.kwargs.get("nsfw", "0") context["only_watched"] = self.kwargs.get("watched", "0") next_updates = {} if not self.request.user.is_anonymous(): seen = UserSeen.objects.get(user=self.request.user).seen for site_id, update_id in seen.iteritems(): try: update = SiteUpdate.objects.get(pk=update_id) next_update = SiteUpdate.objects.filter(site_id=site_id, date__gt=update.date).order_by('date').first() except ObjectDoesNotExist: next_update = None if next_update is not None: next_updates[site_id] = next_update.id else: next_updates[site_id] = None else: seen = {} context['next_updates'] = next_updates context['seen'] = seen return context @method_decorator(never_cache, name='dispatch') class SignUpView(generic.FormView): template_name = 'sign_in.html' form_class = SignUpForm success_url = '/' def dispatch(self, request): if self.request.user.is_anonymous(): return super(SignUpView, self).dispatch(request) else: messages.warning(self.request, 'You are already signed in!') return HttpResponseRedirect('/') def form_valid(self, form): form.send_signin_email() messages.info(self.request, 'Check your email for a link to sign in!') return super(SignUpView, self).form_valid(form) @method_decorator(never_cache, name='dispatch') class AuthenticateView(generic.RedirectView): permanent = False query_string = False def get_redirect_url(self, *args, **kwargs): auth_code = self.kwargs.get('auth_code', '') try: user = authenticate(code=auth_code) login(self.request, user) messages.success(self.request, 'Welcome %s!' %(user.username)) except ObjectDoesNotExist: messages.error(self.request, "Sorry, we couldn't figure out who you are.") finally: return '/' ```
{ "source": "johnstef99/goal-dsl", "score": 2 }
#### File: goal-dsl/goal_dsl/__init__.py ```python import os from textx import language, metamodel_from_file from goal_dsl.utils import get_mm __version__ = "0.1.0.dev" @language('goal_dsl', '*.goal') def goal_dsl_language(): "goal_dsl language" return get_mm() ``` #### File: goal-dsl/goal_dsl/utils.py ```python from os.path import dirname, join from textx import metamodel_from_file import textx.scoping.providers as scoping_providers this_dir = dirname(__file__) def get_mm(debug=False, global_scope=True): """ """ mm= metamodel_from_file( join(this_dir, 'goal_dsl.tx'), global_repository=global_scope, debug=debug ) mm.register_scope_providers( { "*.*": scoping_providers.FQNImportURI( importAs=True, # importURI_to_scope_name=importURI_to_scope_name ) } ) return mm def build_model(model_fpath): mm = get_mm(global_scope=True) model = mm.model_from_file(model_fpath) # print(model._tx_loaded_models) reg_models = mm._tx_model_repository.all_models.filename_to_model models = [val for key, val in reg_models.items() if val != model] return (model, models) def get_grammar(debug=False): with open(join(this_dir, 'thing_dsl.tx')) as f: return f.read() ```
{ "source": "johnstile/job_controller", "score": 3 }
#### File: src/web/myapp.py ```python import os import logging from flask import Flask, jsonify, Response, request, abort from flask_cors import CORS # To allow Swagger and other things to work import datetime from flask_jwt_extended import ( JWTManager, jwt_required, create_access_token, create_refresh_token, get_jwt_identity, jwt_optional, get_jwt_claims ) # My API Versions from .api_v1_blueprint import jwt, api_v1_blueprint here = os.path.dirname(__file__) app = Flask(__name__, static_url_path='') jwt = JWTManager() jwt.init_app(app) # Register root logger, so blueprint can send logs # Log Level: basicConfig: my python, werkzeug: all requests logging.basicConfig(level=logging.DEBUG) logging.getLogger('werkzeug').setLevel(logging.WARNING) app.config.from_pyfile(os.path.join(here, 'flask.cfg')) # we have some cross domain stuff behind nginx CORS(app) # Expose API under /V1/ # e.g. /V1/stations app.register_blueprint(api_v1_blueprint, url_prefix='/V1') @app.route('/') def index(): return "Hello Job Controller!!" @app.route('/echo_request') def echo_request(): """API independent route to view request header info""" return jsonify(dict(request.headers)) if __name__ == "__main__": app.run(debug=True, threaded=True, host='0.0.0.0') ```
{ "source": "johnstill/vae_experiments", "score": 2 }
#### File: johnstill/vae_experiments/misc_util.py ```python import math import os from itertools import count, groupby from operator import itemgetter from types import SimpleNamespace import matplotlib.pyplot as plt import numpy as np import torch from torch import nn, optim from torch.distributions import Bernoulli, Normal from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from pytorch_lightning import LightningModule, Trainer @torch.no_grad() def get_digit_samples(): by_digit = itemgetter(1) mnist = MNIST(os.getcwd(), transform=ToTensor()) mnist = sorted(mnist, key=by_digit) mnist = groupby(mnist, key=by_digit) samples = [] for digit, grp in mnist: x, y = next(grp) samples.append(x.view(-1)) return torch.stack(samples) @torch.no_grad() def sweep_variable_across_samples(vae, samples, i, sweep): """Sweeps a single latent variable Arguments --------- vae : torch.Module A VAE module; must have a decode method samples : n-by-z array-like Contains n samples of z latent variables i : int < z The latent variable to sweep sweep : array The values to use in sweeping z """ # XXX dumb, unvectorized version recons = [] for sample in samples: recons.append([]) for val in sweep: sample[i] = val # Use just means as image img, _ = vae.decode(sample) recons[-1].append(img.detach().numpy()) return np.array(recons) @torch.no_grad() def plot_sweep_grid(origs, recons, sweepvals): idx = count(1) fig = plt.figure(figsize=(15, 13)) fig.subplots_adjust(hspace=0, wspace=0) for i in range(10): plt.subplot(10, 11, next(idx)) plt.imshow(origs[i].reshape(28, 28)) plt.xticks([]) plt.yticks([]) if i == 0: plt.title('Orig') for j in range(10): plt.subplot(10, 11, next(idx)) plt.imshow(recons[i][j].reshape(28, 28)) plt.xticks([]) plt.yticks([]) if i == 0: plt.title(f'{sweepvals[j]:.2f}') plt.show() @torch.no_grad() def plot_all_sweeps(model): digits = get_digit_samples() digit_encodings, *_ = model(digits) sweep_range = torch.linspace(-4, 4, steps=10) return digit_encodings, sweep_range # for i in range(20): for i in range(1): print(f'Sweeping reconstructions over latent variable no. {i}') recons_by_var = sweep_variable_across_samples(model, digit_encodings.clone(), i, sweep_range) plot_sweep_grid(digits.detach().numpy(), recons_by_var, sweep_range) return digit_encodings, sweep_range @torch.no_grad() def zeroth_mu_sigma(enc, model): m, s = model.decode(enc) s = F.softplus(s) m0, s0 = m[0], s[0] plt.subplot(221) plt.imshow(m0.reshape(28, 28), norm=None, cmap='gray', vmin=0.0, vmax=1.0) plt.xticks([]) plt.yticks([]) plt.subplot(222) plt.imshow(s0.reshape(28, 28), norm=None, cmap='gray', vmin=0.0, vmax=1.0) plt.xticks([]) plt.yticks([]) plt.subplot(223) plt.imshow(m0.reshape(28, 28)) plt.xticks([]) plt.yticks([]) plt.subplot(224) plt.imshow(s0.reshape(28, 28)) plt.xticks([]) plt.yticks([]) plt.show() return m, s ```
{ "source": "johnstonematt/pythpy", "score": 2 }
#### File: pythpy/calls/async.py ```python import asyncio import base64 from solana.rpc.async_api import AsyncClient from solana.publickey import PublicKey from pythpy.state.oracle import OracleAccount async def load_account_bytes(client: AsyncClient, address: PublicKey) -> bytes: resp = await client.get_account_info(pubkey=address) if ('result' not in resp) or ('value' not in resp['result']): raise Exception('Cannot load bytes.') data = resp['result']['value']['data'][0] bytes_data = base64.decodebytes(data.encode('ascii')) return bytes_data async def call_oracle_account(client: AsyncClient, address: PublicKey) -> OracleAccount: bytes_data = await load_account_bytes( client=client, address=address ) oracle_account = OracleAccount.parse( bytes_data=bytes_data ) return oracle_account ``` #### File: pythpy/calls/sync.py ```python import base64 from solana.rpc.api import Client from solana.publickey import PublicKey from pythpy.state.oracle import OracleAccount def load_account_bytes(client: Client, address: PublicKey) -> bytes: resp = client.get_account_info(pubkey=address) if ('result' not in resp) or ('value' not in resp['result']): raise Exception('Cannot load bytes.') data = resp['result']['value']['data'][0] bytes_data = base64.decodebytes(data.encode('ascii')) return bytes_data def call_oracle_account(client: Client, address: PublicKey) -> OracleAccount: bytes_data = load_account_bytes( client=client, address=address ) oracle_account = OracleAccount.parse( bytes_data=bytes_data ) return oracle_account ``` #### File: pythpy/state/core.py ```python import json from abc import ABC, abstractmethod from construct import Struct, Container class StateCore(ABC): layout: Struct = None @classmethod @abstractmethod def from_container(cls, container: Container): pass @classmethod def parse(cls, bytes_data: bytes, factor: int): container = cls.layout.parse(bytes_data) obj = cls.from_container(container=container) obj = obj.parse_precision(factor=factor) return obj @abstractmethod def parse_precision(self, factor: int): pass @abstractmethod def to_dict(self) -> dict: pass def __str__(self): my_dict = self.to_dict() return json.dumps(my_dict, sort_keys=False, indent=4) ```
{ "source": "johnstonskj/guernsey", "score": 3 }
#### File: guernsey/test/chaining.py ```python import unittest from guernsey import Client class TestMethodChaining(unittest.TestCase): def testSimpleRequest(self): c = Client.create() r = c.resource('http://example.com/base/').path('1').accept('text/json').accept('text/xml', 0.5) self.assertEquals('http://example.com/base/1', r.url) self.assertEquals('text/json, text/xml; q=0.5', r.headers['Accept']) def testServiceCall(self): client = Client.create() namespaces = client.resource('http://www.thomas-bayer.com/sqlrest/').accept('*/xml').get() self.assertEquals('http://www.thomas-bayer.com/sqlrest/', namespaces.url) self.assertEquals('*/xml', namespaces.resource.headers['Accept']) self.assertEquals('application/xml', namespaces.headers['content-type']) customers = namespaces.resource.path('CUSTOMERS/').accept('*/xml').get() self.assertEquals('http://www.thomas-bayer.com/sqlrest/CUSTOMERS/', customers.url) self.assertEquals('*/xml', customers.resource.headers['Accept']) self.assertEquals('application/xml', customers.headers['content-type']) customer = customers.resource.path('../CUSTOMER/22022010').accept('*/xml').get() self.assertEquals('http://www.thomas-bayer.com/sqlrest/CUSTOMER/22022010', customer.url) self.assertEquals('*/xml', customer.resource.headers['Accept']) self.assertEquals('application/xml', customer.headers['content-type']) ```
{ "source": "johnstonskj/PyDL7", "score": 2 }
#### File: johnstonskj/PyDL7/setup.py ```python from setuptools import setup def readme(): with open('README.md') as f: return f.read() setup( name='PyDL7', version='0.0.3', description='Python API for parsing DAN Dive Log files.', long_description=readme(), author='<NAME>', author_email='<EMAIL>', download_url='https://pypi.python.org/pypi/PyDL7', url='https://github.com/johnstonskj/PyDL7', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', ], packages=['divelog'], setup_requires=['pytest-runner'], tests_require=[ 'pytest', 'pytest-cov', 'pytest-catchlog', 'pytest-pep8' ], entry_points={ 'console_scripts': [ 'dl7dump=divelog.command_line:main', ], } ) ``` #### File: PyDL7/tests/test_html.py ```python import io import pytest import divelog.html import examples def test_html_parser(): with pytest.raises(NotImplementedError): divelog.html.parse(None) def test_html_writer(): def wrap(s): return '<div class="col-md-10">%s</div>' % s log = examples.create_log() file = io.StringIO() divelog.html.dump(log, file) content = file.getvalue() assert wrap('Saturday, 05. March 2016 11:10AM') in content assert wrap('Every 1 minute') in content ```
{ "source": "johnstonskj/rdftools", "score": 2 }
#### File: rdftools/rdftools/__init__.py ```python import argparse import i18n import logging import os import rdflib import sys from termcolor import colored from timeit import default_timer as timer __VERSION__ = '0.2.0' __LOG__ = None FORMATS = ['nt', 'n3', 'turtle', 'rdfa', 'xml', 'pretty-xml'] HEADER_SEP = '=' COLUMN_SEP = '|' EMPTY_LINE = '' COLUMN_SPEC = '{:%d}' USE_COLOR = False def startup(description_key, add_args, read_files=True, argv=None): global __LOG__, USE_COLOR configure_translation() description = i18n.t(description_key) parser = configure_argparse(description, read_files) if callable(add_args): parser = add_args(parser) if argv is None: command = parser.parse_args() else: command = parser.parse_args(argv) USE_COLOR = command.use_color process = parser.prog __LOG__ = configure_logging(process, command.verbose) __LOG__.info(i18n.t('rdftools.started', tool=process, name=description)) __LOG__.info(argv) return (__LOG__, command) def configure_translation(force_locale=None): i18n.load_path.append(os.path.join(os.path.dirname(__file__), 'messages')) if force_locale is not None: i18n.set('locale', force_locale) i18n.set('fallback', 'en') def configure_argparse(description, read_files=True): parser = argparse.ArgumentParser(description=description) parser.add_argument('-v', '--verbose', default=0, action='count') parser.add_argument('-b', '--base', action='store') if read_files: parser.add_argument('-i', '--input', type=argparse.FileType('r'), nargs='*') parser.add_argument('-r', '--read', action='store', choices=FORMATS) parser.add_argument('-c', '--use-color', action='store_true') return parser def configure_logging(name, level): global __LOG__ logging.basicConfig(format='%(asctime)-15s %(module)s.%(funcName)s:' + '%(lineno)d [%(levelname)s] %(message)s') logger = logging.getLogger(name) if level > 2: logger.setLevel(logging.INFO) elif level > 1: logger.setLevel(logging.DEBUG) elif level > 0: logger.setLevel(logging.WARN) else: logger.setLevel(logging.ERROR) logger.info(i18n.t('rdftools.logging', level=logger.getEffectiveLevel())) __LOG__ = logger return logger def read_into(input, format, graph, base=None): start = end = 0 if format is None: if input is None: format = FORMATS[0] else: format = rdflib.util.guess_format(input.name) if input is None: __LOG__.info(i18n.t('rdftools.read_stdin', format=format)) start = timer() graph.parse(source=sys.stdin.buffer, format=format, publicID=base) end = timer() else: __LOG__.info(i18n.t('rdftools.read_file', name=input.name, format=format)) start = timer() graph.parse(source=input.name, format=format, publicID=base) end = timer() __LOG__.info(i18n.t('rdftools.read_complete', len=len(graph), time=end - start)) return graph def read(input, format, base=None): graph = rdflib.Graph() return read_into(input, format, graph, base) def read_all(inputs, format, base=None): graph = rdflib.Graph() for input in inputs: graph = read_into(input, format, graph, base) return graph def write(graph, output, format, base=None): __LOG__.debug(i18n.t('rdftools.write', graph=graph, len=len(graph))) start = end = 0 if format is None: if output is None: format = FORMATS[0] else: format = rdflib.util.guess_format(output.name) if output is None: __LOG__.info(i18n.t('rdftools.write_stdout', format=format)) start = timer() data = graph.serialize(format=format, base=base) end = timer() try: # This fails on Travis ONLY for Python 3.4 sys.stdout.buffer.write(data) except AttributeError: sys.stdout.write(data.decode('utf-8')) else: __LOG__.info(i18n.t('rdftools.write_file', name=output.name, format=format)) start = timer() graph.serialize(destination=output.name, format=format, base=base) end = timer() __LOG__.debug(i18n.t('rdftools.write_complete', time=(end - start))) def get_terminal_width(default=80): import shutil return shutil.get_terminal_size((default, 20))[0] def header(str): return colored(str, attrs=['reverse']) if USE_COLOR else str def line(str): return colored(str, attrs=['dark']) if USE_COLOR else str def comment(str): return colored(str, attrs=['dark']) if USE_COLOR else str def report(columns, rows, timer=0): # TODO: Should also take this as a parameter? so "rdf query -c 80 -q ..." width = get_terminal_width() col_width = int((width - len(columns)) / len(columns)) col_string = COLUMN_SPEC % col_width for column in columns: print(header(col_string.format(column)), end=line(COLUMN_SEP)) print(EMPTY_LINE) for column in columns: print(line(HEADER_SEP * col_width), end=line(COLUMN_SEP)) print(EMPTY_LINE) for row in rows: for col in columns: print(col_string.format(row[col]), end=line(COLUMN_SEP)) print(EMPTY_LINE) if timer != 0: print(comment(i18n.t('rdftools.report_timed', len=len(rows), time=timer))) else: print(comment(i18n.t('rdftools.report_timed', len=len(rows)))) ``` #### File: rdftools/test/test_query.py ```python import pytest from unittest.mock import patch from rdftools.scripts import query from test.sample_data import input_file expected_out = sorted([ 'http://example.org/social/profile/1.0/Person', 'http://example.org/social/topics/1.0/Topic', 'http://example.org/social/profile/1.0/Family', ]) def test_query_script(capsys): with patch('sys.argv', ['test_query', '-i', input_file, '-r', 'n3', '-q', 'SELECT DISTINCT ?type WHERE { ?s a ?type }']): query.main() (out, err) = capsys.readouterr() out_lines = sorted([line for line in out.split('\n') if line.startswith('http://')]) assert len(out_lines) == len(expected_out) for (index, line) in enumerate(expected_out): assert out_lines[index].startswith(line) def test_query_script_empty(capsys): expected = "query returned no results." with patch('sys.argv', ['test_convert', '-i', input_file, '-r', 'n3', '-q', 'SELECT DISTINCT ?type WHERE { ?s a <http://example.org/people/me> }']): # noqa: 501 query.main() (out, err) = capsys.readouterr() assert out.index(expected) >= 0 def test_query_script_bad_sparql(capsys): import pyparsing expected_err = "Expected {SelectQuery | ConstructQuery | DescribeQuery | AskQuery}" # noqa: 501 with patch('sys.argv', ['test_convert', '-i', input_file, '-r', 'n3', '-q', 'WHAT IS SPARQL?']): try: query.main() pytest.fail('expecting: %s' % expected_err) except pyparsing.ParseException as ex: assert str(ex).index(expected_err) >= 0 ```
{ "source": "JohnStov/buildmon", "score": 3 }
#### File: JohnStov/buildmon/Missile.py ```python import Platform device = None if Platform.is_raspberrypi(): import usb.core device = usb.core.find(idVendor=0x2123, idProduct=0x1010) try: device.detach_kernel_driver(0) except Exception: pass import time Down = 0x01 Up = 0x02 Left = 0x04 Right = 0x08 Fire = 0x10 Stop = 0x20 def send_cmd(cmd): global device if device != None: device.ctrl_transfer(0x21, 0x09, 0, 0, [0x02, cmd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]) else: print("sending usb command {0}".format(cmd)) def led(cmd): global device if device != None: device.ctrl_transfer(0x21, 0x09, 0, 0, [0x03, cmd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]) else: print("sending missile led state {0}".format(cmd)) led(0) def send_move(cmd, duration_ms): global device if device != None: send_cmd(cmd) time.sleep(duration_ms / 1000.0) send_cmd(Stop) def run_command(command, value): command = command.lower() if command == "right": send_move(Right, value) elif command == "left": send_move(Left, value) elif command == "up": send_move(Up, value) elif command == "down": send_move(Down, value) elif command == "zero" or command == "park" or command == "reset": # Move to bottom-left send_move(Down, 2000) send_move(Left, 8000) elif command == "pause" or command == "sleep": time.sleep(value / 1000.0) elif command == "led": if value == 0: led(0x00) else: led(0x01) elif command == "fire" or command == "shoot": if value < 1 or value > 4: value = 1 # Stabilize prior to the shot, then allow for reload time after. time.sleep(0.5) for i in range(value): send_cmd(Fire) time.sleep(4.5) else: print "Error: Unknown command: '%s'" % command def run_command_set(commands): for cmd, value in commands: run_command(cmd, value) if __name__ == "__main__": led(0) time.sleep(1) led(1) time.sleep(1) led(0) send_move(Left, 1000) send_cmd(Fire) ``` #### File: JohnStov/buildmon/Test.py ```python from Speech import say import time import Display import Lights def test_lights(): say('Testing lights') Display.set_cursor_position(0,2) Display.write('Lights ') say('Lamp 0 on') Display.set_cursor_position(0,2) Display.write('Lamp 0 On ') Lights.set_lamp(0, 1) time.sleep(3) say('Lamp 1 on') Display.set_cursor_position(0,2) Display.write('Lamp 1 On ') Lights.set_lamp(1, 1) time.sleep(3) say('Lamp 2 on') Display.set_cursor_position(0,2) Display.write('Lamp 2 On ') Lights.set_lamp(2, 1) time.sleep(3) say('Lamp 3 on') Display.set_cursor_position(0,2) Display.write('Lamp 3 On ') Lights.set_lamp(3, 1) time.sleep(3) say('Lamp 0 off') Display.set_cursor_position(0,2) Display.write('Lamp 0 Off ') Lights.set_lamp(0, 0) say('Lamp 1 off') Display.set_cursor_position(0,2) Display.write('Lamp 1 Off ') Lights.set_lamp(1, 0) say('Lamp 2 off') Display.set_cursor_position(0,2) Display.write('Lamp 2 Off ') Lights.set_lamp(2, 0) say('Lamp 3 off') Display.set_cursor_position(0,2) Display.write('Lamp 3 Off') Lights.set_lamp(3, 0) Display.set_cursor_position(0,2) Display.write(' ') def test_bargraph(): say('testing bargraph') Display.set_cursor_position(0,2) Display.write('Bargraph ') for intensity in range (0,100): Display.set_graph(intensity/100.0) time.sleep(.01) for intensity in range (100,0,-1): Display.set_graph(intensity/100.0) time.sleep(.01) Display.set_cursor_position(0,2) Display.write(' ') def test_backlight(): say('testing backlight') Display.set_cursor_position(0,2) Display.write('Backlight ') Display.rgb(255,0,0) time.sleep(1) Display.rgb(0,255,0) time.sleep(1) Display.rgb(0,0,255) time.sleep(1) for i in range(0, 360): Display.hue(i/360.0) time.sleep(0.01) for i in range(0, 360): Display.sweep(i/360.0) time.sleep(0.01) Display.rgb(255,255,255) Display.set_cursor_position(0,2) Display.write(' ') def test_all(): test_backlight() test_bargraph() test_lights() if __name__ == "__main__": test_all() ```
{ "source": "johnsturgeon/apex-legends-api", "score": 3 }
#### File: apex-legends-api/apex_legends_api/al_base.py ```python from enum import Enum import requests def print_description(___class, indent=0, hide_values=False): """ prints the schema for the current object """ print(' ' * indent + type(___class).__name__ + ':') indent += 4 for k, value in ___class.__dict__.items(): if not isinstance(value, list): v_list = [value] else: v_list = value for val in v_list: if '__dict__' in dir(val): print_description(val, indent) else: if hide_values: print(' ' * indent + k) else: print(' ' * indent + k + ': ' + str(val)) class ALPlatform(Enum): """ Three platforms available - XBOX - PSN - PC """ XBOX = "X1" """ Xbox """ PSN = "PS4" """ Playstation (any) """ PC = "PC" """ PC """ class ALAction(Enum): """ Three actions available - INFO Return the players you're currently tracking - GET Return ALL tracked events for the player - ADD Adds the player for history collection - DELETE Removes the given user from the tracked users list """ INFO = "info" """ Return the players you're currently tracking """ GET = "get" """ Return ALL tracked events for the player """ ADD = "add" """ Adds the player for history collection """ DELETE = "delete" """ Removes the given user from the tracked users list """ class ALEventType(Enum): """ The four different event types - SESSION - GAME - LEVEL - RANK """ SESSION = 'Session' """ Session event (leave, join) """ GAME = 'Game' """ Game event """ LEVEL = 'Level' """ Level Up event """ RANK = 'Rank' """ Rank change event """ class ALHTTPExceptionFromResponse(Exception): """ Exception raised for errors in the http request. """ def __init__(self, response: requests.Response): self.message = f'Return Code: {response.status_code} - {response.text}' super().__init__(self.message) ```
{ "source": "johnsturgeon/minecraft_led_lights", "score": 2 }
#### File: johnsturgeon/minecraft_led_lights/main.py ```python import json import time from typing import List, Tuple from pymemcache.client.base import Client import numpy import requests from PIL import Image import mss.tools from light_scene import LightScene client = Client('localhost') sct = mss.mss() def get_dominant_color(im) -> Tuple: import numpy as np import scipy.cluster num_clusters = 5 ar = np.asarray(im) shape = ar.shape ar = ar.reshape(numpy.product(shape[:2]), shape[2]).astype(float) codes, dist = scipy.cluster.vq.kmeans(ar, num_clusters) vectors, dist = scipy.cluster.vq.vq(ar, codes) # assign codes counts, bins = numpy.histogram(vectors, len(codes)) # count occurrences index_max = numpy.argmax(counts) # find most frequent peak = codes[index_max] r, g, b = list(peak) return int(r), int(g), int(b) def get_quadrant_scenes() -> List[LightScene]: global sct left, top, width, height = client.get('front_window_frame').decode().split(',') left = int(left) top = int(top) width = int(width) height = int(height) monitor = {"top": top, "left": left, "width": width, "height": height} sct_img = sct.grab(monitor) # Convert to PIL/Pillow Image img = Image.frombytes('RGB', sct_img.size, sct_img.bgra, 'raw', 'BGRX') size = (75, 75) light_scenes: List[LightScene] = [] # top left top_left_scene = LightScene() top_left_scene.rgb = get_dominant_color(img.resize(size=size, box=(0, 0, width, height))) top_left_scene.pixels = list(range(42, 70)) light_scenes.append(top_left_scene) # bottom left bottom_left_scene = LightScene() bottom_left_scene.rgb = get_dominant_color( img.resize(size=size, box=(0, height, width, height * 2)) ) bottom_left_scene.pixels = list(range(70, 100)) light_scenes.append(bottom_left_scene) # top right top_right_scene = LightScene() top_right_scene.rgb = get_dominant_color( img.resize(size=size, box=(width, 0, width * 2, height)) ) top_right_scene.pixels = list(range(12, 41)) light_scenes.append(top_right_scene) # bottom right bottom_right_scene = LightScene() bottom_right_scene.rgb = get_dominant_color( img.resize(size=size, box=(width, height, width * 2, height * 2)) ) bottom_right_scene.pixels = list(range(0, 11)) + list(range(101, 118)) light_scenes.append(bottom_right_scene) return light_scenes if __name__ == '__main__': while True: time.sleep(.2) scenes: List[LightScene] = get_quadrant_scenes() for scene in scenes: requests.post('http://raspberry-pi:5000/set_scene', data=scene.to_json()) ```
{ "source": "JohnStyleZ/botty", "score": 2 }
#### File: src/char/basic.py ```python import keyboard from utils.custom_mouse import mouse from char import IChar,CharacterCapabilities from template_finder import TemplateFinder from ui import UiManager from pather import Pather from logger import Logger from screen import Screen from utils.misc import wait, cut_roi import time from pather import Pather, Location class Basic(IChar): def __init__(self, skill_hotkeys: dict, screen: Screen, template_finder: TemplateFinder, ui_manager: UiManager, pather: Pather): Logger.info("Setting up Basic Character") super().__init__(skill_hotkeys, screen, template_finder, ui_manager) self._pather = pather self._do_pre_move = True def on_capabilities_discovered(self, capabilities: CharacterCapabilities): # offset shenk final position further to the right and bottom if capabilities.can_teleport_natively: self._pather.offset_node(149, [120, 70]) def _cast_attack_pattern(self, time_in_s: float): keyboard.send(self._char_config["stand_still"], do_release=False) wait(0.05, 0.1) keyboard.send(self._skill_hotkeys["left_attack"]) wait(0.05, 0.1) keyboard.send(self._skill_hotkeys["right_attack"]) wait(0.05, 0.1) start = time.time() while (time.time() - start) < time_in_s: if self._ui_manager.is_right_skill_active(): wait(0.05, 0.1) mouse.click(button="right") else: wait(0.05, 0.1) mouse.click(button="left") wait(0.01, 0.05) keyboard.send(self._char_config["stand_still"], do_press=False) def pre_buff(self): if self._skill_hotkeys["buff_1"]: keyboard.send(self._skill_hotkeys["buff_1"]) wait(0.5, 0.15) mouse.click(button="right") wait(0.5, 0.15) if self._skill_hotkeys["buff_2"]: keyboard.send(self._skill_hotkeys["buff_2"]) wait(0.5, 0.15) mouse.click(button="right") wait(0.5, 0.15) def pre_move(self): # select teleport if available super().pre_move() def _move_and_attack(self, abs_move: tuple[int, int], atk_len: float): pos_m = self._screen.convert_abs_to_monitor(abs_move) self.pre_move() self.move(pos_m, force_move=True) self._cast_attack_pattern(atk_len) #this is where we kill bosses def kill_pindle(self) -> bool: wait(0.1, 0.15) if self.capabilities.can_teleport_natively: self._pather.traverse_nodes_fixed("pindle_end", self) else: if not self._do_pre_move: # keyboard.send(self._skill_hotkeys["concentration"]) # wait(0.05, 0.15) self._pather.traverse_nodes((Location.A5_PINDLE_SAFE_DIST, Location.A5_PINDLE_END), self, time_out=1.0, do_pre_move=self._do_pre_move) self._pather.traverse_nodes((Location.A5_PINDLE_SAFE_DIST, Location.A5_PINDLE_END), self, time_out=0.1) self._cast_attack_pattern(self._char_config["atk_len_pindle"]) wait(0.1, 0.15) return True def kill_eldritch(self) -> bool: if self.capabilities.can_teleport_natively: self._pather.traverse_nodes_fixed("eldritch_end", self) else: if not self._do_pre_move: # keyboard.send(self._skill_hotkeys["concentration"]) # wait(0.05, 0.15) self._pather.traverse_nodes((Location.A5_ELDRITCH_SAFE_DIST, Location.A5_ELDRITCH_END), self, time_out=1.0, do_pre_move=self._do_pre_move) wait(0.05, 0.1) self._cast_attack_pattern(self._char_config["atk_len_eldritch"]) return True def kill_shenk(self): # if not self._do_pre_move: # keyboard.send(self._skill_hotkeys["concentration"]) # wait(0.05, 0.15) self._pather.traverse_nodes((Location.A5_SHENK_SAFE_DIST, Location.A5_SHENK_END), self, time_out=1.0, do_pre_move=self._do_pre_move) wait(0.05, 0.1) self._cast_attack_pattern(self._char_config["atk_len_shenk"]) wait(0.1, 0.15) return True def kill_council(self) -> bool: # Check out the node screenshot in assets/templates/trav/nodes to see where each node is at atk_len = self._char_config["atk_len_trav"] # Go inside and war cry a bit self._pather.traverse_nodes([228, 229], self, time_out=2.5, force_tp=True) self._cast_attack_pattern(atk_len) # Move a bit back and another round self._move_and_attack((40, 20), atk_len) # Here we have two different attack sequences depending if tele is available or not if self.capabilities.can_teleport_natively: # Back to center stairs and more war cry self._pather.traverse_nodes([226], self, time_out=2.5, force_tp=True) self._cast_attack_pattern(atk_len) # move a bit to the top self._move_and_attack((65, -30), atk_len) else: # Stay inside and cast war cry again moving forward self._move_and_attack((40, 10), atk_len) self._move_and_attack((-40, -20), atk_len) return True def kill_nihlathak(self, end_nodes: list[int]) -> bool: # Move close to nihlathak self._pather.traverse_nodes(end_nodes, self, time_out=0.8, do_pre_move=False) # move mouse to center (leftover from hammerdin) pos_m = self._screen.convert_abs_to_monitor((0, 0)) mouse.move(*pos_m, randomize=80, delay_factor=[0.5, 0.7]) self._cast_attack_pattern(self._char_config["atk_len_nihlathak"] * 0.4) self._cast_attack_pattern(0.8) self._move_and_attack((30, 15), self._char_config["atk_len_nihlathak"] * 0.3) self._cast_attack_pattern(0.8) self._move_and_attack((-30, -15), self._char_config["atk_len_nihlathak"] * 0.4) wait(0.1, 0.15) self._cast_attack_pattern(1.2) return True if __name__ == "__main__": import os import keyboard keyboard.add_hotkey('f12', lambda: Logger.info('Force Exit (f12)') or os._exit(1)) keyboard.wait("f11") from config import Config from ui.ui_manager import UiManager config = Config() screen = Screen() t_finder = TemplateFinder(screen) pather = Pather(screen, t_finder) ui_manager = UiManager(screen, t_finder) char = Basic(config.basic, config.char, screen, t_finder, ui_manager, pather) ``` #### File: src/transmute/transmute.py ```python from asyncore import loop import itertools from random import randint, random import threading from config import Config from .inventory_collection import InventoryCollection from .stash import Stash from .gem_picking import SimpleGemPicking from item.item_finder import ItemFinder from screen import Screen from ui.ui_manager import UiManager from utils.custom_mouse import mouse from utils.misc import wait from version import __version__ from logger import Logger from game_stats import GameStats from template_finder import TemplateFinder import numpy as np import keyboard import os import cv2 FLAWLESS_GEMS = [ "INVENTORY_TOPAZ_FLAWLESS", "INVENTORY_AMETHYST_FLAWLESS", "INVENTORY_SAPPHIRE_FLAWLESS", "INVENTORY_DIAMOND_FLAWLESS", "INVENTORY_RUBY_FLAWLESS", "INVENTORY_EMERALD_FLAWLESS", "INVENTORY_SKULL_FLAWLESS" ] PERFECT_GEMS = [ "INVENTORY_TOPAZ_PERFECT", "INVENTORY_AMETHYST_PERFECT", "INVENTORY_SAPPHIRE_PERFECT", "INVENTORY_DIAMOND_PERFECT", "INVENTORY_RUBY_PERFECT", "INVENTORY_EMERALD_PERFECT", "INVENTORY_SKULL_PERFECT" ] class Transmute: @staticmethod def _wait(): wait(0.2, 0.3) def __init__(self, screen: Screen, template_finder: TemplateFinder, game_stats: GameStats, ui_manager: UiManager) -> None: self._screen = screen self._game_stats = game_stats self._template_finder = template_finder self._ui_manager = ui_manager self._last_game = 0 def pick_from_area(self, column, row, roi): slot_w = Config.ui_pos["slot_width"] slot_h = Config.ui_pos["slot_height"] offset_y = (row+0.5)*slot_h offset_x = (column+0.5)*slot_w x, y, _, _ = roi x, y = self._screen.convert_screen_to_monitor( (x + offset_x, y + offset_y)) mouse.move(x, y) self._wait() keyboard.send('ctrl', do_release=False) self._wait() mouse.click("left") self._wait() keyboard.release('ctrl') self._wait() def open_cube(self): self._ui_manager._move_to_stash_tab(0) screen = self._screen.grab() match = self._template_finder.search( ["HORADRIC_CUBE"], screen, threshold=0.9, roi=Config.ui_roi["left_inventory"]) if match.valid: x, y = self._screen.convert_screen_to_monitor(match.center) mouse.move(x, y) self._wait() mouse.click("right") self._wait() else: Logger.error(f"Can't find cube: {match.score}") def transmute(self): screen = self._screen.grab() match = self._template_finder.search( ["CUBE_TRANSMUTE_BTN"], screen, roi=Config.ui_roi["cube_btn_roi"]) if match.valid: x, y = self._screen.convert_screen_to_monitor(match.center) mouse.move(x, y) self._wait() mouse.click("left") self._wait() def close_cube(self): self._wait() keyboard.send("esc") def stash_all_items(self): self._ui_manager.stash_all_items( Config.char["num_loot_columns"], ItemFinder()) def pick_from_cube_at(self, column, row): return self.pick_from_area(column, row, Config.ui_roi["cube_area_roi"]) def pick_from_inventory_at(self, column, row): return self.pick_from_area(column, row, Config.ui_roi["right_inventory"]) def pick_from_stash_at(self, index, column, row): self._ui_manager._move_to_stash_tab(index) return self.pick_from_area(column, row, Config.ui_roi["left_inventory"]) def inspect_area(self, total_rows, total_columns, roi, known_items) -> InventoryCollection: result = InventoryCollection() x, y, w, h = roi img = self._screen.grab()[y:y+h, x:x+w] slot_w = Config.ui_pos["slot_width"] slot_h = Config.ui_pos["slot_height"] for column, row in itertools.product(range(total_columns), range(total_rows)): y_start, y_end = row*slot_h, slot_h*(row+1) x_start, x_end = column*slot_w, slot_w*(column+1) slot_img = img[y_start:y_end, x_start:x_end] if not self._is_slot_empty(slot_img[+4:-4, +4:-4], treshold=36): result.set_empty((column, row)) match = self._template_finder.search( known_items, slot_img, threshold=0.91, best_match=True) if match.valid: result.append(match.name, (column, row)) return result def _is_slot_empty(self, img, treshold=16.0): slot_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) avg_brightness = np.average(slot_img[:, :, 2]) return avg_brightness > treshold def inspect_inventory_area(self, known_items) -> InventoryCollection: return self.inspect_area(4, Config.char["num_loot_columns"], Config.ui_roi["right_inventory"], known_items) def inspect_stash(self) -> Stash: stash = Stash() for i in range(4): self._ui_manager._move_to_stash_tab(i) wait(0.4, 0.5) tab = self.inspect_area( 10, 10, Config.ui_roi["left_inventory"], FLAWLESS_GEMS) stash.add_tab(i, tab) return stash def put_back_to_stash_randomly(self) -> None: flawless_gems = self.inspect_inventory_area(FLAWLESS_GEMS) pick = [] for gem in flawless_gems.all_items(): while flawless_gems.count_by(gem) > 0: pick.append((randint(0, 3), *flawless_gems.pop(gem))) for tab, x, y in sorted(pick, key=lambda x: x[0]): self._ui_manager._move_to_stash_tab(tab) self.pick_from_inventory_at(x, y) def select_tab_with_enough_space(self, s: Stash) -> None: tabs_priority = Config._transmute_config["stash_destination"] for tab in tabs_priority: if s.get_empty_on_tab(tab) > 0: self._ui_manager._move_to_stash_tab(tab) break def put_back_all_gems(self, s: Stash) -> None: Logger.info( f'Putting back gems in the following stash tabs (by priority): {Config._transmute_config["stash_destination"]}') perfect_gems = self.inspect_inventory_area( PERFECT_GEMS + FLAWLESS_GEMS) for gem in perfect_gems.all_items(): while perfect_gems.count_by(gem) > 0: self.select_tab_with_enough_space(s) self.pick_from_inventory_at(*perfect_gems.pop(gem)) def should_transmute(self) -> bool: every_x_game = Config._transmute_config["transmute_every_x_game"] if every_x_game is None or every_x_game == "" or int(every_x_game) <= 0: return False return self._game_stats._game_counter - self._last_game >= int(every_x_game) def run_transmutes(self, force=False) -> None: gold_btn = self._template_finder.search_and_wait("INVENTORY_GOLD_BTN", roi=Config.ui_roi["gold_btn"], time_out=20) if not gold_btn.valid: Logger.error("Could not determine to be in stash menu. Continue...") return if not force and not self.should_transmute(): Logger.info(f"Skipping transmutes. Force: {force}, Game#: {self._game_stats._game_counter}") return None self._run_gem_transmutes() def check_cube_empty(self) -> bool: self.open_cube() area = self.inspect_cube() self.close_cube() return area.count_empty() == 12 def inspect_cube(self)-> InventoryCollection: return self.inspect_area(4, 3, roi=Config.ui_roi["cube_area_roi"], known_items=FLAWLESS_GEMS) def _run_gem_transmutes(self) -> None: Logger.info("Starting gem transmute") self._last_game = self._game_stats._game_counter s = self.inspect_stash() algorithm = SimpleGemPicking(s) inventory = self.inspect_inventory_area(FLAWLESS_GEMS) is_cube_empty = None while True: while inventory.count_empty() >= 3: next_batch = algorithm.next_batch() is_cube_empty = self.check_cube_empty() if is_cube_empty is None else is_cube_empty if not is_cube_empty: Logger.warning("Some items detected in the cube. Skipping transmute") break if next_batch is None: Logger.info("No more gems to cube") break for tab, gem, x, y in next_batch: self.pick_from_stash_at(tab, x, y) inventory = self.inspect_inventory_area(FLAWLESS_GEMS) if inventory.count() >= 3: self.open_cube() for gem in inventory.all_items(): while inventory.count_by(gem) > 0: for _ in range(3): next = inventory.pop(gem) self.pick_from_inventory_at(*next) self.transmute() self.pick_from_cube_at(2, 3) self.close_cube() self.put_back_all_gems(s) else: self.put_back_all_gems(s) break Logger.info("Finished gem transmute") ```
{ "source": "johnsudhir/GUI-tic-tac-toe", "score": 4 }
#### File: johnsudhir/GUI-tic-tac-toe/nonGUI.py ```python data = {'1': "", '2': "", '3': "", '4': "", '5': "", '6': "", '7': "", '8': "", '9': ""} userFirst = 'X' userSecond = 'O' currentUser = "" def table(data): print(data.get('1'), "|", data.get("2"), "|", data.get("3")) print("------") print(data.get("4"), "|", data.get("5"), "|", data.get("6")) print("------") print(data.get("7"), "|", data.get("8"), "|", data.get("9")) def winner(data, currentUser): if(data.get("1") == data.get("2") == data.get("3") == currentUser or data.get("4") == data.get("5") == data.get("6") == currentUser or data.get("7") == data.get("8") == data.get("9") == currentUser): return True elif(data.get("1") == data.get("4") == data.get("7") == currentUser or data.get("2") == data.get("5") == data.get("8") == currentUser or data.get("3") == data.get("6") == data.get("9") == currentUser ): return True elif(data.get("1") == data.get("5") == data.get("9") == currentUser or data.get("3") == data.get("5") == data.get("7") == currentUser ): return True def tictactoe(data, currentUser = "X"): for i in range(9): position = input(f"{currentUser} Please, enter the position: ") data[position] = currentUser table(data) if (winner(data, currentUser)): print(f'{currentUser} won the game') break; if currentUser == 'X': currentUser = 'Y' else: currentUser = 'X' print("Game Over") table(data) tictactoe(data) ```
{ "source": "johnswon/l2ldjango_interview", "score": 3 }
#### File: l2l/templatetags/l2l_extras.py ```python from django import template from datetime import datetime register = template.Library() DATE_FORMAT = '%Y-%m-%d %H:%M:%S' ISO_FORMAT = '%Y-%m-%dT%H:%M:%S' @register.filter() def l2l_dt(value): if type(value) == datetime: return value.strftime(DATE_FORMAT) else: return (datetime.strptime(value, ISO_FORMAT)).strftime(DATE_FORMAT) # register.filter('l2l_dt', l2l_dt) ```
{ "source": "johnsyweb/python_sparse_list", "score": 3 }
#### File: johnsyweb/python_sparse_list/test_sparse_list.py ```python import sparse_list import pytest class TestSparseList: def test_init_zero(self): sl = sparse_list.SparseList(0) assert 0 == len(sl) assert 0 == sl.population() def test_init_non_zero(self): sl = sparse_list.SparseList(10) assert 10 == len(sl) assert 0 == sl.population() def test_init_no_default(self): sl = sparse_list.SparseList(1) assert sl.default is None assert 0 == sl.population() def test_init_default(self): sl = sparse_list.SparseList(1, 'test') assert 'test' == sl.default assert 0 == sl.population() def test_random_access_write(self): sl = sparse_list.SparseList(1) sl[0] = 'alice' assert {0: 'alice'} == sl.elements assert 1 == sl.population() def test_random_access_read_present(self): sl = sparse_list.SparseList(2) sl[0] = 'brent' assert 'brent' == sl[0] assert 1 == sl.population() def test_random_access_read_absent(self): sl = sparse_list.SparseList(2, 'absent') sl[1] = 'clint' assert 'absent' == sl[0] assert 1 == sl.population() def test_iteration_empty(self): sl = sparse_list.SparseList(3) assert [None, None, None] == list(sl) def test_iteration_populated(self): sl = sparse_list.SparseList(5) sl[1], sl[3] = 'a', 'b' assert [None, 'a', None, 'b', None] == list(sl) def test_membership_absent(self): sl = sparse_list.SparseList(5) sl[2], sl[3], = 1, 2 assert False == (3 in sl) def test_membership_present(self): sl = sparse_list.SparseList(5) sl[2], sl[3], = 1, 2 assert True == (2 in sl) def test_string_representations(self): sl = sparse_list.SparseList(5, 0) sl[3], sl[4] = 5, 6 assert '[0, 0, 0, 5, 6]' == repr(sl) assert '[0, 0, 0, 5, 6]' == str(sl) def test_initialisation_by_dict(self): sl = sparse_list.SparseList({ 4: 6, 3: 5, }, 0) assert [0, 0, 0, 5, 6] == sl assert 2 == sl.population() def test_initialisation_by_dict_does_not_add_defaults(self): sl = sparse_list.SparseList({ 3: 0, 4: 6, }, 0) assert [0, 0, 0, 0, 6] == sl assert 1 == sl.population() def test_initialisation_by_dict_with_non_numeric_key(self): with pytest.raises(ValueError): sparse_list.SparseList({'a': 5}) def test_initialisation_by_list(self): sl = sparse_list.SparseList([0, 1, 2, 4]) assert [0, 1, 2, 4] == sl assert 4 == sl.population() def test_initialisation_by_list_does_not_add_defaults(self): sl = sparse_list.SparseList([0, 1, 2, 4], 0) assert [0, 1, 2, 4] == sl assert 3 == sl.population() def test_initialisation_by_generator(self): gen = (x for x in (1, 2, 3)) sl = sparse_list.SparseList(gen) assert [1, 2, 3] == sl assert 3 == sl.population() def test_access_with_negative_index(self): sl = sparse_list.SparseList([0, 1, 2, 4]) assert 4 == sl[-1] def test_access_with_negative_index_with_no_value(self): sl = sparse_list.SparseList(5, 0) assert 0 == sl[-1] def test_slice(self): sl = sparse_list.SparseList([0, 1, 2, 4], 10) assert [1, 2] == sl[1:3] def test_slice_is_sparse_list(self): sl = sparse_list.SparseList([0, 1, 2, 4], 10) assert isinstance(sl[1:3], sparse_list.SparseList) def test_extended_slice(self): sl = sparse_list.SparseList([0, 1, 2, 3, 4, 5, 6]) assert [1, 3, 5] == sl[1:6:2] def test_extended_slice_is_sparse_list(self): sl = sparse_list.SparseList([0, 1, 2, 3, 4, 5, 6]) assert isinstance(sl[1:6:2], sparse_list.SparseList) def test_extended_slice_with_negative_stop(self): sl = sparse_list.SparseList([0, 1, 2, 3, 4, 5, 6]) assert [1, 3, 5] == sl[1:-1:2] def test_slice_reversal_full(self): sl = sparse_list.SparseList([1, 2, 3]) assert [3, 2, 1] == sl[::-1] def test_slice_reversal_empty(self): sl = sparse_list.SparseList(4) assert [None, None, None, None] == sl[::-1] def test_default_slice(self): sl = sparse_list.SparseList(23) sl[0:2] = (1, 2) assert [None, None] == sl[2:4] def test_slice_list_size(self): initial_size = 20 sl = sparse_list.SparseList(initial_size) sample_tuple = (1, 2, 3, 4) sl[2:2+len(sample_tuple)] = sample_tuple assert len(sl) == initial_size def test_reversed(self): sl = sparse_list.SparseList([1, 2, 3]) assert [3, 2, 1] == list(reversed(sl)) def test_sorted(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) assert [0, 0, 0, 1, 1] == list(sorted(sl)) def test_get_out_of_bounds(self): sl = sparse_list.SparseList(1) assert sl[1] is None def test_set_out_of_bounds(self): sl = sparse_list.SparseList(1) sl[100] = 1 assert 101 == len(sl) def test_present_item_removal(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) del sl[0] assert [0, 0, 0, 1] == sl assert 1 == sl.population() def test_missing_item_removal(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) del sl[1] assert [1, 0, 0, 1] == sl assert 2 == sl.population() def test_slice_removal(self): sl = sparse_list.SparseList(range(10)) del sl[3:5] assert [0, 1, 2, 5, 6, 7, 8, 9] == sl assert 8 == sl.population() def test_slice_removal_with_default_present(self): sl = sparse_list.SparseList(range(10), 0) del sl[3:5] assert [0, 1, 2, 5, 6, 7, 8, 9] == sl assert 7 == sl.population() def test_unbounded_head_slice_removal(self): sl = sparse_list.SparseList(range(10)) del sl[:3] assert [3, 4, 5, 6, 7, 8, 9] == sl assert 7 == sl.population() def test_unbounded_head_slice_removal_with_default_present(self): sl = sparse_list.SparseList(range(10), 0) del sl[:3] assert [3, 4, 5, 6, 7, 8, 9] == sl assert 7 == sl.population() def test_unbounded_tail_slice_removal(self): sl = sparse_list.SparseList(range(10), None) del sl[5:] assert [0, 1, 2, 3, 4] == sl assert 5 == sl.population() def test_stepped_slice_removal(self): sl = sparse_list.SparseList(range(6), None) del sl[::2] assert [1, 3, 5] == sl assert 3 == sl.population() def test_empty_removal(self): sl = sparse_list.SparseList(range(5), None) del sl[3:3] assert [0, 1, 2, 3, 4] == sl assert 5 == sl.population() def test_append(self): sl = sparse_list.SparseList(1, 0) sl.append(1) assert [0, 1] == sl assert 1 == sl.population() def test_clone(self): a = sparse_list.SparseList([1, 2, 3]) b = a[:] b.append(4) assert [1, 2, 3] == a assert [1, 2, 3, 4] == b assert a.population() + 1 == b.population() def test_concatenation(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([4, 5, 6]) c = a + b assert [1, 2, 3] == a assert [4, 5, 6] == b assert [1, 2, 3, 4, 5, 6] == c assert a.population() + b.population() == c.population() def test_in_place_concatenation(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([4, 5, 6]) a += b assert [1, 2, 3, 4, 5, 6] == a assert [4, 5, 6] == b assert 6 == a.population() def test_equality(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([1, 2, 3]) assert a == b assert not a != b assert a == b assert b == a assert not b != a assert b == a def test_inequality_same_length(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([1, 0, 3]) assert a != b assert not a == b assert a != b assert b != a assert not b == a assert b != a def test_inequality_left_longer(self): a = sparse_list.SparseList([1, 2, 3, 4]) b = sparse_list.SparseList([1, 2, 3]) assert a != b assert not (a == b) assert a != b assert b != a assert not (b == a) assert b != a def test_inequality_length(self): a = sparse_list.SparseList(2) b = sparse_list.SparseList(4) assert a != b assert not (a == b) assert a != b assert b != a assert not (b == a) assert b != a def test_less_than(self): a = sparse_list.SparseList([1, 2, 3, 0]) b = sparse_list.SparseList([1, 2, 4, 5]) assert a < b assert not (a == b) assert not (a >= b) assert not (a > b) def test_greater_than(self): a = sparse_list.SparseList([1, 2, 3, 0]) b = sparse_list.SparseList([1, 2, 4, 5]) assert b > a assert not (b == a) assert not (b <= a) assert not (b < a) def test_less_than_with_a_pair_that_is_greater(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([1, 0, 4]) assert not (a < b) assert not (a == b) assert b <= a assert b < a def test_less_than_prefix(self): a = sparse_list.SparseList([1, 2, 3]) b = sparse_list.SparseList([1, 2, 3, 4]) assert a < b assert not (a == b) assert not (b <= a) assert not (b < a) def test_less_than_different_lengths(self): a = sparse_list.SparseList([1, 2, 3, 4]) b = sparse_list.SparseList([2, 1, 3]) assert a < b assert not (a == b) assert not (b <= a) assert not (b < a) def test_multiply(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) sl4 = sl * 4 assert [1, 0, 0, 0, 1] == sl assert [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1] == sl4 assert len(sl) * 4 == len(sl4) assert sl.population() * 4 == sl4.population() def test_multiply_in_place(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) sl *= 4 assert [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1] == sl assert 8 == sl.population() def test_count_value(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) assert 2 == sl.count(1) def test_count_default_value(self): sl = sparse_list.SparseList(100, 1) sl[5] = 1 assert 100 == sl.count(1) def test_extend(self): sl = sparse_list.SparseList([1, 2, 3]) sl.extend((4, 5, 6)) assert [1, 2, 3, 4, 5, 6] == sl def test_index_value(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) assert 0 == sl.index(1) def test_index_default_value(self): sl = sparse_list.SparseList({0: 1, 4: 1}, 0) assert 1 == sl.index(0) def test_index_absent_default_value(self): sl = sparse_list.SparseList([1, 2, 3], 0) with pytest.raises(ValueError): sl.index(0) def test_index_absent_value(self): sl = sparse_list.SparseList(1, 0) with pytest.raises(ValueError): sl.index(2) def test_pop_no_value(self): sl = sparse_list.SparseList(4) assert sl.pop() is None def test_pop_empty(self): sl = sparse_list.SparseList(0) with pytest.raises(IndexError): sl.pop() def test_pop_value(self): sl = sparse_list.SparseList([1, 2, 3]) popped = sl.pop() assert 3 == popped assert 2 == len(sl) assert [1, 2] == sl assert 2 == sl.population() def test_push_value(self): sl = sparse_list.SparseList([1, 2, 3]) sl.push(4) assert 4 == len(sl) assert [1, 2, 3, 4] == sl assert 4 == sl.population() def test_remove_value(self): sl = sparse_list.SparseList([1, 2, 3]) sl.remove(2) assert 3 == len(sl) assert [1, None, 3] == sl assert 2 == sl.population() def test_remove_only_first_value(self): sl = sparse_list.SparseList([2, 2, 3]) sl.remove(2) assert 3 == len(sl) assert [None, 2, 3] == sl assert 2 == sl.population() def test_remove_non_value(self): sl = sparse_list.SparseList([1, 2, 3]) with pytest.raises(ValueError): sl.remove(4) def test_remove_default_value_does_nothing(self): sl = sparse_list.SparseList(4, None) sl.remove(None) assert [None, None, None, None] == sl assert 0 == sl.population() def test_set_slice_observes_stop(self): sl = sparse_list.SparseList(4, None) sl[0:2] = [1, 2, 3] assert [1, 2, None, None] == sl assert 2 == sl.population() def test_set_slice_resizes(self): sl = sparse_list.SparseList(0, None) sl[4:] = [4, 5] assert [None, None, None, None, 4, 5] == sl assert len(sl) == 6 assert 2 == sl.population() def test_set_slice_extends_past_end(self): sl = sparse_list.SparseList(5, None) sl[3:] = [6, 7, 8] assert [None, None, None, 6, 7, 8] == sl assert 3 == sl.population() def test_set_slice_with_step(self): sl = sparse_list.SparseList(6, None) sl[::2] = [1, 2, 3] assert [1, None, 2, None, 3, None] == sl assert 3 == sl.population() def test_setting_an_item_with_default_does_not_increase_population(self): sl = sparse_list.SparseList(6, None) sl[2] = None assert 6 == len(sl) assert 0 == sl.population() ```
{ "source": "JohnTargaryen/EnlightenGAN", "score": 2 }
#### File: EnlightenGAN/data/unaligned_dataset.py ```python import torch from torch import nn import os.path import torchvision.transforms as transforms from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset, store_dataset import random from PIL import Image import PIL from pdb import set_trace as st def pad_tensor(input): height_org, width_org = input.shape[2], input.shape[3] divide = 16 if width_org % divide != 0 or height_org % divide != 0: width_res = width_org % divide height_res = height_org % divide if width_res != 0: width_div = divide - width_res pad_left = int(width_div / 2) pad_right = int(width_div - pad_left) else: pad_left = 0 pad_right = 0 if height_res != 0: height_div = divide - height_res pad_top = int(height_div / 2) pad_bottom = int(height_div - pad_top) else: pad_top = 0 pad_bottom = 0 padding = nn.ReflectionPad2d((pad_left, pad_right, pad_top, pad_bottom)) input = padding(input).data else: pad_left = 0 pad_right = 0 pad_top = 0 pad_bottom = 0 height, width = input.shape[2], input.shape[3] assert width % divide == 0, 'width cant divided by stride' assert height % divide == 0, 'height cant divided by stride' return input, pad_left, pad_right, pad_top, pad_bottom def pad_tensor_back(input, pad_left, pad_right, pad_top, pad_bottom): height, width = input.shape[2], input.shape[3] return input[:,:, pad_top: height - pad_bottom, pad_left: width - pad_right] class UnalignedDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # self.A_paths = make_dataset(self.dir_A) # self.B_paths = make_dataset(self.dir_B) self.A_imgs, self.A_paths = store_dataset(self.dir_A) self.B_imgs, self.B_paths = store_dataset(self.dir_B) # self.A_paths = sorted(self.A_paths) # self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt) def __getitem__(self, index): # A_path = self.A_paths[index % self.A_size] # B_path = self.B_paths[index % self.B_size] # A_img = Image.open(A_path).convert('RGB') # B_img = Image.open(B_path).convert('RGB') A_img = self.A_imgs[index % self.A_size] B_img = self.B_imgs[index % self.B_size] A_path = self.A_paths[index % self.A_size] B_path = self.B_paths[index % self.B_size] # A_size = A_img.size # B_size = B_img.size # A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) # B_size = B_size = (B_size[0]//16*16, B_size[1]//16*16) # A_img = A_img.resize(A_size, Image.BICUBIC) # B_img = B_img.resize(B_size, Image.BICUBIC) # A_gray = A_img.convert('LA') # A_gray = 255.0-A_gray A_img = self.transform(A_img) B_img = self.transform(B_img) if self.opt.resize_or_crop == 'no': r,g,b = A_img[0]+1, A_img[1]+1, A_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) input_img = A_img # A_gray = (1./A_gray)/255. else: w = A_img.size(2) h = A_img.size(1) # A_gray = (1./A_gray)/255. if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(2) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(2, idx) B_img = B_img.index_select(2, idx) if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(1) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(1, idx) B_img = B_img.index_select(1, idx) if self.opt.vary == 1 and (not self.opt.no_flip) and random.random() < 0.5: # data agumentation times = random.randint(self.opt.low_times,self.opt.high_times)/100. input_img = (A_img+1)/2./times # input_img is the agumented version of A_img input_img = input_img*2-1 else: input_img = A_img if self.opt.lighten: B_img = (B_img + 1)/2. B_img = (B_img - torch.min(B_img))/(torch.max(B_img) - torch.min(B_img)) B_img = B_img*2. -1 r,g,b = input_img[0]+1, input_img[1]+1, input_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) return {'A': A_img, 'B': B_img, 'A_gray': A_gray, 'input_img': input_img, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): return max(self.A_size, self.B_size) def name(self): return 'UnalignedDataset' ```
{ "source": "johntconklin/monitor-core", "score": 2 }
#### File: python_modules/network/traffic1.py ```python import sys import os import threading import time descriptors = list() Desc_Skel = {} _Worker_Thread = None _Lock = threading.Lock() # synchronization lock Debug = False def dprint(f, *v): if Debug: print >> sys.stderr, "DEBUG: "+f % v class UpdateTrafficThread(threading.Thread): __slots__ = ( 'proc_file' ) def __init__(self, params): threading.Thread.__init__(self) self.running = False self.shuttingdown = False self.refresh_rate = 10 if "refresh_rate" in params: self.refresh_rate = int(params["refresh_rate"]) self.target_device = params["target_device"] self.metric = {} self.proc_file = "/proc/net/dev" self.stats_tab = { "recv_bytes" : 0, "recv_pkts" : 1, "recv_errs" : 2, "recv_drops" : 3, "trans_bytes" : 8, "trans_pkts" : 9, "trans_errs" : 10, "trans_drops" : 11, } self.stats = {} self.stats_prev = {} def shutdown(self): self.shuttingdown = True if not self.running: return self.join() def run(self): self.running = True while not self.shuttingdown: _Lock.acquire() self.update_metric() _Lock.release() time.sleep(self.refresh_rate) self.running = False def update_metric(self): f = open(self.proc_file, "r") for l in f: a = l.split(":") dev = a[0].lstrip() if dev != self.target_device: continue dprint("%s", ">>update_metric") self.stats = {} _stats = a[1].split() for name, index in self.stats_tab.iteritems(): self.stats[name+'_'+self.target_device] = int(_stats[index]) self.stats["time"] = time.time() dprint("%s", self.stats) if "time" in self.stats_prev: dprint("%s: %d = %d - %d", "DO DIFF", self.stats["time"]-self.stats_prev["time"], self.stats["time"], self.stats_prev["time"]) d = self.stats["time"] - self.stats_prev["time"] for name, cur in self.stats.iteritems(): self.metric[name] = float(cur - self.stats_prev[name])/d self.stats_prev = self.stats.copy() break return def metric_of(self, name): val = 0 if name in self.metric: _Lock.acquire() val = self.metric[name] _Lock.release() return val def metric_init(params): global Desc_Skel, _Worker_Thread, Debug print '[traffic1] Received the following parameters' print params Desc_Skel = { 'name' : 'XXX', 'call_back' : metric_of, 'time_max' : 60, 'value_type' : 'float', 'format' : '%.3f', 'units' : 'XXX', 'slope' : 'both', 'description' : 'XXX', 'groups' : 'network', } if "refresh_rate" not in params: params["refresh_rate"] = 10 if "debug" in params: Debug = params["debug"] dprint("%s", "Debug mode on") if "target_device" not in params: params["target_device"] = "lo" target_device = params["target_device"] _Worker_Thread = UpdateTrafficThread(params) _Worker_Thread.start() # IP:HOSTNAME if "spoof_host" in params: Desc_Skel["spoof_host"] = params["spoof_host"] descriptors.append(create_desc(Desc_Skel, { "name" : "recv_bytes_" + target_device, "units" : "bytes/sec", "description" : "received bytes per sec", })) descriptors.append(create_desc(Desc_Skel, { "name" : "recv_pkts_" + target_device, "units" : "pkts/sec", "description" : "received packets per sec", })) descriptors.append(create_desc(Desc_Skel, { "name" : "recv_errs_" + target_device, "units" : "pkts/sec", "description" : "received error packets per sec", })) descriptors.append(create_desc(Desc_Skel, { "name" : "trans_bytes_" + target_device, "units" : "bytes/sec", "description" : "transmitted bytes per sec", })) descriptors.append(create_desc(Desc_Skel, { "name" : "trans_pkts_" + target_device, "units" : "pkts/sec", "description" : "transmitted packets per sec", })) descriptors.append(create_desc(Desc_Skel, { "name" : "trans_errs_" + target_device, "units" : "pkts/sec", "description" : "transmitted error packets per sec", })) return descriptors def create_desc(skel, prop): d = skel.copy() for k, v in prop.iteritems(): d[k] = v return d def metric_of(name): return _Worker_Thread.metric_of(name) def metric_cleanup(): _Worker_Thread.shutdown() if __name__ == '__main__': try: params = { "target_device": "eth0", "debug" : True, } metric_init(params) while True: for d in descriptors: v = d['call_back'](d['name']) print ('value for %s is '+d['format']) % (d['name'], v) time.sleep(5) except KeyboardInterrupt: time.sleep(0.2) os._exit(1) except StandardError: print sys.exc_info()[0] os._exit(1) ```
{ "source": "johntdyer/tropo-samples", "score": 4 }
#### File: tropo-samples/python/orderpizza.py ```python def sayToppings(top): for topping in top: say(topping) return #def main(): wait(500) say("Welcome at Alfredos's Pizza Network.") wait(500) say("Please choose your size first, then the toppings.") result = ask("We offer small, medium and family size pizzas. Which size would you like?", {'choices':"small,1,medium,2,family,3,large", 'attempts':3}) if (result.name == 'choice'): if (result.value == "small")or (result.value == "1"): say("OK, a small pizza.") elif (result.value == "medium")or (result.value == "2"): say("I'll fix a Medium pizza for you") elif (result.value == "family") or (result.value == "large")or (result.value == "3"): say("A family sized pizza, no problem.") # else: # say("Please choose between small, medium and family size") say("Which toppings would you like?") say("Please add one topping at a time. You will return to the topping selection menu unless you say done") say("Let's start with the vegetarian choices") veggietoppings = [] exit = False cnt = 0 while(exit == False): cnt += 1 result = ask("Choose between peppers, onions, jalapenos, mushrooms, corn. To finish say done or press 9", {'choices':"peppers, 1, onions, 2, jalapenos, 3, mushrooms, 4, corn, 4, done, 9", 'attempts':1}) if (result.name == 'choice'): if (result.value == "peppers")or (result.value == "1"): veggietoppings.append("peppers") say("Adding peppers") elif (result.value == "onions")or (result.value == "2"): veggietoppings.append("onions") say("Adding onions") elif (result.value == "jalapenos")or (result.value == "3"): veggietoppings.append("jalapenos") say("Adding jalapenos") elif (result.value == "mushrooms")or (result.value == "4"): veggietoppings.append("mushrooms") say("Adding mushrooms") elif (result.value == "corn")or (result.value == "5"): veggietoppings.append("corn") say("Adding corn") elif (result.value == "done")or (result.value == "9"): say("So we have the following toppings so far:") sayToppings(veggietoppings) exit = True if (cnt == 3): exit = True if exit: result2 = ask("Do you want to add more toppings?", {'choices':"yes(1,yes), no(2,no)", 'attempts':2}) if (result2.name == 'choice'): if (result2.value == "yes") or (result2.value == "1"): exit = False elif (result2.value == "onions") or (result2.value == "2"): exit = True say("And now the other ones") meattoppings = [] exit = False cnt = 0 while(exit == False): cnt += 1 result = ask("Choose between pepperoni, ham, bacon. To finish say done or press 9", {'choices':"pepperoni, 1, ham, 2, bacon, 3, done, 9", 'attempts':3}) if (result.name == 'choice'): if (result.value == "pepperoni")or (result.value == "1"): meattoppings.append("pepperoni") say("Adding pepperoni") elif (result.value == "ham")or (result.value == "2"): meattoppings.append("ham") say("Adding ham") elif (result.value == "bacon")or (result.value == "3"): meattoppings.append("bacon") say("Adding bacon") # elif (result.value == "mushrooms")or (result.value == "4"): # veggietoppings.append("mushrooms") # elif (result.value == "corn")or (result.value == "5"): # veggietoppings.append("corn") elif (result.value == "done")or (result.value == "9"): say("So we have the following toppings so far:") sayToppings(meattoppings) exit = True if (cnt == 3): exit = True if exit: result2 = ask("Do you want to add more toppings?", {'choices':"yes(1,yes), no(2,no)", 'attempts':2}) if (result2.name == 'choice'): if (result2.value == "yes") or (result2.value == "1"): exit = False elif (result2.value == "onions") or (result2.value == "2"): exit = True say("I have the following toppings for your pizza") sayToppings(veggietoppings) say("and") sayToppings(meattoppings) say("Please provide your address now") #add delivery address recording here #tell the caller when to expect the pizza deliverytime = str((len(veggietoppings) + len(meattoppings))*2) say("We will deliver your pizza in " + deliverytime + " Minutes") say("Thanks for ordering at Alfredos's Pizza Network.") wait(500) ```
{ "source": "johntelforduk/advent-of-code-2015", "score": 4 }
#### File: advent-of-code-2015/06-probably-a-fire-hazard/solution6_2.py ```python import pygame def str_pair_to_ints(str_pair: str) -> (int, int): """For parm string like '61,44' return pair of ints like (61, 44).""" s1, s2 = str_pair.split(',') return int(s1), int(s2) def parse_instruction(instruction: str) -> (str, int, int, int, int): """Parse the parm instruction. Return a tuple, (command, x1, y1, x2, y2).""" if 'turn on' in instruction: command = 'on' instruction = instruction.replace('turn on ', '') elif 'turn off' in instruction: command = 'off' instruction = instruction.replace('turn off ', '') else: command = 'toggle' instruction = instruction.replace('toggle ', '') [one, _, two] = instruction.split(' ') x1, y1 = str_pair_to_ints(one) x2, y2 = str_pair_to_ints(two) return command, x1, y1, x2, y2 def normalised_colour(brightness: int, maximum: int) -> (int, int, int): """For the parm brightness, return a tuple that is the normalised colour for that brightness.""" intensity = brightness * 255 // maximum return intensity, intensity, intensity def main(): screen_size = [1000, 1000] # [width, height] # Each member is a k: v. Where, # k = pair (x, y), the coordinates of the light. # v = brightness of the light. light = {} # Initialise all of the lights to zero brightness. for x in range(screen_size[0]): for y in range(screen_size[1]): light[(x, y)] = 0 max_bright = 0 f = open('input.txt') whole_text = f.read() f.close() instructions = whole_text.split('\n') while len(instructions) != 0: instruction = instructions.pop(0) command, x1, y1, x2, y2 = parse_instruction(instruction) print(instruction, command) for x in range(x1, x2 + 1): for y in range(y1, y2 + 1): # "The phrase turn on actually means that you should increase the brightness of those lights by 1." if command == 'on': light[(x, y)] += 1 if light[(x, y)] > max_bright: max_bright = light[(x, y)] # "The phrase turn off actually means that you should decrease the brightness of those lights by 1, to # a minimum of zero." elif command == 'off': if light[(x, y)] > 0: light[(x, y)] -= 1 # Must be toggle. # "The phrase toggle actually means that you should increase the brightness of those lights by 2." else: light[(x, y)] += 2 if light[(x, y)] > max_bright: max_bright = light[(x, y)] if len(instructions) == 0: pygame.init() # Initialize the game engine. screen = pygame.display.set_mode(screen_size) total_brightness = 0 for x in range(screen_size[0]): for y in range(screen_size[1]): total_brightness += light[(x, y)] screen.set_at((x, y), normalised_colour(light[(x, y)], max_bright)) pygame.display.flip() pygame.image.save(screen, 'screenshots/day6_2_final.jpg') print('Part 2:', total_brightness) pygame.quit() if __name__ == "__main__": main() ``` #### File: advent-of-code-2015/07-some-assembly-required/solution7.py ```python def is_integer(candidate: str) -> bool: """Returns True if parm is a an integer.""" if candidate[0] == '-': return candidate[1:].isnumeric() return candidate.isnumeric() f = open('input.txt') whole_text = f.read() f.close() lines = whole_text.split('\n') # print('lines:', lines) circuit = {} for connection in lines: gate, wire = connection.split(' -> ') circuit[wire] = gate # For Part 2. circuit['b'] = '956' to_do = -1 while to_do != 0: to_do = 0 for wire in circuit: if 'NOT' in circuit[wire]: _, op1 = circuit[wire].split('NOT ') if op1.isnumeric(): circuit[wire] = str(~ int(op1)) elif is_integer(circuit[op1]): circuit[wire] = 'NOT ' + circuit[op1] elif 'LSHIFT' in circuit[wire]: op1, op2 = circuit[wire].split(' LSHIFT ') if op1.isnumeric(): circuit[wire] = str(int(op1) << int(op2)) elif is_integer(circuit[op1]): circuit[wire] = circuit[op1] + ' LSHIFT ' + op2 elif 'RSHIFT' in circuit[wire]: op1, op2 = circuit[wire].split(' RSHIFT ') if is_integer(op1): circuit[wire] = str(int(op1) >> int(op2)) elif circuit[op1].isnumeric(): circuit[wire] = circuit[op1] + ' RSHIFT ' + op2 elif 'OR' in circuit[wire]: op1, op2 = circuit[wire].split(' OR ') if is_integer(op1) and is_integer(op2): circuit[wire] = str(int(op1) | int(op2)) elif not op1.isnumeric(): if is_integer(circuit[op1]): circuit[wire] = circuit[op1] + ' OR ' + op2 elif not is_integer(op2): if is_integer(circuit[op2]): circuit[wire] = op1 + ' OR ' + circuit[op2] elif 'AND' in circuit[wire]: op1, op2 = circuit[wire].split(' AND ') if is_integer(op1) and is_integer(op2): circuit[wire] = str(int(op1) & int(op2)) elif not is_integer(op1): if is_integer(circuit[op1]): circuit[wire] = circuit[op1] + ' AND ' + op2 elif not is_integer(op2): if is_integer(circuit[op2]): circuit[wire] = op1 + ' AND ' + circuit[op2] elif not is_integer(circuit[wire]): if is_integer(circuit[circuit[wire]]): circuit[wire] = circuit[circuit[wire]] if not is_integer(circuit[wire]): to_do += 1 # print(wire, ':', circuit[wire]) # print(circuit) print('to_do:', to_do) print(circuit['a']) ``` #### File: advent-of-code-2015/12-JSAbacusFramework-dot-io/solution12_2.py ```python import json def sum_nums(d) -> int: """Return the sum of all integers in the parm dictionary.""" if type(d) == int: return d elif type(d) == list: total = 0 for i in d: total += sum_nums(i) return total elif type(d) == dict: total = 0 for k in d: if type(d[k]) == str and d[k] == 'red': # Special rule for Part 2. return 0 total += sum_nums(d[k]) return total else: return 0 assert sum_nums([1, 2, 3]) == 6 assert sum_nums([1,{"c":"red","b":2},3]) == 4 assert sum_nums({"d":"red","e":[1,2,3,4],"f":5}) == 0 assert sum_nums([1,"red",5]) == 6 f = open('input.txt') whole_text = f.read() f.close() j = json.loads(whole_text) print(sum_nums(j)) ```
{ "source": "johntelforduk/advent-of-code-2019", "score": 4 }
#### File: advent-of-code-2019/01-the-tyranny-of-the-rocket-equation/fuel_calc.py ```python def mass_to_fuel(mass): fuel = int(mass / 3) - 2 if fuel < 0: # -ve mass requires zero fuel. return 0 else: return fuel # Calculate total fuel needed to lift a mass, taking into account fuel needed to lift the mass of the fuel. def total_fuel(mass): this_fuel = mass_to_fuel(mass) if this_fuel == 0: # Zero mass requires zero fuel. return 0 else: return this_fuel + total_fuel(this_fuel) f = open('input.txt') whole_text = (f.read()) string_list = whole_text.split() # Split string by any whitespace. number_list = [int(x) for x in string_list] # Convert list of strings to list of integers. simple_total = 0 # Answer to Part 1. complex_total = 0 # Answer to Part 2. for each_mass in number_list: simple_total += mass_to_fuel(each_mass) complex_total += total_fuel(each_mass) print('Part 1:', simple_total) print('Part 2:', complex_total) ``` #### File: advent-of-code-2019/03-crossed-wires/crossed.py ```python def dist_from_origin(vertex) -> int: """Return the Manhattan distance that the parm vertex is from (0, 0).""" (x, y) = vertex return abs(x) + abs(y) def path_to_vertices(route: str) -> (set, dict): """Returns a pair of items. First item is a set of vertices visited for a parm route string. Each vertex is a tuple (x, y). Origin vertex is omitted. Second item is a dictionary of number of steps to first reach each vertex.""" vertices = set() # The set of vertices that will be returned. # Dictionary of distances that will be returned. Key is (x, Y), value is steps taken to first get there. vertex_distances = {} x, y = 0, 0 # Origin of the journey the wire will take. total_steps = 0 # Steps taken to get to the vertex. for instruction in route.split(','): # Instructions are comma delimited. # Example of a step, 'U414'... direction = instruction[0] # direction = 'U' distance = int(instruction[1:]) # distance = 414 assert direction in {'U', 'R', 'D', 'L'} # Must be 'U'p, 'R'ight, 'D'own or 'L'eft. if direction == 'U': dx, dy = 0, -1 # Set deltas according to the directions. elif direction == 'R': dx, dy = 1, 0 elif direction == 'D': dx, dy = 0, 1 else: dx, dy = -1, 0 for step in range(distance): # Take the 'distance' number of steps. x += dx y += dy vertex = (x, y) vertices.add(vertex) total_steps += 1 if vertex not in vertex_distances: # Only want the shortest distance to the vertex in the dictionary. vertex_distances[vertex] = total_steps return vertices, vertex_distances f = open('input.txt') whole_text = (f.read()) string_list = whole_text.split() # Split string by whitespace. wire_1 = string_list[0] wire_2 = string_list[1] (vertices_1, vertex_distances_1) = path_to_vertices(wire_1) (vertices_2, vertex_distances_2) = path_to_vertices(wire_2) crossed_wires = vertices_1.intersection(vertices_2) # Wires cross where vertices intersect. distances = list(map(dist_from_origin, crossed_wires)) # Calculate Manhattan distance for each crossed wire vertex. distances.sort() # Put the shortest distance in position [0] of the list. print('Part 1:', distances[0]) fewest_steps_found = None for crossed in crossed_wires: combined_steps = vertex_distances_1[crossed] + vertex_distances_2[crossed] if fewest_steps_found is None or combined_steps < fewest_steps_found: fewest_steps_found = combined_steps print('Part 2:', fewest_steps_found) ``` #### File: advent-of-code-2019/04-secure-container/tests.py ```python import fact_checks as fc import unittest # These tests based on, https://docs.python.org/3/library/unittest.html class TestIs6Digits(unittest.TestCase): def test_is_6_digit(self): self.assertFalse(fc.is_6_digits(0)) self.assertFalse(fc.is_6_digits(12345)) self.assertFalse(fc.is_6_digits(1234567)) self.assertTrue(fc.is_6_digits(123456)) self.assertTrue(fc.is_6_digits(100000)) self.assertTrue(fc.is_6_digits(999999)) def test_value_in_range(self): self.assertFalse(fc.value_in_range(number=5, low_bound=6, up_bound=20)) self.assertFalse(fc.value_in_range(number=5, low_bound=1, up_bound=4)) self.assertTrue(fc.value_in_range(number=5, low_bound=4, up_bound=10)) self.assertTrue(fc.value_in_range(number=5, low_bound=5, up_bound=10)) self.assertTrue(fc.value_in_range(number=5, low_bound=1, up_bound=6)) self.assertTrue(fc.value_in_range(number=5, low_bound=1, up_bound=5)) def test_adjacent_digits_same(self): self.assertFalse(fc.two_adjacent_digits_same(123789)) self.assertTrue(fc.two_adjacent_digits_same(122345)) self.assertTrue(fc.two_adjacent_digits_same(111111)) def test_just_two_adjacent_digits_same(self): self.assertFalse(fc.just_two_adjacent_digits_same(123444)) self.assertFalse(fc.just_two_adjacent_digits_same(222346)) self.assertFalse(fc.just_two_adjacent_digits_same(233346)) self.assertTrue(fc.just_two_adjacent_digits_same(112233)) self.assertTrue(fc.just_two_adjacent_digits_same(111122)) self.assertTrue(fc.just_two_adjacent_digits_same(112345)) self.assertTrue(fc.just_two_adjacent_digits_same(123455)) self.assertTrue(fc.just_two_adjacent_digits_same(122456)) def test_never_decrease(self): self.assertFalse(fc.never_decrease(223450)) self.assertTrue(fc.never_decrease(122345)) self.assertTrue(fc.never_decrease(111111)) if __name__ == '__main__': unittest.main() ``` #### File: advent-of-code-2019/11-space-police/robot.py ```python import dict_computer as comp class Robot: def __init__(self): self.computer = comp.Computer(interactive_mode=False) self.computer.load_file(filename='input.txt') self.location = (0, 0) # Current location of the robot. self.bearing = 'N' # Direction that robot is currently pointing in. "The robot starts facing up." def turn_left(self): left_turns = {'N': 'W', 'W': 'S', 'S': 'E', 'E': 'N'} self.bearing = left_turns[self.bearing] def turn_right(self): left_turns = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'} self.bearing = left_turns[self.bearing] def forward(self): (x, y) = self.location dx = {'W': -1, 'E': 1, 'N': 0, 'S': 0} dy = {'N': -1, 'S': 1, 'E': 0, 'W': 0} self.location = (x + dx[self.bearing], y + dy[self.bearing]) this_robot = Robot() # Key = tuple (x, y) of location of panel, value is colour of panel. hull = dict() hull[this_robot.location] = 1 # Part 2: "After starting the robot on a single white panel instead..." while this_robot.computer.halted is False: # "The program uses input instructions to access the robot's camera: provide 0 if the robot is over a black panel # or 1 if the robot is over a white panel." this_robot.computer.input = hull.get(this_robot.location, 0) # By default, panels are black ('0'). # "First, it will output a value indicating the color to paint the panel the robot is over: 0 means to paint the # panel black, and 1 means to paint the panel white." this_robot.computer.run_until_output() assert this_robot.computer.output in {0, 1} # '0' is paint it black, '1' is paint it white. hull[this_robot.location] = this_robot.computer.output # Second, it will output a value indicating the direction the robot should turn: 0 means it should turn left 90 # degrees, and 1 means it should turn right 90 degrees. this_robot.computer.run_until_output() assert this_robot.computer.output in {0, 1} # '0 is turn left, '1' is turn right. if this_robot.computer.output == 0: this_robot.turn_left() else: this_robot.turn_right() # After the robot turns, it should always move forward exactly one panel. this_robot.forward() print('Part 1:', len(hull)) # Print the image. for y in range(10): for x in range(45): panel = hull.get((x, y), 0) if panel == 1: print('#', end='') else: print(' ', end='') print() ``` #### File: advent-of-code-2019/13-care-package/screen.py ```python class Screen: def __init__(self): self.grid = {} # Key = (x, y), value = tile number. self.min_x = None self.min_y = None self.width = None self.height = None @staticmethod def tile_code_to_char(code: int) -> str: """For parm tile code, return a single char that the code can be rendered into when printing the grid. 0 is an empty tile. No game object appears in this tile. 1 is a wall tile. Walls are indestructible barriers. 2 is a block tile. Blocks can be broken by the ball. 3 is a horizontal paddle tile. The paddle is indestructible. 4 is a ball tile. The ball moves diagonally and bounces off objects.""" conversion_map = {0: ' ', 1: '#', 2: '%', 3: '-', 4: 'O'} return conversion_map[code] def grid_to_char(self, vertex: (int, int)) -> str: """For parm vertex coordinates, return char that should be rendered at that vertex.""" return self.tile_code_to_char(self.grid.get(vertex, 0)) # Default to 0, as dict is sparse. def render(self, score: int): """Render the contents of the grid dictionary to screen. Print current game score at bottom of screen.""" # TODO Rewrite to use Pygame to do proper graphical rendering of the game screen. for y in range(self.min_y, self.height + 1): for x in range(self.min_x, self.width + 1): print(self.grid_to_char(vertex=(x, y)), end='') print() print('Score:', score) # Start a new line. ``` #### File: advent-of-code-2019/20-donut-maze/part_1.py ```python from copy import deepcopy class Donut: def __init__(self, filename: str): self.grid = {} # Key=(x, y), Value=character at that coordinate. self.width, self.height = 0, 0 # Dimensions of the grid. self.portals = {} # Key is entrance to portal (x, y), value is exit from portal (x, y). self.start = (0, 0) # Coordinates of 'AA'. self.end = (0, 0) # Coordinates of 'ZZ'. self.shortest_to_square = {} # Least steps found to this square. Key=(x, y), Value=steps. self.best = 0 # Shortest route from AA to ZZ found so fae. f = open(filename) whole_text = (f.read()) x, y = 0, 0 for each_char in whole_text: if each_char == '\n': # New-line. x = 0 y += 1 else: self.grid[x, y] = each_char x += 1 if x > self.width: self.width = x self.height = y + 1 f.close() @staticmethod def is_cap_letter(test_char: str): """Return true if the parm character is a capital letter.""" if 'A' <= test_char <= 'Z': return True return False def is_special(self, cap_1: str, cap_2: str, dot: str) -> bool: """If the first two parms are capital letters, and the third is a dot, then return True. Example sequence is 'BC.'""" if self.is_cap_letter(cap_1) and self.is_cap_letter(cap_2) and dot == '.': return True return False def find_special_squares(self) -> {}: """Return a dictionary of special square information. Key=(x, y), Value=Name of special square.""" found = {} for x in range(self.width): for y in range(self.height): if x < self.width - 2: one = self.grid[x, y] two = self.grid[x + 1, y] three = self.grid[x + 2, y] # "BC." if self.is_special(cap_1=one, cap_2=two, dot=three): found[x + 2, y] = one + two # ".BC" if self.is_special(cap_1=two, cap_2=three, dot=one): found[x, y] = two + three if y < self.height - 2: one = self.grid[x, y] two = self.grid[x, y + 1] three = self.grid[x, y + 2] # B # C # . if self.is_special(cap_1=one, cap_2=two, dot=three): found[x, y + 2] = one + two # . # B # C if self.is_special(cap_1=two, cap_2=three, dot=one): found[x, y] = two + three return found def set_specials(self): """Set the attributes of Start, end End Also set attributes of Portals.""" specials = self.find_special_squares() for vertex in specials: name = specials[vertex] if name == 'AA': # "Every maze on Pluto has a start (the open tile next to AA)..." self.start = vertex elif name == 'ZZ': # "... and an end (the open tile next to ZZ)" self.end = vertex else: # The start and end specials are not real portals. for pair in specials: if specials[pair] == name and vertex != pair: self.portals[vertex] = pair def search(self, current_square: (int, int), # Start / continue search from here. squares_visited: []): # List of squares previously visited. """Do a recursive search of squares, until end (ZZ) is found.""" one_way_only = True while one_way_only: steps_taken = len(squares_visited) # Check if we've made it to the end of the maze. if current_square == self.end: # No previous best, so this must be the best found so far... # ... or better than previous best. if self.best == 0 or steps_taken < self.best: self.best = steps_taken print('Best so far:', self.best) return # Is this a good route to whatever the current square is? if current_square not in self.shortest_to_square: # If never been to this square before, then this is best. self.shortest_to_square[current_square] = steps_taken else: # If improvement on previous best route to this then record this. if steps_taken < self.shortest_to_square[current_square]: self.shortest_to_square[current_square] = steps_taken else: # No improvement on previous route to this square, so give up. return possible_next_squares = [] # If standing next to portal, we could go through it... if current_square in self.portals: if self.portals[current_square] not in squares_visited: # ... unless it is a backtrack. possible_next_squares.append(self.portals[current_square]) (curr_x, curr_y) = current_square # Look for a '.' adjacent to the current square. for (dx, dy) in [(0, 1), (0, -1), (1, 0), (-1, 0)]: possible = (curr_x + dx, curr_y + dy) # If the possible is a '.', and we haven't been to it before in this search, then OK. if self.grid[possible] == '.' and possible not in squares_visited: possible_next_squares.append(possible) if len(possible_next_squares) == 0: # Dead end, so give up. return elif len(possible_next_squares) == 1: # Only one possible square to go to next, so iterate. current_square = possible_next_squares[0] squares_visited.append(current_square) else: # Several possible next squares, so recurse. for possible in possible_next_squares: new_squares_visited = deepcopy(squares_visited) new_squares_visited.append(possible) self.search(current_square=possible, squares_visited=new_squares_visited) one_way_only = False # Stop iterative loop. this_donut = Donut('input.txt') this_donut.set_specials() this_donut.search(current_square=this_donut.start, squares_visited=[]) print('Part 1:', this_donut.best) ``` #### File: advent-of-code-2019/22-slam-shuffle/space_cards.py ```python class SpaceCards: def __init__(self, deck_size: int): self.deck_size = deck_size # "Just like any deck of space cards, there are 10007 cards in the deck numbered 0 through 10006. The deck must # be new - they're still in factory order, with 0 on the top, then 1, then 2, and so on, all the way through to # 10006 on the bottom." self.pack = [] for i in range(deck_size): self.pack.append(i) def deal_into_new_stack(self): # "... create a new stack of cards by dealing the top card of the deck onto the top of the new stack repeatedly # until you run out of cards". self.pack.reverse() def cut_n_cards(self, n: int): # "... take the top N cards off the top of the deck and move them as a single unit to the bottom of the deck, # retaining their order." # "You've also been getting pretty good at a version of this technique where N is negative! In that case, cut # (the absolute value of) N cards from the bottom of the deck onto the top." if n >= 0: cut_point = n else: cut_point = self.deck_size + n new_pack = [] for i in range(cut_point, self.deck_size): # Cards below cut. new_pack.append(self.pack[i]) for i in range(cut_point): new_pack.append(self.pack[i]) # Cards above cut. self.pack = new_pack def deal_with_increment_n(self, n: int): # "... start by clearing enough space on your table to lay out all of the cards individually in a long line. # Deal the top card into the leftmost position. Then, move N positions to the right and deal the next card # there. If you would move into a position past the end of the space on your table, wrap around and keep # counting from the leftmost card again. Continue this process until you run out of cards." # Start by making space for new pack. new_pack = [] for i in range(self.deck_size): new_pack.append(-1) # Doesn't matter what each element is initialised to. curr_pos = 0 for i in self.pack: assert new_pack[curr_pos] == -1 # Should not be a card in this position aleady. new_pack[curr_pos] = i curr_pos = (curr_pos + n) % self.deck_size # Move to next position. self.pack = new_pack.copy() def shuffle(self, filename: str): f = open(filename) whole_text = f.read() f.close() for each_line in whole_text.split('\n'): word_list = list(each_line.split(' ')) # print(each_line, word_list) if word_list[0] == 'cut': self.cut_n_cards(n=int(word_list[1])) elif word_list[1] == 'into': self.deal_into_new_stack() else: self.deal_with_increment_n(n=int(word_list[3])) ``` #### File: advent-of-code-2019/22-slam-shuffle/unit_tests.py ```python from space_cards import SpaceCards import unittest class TestSpaceCards(unittest.TestCase): def test_new_pack(self): test_pack = SpaceCards(deck_size=10) self.assertEqual(test_pack.deck_size, 10) # Should be 10 cards in the pack. self.assertEqual(test_pack.pack, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) def test_deal_into_new_stack(self): test_pack = SpaceCards(deck_size=10) test_pack.deal_into_new_stack() self.assertEqual(test_pack.pack, [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) def test_cut_n_cards(self): test_pack_1 = SpaceCards(deck_size=10) test_pack_1.cut_n_cards(n=3) self.assertEqual(test_pack_1.pack, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]) test_pack_2 = SpaceCards(deck_size=10) test_pack_2.cut_n_cards(n=-4) self.assertEqual(test_pack_2.pack, [6, 7, 8, 9, 0, 1, 2, 3, 4, 5]) def test_deal_with_increment_n(self): test_pack = SpaceCards(deck_size=10) test_pack.deal_with_increment_n(n=3) self.assertEqual(test_pack.pack, [0, 7, 4, 1, 8, 5, 2, 9, 6, 3]) # These tests use the example sequences of shuffles. def test_1(self): test_pack = SpaceCards(deck_size=10) test_pack.shuffle(filename='test_1.txt') self.assertEqual(test_pack.pack, [0, 3, 6, 9, 2, 5, 8, 1, 4, 7]) def test_2(self): test_pack = SpaceCards(deck_size=10) test_pack.shuffle(filename='test_2.txt') self.assertEqual(test_pack.pack, [3, 0, 7, 4, 1, 8, 5, 2, 9, 6]) def test_3(self): test_pack = SpaceCards(deck_size=10) test_pack.shuffle(filename='test_3.txt') self.assertEqual(test_pack.pack, [6, 3, 0, 7, 4, 1, 8, 5, 2, 9]) def test_4(self): test_pack = SpaceCards(deck_size=10) test_pack.shuffle(filename='test_4.txt') self.assertEqual(test_pack.pack, [9, 2, 5, 8, 1, 4, 7, 0, 3, 6]) if __name__ == '__main__': unittest.main() ```
{ "source": "johntelforduk/advent-of-code-2020", "score": 4 }
#### File: advent-of-code-2020/13-shuttle-search/part2.py ```python import sys from math import gcd from functools import reduce def lcm(a: int , b: int) -> int: """Returns the least common multiple of the parm pair of numbers.""" return a*b // gcd(a, b) def get_lcm_for(your_list: list) -> int: """Returns the least common multiple for parm list of numbers.""" return reduce(lambda x, y: lcm(x, y), your_list) VERBOSE = ('-v' in sys.argv) filename = sys.argv[1] f = open(filename) whole_text = (f.read()) two_lines = whole_text.split('\n') # Split string by any whitespace. def departure(bus: int, time: int) -> bool: """For parm bus ID and time, return True iff the bus departs at that time.""" if time % bus == 0: return True return False buses = [] # Each item in the list is (bus, stagger). stagger = 0 # How many minutes after first bus does this one depart. for bus in two_lines[1].split(','): if bus != 'x': buses.append((int(bus), stagger)) stagger += 1 if VERBOSE: print('buses', buses) # Find the three highest bus IDs and remove them from the list of buses. b1, s1 = max(buses) buses.remove((b1, s1)) b2, s2 = max(buses) buses.remove((b2, s2)) b3, s3 = max(buses) buses.remove((b3, s3)) if VERBOSE: print('b1, s1, b2, s2, b3, s3, buses:', b1, s1, b2, s2, b3, s3, buses) # Find the first time that the 3 biggest bus IDs have their staggers the right distance apart from each other. candidate_time = 0 while True: if (departure(bus=b1, time=candidate_time + s1) and departure(bus=b2, time=candidate_time + s2) and departure(bus=b3, time=candidate_time + s3)): break candidate_time += 1 big_lcm = get_lcm_for([b1, b2, b3]) if VERBOSE: print('candidate_time, big_lcm:', candidate_time, big_lcm) # So now we know, the solution time is someone where in the space, # time = candidate_time + x * big_lcm # where x is an integer. solution_found = False while not solution_found: solution_found = True # Begin optimistically with each candidate time. # Test each of the remaining buses in turn. for bus, stagger in buses: if departure(bus, candidate_time + stagger) is False: solution_found = False if solution_found: break else: candidate_time += big_lcm # Try the next possible time in the solution space. print('Part 2:', candidate_time) ``` #### File: advent-of-code-2020/15-rambunctious-recitation/test_solution15.py ```python from solution15 import game import unittest class TestFunctions(unittest.TestCase): def test_functions(self): self.assertEqual(game(spoken=[0, 3, 6], rounds=10), 0) self.assertEqual(game(spoken=[1, 3, 2], rounds=2020), 1) self.assertEqual(game(spoken=[2, 1, 3], rounds=2020), 10) self.assertEqual(game(spoken=[1, 2, 3], rounds=2020), 27) self.assertEqual(game(spoken=[2, 3, 1], rounds=2020), 78) self.assertEqual(game(spoken=[3, 2, 1], rounds=2020), 438) self.assertEqual(game(spoken=[3, 2, 1], rounds=2020), 438) self.assertEqual(game(spoken=[3, 1, 2], rounds=2020), 1836) if __name__ == '__main__': unittest.main() ``` #### File: advent-of-code-2020/18-operation-order/solution18.py ```python import sys VERBOSE = ('-v' in sys.argv) def evaluate_left_to_right(exp: str) -> int: """Do left-to-right expression evaluation on the parm flat expression.""" # A flat expression contains no brackets. assert '(' not in exp assert ')' not in exp terms = exp.split(' ') result = int(terms.pop(0)) # First term in the expression is always an operand. while len(terms) != 0: operator = terms.pop(0) operand = int(terms.pop(0)) assert operator in ['+', '*'] if operator == '+': result += operand else: result *= operand return result def evaluate_one_operation(exp: str, operator: str) -> str: """For the first matching operation in the parm flat expression, replace it - and the 2 operands around it - with the results of the operation.""" # A flat expression contains no brackets. assert '(' not in exp assert ')' not in exp terms = exp.split(' ') # Find the first occurrence of required operation in the list of terms. operation_pos = terms.index(operator) # For an infixed operation, the operands are either side of the operator. operand1 = int(terms[operation_pos - 1]) operand2 = int(terms[operation_pos + 1]) assert operator in ['+', '*'] if operator == '+': calculation = operand1 + operand2 else: calculation = operand1 * operand2 # Reconstruct the string for the whole expression, with the one operation found replaced with it's result. result = '' pos = 0 for term in terms: if operation_pos - 1 <= pos <= operation_pos + 1: if operation_pos == pos: result += str(calculation) + ' ' else: result += term + ' ' pos += 1 return result.strip() # Each concatenation also adds a space, so last space needs to be removed. def inner_brackets(exp: str) -> (int, int): """For parm expressions, return the start and end position of the first pair of inner brackets. Inner brackets are brackets around a bit of string that contains no other brackets.""" # Looking for string "(" + some other chars + ")", # ... where some other chars doesn't contain any brackets. pos, start = 0, 0 for i in exp: if i == "(": start = pos if i == ')': return start, pos pos += 1 return None, None def inner_brackets_to_value(exp: str, method: str) -> str: """For the parm expression, return expression with first inner brackets evaluated.""" bf, bt = inner_brackets(exp) # front + '(' + inner + ')' + end front = exp[0:bf] inner = exp[bf+1:bt] end = exp[bt+1:] assert method in ['l_to_r', '+_then_*'] if method == 'l_to_r': return front + str(evaluate_part1(inner)) + end else: return front + str(evaluate_part2(inner)) + end def evaluate_part1(exp: str) -> int: """For parm expression, evaluate it using the left to right method.""" # First, evaluate all of the things in brackets. while '(' in exp: exp = inner_brackets_to_value(exp, 'l_to_r') return evaluate_left_to_right(exp) def evaluate_part2(exp: str) -> int: """For parm expression, evaluate it using the addition before multiplication method..""" # First, evaluate all of the things in brackets. while '(' in exp: exp = inner_brackets_to_value(exp, '+_then_*') # Then evaluate all the addition operations. while '+' in exp: exp = evaluate_one_operation(exp, '+') # Finally evaluate all the multiplications. while '*' in exp: exp = evaluate_one_operation(exp, '*') return int(exp) def main(): filename = sys.argv[1] f = open(filename) whole_text = f.read() f.close() total1 = 0 for exp in whole_text.split('\n'): total1 += evaluate_part1(exp) print('Part 1:', total1) total2 = 0 for exp in whole_text.split('\n'): total2 += evaluate_part2(exp) print('Part 2:', total2) if __name__ == "__main__": main() ``` #### File: advent-of-code-2020/21-allergen-assessment/solution21.py ```python import sys VERBOSE = ('-v' in sys.argv) def allergens_from_text(text: str) -> dict: """For parm string containing a list of foods, return a dictionary. Each item in dictionary is an allergen and the set of ingredients that might contain that allergens. Returned dictionary has items as follows, k = Name of the allergen. v = A list. Each item in the list is a set. Each set is the ingredients in each food that might contain the allergen.""" possible = {} for food in text.split('\n'): # Foods start on separate lines. food_no_brackets = food.replace('(', '').replace(')', '') ingredients, allergens = food_no_brackets.split(' contains ') ingredient_set = set() # The set of ingredients that might include this allergen. for ingredient in ingredients.split(' '): # Ingredients are delimited with spaces. ingredient_set.add(ingredient) for allergen in allergens.split(', '): # Allergens are delimited with comma + space. if allergen not in possible: possible[allergen] = [ingredient_set] else: possible[allergen].append(ingredient_set) return possible def intersect_list(list_of_sets: list) -> str: """Parm is a list of sets. Each item in each set is a string, for example, [{'a', 'b, 'c', 'd'}, {'b'}] If the intersection of the list of sets is a single item, then that item is returned, otherwise 'None' is returned. So in the example above, 'b' is returned.""" intersection_so_far = set() first = True for each_set in list_of_sets: if first: intersection_so_far = each_set first = False # No longer the first set in the list. else: intersection_so_far = intersection_so_far.intersection(each_set) if len(intersection_so_far) == 1: for i in intersection_so_far: return i return 'None' def reduce_ingredients(allergens: dict) -> (dict, set): """For a parm dictionary of allergens (k = Allergens, v = list of sets, where each set is the list of ingredients in each feed that might contain the allergen). Reduce the number of ingredients that might contain an allergen, by looking for ingredients that are in all of the foods in the list for each allergen. Returns a reduced dictionary, plus a set of allergens that are now matched to a single ingredient.""" solved = {} solved_ingredients = set() for allergen in allergens: ingredient_sets = allergens[allergen] intersection = intersect_list(ingredient_sets) if VERBOSE: print('allergen, ingredient_sets, intersection:', allergen, ingredient_sets, intersection) # This allergen must be in 1 specific ingredient. # So, make a note of that. if intersection != 'None': solved[allergen] = intersection solved_ingredients.add(intersection) if VERBOSE: print('solved, solved_ingredients:', solved, solved_ingredients) # For allergens that we've just solved (we know which ingredient they are in). Remove that ingredient from # Sets of potential ingredients for other allergens. result = {} for allergen in allergens: if allergen in solved: ingredient = solved[allergen] result[allergen] = [{ingredient}] else: ingredient_list = allergens[allergen] if VERBOSE: print('ingredient_list:', ingredient_list) new_list = [] for ingredient_set in ingredient_list: new_set = set() for ingredient in ingredient_set: if ingredient not in solved_ingredients: new_set.add(ingredient) new_list.append(new_set) result[allergen] = new_list return result, solved_ingredients def count_non_allergen_ingredients(text: str, allergen_ingredients: set) -> int: """For parm text which is puzzle input, and parm set of ingredients which are known to be allergens. Return a count of the number of non-allergen ingredients listed in recipes.""" count = 0 for food in text.split('\n'): ingredients, _ = food.split(' (') for ingredient in ingredients.split(' '): if ingredient not in allergen_ingredients: count += 1 return count def main(): filename = sys.argv[1] f = open(filename) whole_text = f.read() f.close() allergens = allergens_from_text(whole_text) if VERBOSE: print('allergens:', allergens) done = False previous_length = 0 allergen_ingredients = set() while not done: # Keep repeating until reduce_ingredients is not reducing anymore. allergens, allergen_ingredients = reduce_ingredients(allergens) if VERBOSE: print('allergens, solved:', allergens, allergen_ingredients) done = (previous_length == len(allergen_ingredients)) previous_length = len(allergen_ingredients) print('Part 1:', count_non_allergen_ingredients(whole_text, allergen_ingredients)) # ---------------- # Turn allergens dictionary into list of pairs. allergens_list = [] for allergen in allergens: ingredient_list_set = allergens[allergen] ingredient = list(ingredient_list_set[0])[0] if VERBOSE: print('allergen, ingredient:', allergen, ingredient) allergens_list.append((allergen, ingredient)) # Print the ingredients out in allergen order. first = True print('Part 2: ', end='') for _, ingredient in sorted(allergens_list): if not first: print(',', end='') print(ingredient, end='') first = False if __name__ == "__main__": main() ``` #### File: advent-of-code-2020/22-crab-combat/solution22_2.py ```python import sys VERBOSE = ('-v' in sys.argv) class Deck: def __init__(self, player: int, cards: list): self.player = player self.cards = cards def take_top_card(self) -> int: """Remove the top card from the deck. Return the value of that card.""" card = self.cards.pop(0) if VERBOSE: print(self.player, 'plays:', card) return card def top_cards(self, top: int) -> list: """Return a list of the top cards in the deck. The number of cards is the parm of this method.""" return self.cards[:top].copy() def card_on_bottom(self, card: int): """Put the parm card on the bottom of the deck.""" self.cards.append(card) def display(self): """Print out info about the deck to stdout.""" print('Player', str(self.player) + "'s deck: ", end='') first = True for card in self.cards: if not first: print(', ', end='') first = False print(card, end='') print() class Combat: def __init__(self, game: int, p1_cards: list, p2_cards: list): self.p1_deck = Deck(player=1, cards=p1_cards) # Player 1's deck of cards. self.p2_deck = Deck(player=2, cards=p2_cards) # Player 2's card deck. self.previous_rounds = [] # List of decks that each player had in previous rounds. self.game = game if VERBOSE: print('=== Game', self.game, '===') print() self.round = 1 self.winner = 0 # 0 indicates no winner yet. while self.winner == 0: self.winner = self.play_a_round() def play_a_round(self) -> int: """Play a round of the game. If one of the players wins the game in this round, return their player number. Otherwise, return 0, to indicate no winner after this round.""" if VERBOSE: print('-- Round', self.round, '(Game ' + str(self.game) + ')--') self.p1_deck.display() self.p2_deck.display() # "Before either player deals a card, if there was a previous round in this game that had exactly the same # cards in the same order in the same players' decks, the game instantly ends in a win for player 1." if (self.p1_deck.cards, self.p2_deck.cards) in self.previous_rounds: if VERBOSE: print('Stalemate, hence Player 1 wins') return 1 self.previous_rounds.append((self.p1_deck.cards.copy(), self.p2_deck.cards.copy())) # "... both players draw their top card..." p1_card = self.p1_deck.take_top_card() p2_card = self.p2_deck.take_top_card() # "If both players have at least as many cards remaining in their deck as the value of the card they just drew, # the winner of the round is determined by playing a new game of Recursive Combat." if p1_card <= len(self.p1_deck.cards) and p2_card <= len(self.p2_deck.cards): if VERBOSE: print('Playing a sub-game to determine the winner...') p1_new_game_cards = self.p1_deck.top_cards(top=p1_card) p2_new_game_cards = self.p2_deck.top_cards(top=p2_card) new_game = Combat(game=self.game + 1, p1_cards=p1_new_game_cards, p2_cards=p2_new_game_cards) round_winner = new_game.winner if VERBOSE: print('...anyway, back to game', self.game) elif p1_card > p2_card: # "The player with the higher-valued card wins the round." round_winner = 1 else: round_winner = 2 if round_winner == 1: if VERBOSE: print('Player 1 wins round', self.round, 'of game', self.game) # "The winner keeps both cards, placing them on the bottom of their own deck so that the winner's card # is above the other card." self.p1_deck.card_on_bottom(p1_card) self.p1_deck.card_on_bottom(p2_card) else: if VERBOSE: print('Player 2 wins round', self.round, 'of game', self.game) self.p2_deck.card_on_bottom(p2_card) self.p2_deck.card_on_bottom(p1_card) if VERBOSE: print() self.round += 1 # "If this causes a player to have all of the cards, they win, and the game ends." if len(self.p1_deck.cards) == 0: # p1 has no cards left, so p2 wins. if VERBOSE: print('The winner of game', self.game, 'is player 2') return 2 elif len(self.p2_deck.cards) == 0: # p2 has no cards left, so p1 wins. if VERBOSE: print('The winner of game', self.game, 'is player 1') return 1 return 0 # 0 indicates no winner of the game during this round. def calculate_winning_score(self) -> int: """Return score of winning deck.""" # "The bottom card in their deck is worth the value of the card multiplied by 1, the second-from-the-bottom # card is worth the value of the card multiplied by 2, and so on." if self.winner == 1: cards = self.p1_deck.cards else: cards = self.p2_deck.cards score = 0 multiplier = 1 for card in cards[::-1]: # Go through the winner's cards backwards. score += card * multiplier multiplier += 1 return score def text_to_cards(text: str) -> list: """For parm text file, return a list of integers which are the cards in that text file.""" cards = [] # Each card starts on a new line. Ignore the first line, as it is the player number. for card in text.split('\n')[1:]: cards.append(int(card)) return cards def main(): filename = sys.argv[1] f = open(filename) whole_text = f.read() f.close() p1_text, p2_text = whole_text.split('\n\n') # There is a blank line between the 2 players. p1_cards_list = text_to_cards(p1_text) p2_cards_list = text_to_cards(p2_text) game = Combat(game=1, p1_cards=p1_cards_list, p2_cards=p2_cards_list) print('== Post-game results ==') game.p1_deck.display() game.p2_deck.display() print('Part 2:', game.calculate_winning_score()) if __name__ == "__main__": main() ``` #### File: advent-of-code-2020/23-crab-cups/test_solution23_1.py ```python from solution23_1 import Game import unittest class TestFunctions(unittest.TestCase): def test_game_class(self): g1 = Game('389125467') self.assertEqual(g1.current, 3) # Current is first cup. self.assertEqual(g1.pick_up_1_cup(), 8) self.assertEqual(g1.cups, [3, 9, 1, 2, 5, 4, 6, 7]) g1.update_destination_cup() self.assertEqual(g1.destination, 2) g2 = Game('389125467') g2.current = 7 # Force current to be last cup in the list. self.assertEqual(g2.current, 7) self.assertEqual(g2.pick_up_1_cup(), 3) self.assertEqual(g2.cups, [8, 9, 1, 2, 5, 4, 6, 7]) g2.update_destination_cup() self.assertEqual(g2.destination, 6) g3 = Game('389125467') g3.current = 2 # Force current to be a mid-cup. self.assertEqual(g3.current, 2) self.assertEqual(g3.pick_up_1_cup(), 5) self.assertEqual(g3.cups, [3, 8, 9, 1, 2, 4, 6, 7]) g4 = Game('389125467') self.assertEqual(g4.current, 3) # Current is first cup. picked_up = g4.pick_up_cups(3) self.assertEqual(picked_up, [8, 9, 1]) self.assertEqual(g4.cups, [3, 2, 5, 4, 6, 7]) g4.update_destination_cup() self.assertEqual(g4.destination, 2) g4.insert_cups(inserts=picked_up, insert_after=g4.destination) self.assertEqual(g4.cups, [3, 2, 8, 9, 1, 5, 4, 6, 7]) g4.select_new_current_cup() self.assertEqual(g4.current, 2) picked_up = g4.pick_up_cups(3) g4.update_destination_cup() g4.insert_cups(inserts=picked_up, insert_after=g4.destination) self.assertEqual(g4.cups, [3, 2, 5, 4, 6, 7, 8, 9, 1]) g4.select_new_current_cup() self.assertEqual(g4.current, 5) g5 = Game('389125467') g5.current = 6 # Force current to be the penultimate cup. self.assertEqual(g5.current, 6) self.assertEqual(g5.pick_up_cups(3), [7, 3, 8]) self.assertEqual(g5.cups, [9, 1, 2, 5, 4, 6]) g6 = Game('689125437') g6.current = 7 self.assertEqual(g6.current, 7) picked_up = g6.pick_up_cups(3) self.assertEqual(picked_up, [6, 8, 9]) self.assertEqual(g6.cups, [1, 2, 5, 4, 3, 7]) g6.update_destination_cup() self.assertEqual(g6.destination, 5) g6.insert_cups(inserts=picked_up, insert_after=g6.destination) self.assertEqual(g6.cups, [1, 2, 5, 6, 8, 9, 4, 3, 7]) g6.select_new_current_cup() self.assertEqual(g6.current, 1) g7 = Game('685219437') g7.current = 2 self.assertEqual(g7.current, 2) picked_up = g7.pick_up_cups(3) self.assertEqual(picked_up, [1, 9, 4]) self.assertEqual(g7.cups, [6, 8, 5, 2, 3, 7]) g7.update_destination_cup() self.assertEqual(g7.destination, 8) g7.insert_cups(inserts=picked_up, insert_after=g7.destination) self.assertEqual(g7.cups, [6, 8, 1, 9, 4, 5, 2, 3, 7]) g7.select_new_current_cup() self.assertEqual(g7.current, 3) if __name__ == '__main__': unittest.main() ``` #### File: advent-of-code-2020/24-lobby-layout/solution24.py ```python import sys import pygame import imageio # For making animated GIFs. VERBOSE = ('-v' in sys.argv) class Floor: def __init__(self, zoom: int): # Define the colors we will use in RGB format. self.white_tile_colour = (240, 240, 240) self.black_tile_colour = (40, 40, 40) self.grout_colour = (100, 100, 100) self.text_background = (255, 255, 255) self.text_colour = (0, 0, 0) self.hex_to_cartesian = {'e': (2, 0), 'w': (-2, 0), 'se': (1, 2), 'sw': (-1, 2), 'ne': (1, -2), 'nw': (-1, -2)} self.zoom = zoom # Lower zoom, means more tiles in the room. self.screen_size = [1100, 800] # [width, height] pygame.init() # Initialize the game engine. self.screen = pygame.display.set_mode(self.screen_size) pygame.font.init() # Start the Pygame text rendering system. self.myfont = pygame.font.SysFont('Courier New', 30) pygame.display.set_caption('Lobby Layout') # The window title. self.black_tiles = set() # Each member is pair (x, y). self.day = 0 def art_exhibit(self, days: int) -> bool: """Render image of the floor to screen. Then follow art exhibit flipping rules for parm number of days. Returns a bool to indicate if the process was quit early.""" filenames = [] quiting = False while not quiting and self.day < days: for event in pygame.event.get(): # User did something. if event.type == pygame.QUIT: # If user clicked close. quiting = True # Flag that we are done so we exit this loop, and quit the game self.draw_background() # Cover screen with white tiles. for (x, y) in self.black_tiles: self.draw_tile(x, y, 'B') pygame.draw.rect(self.screen, self.text_background, (0, 0, 450, 40)) caption = 'Day ' + str(self.day) + ': ' + str(len(self.black_tiles)) + ' black tiles' text_surface = self.myfont.render(caption, False, self.text_colour) self.screen.blit(text_surface, (5, 5)) pygame.display.flip() if self.day in [0, 100]: pygame.image.save(self.screen, 'screenshots/day_' + str(self.day) + '.jpg') if self.day <= 10: screenshot_name = 'screenshots/screen' + format(self.day, '02') + '.png' pygame.image.save(self.screen, screenshot_name) filenames.append(screenshot_name) if self.day == 10: images = [] for filename in filenames: images.append(imageio.imread(filename)) imageio.mimsave('solution_part2.gif', images, fps=1) self.iterate() pygame.quit() return not quiting def draw_background(self): """Tile the floor with default white tiles.""" for y in range(- self.screen_size[1] // self.zoom, self.screen_size[1] // self.zoom): for x in range(- self.screen_size[0] // self.zoom, self.screen_size[0] // self.zoom): self.draw_tile(x * 2, y * 4, 'W') self.draw_tile(1 + x * 2, 2 + y * 4, 'W') def draw_tile(self, x, y, colour: str): """Draw a tile on the screen.""" if colour == 'B': tile_colour = self.black_tile_colour else: tile_colour = self.white_tile_colour x_screen = self.screen_size[0] // 2 + x * self.zoom * 2 y_screen = self.screen_size[1] // 2 + y * self.zoom * 1.5 vertices = ((x_screen, y_screen), (x_screen + 2 * self.zoom, y_screen + 1 * self.zoom), (x_screen + 2 * self.zoom, y_screen + 3 * self.zoom), (x_screen, y_screen + 4 * self.zoom), (x_screen - 2 * self.zoom, y_screen + 3 * self.zoom), (x_screen - 2 * self.zoom, y_screen + 1 * self.zoom), (x_screen, y_screen)) # Draw the tile. pygame.draw.polygon(surface=self.screen, color=tile_colour, points=vertices) # Draw a grout border around the tile. pygame.draw.polygon(surface=self.screen, color=self.grout_colour, points=vertices, width=1 + self.zoom // 5) def flip(self, directions: list): """Follows the parm directions to identify a tile. Then flips that tile, from white to black (or vice versa).""" x, y = 0, 0 # Start at the origin tile position. for each_step in directions: (dx, dy) = self.hex_to_cartesian[each_step] x += dx y += dy if (x, y) in self.black_tiles: self.black_tiles.remove((x, y)) else: self.black_tiles.add((x, y)) def iterate(self): """Do an iteration of the art exhibit rules.""" # "The rules are applied simultaneously to every tile; put another way, it is first determined which tiles need # to be flipped, then they are all flipped at the same time." prev_black_tiles = self.black_tiles.copy() self.black_tiles = set() # Find a set of tiles that need to be checked. It is is every tile that either a black tile already, or # a neighbor of a black tile. That is to say, white tiles that have no black neighbors don't need to be checked. check = prev_black_tiles.copy() for (x, y) in prev_black_tiles: for dx, dy in self.hex_to_cartesian.values(): check.add((x + dx, y + dy)) # for range_y in range(- self.screen_size[1] // self.zoom, self.screen_size[1] // self.zoom): # for range_x in range(- self.screen_size[0] // self.zoom, self.screen_size[0] // self.zoom): # self.iteration_rule(prev_black_tiles, range_x * 2, range_y * 4) # self.iteration_rule(prev_black_tiles, 1 + range_x * 2, 2 + range_y * 4) for (x, y) in check: self.iteration_rule(prev_black_tiles, x, y) self.day += 1 def iteration_rule(self, previous_black_tiles: set, x, y): """Apply the iteration rule to parm tile position.""" adjacent = self.count_adjacent_blacks(previous_black_tiles, x, y) # "Any black tile with zero or more than 2 black tiles immediately adjacent to it is flipped to white." if (x, y) in previous_black_tiles and not (adjacent == 0 or adjacent > 2): self.black_tiles.add((x, y)) # "Any white tile with exactly 2 black tiles immediately adjacent to it is flipped to black." if (x, y) not in previous_black_tiles and adjacent == 2: self.black_tiles.add((x, y)) def count_adjacent_blacks(self, previous_black_tiles: set, x, y) -> int: """Return the number of black tiles that are adjacent to the parm (x, y) tile.""" # "Here, tiles immediately adjacent means the six tiles directly touching the tile in question." count = 0 for (dx, dy) in self.hex_to_cartesian.values(): if (x + dx, y + dy) in previous_black_tiles: count += 1 return count def text_to_directions(text: str) -> list: """Return a list of directions for parm string of codes.""" # "Because the tiles are hexagonal, every tile has six neighbors: east, southeast, southwest, west, northwest, # and northeast. These directions are given in your list, respectively, as e, se, sw, w, nw, and ne. # A tile is identified by a series of these directions with no delimiters; for example, esenee identifies the tile # you land on if you start at the reference tile and then move one tile east, one tile southeast, # one tile northeast, and one tile east." directions = [] pos = 0 while pos < len(text): if text[pos] in ['e', 'w']: # Single character directions. directions.append(text[pos]) pos += 1 else: # Two character directions. directions.append(text[pos:pos + 2]) pos += 2 return directions def main(): filename = sys.argv[1] zoom = int(sys.argv[2]) f = open(filename) whole_text = f.read() f.close() if VERBOSE: print('filename:', filename) the_floor = Floor(zoom) for each_instruction in whole_text.split('\n'): directions = text_to_directions(each_instruction) the_floor.flip(directions) # "After all of the instructions have been followed, how many tiles are left with the black side up?" print('Part 1:', len(the_floor.black_tiles)) if the_floor.art_exhibit(days=100): print('Part 2:', len(the_floor.black_tiles)) if __name__ == "__main__": main() ```
{ "source": "johntelforduk/advent-of-code-2021", "score": 4 }
#### File: advent-of-code-2021/04-giant-squid/solution4.py ```python class Board: def __init__(self, numbers: []): """Each board is made from parm list containing 5 strings of space separated numbers.""" self.completed = False # def cartesian_to_grid(x, y): return y * 5 + x # so... # grid[0] is top left corner. # grid[4] is top right corner. # grid[12] is centre. # grid[24] is bottom right. self.grid = {} g = 0 for row in numbers: num_list = row.split(' ') while len(num_list) > 0: possible_num = num_list.pop(0) if possible_num != '': # Sometimes there are double spaces between numbers. self.grid[g] = possible_num g += 1 def is_winner(self) -> bool: """Returns True if the board has either a completed row or a completed column.""" for i in range(5): row_win, col_win = True, True # Assume both row & column about to be checked are winners. for j in range(5): if self.grid[i * 5 + j] != '*': col_win = False if self.grid[i + j * 5] != '*': row_win = False if row_win or col_win: self.completed = True return True return False def mark(self, drawn_number: str): """Mark off the parm drawn number on the board by setting it to a star.""" for g in self.grid: if self.grid[g] == drawn_number: self.grid[g] = '*' def sum_unmarked(self) -> int: """Return the sum of the non-star numbers on the grid.""" total = 0 for g in self.grid: if self.grid[g] != '*': total += int(self.grid[g]) return total f = open('input.txt') t = f.read() f.close() r = t.split('\n') selections = r.pop(0).split(',') # List of number selections, as list if strings. boards = [] while len(r) > 0: r.pop(0) # Discard the blank line between each board. five_strings = [] # Each board is created from a list of 5 strings. while len(five_strings) < 5: five_strings.append(r.pop(0)) boards.append(Board(five_strings)) winner_count = 0 # No winners at the start. while winner_count < len(boards): # Loop until all boards completed. drawn = selections.pop(0) for b in boards: if b.completed is False: b.mark(drawn) if b.is_winner(): winner_count += 1 if winner_count == 1 or winner_count == len(boards): print(b.sum_unmarked() * int(drawn)) ``` #### File: advent-of-code-2021/12-passage-pathing/solution12_1.py ```python def search(current_cave: str, visited: list): global all_routes visited = visited.copy() visited.append(current_cave) if current_cave == 'end': all_routes.append(visited) return for next_vertex in caves[current_cave]: if not next_vertex.islower() or next_vertex not in visited: search(current_cave=next_vertex, visited=visited) f = open('input.txt') t = f.read() f.close() caves = {} for line in t.split('\n'): a, b = line.split('-') # Store from a -> b. if a in caves: caves[a].append(b) else: caves[a] = [b] # Also store from b -> a. if b in caves: caves[b].append(a) else: caves[b] = [a] print(caves) all_routes = [] search(current_cave='start', visited=[]) print(all_routes) print(len(all_routes)) ``` #### File: advent-of-code-2021/13-transparent-origami/solution13.py ```python f = open('input.txt') t = f.read() f.close() raw_dots, raw_folds = t.split('\n\n') dots = set() def print_dots(): for dy in range(max_y + 1): for dx in range(max_x + 1): if (dx, dy) in dots: print('#', end='') else: print('.', end='') print() print() for raw_dot in raw_dots.split('\n'): raw_x, raw_y = raw_dot.split(',') dots.add((int(raw_x), int(raw_y))) max_x, max_y = 0, 0 for px, py in dots: max_x, max_y = max(px, max_x), max(py, max_y) print(len(dots)) for instruction in raw_folds.split('\n'): raw_axis, raw_position = instruction.split('=') axis = raw_axis[-1] position = int(raw_position) new_dots = set() for x, y in dots: if axis == 'x': if x < position: new_dots.add((x, y)) elif x > position: new_dots.add((2 * position - x, y)) max_x = position - 1 else: if y < position: new_dots.add((x, y)) elif y > position: new_dots.add((x, 2 * position - y)) max_y = position - 1 dots = new_dots.copy() print(len(dots)) print_dots() ``` #### File: advent-of-code-2021/14-extended-polymerization/solution14.py ```python from collections import Counter def str_to_pairs(poly: str) -> dict: """For the parm string, return a dictionary of counts of adjacent paris of characters. For example 'AAAB, returns {'AA': 2, AB: 1}.""" pairs = {} for i in range(len(poly) - 1): pair = poly[i:i+2] if pair in pairs: pairs[pair] += 1 else: pairs[pair] = 1 return pairs def base_to_pair_rules(base_rules: dict) -> dict: """For dictionary of base rules, like {'CH': 'B', 'HH': 'N'} return a dictionary of pair rules. These have same keys as base rules, but the value is list of pairs. For example, {'CH': 'B''} parm returns {'CH': ['CB', 'BH']}""" pair_rules = {} for pair in base_rules: new_element = base_rules[pair] pair_rules[pair] = [pair[0] + new_element, new_element + pair[1]] return pair_rules def next_step(poly_pairs: dict, pair_rules: dict) -> dict: """For parm dictionary of polymer pair counts, and transformation rules. Return the output of this transformation step. For example: poly_pairs={'NN': 1, 'NC': 2, 'CB': 3} pair_rule={'NN': ['NC', 'CN'], 'NC': ['NB', 'BC'], 'CB': ['CH', 'HB'] Returns: {'NC': 1, 'CN': 1, 'NB': 2, 'BC': 2, 'CH': 3, 'HB': 3}""" pairs = {} for pair in poly_pairs: for new_pair in pair_rules[pair]: if new_pair in pairs: pairs[new_pair] += poly_pairs[pair] else: pairs[new_pair] = poly_pairs[pair] return pairs def pairs_to_counts(original_poly: str, poly_pairs: dict) -> dict: """For parm dictionary of polymer pairs, return dictionary of counts of each elements letter. Most letters are 'double counted'. For example, consider the polymer 'ABC'. 'B' is in the pairs 'AB' and 'BC'. Except the first and last letters of the original polymer. In this example, 'A' is in 'AB' only. So count all the letters, add 1 extra to count for first and last letters of original polymer, then divide all counts by 2.""" counts = {} for pair in poly_pairs: for element in pair: if element in counts: counts[element] += poly_pairs[pair] else: counts[element] = poly_pairs[pair] # Add 1 extra to the count for the first and last elements in the original polymer, as these are the only ones # that are not double counted. for element in [original_poly[0], original_poly[-1]]: if element in counts: counts[element] += 1 else: counts[element] += 1 # Finally, divide everything by 2 - as every element is double counted. adjusted_counts = {} for element in counts: adjusted_counts[element] = counts[element] // 2 return adjusted_counts f = open('input.txt') t = f.read() f.close() raw_polymer, raw_rules = t.split('\n\n') base_rules = {} for r in raw_rules.split('\n'): pair, result = r.split(' -> ') base_rules[pair] = result assert str_to_pairs('NNCB') == {'NN': 1, 'NC': 1, 'CB': 1} assert str_to_pairs('AAAB') == {'AA': 2, 'AB': 1} print(str_to_pairs('ABCDEF')) print(Counter('ABCDEF').most_common()) pairs_dict = str_to_pairs('ABCDEF') print(pairs_to_counts(original_poly='AXF', poly_pairs=pairs_dict)) assert base_to_pair_rules({'CH': 'B'}) == {'CH': ['CB', 'BH']} assert base_to_pair_rules({'CH': 'B', 'HH': 'N'}) == {'CH': ['CB', 'BH'], 'HH': ['HN', 'NH']} polymer = str_to_pairs(raw_polymer) print('raw_polymer, polymer:', raw_polymer, polymer) print('base_rules:', base_rules) pair_rules = base_to_pair_rules(base_rules) print('pair_rules:', pair_rules) # assert (next_step(poly_pairs={'NN': 1, 'NC': 2, 'CB': 3}, pair_rules=pair_rules)) == { # 'NC': 1, 'CN': 1, 'NB': 2, 'BC': 2, 'CH': 3, 'HB': 3} print() print(0, polymer) print(pairs_to_counts(original_poly=raw_polymer, poly_pairs=polymer)) for step in range(1, 40 + 1): new_polymer = next_step(polymer, pair_rules) polymer = new_polymer.copy() print() print(step, polymer) print(pairs_to_counts(original_poly=raw_polymer, poly_pairs=polymer)) # Find the smallest and largest counts. counts = pairs_to_counts(original_poly=raw_polymer, poly_pairs=polymer) min_count, max_count = None, None for element in counts: if min_count is None: min_count = counts[element] max_count = counts[element] else: min_count = min(counts[element], min_count) max_count = max(counts[element], max_count) print(max_count - min_count) ``` #### File: advent-of-code-2021/15-chiton/solution15_1.py ```python def find_least_risk(current: tuple, goal: tuple, visited: list, total_risk: int): global best # This search is getting too circuitous, so best to give up. # Why 220? Its greater than cavern_x + cavern_y which is length of shortest routes to goal (no backtracking). # The higher this number is, the longer the search takes. 220 is big enough to produce correct answer. # Greater than about 950, and Python recursion stack is likely to overflow. if len(visited) > 220: return # We've gone outside of the boundaries of the cavern. if current not in cavern: return # Abandon paths that visit a coordinate that we've been to before in this search. if current in visited: return total_risk += cavern[current] # Abandon paths that have greater total risk than previous best found. if current in best and best[current] <= total_risk: return # Exciting times... this is the best path to this coordinate so far! best[current] = total_risk # Great! We've reached the end. if current == goal: print(best[current]) return # Let's continue the search. new_visited = visited.copy() new_visited.append(current) x, y = current for dx, dy in [(1, 0), (0, 1), (-1, 0), (0, -1)]: # Search West, East, North and South. find_least_risk((x + dx, y + dy), goal, new_visited, total_risk) cavern, best = {}, {} f = open('input.txt') t = f.read() f.close() cavern_x, cavern_y = 0, 0 for row in t.split('\n'): cavern_x = 0 for risk in row: cavern[cavern_x, cavern_y] = int(risk) cavern_x += 1 cavern_y += 1 # Fix a gatepost error. cavern_x -= 1 cavern_y -= 1 cavern[(0, 0)] = 0 find_least_risk(current=(0, 0), goal=(cavern_x, cavern_y), visited=[], total_risk=0) ``` #### File: advent-of-code-2021/16-packet-decoder/solution16.py ```python def slicer(s: str, slice_pos: int) -> tuple: """Return a tuple of strings which are the parm string cleaved at its parm slice position.""" return s[0:slice_pos], s[slice_pos:] def decode(bits: str) -> (str, int): global VERSION_SUM print() print('parsing new packets') print('bits:', bits) # Every packet begins with a standard header: the first three bits encode the packet version. packet_version_raw, bits = slicer(bits, 3) packet_version = int(packet_version_raw, 2) print('packet_version:', packet_version) VERSION_SUM += packet_version # ... and the next three bits encode the packet type ID. packet_type_id_raw, bits = slicer(bits, 3) packet_type_id = int(packet_type_id_raw, 2) print('packet_type_id:', packet_type_id) # Packets with type ID 4 represent a literal value. if packet_type_id == 4: print('parsing a literal') literal_value_raw = '' continue_ind = '1' while continue_ind == '1': five_bits, bits = slicer(bits, 5) continue_ind, num_bits_raw = slicer(five_bits, 1) literal_value_raw += num_bits_raw print(' literal_value_raw:', literal_value_raw) literal_value = int(literal_value_raw, 2) print(' literal_value:', literal_value) return bits, literal_value # # The three unlabeled 0 bits at the end are extra due to the hexadecimal representation and should be ignored. # _, bits = slicer(bits, 3) # Every other type of packet (any packet with a type ID other than 4) represent an operator... else: length_type_id, bits = slicer(bits, 1) operands = [] # If the length type ID is 0, then the next 15 bits are a number that represents the total length in bits of the # sub-packets contained by this packet. if length_type_id == '0': sub_packet_length_raw, bits = slicer(bits, 15) sub_packet_length = int(sub_packet_length_raw, 2) print('sub_packet_length:', sub_packet_length) sub_packet, bits = slicer(bits, sub_packet_length) print('sub_packet:', sub_packet) while len(sub_packet) > 0: sub_packet, number = decode(sub_packet) operands.append(number) # If the length type ID is 1, then the next 11 bits are a number that represents the number of sub-packets # immediately contained by this packet. else: assert length_type_id == '1' num_of_sub_packets_raw, bits = slicer(bits, 11) num_of_sub_packets = int(num_of_sub_packets_raw, 2) print('num_of_sub_packets:', num_of_sub_packets) for sub_packet_iterations in range(num_of_sub_packets): bits, number = decode(bits) operands.append(number) print('operands:', operands) # Packets with type ID 0 are sum packets - their value is the sum of the values of their sub-packets. If they # only have a single sub-packet, their value is the value of the sub-packet. if packet_type_id == 0: return bits, sum(operands) # Packets with type ID 1 are product packets - their value is the result of multiplying together the values of # their sub-packets. If they only have a single sub-packet, their value is the value of the sub-packet. elif packet_type_id == 1: product = 1 for term in operands: product *= term return bits, product # Packets with type ID 2 are minimum packets - their value is the minimum of the values of their sub-packets. elif packet_type_id == 2: return bits, min(operands) # Packets with type ID 3 are maximum packets - their value is the maximum of the values of their sub-packets. if packet_type_id == 3: return bits, max(operands) # Packets with type ID 5 are greater than packets - their value is 1 if the value of the first sub-packet is # greater than the value of the second sub-packet; otherwise, their value is 0. These packets always have # exactly two sub-packets. if packet_type_id == 5: if operands[0] > operands[1]: return bits, 1 else: return bits, 0 # Packets with type ID 6 are less than packets - their value is 1 if the value of the first sub-packet is less # than the value of the second sub-packet; otherwise, their value is 0. These packets always have exactly two # sub-packets. if packet_type_id == 6: if operands[0] < operands[1]: return bits, 1 else: return bits, 0 # Packets with type ID 7 are equal to packets - their value is 1 if the value of the first sub-packet is equal # to the value of the second sub-packet; otherwise, their value is 0. These packets always have exactly two # sub-packets. if packet_type_id == 7: if operands[0] == operands[1]: return bits, 1 else: return bits, 0 return bits, 0 def decode_hex(h: str) -> int: h_to_b = {'0': '0000', '1': '0001', '2': '0010', '3': '0011', '4': '0100', '5': '0101', '6': '0110', '7': '0111', '8': '1000', '9': '1001', 'A': '1010', 'B': '1011', 'C': '1100', 'D': '1101', 'E': '1110', 'F': '1111'} start_bits = '' for digit in h: start_bits += h_to_b[digit] # Discard the leftover, un-parsed string. _, result = decode(start_bits) return result assert slicer(s='123456789', slice_pos=2) == ('12', '3456789') VERSION_SUM = 0 decode_hex('8A004A801A8002F478') assert VERSION_SUM == 16 VERSION_SUM = 0 decode_hex('620080001611562C8802118E34') assert VERSION_SUM == 12 VERSION_SUM = 0 decode_hex('C0015000016115A2E0802F182340') assert VERSION_SUM == 23 VERSION_SUM = 0 decode_hex('A0016C880162017C3686B18A3D4780') assert VERSION_SUM == 31 assert decode_hex('D2FE28') == 2021 assert decode_hex('C200B40A82') == 3 assert decode_hex('04005AC33890') == 54 assert decode_hex('880086C3E88112') == 7 assert decode_hex('CE00C43D881120') == 9 assert decode_hex('D8005AC2A8F0') == 1 assert decode_hex('F600BC2D8F') == 0 assert decode_hex('9C005AC2F8F0') == 0 assert decode_hex('9C0141080250320F1802104A08') == 1 f = open('input.txt') t = f.read() f.close() VERSION_SUM = 0 part2 = decode_hex(t) print('Part 1:', VERSION_SUM) print('Part 2:', part2) ``` #### File: advent-of-code-2021/18-snailfish/solution18.py ```python import json from itertools import permutations def str_to_list(s: str) -> list: """For the parm list, return the equivalent string.""" if s.count('[') <= 1: # print(s) return json.loads(s) # Strip off outer pair of square brackets. inner = s[1:-1] elements = [] depth = 0 this_element = '' for c in inner: if c == ',' and depth == 0: elements.append(str_to_list(this_element)) this_element = '' else: this_element += c if c == '[': depth += 1 if c == ']': depth -= 1 elements.append(str_to_list(this_element)) return elements def list_to_str(parm_list: list) -> str: return (str(parm_list)).replace(' ', '') def first_num(s: str) -> (int, int): """For parm string, return the start and end positions of the first number in the string.""" start_num, end_num = None, None for i in range(len(s)): if s[i].isdigit(): if start_num is None: start_num = i else: # Not a digit. if start_num is not None and end_num is None: end_num = i - 1 # Gatepost! # Deal with all digits string case. if start_num is not None and end_num is None: end_num = len(s) - 1 return start_num, end_num def last_num(s: str) -> (int, int): """For parm string, return the start and end positions of the last number in the string.""" start, end = first_num(s[::-1]) # Obtain position of first number in reversed string. if start is None: return None, None return len(s) - end - 1, len(s) - start - 1 def first_10_or_more(s: str) -> (int, int): start_num, end_num = None, None for i in range(len(s)): if s[i].isdigit(): if start_num is None: start_num = i else: # Not a digit. if start_num is not None and end_num is None: end_num = i - 1 # Gatepost! if start_num == end_num: # 1 digit number, so restart the search. start_num, end_num = None, None # Deal with all digits string case. if start_num is not None and end_num is None: end_num = len(s) - 1 if start_num == end_num: # 1 digit number. return None, None return start_num, end_num def begin_explode(num, depth: int) -> (list, int, int): if type(num) == int: return num, None, None if depth == 4: left = num[0] right = num[1] return 'X', left, right left = num[0] right = num[1] stop_exploding = False inside_left, add_left, add_right = begin_explode(left, depth + 1) if add_left is not None or add_right is not None: stop_exploding = True inside_right = right if not stop_exploding: inside_right, add_left, add_right = begin_explode(right, depth + 1) return [inside_left, inside_right], add_left, add_right def add_to_first_num(s: str, add_on: int) -> str: start, end = first_num(s) if start is None: return s before = s[0:start] num = str(int(s[start:end + 1]) + add_on) after = s[end + 1:] return before + num + after def add_to_last_num(s: str, add_on: int) -> str: start, end = last_num(s) if start is None: return s before = s[0:start] num = str(int(s[start:end + 1]) + add_on) after = s[end + 1:] return before + num + after def explode(s: str) -> str: result, add_left, add_right = begin_explode(str_to_list(s), 0) # print(result, add_left, add_right) result_str = list_to_str(result) if 'X' not in result_str: return s left, right = result_str.split("'X'") new_left = add_to_last_num(left, add_left) new_right = add_to_first_num(right, add_right) return new_left + '0' + new_right def split(s: str) -> str: start, end = first_10_or_more(s) if start is None: return s before = s[0:start] num = int(s[start:end + 1]) after = s[end + 1:] return before + '[' + str(num // 2) + ',' + str(round((num + 0.1) / 2)) + ']' + after def reduce(s: str) -> str: new_str = explode(s) if new_str != s: return reduce(new_str) else: # Explode had no effect, so lets try a split. new_str = split(s) if new_str != s: return reduce(new_str) return s def add(s1: str, s2: str) -> str: return reduce('[' + s1 + ',' + s2 + ']') def magnitude(num) -> int: if type(num) == int: return num left = num[0] right = num[1] return 3 * magnitude(left) + 2 * magnitude(right) assert str_to_list('[1,2]') == [1, 2] assert str_to_list('[[1,2],3]') == [[1, 2], 3] assert str_to_list('[9,[8,7]]') == [9, [8, 7]] assert str_to_list('[[1,9],[8,5]]') == [[1, 9], [8, 5]] assert str_to_list('[[[[1,2],[3,4]],[[5,6],[7,8]]],9]') == [[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], 9] assert str_to_list('[[[9,[3,8]],[[0,9],6]],[[[3,7],[4,9]],3]]') == [[[9, [3, 8]], [[0, 9], 6]], [[[3, 7], [4, 9]], 3]] assert str_to_list('[[[[1,3],[5,3]],[[1,3],[8,7]]],[[[4,9],[6,9]],[[8,2],[7,3]]]]') == [[[[1, 3], [5, 3]], [[1, 3], [8, 7]]], [[[4, 9], [6, 9]], [[8, 2], [7, 3]]]] assert list_to_str([1, 2]) == '[1,2]' assert list_to_str([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], 9]) == '[[[[1,2],[3,4]],[[5,6],[7,8]]],9]' assert first_num(',4],4],[7,[[8,4],9]]],[1,1]]') == (1, 1) assert first_num('abcde123zse345fg') == (5, 7) assert first_num('1234') == (0, 3) assert first_num('abcdefg') == (None, None) assert first_num('') == (None, None) assert last_num('1234') == (0, 3) assert last_num('abcde123ss10a') == (10, 11) assert last_num('dddffes') == (None, None) assert last_num('') == (None, None) assert add_to_first_num('abcde123zse345fg', 10) == 'abcde133zse345fg' assert add_to_first_num('abcdezsefg', 10) == 'abcdezsefg' assert add_to_first_num('abcd0eert', 12) == 'abcd12eert' assert add_to_last_num('abcde123zse345fg', 10) == 'abcde123zse355fg' assert add_to_last_num('abcdezsefg', 10) == 'abcdezsefg' assert add_to_last_num('abcd0eert', 12) == 'abcd12eert' assert explode('[[[[[9,8],1],2],3],4]') == '[[[[0,9],2],3],4]' assert explode('[[[[[4,3],4],4],[7,[[8,4],9]]],[1,1]]') == '[[[[0,7],4],[7,[[8,4],9]]],[1,1]]' assert explode('[[[[0,7],4],[7,[[8,4],9]]],[1,1]]') == '[[[[0,7],4],[15,[0,13]]],[1,1]]' assert first_10_or_more('12345efg') == (0, 4) assert first_10_or_more('a3bc100efg') == (4, 6) assert first_10_or_more('123') == (0, 2) assert first_10_or_more('1') == (None, None) assert first_10_or_more('dfgsdsgsdf') == (None, None) assert first_10_or_more('4dfdf3dfdfk9dffff0') == (None, None) assert split('10') == '[5,5]' assert split('11') == '[5,6]' assert split('12') == '[6,6]' assert split('[[[[0,7],4],[15,[0,13]]],[1,1]]') == '[[[[0,7],4],[[7,8],[0,13]]],[1,1]]' assert split('[[[[0,7],4],[[7,8],[0,13]]],[1,1]]') == '[[[[0,7],4],[[7,8],[0,[6,7]]]],[1,1]]' assert split('[[[[0,7],4],[[7,8],[0,13]]],[1,21]]') == '[[[[0,7],4],[[7,8],[0,[6,7]]]],[1,21]]' assert reduce('[[[[[4,3],4],4],[7,[[8,4],9]]],[1,1]]') == '[[[[0,7],4],[[7,8],[6,0]]],[8,1]]' assert add('[1,2]', '[[3,4],5]') == '[[1,2],[[3,4],5]]' assert add('[[[[4,3],4],4],[7,[[8,4],9]]]', '[1,1]') == reduce('[[[[[4,3],4],4],[7,[[8,4],9]]],[1,1]]') assert add('[[[0,[4,5]],[0,0]],[[[4,5],[2,6]],[9,5]]]', '[7,[[[3,7],[4,3]],[[6,3],[8,8]]]]') == '[[[[4,0],[5,4]],[[7,7],[6,0]]],[[8,[7,7]],[[7,9],[5,0]]]]' assert add('[[[[4,0],[5,4]],[[7,7],[6,0]]],[[8,[7,7]],[[7,9],[5,0]]]]', '[[2,[[0,8],[3,4]]],[[[6,7],1],[7,[1,6]]]]') == '[[[[6,7],[6,7]],[[7,7],[0,7]]],[[[8,7],[7,7]],[[8,8],[8,0]]]]' assert magnitude([9, 1]) == 29 assert magnitude([[9, 1], [1, 9]]) == 129 assert magnitude([[1, 2], [[3, 4], 5]]) == 143 assert magnitude([[[[8, 7], [7, 7]], [[8, 6], [7, 7]]], [[[0, 7], [6, 6]], [8, 7]]]) == 3488 f = open('input.txt') t = f.read() f.close() numbers = [] so_far = None for line in t.split('\n'): numbers.append(line) # print(so_far, line) if so_far is None: so_far = line else: so_far = add(so_far, line) print('Part 1:', magnitude(str_to_list(so_far))) largest = 0 for n1, n2 in permutations(numbers, 2): m = magnitude(str_to_list(add(n1, n2))) largest = max(largest, m) print('Part 2:', largest) ``` #### File: advent-of-code-2021/21-dirac-dice/solution21_1.py ```python class Die: def __init__(self): self.rolls = 0 # Number of times the dies has been rolled. self.value = None # Value the die returned last time it was rolled. def roll(self): if self.value is None: # This die always rolls 1 first. self.value = 1 else: self.value += 1 if self.value >= 101: self.value = 1 # ... and so on up to 100, after which it starts over at 1 again. self.rolls += 1 class Player: def __init__(self, start: int): self.space = start # Current space the player is on. self.score = 0 self.winner = False class Game: def __init__(self, p1_start: int, p2_start: int): self.players = [Player(p1_start), Player(p2_start)] self.die = Die() def one_roll(self, player_num: int): curr_space = self.players[player_num].space self.die.roll() new_space = (curr_space - 1 + self.die.value) % 10 + 1 self.players[player_num].space = new_space def turn(self, player_num: int): for rolls in range(3): self.one_roll(player_num) self.players[player_num].score += self.players[player_num].space if self.players[player_num].score >= 1000: self.players[player_num].winner = True test_die = Die() assert test_die.rolls == 0 test_die.roll() assert test_die.value == 1 assert test_die.rolls == 1 for i in range(100): test_die.roll() assert test_die.value == 1 assert test_die.rolls == 101 test_game = Game(4, 8) assert test_game.die.rolls == 0 assert test_game.die.value is None assert test_game.players[0].space == 4 assert test_game.players[1].space == 8 test_game.one_roll(player_num=0) assert test_game.players[0].space == 5 test_game.one_roll(player_num=0) test_game.one_roll(player_num=0) assert test_game.players[0].space == 10 test_game.turn(1) assert test_game.players[1].space == 3 assert test_game.players[1].score == 3 test_game.one_roll(player_num=0) test_game.one_roll(player_num=0) test_game.one_roll(player_num=0) assert test_game.players[0].space == 4 # ---- my_game = Game(10, 6) curr_player = 0 game_over = False while not game_over: my_game.turn(curr_player) game_over = my_game.players[curr_player].winner curr_player = (curr_player + 1) % 2 print(my_game.die.rolls) print(my_game.players[curr_player].score) print(my_game.die.rolls * my_game.players[curr_player].score) ``` #### File: advent-of-code-2021/23-amphipod/solution23_1.py ```python import queue def manhattan(t1b: tuple, t2b: tuple) -> int: """For parm pair of coordinate tuples, each (x, y). Return the Manhattan distance between them.""" t1x, t1y = t1b t2x, t2y = t2b return abs(t1x - t2x) + abs(t1y - t2y) def distance(origin: (int, int), destination: (int, int), positions: dict): species = positions[origin] energy_per_step = {'A': 1, 'B': 10, 'C': 100, 'D': 1000}[species] return energy_per_step * manhattan(origin, destination) def dict_hash(di: dict): # Based on one of the answers here, https://stackoverflow.com/questions/5884066/hashing-a-dictionary return hash(frozenset(di.items())) def home_column(species: str) -> int: return {'A': 3, 'B': 5, 'C': 7, 'D': 9}[species] def in_hallway(position: (int, int)) -> bool: _, row = position return row == 1 def other_species(species: str) -> list: return {'A': ['B', 'C', 'D'], 'B': ['A', 'C', 'D'], 'C': ['A', 'B', 'D'], 'D': ['A', 'B', 'C']}[species] def print_burrow(creatures: dict): graphic = """############# #...........# ###.#.#.#.### #.#.#.#.# #########""" x, y = 0, 0 for g in graphic: if (x, y) in creatures: print(creatures[x, y], end='') else: print(g, end='') x += 1 if g == '\n': x = 0 y += 1 print() def str_to_creatures(s: str) -> dict: creatures = {} x, y = 0, 0 for c in s: if c in ['A', 'B', 'C', 'D']: creatures[(x, y)] = c x += 1 if c == '\n': x = 0 y += 1 return creatures def currently_reachable(position: (int, int), creature_positions: dict, found_so_far: list) -> list: """For the creature at parm position. Return list of all possible places it can reach right now.""" # No move possible. if len(edges[position]) == 0: return [] for candidate_pos in edges[position]: # Check no creature in the candidate position. # Also check it is not a position that we've found already. if candidate_pos not in creature_positions and candidate_pos not in found_so_far: found_so_far.append(candidate_pos) currently_reachable(candidate_pos, creature_positions, found_so_far) return found_so_far def possible_moves(position: (int, int), all_positions: dict) -> list: """For the creature at parm position. Return a list of its possible next moves.""" candidates_moves = currently_reachable(position, all_positions, []) valid_moves = [] if in_hallway(position): species = all_positions[position] home_col = home_column(species) for this_candidate in candidates_moves: (x, y) = this_candidate if x == home_col: # Will only move from hallway to its own home column. # Check there no creatures of other species in the home column. all_my_species = True for check_y in range(2, 3 + 1): if (x, check_y) in all_positions: if all_positions[x, check_y] in other_species(species): all_my_species = False if all_my_species: # Check row is first unoccupied one. first_unoccupied = None for check_y in range(3, 2 - 1, -1): if first_unoccupied is None and (x, check_y) not in all_positions: first_unoccupied = check_y if y == first_unoccupied: valid_moves.append(this_candidate) else: # In a home. So only places to go are hallways. for this_candidate in candidates_moves: if in_hallway(this_candidate): valid_moves.append(this_candidate) return valid_moves # (1, 1) (2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (11, 1) # (3, 2) (5, 2) (7, 2) (9, 2) # (3, 3) (5, 3) (7, 3) (9, 3) # (3, 4) (5, 4) (7, 4) (9, 4) # (3, 5) (5, 5) (7, 5) (9, 5) all_home_hash = dict_hash({(3, 2): 'A', (3,3): 'A', (5,2): 'B', (5,3): 'B', (7, 2): 'C', (7, 3): 'C', (9, 2): 'D', (9, 3): 'D'}) # hallway = [(1, 1), (2, 1), (4, 1), (6, 1), (8, 1), (10, 1), (11, 1)] edges_1_way = [(1, 1, 2, 1), (2, 1, 4, 1), (4, 1, 6, 1), (6, 1, 8, 1), (8, 1, 10, 1), (10, 1, 11, 1), (2, 1, 3, 2), (4, 1, 3, 2), (4, 1, 5, 2), (6, 1, 5, 2), (6, 1, 7, 2), (8, 1, 7, 2), (8, 1, 9, 2), (10, 1, 9, 2), (3, 2, 3, 3), (5, 2, 5, 3), (7, 2, 7, 3), (9, 2, 9, 3)] # All edges are bi-directional. So work out the opposite directions. edges_2_ways = edges_1_way.copy() for xo, yo, xd, yd in edges_1_way: edges_2_ways.append((xd, yd, xo, yo)) # k = Origin coordinates (x, y). # v = List of possible destinations from the origin, each (x, y). edges = {} for (xo, yo, xd, yd) in edges_2_ways: if (xo, yo) in edges: destinations = edges[(xo, yo)] destinations.append((xd, yd)) else: edges[(xo, yo)] = [(xd, yd)] home_diagram = """############# #...........# ###B#C#B#D### #A#D#C#A# #########""" home_creatures = str_to_creatures(home_diagram) print_burrow(home_creatures) print((3, 2), home_creatures[(3, 2)], possible_moves((3,2), home_creatures)) print((3, 3), home_creatures[(3, 3)], possible_moves((3, 3), home_creatures)) print() assert manhattan((3, 2), (2, 1)) == 2 assert manhattan((2, 1), (3, 2)) == 2 assert manhattan((11, 1), (10, 1)) == 1 assert manhattan((3, 2), (3, 3)) == 1 assert distance((3, 2), (1, 1), home_creatures) == 30 # 'B' moves 3 squares. assert distance((9, 2), (1, 1), home_creatures) == 9000 # 'D' moves 9 squares. assert dict_hash({(3, 2): 'A', (3, 3): 'B'}) == dict_hash({(3, 2): 'A', (3, 3): 'B'}) # Not random. assert dict_hash({(3, 2): 'A', (3, 3): 'B'}) == dict_hash({(3, 3): 'B', (3, 2): 'A'}) # Not random. assert dict_hash({(3, 2): 'A', (3, 3): 'B'}) != dict_hash({(3, 2): 'A', (3, 4): 'B'}) # Change a key. assert dict_hash({(3, 2): 'A', (3, 3): 'B'}) != dict_hash({(3, 2): 'A', (3, 3): 'C'}) # Change a value. assert home_column('A') == 3 assert home_column('D') == 9 assert in_hallway((1, 1)) is True assert in_hallway((3, 2)) is False assert other_species('A') == ['B', 'C', 'D'] assert other_species('D') == ['A', 'B', 'C'] diagram2 = """############# #.....B.....# ###B#C#.#D### #A#D#C#A# #########""" creatures2 = str_to_creatures(diagram2) print_burrow(creatures2) print((3, 2), creatures2[(3, 2)], possible_moves((3,2), creatures2)) print((6, 1), creatures2[(6, 1)], possible_moves((6, 1), creatures2)) print() diagram3 = """############# #.....B...C.# ###B#C#.#D### #A#D#.#A# #########""" creatures3 = str_to_creatures(diagram3) print_burrow(creatures3) print((9, 2), creatures3[(9, 2)], possible_moves((9, 2), creatures3)) print((10, 1), creatures3[(10, 1)], possible_moves((10, 1), creatures3)) print((6, 1), creatures3[(6, 1)], possible_moves((6, 1), creatures3)) print() diagram4 = """############# #...B.B...C.# ###.#C#.#D### #A#D#.#A# #########""" creatures4 = str_to_creatures(diagram4) print_burrow(creatures4) print((5, 2), creatures4[(5, 2)], possible_moves((5, 2), creatures4)) print() diagram5 = """############# #C.........D# ###B#B#.#.### #A#D#C#A# #########""" creatures5 = str_to_creatures(diagram5) print_burrow(creatures5) print((1, 1), creatures5[(1, 1)], possible_moves((1, 1), creatures5)) print((11, 1), creatures5[(11, 1)], possible_moves((11, 1), creatures5)) print() f = open('input.txt') t = f.read() f.close() amphipods = str_to_creatures(t) source_hash = dict_hash(amphipods) # self.graph[source_hash] = self.amphipods pq = queue.PriorityQueue() unfinished = set() discovered = {} dist = {} # for v_hash in self.graph: # dist[v_hash] = sys.maxsize # # if v_hash != source_hash: # pq.put((dist[v_hash], v_hash)) # unfinished.add(v_hash) # dist[source] ← 0 dist[source_hash] = 0 unfinished.add(source_hash) discovered[source_hash] = amphipods pq.put((dist[source_hash], source_hash)) while not pq.empty(): print('pq.qsize(), len(unfinished):', pq.qsize(), len(unfinished)) _, u = pq.get() if u in unfinished: unfinished.remove(u) u_positions = discovered[u] for u_creature in u_positions: species = u_positions[u_creature] for pick_move in possible_moves(u_creature, u_positions): v_positions = u_positions.copy() del v_positions[u_creature] v_positions[pick_move] = species v_hash = dict_hash(v_positions) # print('u_creature', u_creature) # print('pick_move', pick_move) # print('species', species) # print('u_positions', u_positions) # print('v_positions', v_positions) alt = dist[u] + distance(u_creature, pick_move, u_positions) if v_hash in unfinished: alt = dist[u] + distance(u_creature, pick_move, u_positions) if alt < dist[v_hash]: dist[v_hash] = alt # # if v_hash in unfinished: pq.put((alt, v_hash)) elif v_hash not in discovered: discovered[v_hash] = v_positions pq.put((alt, v_hash)) unfinished.add(v_hash) dist[v_hash] = alt # return dist[], prev[] print(dist[all_home_hash]) # print(len(unfinished), len(dist), len(discovered)) ```
{ "source": "johntelforduk/aoc-py-2018", "score": 4 }
#### File: aoc-py-2018/aoc-d14/aoc-d14.py ```python def int_list_to_str(list): # Convert a list of integers to a string. result = "" for i in list: result = result + str(i) return (result) class Kitchen: def __init__(self, target_pattern): self.recipes = [] # List of recipes created so far. self.num_recipes = 0 # Number of recipes produced so far.\ self.elves = [] # List of Elves working in the kitchen. self.num_elves = 0 # Number of elves working in the kitchen. self.target_pattern = target_pattern # The pattern of recipes that the kitchen is looking for. self.target_found = False # Has the target recipe pattern been found yet? self.target_found_recipes = 0 # Target pattern found after this many recipes. def __str__(self): recs = "" for r in range(0, self.num_recipes): recipe_str = str(self.recipes[r]) if r == self.elves[0]: # Round brackets around 1st elf's current recipe. recs = recs + "(" + recipe_str + ")" elif r == self.elves[1]: recs = recs + "[" + recipe_str + "]" # Square brackets around 2ns elf's current recipe. else: recs = recs + " " + recipe_str + " " return recs def add_recipe(self, new_recipe): self.num_recipes = self.num_recipes + 1 self.recipes.append(new_recipe) def add_elf(self, start_recipe): self.add_recipe(start_recipe) self.elves.append(self.num_recipes - 1) self.num_elves = self.num_elves + 1 def check_target_found(self): if self.num_recipes >= len(self.target_pattern) and self.target_found is False: last_few_recipes = \ self.recipes[(self.num_recipes - len(self.target_pattern)) \ :(self.num_recipes + len(self.target_pattern))] if self.target_pattern == last_few_recipes: self.target_found = True self.target_found_recipes = self.num_recipes def new_recipe(self): rec1 = self.recipes[self.elves[0]] # 1st elf's current recipe. rec2 = self.recipes[self.elves[1]] # 2nd elf's current recipe. new_rec = rec1 + rec2 # Calculate the new recipte. new_rec_div10 = new_rec // 10 # New recipe DIV 10 new_rec_mod10 = new_rec % 10 # New recipe MOD 10 if new_rec_div10 > 0: self.add_recipe(new_rec_div10) self.check_target_found() self.add_recipe(new_rec_mod10) self.check_target_found() def move_elves(self): for e in range (0, self.num_elves): steps = self.recipes[self.elves[e]] + 1 # How many steps forwards for this elf. self.elves[e] = (self.elves[e] + steps) % self.num_recipes # Move him that far, looping back if necessary. practices = 793031 choc_kitchen = Kitchen([7,9,3,0,3,1]) # Create a hot chocolate kitchen, that will look for the parm pattern. choc_kitchen.add_elf(3) # Elf #1 makes recipe 3. choc_kitchen.add_elf(7) # Elf #2 makes recipe 7. if practices < 50: print(choc_kitchen) p1_done = False p2_done = False while p1_done is False or p2_done is False: choc_kitchen.new_recipe() choc_kitchen.move_elves() if practices < 50: print (choc_kitchen) else: if (choc_kitchen.num_recipes % 100000) == 0: print ("Num recipes so far : %d" % choc_kitchen.num_recipes) # Part 1 of the puzzle. if choc_kitchen.num_recipes > (practices + 10) and p1_done is False: print ("After %d recipes, the scores of the next ten would be %s." \ % (practices, int_list_to_str(choc_kitchen.recipes[(practices):(practices + 10)]))) p1_done = True # Part 2 of the puzzle. if choc_kitchen.target_found and p2_done is False: print ("%s first appears after %d recipes." \ % (int_list_to_str(choc_kitchen.target_pattern), \ choc_kitchen.target_found_recipes - len(choc_kitchen.target_pattern))) p2_done = True ```
{ "source": "johntelforduk/deep-racer", "score": 4 }
#### File: johntelforduk/deep-racer/cartesian_coordinates.py ```python import math def translation(vertex, delta): """Move, or slide, a coordinate in 2d space.""" [vertex_x, vertex_y] = vertex [delta_x, delta_y] = delta return [vertex_x + delta_x, vertex_y + delta_y] def scale(vertex, scale_factor): """Move a coordinate closer / further from origin. If done for all vertices in a 2d shape, it has the effect of changing the size of the whole shape.""" [vertex_x, vertex_y] = vertex return [vertex_x * scale_factor, vertex_y * scale_factor] def rotate_around_origin(vertex, rotation_degrees): """For parm coordinate and rotation in degrees, return its new coordinate after rotation.""" [vertex_x, vertex_y] = vertex rotation_radians = math.radians(rotation_degrees) # Method is described here, # https://en.wikipedia.org/wiki/Rotation_of_axes#Derivation return[vertex_x * math.cos(rotation_radians) + vertex_y * math.sin(rotation_radians), - vertex_x * math.sin(rotation_radians) + vertex_y * math.cos(rotation_radians) ] def rotate_around_a_point(vertex, pivot, rotation_degrees): """Rotate a parm coordinate around a parm pivot point by parm number of degrees.""" [pivot_x, pivot_y] = pivot # Method has 3 steps, # 1. Move the vertex so that centre of rotations is now the origin. # 2. Rotate around origins. # 3. Do the opposite of move in 1. moved_vertex = translation(vertex, [-pivot_x, -pivot_y]) # Step 1. rotated_vertex = rotate_around_origin(moved_vertex, rotation_degrees) # Step 2. re_moved_vertex = translation(rotated_vertex, pivot) # Step 3. return re_moved_vertex ``` #### File: johntelforduk/deep-racer/parse_logs.py ```python def filename_to_list_of_strings(filename): output = [] with open(filename) as fileobj: for line in fileobj: output.append((line.replace('\n', '')).split(' ')) return output # For example, # input_list = [['foo', 'bar', 'harry'], ['foo', 'miss', 'david']] # target = 'bar' # output = [['foo', 'bar', 'harry']] def filter_by_2nd_item(input_list, target): output = [] for item in input_list: if item[1] == target: output.append(item) return output # Make a list of waypoints out of filtered list of waypoint strings. def make_list_of_waypoints(input_list): output = [] pos = -1 for item in input_list[0]: # Every item in the list is same, so arbitrarily pick 1st one. pos += 1 if pos >= 2: # Ignore the first two items in the list, tuple_pos = (pos - 2) % 3 if tuple_pos == 0: i1 = item elif tuple_pos == 1: i2 = item else: waypoint = {} waypoint['waypoint'] = int(i1) waypoint['x'] = float(i2) waypoint['y'] = float(item) output.append(waypoint) # Append the tuple. return output # 'true' -> True, 'false' -> False def string_to_bool(s): return s == 'true' def make_list_of_statuses(input_list): output = [] for s in input_list: status = {} status['timestamp'] = float(s[2]) status['all_wheels_on_track'] = string_to_bool(s[3]) status['x'] = float(s[4]) status['y'] = float(s[5]) status['distance_from_center'] = float(s[6]) status['is_left_of_center'] = string_to_bool(s[7]) status['heading'] = float(s[8]) status['progress'] = float(s[9]) status['steps'] = int(s[10]) status['speed'] = float(s[11]) status['steering_angle'] = float(s[12]) status['track_width'] = float(s[13]) status['max_speed'] = float(s[14]) status['max_steer'] = float(s[15]) status['near_centre_of_track'] = string_to_bool(s[16]) status['quite_near_centre_of_track'] = string_to_bool(s[17]) status['heading_in_right_direction'] = string_to_bool(s[18]) status['turning_hard'] = string_to_bool(s[19]) status['going_straight'] = string_to_bool(s[20]) status['going_fast'] = string_to_bool(s[21]) status['going_slowly'] = string_to_bool(s[22]) status['correcting_course'] = string_to_bool(s[23]) status['rule_number'] = int(s[24]) status['rule_description'] = s[25].replace('_', ' ') status['reward_level'] = s[26].replace('_', ' ') status['score'] = float(s[27]) output.append(status) return output ``` #### File: johntelforduk/deep-racer/test_cartesian_coordinates.py ```python import cartesian_coordinates as cc import unittest from math import sqrt class TestCartesianCoordinates(unittest.TestCase): def test_translation(self): self.assertEqual(cc.translation([2.0, 3.0], [10.0, 11.0]), [12.0, 14.0]) def test_scale(self): self.assertEqual(cc.scale([2.0, 3.0], 5), [10.0, 15.0]) def test_rotate_around_origin(self): new_position = cc.rotate_around_origin([1.0, 0.0], 90) self.assertAlmostEqual(new_position[0], 0.0) # X self.assertAlmostEqual(new_position[1], -1.0) # Y new_position = cc.rotate_around_origin([1.0, 0.0], -45) self.assertAlmostEqual(new_position[0], sqrt(2) / 2) # X self.assertAlmostEqual(new_position[1], sqrt(2) / 2) # Y def test_rotate_around_a_point(self): self.assertEqual(cc.rotate_around_a_point([2.0, 3.0], [2.0, 2.0], 90.0), [3.0, 2.0]) if __name__ == '__main__': unittest.main() ```
{ "source": "johntelforduk/grammar-bot", "score": 3 }
#### File: johntelforduk/grammar-bot/server.py ```python from flask import Flask, render_template from datetime import datetime import tweepy from sys import argv from grammar_bot import GrammarBot from recent_tweets import RecentTweets from dotenv import load_dotenv from os import getenv DEBUG_ENABLED = '-d' in argv def debug(msg): """If in debug mode, send a debug message to stdout.""" if DEBUG_ENABLED: print("Debug: {}".format(msg)) def now_str() -> str: """Return the time right now as a nicely formatted string.""" time_list = str(datetime.now()).split('.') return time_list[0] def obtain_twitter_api(): """Do Twitter authentication. Return a Tweepy API object.""" consumer_key = getenv('API_KEY') consumer_secret = getenv('API_SECRET_KEY') access_token = getenv('ACCESS_TOKEN') access_token_secret = getenv('ACCESS_TOKEN_SECRET') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) return tweepy.API(auth) def check_tweet(status, mode: str): """Check whether the parm tweet needs to be 'corrected'. If it does, then send the user a tweet that corrects it!""" user_id = str(status.user.id) # Most of the Twitter APIs use string user IDs. tweet_id = status.id user_screen_name = '@' + status.user.screen_name # Put an @ on front of user name. text = status.text debug('user_id={} tweet_id={} user_screen_name={} text={}'.format(user_id, tweet_id, user_screen_name, text)) # Skip tweets which are retweets. The key word might be in the quoted tweet. if text[0:3] != 'RT ': suggestion = bot.grammar_check(text) debug('suggestion={}'.format(suggestion)) # Skip tweets that the bot didn't find grammatical errors in. if suggestion is not '': # Is this tweet more recent than last tweet we corrected for this user? if tweet_id > recent_tweets.recent_tweet_id(user_id): reply_text = 'Hi ' + user_screen_name + ", I think you meant '" + suggestion + "'." debug('tweet_id={} user_id={}'.format(tweet_id, user_id)) print() print('{}: {}'.format(user_screen_name, text)) print('@HelperGrammar: {}'.format(reply_text)) api.update_status(status=reply_text, in_reply_to_status_id=tweet_id, ) # Put row into the DynamoDB table. status = {'user_id': user_id, 'tweet_id': tweet_id, 'timestamp': now_str(), 'user_screen_name': user_screen_name, 'text': text, 'reply_text': reply_text} recent_tweets.put_recent_tweet(parm_user_id=user_id, parm_status=status, parm_mode=mode) def check_recent_tweets(user_id: str): """Look at the most recent 20 tweets in this user's timeline, since last tweet that the bot corrected. Check each of these tweets to see whether it needs to have its grammar corrected.""" debug('user_id={}'.format(user_id)) most_recent_tweet_id = recent_tweets.recent_tweet_id(user_id) tweets = api.user_timeline(user_id=user_id) for this_tweet in tweets: if this_tweet.id > most_recent_tweet_id: check_tweet(status=this_tweet, mode='user_timeline') # Override tweepy.StreamListener to add logic to on_status. class MyStreamListener(tweepy.StreamListener): def on_status(self, status): check_tweet(status, mode='stream') bot = GrammarBot() load_dotenv(verbose=True) # Set operating system environment variables based on contents of .env file. api = obtain_twitter_api() recent_tweets = RecentTweets(table_name=getenv('TWITTER_TABLE')) # Get a list of our followers. For each follower, check whether they have any recent tweets that need correcting. follower_ids, follower_names = [], [] for this_follower in tweepy.Cursor(api.followers).items(): follower_ids.append(str(this_follower.id)) follower_names.append('@' + this_follower.screen_name) check_recent_tweets(user_id=str(this_follower.id)) myStreamListener = MyStreamListener() myStream = tweepy.Stream(auth=api.auth, listener=myStreamListener) # is_async=True will make the Twitter stream processor run on its own thread. myStream.filter(follow=follower_ids, is_async=True) # ... back on the main thread. app = Flask(__name__) @app.route("/") def dashboard(): last_tweets = [] for each_follower in follower_ids: most_recent_tweet = recent_tweets.get_recent_tweet(parm_user_id=each_follower) if 'user_id' in most_recent_tweet: last_tweets.append(most_recent_tweet) return render_template('dashboard.html', parm_time=now_str(), parm_followers=follower_names, parm_last_tweets=last_tweets) app.run() ```
{ "source": "johntelforduk/simple-table", "score": 4 }
#### File: johntelforduk/simple-table/simple_table.py ```python from os import path import json class SimpleTable: def __init__(self, filename: str): """Create a table that will be made durable by writing to parm filename.""" self.filename = filename # JSON file that the table will be persisted to. self.rows = [] # List of rows in the table. # Read any previous contents of the file into memory. if path.exists(self.filename): f = open(self.filename, 'r') whole_text = (f.read()) self.rows = json.loads(whole_text) f.close() def insert(self, row: list): """Insert the parm row into the table.""" self.rows.append(row) def commit(self): """Write the table to durable storage.""" f = open(self.filename, 'w') f.writelines(json.dumps(self.rows)) f.close() ```
{ "source": "johntellsall/cdktf-ex", "score": 2 }
#### File: src/handlers/test_app.py ```python "test Lambda handler" import logging import app def test_lambda_handler(caplog): """ test Lambda handler, including logging """ caplog.set_level(logging.INFO) response = app.lambda_handler({"beer": 1}, None) assert response == {"body": "Hello world!", "statusCode": 200} assert 'Received : {"beer": 1}' in caplog.text ```
{ "source": "johntellsall/minibatch", "score": 3 }
#### File: minibatch/tests/test_minibatch.py ```python from multiprocessing import Process from time import sleep from unittest import TestCase from minibatch import Stream, Buffer, setup from minibatch.tests.util import delete_database class MiniBatchTests(TestCase): def setUp(self): self.url = 'mongodb://localhost/test' delete_database(url=self.url) self.db = setup(url=self.url) def test_stream(self): """ Test a stream writes to a buffer """ stream = Stream.get_or_create('test') stream.append({'foo': 'bar1'}) stream.append({'foo': 'bar2'}) count = len(list(doc for doc in Buffer.objects.all())) self.assertEqual(count, 2) def test_fixed_size(self): """ Test batch windows of fixed sizes work ok """ from minibatch import streaming def consumer(): # note the stream decorator blocks the consumer and runs the decorated # function asynchronously upon the window criteria is satisfied @streaming('test', size=2, keep=True) def myprocess(window): try: db = setup(self.url) db.processed.insert_one({'data': window.data or {}}) except Exception as e: print(e) return window # start stream consumer proc = Process(target=consumer) proc.start() # fill stream stream = Stream.get_or_create('test') for i in range(10): stream.append({'index': i}) # give it some time to process sleep(5) proc.terminate() # expect 5 entries, each of length 2 data = list(doc for doc in self.db.processed.find()) count = len(data) self.assertEqual(count, 5) self.assertTrue(all(len(w) == 2 for w in data)) def test_timed_window(self): """ Test batch windows of fixed sizes work ok """ from minibatch import streaming def consumer(): # note the stream decorator blocks the consumer and runs the decorated # function asynchronously upon the window criteria is satisfied @streaming('test', interval=1, keep=True) def myprocess(window): try: db = setup(url=self.url) db.processed.insert_one({'data': window.data or {}}) except Exception as e: print(e) return window # start stream consumer proc = Process(target=consumer) proc.start() # fill stream stream = Stream.get_or_create('test') for i in range(10): stream.append({'index': i}) sleep(.5) # give it some time to process sleep(5) proc.terminate() # expect at least 5 entries (10 x .5 = 5 seconds), each of length 1-2 data = list(doc for doc in self.db.processed.find()) count = len(data) self.assertGreater(count, 5) self.assertTrue(all(len(w) >= 2 for w in data)) def test_timed_window_relaxed(self): """ Test batch windows of fixed sizes work ok """ from minibatch import streaming def consumer(): # note the stream decorator blocks the consumer and runs the decorated # function asynchronously upon the window criteria is satisfied @streaming('test', interval=1, relaxed=True, keep=True) def myprocess(window): try: db = setup(self.url) db.processed.insert_one({'data': window.data or {}}) except Exception as e: print(e) return window # start stream consumer proc = Process(target=consumer) proc.start() # fill stream stream = Stream.get_or_create('test') for i in range(10): stream.append({'index': i}) sleep(.5) # give it some time to process sleep(5) proc.terminate() # expect at least 5 entries (10 x .5 = 5 seconds), each of length 1-2 data = list(doc for doc in self.db.processed.find()) count = len(data) self.assertGreater(count, 5) self.assertTrue(all(len(w) >= 2 for w in data)) ``` #### File: minibatch/minibatch/window.py ```python import datetime from minibatch import Buffer, Stream from minibatch.models import Window class WindowEmitter(object): """ a window into a stream of buffered objects WindowEmitter.run() implements the generic emitter protocol as follows: 1. determine if a window is ready to be processed 2. retrieve the data from the buffer to create a Window 3. process the data (i.e. mark the buffered data processed) 4. run the emit function on the window Note that run() is blocking. Between running the protocol, it will sleep to conserve resources. Each time run() wakes up, it will call the following methods in turn: window_ready() - called to determine if the buffer contains enough data for a window. query() - return the Buffer objects to process process() - process the data timestamp() - timestamp the stream for the next processing commit() - commit processed data back to the buffer. by default this means removing the objects from the buffer and deleting the window. sleep() - sleep until the next round Use timestamp() to mark the stream (or the buffer data) for the next round. Use sleep() to set the amount of time to sleep. Depending on the emitter's semantics this may be a e.g. a fixed interval or some function of the data. WindowEmitter implements several defaults: process() - mark all data returned by query() as processed sleep() - sleep self.interval / 2 seconds undo() - called if the emit function raises an exception. marks the data returned by query() as not processed and deletes the window For examples of how to implement a custom emitter see TimeWindow, CountWindow and SampleFunctionWindow. Note there should only be one WindowEmitter per stream. This is a a limitation of the Buffer's way of marking documentes as processed (a boolean flag). This decision was made in favor of performance and simplicity. Supporting concurrent emitters would mean each Buffer object needs to keep track of which emitter has processed its data and make sure Window objects are processed by exactly one emitter. """ def __init__(self, stream, interval=None, processfn=None, emitfn=None, emit_empty=False): self.stream_name = stream self.interval = interval self.emit_empty = emit_empty self.emitfn = emitfn self.processfn = processfn self._stream = None self._window = None # current window if any self._delete_on_commit = True def query(self, *args): raise NotImplemented() def window_ready(self): """ return a tuple of (ready, qargs) """ raise NotImplemented() def timestamp(self, query_args): self.stream.modify(query={}, last_read=datetime.datetime.now()) @property def stream(self): if self._stream: return self._stream self._stream = Stream.get_or_create(self.stream_name) return self._stream def process(self, qs): if self.processfn: return self.processfn(qs) data = [] for obj in qs: obj.modify(processed=True) data.append(obj) return data def undo(self, qs): for obj in qs: obj.modify(processed=False) if self._window: self._window.delete() return qs def persist(self, flag=True): self._delete_on_commit = not flag def commit(self, qs, window): if not self._delete_on_commit: window.modify(processed=True) return for obj in qs: obj.delete() window.delete() def emit(self, qs): self._window = Window(stream=self.stream.name, data=[obj.data for obj in qs]).save() if self.emitfn: self._window = self.emitfn(self._window) or self._window return self._window def sleep(self): import time time.sleep((self.interval or self.stream.interval) / 2.0) def run(self): while True: ready, query_args = self.window_ready() if ready: qs = self.query(*query_args) qs = self.process(qs) if qs or self.emit_empty: try: window = self.emit(qs) except Exception as e: self.undo(qs) print(str(e)) else: self.commit(qs, window) finally: self.timestamp(*query_args) self.sleep() class FixedTimeWindow(WindowEmitter): """ a fixed time-interval window Yields windows of all data retrieved in fixed intervals of n seconds. Note that windows are created in fixed-block sequences, i.e. in steps of n_seconds since the start of the stream. Empty windows are also emitted. This guarantees that any window contains only those documents received in that particular window. This is useful if you want to count e.g. the number of events per time-period. Usage: @stream(name, interval=n_seconds) def myproc(window): # ... """ def __init__(self, *args, **kwargs): super(FixedTimeWindow, self).__init__(*args, **kwargs) self.emit_empty = True def window_ready(self): stream = self.stream last_read = stream.last_read now = datetime.datetime.now() max_read = last_read + datetime.timedelta(seconds=self.interval) return now > max_read, (last_read, max_read) def query(self, *args): last_read, max_read = args fltkwargs = dict(created__gte=last_read, created__lte=max_read) return Buffer.objects.no_cache().filter(**fltkwargs) def timestamp(self, *args): last_read, max_read = args self.stream.modify(query=dict(last_read__gte=last_read), last_read=max_read) self.stream.reload() def sleep(self): import time # we have strict time windows, only sleep if we are up to date if self.stream.last_read > datetime.datetime.now() - datetime.timedelta(seconds=self.interval): # sleep slightly longer to make sure the interval is complete # and all data had a chance to accumulate. if we don't do # this we might get empty windows on accident, resulting in # lost data time.sleep(self.interval + 0.25) class RelaxedTimeWindow(WindowEmitter): """ a relaxed time-interval window Every interval n_seconds, yields windows of all data in the buffer since the last successful retrieval of data. This does _not_ guarantee the data retrieved is in a specific time range. This is useful if you want to retrieve data every n_seconds but do not care when the data was inserted into the buffer. Usage: @stream(name, interval=n_seconds) def myproc(window): # ... """ def window_ready(self): stream = self.stream last_read = stream.last_read max_read = datetime.datetime.now() return True, (last_read, max_read) def query(self, *args): last_read, max_read = args fltkwargs = dict(created__gt=last_read, created__lte=max_read, processed=False) return Buffer.objects.no_cache().filter(**fltkwargs) def timestamp(self, *args): last_read, max_read = args self.stream.modify(query=dict(last_read=last_read), last_read=max_read) self.stream.reload() class CountWindow(WindowEmitter): def window_ready(self): qs = Buffer.objects.no_cache().filter(processed=False).limit(self.interval) self._data = list(qs) return len(self._data) >= self.interval, () def query(self, *args): return self._data def timestamp(self, *args): self.stream.modify(query={}, last_read=datetime.datetime.now()) def sleep(self): import time time.sleep(0.1) ```
{ "source": "johntellsall/shotglass", "score": 3 }
#### File: shotglass/ex-treemap/make_squarify.py ```python import argparse import os import sys from collections import Counter import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import pandas as pd import squarify PREFIX = "/Users/johnmitchell/jsrc/shotglass/SOURCE/" def zap_prefix(path): if not path.startswith(PREFIX): return path rest = path[len(PREFIX) :] # TODO strip next dir name return rest def make_squarify_files(project_data_path): df = pd.read_pickle(project_data_path) df = df[df.linecount > 0] squarify.plot(sizes=df.linecount, label=df.name, alpha=0.8) plt.axis("off") name = os.path.splitext(os.path.basename(project_data_path))[0] out_path = f"{name}.png" print(out_path) plt.savefig(out_path) def make_squarify(project_data_path): df = pd.read_pickle(project_data_path) dir_size = Counter() for item in df.itertuples(): path = zap_prefix(item.path) dir_ = os.path.dirname(path) dir_size[dir_] += item.linecount items = dir_size.most_common() # sort dir_items = pd.DataFrame(items, columns=("dir", "dir_linecount")) dir_items = dir_items[dir_items.dir_linecount > 0] squarify.plot(sizes=dir_items.dir_linecount, label=dir_items.dir, alpha=0.8) plt.axis("off") name = os.path.splitext(os.path.basename(project_data_path))[0] plt.title(name.title()) out_path = f"{name}.png" print(out_path) plt.savefig(out_path) def main(): parser = argparse.ArgumentParser(description="TODO") parser.add_argument( "data_paths", metavar="N", type=argparse.FileType("r"), nargs="+" ) parser.add_argument("--dir", action="store_true") args = parser.parse_args() render = make_squarify if args.dir else make_squarify_files for path in args.data_paths: render(path) if __name__ == "__main__": main() ``` #### File: shotglass/ex-treemap/simple.py ```python config = {'global': 1} class Klass: def printme(self): print('me') def double(num): return 2*num def func(): assert double(3) == 6 if __name__ == '__main__': func() ``` #### File: shotglass/ex-treemap/test_ctags.py ```python import make_ctags def test_compile(): df = make_ctags.compile(None, paths=['simple.py']) assert len(df) == 1 assert df.columns.tolist() == ['path', 'name', 'ctags_raw', 'linecount'] ``` #### File: shotglass/app/hilbert.py ```python from math import log, ceil from functools import lru_cache, reduce @lru_cache(maxsize=None) def int_to_Hilbert(i, nD=2): # Default is the 2D Hilbert walk. index_chunks = unpack_index(i, nD) nChunks = len(index_chunks) mask = 2 ** nD - 1 start, end = initial_start_end(nChunks, nD) coord_chunks = [0] * nChunks for j, i in enumerate(index_chunks): coord_chunks[j] = gray_encode_travel(start, end, mask, i) start, end = child_start_end(start, end, mask, i) return pack_coords(coord_chunks, nD) def Hilbert_to_int(coords): nD = len(coords) coord_chunks = unpack_coords(coords) nChunks = len(coord_chunks) mask = 2 ** nD - 1 start, end = initial_start_end(nChunks, nD) index_chunks = [0] * nChunks for j in range(nChunks): i = gray_decode_travel(start, end, mask, coord_chunks[j]) index_chunks[j] = i start, end = child_start_end(start, end, mask, i) return pack_index(index_chunks, nD) def initial_start_end(nChunks, nD): # This orients the largest cube so that # its start is the origin (0 corner), and # the first step is along the x axis, regardless of nD and nChunks: return 0, 2 ** ((-nChunks - 1) % nD) # in Python 0 <= a % b < b. # Unpacking arguments and packing results of int <-> Hilbert functions. # nD == # of dimensions. # A "chunk" is an nD-bit int (or Python long, aka bignum). # Lists of chunks are highest-order first. # Bits within "coord chunks" are x highest-order, y next, etc., # i.e., the same order as coordinates input to Hilbert_to_int() # and output from int_to_Hilbert(). # unpack_index( int index, nD ) --> list of index chunks. # def unpack_index(i, nD): p = 2 ** nD # Chunks are like digits in base 2**nD. nChunks = max(1, int(ceil(log(i + 1, p)))) # num of digits chunks = [0] * nChunks for j in range(nChunks - 1, -1, -1): chunks[j] = i % p i /= p return chunks def pack_index(chunks, nD): p = 2 ** nD # Turn digits mod 2**nD back into a single number: return reduce(lambda n, chunk: n * p + chunk, chunks) # unpack_coords( list of nD coords ) --> list of coord chunks each nD bits. def unpack_coords(coords): biggest = reduce(max, coords) # the max of all coords nChunks = max(1, int(ceil(log(biggest + 1, 2)))) # max # of bits return transpose_bits(coords, nChunks) def pack_coords(chunks, nD): return transpose_bits(chunks, nD) # transpose_bits -- # Given nSrcs source ints each nDests bits long, # return nDests ints each nSrcs bits long. # Like a matrix transpose where ints are rows and bits are columns. # Earlier srcs become higher bits in dests; # earlier dests come from higher bits of srcs. def transpose_bits(srcs, nDests): srcs = list(srcs) # Make a copy we can modify safely. dests = [0] * nDests # Break srcs down least-significant bit first, shifting down: for j in range(nDests - 1, -1, -1): # Put dests together most-significant first, shifting up: dest = 0 for ksrc in srcs: dest = dest * 2 + ksrc % 2 srcs = [int(val / 2) for val in srcs] dests[j] = dest return dests # Gray encoder and decoder from http://en.wikipedia.org/wiki/Gray_code : # def gray_encode(bn): assert bn >= 0 assert type(bn) is int return bn ^ int(bn / 2) def gray_decode(n): assert type(n) is int sh = 1 while True: div = n >> sh n ^= div if div <= 1: return n sh <<= 1 # gray_encode_travel -- gray_encode given start and end using bit rotation. # Modified Gray code. mask is 2**nbits - 1, the highest i value, so # gray_encode_travel( start, end, mask, 0 ) == start # gray_encode_travel( start, end, mask, mask ) == end # with a Gray-code-like walk in between. # This method takes the canonical Gray code, rotates the output word bits, # then xors ("^" in Python) with the start value. # def gray_encode_travel(start, end, mask, i): i = int(i) travel_bit = start ^ end modulus = mask + 1 # == 2**nBits # travel_bit = 2**p, the bit we want to travel. # Canonical Gray code travels the top bit, 2**(nBits-1). # So we need to rotate by ( p - (nBits-1) ) == (p + 1) mod nBits. # We rotate by multiplying and dividing by powers of two: gray_i = i ^ int(i / 2) # gray encode(i) g = gray_i * (travel_bit * 2) return ((g | int(g / modulus)) & mask) ^ start def gray_decode_travel(start, end, mask, g): travel_bit = start ^ end modulus = mask + 1 # == 2**nBits rg = (g ^ start) * int(modulus / (travel_bit * 2)) return gray_decode((rg | int(rg / modulus)) & mask) # child_start_end( parent_start, parent_end, mask, i ) # e -- Get start & end for child. # i is the parent's step number, between 0 and mask. # Say that parent( i ) = # gray_encode_travel( parent_start, parent_end, mask, i ). # And child_start(i) and child_end(i) are what child_start_end() # should return -- the corners the child should travel between # while the parent is in this quadrant or child cube. # o child_start( 0 ) == parent( 0 ) (start in a corner) # o child_end( mask ) == parent( mask ) (end in a corner) # o child_end(i) - child_start(i+1) == parent(i+1) - parent(i) # (when parent bit flips, same bit of child flips the opposite way) # Those constraints still leave choices when nD (# of bits in mask) > 2. # Here is how we resolve them when nD == 3 (mask == 111 binary), # for parent_start = 000 and parent_end = 100 (canonical Gray code): # i parent(i) child_ # 0 000 000 start(0) = parent(0) # 001 end(0) = parent(1) # ^ (flip) v # 1 001 000 start(1) = parent(0) # 010 end(1) = parent(3) # ^ v # 2 011 000 start(2) = parent(0) # 010 end(2) = parent(3) # v ^ # 3 010 011 start(3) = parent(2) # 111 end(3) = parent(5) # ^ v # 4 110 011 start(4) = parent(2) # 111 end(4) = parent(5) # ^ v # 5 111 110 start(5) = parent(4) # 100 end(5) = parent(7) # v ^ # 6 101 110 start(6) = parent(4) # 100 end(6) = parent(7) # v ^ # 7 100 101 start(7) = parent(6) # 100 end(7) = parent(7) # This pattern relies on the fact that gray_encode_travel() # always flips the same bit on the first, third, fifth, ... and last flip. # The pattern works for any nD >= 1. # @lru_cache(maxsize=None) def child_start_end(parent_start, parent_end, mask, i): i = int(i) start_i = max(0, (i - 1) & ~1) # next lower even number, or 0 end_i = min(mask, (i + 1) | 1) # next higher odd number, or mask child_start = gray_encode_travel(parent_start, parent_end, mask, start_i) child_end = gray_encode_travel(parent_start, parent_end, mask, end_i) return child_start, child_end ``` #### File: management/commands/adjust_index.py ```python import sys # import ctags from django.core.management.base import BaseCommand, CommandError from app.models import SourceLine class Command(BaseCommand): help = "beer" def add_arguments(self, parser): parser.add_argument("--project") # parser.add_argument('--prefix', default='') # parser.add_argument('--verbose', action='store_true') def handle(self, *args, **options): project = options["project"] lines = SourceLine.objects.filter(project=project).order_by("path") print(f"LINES: {project=}") for line in lines: print(vars(lines)) # prefix = options['prefix'] # rows = [] # while True: # if entry['kind']: # path = entry['file'] # if prefix and path.startswith(prefix): # path = path[len(prefix):].lstrip('/') # length = 123 # rows.append(SourceLine(name=entry['name'], # project=options['project'], # path=path, # line_number=entry['lineNumber'], # length=length, # kind=entry['kind'])) # if options['verbose']: # print rows[-1].__dict__ # status = tagFile.findNext(entry) # if not status: # break # SourceLine.objects.bulk_create(rows) ``` #### File: management/commands/draw.py ```python from django.core.management.base import BaseCommand from app import draw from app.models import SourceLine class Command(BaseCommand): help = "beer" def add_arguments(self, parser): parser.add_argument("projects", nargs="+") def get_projects(self, projects): if projects != ["all"]: return projects return SourceLine.projects() def handle(self, *args, **options): themeClass = draw.ThemeRainbow for project in self.get_projects(options["projects"]): print("***", project) grid = draw.SimpleDraw().draw(project, theme=themeClass()) depth = None argname = "path" detail = "_{}".format(depth) if depth else "" argname2 = argname.split("_")[0] path = "{}_{}{}.png".format(project, argname2, detail) grid.render(path) print(path) ``` #### File: management/commands/funcsize.py ```python import itertools import operator import numpy as np import matplotlib.pyplot as plt from django.core.management.base import BaseCommand from app import models class Command(BaseCommand): help = "beer" def add_arguments(self, parser): parser.add_argument("projects", nargs="+") def handle(self, *args, **options): fs = 10 # fontsize versions = ( models.SourceLine.objects.filter(project__startswith="django-") .order_by("project") .values_list("project", "progradon__complexity") ) for vers, complexity_iter in itertools.groupby( versions, key=operator.itemgetter(1) ): print vers, ":" print "-", ", ".join(str(x) for x in complexity_iter) data = models.SourceLine.objects.filter(project="django-1.0.1").values_list( "progradon__complexity", flat=True ) plt.boxplot(data) # , labels=labels) plt.show() # xs, ys, areas = zip(*data) # ys = areas # colors = np.random.rand(len(xs)) # plt.scatter(xs, ys, c=colors) # s=areas) # plt.xlabel('file index') # plt.ylabel('version index') plt.savefig("z.png") # plt.savefig('z.svg') ``` #### File: management/commands/pygdex.py ```python import sys import pygments.lexers from pygments.token import Name, Punctuation from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): help = "beer" def add_arguments(self, parser): parser.add_argument("paths", nargs="+") # parser.add_argument('--index', action="store_true") def handle(self, *args, **options): for path in options["paths"]: lex = pygments.lexers.get_lexer_for_filename(path) name = None for tokentype, value in lex.get_tokens(open(path).read()): if tokentype is Name: name = value elif tokentype is Punctuation and value == "(": print "NAME", name name = None # import ipdb ; ipdb.set_trace() ``` #### File: management/commands/spider.py ```python import itertools import os import re import subprocess from django.core.management.base import BaseCommand from palettable import colorbrewer from PIL import Image, ImageDraw, ImageFont IMAGE_WIDTH = 1000 IMAGE_HEIGHT = 1000 COL_WIDTH, COL_HEIGHT = 100, 1000 COL_GAP = 10 def serpentine_iter(width): y = 0 while True: for x in range(width): yield x, y for x in range(width): yield width - x - 1, y + 1 y += 2 def render_highlight(path): cmd = ["source-highlight", "-i", path] output = subprocess.check_output(cmd, text=True) output = re.compile("^.+<pre><tt>", re.DOTALL).sub("", output) return output.split("\n") def get_colormap(): cmap_obj = colorbrewer.qualitative.Set3_12 cmap_colors = list(map(tuple, cmap_obj.colors)) return itertools.cycle(cmap_colors) def get_count(paths): output = subprocess.check_output(["wc", "--lines"] + paths) wordcount_re = re.compile( r"^\s* ([0-9]+)" r"\s+ (.+) $", re.MULTILINE | re.VERBOSE ) matches = wordcount_re.finditer(output) return {path: int(count) for count, path in (m.groups() for m in matches)} class Render(object): def __init__(self, draw, x, y): self.draw = draw self.x, self.y = x, y self.symbol_re = re.compile("<(.+?)>([^<]*)") self.colors = ["black"] def add_text(self, text): raise NotImplementedError def add_line(self, line): line = "<x>" + line # process text before HTML mgroups = (match.groups() for match in self.symbol_re.finditer(line)) for sym, text in mgroups: if sym.startswith("font "): self.colors.append(sym.split('"')[1]) elif sym == "/font": self.colors.pop() if text: self.add_text(text) self.y += 1 # TODO: trim lines outside column (~80) class RenderSource(Render): """ draw individual source code lines with colors + indent """ def __init__(self, *args, **kwargs): self.relx = None super(RenderSource, self).__init__(*args, **kwargs) def add_line(self, line): self.relx = 0 super(RenderSource, self).add_line(line) def add_text(self, text): if text.startswith(" "): orig_len = len(text) text = text.lstrip(" ") self.relx += orig_len - len(text) self.draw.line( (self.x + self.relx, self.y, self.x + self.relx + len(text), self.y), fill=self.colors[-1], ) self.relx += len(text) + 1 class RenderFile(Render): def add_line(self, line): self.draw.line( (self.x, self.y, self.x + COL_WIDTH - COL_GAP, self.y), fill=self.colors[-1] ) self.y += 1 def render_file(path, renderObj): hlines = render_highlight(path) for line in hlines: renderObj.add_line(line) if renderObj.y >= IMAGE_HEIGHT: renderObj.y = 0 renderObj.x += COL_WIDTH def render_blocks(image, paths): """ draw each file as a colored block, annotated with filename """ if 1: CMAP_OBJ = colorbrewer.qualitative.Set3_12 CMAP_COLORS = list(map(tuple, CMAP_OBJ.colors)) colormap = itertools.cycle(CMAP_COLORS) renderClass = RenderFile draw = ImageDraw.Draw(image) rend = renderClass(draw=draw, x=0, y=0) # X: size in points, not pixels fnt = ImageFont.truetype("Umpush-Light.ttf", size=14) text_color = (0, 0, 0, 128) for path in paths: text_args = dict( xy=(rend.x, rend.y), text=os.path.basename(path), font=fnt, fill=text_color ) rend.colors = [next(colormap)] render_file(path, rend) draw.text(**text_args) return image # XX merge render_* functions def render_source(image, paths): """ draw each line of source one pixel high, syntaxed colored, like a compressed minimap """ renderClass = RenderSource draw = ImageDraw.Draw(image) rend = renderClass(draw=draw, x=0, y=0) for path in paths: render_file(path, rend) def render_diff(image, paths): """ draw each file as a colored slice, in prep to showing differences between versions. XXX not useful atm """ count_dict = get_count(paths) draw = ImageDraw.Draw(image) scale = IMAGE_HEIGHT / float(count_dict["total"]) colormap_iter = get_colormap() y = 0 for path in sorted(count_dict): next_y = y + count_dict[path] * scale color = next(colormap_iter) draw.rectangle((0, y, COL_WIDTH - COL_GAP, next_y), fill=color, outline="black") y = next_y class Command(BaseCommand): help = __doc__ def add_arguments(self, parser): parser.add_argument("--output", default="z.png") parser.add_argument("--style", default="source") parser.add_argument("paths", nargs="+") def handle(self, *args, **options): im = Image.new("RGB", (IMAGE_WIDTH, IMAGE_HEIGHT), color="white") render = render_source if options["style"] == "blocks": render = render_blocks elif options["style"] == "diff": render = render_diff render(image=im, paths=options["paths"]) im.save(options["output"]) ``` #### File: management/commands/words.py ```python import collections import logging import re import sys from django.core.management.base import BaseCommand from app.models import SourceFile logging.basicConfig( format="%(asctime)-15s %(levelname)-8s %(message)s", stream=sys.stderr, level=logging.DEBUG, ) # disable db query logs logging.getLogger("django.db.backends").propagate = False logger = logging.getLogger(__name__) def words(project): camelcase_pat = re.compile("[A-Z][a-z]*") print("*", project.upper()) namepaths = SourceFile.objects.filter(project=project).values_list("name", "path") # import ipdb ; ipdb.set_trace() path_words = collections.defaultdict(collections.Counter) for num, (name, path) in enumerate(namepaths): names = [name.lower()] if "_" in name: names = name.lower().split("_") elif camelcase_pat.match(name): names = camelcase_pat.findall(name.lower()) path_words[path].update([_f for _f in names if _f]) for path, words in sorted(path_words.items()): relpath = re.sub("^.+?/", "", path) common = [(word, count) for word, count in words.most_common(3) if count > 1] if common: print("{:30} {}".format(relpath, common if common else "")) class Command(BaseCommand): help = "beer" def add_arguments(self, parser): parser.add_argument("projects", nargs="+") def handle(self, *args, **options): projects = options["projects"] if projects == ["all"]: projects = SourceFile.projects() for project in options["projects"]: words(project) ``` #### File: app/tests/test_perf.py ```python import cProfile import pstats import pytest from django.test import TestCase from app import grid, models, render # PERFORMANCE TEST: # py.test -s app/tests/test_perf::ProfileDraw # # TODO: disable this except when explicitly called @pytest.mark.skip(reason="performance test only") class ProfileDraw(TestCase): fixtures = ["diagram-django"] # slow + useful fixtures = ["diagram-min"] # minimal def setUp(self): stub = models.SourceLine.objects.create( kind="k", length=3, line_number=2, name="name", path="path" ) models.DiagramSymbol.objects.update(sourceline=stub) def test_rawdraw(self): def rawdraw(): diagram = render.Diagram.FromDB() mygrid = grid.Grid(None, None) diagram.draw(mygrid) prof_name = "rawdraw-{}.prof".format(self.fixtures[0]) cProfile.runctx( rawdraw.func_code, # pylint: disable=no-member globals=globals(), locals={}, filename=prof_name, ) p = pstats.Stats(prof_name) p.strip_dirs().sort_stats("cumtime").print_stats(20) ``` #### File: app/tests/test_views.py ```python from pytest import mark from app import views class AttrDict(dict): __getattr__ = dict.__getitem__ # @mark.django_db # def test_render(): # # just make sure it doesn't crash # # X: depends on "flask" in database; add fixture # views.render(None, project='flask') # @mark.django_db # def test_draw(): # # just make sure it doesn't crash # req = AttrDict(GET={}) # views.draw(req, project='flask') ```
{ "source": "johnterickson/Mesh", "score": 3 }
#### File: Mesh/theory/compute_exp_Y.py ```python from __future__ import division from choose import compute_q, nCr, compute_p3 import cPickle as pickle def prob(a,b,c, numStrings, numOnes, p1, p2, p3): p4 = 1-p1-p2-p3 d = numStrings-2-a-b-c return (nCr(numStrings-2,a)*(p1**a)*nCr(numStrings-2-a, b)*(p2**b)*nCr(numStrings-2-a-b, c)*(p3**c)*(p4**d)) def lookup(bound_id, length, numOnes, numStrings): path = "bounds/{}".format(bound_id) with open(path, "rb") as file: bound_dict = pickle.load(file) try: bound = bound_dict[(length, numOnes, numStrings)] except KeyError: return None, bound_dict return bound, None def store(bound_id, bound_dict): path = "bounds/{}".format(bound_id) with open(path, "wb") as file: pickle.dump(bound_dict, file) def compute_exp_Y(length, numOnes, numStrings): q = compute_q(length, numOnes) p3 = compute_p3(length, numOnes) p1 = q-p3 p2 = p1 p4 = 1-p1-p2-p3 sum = 0 for a in range(numStrings-2+1): for b in range(numStrings-2-a+1): for c in range(numStrings-2-a-b+1): add = min(1/(a+c+1), 1/(b+c+1))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) # add = min(1/(a+c), 1/(b+c))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) sum += add # sum += min(1/(a+c+1), 1/(b+c+1))*prob(a,b,c,numStrings,p1,p2,p3) sum *= q return sum*nCr(numStrings,2) def compute_degree_bound(length, numOnes, numStrings): print length print numOnes q = compute_q(length, numOnes) exp_degree = (numStrings-1)*q a = exp_degree b = exp_degree return numStrings/2*(a/(b+1)) def compute_isolated_edge_bound(length, numOnes, numStrings): q = compute_q(length, numOnes) p3 = compute_p3(length, numOnes) m = numStrings bound1 = (m-1)*q*(1-(2*q)+p3)**(m-2) bound2 = 2- 2*(1-q)**(m-1) - (m-1)*q return (m/2)*max(bound1,bound2) # return (m/2)*bound2 def compute_degreeplusone_bound(length, numOnes, numStrings): q = compute_q(length, numOnes) p3 = compute_p3(length, numOnes) p1 = q-p3 p2 = p1 p4 = 1-p1-p2-p3 sum = 0 for a in range(numStrings-2+1): for b in range(numStrings-2-a+1): for c in range(numStrings-2-a-b+1): add = min(1/(a+c+2), 1/(b+c+2))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) # add = .5*(1/(a+c+2) + 1/(b+c+2))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) sum += add sum *= q return sum*nCr(numStrings,2) def compute_improved_degreeplusone_bound(length, numOnes, numStrings): bound, bound_dict = lookup("impdeg+1", length, numOnes, numStrings) if bound: print 'value already exists, retrieving from database' return bound q = compute_q(length, numOnes) p3 = compute_p3(length, numOnes) p1 = q-p3 p2 = p1 p4 = 1-p1-p2-p3 sum = 0 for a in range(numStrings-2+1): for b in range(numStrings-2-a+1): for c in range(numStrings-2-a-b+1): if a+c+1==1 and b+c+1==1: add = 1*prob(a,b,c,numStrings, numOnes,p1,p2,p3) elif a+c+1==1: add = (1/(b+c+1))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) elif b+c+1==1: add = (1/(a+c+1))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) # elif a+c+1==2 and b+c+1==2: ## add = .5*prob(a,b,c,numStrings, numOnes,p1,p2,p3) elif (a+c+1==2 and b+c+1==3) or (a+c+1==3 and b+c+1==2): add = prob(a,b,c,numStrings, numOnes,p1,p2,p3)/3.0 # elif a+c+1 != b+c+1: # add = min(1/(a+c+1), 1/(b+c+1))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) else: add = min(1/(a+c+2), 1/(b+c+2))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) # add = .5*(1/(a+c+2) + 1/(b+c+2))*prob(a,b,c,numStrings, numOnes,p1,p2,p3) sum += add sum *= q result = sum*nCr(numStrings,2) bound_dict[(length, numOnes, numStrings)] = result store("impdeg+1", bound_dict) print 'value did not already exist, writing to database' return result def boundRetrieve(identifier): fetcher = { "impdeg+1": (compute_improved_degreeplusone_bound) } return fetcher[identifier] if __name__ == '__main__': #print prob(18,2,12,80,0.03125,0.03125,0.9375)/31 # print compute_exp_Y(32, 13, 80) print compute_improved_degreeplusone_bound(16, 4, 100) ``` #### File: Mesh/theory/maxmatch_vs_E[Y].py ```python from __future__ import division from createRandomString import * from makeGraph import * import matplotlib.pyplot as plt import matplotlib.patches as mpatches import networkx as nx import numpy as np import time from compute_exp_Y import compute_exp_Y, compute_degree_bound, compute_isolated_edge_bound, compute_degreeplusone_bound, compute_improved_degreeplusone_bound from choose import compute_q def experiment(length, ones_range_min, ones_range_max, reps, numStrings): strings = [] ones = [] maxmatch_avg = [] maxmatch_std_dev = [] # greedymatch_avg = [] # greedymatch_std_dev = [] y_estimate = [] justy = [] raw = [] qs = [] for numOnes in range(ones_range_min, ones_range_max+1): ones.append(numOnes) q = compute_q(length, numOnes) qs.append(q*100) # qs.append(compute_q(length, numOnes)*100) freed_pages_maxmatching = [] freed_pages_greedymatching = [] for iterations in range (reps): for i in range(numStrings): strings.append(createRandomString(length, numOnes)) # strings = createIndependentRandomStrings(length = length, numStrings = numStrings, q = q) graph = makeGraph(strings) frdpgs_maxmatching = len(nx.max_weight_matching(graph))/2 perc = (frdpgs_maxmatching/numStrings)*100 freed_pages_maxmatching.append(perc) strings = [] m = np.asarray(freed_pages_maxmatching) raw.append(freed_pages_maxmatching) m_a = np.mean(m) maxmatch_avg.append(m_a) m_s = np.std(m) maxmatch_std_dev.append(m_s) # y = compute_exp_Y(length, numOnes, numStrings) # y = compute_degreeplusone_bound(length, numOnes, numStrings) y = compute_improved_degreeplusone_bound(length, numOnes, numStrings) # y_est_raw = max(y,compute_degree_bound(length, numOnes, numStrings),compute_isolated_edge_bound(length, numOnes, numStrings)) # y_est_raw = compute_isolated_edge_bound(length, numOnes, numStrings) # y_est_raw = compute_degree_bound(length, numOnes, numStrings) # y_est_raw = y yperc = (math.floor(y)/numStrings)*100 y_estimate.append(yperc) # mistakes = {} # for i in range(len(raw)): # oops = [] # for entry in raw[i]: # if entry < y_estimate[i]: # oops.append(entry) # mistakes[i+1] = oops # print 'mistakes:' # print mistakes # use this version of mistakes mistakes = {} for i in range(len(raw)): oops = 0 for entry in raw[i]: if entry < y_estimate[i]: oops += 1 mistakes[i+1] = oops print 'mistakes:' print mistakes print 'E[Y]:' ey = {} for i in range(len(y_estimate)): ey[i+1] = y_estimate[i] print ey # # yperc = (y/numStrings)*100 # justy.append(yperc) # c = np.asarray(freed_pages_greedymatching) # c_a = np.mean(c) # greedymatch_avg.append(c_a) # c_s = np.std(c) # greedymatch_std_dev.append(c_s) return ones, maxmatch_avg, maxmatch_std_dev, y_estimate, justy, qs def plot_it(length, ones_range_min, ones_range_max, reps, numStrings): ones, match_avg, match_std_dev, y_estimate, justy, qs = experiment(length, ones_range_min, ones_range_max, reps, numStrings) # print y_estimate plt.errorbar(np.asarray(ones), np.asarray(match_avg), np.asarray(match_std_dev), markersize=3, lw=1, fmt='-o') # plt.errorbar(np.asarray(ones), np.asarray(color_avg), np.asarray(color_std_dev), markersize=3, lw=1, fmt='-o') plt.errorbar(np.asarray(ones), np.asarray(y_estimate), np.zeros(len(ones)), markersize=3, lw=1, fmt='-o') # plt.errorbar(np.asarray(ones), np.asarray(justy), np.zeros(len(ones)), markersize=3, lw=1, fmt='-o') # plt.plot(np.asarray(ones), y_estimate, markersize = 3, lw=1, fmt='o') # plt.errorbar(np.asarray(ones), np.asarray(qs), np.zeros(len(ones)), markersize=3, lw=1, fmt='-o') plt.ylim([0,60]) # plt.xlim([10, 14]) plt.ylabel('Percentage of pages freed') plt.xlabel('Number of objects per page') blue_patch = mpatches.Patch(color='blue', label='max matching') green_patch = mpatches.Patch(color = 'green', label = 'lower bound') red_patch = mpatches.Patch(color = 'red', label = 'q') plt.legend(handles=[blue_patch, green_patch]) # plt.legend(handles=[blue_patch, green_patch, red_patch]) plt.title('MAX MATCHING VS LOWER BOUND \n{}-object pages, {} pages'.format(length, numStrings)) # plt.show() # plt.savefig('maxvE[Y]{},{}'.format(length, numStrings) + '.png', dpi = 1000) plt.savefig('maxvdeg+1imp++{},{}'.format(length, numStrings) + '.png', dpi = 1000) # plt.savefig('manystrings.png', dpi = 1000) plt.close() if __name__ == '__main__': #length = [32,64] length = [32] ones_range_min = 1 ones_range_max = 32 reps = 10 # numStrings = [80,100,150,200] numStrings= [80] start = time.time() for l in length: for n in numStrings: plot_it(l, ones_range_min, int(l/2), reps, n) # plot_it(l, 10, 13, 10, n) print 'max match vs E[Y] plot {},{} done'.format(l,n) end = time.time() print('making this took {} seconds'.format(end-start) ) ``` #### File: Mesh/theory/meshers.py ```python import random import numpy as np from makeGraph import makeGraph import networkx as nx from mesh_util import Splitter, hamming, traverse, occupancySort, formatStrings, simpleGreedyTraverse, greedyTraverse import time def simpleMesher(strings, stdOutput=False): """ Attempts to mesh the first string in the list with the second, etc. Returns number of successful meshes. """ meshes = 0 # try to mesh each string for i in range(0, len(strings), 2): str1 = strings[i] str2 = strings[i + 1] num = [int(x) for x in list(str1)] num2 = [int(x) for x in list(str2)] if np.dot(num, num2) == 0: meshes += 1 if stdOutput: return 100 * float(meshes) / len(strings) return meshes # def randomMesher(strings, attempts): # """DEPRECATED""" # s = [x for x in strings] # matched_strings = [] # for i in range(attempts): # pair = random.sample(s,2) # str1 = pair[0] # str2 = pair[1] # num = [int(x) for x in list(str1)] # num2 = [int(x) for x in list(str2)] # if np.dot(num, num2) == 0: # #print('removing {} and {}'.format(str1, str2)) # matched_strings.append(str1) # matched_strings.append(str2) # s.remove(str1) # s.remove(str2) # if len(s) < 2: # return matched_strings # return matched_strings def randomMesher(strings, attempts, display=False, stdOutput=False): length = len(strings[0]) totalStrings = len(strings) strings = [long(string, base=2) for string in strings] meshes = [] for k in range(attempts): matched = [] random.shuffle(strings) dim = len(strings) for i in range(dim - 2, -2, -2): num1 = strings[i] num2 = strings[i + 1] if num1 & num2 == 0: matched.append(i) for x in matched: meshes.append((strings[x], strings[x + 1])) for x in matched: del strings[x + 1] del strings[x] formatstring = "{0:0" + str(length) + "b}" meshes = [(formatstring.format(num), formatstring.format(num2)) for (num, num2) in meshes] if display: print "meshes:" print meshes if stdOutput: return 100 * float(len(meshes)) / totalStrings return len(meshes) def _greedyMesher(strings, stdOutput=False): """DEPRECATED Meshes a list of strings using a greedy first-match technique. Returns the number of matched pairs after available matches are exhausted.""" s = strings matched_strings = [] unmatched_strings = [] matched = [] for i in range(len(s)): for j in range(i + 1, len(s)): if i not in matched and j not in matched: num = [int(x) for x in list(s[i])] num2 = [int(x) for x in list(s[j])] if np.dot(num, num2) == 0: matched.append(i) matched.append(j) matched_strings += [s[x] for x in matched] unmatched_strings += [s[x] for x in range(len(s)) if x not in matched] if stdOutput == True: return 100 * len(matched_strings) / (2 * len(strings)) else: return matched_strings, unmatched_strings def greedyMesher(strings, stdOutput=False, cutoff=None): length = len(strings) new_strings = formatStrings(strings) meshes = [] occupancySort(new_strings) simpleGreedyTraverse(meshes, new_strings, cutoff) if stdOutput: return 100 * len(meshes) / length else: return meshes # def splitter(strings, length, splitting_string = 0): # splitting_strings = [] # num_splitters = int(math.log(length,2))+1 # for i in range(1,num_splitters): # split_string = "" # for j in range(2**(i-1)): # split_string = split_string + (("1" * int((length/(2**i)))) + ("0" * (int(length/(2**i))))) # splitting_strings.append(split_string) # if splitting_string >= num_splitters-1: # return bucket1, bucket2 # split = splitting_strings[splitting_string] # bucket1 = [] # bucket2 = [] # for s in strings: # diff = hamming(s[0], split) # if diff < int(length * 0.5): # bucket1.append(s) # elif diff == int(length * 0.5): # if random.randint(0,1): # bucket1.append(s) # else: # bucket2.append(s) # else: # bucket2.append(s) # return bucket1, bucket2 # # def splitAgain(bucket1, bucket2, length, method): # try: # new_bucket1, new_bucket2 = splitter(bucket1+bucket2, length, method) # except IndexError: # return bucket1, bucket2 # return new_bucket1, new_bucket2 def splittingMesher(strings, attempts, splittingMethod=0, display=False, stdOutput=False, extra=True): if display: print "using Splitting Mesher" length = len(strings[0]) new_strings = formatStrings(strings) splt = Splitter(length) bucket1, bucket2 = splt.split(strings=new_strings) meshes = [] for k in range(attempts): # if k == attempts/2: # print "rebucketing at halfway point" # print bucket1, bucket2 # bucket1, bucket2 = splt.split(bucket1 = bucket1, bucket2 = bucket2) random.shuffle(bucket1) random.shuffle(bucket2) try: # print bucket1, bucket2, meshes done = traverse(meshes, bucket1=bucket1, bucket2=bucket2, extra=extra) # print bucket1, bucket2, meshes # print 'that was round {}'.format(k) except AssertionError: # print "rebucketing because one bucket is empty" bucket1, bucket2 = splt.split(bucket1=bucket1, bucket2=bucket2) continue if done: # print "all done, ending early at attempt {}".format(k) break if display: print "meshes:" print meshes if stdOutput: return 100 * float(len(meshes)) / len(strings) return len(meshes) def randomSplittingMesher(strings, attempts, display=False, stdOutput=False): """randomly splits string list into two lists, and then tries to mesh pairs between the lists. for comparison purposes only, not an actual useful meshing method.""" if display: print "using random Splitting Mesher" bucket1, bucket2 = [], [] length = len(strings[0]) # if splittingMethod == "left": # splittingString = ("1" * (length/2)) + ("0" * (length/2)) # elif splittingMethod == "checkers": # splittingString = ("10" * (length/2)) for string in strings: s = long(string, base=2) if random.randint(0, 1): bucket1.append(s) else: bucket2.append(s) formatstring = "{0:0" + str(length) + "b}" # print "bucket1:" # print [formatstring.format(item) for item in bucket1] # print "bucket2:" # print [formatstring.format(item) for item in bucket2] # print "\n" # print "bucket2: {0:08b}\n".format(bucket2) meshes = [] for k in range(attempts): random.shuffle(bucket1) random.shuffle(bucket2) # print "shuffles: {},\n{}".format(bucket1, bucket2) dim = min(len(bucket1), len(bucket2)) if dim == 0: break matched = [] if dim == 1: # print "checking {} and {}".format(bucket1[0], bucket2[0]) num1 = bucket1[0] num2 = bucket2[0] if num1 & num2 == 0: matched.append(0) for i in range(dim - 1, 0, -1): # print "checking {} and {}".format(bucket1[i], bucket2[i]) num1 = bucket1[i] num2 = bucket2[i] if num1 & num2 == 0: matched.append(i) for x in matched: meshes.append((bucket1[x], bucket2[x])) for x in matched: del bucket1[x] del bucket2[x] # meshes = [(num.toBinaryString(), num2.toBinaryString()) for (num, num2) in meshes] meshes = [(formatstring.format(num), formatstring.format(num2)) for (num, num2) in meshes] if display: print "meshes:" print meshes if stdOutput: return 100 * float(len(meshes)) / len(strings) return len(meshes) def greedySplittingMesher(strings, display=False, std_output=True, cutoff=None): """ Given a list of strings, splits that list into two lists based off of a distance measure and then exhaustively checks pairs between the two lists for meshes, greedily taking any it finds. Sorts the lists in increasing order of occupancy so sparse/sparse meshes are likely to be discovered. Can specify a cutoff probability below which potential meshes will not be considered - this saves a lot of time without affecting performance too much. """ if display: print "using greedy splitting mesher" length = len(strings[0]) # length of each string, e.g. 4 for '0100' start = time.time() new_strings = formatStrings(strings) splt = Splitter(length) bucket1, bucket2 = splt.split(strings=new_strings) # print "preliminaries took {}".format(time.time()-start) start = time.time() meshes = [] # sorts buckets into low -> high occupancy occupancySort(bucket1) occupancySort(bucket2) # print "sorting took {}".format(time.time()-start) start = time.time() done = greedyTraverse(meshes, bucket1=bucket1, bucket2=bucket2, cutoff=cutoff) # print "traversal took {}".format(time.time()-start) if display: print "meshes:" print meshes if std_output: return 100 * float(len(meshes)) / len(strings) else: return len(meshes) def doubleSplittingMesher(strings, attempts, display=False, stdOutput=False): """This function is temporary. I will soon merge it with splittingMesher to allow for arbitrary levels of splitting in the same function.""" if display: print "using double Splitting Mesher" buckets = [[], []], [[], []] length = len(strings[0]) numStrings = len(strings) splittingString1 = ("1" * (length / 2)) + ("0" * (length / 2)) splittingString2 = ("10" * (length / 2)) for string in strings: s = long(string, base=2) diff = hamming(string, splittingString1) diff2 = hamming(string, splittingString2) if diff < int(length * 0.5): id1 = 0 elif diff == int(length * 0.5): if random.randint(0, 1): id1 = 0 else: id1 = 1 else: id1 = 1 if diff2 < int(length * 0.5): id2 = 0 elif diff == int(length * 0.5): if random.randint(0, 1): id2 = 0 else: id2 = 1 else: id2 = 1 buckets[id1][id2].append(s) formatstring = "{0:0" + str(length) + "b}" for layer in buckets: for thing in layer: print len(thing) # print buckets meshes = [] check1 = True check2 = True for k in range(attempts): dim1 = min(len(buckets[0][0]), len(buckets[1][1])) dim2 = min(len(buckets[0][1]), len(buckets[1][0])) # print dim1, dim2 if dim1 == 0: if check1: print 'found meshes for everything in set 1, so stopped after {} attempts'.format(k) check1 = False else: matched1 = [] if dim1 == 1: num1 = buckets[0][0][0] num2 = buckets[1][1][0] if num1 & num2 == 0: matched1.append(0) for i in range(dim1 - 1, 0, -1): num1 = buckets[0][0][i] num2 = buckets[1][1][i] if num1 & num2 == 0: matched1.append(i) for x in matched1: meshes.append((buckets[0][0][x], buckets[1][1][x])) for x in matched1: del buckets[0][0][x] del buckets[1][1][x] if dim2 == 0: if check2: print 'found meshes for everything in set 2, so stopped after {} attempts'.format(k) check2 = False else: matched2 = [] if dim2 == 1: num1 = buckets[0][1][0] num2 = buckets[1][0][0] if num1 & num2 == 0: matched2.append(0) for i in range(dim2 - 1, 0, -1): num1 = buckets[0][1][i] num2 = buckets[1][0][i] if num1 & num2 == 0: matched2.append(i) for x in matched2: meshes.append((buckets[0][1][x], buckets[1][0][x])) for x in matched2: del buckets[0][1][x] del buckets[1][0][x] meshes = [(formatstring.format(num), formatstring.format(num2)) for (num, num2) in meshes] if display: print "meshes:" print meshes if stdOutput: return 100 * float(len(meshes)) / len(strings) return len(meshes) def maxMatchingMesher(strings, stdOutput=False): """Converts the string set into a meshing graph and finds the maximum matching on said graph.""" graph = makeGraph(strings) meshes = len(nx.max_weight_matching(graph)) / 2 if stdOutput: return 100 * float(meshes) / len(strings) return meshes def color_counter(graph): """interprets a coloring on a graph as a meshing.""" color = nx.greedy_color(graph) i = 0 for key, value in color.iteritems(): i = max(i, value) return i + 1 def optimalMesher(strings, stdOutput=False): """Converts the string set into a meshing graph and finds a greedy coloring on the complement of said graph.""" graph = makeGraph(strings) graph_c = nx.complement(graph) meshes = len(strings) - color_counter(graph_c) if stdOutput: return 100 * float(meshes) / len(strings) return meshes def mesherRetrieve(identifier): fetcher = {"simple": (simpleMesher), "dumb": (randomMesher), "greedy": (greedyMesher), "split": (splittingMesher), "greedysplit": (greedySplittingMesher), "doubsplit": (doubleSplittingMesher), "randsplit": (randomSplittingMesher), "maxmatch": (maxMatchingMesher), "color": (optimalMesher) } return fetcher[identifier] if __name__ == '__main__': # print splittingMesher(["00000001", "11111110", "11100000", "00000111"], 10, display = True) # print splitter([(("1" * 16),0)], 16) # print greedySplittingMesher(["00000001", "11111110", "11100000", "00000111"], display = True, stdOutput = False) # meshes = [] # strings = formatStrings(["00000001", "11111110", "11100000", "00000111"]) # simpleGreedyTraverse(meshes, strings) # print meshes, strings print greedyMesher(["00000001", "11111110", "11100000", "00000111"]) ``` #### File: Mesh/theory/mesh_util.py ```python import math import operator from itertools import izip, imap import random from scipy.misc import comb as fast_nCr from scipy.special import gamma def formatStrings(strings): """Adds extra data to a list of strings for ease of meshing. Replaces each string in the list with a tuple (A,B,C,D). A = original string. B = binary representation for fast arithmetic. C = occupancy. D = flag that indicates whether the string has been meshed(initially set to False).""" new_strings = [] for string in strings: #new_strings.append((string, long(string, base=2))) new_strings.append( (string, long(string, base=2), string.count("1"), False)) return new_strings def hamming(str1, str2): """Calculates the Hamming distance between two strings of equal length.""" # if type(str1) == long: # str1 = bin(str1)[2:].rjust(len(str2),"0") assert len(str1) == len(str2) ne = operator.ne return sum(imap(ne, str1, str2)) def fast_q(length, occ1, occ2): """computes the probability that two strings with given occupancies will mesh.""" result = float((fast_nCr(length - occ2, occ1))) / (fast_nCr(length, occ1)) return result def faster_q(length, occ1, occ2): numerator = 1 for i in range(length - occ1, length - occ1 - occ2, -1): print(i) numerator *= i denominator = 1 for i in range(length, length - occ2, -1): denominator *= i return float(numerator) / float(denominator) def generate_cutoffs(bkt1, length, cutoff): """returns a dict indexed by string occupancy, value is the cutoff occupancy for potential meshes (if you encounter a higher occupancy during a greedy search for a mesh, stop).""" cutoffs = {} for s in bkt1: occ1 = s[2] if occ1 not in cutoffs.keys(): cutoffs[occ1] = float('inf') # only calculate cutoffs for every 5th occupancy, to save time for occ2 in range(0, int(length / 2), 5): if faster_q(length, occ1, occ2) < cutoff: cutoffs[occ1] = occ2 break return cutoffs class Splitter(object): """ Encapsulates splitting behavior for a trial. Keeps track of multiple different splitting strings and can automatically cycle through them if required. """ def __init__(self, length): self.length = length self.splitting_strings = [] self.num_splitters = int(math.log(length, 2)) # print self.num_splitters for i in range(1, self.num_splitters + 1): split_string = "" for j in range(2**(i - 1)): split_string = split_string + \ (("1" * int((length / (2**i)))) + ("0" * (int(length / (2**i))))) self.splitting_strings.append(split_string) # print self.splitting_strings print 'Splitter(%d): %d splitters with strings: %s' % \ (length, self.num_splitters, self.splitting_strings) self.current_method = 0 def _splitter(self, strings, advance): """splits the given string set based on the current splitting string. optionally advances to the next splitting string for future splittings.""" split = self.splitting_strings[self.current_method] if advance: self.current_method = self.current_method + 1 bucket1 = [] bucket2 = [] for s in strings: diff = hamming(s[0], split) if diff < int(self.length * 0.5): bucket1.append(s) elif diff == int(self.length * 0.5): if random.randint(0, 1): bucket1.append(s) else: bucket2.append(s) else: bucket2.append(s) return bucket1, bucket2 def split(self, strings=[], bucket1=[], bucket2=[], advance=True): """the outward-facing method for splitting. gracefully handles both a single string set and a """ # print 'trying to split. current method is {}'.format(self.current_method) if strings == [] and bucket1 == [] and bucket2 == []: raise Exception('must provide split method with nonempty input') if strings != []: return self._splitter(strings, advance) else: if self.current_method >= self.num_splitters: return bucket1, bucket2 else: return self._splitter(bucket1 + bucket2, advance) def advance(self): self.current_method = self.current_method + 1 def occupancySort(strings): """Modifies given list of strings in place, sorting them in order of increasing occupancy.""" # strings.sort(key = lambda x: x[0].count("1")) strings.sort(key=lambda x: x[2]) def simple_traverse(meshes, strings, dim=0): """probes a list of strings for meshable pairs. the first string is checked against the second, third/fourth, etc. mesh and unmeshed string lists are modified in place. returns True if all strings have been meshed; else returns False.""" # print 'here are the strings passed to simple_traverse', strings # print 'and dim is', dim matched = [] for i in range(len(strings) - 2, -1 + dim, -2): num1 = strings[i][1] num2 = strings[i + 1][1] # print num1, num2 if num1 & num2 == 0: matched.append(i) meshes.append((strings[i], strings[i + 1])) # meshes.append(strings[i+1]) # print "adding mesh {}, {}".format(strings[i], strings[i+1]) for x in matched: del strings[x + 1] del strings[x] if len(strings) == 0: return True return False def traverse(meshes, bucket1=None, bucket2=None, strings=None, extra=False): """looks for meshable pairs between the buckets. modifies the buckets and the list of found meshes in place. returns whether or not meshing is done. throws an assertion error if only one bucket has anything in it, so the caller can resplit the buckets or whatever.""" if strings != None: # print 'found strings' return simple_traverse(strings, meshes) if bucket1 == None or bucket2 == None: raise Exception( 'must pass either buckets or string set to traverse function') dim = min(len(bucket1), len(bucket2)) if len(bucket1) == len(bucket2) == 0: return True assert dim != 0 matched = [] if dim == 1: num1 = bucket1[0][1] num2 = bucket2[0][1] if num1 & num2 == 0: matched.append(0) for i in range(dim - 1, 0, -1): num1 = bucket1[i][1] num2 = bucket2[i][1] if num1 & num2 == 0: matched.append(i) for x in matched: meshes.append((bucket1[x], bucket2[x])) # if one bucket is larger than the other, mesh remaining strings among themselves if extra: # print 'extra' if len(bucket1) != len(bucket2): # print bucket1, bucket2 # print 'chosing one' bucket = max([bucket1, bucket2], key=lambda x: len(x)) # print '{} chosen'.format(bucket) simple_traverse(meshes, bucket, dim) # print bucket for x in matched: del bucket1[x] del bucket2[x] return False def simpleGreedyTraverse(meshes, strings, cutoff=None): """given a list of strings, exhaustively checks the first string for meshes, then the second, etc. found meshes are removed from the list. ends when all pairs of remaining strings have been checked. returns whether or not all strings have been meshed.""" length = len(strings) strlength = len(strings[0][0]) # matched = [] if cutoff: cutoffs = generate_cutoffs(strings, strlength, cutoff) for i in range(length): # if the current string has already been meshed, skip it if strings[i][3]: continue if cutoff: current_cutoff = cutoffs[strings[i][2]] for j in range(i + 1, length): # if current string has already been meshed, skip it if strings[j][3]: continue if cutoff and strings[j][2] >= current_cutoff: break # if i not in matched and j not in matched: (should be unnecessary now, test soon) if not strings[i][3] and not strings[j][3]: num1 = strings[i][1] num2 = strings[j][1] if num1 & num2 == 0: # matched.append(i) # matched.append(j) strings[i] = (strings[i][0], strings[i] [1], strings[i][2], True) strings[j] = (strings[j][0], strings[j] [1], strings[j][2], True) meshes.append((strings[i], strings[j])) break for string1, string2 in meshes: strings.remove(string1) strings.remove(string2) if len(strings) == 0: return True return False def greedyTraverse(meshes, bucket1=None, bucket2=None, strings=None, cutoff=None): """ Looks for meshable pairs between the buckets greedily (looks first at all potential meshes with the first string in bucket1 and anything in bucket 2, then the second string in bucket 2 with everything in bucket 2, etc. adds found pairs to meshes in place. returns whether or not all strings have been meshed. """ # if only one string list is supplied, search it exhaustively for # pairs using a simpler function if strings != None: return simpleGreedyTraverse(meshes, strings, cutoff) if bucket1 == None or bucket2 == None: raise Exception( 'must pass either buckets or string set to traverse function') strlength = len(bucket1[0][0]) len1, len2 = len(bucket1), len(bucket2) assert len1 != 0 and len2 != 0 if cutoff: cutoffs = generate_cutoffs(bucket1, strlength, cutoff) for i in range(len1): if cutoff: bkt1cutoff = cutoffs[bucket1[i][2]] for j in range(len2): # notice when (due to occupancy ordering) there is little hope of finding more meshes # for the ith string in bucket 1 if cutoff and bucket2[j][2] >= bkt1cutoff: # print "doing a break!" break if not bucket1[i][3] and not bucket2[j][3]: num1 = bucket1[i][1] num2 = bucket2[j][1] if num1 & num2 == 0: bucket1[i] = (bucket1[i][0], bucket1[i] [1], bucket1[i][2], True) bucket2[j] = (bucket2[j][0], bucket2[j] [1], bucket2[j][2], True) meshes.append((bucket1[i], bucket2[j])) for string1, string2 in meshes: # print "removing {} from bucket1 and {} from bucket2".format(string1, string2) bucket1.remove(string1) bucket2.remove(string2) if len(bucket1) == len(bucket2) == 0: return True return False if __name__ == '__main__': bkt1 = formatStrings([("11100000"), ("11111000")]) bkt2 = formatStrings([("00011111"), ("00000111")]) meshes = [] greedyTraverse(meshes, bucket1=bkt1, bucket2=bkt2, cutoff=None) # occupancySort(bkt1) print bkt1, bkt2, meshes # print fast_q(64, 25,13) # print generate_cutoffs(bkt1, 8) # print generate_cutoffs(bkt2, 8) ``` #### File: Mesh/theory/test.py ```python from __future__ import division import logging import math from choose import nCr import numpy as np from scipy.misc import comb import createRandomString as c import meshers import time import random import functools import json import pickle import os from mesh_util import occupancySort, formatStrings, fast_q from createRandomString import createIndependentRandomStrings #logging.getLogger('').handlers = [] #logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') #logging.debug('This is a log message.') #logging.info('test') #logging.warning('double test') # #strings = createIndependentRandomStrings(4,10,numOnes = 2) #new_strings = [] #for string in strings: # new_strings.append((string, long(string, base=2))) #print new_strings #print "\n \n \n" ##occupancySort(strings) #new_strings.sort(key = lambda x: x[0].count("1")) #print new_strings strings = createIndependentRandomStrings(256, 10000, numOnes = 5) strings = formatStrings(strings) occs = [x[2] for x in strings] print np.mean(occs) print np.std(occs) def faster_q(length, occ1, occ2): numerator = 1 for i in range(length-occ1, length-occ1-occ2, -1): numerator *= i denominator = 1 for i in range(length, length-occ2, -1): denominator *= i return float(numerator)/float(denominator) length = 128 start = time.time() for occ1 in range(0,50): for occ2 in range(0,50): result1 = fast_q(length, occ1, occ2) t1 = time.time() - start start = time.time() for occ1 in range(0,50): for occ2 in range(0,50): result2 = faster_q(length, occ1, occ2) t2 = time.time()-start print 'fast_q got {} in {} ms'.format(result1, t1) print 'faster_q got {} in {} ms'.format(result2, t2) ```
{ "source": "johnteslade/azulejo", "score": 3 }
#### File: azulejo/azulejo/arrange_base.py ```python import logging from .geometry import Geometry class ArrangeBase(object): """ A base class for defining an action to arrange window(s) """ def __init__(self, screen_in): """ Initialiser """ self._screen = screen_in # Main screen object #variable to hold the amount of windows since the last arrangement self.arrangement_size = 0 def do(self, params): """ Main function that performs the arrangement """ raise NotImplementedError @staticmethod def parse_simple_math_expressions(expression, subst_vars): """ Parses the string expression and evaluates it """ expression = str(expression) for subst in subst_vars.keys(): expression = expression.replace(subst, str(subst_vars[subst])) return int(eval(expression)) def create_geometry(self, geometry_in, monitor): """ Creates the geometry for the config input """ monitor_geometry = self._screen.get_monitor_geometry(monitor) # Parse the string values coming in geometry_out_list = [ self.parse_simple_math_expressions( coord, {'w': monitor_geometry.width, 'h': monitor_geometry.height} ) for coord in geometry_in] # Create final geometry (account for the x and y of the monitor) geometry_out = Geometry( x=geometry_out_list[0] + monitor_geometry.x, y=geometry_out_list[1] + monitor_geometry.y, width=geometry_out_list[2], height=geometry_out_list[3] ) logging.debug("Possible geometry = {}".format(geometry_out)) return geometry_out def get_possible_positions(self, positions, monitor=None): """ Function to create all possible window positions """ return [self.create_geometry(pos, monitor) for pos in positions] ``` #### File: azulejo/azulejo/arrange_multiple_windows.py ```python from .arrange_base import ArrangeBase class ArrangeMultipleWindows(ArrangeBase): """ Class to arrange multiple windows """ def do(self, arrangement): """ Main function that performs the arrangement """ self._screen.move_windows( self.get_possible_positions(arrangement) ) ``` #### File: azulejo/azulejo/arrange_rotate.py ```python from collections import deque from .arrange_base import ArrangeBase class ArrangeRotate(ArrangeBase): """ Class to rotate through windows """ def do(self, dummy): """ Main function that performs the arrangement """ windows = self._screen.get_all_windows() amount_of_windows = len(windows) if amount_of_windows > self.arrangement_size: windows = windows[:self.arrangement_size] geos = [] for window in windows: window_geo = window.get_geometry() window_geo = window_geo[:4] geos.append(window_geo) # do the actual rotations, lets use deque as it's dramatically more # efficient than a trivial shift implementation windows_deq = deque(windows) windows_deq.rotate(1) rotation_len = len(windows_deq) i = 0 while i < rotation_len: geometry_list_args = [0, 255] index = rotation_len - (i + 1) #again, start by the tail geometry_list_args.extend([int(x) for x in geos[index]]) windows_deq[index].unmaximize() windows_deq[index].set_geometry(*geometry_list_args) i += 1 #(windows_deq[0]).activate(int(time.time())) #not sure why it doesn't work. if uncommented causes other windows # beyond the rotated ones to hide behind current ones even after # pressing ctrl+tab ``` #### File: azulejo/test/key_binder.py ```python class KeyBinderDummy(object): """Class used to allow keybindings to be caught and to be actioned.""" def __init__(self): self.bindings = [] self.saved_obj = None def bind(self, action, dispatcher, dispatcher_params): """ Bind a key press """ self.bindings.append({ 'action': action, 'dispatcher': dispatcher, 'dispatcher_params': dispatcher_params, }) def action_key(self, action): """ Actions a key press by calling the relavent dispatcher """ key_found = [x for x in self.bindings if x['action'] == action] assert len(key_found) == 1 func = key_found[0]['dispatcher'] func(key_found[0]['dispatcher_params']) ``` #### File: azulejo/test/screen_mock_base.py ```python class ScreenMockBase(object): """ Base mock object for the screen """ monitor_geometry = [] windows = [] def get_all_windows(self): """ Gets all windows in the screen """ return self.windows def get_monitor_geometry(self, monitor=None): """Returns a rectangle with geometry of the specified monitor. If no monitor uses one with active window. """ if monitor == None: monitor = self.get_active_window_monitor() return self.monitor_geometry[monitor] def get_active_window(self): """ Returns the active window """ active_windows = [x for x in self.windows if x['active'] == True] assert len(active_windows) == 1 return active_windows[0] def get_active_window_monitor(self): """ Returns the monitor of the currently active window """ for x in range(len(self.monitor_geometry)): monitor = self.monitor_geometry[x] window = self.get_active_window()['geometry'] if (window.x >= monitor.x) \ and (window.x < monitor.x + monitor.width) \ and (window.y >= monitor.y) \ and (window.y < monitor.y + monitor.height): return x # If we get here then we have a mismatch between windows and monitors raise RuntimeError def get_active_window_geometry(self): """ Returns the geometry of the current active window """ return self.get_active_window()['geometry'] def move_active_window(self, new_geometry): """ Moves the active window the specified geometry """ for x in range(len(self.windows)): if self.windows[x]['active']: self.windows[x]['geometry'] = new_geometry break def move_windows(self, new_geometry_list): """ Moves the active window the specified geometry """ for x in range(len(new_geometry_list)): self.windows[x]['geometry'] = new_geometry_list[x] def maximise_active_window(self): """ Maximises the active window """ monitor_size = self.get_monitor_geometry( self.get_active_window_monitor()) self.move_active_window(monitor_size) def get_number_monitors(self): """ Returns the number of monitors in use """ return len(self.monitor_geometry) def update(self): """ Forces and update """ # Nothing to do in the mock pass ```
{ "source": "johntfoster/IGA", "score": 3 }
#### File: johntfoster/IGA/IGA_PD_example.py ```python import IGA import numpy as np import matplotlib.pyplot as plt #get_ipython().magic(u'matplotlib inline') # In[2]: def run_case_1(num_knots, order, delta, norm, quad_degree=10): h = 1.0 / num_knots if delta > h: num_boundary_elements = np.ceil(delta / h) else: num_boundary_elements = 1 omega_p1 = np.linspace(-delta, 0, num=(num_boundary_elements + 1)) omega = np.linspace(0, 1, num=(num_knots+1)) omega_p2 = np.linspace(1, 1 + delta, num=(num_boundary_elements + 1)) knot_vector = np.r_[-delta * np.ones(order), omega_p1[:-1], omega[:-1], omega_p2, np.ones(order) * (1 + delta)] iga = IGA.PD1D(knot_vector, order, delta) iga.degree = quad_degree u = lambda x: x * (1 - x) b = lambda x: np.ones(x.shape[0]) iga.compute_solutions(u, b, num_boundary_elements) return iga.compute_error(norm=norm) # In[ ]: dofs = np.array([100,700]) errs = [ run_case_1(num_knots, order=1, delta=0.25, norm=2, quad_degree=4) for num_knots in dofs ] # In[ ]: # In[ ]: #Fit a straight line coefs = np.polyfit(np.log10(1.0 / dofs), np.log10(errs), 1) y = 10 ** (coefs[0] * np.log10(1.0 / dofs) + coefs[1]) #Plot plt.loglog(1.0 / dofs, y, 'b-') plt.loglog(1.0 / dofs, errs, 'b^') plt.xlabel("$\log_{10} h$") plt.ylabel("$\log_{10} \Vert Error \Vert_{L_2}$"); ``` #### File: johntfoster/IGA/IGA.py ```python import sys import numpy as np from scipy.special import legendre import scipy.sparse from scipy.sparse.linalg import spsolve import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm class Bspline(object): """ Numpy implementation of Cox - de Boor algorithm in 1D inputs: knot_vector: Python list or Numpy array containing knot vector entries order: Order of interpolation, e.g. 0 -> piecewise constant between knots, 1 -> piecewise linear between knots, etc. outputs: basis object that is callable to evaluate basis functions at given values of knot span """ def __init__(self, knot_vector, order): """Initialize attributes""" self.knot_vector = np.array(knot_vector) self.p = order def __basis0(self, xi): """Order zero basis""" cond1 = np.array(self.knot_vector[:-1]) <= xi[:, None] cond2 = xi[:, None] < np.array(self.knot_vector[1:]) return np.where(cond1 & cond2, 1.0, 0.0) def __basis(self, xi, p, compute_derivatives=False): """ Recursive Cox - de Boor function to compute basis functions and optionally their derivatives. """ if p == 0: return self.__basis0(xi) else: basis_p_minus_1 = self.__basis(xi, p - 1) first_term_numerator = xi[:, np.newaxis] - self.knot_vector[:-p] first_term_denominator = self.knot_vector[p:] - self.knot_vector[:-p] second_term_numerator = self.knot_vector[(p + 1):] - xi[:, np.newaxis] second_term_denominator = (self.knot_vector[(p + 1):] - self.knot_vector[1:-p]) #Change numerator in last recursion if derivatives are desired if compute_derivatives and p == self.p: first_term_numerator = np.ones((len(xi), len(first_term_denominator))) * p second_term_numerator = np.ones((len(xi), len(second_term_denominator))) * -p #Disable divide by zero error because we check for it with np.errstate(divide='ignore', invalid='ignore'): first_term = np.where(first_term_denominator != 0.0, (first_term_numerator / first_term_denominator), 0.0) second_term = np.where(second_term_denominator != 0.0, (second_term_numerator / second_term_denominator), 0.0) return (first_term[:,:-1] * basis_p_minus_1[:,:-1] + second_term * basis_p_minus_1[:,1:]) def __call__(self, xi): """ Convenience function to make the object callable. """ return self.__basis(xi, self.p, compute_derivatives=False) def d(self, xi): """ Convenience function to compute derivate of basis functions. """ return self.__basis(xi, self.p, compute_derivatives=True) def plot(self): """ Convenience function to plot basis functions over full range of knots. """ x_min = np.min(self.knot_vector) x_max = np.max(self.knot_vector) x = np.linspace(x_min, x_max, num=1000, endpoint=False) N = self(x).T for n in N: plt.plot(x,n) return plt.show() def dplot(self): """ Convenience function to plot derivatives of basis functions over full range of knots. """ x_min = np.min(self.knot_vector) x_max = np.max(self.knot_vector) x = np.linspace(x_min, x_max, num=1000, endpoint=False) N = self.d(x).T for n in N: plt.plot(x,n) return plt.show() class NURBS_2D_Shape_Functions(Bspline): def __init__(self, knot_vector_1, p_1, knot_vector_2, p_2, weights): self.N = Bspline(knot_vector_1, p_1) self.M = Bspline(knot_vector_2, p_2) self.weights = weights def __call__(self, xi, eta, derivative=None): numerator = (np.einsum('...i,...j', self.M(eta), self.N(xi)) * self.weights) W = np.einsum('...i,...j,ij', self.M(eta), self.N(xi), self.weights) R = numerator / W[:, None, None] if derivative == 'xi': dW = np.einsum('...i,...j,ij', self.M(eta), self.N.d(xi), self.weights) R = (np.einsum('...i,...j', self.M(eta), self.N.d(xi)) * self.weights + dW[:, None, None] * R) / W[:, None, None] if derivative == 'eta': dW = np.einsum('...i,...j,ij', self.M.d(eta), self.N(xi), self.weights) R = (np.einsum('...i,...j', self.M.d(eta), self.N(xi)) * self.weights + dW[:, None, None] * R) / W[:, None, None] return R def d_xi(self, xi, eta): return self.__call__(xi, eta, derivative='xi') def d_eta(self, xi, eta): return self.__call__(xi, eta, derivative='eta') def plot(self, shape_function_number=0, derivative=None): xi_min = np.min(self.N.knot_vector) xi_max = np.max(self.N.knot_vector) eta_min = np.min(self.M.knot_vector) eta_max = np.max(self.M.knot_vector) xi = np.linspace(xi_min, xi_max, num=50, endpoint=False) eta = np.linspace(eta_min, eta_max, num=50, endpoint=False) x, y = np.meshgrid(xi, eta) basis = self(x.flatten(), y.flatten(), derivative) z = [basis[:,i,j].reshape(x.shape) for i in range(basis.shape[1]) for j in range(basis.shape[2])] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(x, y, z[shape_function_number], rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf, shrink=0.5, aspect=5) class IGA2D(NURBS_2D_Shape_Functions): def __init__(self, knot_vector_1, p_1, knot_vector_2, p_2, control_points, weights): self.R = NURBS_2D_Shape_Functions(knot_vector_1, p_1, knot_vector_2, p_2, weights) self.x = control_points[:,:,0].flatten() self.y = control_points[:,:,1].flatten() self.num_of_basis_functions_1 = (self.R.N.knot_vector.shape[0] - self.R.N.p - 1) self.num_of_basis_functions_2 = (self.R.M.knot_vector.shape[0] - self.R.M.p - 1) self.num_of_global_basis_functions = (self.num_of_basis_functions_1 * self.num_of_basis_functions_2) self.num_of_elements = ((self.num_of_basis_functions_1 - self.R.N.p) * (self.num_of_basis_functions_2 - self.R.M.p)) self.K = np.zeros((self.num_of_global_basis_functions, self.num_of_global_basis_functions)) self.F = np.zeros(self.num_of_global_basis_functions) self.nurbs_coords = self.__build_nurbs_coord_array() self.connectivity_array = self.__build_connectivity_array() def __build_nurbs_coord_array(self): """ Builds an array of coordinates in index space where each global basis function begins, the position in the array is the global basis id """ #Index arrays in each basis direction i_arr = np.arange(self.num_of_basis_functions_1, dtype=np.int) j_arr = np.arange(self.num_of_basis_functions_2, dtype=np.int) #Construct the coordinate array return np.array([ (i, j) for j in j_arr for i in i_arr ], dtype=np.int) def __build_connectivity_array(self): """ Builds an array that relates the local basis function #'s for each element to the global basis function #'s. Ordering starts with the lower-left hand corner of an element in index space and moves backwards starting in the xi direction, followed by the eta direction row-by-row """ #The total # of basis functions number_of_basis_functions = self.num_of_global_basis_functions #The global basis function id's global_basis_ids = np.arange(number_of_basis_functions, dtype=np.int) #Here we reshape the array to mimic the layout in basis index space, #this makes finding the "lower left-hand" corner easier global_basis_ids.shape = (self.num_of_basis_functions_2, self.num_of_basis_functions_1) #i_arr and j_arr are convenience indices for iterating through the #basis functions to determine the "lower left-hand" corner of the #elements. This procedure accounts for elements of zero measure due #to possibly open knot vectors. i_arr = np.arange(self.R.N.p, self.num_of_basis_functions_1, dtype=np.int) j_arr = np.arange(self.R.M.p, self.num_of_basis_functions_2, dtype=np.int) #Array of element corner indices pairs, i.e. (i,j) elem_corner = [(i,j) for j in j_arr for i in i_arr] #Constructs the connectivity array. This does a slice from the element #corner location (i,j), backwards by p_1 in the \xi direction and p_2 #in the \eta direction to get all basis functions that have support on #each element. The it flatten's the matrix to make an array and reverses #the order with the [::-1] to be consistent with the convention that #the arrays start with the corner basis id and move backwards in \xi #and \eta. Excuse the return np.array([(global_basis_ids[(j-self.R.M.p):(j+1),(i-self.R.N.p):(i+1)].flatten())[::-1] for i,j in elem_corner]) def __compute_element_stiffness(self): """ Computes the element stiffness matrix """ con = self.connectivity_array number_of_basis_functions = self.num_of_global_basis_functions number_of_elements = self.num_of_elements #The knot indices cooresponding to the nurbs coordinates #where elements begin ni = self.nurbs_coords[con[:,0],0] nj = self.nurbs_coords[con[:,0],1] #Compute the Gauss quadrature points to integrate each shape function #to full order xi_, wt_xi_ = np.polynomial.legendre.leggauss(self.R.N.p + 1) eta_, wt_eta_ = np.polynomial.legendre.leggauss(self.R.M.p + 1) #Create all the quadrature point tuples xi, eta = np.meshgrid(xi_, eta_) wt_xi, wt_eta = np.meshgrid(wt_xi_, wt_eta_) #Flatten arrays containing quadrature points and weights xi = xi.flatten() eta = eta.flatten() wt_xi = wt_xi.flatten() wt_eta = wt_eta.flatten() #Takes Gauss integration points into parameter space, has structure #xi_1 -> xi_1_el1, xi_1_el2, xi_1_el3, ... #xi_2 -> xi_2_el1, xi_2_el2, xi_2_el3, ... #flattened into one long array xi = (((self.R.N.knot_vector[ni+1] - self.R.N.knot_vector[ni]) * xi[:, np.newaxis] + (self.R.N.knot_vector[ni+1] + self.R.N.knot_vector[ni])) / 2.0).flatten() eta = (((self.R.M.knot_vector[nj+1] - self.R.M.knot_vector[nj]) * eta[:, np.newaxis] + (self.R.M.knot_vector[nj+1] + self.R.M.knot_vector[nj])) / 2.0).flatten() #Evaluate basis functions. 1st axis is the # of Gauss integration points, 2nd #axis is # of elements, 3rd is values of shape functions dRdxi = self.R.d_xi(xi, eta).reshape(-1, number_of_elements, number_of_basis_functions) dRdeta = self.R.d_eta(xi, eta).reshape(-1, number_of_elements, number_of_basis_functions) #Store only the shape function values with support on an element #shape=(# Gauss points, # of elements, # of nonzero values of shape functions) dRdxi = dRdxi[:, np.arange(con.shape[0])[:, np.newaxis], con] dRdeta = dRdeta[:, np.arange(con.shape[0])[:, np.newaxis], con] #These are dot products, x = x_i . R_i, broadcast to every integration point #shape = (# Gauss points, # of elements) J11 = np.sum(self.x[con] * dRdxi, axis=2) J12 = np.sum(self.y[con] * dRdxi, axis=2) J21 = np.sum(self.x[con] * dRdeta, axis=2) J22 = np.sum(self.y[con] * dRdeta, axis=2) #Compute the determinate of J and inverse detJ = J11 * J22 - J12 * J21 Jinv11 = J22 / detJ Jinv12 = -J12 / detJ Jinv21 = -J21 / detJ Jinv22 = J11 / detJ #Gradient of mapping between Gauss coords and parametric coords dxidxi = (self.R.N.knot_vector[ni+1] - self.R.N.knot_vector[ni]) / 2.0 detadeta = (self.R.M.knot_vector[nj+1] - self.R.M.knot_vector[nj]) / 2.0 #Jacobian determinate of mapping from physical to Gauss coords. #Uses the fact that det(A*B) = det(A) * deta(B) and #det(B) is product along diagonal for a diagonal matrix # #Also multiply the quadrature weights in at this point detJ = detJ * dxidxi * detadeta * wt_xi[:, None] * wt_eta[:, None] #The shape functions in physical coordinates self.dRdx = (dRdxi * Jinv11[:, None, np.arange(Jinv11.shape[0])] + dRdeta * Jinv12[:, None, np.arange(Jinv12.shape[0])]) self.dRdy = (dRdxi * Jinv21[:, None, np.arange(Jinv21.shape[0])] + dRdeta * Jinv22[:, None, np.arange(Jinv22.shape[0])]) #The element stiffness matrices. return np.sum((np.einsum('...i,...j', self.dRdx, self.dRdx) + np.einsum('...i,...j', self.dRdy, self.dRdy)) * detJ[:,:,None,None], axis=0) def assemble(self): ke = self.__compute_element_stiffness() for i in range(self.num_of_elements): idx_grid = np.ix_(self.connectivity_array[i], self.connectivity_array[i]) self.K[idx_grid] += ke[i] def apply_bcs(self, basis_ids, values): row_replace = np.zeros(self.num_of_global_basis_functions) for value_idx, basis_id in enumerate(basis_ids): self.K[basis_id] = row_replace self.K[basis_id, basis_id] = 1 self.F[basis_id] = values[value_idx] def solve(self): self.K = scipy.sparse.csr_matrix(self.K) self.solution = spsolve(self.K, self.F) def get_solution(self): return self.solution def plot_solution(self): xi_min = np.min(self.R.N.knot_vector) xi_max = np.max(self.R.N.knot_vector) eta_min = np.min(self.R.M.knot_vector) eta_max = np.max(self.R.M.knot_vector) xi = np.linspace(xi_min, xi_max, num=50, endpoint=False) eta = np.linspace(eta_min, eta_max, num=50, endpoint=False) x, y = np.meshgrid(xi, eta) basis = self.R(x.flatten(), y.flatten()) z = np.einsum('...ij,ij', basis, self.solution.reshape(basis.shape[1:])).reshape(x.shape) plot = plt.contourf(x, y, z, cmap="coolwarm") plt.colorbar(plot, orientation='horizontal', shrink=0.6); plt.clim(0,100) plt.axes().set_aspect('equal') def plot_knot_mesh(self): xi_min = np.min(self.R.N.knot_vector) xi_max = np.max(self.R.N.knot_vector) eta_min = np.min(self.R.M.knot_vector) eta_max = np.max(self.R.M.knot_vector) xi = np.linspace(xi_min, xi_max, num=50, endpoint=False) eta = np.linspace(eta_min, eta_max, num=50, endpoint=False) for knot in self.R.M.knot_vector: knot_array = np.ones_like(eta) * knot basis = self.R(knot_array, eta) line_x = np.einsum('...ij,ij', basis, self.x.reshape(basis.shape[1:])).flatten() line_y = np.einsum('...ij,ij', basis, self.y.reshape(basis.shape[1:])).flatten() class PD1D(Bspline): def __init__(self, knot_vector, p, delta): """ Initializes 1D isogeometric peridynamics problem """ self.degree = 10 self.delta = delta self.N = Bspline(knot_vector, p) self.num_of_basis_functions = (self.N.knot_vector.shape[0] - self.N.p - 1) def build_connectivity_array(self): i_arr = (np.unique(self.N.knot_vector, return_counts=True)[1]).cumsum()[:-1] - 1 index_arr = np.arange(self.N(np.array([0.0])).shape[0], dtype=np.int) return np.array([ index_arr[i:(i + self.N.p + 1)] for i in i_arr]) def __compute_stiffness(self): """ Computes the full stiffness matrix with `degree` integration points """ #Ensure even number of quadrature points are used try: if self.degree % 2 != 0: raise ValueError("'degree' must be even to avoid singular kernel evaluation during quadrature.") except ValueError as msg: print(msg) return #Generate quadrature points xi, wts = np.polynomial.legendre.leggauss(self.degree) #Determine upper and lower bounds for quadrature on each element b = self.N.knot_vector[(self.N.p + 2):-(self.N.p + 1), None] a = self.N.knot_vector[(self.N.p + 1):-(self.N.p + 2), None] #The integration points in parameter space x = (((b - a) * xi + b + a) / 2.0).ravel() #The total number on integration points over the `elements`, i.e. not #over the horizons num_elem_quad_points = x.shape[0] #Evaluate the shape functions at x Nx = self.N(x).reshape(num_elem_quad_points, -1) #The upper and lower bounds of integration over each family d = x[:,None] + self.delta c = x[:,None] - self.delta #The integration points for each horizon in parameter space y = (((d - c) * xi + d + c) / 2.0) #Evaluation shape functions at each y Ny = self.N(y.ravel()).reshape(num_elem_quad_points, xi.shape[0], -1) #The total number of global shape functions num_global_sf = Nx.shape[1] #Evaluate the "inner" integral over y inner = ((d - c) / 2 * np.sum((Nx[:,None,:] - Ny) / np.abs(x[:,None] - y)[:,:,None] * wts[None,:,None], axis=1)) #The shape of the element stiffness matrix ke_shape = (-1, self.degree, num_global_sf, num_global_sf) #Evaluate the outer integral and assemble stiffness matrix self.K = (np.sum((b[:,None] - a[:,None]) / 2 * np.sum(np.einsum('...i,...j', Nx, inner).reshape(*ke_shape) * wts[None, :, None, None], axis=1), axis=0) / self.delta / self.delta) return def __compute_body_force_term(self, bfun): """ Performs quadrature on the RHS of the peridynamic equation with a given body force funtion, b(x). Quadrature is performed at the same order of quadrature as the stiffness matrix. """ #Generate quadrature points xi, wts = np.polynomial.legendre.leggauss(self.degree) #Determine upper and lower bounds for quadrature on each element b = self.N.knot_vector[(self.N.p + 2):-(self.N.p + 1), None] a = self.N.knot_vector[(self.N.p + 1):-(self.N.p + 2), None] #The integration points in parameter space x = (((b - a) * xi + b + a) / 2.0).ravel() #The total number on integration points over the `elements`, i.e. not #over the horizons num_elem_quad_points = x.shape[0] #Evaluate shape functions Nx = self.N(x) #Total # of shape functions num_global_sf = Nx.shape[1] #Evaluate body force function at quadrature points bx = bfun(x) #Multiply quadrature weights in Nx = (((b[:,None] - a[:,None]) / 2 * (Nx.reshape(-1,xi.shape[0], num_global_sf) * wts[None, :, None])).reshape(-1,num_global_sf)) #Integrate rhs self.b = np.dot(Nx.T, bx) return def manufacture_solution(self, ufun, num_boundary_elements): """ Manufactures a solution on the domain (0,1) from the stiffness matrix and ufun. Quadrature performed with `degree` points. """ #The total number of basis functions in the boundary region nbb = num_boundary_elements * (self.N.p) self.__compute_stiffness() #The stiffness matrix excluding boundary terms print(self.K) A = self.K[nbb:-nbb,nbb:-nbb] print(A) #Discrete domain x = np.linspace(0.0, 1.0, num=(A.shape[0] + 1), endpoint=False)[1:] #Evaluate shape functions at discrete points NN = self.N(x)[:,nbb:-nbb] #Manufacture control variables d = np.dot(np.linalg.inv(NN), ufun(x)) #Manufacture solution self.sol = np.dot(A, d) return def compute_rhs(self, ufun, bfun, number_of_boundary_elements): try: if self.K is None: raise ValueError("You must generate the stiffness matrix first") except ValueError as msg: print(msg) return #The total number of basis functions in the boundary region nbb = num_boundary_elements * (self.N.p) self.__compute_body_force_term(bfun) self.rhs = (self.b[nbb:-nbb] - np.einsum('...i,i', self.K[nbb:-nbb,0:nbb], ufun(np.linspace(-self.delta, 0, num=nbb))) - np.einsum('...i,i', self.K[nbb:-nbb,-nbb:], ufun(np.linspace(1.0, 1.0 + self.delta, num=nbb)))) def compute_solutions(self, u, b, num_boundary_elements): self.manufacture_solution(u, num_boundary_elements) self.compute_rhs(u, b, num_boundary_elements) def compute_error(self, norm=2): return np.linalg.norm(self.sol - self.rhs, ord=norm) ```
{ "source": "johntfoster/PyTriFD", "score": 3 }
#### File: examples/one_dim_nonlinear_diffusion/1dfd.py ```python from PyTriFD import FD import matplotlib.pyplot as plt class OneDimNonlinearDiffusion(FD): def parse_additional_inputs(self): self.k = self.inputs['material parameters']['k'] return def residual_operator(self, my_field_overlap_sorted, my_field_overlap_sorted_old=None): u = my_field_overlap_sorted[0] residual = ((u[:-2] - 2*u[1:-1] + u[2:]) / (self.deltas[0] ** 2.0) - self.k * u[1:-1] * u[1:-1]) return residual def plot_solution(self): nodes = self.get_nodes_on_rank0() u = self.get_solution_on_rank0() if self.rank == 0: fig, ax = plt.subplots() ax.plot(nodes[0], u) plt.show() if __name__ == "__main__": problem = OneDimNonlinearDiffusion('inputs.yml') problem.solve() u = problem.plot_solution() ```
{ "source": "johnthagen/cpplint-junit", "score": 3 }
#### File: johnthagen/cpplint-junit/cpplint_junit.py ```python import argparse import collections import os import re import sys from typing import Dict, List from xml.etree import ElementTree from exitstatus import ExitStatus class CpplintError(object): def __init__(self, file: str, line: int, message: str) -> None: """Constructor. Args: file: File error originated on. line: Line error originated on. message: Error message. """ self.file = file self.line = line self.message = message def parse_arguments() -> argparse.Namespace: parser = argparse.ArgumentParser(description='Converts cpplint output to JUnit XML format.') parser.add_argument('input_file', type=str, help='cpplint stdout text file.') parser.add_argument('output_file', type=str, help='JUnit XML output file.') return parser.parse_args() def parse_cpplint(file_name: str) -> Dict[str, List[CpplintError]]: """Parses a cpplint output file. Args: file_name: cpplint output file. Returns: Parsed errors grouped by file name. Raises: IOError: File does not exist (More specifically FileNotFoundError on Python 3). """ with open(file_name, 'rt') as file: lines = file.readlines() errors = collections.defaultdict(list) for line in lines: line = line.rstrip() match = re.search(r'(\S+):(\d+):\s+(.+)', line) if match is not None: error = CpplintError(file=match.group(1), line=int(match.group(2)), message=match.group(3)) errors[error.file].append(error) return errors def generate_test_suite(errors: Dict[str, List[CpplintError]]) -> ElementTree.ElementTree: """Creates a JUnit XML tree from parsed cpplint errors. Args: errors: Parsed cpplint errors. Returns: XML test suite. """ test_suite = ElementTree.Element('testsuite') test_suite.attrib['errors'] = str(len(errors)) test_suite.attrib['failures'] = str(0) test_suite.attrib['name'] = 'cpplint errors' test_suite.attrib['tests'] = str(len(errors)) test_suite.attrib['time'] = str(1) for file_name, errors in errors.items(): test_case = ElementTree.SubElement(test_suite, 'testcase', name=os.path.relpath(file_name)) for error in errors: ElementTree.SubElement(test_case, 'error', file=os.path.relpath(error.file), line=str(error.line), message='{}: {}'.format(error.line, error.message)) return ElementTree.ElementTree(test_suite) def main() -> ExitStatus: # pragma: no cover """Main function. Returns: Exit code. """ args = parse_arguments() try: errors = parse_cpplint(args.input_file) except IOError as e: print(str(e)) return ExitStatus.failure if len(errors) > 0: tree = generate_test_suite(errors) tree.write(args.output_file, encoding='utf-8', xml_declaration=True) return ExitStatus.success if __name__ == '__main__': # pragma: no cover sys.exit(main()) ```
{ "source": "johnthagen/exitstatus", "score": 3 }
#### File: johnthagen/exitstatus/tests.py ```python import sys import unittest from exitstatus import ExitStatus class ExitStatusTestCase(unittest.TestCase): def test_equality(self) -> None: self.assertEqual(ExitStatus.success, 0) self.assertEqual(ExitStatus.failure, 1) def test_value(self) -> None: self.assertEqual(ExitStatus.success.value, 0) self.assertEqual(ExitStatus.failure.value, 1) def test_identity(self) -> None: self.assertIs(ExitStatus.success, ExitStatus.success) self.assertIsNot(ExitStatus.success, ExitStatus.failure) def test_sys_exit(self) -> None: with self.assertRaises(SystemExit): sys.exit(ExitStatus.success) def test_exit(self) -> None: with self.assertRaises(SystemExit): exit(ExitStatus.success) ```
{ "source": "johnthagen/pytap2", "score": 3 }
#### File: src/pytap2/__init__.py ```python import atexit import enum import fcntl import os import struct from typing import Optional TUNSETIFF = 0x400454CA IFF_NO_PI = 0x1000 """Mask to disable packet information from being prepended to packets sent through TUN/TAP.""" PACKET_INFO_SIZE = 4 """Size of packet information, in bytes, prepended to packets sent in TUN/TAP when packet information is enabled.""" @enum.unique class TapMode(enum.Enum): """The device mode. Values correlate to corresponding values needed for ioctl calls. """ Tun = 0x0001 """IFF_TUN.""" Tap = 0x0002 """IFF_TAP""" class TapDevice: """Tun/Tap device object.""" def __init__( self, mode: TapMode = TapMode.Tun, name: Optional[str] = None, dev: str = "/dev/net/tun", mtu: int = 1500, enable_packet_info: bool = False, ) -> None: """Initialize TUN/TAP device object. Args: mode: Select tun or tap device mode. name: The name of the new device. If not supplied, a default will be provided. An integer will be added to build the real device name. dev: The device node name the control channel is connected to. mtu: The MTU size, in bytes, to be applied to the new device. enable_packet_info: Whether or not to enable packet information header to be prepended to each """ self._mode = mode # Create interface name to request from tuntap module. if name is None: if self._mode is TapMode.Tun: self._name = "tun%d" elif self._mode is TapMode.Tap: self._name = "tap%d" else: self._name = name + "%d" # Open control device and request interface. self._fd = os.open(dev, os.O_RDWR) self._enable_packet_info = enable_packet_info mode_value = self._mode.value if not self._enable_packet_info: mode_value |= IFF_NO_PI ifs = fcntl.ioctl( self._fd, TUNSETIFF, # type: ignore struct.pack("16sH", self._name.encode(), mode_value), ) # Retrieve real interface name from control device. self._name = ifs[:16].strip(b"\x00").decode() self._mtu = mtu # Properly close device on exit. atexit.register(self.close) def __enter__(self) -> "TapDevice": self.up() return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() @property def name(self) -> str: """The device name.""" return self._name @property def mode(self) -> TapMode: """The device mode (tap or tun).""" return self._mode @property def mtu(self) -> int: """The device MTU.""" return self._mtu @property def is_packet_information_enabled(self) -> bool: """Whether packet information header is enabled for this device.""" return self._enable_packet_info @property def fd(self) -> int: """The device file descriptor.""" return self._fd def fileno(self) -> int: """The device file descriptor. This method is named specifically so that the object can be passed to select.select() calls. """ return self._fd def read(self, num_bytes: Optional[int] = None) -> bytes: """Read data from the device. Args: num_bytes: The number of bytes to read. If not specified, the MTU size is used, including the optional packet information header if enabled on a the device. """ if num_bytes is None: num_bytes = self._mtu # If packet information is enabled, 4 extra bytes will be appended to a packet # that is potentially already the maximum MTU size, so ensure that by # default we can read one entire MTU-sized packet and this header. if self._enable_packet_info: num_bytes += PACKET_INFO_SIZE return os.read(self._fd, num_bytes) def write(self, data: bytes) -> None: """Write data to the device. No care is taken for MTU limitations or similar.""" os.write(self._fd, data) def ifconfig(self, **args): """Issue ifconfig command on the device. Keyword Args: address: IP address of the device, can be in CIDR notation (see man ifconfig). netmask: Network mask. network: Network base address, normally set automatically. broadcast: Broadcast address, normally set automatically. mtu: Link MTU, this will also affect the read() method. hwclass: Hardware class, normally ether for ethernet. hwaddress: Hardware (MAC) address, in conjunction with hwclass. """ # TODO: New systems like Ubuntu 17.04 do not come with ifconfig pre-installed. ifconfig_cmd = "ifconfig {} ".format(self._name) try: ifconfig_cmd = "{} {} ".format(ifconfig_cmd, args["address"]) except KeyError: pass try: ifconfig_cmd = "{} {} {} ".format(ifconfig_cmd, "netmask", args["netmask"]) except KeyError: pass try: ifconfig_cmd = "{} {} {} ".format(ifconfig_cmd, "network", args["network"]) except KeyError: pass try: ifconfig_cmd = "{} {} {} ".format(ifconfig_cmd, "broadcast", args["broadcast"]) except KeyError: pass try: ifconfig_cmd = "{} {} {} ".format(ifconfig_cmd, "mtu", args["mtu"]) except KeyError: pass try: ifconfig_cmd = "{} {} {} {} ".format( ifconfig_cmd, "hw", args["hwclass"], args["hwaddress"] ) except KeyError: pass ret = os.system(ifconfig_cmd) if ret != 0: raise IfconfigError("ifconfig command failed.") # Save MTU if ifconfig was successful so buffer sizes can be adjusted. try: self._mtu = args["mtu"] except KeyError: pass def up(self) -> None: """Bring up device. This will effectively run "ifconfig up" on the device.""" ret = os.system("ifconfig {} up".format(self._name)) if ret != 0: raise IfconfigError() def down(self) -> None: """Bring down device. This will effectively call "ifconfig down" on the device.""" ret = os.system("ifconfig {} down".format(self._name)) if ret != 0: raise IfconfigError() def close(self) -> None: """Close the control channel. This will effectively drop all locks and remove the TUN/TAP device. You must manually take care that your code does not try to operate on the interface after closing the control channel. """ try: os.close(self._fd) except OSError: pass class IfconfigError(Exception): """Exception thrown if an ifconfig command returns with a non-zero exit status.""" ```
{ "source": "JohnTheCoolingFan/Motorchik", "score": 3 }
#### File: JohnTheCoolingFan/Motorchik/motorchik_setup.py ```python import argparse import getpass import json import os.path as p def get_argparser(): argparser = argparse.ArgumentParser(description='Motorchik, discord bot with extensive per-guild configuration directly in discord chat.') argparser.add_argument('-s', '--setup', action='store_true') return argparser def interactive_setup(): print('Welcome to Motorchik interactive setup. It will ask for some parameters and create a new config file with entered parameters') config_data = dict() bot_token = getpass.getpass('Please enter bot\'s token (will not be echoed): ') config_data['token'] = bot_token log_channel_id = input('(Optional) Log channel id. Leave empty for none: ') if log_channel_id: try: config_data['log_channel'] = int(log_channel_id) except ValueError: config_data['log_channel'] = 0 else: config_data['log_channel'] = 0 attempt_input = True while attempt_input: print(''' Config storage method is how guild and user settings are going to be stored. Enter the name or number. 1. mongo (default)''') config_storage_method = input('Choice: ') if config_storage_method in ['1', 'mongo']: config_data['mongo'] = setup_mongo() attempt_input = False elif config_storage_method == '': print('Choosing default method: mongo') attempt_input = False config_data['mongo'] = setup_mongo() else: print('Invalid input') config_file_path = 'config.json' if p.exists(config_file_path): print('config.json already exists! New config will be written to config.json.new') config_file_path = 'config.json.new' with open(config_file_path, 'w') as config_file: json.dump(config_data, config_file) print('Finished setup. Motorchik is ready to start.') def setup_mongo(): print('You have chosen to store guild settings in MongoDB.') mongo_host = input('MongoDB host address: ') mongo_port = input('MongoDB server port (optional if specified in the host address): ') if mongo_port: try: mongo_port = int(mongo_port) except ValueError: mongo_port = '' print('For remote access, MongoDB requires to have a user and a password. If you plan to host MongoDB on the same machine as Motorchik, leave the next two empty.') mongo_username = input('MongoDB username: ') mongo_password = <PASSWORD>('MongoDB user password (will not be echoed): ') print('Finished setting up MongoDB credentials') return {'host': mongo_host, 'port': mongo_port, 'username': mongo_username, 'password': <PASSWORD>} if __name__ == '__main__': interactive_setup() ```
{ "source": "john-the-dev/leetcode", "score": 4 }
#### File: leetcode/Array/1480RunningSumArray.py ```python from common import * class Solution: ''' Use previous sum to calculate current sum. O(n) runtime, O(1) storage. Beat 64% runtime, 99.9% storage of all Leetcode submissions. ''' def runningSum(self, nums: List[int]) -> List[int]: out,n = [],len(nums) if n == 0: return out out.append(nums[0]) for i in range(1,n): out.append(out[i-1]+nums[i]) return out # Tests. assert(Solution().runningSum([1,2,3,4]) == [1,3,6,10]) assert(Solution().runningSum([1,1,1,1,1]) == [1,2,3,4,5]) assert(Solution().runningSum([3,1,2,10,1]) == [3,4,6,16,17]) ``` #### File: leetcode/Array/14LongestCommonPrefix.py ```python class Solution: ''' Horizontal scan of strings. O(N) runtime, O(1) storage, in which N is total # of characters. Beat 93% runtime, 5% storage of all Leetcode submissions. The storage part of Leetcode is confusing as there is not much storage being used here while it is only 5%. ''' def longestCommonPrefix(self, strs): if len(strs) == 0: return '' i = 0 while True: c,match = None,True for s in strs: if i >= len(s): match = False break if c == None: c = s[i] elif c != s[i]: match = False break if not match: break i += 1 return strs[0][:i] # Tests. assert(Solution().longestCommonPrefix(["flower","flow","flight"]) == "fl") assert(Solution().longestCommonPrefix(["dog","racecar","car"]) == "") assert(Solution().longestCommonPrefix(["","flow","flight"]) == "") assert(Solution().longestCommonPrefix(["flower","flow",""]) == "") assert(Solution().longestCommonPrefix([]) == "") ``` #### File: leetcode/Array/209MinimumSizeSubarraySum.py ```python from common import * import sys class Solution: ''' Sliding window from left, slide j to reach target, slide i to shrink. O(n) runtime, O(1) storage. Beat 54% runtime, 79% storage of all Leetcode submissions. ''' def minSubArrayLen(self, s: int, nums: List[int]) -> int: i,j,n,out = 0,0,len(nums),[sys.maxsize, 0] while i < n: while j < n and out[1] < s: out[1] += nums[j] j += 1 if out[1] >= s: out[0] = min(out[0], j-i) out[1] -= nums[i] i += 1 return out[0] if out[0] != sys.maxsize else 0 # Tests. assert(Solution().minSubArrayLen(s = 7, nums = [2,3,1,2,4,3]) == 2) assert(Solution().minSubArrayLen(s = 4, nums = [1,4,4]) == 1) assert(Solution().minSubArrayLen(s = 11, nums = [1,1,1,1,1,1,1,1]) == 0) ``` #### File: leetcode/Array/271EncodeDecodeStrings.py ```python from common import * ''' Encode to numbers and decode from numbers. O(N) runtime for both encode and decode, in which N is total # of characters in strs. O(N) storage. Beat 5% runtime, 29% storage of all Leetcode submissions. ''' class Codec: def toNum(self, s): num,zero,i,n = 0,0,0,len(s) while i < n and ord(s[i]) == 0: zero += 1 i += 1 while i < n: num = num << 8 num += ord(s[i]) i += 1 return [zero,num] def toStr(self, zero, num): s = [] while num > 0: s.append(chr(num % 256)) num = num >> 8 s.extend([chr(0)]*zero) return ''.join(s[::-1]) def encode(self, strs: [str]) -> str: """Encodes a list of strings to a single string. """ out = [] for s in strs: zero,num = self.toNum(s) out.append('{}:{}'.format(zero,num)) return ','.join(out) def decode(self, s: str) -> [str]: """Decodes a single string to a list of strings. """ out = [] strs = s.split(',') if len(s) > 0 else [] for s in strs: zero,num = s.split(':') out.append(self.toStr(int(zero),int(num))) return out # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.decode(codec.encode(strs)) # Tests. codec = Codec() strs = ['Great','Nice'] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = ['{}leading'.format(chr(0)),'Nice'] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = ['{}l:eadi.ng'.format(chr(0)),'{}leading,{}'.format(chr(0),chr(1))] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = [] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) ``` #### File: leetcode/Array/280WiggleSort.py ```python from common import * class Solution: ''' Loop through and exchange if nums[i] and nums[i+1] not satisfy rule. O(n) runtime, O(1) storage. Beat 84% runtime, 99% storage of all Leetcode submissions. ''' def wiggleSort(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ for i in range(len(nums)-1): if i % 2 == 0: if nums[i] > nums[i+1]: nums[i],nums[i+1] = nums[i+1],nums[i] else: if nums[i] < nums[i+1]: nums[i],nums[i+1] = nums[i+1],nums[i] # Tests. nums = [3,5,2,1,6,4] Solution().wiggleSort(nums) assert(nums == [3,5,1,6,2,4]) nums = [1,2,3] Solution().wiggleSort(nums) assert(nums == [1,3,2]) nums = [2,1] Solution().wiggleSort(nums) assert(nums == [1,2]) ``` #### File: leetcode/Array/301RemoveInvalidParentheses.py ```python from common import * class Solution: ''' DFS + backtracking of prefix, stack, removals. O(2^n) runtime, O(n) storage. Beat 5% runtime, 56% storage of all Leetcode submissions. ''' def removeInvalidParentheses(self, s: str) -> List[str]: minimum,n,out = float('inf'),len(s),set() def dfs(prefix, stack, i, removals, find_minimum): nonlocal minimum, out if i == n: if not stack: if find_minimum: minimum = min(removals, minimum) elif removals == minimum: out.add(''.join(prefix)) return if s[i] == '(': prefix.append(s[i]) stack.append(s[i]) dfs(prefix, stack, i+1, removals, find_minimum) stack.pop() prefix.pop() elif s[i] == ')': if stack and stack[-1] == '(': prefix.append(s[i]) stack.pop() dfs(prefix, stack, i+1, removals, find_minimum) stack.append('(') prefix.pop() else: prefix.append(s[i]) dfs(prefix, stack, i+1, removals, find_minimum) prefix.pop() dfs(prefix, stack, i+1, removals+1, find_minimum) dfs([],[],0,0,True) dfs([],[],0,0,False) return list(out) # Tests. assert_list_noorder(Solution().removeInvalidParentheses("()())()"), ["(())()","()()()"]) assert_list_noorder(Solution().removeInvalidParentheses("(a)())()"), ["(a())()","(a)()()"]) assert_list_noorder(Solution().removeInvalidParentheses(")("), [""]) ``` #### File: leetcode/Array/362DesignHitCounter.py ```python from common import * ''' list, binary search on timestamp. O(1) runtime for init, hit, O(log(n)) runtime for getHits. O(n) storage in which n is # of seconds with hits. Beat 85% runtime, 50% storage of all Leetcode submissions. ''' class HitCounter: def __init__(self): """ Initialize your data structure here. """ self.arr = [] def hit(self, timestamp: int) -> None: """ Record a hit. @param timestamp - The current timestamp (in seconds granularity). """ if self.arr and self.arr[-1][0] == timestamp: self.arr[-1][1] += 1 else: self.arr.append([timestamp, 1]) def getHits(self, timestamp: int) -> int: """ Return the number of hits in the past 5 minutes. @param timestamp - The current timestamp (in seconds granularity). """ def binarySearch(timestamp, leftOrRight = True): i,j = 0,len(self.arr) while i < j: k = (i+j) // 2 if leftOrRight: if self.arr[k][0] < timestamp: i = k+1 else: j = k else: if self.arr[k][0] <= timestamp: i = k+1 else: j = k return i j = binarySearch(timestamp, False) i = binarySearch(timestamp-299, True) out = 0 for k in range(i, j): out += self.arr[k][1] return out # Your HitCounter object will be instantiated and called as such: # obj = HitCounter() # obj.hit(timestamp) # param_2 = obj.getHits(timestamp) assert_call_sequence(globals(),["HitCounter","hit","hit","hit","getHits","hit","getHits","getHits"],[[],[1],[2],[2],[4],[300],[300],[301]],[[None,None,None,None,3,None,4,3]]) ``` #### File: leetcode/Array/468ValidateIPAddress.py ```python from common import * class Solution: ''' Parsing rules. O(n) runtime, O(n) storage, in which n is length of the IP. Beat 45% runtime, 29% storage of all Leetcode submissions. ''' def validIPAddress(self, IP: str) -> str: if IP.find('.') > 0: parts = IP.split('.') if len(parts) != 4: return 'Neither' for part in parts: if (not part.isdigit()) or (len(part) > 3) or (len(part) > 1 and part[0] == '0') or (int(part) >= 256): return 'Neither' return 'IPv4' elif IP.find(':') > 0: parts = IP.split(':') if len(parts) != 8: return 'Neither' for part in parts: if len(part) == 0 or len(part) > 4: return 'Neither' for c in part: if c >= 'a' and c <= 'f': continue if c >= 'A' and c <= 'F': continue if c >= '0' and c <= '9': continue return 'Neither' return 'IPv6' else: return 'Neither' ''' Improve storage complexity by counting occurence of the delimiter before spliting. O(n) runtime, O(1) storage. Beat 77% runtime, 9% storage of all Leetcode submissions. Note by counting the delimiter occurence, we make sure there are constant # of parts for IPv4 and IPv6 check. So storage is O(1). ''' def validIPAddress2(self, IP: str) -> str: if IP.count('.') == 3: parts = IP.split('.') if len(parts) != 4: return 'Neither' for part in parts: if (not part.isdigit()) or (len(part) > 3) or (len(part) > 1 and part[0] == '0') or (int(part) >= 256): return 'Neither' return 'IPv4' elif IP.count(':') == 7: parts = IP.split(':') if len(parts) != 8: return 'Neither' for part in parts: if len(part) == 0 or len(part) > 4: return 'Neither' for c in part: if c >= 'a' and c <= 'f': continue if c >= 'A' and c <= 'F': continue if c >= '0' and c <= '9': continue return 'Neither' return 'IPv6' else: return 'Neither' # Tests. assert(Solution().validIPAddress("172.16.254.1") == 'IPv4') assert(Solution().validIPAddress("2001:0db8:85a3:0:0:8A2E:0370:7334") == 'IPv6') assert(Solution().validIPAddress("256.256.256.256") == 'Neither') assert(Solution().validIPAddress("2001:0db8:85a3:0:0:8A2E:0370:7334:") == 'Neither') assert(Solution().validIPAddress("1e1.4.5.6") == 'Neither') assert(Solution().validIPAddress2("172.16.254.1") == 'IPv4') assert(Solution().validIPAddress2("2001:0db8:85a3:0:0:8A2E:0370:7334") == 'IPv6') assert(Solution().validIPAddress2("256.256.256.256") == 'Neither') assert(Solution().validIPAddress2("2001:0db8:85a3:0:0:8A2E:0370:7334:") == 'Neither') assert(Solution().validIPAddress2("1e1.4.5.6") == 'Neither') ``` #### File: leetcode/Array/523ContinuousSubarraySum.py ```python class Solution: ''' Hash map to memorize sum[:i] % k so that when see it again at j we know there is a subarray [i+1:j+1] whose sum is multiples of k. O(n) runtime, O(min(k,n)) storage. Beat 99.7% runtime, 6.7% storage of all Leetcode submissions. The reason for bad storage is that brute forcing has O(1). ''' def checkSubarraySum(self, nums, k): h,n,v = {0:-1},len(nums),0 if k == 0: for i in range(n-1): if nums[i] == 0 and nums[i+1] == 0: return True else: for i in range(n): v += nums[i] m = v % k if m in h: if i-h[m] >= 2: return True else: h[m] = i return False # Tests. assert(Solution().checkSubarraySum([23, 2, 4, 6, 7], 6) == True) assert(Solution().checkSubarraySum([23, 2, 6, 4, 7], 6) == True) assert(Solution().checkSubarraySum([23, 2, 7], 6) == False) assert(Solution().checkSubarraySum([], 6) == False) assert(Solution().checkSubarraySum([23,2,6,4,7], 0) == False) assert(Solution().checkSubarraySum([6,4,7], 6) == False) ``` #### File: leetcode/Array/528RandomPick.py ```python from common import * import random ''' Prefix sum with binary search. O(n) runtime for __init__ and O(log(n)) runtime for pickIndex, O(1) storage as we use in-place storage. Beat 63% runtime, 50% storage of all Leetcode submissions. ''' class Solution: def __init__(self, w): for i in range(1,len(w)): w[i] += w[i-1] self.w = w def pickIndex(self) -> int: pick = random.randint(1,self.w[-1]) i,j = 0,len(self.w) while i < j: k = (i+j) // 2 if self.w[k] >= pick: j = k else: i = k+1 return i # Your Solution object will be instantiated and called as such: # obj = Solution(w) # param_1 = obj.pickIndex() # Tests. assert_call_sequence(globals(),["Solution","pickIndex"],[[[1]],[]],[[None,0]]) assert_call_sequence(globals(),["Solution","pickIndex","pickIndex"],[[[1,3]],[],[]],[[None,1,1],[None,1,0],[None,0,1],[None,0,0]]) ``` #### File: leetcode/Array/759EmployeeFreeTime.py ```python class Interval: def __init__(self, start: int = None, end: int = None): self.start = start self.end = end from common import * import sys import heapq class Solution: ''' Calculate free time for each employee, then merge the free time. O(N^2) runtime, O(N) storage, in which N is # of Intervals. Beat 5% runtime, 86% storage of all Leetcode submissions. ''' def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': freetime,low,high = [],sys.maxsize,-sys.maxsize-1 for employee in schedule: for worktime in employee: low = min(low, worktime.start) high = max(high, worktime.end) for employee in schedule: freetime.append([]) if employee[0].start > low: freetime[-1].append(Interval(low,employee[0].start)) for i in range(1,len(employee)): if employee[i].start > employee[i-1].end: freetime[-1].append(Interval(employee[i-1].end,employee[i].start)) if employee[-1].end < high: freetime[-1].append(Interval(employee[-1].end,high)) def merge(free1, free2): free,i1,i2,n1,n2 = [],0,0,len(free1),len(free2) while i1 < n1 and i2 < n2: if free1[i1].start > free2[i2].start: free1,free2,i1,i2,n1,n2 = free2,free1,i2,i1,n2,n1 if free1[i1].end > free2[i2].start: if free1[i1].end > free2[i2].end: free.append(Interval(free2[i2].start,free2[i2].end)) i2 += 1 else: free.append(Interval(free2[i2].start,free1[i1].end)) i1 += 1 else: i1 += 1 return free out = freetime[0] for i in range(1,len(freetime)): out = merge(out,freetime[i]) return out ''' Priority queue to find all busy intervals first, then compute free time. O(Nlog(k)) runtime, O(k) storage, in which N is # of intervals, k is # of employees. Beat 25% runtime, 76% storage of all Leetcode submissions. ''' def employeeFreeTime2(self, schedule: '[[Interval]]') -> '[Interval]': k = len(schedule) q,out = [],[] for i in range(k): if len(schedule[i]) > 0: q.append([schedule[i][0].start,schedule[i][0].end,i,0]) heapq.heapify(q) while q: start,end,i,j = heapq.heappop(q) if not out or out[-1][1] < start: out.append([start,end]) else: out[-1][1] = max(out[-1][1],end) if j < len(schedule[i])-1: heapq.heappush(q,[schedule[i][j+1].start,schedule[i][j+1].end,i,j+1]) for i in range(1,len(out)): out[i-1] = Interval(out[i-1][1],out[i][0]) if out: out.pop() return out # Tests. def assert_out(expected_out, actual_out): assert(len(expected_out) == len(actual_out)) for i in range(len(expected_out)): assert(expected_out[i].start == actual_out[i].start) assert(expected_out[i].end == actual_out[i].end) expected_out = [Interval(3,4)] actual_out = Solution().employeeFreeTime([[Interval(1,2),Interval(5,6)],[Interval(1,3)],[Interval(4,10)]]) assert_out(expected_out, actual_out) expected_out = [Interval(5,6),Interval(7,9)] actual_out = Solution().employeeFreeTime([[Interval(1,3),Interval(6,7)],[Interval(2,4)],[Interval(2,5),Interval(9,12)]]) assert_out(expected_out, actual_out) expected_out = [Interval(3,4)] actual_out = Solution().employeeFreeTime2([[Interval(1,2),Interval(5,6)],[Interval(1,3)],[Interval(4,10)]]) assert_out(expected_out, actual_out) expected_out = [Interval(5,6),Interval(7,9)] actual_out = Solution().employeeFreeTime2([[Interval(1,3),Interval(6,7)],[Interval(2,4)],[Interval(2,5),Interval(9,12)]]) assert_out(expected_out, actual_out) ``` #### File: leetcode/Array/767ReorganizeString.py ```python from common import * from collections import defaultdict import heapq class Solution: ''' Priority queue to use high frequency characters first. O(nlog(a)) runtime, O(a) storage, where n is length of S and a is # of unique characters. Beat 73% runtime, 35% storage of all Leetcode submissions. ''' def reorganizeString(self, S: str) -> str: h = defaultdict(int) for c in S: h[c] += 1 q = [] for c in h: q.append([-h[c],c]) heapq.heapify(q) out = [] while q: f,c = heapq.heappop(q) if not out or out[-1] != c: out.append(c) if f < -1: heapq.heappush(q, [f+1,c]) else: if not q: return "" f2,c2 = heapq.heappop(q) out.append(c2) if f2 < -1: heapq.heappush(q, [f2+1,c2]) heapq.heappush(q, [f,c]) return ''.join(out) # Tests. assert(Solution().reorganizeString("aab") == "aba") assert(Solution().reorganizeString("aaab") == "") ``` #### File: leetcode/Array/76MinimumWindowSubstring.py ```python from common import * import sys class Solution: ''' letter count table as signature, special compare, sliding window. O(m+n) runtime, O(1) storage. Beat 5% runtime, 16% storage of all Leetcode submissions. ''' def minWindow(self, s: str, t: str) -> str: sigT,sigS,b = [0]*58,[0]*58,ord('A') for c in t: sigT[ord(c)-b] += 1 def compareSig(sigS, sigT): for i in range(len(sigT)): if sigS[i] < sigT[i]: return -1 for i in range(len(sigT)): if sigT[i] > 0 and sigS[i] > sigT[i]: return 1 return 0 i,j,n,out = 0,0,len(s),[0,sys.maxsize] while j < n: while j < n: sigS[ord(s[j])-b] += 1 j += 1 if compareSig(sigS,sigT) >= 0: break while i < j and compareSig(sigS,sigT) >= 0: if j-i < out[1]-out[0]: out = [i,j] sigS[ord(s[i])-b] -= 1 i += 1 return s[out[0]:out[1]] if out[1] != sys.maxsize else "" # Tests. assert(Solution().minWindow("ADOBECODEBANC", "ABC") == "BANC") assert(Solution().minWindow("a", "a") == "a") assert(Solution().minWindow("a", "aa") == "") ``` #### File: leetcode/Array/937ReorderDataLogFiles.py ```python from common import * class Solution: ''' Sort based on 2 keys. O(MNlog(N)) runtime, O(MN) storage, in which M is maximum size of a single log and N is the size of logs. Beat 98% runtime, 11% storage of all Leetcode submissions. ''' def reorderLogFiles(self, logs: List[str]) -> List[str]: letter_logs = [] digit_logs = [] for i,log in enumerate(logs): k = log.find(' ') if log[k+1].isdigit(): digit_logs.append(log) else: letter_logs.append([log[k+1:],log[:k]]) letter_logs.sort() out = [] for log,id in letter_logs: out.append('{} {}'.format(id,log)) for log in digit_logs: out.append(log) return out ''' Use the sort() method with custom defined key. O(MNlog(N)) runtime, O(MN) storage. Beat 74% runtime, 17% storage of all Leetcode submissions. ''' def reorderLogFiles2(self, logs: List[str]) -> List[str]: def getkey(log): id,rest = log.split(' ',maxsplit=1) return [0,rest,id] if rest[0].isalpha() else [1,'',''] logs.sort(key=getkey) return logs # Tests. assert(Solution().reorderLogFiles(["dig1 8 1 5 1","let1 art can","dig2 3 6","let2 own kit dig","let3 art zero"]) == ["let1 art can","let3 art zero","let2 own kit dig","dig1 8 1 5 1","dig2 3 6"]) assert(Solution().reorderLogFiles(["dig1 8 1 5 1"]) == ["dig1 8 1 5 1"]) assert(Solution().reorderLogFiles([]) == []) assert(Solution().reorderLogFiles(["a1 9 2 3 1","g1 act car","zo4 4 7","ab1 off key dog","a8 act zoo","a2 act car"]) == ["a2 act car","g1 act car","a8 act zoo","ab1 off key dog","a1 9 2 3 1","zo4 4 7"]) # Test when letter logs tie we need to use id to sort. assert(Solution().reorderLogFiles2(["dig1 8 1 5 1","let1 art can","dig2 3 6","let2 own kit dig","let3 art zero"]) == ["let1 art can","let3 art zero","let2 own kit dig","dig1 8 1 5 1","dig2 3 6"]) assert(Solution().reorderLogFiles2(["dig1 8 1 5 1"]) == ["dig1 8 1 5 1"]) assert(Solution().reorderLogFiles2([]) == []) assert(Solution().reorderLogFiles2(["a1 9 2 3 1","g1 act car","zo4 4 7","ab1 off key dog","a8 act zoo","a2 act car"]) == ["a2 act car","g1 act car","a8 act zoo","ab1 off key dog","a1 9 2 3 1","zo4 4 7"]) # Test when letter logs tie we need to use id to sort. ``` #### File: leetcode/Array/973KClosestPointsOrigin.py ```python from common import * import heapq class Solution: ''' Priority queue to store top K items. Key of the queue is suqare of Euclidean distance. O(nlog(k)) runtime, O(K) storage. Beat 86% runtime, 5% storage of all Leetcode submissions. ''' def kClosest(self, points, K): q = [] for i,j in points: d = i**2+j**2 if len(q) < K: heapq.heappush(q,[-d,[i,j]]) elif -q[0][0] > d: heapq.heappop(q) heapq.heappush(q,[-d,[i,j]]) out = [] for d,point in q: out.append(point) return out assert_list_noorder(Solution().kClosest([[1,3],[-2,2]], 1),[[-2,2]]) assert_list_noorder(Solution().kClosest([[3,3],[5,-1],[-2,4]], 2),[[3,3],[-2,4]]) assert_list_noorder(Solution().kClosest([[-2,2]], 1),[[-2,2]]) ``` #### File: leetcode/Array/ReorderedPower2.py ```python class Solution: ''' Frequency table based signature. O(n) runtime, O(1) storage. 33 min. ''' def reorderedPowerOf2(self, N: int) -> bool: def sig(n): h = [0]*10 while n > 0: d = n % 10 n = n // 10 h[d] += 1 return h h = sig(N) high = 0 for i in range(len(h)-1,-1,-1): if h[i] > 0: j = h[i] while j > 0: high += high*10+i j -= 1 c = 1 while c <= high: if sig(c) == h: return True c = 2*c return False # Tests. assert(Solution().reorderedPowerOf2(1) == True) assert(Solution().reorderedPowerOf2(10) == False) assert(Solution().reorderedPowerOf2(16) == True) assert(Solution().reorderedPowerOf2(24) == False) assert(Solution().reorderedPowerOf2(46) == True) ``` #### File: leetcode/Graph/785IsGraphBipartite.py ```python from common import * class Solution: ''' Coloring with depth first search: color first node as red, then any nodes connecting to it is black, then any nodes connecting to nodes of nodes is red again. O(m) runtime, O(n) storage, in which m is # of edges and n is # of nodes. Beat 97% runtime, 19% storage of all Leetcode submissions. Note we must do it through dfs. Otherwise, we don't know how to color the initial node. ''' def isBipartite(self, graph: List[List[int]]) -> bool: n = len(graph) colors = [None]*n def dfs(i,color): if colors[i] == color: return True if colors[i] != None and colors[i] != color: return False colors[i] = color for j in graph[i]: if not dfs(j,-color): return False return True for i in range(n): if colors[i] == None: if not dfs(i,1): return False return True # Tests. assert(Solution().isBipartite([[1,3], [0,2], [1,3], [0,2]]) == True) assert(Solution().isBipartite([[1,2,3], [0,2], [0,1,3], [0,2]]) == False) assert(Solution().isBipartite([[3],[2,4],[1],[0,4],[1,3]]) == True) ``` #### File: leetcode/Tree/545BoundaryBinaryTree.py ```python from common import * class Solution: ''' Iterative and recursive traverse of the tree to find left, right, and leaves of the tree. O(n) runtime, O(n) storage. Beat 44% runtime, 42% storage of all Leetcode submissions. ''' def boundaryOfBinaryTree(self, root: TreeNode) -> List[int]: left,right,leaves = [],[],[] curr = root.left while curr != None: left.append(curr.val) curr = curr.left if curr.left != None else curr.right if left: left.pop() curr = root.right while curr != None: right.append(curr.val) curr = curr.right if curr.right != None else curr.left if right: right.pop() def getLeaves(node): nonlocal leaves if node.left == None and node.right == None: if node != root: leaves.append(node.val) return if node.left != None: getLeaves(node.left) if node.right != None: getLeaves(node.right) getLeaves(root) return [root.val] + left + leaves + right[::-1] # Tests. assert(Solution().boundaryOfBinaryTree(Codec().deserialize('[1,null,2,3,4]')) == [1,3,4,2]) assert(Solution().boundaryOfBinaryTree(Codec().deserialize('[1,2,3,4,5,6,null,null,null,7,8,9,10]')) == [1,2,4,7,8,9,10,6,3]) assert(Solution().boundaryOfBinaryTree(Codec().deserialize('[1]')) == [1]) ``` #### File: leetcode/Tree/common.py ```python from typing import List # This ensures the compile can accept Leetcode Python 3 syntax: https://leetcode.com/discuss/general-discussion/270755/in-python-3-the-parameter-type-define-list-always-reports-an-error-in-ide class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Codec: ''' Breath first search to locate nodes in order and put them in result string. Put 'null' for empty left or right unless no value after. O(n) runtime both for serilaize and deserialize. O(n) storage for both as well. Beat 89% runtime, 63% storage of all Leetcode submissions. ''' def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ layer,out = [root],[] while layer: new_layer = [] is_all_none = True for node in layer: if node != None: is_all_none = False break for node in layer: if node == None: if not is_all_none: out.append('null') else: out.append(str(node.val)) new_layer.append(node.left) new_layer.append(node.right) layer = new_layer while out and out[-1] == 'null': out.pop() return '[{}]'.format(','.join(out)) def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ i,n = 1,len(data)-1 root,layer = None,[] while i < n: if root == None: j = data.find(',',i) if j == -1: j = n root = TreeNode(int(data[i:j])) layer.append(root) i = j+1 else: new_layer = [] for node in layer: if i >= n: break j = data.find(',',i) if j == -1: j = n k = data.find(',',j+1) if k == -1: k = n if j > i and data[i:j] != 'null': node.left = TreeNode(int(data[i:j])) new_layer.append(node.left) if k > j+1 and data[j+1:k] != 'null': node.right = TreeNode(int(data[j+1:k])) new_layer.append(node.right) i = k+1 layer = new_layer return root # Check if two trees are the same. def assert_tree(root1, root2): if root1 == None: assert(root2 == None) else: assert(root1 != None and root2 != None and root1.val == root2.val) if root1.left == None: assert(root2.left == None) else: assert_tree(root1.left, root2.left) if root1.right == None: assert(root2.right == None) else: assert_tree(root1.right, root2.right) # Assert a sequence of calls return expected results. def assert_call_sequence(context, calls, args, expected_outputs): assert(len(calls) == len(args) == len(expected_outputs[0])) assert(len(calls) >= 1) output = [] # Default first item in calls is to create the class object of the solution and the remaining is to call methods of the object. solution = context[calls[0]](*args[0]) output.append(None) for i in range(1,len(calls)): call = getattr(solution, calls[i]) output.append(call(*args[i])) assert(output in expected_outputs) ```
{ "source": "JohnTheNerd/WOLRelay", "score": 2 }
#### File: JohnTheNerd/WOLRelay/main.py ```python import datetime import multiprocessing import multiprocessing.dummy import os import json import re import traceback import functools import logging import time import scapy from scapy.all import sniff from wakeonlan import send_magic_packet from flask import Flask, request, abort, send_from_directory from werkzeug.exceptions import NotFound app = Flask(__name__) scriptPath = os.path.dirname(os.path.realpath(__file__)) configPath = os.path.join(scriptPath, 'config.json') config = open(configPath).read() config = json.loads(config) logging.basicConfig() logger = logging.getLogger("WOLRelay") logger.setLevel(config['logLevel']) multiprocessingManager = multiprocessing.Manager() ARPTable = multiprocessingManager.dict() @app.before_request def beforeRequest(): # optionally mitigate against DNS rebinding if 'hosts' in config.keys(): splitHost = request.host if ':' in splitHost: splitHost = request.host.split(':')[0] if splitHost != "localhost" and splitHost != "127.0.0.1": # whitelist localhost because of Docker health checks if splitHost not in config['hosts']: abort(403) def processARP(packets): for packet in packets: if packet.type == 2054: # only process ARP packets if packet.op == 2: # only process ARP *reply* packets if packet.hwsrc.upper() in ARPTable.keys(): # only process packets from MAC addresses we care about mac = packet.hwsrc ip = packet.psrc logging.debug('IP ' + ip + ' is assigned to ' + mac + ' as of ' + datetime.datetime.now().isoformat() + "Z") name = ARPTable[mac.upper()]['name'] ARPTable[mac.upper()] = { "name": name, "mac": mac.upper(), "ip": ip, "lastSeen": datetime.datetime.now().isoformat() + "Z" } def sniffARPPackets(interface = None): if interface: try: sniff(prn=processARP, iface=interface, filter="(arp[6:2] = 2)") # run scapy with BPF for ARP packets with opcode 2 except Exception: logger.warning("Running scapy in filtered mode failed, filtering without the help of Berkeley Packet Filtering. This is going to be VERY slow and unreliable. You should try installing tcpdump if you're on Linux, and Npcap if you're on Windows.") traceback.print_exc() sniff(prn=processARP) # filtering failed, fall back to inspecting every packet else: try: sniff(prn=processARP, filter="(arp[6:2] = 2)") # run scapy with BPF for ARP packets with opcode 2 except Exception: logger.warning("Running scapy in filtered mode failed, filtering without the help of Berkeley Packet Filtering. This is going to be VERY slow and unreliable. You should try installing tcpdump if you're on Linux, and Npcap if you're on Windows.") traceback.print_exc() sniff(prn=processARP) # filtering failed, fall back to inspecting every packet def sendARPRequest(interface, destination): logger.debug('sending ARP request to ' + destination) scapy.layers.l2.arping(destination, iface=interface, timeout=0, cache=True, verbose=False) def scanNetwork(scanInterface = None): while True: try: pool = multiprocessing.dummy.Pool(processes=10) processes = [] for network, netmask, _, interface, address, _ in scapy.config.conf.route.routes: if interface: if interface != scanInterface: continue else: # skip loopback network and default gw if network == 0 or interface == 'lo' or address == '127.0.0.1' or address == '0.0.0.0': continue if netmask <= 0 or netmask == 0xFFFFFFFF: continue # skip docker interface if interface.startswith('docker') or interface.startswith('br-'): continue subnet = '.'.join(address.split('.')[:-1]) IPRange = [subnet + '.' + str(i) for i in range(1, 254)] boundARPRequest = functools.partial(sendARPRequest, interface) processes.append(pool.map_async(boundARPRequest, IPRange)) for process in processes: process.get() pool.close() pool.join() except: logger.warning('scanning the network failed! exception details: ' + traceback.format_exc()) finally: time.sleep(config['arp']['scanInterval']) """ For a given MAC address, returns the IP address and the timestamp for when we recorded it. Returns HTTP501 if ARP is disabled from the configuration file. Returns HTTP400 if the MAC address is invalid or does not exist in our ARP table. Returns HTTP204 if the MAC address does not have a corresponding IP address yet. @mac MAC address to scan ARP table for. If undefined, data for all MAC addresses will be returned. """ @app.route('/status') def status(): mac = None if 'mac' in request.args: mac = request.args.get('mac') mac = mac.upper() if 'arp' not in config.keys(): return (json.dumps({"error": "ARP is disabled in the configuration file!"}), 501) if mac: if mac not in ARPTable.keys(): return (json.dumps({"error": "The given MAC address is not defined in the configuration file!"}), 400) if not ARPTable[mac]: return (json.dumps({"error": "We don't have any information about this MAC address yet!"}), 204) return json.dumps(ARPTable[mac]) else: result = [] for mac in ARPTable.keys(): result.append(ARPTable[mac]) return json.dumps(result) """ Sends a Wake-on-LAN "magic packet" to the specified MAC address. Returns HTTP400 if the MAC address appears to be invalid. @mac MAC address to send packet to. """ @app.route('/wake', methods=['POST']) def wakeDevice(): mac = request.json['mac'] mac = mac.upper() try: send_magic_packet(mac, ip_address=config['broadcastAddress'], port=config['broadcastPort']) return json.dumps({"error": None}) except Exception: return (json.dumps({"error": traceback.format_exc()}), 500) # hackity hack # serve static files from the static directory # this is so that the user doesn't need to configure a webserver to run and/or debug # but it's encouraged to do so anyway for performance reasons @app.route('/<path:path>') def staticHost(path): try: return send_from_directory(os.path.join(scriptPath, 'static'), path) except NotFound as e: if path.endswith("/"): return send_from_directory(os.path.join(scriptPath, 'static'), path + "index.html") raise e @app.route('/') def staticIndex(): return send_from_directory(os.path.join(scriptPath, 'static'), "index.html") if __name__ == '__main__': if 'arp' in config.keys(): if 'scanInterfaces' in config['arp'].keys(): for interface in config['arp']['scanInterfaces']: sniffingProcess = multiprocessing.Process(target=sniffARPPackets, args=[interface]) sniffingProcess.start() else: sniffingProcess = multiprocessing.Process(target=sniffARPPackets) sniffingProcess.start() for device in config['arp']['devices']: name = device['name'] mac = device['mac'] ARPTable[mac.upper()] = { "name": name, "mac": mac.upper(), "ip": None, "lastSeen": None } if 'scanInterval' in config['arp'].keys(): if 'scanInterfaces' in config['arp'].keys(): for interface in config['arp']['scanInterfaces']: scanningProcess = multiprocessing.Process(target=scanNetwork, args=[interface]) scanningProcess.start() else: scanningProcess = multiprocessing.Process(target=scanNetwork) scanningProcess.start() app.run(config['localIP'], port=config['APIPort'], threaded=True) ```
{ "source": "johntheprime/apiflask", "score": 3 }
#### File: apiflask/tests/test_openapi_info.py ```python from openapi_spec_validator import validate_spec from apiflask import APIFlask def test_info_title_and_version(app): assert app.title == 'APIFlask' assert app.version == '0.1.0' app = APIFlask(__name__, title='Foo', version='1.0') assert app.spec['info']['title'] == 'Foo' assert app.spec['info']['version'] == '1.0' def test_other_info_fields(app, client): assert app.description is None assert app.terms_of_service is None assert app.contact is None assert app.license is None app.description = 'My API' app.terms_of_service = 'http://example.com/terms/' app.contact = { 'name': 'API Support', 'url': 'http://www.example.com/support', 'email': '<EMAIL>' } app.license = { 'name': 'Apache 2.0', 'url': 'http://www.apache.org/licenses/LICENSE-2.0.html' } rv = client.get('/openapi.json') assert rv.status_code == 200 validate_spec(rv.json) assert rv.json['info']['description'] == 'My API' assert rv.json['info']['termsOfService'] == 'http://example.com/terms/' assert rv.json['info']['contact'] == { 'name': 'API Support', 'url': 'http://www.example.com/support', 'email': '<EMAIL>' } assert rv.json['info']['license'] == { 'name': 'Apache 2.0', 'url': 'http://www.apache.org/licenses/LICENSE-2.0.html' } def test_auto_info_description(test_apps): from auto_description import app assert app.description is None rv = app.test_client().get('/openapi.json') assert rv.status_code == 200 validate_spec(rv.json) assert rv.json['info']['description'] == 'Some description for my API.' # reset the app status app._spec = None def test_auto_info_description_precedence(test_apps): from auto_description import app app.description = 'new decription' rv = app.test_client().get('/openapi.json') assert rv.json['info']['description'] == 'new decription' # reset the app status app._spec = None app.description = None ```
{ "source": "JohntheProgrammer92/pyConverter", "score": 3 }
#### File: pyConverter/pythonImageConverter/pic.py ```python import sys import os from PIL import Image from pythonImageConverter.pyImgConvertGUI.gui import execute """ USAGE: pic [input filename] [output filename] example: pic test.png test.jpg pic [input directory] [output file type] example: pic ./res/ jpg """ def get_dirList(path): """ Return a sorted list of contents from the directory """ dirList = os.listdir(path) dirList.sort() return dirList def main(args=None): if args is None: args = sys.argv if args[1] != "GUI": if len(args) != 3: print(""" USAGE: pic [input filename] [output filename] example: pic test.png test.jpg pic [input directory] [output file type] example: pic ./res/ jpg """) else: if os.path.isdir(args[1]) == False: try: im = Image.open(args[1]) rgb_im = im.convert('RGB') rgb_im.save(args[2], quality = 95) except Exception as e: if hasattr(e,"msg"): print(e.msg) else: print(e) else: files = get_dirList(args[1]) try: for i in files: i = args[1] + i im = Image.open(i) rgb_im = im.convert('RGB') name = i.split('.') name[2] = args[2] newName = '.'.join(name) rgb_im.save(newName, quality = 95) except Exception as e: if hasattr(e,"msg"): print(e.msg) else: print(e) else: execute() if __name__ == '__main__': try: sys.exit(main(sys.argv[0:])) except KeyboardInterrupt: pass ```
{ "source": "johnTheSloth/TwitterWall", "score": 3 }
#### File: TwitterWall/twitterwall/session.py ```python import requests import base64 def twitter_session(api_key, api_secret): session = requests.Session() secret = '{}:{}'.format(api_key, api_secret) secret64 = base64.b64encode(secret.encode('ascii')).decode('ascii') headers = { 'Authorization': 'Basic {}'.format(secret64), 'Host': 'api.twitter.com', } r = session.post('https://api.twitter.com/oauth2/token', headers=headers, data={'grant_type': 'client_credentials'}) bearer_token = r.json()['access_token'] def bearer_auth(req): req.headers['Authorization'] = 'Bearer ' + bearer_token return req session.auth = bearer_auth return session ```
{ "source": "john-tho/script.module.pycaption", "score": 3 }
#### File: lib/pycaption/__init__.py ```python from .base import ( CaptionConverter, CaptionNode, Caption, CaptionList, CaptionSet) from .srt import SRTReader, SRTWriter from .webvtt import WebVTTReader, WebVTTWriter from .exceptions import ( CaptionReadError, CaptionReadNoCaptions, CaptionReadSyntaxError) __all__ = [ 'CaptionConverter', 'SRTReader', 'SRTWriter', 'WebVTTReader', 'WebVTTWriter', 'CaptionReadError', 'CaptionReadNoCaptions', 'CaptionReadSyntaxError', 'detect_format', 'CaptionNode', 'Caption', 'CaptionList', 'CaptionSet' ] SUPPORTED_READERS = ( WebVTTReader, SRTReader) def detect_format(caps): """ Detect the format of the provided caption string. :returns: the reader class for the detected format. """ for reader in SUPPORTED_READERS: if reader().detect(caps): return reader return None ```
{ "source": "johntiger1/blog-posts", "score": 3 }
#### File: blog-posts/scripts/plot_roc.py ```python import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve from sklearn.metrics import f1_score, roc_auc_score, precision_recall_curve, roc_curve def plot_conf_matrix_and_roc(estimator, X, y, figure_size=(16, 6)): """ Plot both confusion matrix and ROC curce on the same figure. Parameters: ----------- estimator : sklearn.estimator model to use for predicting class probabilities. X : array_like data to predict class probabilities. y : array_like true label vector. figure_size : tuple (optional) size of the figure. Returns: -------- plot : matplotlib.pyplot plot confusion matrix and ROC curve. """ # Compute tpr, fpr, auc and confusion matrix fpr, tpr, thresholds = roc_curve(y, estimator.predict_proba(X)[:, 1]) auc = roc_auc_score(y, estimator.predict_proba(X)[:, 1]) conf_mat_rf = confusion_matrix(y, estimator.predict(X)) # Define figure size and figure ratios plt.figure(figsize=figure_size) gs = GridSpec(1, 2, width_ratios=(1, 2)) # Plot confusion matrix ax0 = plt.subplot(gs[0]) ax0.matshow(conf_mat_rf, cmap=plt.cm.Reds, alpha=0.2) for i in range(2): for j in range(2): ax0.text(x=j, y=i, s=conf_mat_rf[i, j], ha="center", va="center") plt.title("Confusion matrix", y=1.1, fontdict={"fontsize": 20}) plt.xlabel("Predicted", fontdict={"fontsize": 14}) plt.ylabel("Actual", fontdict={"fontsize": 14}) # Plot ROC curce ax1 = plt.subplot(gs[1]) ax1.plot(fpr, tpr, label="auc = {:.3f}".format(auc)) plt.title("ROC curve", y=1, fontdict={"fontsize": 20}) ax1.plot([0, 1], [0, 1], "r--") plt.xlabel("False positive rate", fontdict={"fontsize": 16}) plt.ylabel("True positive rate", fontdict={"fontsize": 16}) plt.legend(loc="lower right", fontsize="medium"); def plot_roc(estimators, X, y, figure_size=(16, 6)): """ Plot both confusion matrix and ROC curce on the same figure. Parameters: ----------- estimators : dict key, value for model name and sklearn.estimator to use for predicting class probabilities. X : array_like data to predict class probabilities. y : array_like true label vector. figure_size : tuple (optional) size of the figure. Returns: -------- plot : matplotlib.pyplot plot confusion matrix and ROC curve. """ plt.figure(figsize=figure_size) for estimator in estimators.keys(): # Compute tpr, fpr, auc and confusion matrix fpr, tpr, thresholds = roc_curve(y, estimators[estimator].predict_proba(X)[:, 1]) auc = roc_auc_score(y, estimators[estimator].predict_proba(X)[:, 1]) # Plot ROC curce plt.plot(fpr, tpr, label="{}: auc = {:.3f}".format(estimator, auc)) plt.title("ROC curve", y=1, fontdict={"fontsize": 20}) plt.legend(loc="lower right", fontsize="medium") plt.plot([0, 1], [0, 1], "--") plt.xlabel("False positive rate", fontdict={"fontsize": 16}) plt.ylabel("True positive rate", fontdict={"fontsize": 16}); def plot_roc_and_pr_curves(models, X_train, y_train, X_valid, y_valid, roc_title, pr_title, labels): """ Plot roc and PR curves for all models. Arguments --------- models : list list of all models. X_train : list or 2d-array 2d-array or list of training data. y_train : list 1d-array or list of training labels. X_valid : list or 2d-array 2d-array or list of validation data. y_valid : list 1d-array or list of validation labels. roc_title : str title of ROC curve. pr_title : str title of PR curve. labels : list label of each model to be displayed on the legend. """ fig, axes = plt.subplots(1, 2, figsize=(14, 6)) if not isinstance(X_train, list): for i, model in enumerate(models): model_fit = model.fit(X_train, y_train) model_probs = model.predict_proba(X_valid)[:, 1:] model_preds = model.predict(X_valid) model_auc_score = roc_auc_score(y_valid, model_probs) # model_f1_score = f1_score(y_valid, model_preds) fpr, tpr, _ = roc_curve(y_valid, model_probs) precision, recall, _ = precision_recall_curve(y_valid, model_probs) axes[0].plot(fpr, tpr, label=f"{labels[i]}, auc = {model_auc_score:.3f}") axes[1].plot(recall, precision, label=f"{labels[i]}") else: for i, model in enumerate(models): model_fit = model.fit(X_train[i], y_train[i]) model_probs = model.predict_proba(X_valid[i])[:, 1:] model_preds = model.predict(X_valid[i]) model_auc_score = roc_auc_score(y_valid[i], model_probs) # model_f1_score = f1_score(y_valid[i], model_preds) fpr, tpr, _ = roc_curve(y_valid[i], model_probs) precision, recall, _ = precision_recall_curve(y_valid[i], model_probs) axes[0].plot(fpr, tpr, label=f"{labels[i]}, auc = {model_auc_score:.3f}") axes[1].plot(recall, precision, label=f"{labels[i]}") axes[0].legend(loc="lower right") axes[0].set_xlabel("FPR") axes[0].set_ylabel("TPR") axes[0].set_title(roc_title) axes[1].legend() axes[1].set_xlabel("recall") axes[1].set_ylabel("precision") axes[1].set_title(pr_title) plt.tight_layout() ``` #### File: blog-posts/scripts/utils.py ```python import matplotlib.pyplot as plt import numpy as np from bandit_algorithms.epsilon_greedy.epsilon_greedy_algorithm import ( EpsilonGreedy, AnnealingEpsilonGreedy ) from bandit_algorithms.softmax.softmax_algorithm import (Softmax, AnnealingSoftmax) from bandit_algorithms.upper_confidence_bound.ucb import UCB from testing.test_bandit_algorithms import BernoulliArm, test_algorithm ALGORITHMS = { "epsilon-Greedy": EpsilonGreedy, "Softmax": Softmax, "Annealing epsilon-Greedy": AnnealingEpsilonGreedy, "Annealing Softmax": AnnealingSoftmax, "UCB": UCB } def plot_algorithm( alg_name="epsilon-Greedy", arms=None, best_arm_index=None, hyper_params=None, num_simulations=1000, horizon=100, label=None, fig_size=(18, 6)): # Check if the algorithm doesn't have hyperparameter if hyper_params is None: # Run the algorithm algo = ALGORITHMS[alg_name]() chosen_arms, average_rewards, cum_rewards = test_algorithm( algo, arms, num_simulations, horizon) average_probs = np.where(chosen_arms == best_arm_index, 1, 0).sum( axis=0) / num_simulations # Plot the 3 metrics of the algorithm fig, axes = plt.subplots(1, 3, figsize=fig_size) axes[0].plot(average_probs) axes[0].set_xlabel("Time", fontsize=14) axes[0].set_ylabel("Probability of Selecting Best Arm", fontsize=14) axes[0].set_title( f"Accuray of {alg_name} alg.", y=1.05, fontsize=16) axes[0].set_ylim([0, 1.05]) axes[1].plot(average_rewards) axes[1].set_xlabel("Time", fontsize=14) axes[1].set_ylabel("Average Reward", fontsize=14) axes[1].set_title( f"Avg. Rewards of {alg_name} alg.", y=1.05, fontsize=16) axes[1].set_ylim([0, 1.0]) axes[2].plot(cum_rewards) axes[2].set_xlabel("Time", fontsize=14) axes[2].set_ylabel("Cumulative Rewards of Chosen Arm", fontsize=14) axes[2].set_title( f"Cumulative Rewards of {alg_name} alg.", y=1.05, fontsize=16) plt.tight_layout() else: fig, axes = plt.subplots(1, 3, figsize=fig_size) for hyper_param in hyper_params: # Run the algorithm algo = ALGORITHMS[alg_name](hyper_param) chosen_arms, average_rewards, cum_rewards = test_algorithm( algo, arms, num_simulations, horizon) average_probs = np.where(chosen_arms == best_arm_index, 1, 0).sum( axis=0) / num_simulations # Plot the 3 metrics of the algorithm axes[0].plot(average_probs, label=f"{label} = {hyper_param}") axes[0].set_xlabel("Time", fontsize=14) axes[0].set_ylabel( "Probability of Selecting Best Arm", fontsize=14) axes[0].set_title( f"Accuray of {alg_name} alg.", y=1.05, fontsize=16) axes[0].legend() axes[0].set_ylim([0, 1.05]) axes[1].plot(average_rewards, label=f"{label} = {hyper_param}") axes[1].set_xlabel("Time", fontsize=14) axes[1].set_ylabel("Average Reward", fontsize=14) axes[1].set_title( f"Avg. Rewards of {alg_name} alg.", y=1.05, fontsize=16) axes[1].legend() axes[1].set_ylim([0, 1.0]) axes[2].plot(cum_rewards, label=f"{label} = {hyper_param}") axes[2].set_xlabel("Time", fontsize=14) axes[2].set_ylabel("Cumulative Rewards of Chosen Arm", fontsize=14) axes[2].set_title( f"Cumulative Rewards of {alg_name} alg.", y=1.05, fontsize=16) axes[2].legend(loc="lower right") plt.tight_layout() def compare_algorithms( algorithms=None, arms=None, best_arm_index=None, num_simulations=1000, horizon=100, fig_size=(18, 6)): fig, axes = plt.subplots(1, 3, figsize=(16, 6)) # Loop over all algorithms for algorithm in algorithms: # Run the algorithm algo = ALGORITHMS[algorithm] chosen_arms, average_rewards, cum_rewards = test_algorithm( algo(), arms, num_simulations, horizon) average_probs = np.where(chosen_arms == best_arm_index, 1, 0).sum( axis=0) / num_simulations # Plot the 3 metrics axes[0].plot(average_probs, label=algo.__name__) axes[0].set_xlabel("Time", fontsize=12) axes[0].set_ylabel("Probability of Selecting Best Arm", fontsize=12) axes[0].set_title( f"Accuray of Different Algorithms", y=1.05, fontsize=14) axes[0].set_ylim([0, 1.05]) axes[0].legend(loc="lower right") axes[1].plot(average_rewards, label=algo.__name__) axes[1].set_xlabel("Time", fontsize=12) axes[1].set_ylabel("Average Reward", fontsize=12) axes[1].set_title( f"Average Rewards of Different Algorithms", y=1.05, fontsize=14) axes[1].set_ylim([0, 1.0]) axes[1].legend(loc="lower right") axes[2].plot(cum_rewards, label=algo.__name__) axes[2].set_xlabel("Time", fontsize=12) axes[2].set_ylabel("Cumulative Rewards of Chosen Arm", fontsize=12) axes[2].set_title( f"Cumulative Rewards of Different Algorithms", y=1.05, fontsize=14) axes[2].legend(loc="lower right") plt.tight_layout() ```
{ "source": "johntiger1/multimodal_fairness", "score": 2 }
#### File: multimodal_fairness/IanFairnessHackery/evaluate_phenotype_preds.py ```python from mimic3models import metrics import sys import os import numpy as np PRED_TASKS = { "Acute and unspecified renal failure" : False, "Acute cerebrovascular disease" : False, "Acute myocardial infarction" : False, "Cardiac dysrhythmias" : False, "Chronic kidney disease" : False, "Chronic obstructive pulmonary disease and bronchiectasis" : False, "Complications of surgical procedures or medical care" : False, "Conduction disorders" : False, "Congestive heart failure" : False, "nonhypertensive" : False, "Coronary atherosclerosis and other heart disease" : False, "Diabetes mellitus with complications" : False, "Diabetes mellitus without complication" : False, "Disorders of lipid metabolism" : False, "Essential hypertension" : False, "Fluid and electrolyte disorders" : False, "Gastrointestinal hemorrhage" : False, "Hypertension with complications and secondary hypertension" : False, "Other liver diseases" : False, "Other lower respiratory disease" : False, "Other upper respiratory disease" : False, "Pleurisy" : False, "pneumothorax" : False, "pulmonary collapse" : False, "Pneumonia (except that caused by tuberculosis or sexually transmitted disease)" : False } def read_file(path): predictions = [] labels = [] with open(path, 'r') as fr: fr.readline() for line in fr: line = line.strip() vals = line.split(",") predictions.append(float(vals[2])) labels.append(int(vals[3])) return np.array(predictions), np.array(labels) if __name__ == '__main__': if len(sys.argv) != 2: print("Must provide path to folder containing the prediction csv's in id/episode/pred/label format, and with" + " filenames that are prefixed by the condition") exit(-1) merged_pred = None merged_Y = None indir = sys.argv[1] for filename in os.listdir(indir): prefixes = PRED_TASKS.keys() matches = filter(lambda x: filename.startswith(x), prefixes) # SKIP non-matches files if len(matches) == 0: continue # Make sure only one file for this task assert(not PRED_TASKS[matches[0]]) PRED_TASKS[matches[0]] = True print("Evaluating {}".format(matches[0])) match_pred, match_Y = read_file(os.path.join(indir, filename)) if merged_pred is None: merged_pred = np.expand_dims(match_pred.copy(), axis=0) merged_Y = np.expand_dims(match_Y.copy(), axis=0) else: merged_pred =np.concatenate((merged_pred, np.expand_dims(match_pred, axis=0)), axis=0) merged_Y =np.concatenate((merged_Y, np.expand_dims(match_Y ,axis=0)), axis=0) #print(merged_X.shape) #print(merged_Y.shape) metrics.print_metrics_binary(match_Y, match_pred) print("----------------------------------------") print("\n==========================================") print("Evaluating all together:") metrics.print_metrics_multilabel(merged_Y.T, merged_pred.T) for key in PRED_TASKS: if PRED_TASKS[key] != True: print("WARNING: Data for task {} missing?".format(key)) ``` #### File: multimodal_fairness/IanFairnessHackery/generate_sensitive.py ```python import pandas as pd PATH_TO_BENCHMARK_STAYS = "../data/root/all_stays.csv" PATH_TO_MIMIC_ADMISSIONS = "/home/administrator/00Projects/Fairness/MIMIC_III/MIMIC_III/ADMISSIONS.csv" #PATH_TO_MIMIC_ADMISSIONS = "/h/shossain/multimodal_fairness/data/physionet.org/files/mimiciii/1.4/ADMISSIONS.csv" PATH_TO_MIMIC_ADMISSIONS = "/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/physionet.org/files/mimiciii/1.4/ADMISSIONS.csv" # ../data/physionet.org/files/mimiciii/1.4/ADMISSIONS.csv # Define data processing helpers: # Aggregator such that if element of group is different, then UNKNOWN is returned, else value is returned def unk_if_diff(x): default = None for i, val in enumerate(x): if i == 0: default = val else: if val != default: return "UNKNOWN" return default # Shorten things to first - or / if applicable def clean(x): if pd.isna(x): return "UNKNOWN" elif x in ["NOT SPECIFIED", "UNOBTAINABLE", "UNABLE TO OBTAIN", "PATIENT DECLINED TO ANSWER", "UNKNOWN (DEFAULT)"]: return "UNKNOWN" elif x == "HISPANIC OR LATINO": return "HISPANIC" def truncate(x, pattern): ind = x.find(pattern) if ind != -1: return x[:ind] return x x = truncate(x,'-') x = truncate(x,'/') return x.strip() #count = benchmark_df["SUBJECT_ID"].value_counts() #print(count[count > 2]) #print(benchmark_df.loc[benchmark_df["SUBJECT_ID"] == 27374]) #benchmark_df.loc[benchmark_df["SUBJECT_ID"] == 27374,"ETHNICITY"] = "UNKNOWN/NOT SPECIFIED" #benchmark_df.drop_duplicates(inplace=True) #count = benchmark_df["SUBJECT_ID"].value_counts() #print(count[count > 1].index) def print_db(sensitive_dataframe): # My sanity checking print("Ethnicities in data:") print(sensitive_dataframe['ETHNICITY'].value_counts()) print("Sex in data:") print(sensitive_dataframe['GENDER'].value_counts()) print("Insurance in data:") print(sensitive_dataframe['INSURANCE'].value_counts()) print("Religion in data:") print(sensitive_dataframe['RELIGION'].value_counts()) print("Marital status in data:") print(sensitive_dataframe['MARITAL_STATUS'].value_counts()) # Load sensitive features from benchmark benchmark_df = pd.read_csv(PATH_TO_BENCHMARK_STAYS) benchmark_df = benchmark_df[["SUBJECT_ID","ETHNICITY","GENDER"]] # Process to ensure SUBJECT_ID unique, and truncate descriptors benchmark_df = benchmark_df.groupby("SUBJECT_ID").agg(unk_if_diff) benchmark_df= benchmark_df.applymap(clean) #print(benchmark_df) # Load sensitive features from mimic, repeat processing mimic_df = pd.read_csv(PATH_TO_MIMIC_ADMISSIONS, engine="python") mimic_df = mimic_df[["SUBJECT_ID","INSURANCE","RELIGION", "MARITAL_STATUS"]] mimic_df = mimic_df.groupby("SUBJECT_ID").agg(unk_if_diff) mimic_df = mimic_df.applymap(clean) #print(mimic_df) # Do a join to get all of the sensitive attributes in a single dataframe joined = benchmark_df.merge(mimic_df, on="SUBJECT_ID", how="inner", validate="one_to_one") #print(joined) joined.to_csv("full_detail_sensitive.csv") print("ORIGINAL CLASSES") print_db(joined) original = joined.copy() # Create first version of sensitive attributes - merge ethnicities into WHITE & NON_WHITE & save joined["ETHNICITY"] = joined["ETHNICITY"].apply(lambda x: x if x == "WHITE" else "NON_WHITE") joined.to_csv("sensitive_bin_eth.csv") # Create first version of sensitive attributes - merge ethnicities into WHITE & NON_WHITE & save joined = original.copy() joined["INSURANCE"] = joined["INSURANCE"].apply(lambda x: x if x == "Medicare" else "Non-Medicare") joined.to_csv("sensitive_bin_ins.csv") # Create second version of sensitive attributes - bin ethnicities into 5 groups & save joined = original.copy() joined["ETHNICITY"] = joined["ETHNICITY"].apply(lambda x: x if x in ["WHITE", "BLACK","HISPANIC","ASIAN"] else "OTHER") # Save results joined.to_csv("sensitive_5_eth.csv") # Create third version of sensitive attributes - LOSES DATA! Removes all with UNK ethnicity joined = joined[joined.ETHNICITY != "OTHER"] joined.to_csv("partial_sensitive_4_eth.csv") print("4 ethnicity variant") print_db(joined) # Create fourth version of sensitive attributes - LOSES DATA! Removes all with UNK Insurance # and merged medicaid with government joined = joined[joined.INSURANCE != "UNKNOWN"] joined["INSURANCE"] = joined["INSURANCE"].apply(lambda x: x if x in ["Private", "Medicare","Self Pay"] else "Gov/Medicaid") joined.to_csv("partial_sensitive_all_4.csv") print("4 ethnicity/insurance variant") print_db(joined) ``` #### File: multimodal_fairness/mimic3models/fair_classifier.py ```python import numpy as np from fairlearn.postprocessing import ThresholdOptimizer from sklearn.metrics import roc_auc_score class pseudo_classifier: """ Note that the actual classifier is already trained (unaware as it ought to be) and post-processing does not require access to the underlying features. So this class is basically a wrapper around that prediction so we can pass it nicely onto the fairlearn framework """ def __init__(self, train_X, train_Y, train_score_Y, sensitive_train, \ test_X=None, test_Y=None, test_score_Y=None, sensitive_test=None, \ sensitive_features_dict=None): self.train_X = train_X self.train_Y = train_Y self.train_score_Y = train_score_Y self.sensitive_train = sensitive_train self.test_X = test_X self.test_Y = test_Y self.test_score_Y = test_score_Y self.sensitive_test = sensitive_test self.sensitive_features_dict = sensitive_features_dict self.train_size = len(self.train_X) self.trained = False self.groups = None def fit(self, X, y): """ No need to implement this as it is already taken care of. We simply need to map """ self.answers_map = {} for i, sample in enumerate(self.train_X): self.answers_map[(sample[0], sample[1])] = (self.sensitive_train[i], self.train_score_Y[i], self.train_Y[i]) if self.test_X is not None: for i, sample in enumerate(self.test_X): self.answers_map[(sample[0], sample[1])] = (self.sensitive_test[i], self.test_score_Y[i], self.test_Y[i]) pass def predict(self, samples, sensitive_features=None): # predict the outcome of the model on the given samples. If samples # is none, then the self.test_data will be used # return the predictions scores out = np.ones(len(samples)) for i, sample in enumerate(samples): out[i] = self.answers_map[(sample[0], sample[1])][1] return out def predict_hard(self, samples, sensitive_features=None): # predict the outcome of the model on the given samples. If samples # is none, then the self.test_data will be used # return the loss as well as the predictions scores = np.round(self.predict(samples, sensitive_features)) return scores def get_group_confusion_matrix(self, sensitive_features, X, true_Y): # For a trained classifier, get the true positive and true negative rates based on # group identity. Dobased on groups (currently only works for binary) # sensitive_index is the index of the sensitive attribute. # # Two returned dictionaries groups = np.unique(sensitive_features) y_pred_probs = self.predict(X, sensitive_features) y_pred = np.round(y_pred_probs) micro_acc = 1 - np.sum(np.power(true_Y - y_pred, 2))/len(true_Y) print("Overall Accuracy: ", micro_acc) micro_auc = roc_auc_score(true_Y, y_pred_probs) print("Overall AUC: ", micro_auc) macro_acc = 0 macro_auc = 0 out_dict = {} # The format is: {group:[tp, fp, tn, fn]} for index, group in enumerate(groups): indicies = np.where(sensitive_features==group)[0] true_class = true_Y[indicies] pred_class = y_pred[indicies] true_pos_index = np.where(true_class==1)[0] true_neg_index = np.where(true_class==0)[0] if len(true_pos_index) == 0 or len(true_neg_index) == 0: print("No True positives of true negatives in this group") continue tp = len(np.where(pred_class[true_pos_index]==1)[0])/len(true_pos_index) tn = len(np.where(pred_class[true_neg_index]==0)[0])/len(true_neg_index) fp = len(np.where(pred_class[true_neg_index]==1)[0])/len(true_neg_index) fn = len(np.where(pred_class[true_pos_index]==0)[0])/len(true_pos_index) auc = roc_auc_score(true_class, y_pred_probs[indicies]) macro_auc += auc accuracy = 1 - np.sum(np.power(true_class - pred_class, 2))/len(true_class) macro_acc += accuracy out_dict[group] = [tp, tn, fp, fn, accuracy, auc] print(group, "confusion matrix") if tp == 0 and fp == 0: print("None classified as Positive in group", group) print("\t Group Accuracy: ", accuracy) else: precision = tp / (tp + fp) recall = tp / (tp + fn) if (precision+recall) != 0: f1 = 2*precision*recall/(precision+recall) print("\t F1 score: ", f1) else: print("\t F1 score: Undefined, precision=recall=0") print("\t AUC: ", auc) print("\t Group Accuracy: ", accuracy) print("\t True positive rate:", tp) print("\t True negative rate:", tn) print("\t False positive rate:", fp) print("\t False negative rate:", fn) macro_acc /= len(groups) macro_auc /= len(groups) return out_dict, {"Accuracy": (micro_acc, macro_acc), "AUC": (micro_auc, macro_auc)} class fair_classifier(pseudo_classifier): def __init__(self, train_X, train_y, train_score_y, sensitive_train, \ test_X, test_y, test_score_y, sensitive_test, metric, sensitive_features_dict=None, HARD=False): self.train_X = train_X self.train_Y = train_y if HARD: self.train_score_Y = np.round(train_score_y) else: self.train_score_Y = train_score_y self.sensitive_train = sensitive_train self.test_X = test_X self.test_Y = test_y if HARD: self.test_score_Y = np.round(test_score_y) else: self.test_score_Y = test_score_y self.sensitive_test = sensitive_test self.sensitive_features_dict = sensitive_features_dict self.erm_classifier = pseudo_classifier(self.train_X, self.train_Y, self.train_score_Y, \ self.sensitive_train, self.test_X, self.test_Y, self.test_score_Y, self.sensitive_test) assert(metric in ["equalized_odds", "demographic_parity"]) self.metric = metric def fit(self): self.erm_classifier.fit(self.train_X, self.train_Y) self.model = ThresholdOptimizer(estimator=self.erm_classifier, constraints=self.metric, prefit=True) self.model.fit(self.train_X, self.train_Y, sensitive_features=self.sensitive_train) def predict(self, x_samples, sensitive_features): y_samples = self.model.predict(x_samples, sensitive_features=sensitive_features) return y_samples def get_accuracy(self, X, y_true, sensitive_features): y_pred = self.predict(X, sensitive_features) return 1 - np.sum(np.power(y_pred - y_true, 2))/len(y_true) def predict_prob(self, x_samples, sensitive_features): y_samples = self.model._pmf_predict(x_samples, sensitive_features=sensitive_features) return y_samples def get_avg_group_confusion_matrix(self, sensitive_features, X, true_Y): # produces average tp/fp/tn/fn/acc per group # Basically get_group_confusion_matrix but modified to return average values where possible # For a trained classifier, get the true positive and true negative rates based on # group identity. Dobased on groups (currently only works for binary) # sensitive_index is the index of the sensitive attribute. groups = np.unique(sensitive_features) tp_rate = {} fp_rate = {} tn_rate = {} fn_rate = {} true_pos_index = np.where(true_Y == 1) true_neg_index = np.where(true_Y == 0) # Calculate probability of classification for each input y_pred_prob = self.predict_prob(X, sensitive_features) # Calculate average probability of correct classification (i.e. expected accuracy) avg_micro_acc = (np.sum(y_pred_prob[true_pos_index][:,1]) + np.sum(y_pred_prob[true_neg_index][:,0])) / len(true_Y) print("Average Overall Accuracy: ", avg_micro_acc) micro_auc = roc_auc_score(true_Y, y_pred_prob[:,1]) print("Overall AUC: ", micro_auc) out_dict = {} # The format is: {group:[tp, fp, tn, fn]} avg_macro_acc = 0 macro_auc = 0 for index, group in enumerate(groups): indicies = np.where(sensitive_features == group)[0] true_class = true_Y[indicies] pred_prob = y_pred_prob[indicies] true_pos_index = np.where(true_class == 1)[0] true_neg_index = np.where(true_class == 0)[0] if len(true_pos_index) == 0 or len(true_neg_index) == 0: print("No True positives or no true negatives in this group") continue # Find avg rates (i.e. avg probability of tp/tn/fp/fn) tp = np.sum(pred_prob[true_pos_index][:,1]) / len(true_pos_index) tn = np.sum(pred_prob[true_neg_index][:,0]) / len(true_neg_index) fp = np.sum(pred_prob[true_neg_index][:,1]) / len(true_neg_index) fn = np.sum(pred_prob[true_pos_index][:,0]) / len(true_pos_index) tp_rate[group] = tp tn_rate[group] = tn fp_rate[group] = fp fn_rate[group] = fn # Expected accuracy accuracy = (np.sum(pred_prob[true_pos_index][:,1]) + np.sum(pred_prob[true_neg_index][:,0])) / len(true_class) avg_macro_acc += accuracy auc = roc_auc_score(true_class, pred_prob[:,1]) macro_auc += auc out_dict[group] = [tp, tn, fp, fn, accuracy, auc] print(group, "average confusion matrix") if tp == 0 and fp == 0: print("None classified as Positive in group", group) print("\t Average Group Accuracy: ", accuracy) else: # Can't compute F1 out of these since dealing with average values #precision = tp / (tp + fp) #recall = tp / (tp + fn) #f1 = 2 * precision * recall / (precision + recall) #print("\t F1 score: ", f1) print("\t Average Group Accuracy: ", accuracy) print("\t Group AUC: ", auc) print("\t Average True positive rate:", tp) print("\t Average True negative rate:", tn) print("\t Average False positive rate:", fp) print("\t Average False negative rate:", fn) avg_macro_acc /= len(groups) macro_auc /= len(groups) return out_dict, {"Accuracy": (avg_micro_acc, avg_macro_acc), "AUC": (micro_auc, macro_auc)} ``` #### File: new_allen_nlp/Mortality/MortalityReader.py ```python import tempfile from typing import Dict, Iterable, List, Tuple from overrides import overrides import torch import allennlp from allennlp.data import DataLoader, DatasetReader, Instance, Vocabulary from allennlp.data.fields import LabelField, TextField, MetadataField, MultiLabelField from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, WhitespaceTokenizer from allennlp.models import Model from allennlp.modules import TextFieldEmbedder, Seq2VecEncoder from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.token_embedders import Embedding from allennlp.modules.seq2vec_encoders import BagOfEmbeddingsEncoder, CnnEncoder '''transformer stuff''' from allennlp.data.tokenizers import PretrainedTransformerTokenizer from allennlp.data.token_indexers import PretrainedTransformerIndexer # from allennlp.modules.text_field_embedders import from allennlp.modules.token_embedders import PretrainedTransformerEmbedder from allennlp.modules.seq2vec_encoders import BertPooler from allennlp.nn import util from allennlp.training.metrics import CategoricalAccuracy, Auc from allennlp.training.optimizers import AdamOptimizer from allennlp.training.trainer import Trainer, GradientDescentTrainer from allennlp.training.util import evaluate # import the regularization from allennlp.nn.regularizers import L2Regularizer, RegularizerApplicator import pandas as pd import os import gc from tqdm.auto import tqdm import sys sys.path.append("/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/") from src.preprocessing.text_preprocessing import preprocess_mimic import torch import matplotlib.pyplot as plt from CONST import LOGGER_NAME ''' get the logger, if it is available ''' import logging import numpy as np # logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(LOGGER_NAME) logger.debug("hello") @DatasetReader.register("MortalityReader") class MortalityReader(DatasetReader): def __init__(self, lazy: bool = True, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, max_tokens: int = 768*4, train_listfile: str = "/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/in-hospital-mortality/train/listfile.csv", test_listfile: str = "/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/in-hospital-mortality/test/listfile.csv", notes_dir: str = "/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/extracted_notes", skip_patients_file: str ="/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/extracted_notes/null_patients.txt", stats_write_dir: str="/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/extracted_notes/", all_stays: str = "/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/root/all_stays.csv", limit_examples: int = None, use_preprocessing: bool = False, num_classes: int=2, mode: str='train', data_type: str="MORTALITY", args=None, hadm2eps_path: str="/scratch/gobi1/johnchen/new_git_stuff/multimodal_fairness/data/extracted_notes/hadm2episode.dict" ): super().__init__(lazy) self.tokenizer = tokenizer or WhitespaceTokenizer() self.token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} self.max_tokens = max_tokens self.train_listfile = train_listfile self.test_listfile = test_listfile self.notes_dir = notes_dir self.use_preprocessing = use_preprocessing logger.critical(f"we are getting the max tokens {self.max_tokens} " f"and use_preproc is {self.use_preprocessing}") self.null_patients = [] with open(skip_patients_file, "r") as file: for line in file: self.null_patients.append(line.strip()) self.stats_write_dir = stats_write_dir self.all_stays_path = all_stays self.all_stays_df = self.get_all_stays() self.limit_examples = limit_examples self.cur_examples = 0 self.lengths = [] self.num_classes = num_classes self.mode = mode self.sampled_idx = {} self.data_type = data_type self.args = args self.get_idx() #realistically, only the train_idx will be set, and we simply need to compare against # self.null_patients self.vocab = None self.hadm2eps_path = hadm2eps_path self.listfile_df = pd.read_csv(train_listfile) if self.data_type == "PHENOTYPING" or self.data_type == "DECOMPENSATION": self.labels_start_idx = 2 elif self.data_type == "MORTALITY": self.labels_start_idx = 1 self.labels = list(self.listfile_df.columns[self.labels_start_idx:]) # def set_mode(self, mode: str): # if mode == "train": # self.limit_examples = None # else: # # pass def get_idx(self): train_sampler = self.get_sampler(self.train_listfile) self.sampled_idx["train"] = list(train_sampler) self.train_sampler = train_sampler test_sampler = self.get_sampler(self.test_listfile) self.sampled_idx["valid"] = list(test_sampler) self.test_sampler = test_sampler if self.limit_examples: self.sampled_idx["train"] = self.sampled_idx["train"][:self.limit_examples] self.sampled_idx["valid"] = self.sampled_idx["valid"][:self.limit_examples] def get_label_stats(self, file_path: str): ''' Gets label (mortality) stats ''' # get stats on the dataset listed at _path_ from collections import defaultdict self.stats = defaultdict(int) with open(file_path, "r") as file: file.readline() # could also pandas readcsv and ignore first line for line in file: info_filename, label = line.split(",") self.stats[int(label)] +=1 return self.stats ''' Parses the line, according to the mode. Returns a dict with the proper keys set Could also have implemented this with a DF instead ''' def parse_line(self, line): info_dict = {} mapping_dict = {} if self.data_type == "MORTALITY": headers = ["filename", "label"] elif self.data_type == "DECOMPENSATION": headers = ["filename", "time", "label"] elif self.data_type == "PHENOTYPING": headers = ["filename", "time", "label"] else: headers = ["filename", "time", "label"] for i,header in enumerate(headers): mapping_dict[header] = i #can also use a dict comprehension here info_array = line.split(",") for key in mapping_dict: if key == "label": info_dict[key] = int(info_array[mapping_dict[key]]) elif key == "time": info_dict[key] = float(info_array[mapping_dict[key]]) else: info_dict[key] = info_array[mapping_dict[key]] return info_dict ''' Reads in all the labels, and forms a sampler, according to a balanced approach. ''' def get_sampler(self, listfile: str = ""): self.labels = [] # read out the personal statement, and expand upon this # current events # politics and area studies # controversial issues: pipeline protests # saudi arms deal! # conservative, etc. # african and canadian politics # excerpt from the referee letter! # sampling_num_classes sampling_num_classes = None if self.data_type == "DECOMPENSATION" or self.data_type == "MORTALITY": sampling_num_classes = 2 else: sampling_num_classes = 25 self.class_counts = np.zeros(sampling_num_classes) # fix sampling for phenotypes with open(listfile, "r") as file: file.readline() for line in file: info_dict = self.parse_line(line) self.labels.append([info_dict["label"]]) self.class_counts[int(info_dict["label"])] += 1 # now, we assign the weights to ALL the class labels self.class_weights = 1/self.class_counts # essentially, assign the weights as the ratios, from the self.stats stuff all_label_weights = self.class_weights[self.labels].squeeze() #produce an array of size labels, but looking up the value in class weights each time num_samples = self.limit_examples if self.limit_examples else len(all_label_weights) num_samples = min(num_samples, len(all_label_weights)) if self.args.sampler_type == "balanced": sampler = torch.utils.data.sampler.WeightedRandomSampler(weights=all_label_weights, num_samples=num_samples, replacement = False) elif self.args.sampler_type == "random": sampler = torch.utils.data.sampler.SubsetRandomSampler(indices=[i for i in range(len(all_label_weights))]) # sampler = list(sampler)[:num_samples] else: logger.critical("Weird sampler specified \n") sampler = None return sampler def get_sampler_from_dataset(self, dataset): self.labels = [] self.class_counts = np.zeros(2) for data in dataset: # could replace this with an arbitrary data source, and we just yield from it info_dict = data.fields label = int(info_dict["label"].label) self.labels.append(label) self.class_counts[label] += 1 # now, we assign the weights to ALL the class labels self.class_weights = 1/self.class_counts # essentially, assign the weights as the ratios, from the self.stats stuff all_label_weights = self.class_weights[self.labels] #produce an array of size labels, but looking up the value in class weights each time num_samples = self.limit_examples if self.limit_examples else len(all_label_weights) num_samples = min(num_samples, len(all_label_weights)) if self.args.sampler_type == "balanced": sampler = torch.utils.data.sampler.WeightedRandomSampler(weights=all_label_weights, num_samples=num_samples, replacement = False) else: sampler = torch.utils.data.sampler.SubsetRandomSampler(indices=[i for i in range(len(all_label_weights))]) # sampler = list(sampler)[:num_samples] return sampler #now that we have a sampler, we can do things: pass it into the dataloader ''' Creates and saves a histogram of the note lengths ''' def make_lengths_histogram(self): pass ''' Gets stats for the data listed at the datapath ''' def get_note_stats(self, file_path, name="train"): print(f"in note stats, the logger is {logger} and we have {__name__}") print(logger.getEffectiveLevel()) from collections import defaultdict self.note_stats = defaultdict(list) exclusions = 0 num_examples = 0 with open(file_path, "r") as file: for line in file: num_examples+=1 with open(file_path, "r") as file, \ open(os.path.join(self.stats_write_dir, "note_lengths.txt") , "a") as note_length_file: file.readline() # could also pandas readcsv and ignore first line for example_number,line in enumerate(tqdm(file, total=num_examples)): if self.mode != "test" and self.limit_examples and example_number > self.limit_examples: break info_filename, label = line.split(",") info = info_filename.split("_") patient_id = info[0] # verify string inside a list of string if patient_id not in self.null_patients: # could also just do try except here eps = int("".join([c for c in info[1] if c.isdigit()])) notes = pd.read_pickle(os.path.join(self.notes_dir, patient_id, "notes.pkl")) notes[["CHARTTIME", "STORETIME", "CHARTDATE"]] = notes[["CHARTTIME", "STORETIME", "CHARTDATE"]].apply(pd.to_datetime) # fill in the time, do two passes. Any not caught in the first pass will get helped by second notes["CHARTTIME"] = notes["CHARTTIME"].fillna(notes["STORETIME"]) notes["CHARTTIME"] = notes["CHARTTIME"].fillna(value=notes["CHARTDATE"].map(lambda x: pd.Timestamp(x) + pd.Timedelta(days=1) - pd.Timedelta(seconds=1))) assert len(notes[notes["CHARTTIME"].isnull()]) == 0 # all of them should have been filled in. # now, let's sort the notes episode_specific_notes = notes[notes["EPISODES"] == eps].copy(deep=True) # hadm_id = episode_specific_notes.groupby(["HADM_ID"]).agg({""}) # hadm ids seem to 1-to1 correspond to episodes hadm_id = episode_specific_notes["HADM_ID"] one_hadm_id = hadm_id.unique() logger.info(type(one_hadm_id)) assert (one_hadm_id.shape[0]) == 1 assert len(one_hadm_id) == 1 icu_intime = self.all_stays_df[ self.all_stays_df["HADM_ID"] == one_hadm_id[0]] # we are assuming that the intime is not null intime_date = pd.Timestamp(icu_intime["INTIME"].iloc[0]) # iloc will automatically extract once you get to the base element intime_date_plus_time = pd.Timestamp(intime_date) + pd.Timedelta(days=2) # all notes up to two days. Including potentially previous events. mask = ( episode_specific_notes["CHARTTIME"] > intime_date) & (episode_specific_notes["CHARTTIME"] <= intime_date_plus_time) all_mask = (episode_specific_notes["CHARTTIME"] <= intime_date_plus_time) time_episode_specific_notes = episode_specific_notes[mask].copy(deep=True) logger.debug("Went from {} to {} notes\n".format(len(episode_specific_notes), len(time_episode_specific_notes))) if len(time_episode_specific_notes) > 0: text_df = time_episode_specific_notes text_df.sort_values("CHARTTIME", ascending=True, inplace=True) # we want them sorted by increasing time # unlike the other one, we found our performance acceptable. Therefore, we use only the first note. text = " ".join(text_df["TEXT"].tolist()) #assuming sorted order tokens = self.tokenizer.tokenize(text) if patient_id in self.note_stats: logger.info("Encountering the patient another time, for another episode {} {}".format(patient_id, eps)) self.note_stats[patient_id].append(len(tokens) )# the same patient id can be encoutnered for multiple episodes if int(patient_id)%1000==0: logger.info("text for patient {} \n: {}".format(patient_id,text)) logger.info("end of text for patient {} \n".format(patient_id)) else: logger.warning("No text found for patient {}. This is with the time hour {} window\n. ".format(patient_id, 48)) exclusions +=1 '''below code is functionally useless; much better to visualize with plot''' fig, ax = plt.subplots() # let's flatten a dictionary of lists. note_lengths = [] for lst in self.note_stats.values(): note_lengths.extend(lst) ax.hist(note_lengths, range=(0, max(note_lengths)), bins=100, rwidth=0.9 ) ax.set_title("Histogram of total note lengths") fig.savefig(os.path.join(self.stats_write_dir, f"{name}_decomp_note_length_hist.png")) logger.critical("For {} With decompensation windowing, removed {}\n".format(name, exclusions)) return self.note_stats def get_all_stays(self): my_stays_df = pd.read_csv(self.all_stays_path) return my_stays_df @overrides def _read(self, listfile_path: str) -> Iterable[Instance]: '''NOTE: because this is an overrides, it CANNOT accept another arg!''' '''This function is only expected to be called with lazy set to FALSE. ''' '''Expect: one instance per line''' logger.critical("read method is called") if self.mode != "test": sampled_idx = self.sampled_idx[self.mode] listfile_df = pd.read_csv(listfile_path) def str_build(row): labels = [] for col in row.index: if row[col] == 1: labels.append(col) # labels.join() return labels for idx,row in listfile_df.iterrows(): if self.mode == "test" or idx in sampled_idx : #when test, use everything list_labels = str_build(row.iloc[self.labels_start_idx:]) multi_labels = MultiLabelField(list_labels) time = row.get("period_length", default=48) # float(48) #hardcode to 48 info = row.get("stay").split("_") label = row.get("y_true", -1) patient_id = info[0] # verify string inside a list of string # null patients are thrown out. But only on a task specific basis. if patient_id not in self.null_patients: # could also just do try except here eps = int("".join([c for c in info[1] if c.isdigit()])) notes = pd.read_pickle(os.path.join(self.notes_dir, patient_id, "notes.pkl")) notes[["CHARTTIME", "STORETIME", "CHARTDATE"]] = notes[["CHARTTIME", "STORETIME", "CHARTDATE"]].apply(pd.to_datetime) # fill in the time, do two passes. Any not caught in the first pass will get helped by second notes["CHARTTIME"] = notes["CHARTTIME"].fillna(notes["STORETIME"]) notes["CHARTTIME"] = notes["CHARTTIME"].fillna(value=notes["CHARTDATE"].map(lambda x: pd.Timestamp(x) + pd.Timedelta(days=1) - pd.Timedelta(seconds=1))) assert len(notes[notes["CHARTTIME"].isnull()]) == 0 # all of them should have been filled in. # now, let's sort the notes episode_specific_notes = notes[notes["EPISODES"] == eps] hadm_id = episode_specific_notes["HADM_ID"] one_hadm_id = hadm_id.unique() if len(one_hadm_id) <= 0: logger.critical("MISSING DATA FOR PATIENT EPS TIME {} {} {}. Skipping\n".format(patient_id, eps, time )) continue if self.data_type != "PHENOTYPING": icu_intime = self.all_stays_df[self.all_stays_df["HADM_ID"] == one_hadm_id[0]] # we are assuming that the intime is not null intime_date = pd.Timestamp(icu_intime["INTIME"].iloc[ 0]) # iloc will automatically extract once you get to the base element intime_date_plus_time = pd.Timestamp(intime_date) + pd.Timedelta(hours=int(time)) # all notes up to two days. Including potentially previous events. mask = (episode_specific_notes["CHARTTIME"] > intime_date) & ( episode_specific_notes["CHARTTIME"] <= intime_date_plus_time) time_episode_specific_notes = episode_specific_notes[mask].copy(deep=True) else: time_episode_specific_notes = episode_specific_notes.copy(deep=True) if len(time_episode_specific_notes) > 0: text_df = time_episode_specific_notes text_df.sort_values("CHARTTIME", ascending=False, inplace=True) # we want them sorted by increasing time # unlike the other one, we found our performance acceptable. Therefore, we use only the first note. text = " ".join(text_df["TEXT"].tolist()) if self.use_preprocessing: token_sent_stream = preprocess_mimic(text) tokens = [] cur_tokens = 0 for i,token_sent in enumerate(token_sent_stream): if cur_tokens > self.max_tokens: break cur_tokens += len(token_sent.split()) tokens.append(token_sent) text = " ".join(tokens) #overwrite the text! tokens = self.tokenizer.tokenize(text)[:self.max_tokens] text_field = TextField(tokens, self.token_indexers) label_field = LabelField(str(label).strip()) meta_data_field = MetadataField({"patient_id": patient_id, "episode": eps, "hadm_id": one_hadm_id[0], # just the specific value "time" : time #yield the time too }) fields = {'text': text_field, 'label': multi_labels, "metadata": meta_data_field} yield Instance(fields) # after the generator yields, code will return here. (think of yield as a pause) # self.cur_examples += 1 else: logger.warning("No text found for patient {}".format(patient_id)) # in this case, we ignore the patient else: logger.debug("we are skipping some indices {}".format(idx)) ``` #### File: old_allen_mort_pred/tests/model_test.py ```python from allennlp.common.testing import ModelTestCase class AcademicPaperClassifierTest(ModelTestCase): def setUp(self): super(AcademicPaperClassifierTest, self).setUp() self.set_up_model('tests/fixtures/academic_paper_classifier.json', 'tests/fixtures/s2_papers.jsonl') def test_model_can_train_save_and_load(self): self.ensure_model_can_train_save_and_load(self.param_file) if __name__ == "__main__": test = AcademicPaperClassifierTest() test.setUp() test.test_model_can_train_save_and_load() # print() ``` #### File: text_mortality/dataset_readers/SemanticScholarDatasetReader.py ```python from typing import Dict import json import logging from overrides import overrides from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import LabelField, TextField from allennlp.data.instance import Instance from allennlp.data.tokenizers import Tokenizer, SpacyTokenizer from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer logger = logging.getLogger(__name__) # pylint: disable=invalid-name @DatasetReader.register("s2_papers") class SemanticScholarDatasetReader(DatasetReader): """ Reads a JSON-lines file containing papers from the Semantic Scholar database, and creates a dataset suitable for document classification using these papers. Expected format for each input line: {"paperAbstract": "text", "title": "text", "venue": "text"} The JSON could have other fields, too, but they are ignored. The output of ``read`` is a list of ``Instance`` s with the fields: title: ``TextField`` abstract: ``TextField`` label: ``LabelField`` where the ``label`` is derived from the venue of the paper. Parameters ---------- lazy : ``bool`` (optional, default=False) Passed to ``DatasetReader``. If this is ``True``, training will start sooner, but will take longer per batch. This also allows training with datasets that are too large to fit in memory. tokenizer : ``Tokenizer``, optional Tokenizer to use to split the title and abstrct into words or other kinds of tokens. Defaults to ``WordTokenizer()``. token_indexers : ``Dict[str, TokenIndexer]``, optional Indexers used to define input token representations. Defaults to ``{"tokens": SingleIdTokenIndexer()}``. """ def __init__(self, lazy: bool = False, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None) -> None: super().__init__(lazy) self._tokenizer = tokenizer or SpacyTokenizer() # this is the token 2 index, mapping! self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} @overrides def _read(self, file_path): ''' You could also read a csv, etc. The purpose of this is to provide examples to consume. ''' with open(cached_path(file_path), "r") as data_file: logger.info("Reading instances from lines in file at: %s", file_path) for line in data_file: line = line.strip("\n") if not line: continue paper_json = json.loads(line) title = paper_json['title'] abstract = paper_json['paperAbstract'] venue = paper_json['venue'] yield self.text_to_instance(title, abstract, venue) @overrides def text_to_instance(self, title: str, abstract: str, venue: str = None) -> Instance: # type: ignore ''' Converts text to instances. Specifies what an Instance looks like. An instance is created from a set of fields. Note that our tokenizer is left unspecified (allows us to use character level tokens). And our token_indexer is also left unspecified. Allows us to use GloVe word embeddings. ''' # pylint: disable=arguments-differ tokenized_title = self._tokenizer.tokenize(title) tokenized_abstract = self._tokenizer.tokenize(abstract) title_field = TextField(tokenized_title, self._token_indexers) abstract_field = TextField(tokenized_abstract, self._token_indexers) fields = {'title': title_field, 'abstract': abstract_field} if venue is not None: fields['label'] = LabelField(venue) return Instance(fields) ```
{ "source": "johntiger1/vaal_querying", "score": 3 }
#### File: johntiger1/vaal_querying/plotting_ci.py ```python import numpy as np import scipy as sp import scipy.stats as stats import matplotlib.pyplot as plt ''' t is number of standard deviations ''' def plot_ci_manual(t, s_err, n, x, x2, y2, ax=None): """Return an axes of confidence bands using a simple approach. Notes ----- .. math:: \left| \: \hat{\mu}_{y|x0} - \mu_{y|x0} \: \right| \; \leq \; T_{n-2}^{.975} \; \hat{\sigma} \; \sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum_{i=1}^n{(x_i-\bar{x})^2}}} .. math:: \hat{\sigma} = \sqrt{\sum_{i=1}^n{\frac{(y_i-\hat{y})^2}{n-2}}} References ---------- .. [1] <NAME>. "Curve fitting," Jupyter Notebook. http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb """ if ax is None: ax = plt.gca() ci = t * s_err * np.sqrt(1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2)) ax.fill_between(x2, y2 + ci, y2 - ci, color="#b9cfe7", edgecolor="") return ax ''' x2, y2 are the modelling response. x2: linspace from min(x) to max(x) y2: conditional mean response X: the actual data (needed to compute the standard deviation) t: width of the CI, in std. devs. ''' def plot_ci_normal_dist(t, x2, y2, means, num_samples, ax=None, color="#b9cfe7"): import matplotlib from matplotlib import colors new_colour = colors.to_rgba(color, alpha=0.23) print() """Return an axes of confidence bands using a simple approach. Notes ----- .. math:: \left| \: \hat{\mu}_{y|x0} - \mu_{y|x0} \: \right| \; \leq \; T_{n-2}^{.975} \; \hat{\sigma} \; \sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum_{i=1}^n{(x_i-\bar{x})^2}}} .. math:: \hat{\sigma} = \sqrt{\sum_{i=1}^n{\frac{(y_i-\hat{y})^2}{n-2}}} References ---------- .. [1] <NAME>. "Curve fitting," Jupyter Notebook. http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb """ # we can compute the stddev via a built in, or explicitly. # let's try it explicitly # assert means.shape[1] == X.shape[1] == 25 # assert means.shape[0] == 1 from matplotlib import cm means = means.reshape((-1, len(means))) std_devs = np.sqrt(means * (100-means)/num_samples) ci = t*std_devs if ax is None: ax = plt.gca() ci = ci.squeeze() # print(matplotlib.colors.cnames[color]) ax.fill_between(x2, y2 + ci, y2 - ci, color=new_colour, edgecolor="") return ax def plot_ci_bootstrap(xs, ys, resid, nboot=500, ax=None): """Return an axes of confidence bands using a bootstrap approach. Notes ----- The bootstrap approach iteratively resampling residuals. It plots `nboot` number of straight lines and outlines the shape of a band. The density of overlapping lines indicates improved confidence. Returns ------- ax : axes - Cluster of lines - Upper and Lower bounds (high and low) (optional) Note: sensitive to outliers References ---------- .. [1] <NAME>. "Visualizing Confidence Intervals", Various Consequences. http://www.variousconsequences.com/2010/02/visualizing-confidence-intervals.html """ if ax is None: ax = plt.gca() bootindex = sp.random.randint for _ in range(nboot): resamp_resid = resid[bootindex(0, len(resid) - 1, len(resid))] # Make coeffs of for polys pc = sp.polyfit(xs, ys + resamp_resid, 1) # Plot bootstrap cluster ax.plot(xs, sp.polyval(pc, xs), "b-", linewidth=2, alpha=3.0 / float(nboot)) return ax ''' x is simply a lin space, (1 to T). Y is the entire batch of accuracies, i.e. N x T (N is the number of samples, T is the number of timesteps) We use the simplest method for plotting the classifier performance: just compute the standard deviation at each timestep. To make it a "plot", we also fit a simple regression curve. The exact methodology: - compute the mean acc at each timestep - fit a 1D polynomial (regression) for the mean - compute the standard deviations around the mean, at each timestep - fill in the area between the +2/-2 deviations around the mean ''' ''' loads data, for graphing purposes ''' def load_data(path, pattern="kl_penalty"): # we can glob the entire path # import os import numpy as np all_accs = np.zeros((25,100)) for root, dirs, files in os.walk(path): for dir in dirs: if pattern in dir: print(dir) ind = int(dir.split("_")[-1]) print(ind) with open(os.path.join(root, dir,"accs.txt"), "r") as file: counter = 0 for line in (file): if ";" in line: if counter==100: print(ind, counter) # print(counter) acc = line.split(";")[0] all_accs[ind,counter] = float(acc) counter+=1 # break # print(file.readlines(1)) # print(all_accs) print(all_accs.shape) # open with w => overwrite! return all_accs pass def load_data_baselines(path, pattern="kl_penalty", mode="kl_penalty", num_samples=29): # we can glob the entire path # import os import numpy as np all_accs = np.zeros((num_samples,100)) for root, dirs, files in os.walk(path): for dir in dirs: print(root, dirs) if pattern in dir and root==path: # print(dir) ind = int(dir.split("_")[-1]) # print(ind) if ind >= num_samples: continue if mode == "kl_penalty": with open(os.path.join(root, dir,"accs.txt"), "r") as file: counter = 0 for line in (file): if ";" in line: if counter==100: print(ind, counter) # print(counter) acc = line.split(";")[0] all_accs[ind,counter] = float(acc) counter+=1 elif mode == "uncertainty" or mode == "random": # print(dir) # # print(os.path.join(root, dir, mode + "_current_accs.txt")) with open(os.path.join(root, dir, mode + "_current_accs.txt"), "r") as file: counter = 0 for line in (file): if " " in line: if counter==100: print(ind, counter) # print(counter) acc = line.split(" ")[0] all_accs[ind,counter] = float(acc) counter+=1 # break # print(file.readlines(1)) # print(all_accs) print(all_accs.shape) # open with w => overwrite! return all_accs pass def stddev_plot(x,y): fig,ax = plt.subplots() ax.plot(x,y) fig.show() pass def gen_ci_plot(accs, fig, ax, color="g"): num_samples = accs.shape[0] x = np.arange(0, accs.shape[1]) y = np.mean(accs, axis=0) t = 2 # Modeling with Numpy def equation(a, b): """Return a 1D polynomial.""" return np.polyval(a, b) p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom. y_model = equation(p, x) # model using the fit parameters; NOTE: parameters here are coefficients # Plotting -------------------------------------------------------------------- # fig, ax = plt.subplots(figsize=(8, 6)) # Data ax.plot( x, y, "o", color=color, markersize=8, markeredgewidth=1, markeredgecolor=color, markerfacecolor="None", ) # Fit ax.plot(x, y_model, "-", color=color, linewidth=1.5, alpha=0.5, label="r={}".format(p)) x2 = np.linspace(np.min(x), np.max(x), len(x)) y2 = equation(p, x2) # Confidence Interval (select one) # plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax) # plot_ci_bootstrap(x, y, resid, ax=ax) means = y # means = means.reshape((-1, len(means))) std_devs = np.sqrt(means * (100 - means) / num_samples) std_vars = means * (100 - means) / num_samples std_devs_across = np.std(means) print(color, std_devs_across) #lower stddev # ax.plot(x, std_vars, label="std_vars", color=color) plot_ci_normal_dist(t, x2, y2, y,num_samples, ax=ax, color=color) # # Prediction Interval # pi = t * s_err * np.sqrt(1 + 1 / n + (x2 - np.mean(x)) ** 2 / np.sum((x - np.mean(x)) ** 2)) # ax.fill_between(x2, y2 + pi, y2 - pi, color="None", linestyle="--") # ax.plot(x2, y2 - pi, "--", color="0.5", label="95% Prediction Limits") # ax.plot(x2, y2 + pi, "--", color="0.5") # Figure Modifications -------------------------------------------------------- # Borders ax.spines["top"].set_color("0.5") ax.spines["bottom"].set_color("0.5") ax.spines["left"].set_color("0.5") ax.spines["right"].set_color("0.5") ax.get_xaxis().set_tick_params(direction="out") ax.get_yaxis().set_tick_params(direction="out") ax.xaxis.tick_bottom() ax.yaxis.tick_left() # Labels plt.title("Fit Plot for Query Methods", fontsize="14", fontweight="bold") plt.xlabel("Queries") plt.ylabel("Accuracy") plt.xlim(np.min(x) - 1, np.max(x) + 1) # Custom legend handles, labels = ax.get_legend_handles_labels() display = (0, 1) anyArtist = plt.Line2D((0, 1), (0, 0), color=color) # create custom artists if ax.get_legend(): ax.get_legend().remove() ax.legend(loc="center right") legend = plt.legend( [handle for i, handle in enumerate(handles) if i in display] + [anyArtist], [label for i, label in enumerate(labels) if i in display] + ["95% Confidence Limits"], loc=9, bbox_to_anchor=(0, -0.21, 1., 0.102), ncol=3, mode="expand" ) frame = legend.get_frame().set_edgecolor("0.5") # Save Figure plt.tight_layout() plt.savefig("filename.png", bbox_extra_artists=(legend,), bbox_inches="tight") fig.show() return fig, ax if __name__ == "__main__": accs = load_data_baselines("/scratch/gobi1/johnchen/vaal_results") random_accs = load_data_baselines("/scratch/gobi1/johnchen/vaal_results", mode="random") uncertainty_accs = load_data_baselines("/scratch/gobi1/johnchen/vaal_results", mode="uncertainty") # accs = accs[:,:30] # random_accs = random_accs[:,:30] # uncertainty_accs = uncertainty_accs[:,:30] # Computations ---------------------------------------------------------------- # Raw Data '''trying the normal equation line fit''' ''' x = np.arange(0,all_accs.shape[1]) x = np.reshape(x,(1,100)) x = np.repeat(x, 25, axis=0) y = all_accs ''' ''' Couple approaches: either normal equation line fit. Or, we can do just on the mean ''' '''trying the regular mean fit''' fig, ax = plt.subplots(figsize=(8, 6)) # # ax.set_color_cycle(['red', 'black', 'yellow']) # fig, ax = gen_ci_plot(accs, fig, ax, color="g") # fig, ax = gen_ci_plot(random_accs, fig, ax, color="r") # fig, ax = gen_ci_plot(uncertainty_accs, fig, ax, color="b") fig, ax = gen_ci_plot(accs, fig, ax, color="g") fig, ax = gen_ci_plot(random_accs, fig, ax, color="r") fig, ax = gen_ci_plot(uncertainty_accs, fig, ax, color="b") # fig.legend(loc="center right") pass ``` #### File: vaal_querying/rl/sample_cartpole.py ```python import numpy as np import torch.nn as nn import torch.nn.functional as F import torch import gym from torch.autograd import Variable import random HIDDEN_LAYER = 24 # NN hidden layer size LR = 0.01 GAMMA = 0.99 INPUT_SIZE = 4 OUTPUT_SIZE = 2 ENV = gym.make('CartPole-v0').unwrapped HISTORY = [] class Network(nn.Module): def __init__(self): super(Network, self).__init__() self.l1 = nn.Linear(INPUT_SIZE, HIDDEN_LAYER) # nn.init.xavier_uniform(self.l1.weight) self.l2 = nn.Linear(HIDDEN_LAYER, OUTPUT_SIZE) # nn.init.xavier_uniform(self.l2.weight) def forward(self, x): x = F.relu(self.l1(x)) # print(x.shape) new_x = self.l2(x) # print(new_x.shape) x = F.softmax(new_x) return x model = Network() use_cuda = torch.cuda.is_available() if use_cuda: model.cuda() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor optim = torch.optim.Adam(model.parameters(), lr=LR) def discount_rewards(r): discounted_r = torch.zeros(r.size()) running_add = 0 for t in reversed(range(len(r))): running_add = running_add * GAMMA + r[t] discounted_r[t] = running_add print(discounted_r) return discounted_r ''' We run however many of these episodes, as necessary! ''' def run_episode(net, e, env): state = env.reset() reward_sum = 0 xs = FloatTensor([]) ys = FloatTensor([]) rewards = FloatTensor([]) steps = 0 action_predictions = FloatTensor([]) while True: # env.render() x = FloatTensor([state]) xs = torch.cat([xs, x]) #queue: FIFO; append to end action_prob = net(Variable(x)) action_predictions = torch.cat([action_predictions, action_prob]) # select an action depends on probability action = 0 if random.random() < action_prob.data[0][0] else 1 y = FloatTensor([[1, 0]] if action == 0 else [[0, 1]]) ys = torch.cat([ys, y]) state, reward, done, _ = env.step(action) rewards = torch.cat([rewards, FloatTensor([[reward]])]) reward_sum += reward steps += 1 if done or steps >= 500: adv = discount_rewards(rewards) # adv = (adv - adv.mean()) adv = (adv - adv.mean())/(adv.std() + 1e-7) # print(adv) loss = learn(xs, ys, adv, action_predictions) HISTORY.append(reward_sum) print("[Episode {:>5}] steps: {:>5} loss: {:>5}".format(e, steps, loss)) if sum(HISTORY[-5:])/5 > 490: return True else: return False def learn(x, y, adv, action_predictions): # Loss function, ∑ Ai*logp(yi∣xi), but we need fake lable Y due to autodiff # action_pred = model(Variable(x)) # y = Variable(y, requires_grad=True) print("y shape and AP shape") print(y.shape) print(action_predictions.shape) adv = Variable(adv).cuda() # print(action_pred) log_lik = -y * torch.log(action_predictions) # print(y) log_lik_adv = log_lik * adv # print(torch.sum(log_lik_adv, 1)) loss = torch.sum(log_lik_adv, 1).mean() optim.zero_grad() loss.backward() optim.step() return loss.item() for e in range(10000): complete = run_episode(model, e, ENV) if complete: print('complete...!') break # import matplotlib.pyplot as plt # from moviepy.editor import ImageSequenceClip # # def botPlay(env): # state = env.reset() # steps = 0 # frames = [] # while True: # frame = env.render(mode='rgb_array') # frames.append(frame) # action = torch.max(model(Variable(FloatTensor([state]))), 1)[1].data[0] # next_state, reward, done, _ = env.step(action) # # state = next_state # steps += 1 # # if done or steps >= 1000: # break # # clip = ImageSequenceClip(frames, fps=20) # clip.write_gif('4_policy_gradient_play.gif', fps=20) # # def plot_durations(d): # plt.figure(2) # plt.clf() # plt.title('Training...') # plt.xlabel('Episode') # plt.ylabel('Duration') # plt.plot(d) # # plt.savefig('4_policy_gradient_score.png') # # botPlay(ENV) # plot_durations(HISTORY) ```
{ "source": "JohnTocher/descrobbler", "score": 3 }
#### File: JohnTocher/descrobbler/mylast.py ```python import os import sys import pylast try: API_KEY = os.environ["LASTFM_API_KEY"] API_SECRET = os.environ["LASTFM_API_SECRET"] except KeyError: API_KEY = "my_api_key" API_SECRET = "my_apy_secret" try: lastfm_username = os.environ["LASTFM_USERNAME"] lastfm_password_hash = os.environ["LASTFM_PASSWORD_HASH"] print("Environment variables for user OK") except KeyError: # In order to perform a write operation you need to authenticate yourself lastfm_username = "my_username" # You can use either use the password, or find the hash once and use that lastfm_password_hash = <PASSWORD>("<PASSWORD>") print(lastfm_password_hash) # lastfm_password_hash = "<PASSWORD>" print("Environment variables for user missing! So far:") print(f"API_KEY: {API_KEY}") print(f"API_SECRET: {API_SECRET}") print(f"LFM USER: {lastfm_username}") print(f"LPW HASH: {lastfm_password_hash}") lastfm_network = pylast.LastFMNetwork( api_key=API_KEY, api_secret=API_SECRET, username=lastfm_username, password_hash=<PASSWORD>, ) def track_and_timestamp(track): return f"{track.playback_date}\t{track.track}" def print_track(track): print(track_and_timestamp(track)) TRACK_SEPARATOR = " - " def split_artist_track(artist_track): artist_track = artist_track.replace(" – ", " - ") artist_track = artist_track.replace("“", '"') artist_track = artist_track.replace("”", '"') (artist, track) = artist_track.split(TRACK_SEPARATOR) artist = artist.strip() track = track.strip() print("Artist:\t\t'" + artist + "'") print("Track:\t\t'" + track + "'") # Validate if len(artist) == 0 and len(track) == 0: sys.exit("Error: Artist and track are blank") if len(artist) == 0: sys.exit("Error: Artist is blank") if len(track) == 0: sys.exit("Error: Track is blank") return (artist, track) ```
{ "source": "johntoms/aliyun-sdk", "score": 2 }
#### File: aliyun-sdk/aliyun_sdk/client.py ```python from aliyun_sdk.common import AliyunCommon from aliyun_sdk.oss import AliyunOSS from . import retry_for_requests def get_config(c): return { 'access_key_id': c.get('AccessKeyId'), 'access_key_secret': c.get('AccessKeySecret'), 'role_name': c.get('RoleName'), } class AliyunClient(object): def __init__(self, config=None): self.config = config self.common_client = AliyunCommon(**get_config(config)) self.oss_client = AliyunOSS(**get_config(config)) def verify(self): return self.common_client.verify() @retry_for_requests def common(self, product, timeout=10, **biz_params): return self.common_client.__getattr__(product)(timeout=timeout, **biz_params) @retry_for_requests def oss(self, method, timeout=10, **biz_params): return self.oss_client.__getattr__(method)(timeout=timeout, **biz_params) ``` #### File: aliyun-sdk/aliyun_sdk/__init__.py ```python import json # Part3 Packages import xmltodict import requests from retry import retry retry_for_requests = retry((requests.ConnectionError, requests.Timeout), tries=3, delay=1, backoff=2, jitter=(1, 2)) def parse_response(response): resp_content_type = response.headers.get('content-type') or '' resp_content_type = resp_content_type.lower().split(';')[0].strip() if resp_content_type == 'application/json': return json.loads(response.text) elif resp_content_type == 'text/xml': return xmltodict.parse(response.text) else: try: return json.loads(response.text) except ValueError: try: return xmltodict.parse(response.text) except xmltodict.expat.ExpatError: return response.content except: raise except: raise ```
{ "source": "John-Tonny/Electrum-vircle", "score": 2 }
#### File: packages/aiohttp_socks/connector.py ```python import socket from aiohttp import TCPConnector from aiohttp.abc import AbstractResolver from .proto import SocksVer from .helpers import create_socket_wrapper, parse_socks_url class NoResolver(AbstractResolver): async def resolve(self, host, port=0, family=socket.AF_INET): return [{'hostname': host, 'host': host, 'port': port, 'family': family, 'proto': 0, 'flags': 0}] async def close(self): pass # pragma: no cover class SocksConnector(TCPConnector): def __init__(self, socks_ver=SocksVer.SOCKS5, host=None, port=None, username=None, password=<PASSWORD>, rdns=False, family=socket.AF_INET, **kwargs): if rdns: kwargs['resolver'] = NoResolver() super().__init__(**kwargs) self._socks_ver = socks_ver self._socks_host = host self._socks_port = port self._socks_username = username self._socks_password = password self._rdns = rdns self._socks_family = family # noinspection PyMethodOverriding async def _wrap_create_connection(self, protocol_factory, host, port, **kwargs): sock = create_socket_wrapper( loop=self._loop, socks_ver=self._socks_ver, host=self._socks_host, port=self._socks_port, username=self._socks_username, password=self._socks_password, rdns=self._rdns, family=self._socks_family) await sock.connect((host, port)) return await super()._wrap_create_connection( protocol_factory, None, None, sock=sock.socket, **kwargs) @classmethod def from_url(cls, url, **kwargs): socks_ver, host, port, username, password = parse_socks_url(url) return cls(socks_ver=socks_ver, host=host, port=port, username=username, password=password, **kwargs) ``` #### File: packages/aiohttp_socks/helpers.py ```python import asyncio import socket from urllib.parse import urlparse, unquote from .proto import SocksVer, Socks4SocketWrapper, Socks5SocketWrapper def create_socket_wrapper(loop, socks_ver, host=None, port=None, username=None, password=<PASSWORD>, rdns=True, family=socket.AF_INET): if socks_ver == SocksVer.SOCKS4: return Socks4SocketWrapper( loop=loop, host=host, port=port, user_id=username, rdns=rdns) if socks_ver == SocksVer.SOCKS5: return Socks5SocketWrapper( loop=loop, host=host, port=port, username=username, password=password, rdns=rdns, family=family) raise ValueError('Invalid socks ver: %s' % socks_ver) # pragma: no cover def parse_socks_url(url): parsed = urlparse(url) scheme = parsed.scheme if scheme == 'socks5': socks_ver = SocksVer.SOCKS5 elif scheme == 'socks4': socks_ver = SocksVer.SOCKS4 else: raise ValueError('Invalid scheme component: %s' % scheme) # pragma: no cover host = parsed.hostname if not host: raise ValueError('Empty host component') # pragma: no cover try: port = parsed.port except (ValueError, TypeError): # pragma: no cover raise ValueError('Invalid port component') try: username, password = (unquote(parsed.username), unquote(parsed.password)) except (AttributeError, TypeError): username, password = '', '' return socks_ver, host, port, username, password async def open_connection(socks_url=None, host=None, port=None, *, socks_ver=SocksVer.SOCKS5, socks_host='127.0.0.1', socks_port=1080, username=None, password=<PASSWORD>, rdns=True, family=socket.AF_INET, loop=None, **kwargs): if host is None or port is None: raise ValueError('host and port must be specified') # pragma: no cover if loop is None: loop = asyncio.get_event_loop() if socks_url is not None: socks_ver, socks_host, socks_port, username, password \ = parse_socks_url(socks_url) sock = create_socket_wrapper( loop=loop, socks_ver=socks_ver, host=socks_host, port=socks_port, username=username, password=password, rdns=rdns, family=family) await sock.connect((host, port)) return await asyncio.open_connection( loop=loop, host=None, port=None, sock=sock.socket, **kwargs) async def create_connection(socks_url=None, protocol_factory=None, host=None, port=None, *, socks_ver=SocksVer.SOCKS5, socks_host='127.0.0.1', socks_port=1080, username=None, password=<PASSWORD>, rdns=True, family=socket.AF_INET, loop=None, **kwargs): if protocol_factory is None: raise ValueError('protocol_factory ' 'must be specified') # pragma: no cover if host is None or port is None: raise ValueError('host and port ' 'must be specified') # pragma: no cover if loop is None: loop = asyncio.get_event_loop() if socks_url is not None: socks_ver, socks_host, socks_port, username, password \ = parse_socks_url(socks_url) sock = create_socket_wrapper( loop=loop, socks_ver=socks_ver, host=socks_host, port=socks_port, username=username, password=password, rdns=rdns, family=family) await sock.connect((host, port)) return await loop.create_connection( protocol_factory=protocol_factory, host=None, port=None, sock=sock.socket, **kwargs) ```
{ "source": "John-Tonny/electrumx", "score": 2 }
#### File: electrumx/server/env.py ```python import re from ipaddress import IPv4Address, IPv6Address from aiorpcx import Service, ServicePart from electrumx.lib.coins import Coin from electrumx.lib.env_base import EnvBase class ServiceError(Exception): pass class Env(EnvBase): '''Wraps environment configuration. Optionally, accepts a Coin class as first argument to have ElectrumX serve custom coins not part of the standard distribution. ''' # Peer discovery PD_OFF, PD_SELF, PD_ON = ('OFF', 'SELF', 'ON') SSL_PROTOCOLS = {'ssl', 'wss'} KNOWN_PROTOCOLS = {'ssl', 'tcp', 'ws', 'wss', 'rpc'} def __init__(self, coin=None): super().__init__() self.obsolete(["MAX_SUBSCRIPTIONS", "MAX_SUBS", "MAX_SESSION_SUBS", "BANDWIDTH_LIMIT", "HOST", "TCP_PORT", "SSL_PORT", "RPC_HOST", "RPC_PORT", "REPORT_HOST", "REPORT_TCP_PORT", "REPORT_SSL_PORT", "REPORT_HOST_TOR", "REPORT_TCP_PORT_TOR", "REPORT_SSL_PORT_TOR"]) # Core items self.db_dir = self.required('DB_DIRECTORY') self.daemon_url = self.required('DAEMON_URL') if coin is not None: assert issubclass(coin, Coin) self.coin = coin else: coin_name = self.required('COIN').strip() network = self.default('NET', 'mainnet').strip() self.coin = Coin.lookup_coin_class(coin_name, network) # Peer discovery self.peer_discovery = self.peer_discovery_enum() self.peer_announce = self.boolean('PEER_ANNOUNCE', True) self.force_proxy = self.boolean('FORCE_PROXY', False) self.tor_proxy_host = self.default('TOR_PROXY_HOST', 'localhost') self.tor_proxy_port = self.integer('TOR_PROXY_PORT', None) # Misc self.db_engine = self.default('DB_ENGINE', 'leveldb') self.banner_file = self.default('BANNER_FILE', None) self.tor_banner_file = self.default('TOR_BANNER_FILE', self.banner_file) self.anon_logs = self.boolean('ANON_LOGS', False) self.log_sessions = self.integer('LOG_SESSIONS', 3600) self.log_level = self.default('LOG_LEVEL', 'info').upper() self.donation_address = self.default('DONATION_ADDRESS', '') self.drop_client = self.custom("DROP_CLIENT", None, re.compile) self.blacklist_url = self.default('BLACKLIST_URL', self.coin.BLACKLIST_URL) self.cache_MB = self.integer('CACHE_MB', 1200) self.reorg_limit = self.integer('REORG_LIMIT', self.coin.REORG_LIMIT) # Server limits to help prevent DoS self.max_send = self.integer('MAX_SEND', self.coin.DEFAULT_MAX_SEND) self.max_sessions = self.sane_max_sessions() self.cost_soft_limit = self.integer('COST_SOFT_LIMIT', 1000) self.cost_hard_limit = self.integer('COST_HARD_LIMIT', 10000) self.bw_unit_cost = self.integer('BANDWIDTH_UNIT_COST', 5000) self.initial_concurrent = self.integer('INITIAL_CONCURRENT', 10) self.request_sleep = self.integer('REQUEST_SLEEP', 2500) self.request_timeout = self.integer('REQUEST_TIMEOUT', 30) self.session_timeout = self.integer('SESSION_TIMEOUT', 600) # Services last - uses some env vars above self.services = self.services_to_run() if {service.protocol for service in self.services}.intersection(self.SSL_PROTOCOLS): self.ssl_certfile = '/etc/electrumx/server.crt'#self.required('SSL_CERTFILE') self.ssl_keyfile = '/etc/electrumx/server.key'#self.required('SSL_KEYFILE') self.report_services = self.services_to_report() def sane_max_sessions(self): '''Return the maximum number of sessions to permit. Normally this is MAX_SESSIONS. However, to prevent open file exhaustion, ajdust downwards if running with a small open file rlimit.''' env_value = self.integer('MAX_SESSIONS', 1000) # No resource module on Windows try: import resource nofile_limit = resource.getrlimit(resource.RLIMIT_NOFILE)[0] # We give the DB 250 files; allow ElectrumX 100 for itself value = max(0, min(env_value, nofile_limit - 350)) if value < env_value: self.logger.warning('lowered maximum sessions from {:,d} to {:,d} ' 'because your open file limit is {:,d}' .format(env_value, value, nofile_limit)) except ImportError: value = 512 # that is what returned by stdio's _getmaxstdio() return value def _parse_services(self, services_str, default_func): result = [] for service_str in services_str.split(','): if not service_str: continue try: service = Service.from_string(service_str, default_func=default_func) except Exception as e: raise ServiceError(f'"{service_str}" invalid: {e}') from None if service.protocol not in self.KNOWN_PROTOCOLS: raise ServiceError(f'"{service_str}" invalid: unknown protocol') result.append(service) # Find duplicate addresses service_map = {service.address: [] for service in result} for service in result: service_map[service.address].append(service) for address, services in service_map.items(): if len(services) > 1: raise ServiceError(f'address {address} has multiple services') return result def services_to_run(self): def default_part(protocol, part): return default_services.get(protocol, {}).get(part) default_services = {protocol: {ServicePart.HOST: 'all_interfaces'} for protocol in self.KNOWN_PROTOCOLS} default_services['rpc'] = {ServicePart.HOST: 'localhost', ServicePart.PORT: 8000} services = self._parse_services(self.default('SERVICES', 'tcp://:50001,ssl://:50002,ws://:50003,wss://:50004,rpc://:8000'), default_part) # Find onion hosts for service in services: if str(service.host).endswith('.onion'): raise ServiceError(f'bad host for SERVICES: {service}') return services def services_to_report(self): services = self._parse_services(self.default('REPORT_SERVICES', ''), None) for service in services: if service.protocol == 'rpc': raise ServiceError(f'bad protocol for REPORT_SERVICES: {service.protocol}') if isinstance(service.host, (IPv4Address, IPv6Address)): ip_addr = service.host if (ip_addr.is_multicast or ip_addr.is_unspecified or (ip_addr.is_private and self.peer_announce)): raise ServiceError(f'bad IP address for REPORT_SERVICES: {ip_addr}') elif service.host.lower() == 'localhost': raise ServiceError(f'bad host for REPORT_SERVICES: {service.host}') return services def peer_discovery_enum(self): pd = self.default('PEER_DISCOVERY', 'on').strip().lower() if pd in ('off', ''): return self.PD_OFF elif pd == 'self': return self.PD_SELF else: return self.PD_ON ```
{ "source": "JohnTorian/afterglow-core", "score": 3 }
#### File: users/versions/3_add_user_first_last_name.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3' down_revision = '2' branch_labels = None depends_on = None def upgrade(): with op.batch_alter_table( 'users', recreate='always', table_args=( sa.CheckConstraint( 'username is null or length(username) <= 255'), sa.CheckConstraint('email is null or length(email) <= 255'), sa.CheckConstraint( 'password is null or length(password) <= 255'), sa.CheckConstraint( 'first_name is null or length(first_name) <= 255'), sa.CheckConstraint( 'last_name is null or length(last_name) <= 255'), sa.CheckConstraint( 'auth_methods is null or length(auth_methods) <= 255'), sa.CheckConstraint( 'settings is null or length(settings) <= 1048576'), ), table_kwargs=dict(sqlite_autoincrement=True)) as batch_op: batch_op.add_column(sa.Column('first_name', sa.String, default='')) batch_op.add_column(sa.Column('last_name', sa.String, default='')) def downgrade(): with op.batch_alter_table('users', recreate='always') as batch_op: batch_op.drop_column('first_name') batch_op.drop_column('last_name') ``` #### File: afterglow-core/afterglow_core/__init__.py ```python import datetime import json import os from typing import Any, Dict as TDict, Optional from flask_cors import CORS from marshmallow import missing from werkzeug.datastructures import CombinedMultiDict, MultiDict from flask import Flask, Response, request from .schemas import AfterglowSchema __all__ = ['app', 'json_response'] class PrefixMiddleware(object): def __init__(self, application, prefix=''): self.app = application self.prefix = prefix def __call__(self, environ, start_response): if environ['PATH_INFO'].startswith(self.prefix): environ['PATH_INFO'] = environ['PATH_INFO'][len(self.prefix):] environ['SCRIPT_NAME'] = self.prefix return self.app(environ, start_response) else: start_response('404', [('Content-Type', 'text/plain')]) return ["This url does not belong to the app.".encode()] class AfterglowSchemaEncoder(json.JSONEncoder): """ JSON encoder that can serialize AfterglowSchema class instances """ def default(self, obj): if isinstance(obj, type(missing)): return None if isinstance(obj, AfterglowSchema): return obj.dump(obj) if isinstance(obj, datetime.datetime): return obj.isoformat(' ') return super(AfterglowSchemaEncoder, self).default(obj) def json_response(obj: Any = '', status_code: Optional[int] = None, headers: Optional[TDict[str, str]] = None) -> Response: """ Serialize a Python object to a JSON-type flask.Response :param obj: object to serialize; can be a Resource instance or a compound object (list, dict, ...) possibly including Resource instances :param int status_code: optional HTTP status code; defaults to 200 - OK :param dict headers: optional extra HTTP headers :return: Flask response object with mimetype set to application/json """ if obj == '' or status_code == 204: resp = Response('', 204, headers=headers) del resp.headers['Content-Type'] return resp if status_code is None: status_code = 200 return Response( json.dumps(obj, cls=AfterglowSchemaEncoder), status_code, mimetype='application/json', headers=headers) app = Flask(__name__) cors = CORS(app, resources={'/api/*': {'origins': '*'}}) app.config.from_object('afterglow_core.default_cfg') app.config.from_envvar('AFTERGLOW_CORE_CONFIG', silent=True) if app.config.get('APP_PREFIX'): app.wsgi_app = PrefixMiddleware( app.wsgi_app, prefix=app.config.get('APP_PREFIX')) if app.config.get('PROFILE'): # Enable profiling from werkzeug.middleware.profiler import ProfilerMiddleware app.config['DEBUG'] = True app.wsgi_app = ProfilerMiddleware(app.wsgi_app, restrictions=[10]) if app.config.get('OAUTH2_ALLOW_HTTP') or app.config.get('DEBUG'): os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @app.before_request def resolve_request_body() -> None: """ Before every request, combine `request.form` and `request.get_json()` into `request.args` """ ds = [request.args, request.form] body = request.get_json() if body: ds.append(MultiDict(body.items())) # Replace immutable Request.args with the combined args dict # noinspection PyPropertyAccess request.args = CombinedMultiDict(ds) if app.config.get('AUTH_ENABLED'): # Initialize user authentication and enable non-versioned /users routes # and Afterglow OAuth2 server at /oauth2 from . import auth # Define API resources and endpoints from .resources import * from .views import * ``` #### File: afterglow_core/models/source_extraction.py ```python from __future__ import annotations from datetime import datetime from typing import Optional from marshmallow.fields import Integer, String from numpy import sqrt, log, rad2deg, void from astropy.wcs import WCS from ..schemas import AfterglowSchema, DateTime, Float __all__ = [ 'IAstrometry', 'IFwhm', 'ISourceId', 'ISourceMeta', 'SourceExtractionData', 'sigma_to_fwhm' ] sigma_to_fwhm = 2.0*sqrt(2*log(2)) class ISourceMeta(AfterglowSchema): """ Metadata for the source:: file_id: data file ID time: exposure start time filter: filter name telescope: telescope name exp_length: exposure length in seconds """ file_id: int = Integer() time: datetime = DateTime() filter: str = String() telescope: str = String() exp_length: float = Float() class IAstrometry(AfterglowSchema): ra_hours: float = Float() dec_degs: float = Float() pm_sky: float = Float() pm_pos_angle_sky: float = Float() x: float = Float() y: float = Float() pm_pixel: float = Float() pm_pos_angle_pixel: float = Float() pm_epoch: datetime = DateTime() flux: float = Float() class IFwhm(AfterglowSchema): fwhm_x: float = Float() fwhm_y: float = Float() theta: float = Float() class ISourceId(AfterglowSchema): id: str = String() class SourceExtractionData(ISourceMeta, IAstrometry, IFwhm, ISourceId): """ Description of object returned by source extraction """ def __init__(self, source: Optional[SourceExtractionData] = None, row: Optional[void] = None, x0: int = 0, y0: int = 0, wcs: Optional[WCS] = None, **kwargs): """ Create source extraction data class instance from another source extraction data object or from a NumPy source table row :param source: create from another source extraction data object ("copy constructor") :param row: source table row :param x0: X offset to convert from source table coordinates to global image coordinates; used only with `row` :param y0: Y offset to convert from source table coordinates to global image coordinates; used only with `row` :param wcs: optional WCS structure; if present, compute RA/Dec; used only with `row` :param kwargs: see :class:`ISourceMeta` and :class:`ISourceId` """ super().__init__(source, **kwargs) if row is not None: self.x = row['x'] + x0 self.y = row['y'] + y0 self.fwhm_x = row['a']*sigma_to_fwhm self.fwhm_y = row['b']*sigma_to_fwhm self.theta = rad2deg(row['theta']) self.flux = row['flux'] if wcs is not None: # Apply astrometric calibration self.ra_hours, self.dec_degs = wcs.all_pix2world(self.x, self.y, 1) self.ra_hours /= 15 ``` #### File: resources/job_plugins/alignment_job.py ```python from typing import List as TList from marshmallow.fields import String, Integer, List, Nested from astropy.wcs import WCS from skylib.combine.alignment import apply_transform_stars, apply_transform_wcs from ...models import Job, JobResult, SourceExtractionData from ...schemas import AfterglowSchema, Boolean from ...errors import AfterglowError, ValidationError from ..data_files import ( create_data_file, get_data_file_data, get_data_file_db, get_root, save_data_file) from .cropping_job import run_cropping_job __all__ = ['AlignmentJob'] class AlignmentSettings(AfterglowSchema): ref_image: str = String(default='central') wcs_grid_points: int = Integer(default=0) prefilter: bool = Boolean(default=True) class AlignmentJobResult(JobResult): file_ids: TList[int] = List(Integer(), default=[]) class AlignmentJob(Job): """ Image alignment job """ type = 'alignment' description = 'Align Images' result: AlignmentJobResult = Nested(AlignmentJobResult, default={}) file_ids: TList[int] = List(Integer(), default=[]) settings: AlignmentSettings = Nested(AlignmentSettings, default={}) sources: TList[SourceExtractionData] = List( Nested(SourceExtractionData), default=[]) inplace: bool = Boolean(default=False) crop: bool = Boolean(default=False) def run(self): settings = self.settings # Load data files file_ids = list(self.file_ids) if not file_ids: return adb = get_data_file_db(self.user_id) try: # Get reference image index and the corresponding data file ID try: if settings.ref_image == 'first': ref_image = 0 elif settings.ref_image == 'last': ref_image = len(file_ids) - 1 elif settings.ref_image == 'central': ref_image = len(file_ids)//2 elif settings.ref_image.strip().startswith('#'): # 0-based index in file_ids ref_image = int(settings.ref_image.strip()[1:]) if not 0 <= ref_image < len(file_ids): raise ValidationError( 'settings.ref_image', 'Reference image index out of range', 422) else: # Data file ID ref_image = int(settings.ref_image) try: ref_image = file_ids.index(ref_image) except ValueError: # Not in file_ids; implicitly add file_ids.append(ref_image) ref_image = len(file_ids) - 1 except AfterglowError: raise except Exception: raise ValidationError( 'settings.ref_image', 'Reference image must be "first", "last", "central", or ' 'data file ID, or #file_no', 422) ref_file_id = file_ids[ref_image] if self.sources: # Source-based alignment if any(not hasattr(source, 'file_id') for source in self.sources): raise ValueError( 'Missing data file ID for at least one source') # Extract alignment stars for reference image ref_sources = [ source for source in self.sources if getattr(source, 'file_id', None) == ref_file_id] ref_stars = {getattr(source, 'id', None): (source.x, source.y) for source in ref_sources} if not ref_stars: raise ValueError( 'Missing alignment stars for reference image') if None in ref_stars and len(ref_sources) > 1: # Cannot mix sources with and without ID raise ValueError('Missing reference image source ID') else: # WCS-based alignment ref_stars = {} # Load data and extract WCS for reference image ref_data, ref_hdr = get_data_file_data(self.user_id, ref_file_id) ref_height, ref_width = ref_data.shape # noinspection PyBroadException try: ref_wcs = WCS(ref_hdr) if not ref_wcs.has_celestial: ref_wcs = None except Exception: ref_wcs = None if ref_wcs is None and not ref_stars: raise ValueError('Reference image has no WCS') for i, file_id in enumerate(file_ids): try: if i != ref_image: # Load and transform the current image based on either # star coordinates or WCS data, hdr = get_data_file_data(self.user_id, file_id) if ref_stars: # Extract current image sources that are also # present in the reference image img_sources = [ source for source in self.sources if getattr(source, 'file_id', None) == file_id] img_stars = {getattr(source, 'id', None): (source.x, source.y) for source in img_sources} if None in img_stars and len(img_sources) > 1: raise ValueError('Missing source ID') src_stars, dst_stars = [], [] for src_id, src_star in img_stars.items(): try: dst_star = ref_stars[src_id] except KeyError: pass else: src_stars.append(src_star) dst_stars.append(dst_star) if not src_stars: raise ValueError('Missing alignment star(s)') data = apply_transform_stars( data, src_stars, dst_stars, ref_width, ref_height, prefilter=settings.prefilter) nref = len(src_stars) hist_msg = '{:d} star{}'.format( nref, 's' if nref > 1 else '') else: # Extract current image WCS # noinspection PyBroadException try: wcs = WCS(hdr) if not wcs.has_celestial: wcs = None except Exception: wcs = None if wcs is None: raise ValueError('Missing WCS') data = apply_transform_wcs( data, wcs, ref_wcs, ref_width, ref_height, grid_points=settings.wcs_grid_points, prefilter=settings.prefilter) hist_msg = 'WCS' hdr.add_history( 'Aligned using {} with respect to data file ' '{:d}'.format(hist_msg, ref_file_id)) # Copy WCS from reference image if any if ref_wcs is not None: # Preserve epoch of observation orig_kw = { name: (hdr[name], hdr.comments[name]) if hdr.comments[name] else hdr[name] for name in ('DATE-OBS', 'MJD-OBS') if name in hdr } # Remove the possible alternative WCS # representations to avoid WCS compatibility issues # and make the WCS consistent for name in ( 'CD1_1', 'CD1_2', 'CD2_1', 'CD2_2', 'PC1_1', 'PC1_2', 'PC2_1', 'PC2_2', 'CDELT1', 'CDELT2', 'CROTA1', 'CROTA2'): try: del hdr[name] except KeyError: pass hdr.update(ref_wcs.to_header(relax=True)) for name, val in orig_kw.items(): hdr[name] = val else: data, hdr = ref_data, ref_hdr if not self.inplace: # Don't create a new data file for reference image that # was not listed in file_ids but was instead passed in # settings.ref_image if i != ref_image or ref_file_id in self.file_ids: hdr.add_history( 'Original data file ID: {:d}'.format(file_id)) try: file_id = create_data_file( adb, None, get_root(self.user_id), data, hdr, duplicates='append', session_id=self.session_id).id adb.commit() except Exception: adb.rollback() raise elif i != ref_image: # not replacing reference image try: save_data_file( adb, get_root(self.user_id), file_id, data, hdr) adb.commit() except Exception: adb.rollback() raise if i != ref_image or ref_file_id in self.file_ids: self.result.file_ids.append(file_id) except Exception as e: self.add_error( 'Data file ID {}: {}'.format(file_ids[i], e)) finally: self.update_progress((i + 1)/len(file_ids)*100) finally: adb.remove() # Optionally crop aligned files in place if self.crop: run_cropping_job(self, None, self.result.file_ids, inplace=True) ``` #### File: resources/job_plugins/field_cal_job.py ```python from datetime import datetime from typing import List as TList from marshmallow.fields import Integer, List, Nested import numpy from astropy.wcs import WCS from ...models import ( Job, JobResult, FieldCal, FieldCalResult, Mag, PhotSettings) from ..data_files import get_data_file_fits, get_image_time from ..field_cals import get_field_cal from ..catalogs import catalogs as known_catalogs from .catalog_query_job import run_catalog_query_job from .source_extraction_job import ( SourceExtractionSettings, run_source_extraction_job) from .photometry_job import get_source_xy, run_photometry_job __all__ = ['FieldCalJob'] class FieldCalJobResult(JobResult): data: TList[FieldCalResult] = List(Nested(FieldCalResult), default=[]) class FieldCalJob(Job): type = 'field_cal' description = 'Photometric Calibration' result: FieldCalJobResult = Nested(FieldCalJobResult, default={}) file_ids: TList[int] = List(Integer(), default=[]) field_cal: FieldCal = Nested(FieldCal, default={}) source_extraction_settings: SourceExtractionSettings = Nested( SourceExtractionSettings, default=None) photometry_settings: PhotSettings = Nested(PhotSettings, default=None) def run(self): if not getattr(self, 'file_ids', None): return # If ID or name is supplied for the field cal, this is a reference # to a stored field cal; get it from the user's field cal table and # optionally override fields that were explicitly set by the user field_cal = self.field_cal id_or_name = getattr(field_cal, 'id', None) if id_or_name is None: id_or_name = getattr(field_cal, 'name', None) if id_or_name is not None: stored_field_cal = get_field_cal(self.user_id, id_or_name) for name, val in field_cal.to_dict().items(): if name not in ('id', 'name'): setattr(stored_field_cal, name, val) field_cal = stored_field_cal catalog_sources = getattr(field_cal, 'catalog_sources', None) if not catalog_sources and not getattr(field_cal, 'catalogs', None): raise ValueError( 'Missing either catalog sources or catalog list in field ' 'cal{}'.format( ' "{}"'.format(field_cal.name) if getattr(field_cal, 'name', None) else '')) if catalog_sources: # Convert catalog magnitudes to Mag instances (not deserialized # automatically) for source in catalog_sources: for name, val in getattr(source, 'mags', {}).items(): if isinstance(val, dict): source.mags[name] = Mag(**val) else: # No input catalog sources, query the specified catalogs catalog_sources = run_catalog_query_job( self, field_cal.catalogs, file_ids=self.file_ids) # Make sure that each input catalog source has a unique ID; it will # be used later to match photometry results to catalog sources prefix = '{}_{}_'.format( datetime.utcnow().strftime('%Y%m%d%H%M%S'), self.id) source_ids = set() for i, source in enumerate(catalog_sources): id = getattr(source, 'id', None) if id is None: # Auto-assign source ID source.id = id = prefix + str(i + 1) if getattr(source, 'file_id', None) is not None: id = (id, source.file_id) if id in source_ids: if isinstance(id, tuple): raise ValueError( 'Non-unique source ID "{0[0]}" for file ID ' '{0[1]}'.format(id)) else: raise ValueError('Non-unique source ID "{}"'.format(id)) source_ids.add(id) if getattr(self, 'source_extraction_settings', None) is not None: # Detect sources using settings provided and match them to input # catalog sources by XY position in each image tol = getattr(field_cal, 'source_match_tol', None) if tol is None: raise ValueError('Missing catalog source match tolerance') if tol <= 0: raise ValueError( 'Positive catalog source match tolerance expected') epochs, wcss = {}, {} matching_catalog_sources = [] detected_sources = run_source_extraction_job( self, self.source_extraction_settings, self.file_ids, update_progress=False) if not detected_sources: raise RuntimeError('Could not detect any sources') for source in detected_sources: file_id = source.file_id catalog_source, match_found = None, False for catalog_source in catalog_sources: if getattr(catalog_source, 'file_id', None) is None or \ catalog_source.file_id == file_id: try: epoch = epochs[file_id] except KeyError: # noinspection PyBroadException try: with get_data_file_fits( self.user_id, file_id) as f: epoch = get_image_time(f[0].header) except Exception: epoch = None epochs[file_id] = epoch try: wcs = wcss[file_id] except KeyError: # noinspection PyBroadException try: with get_data_file_fits( self.user_id, file_id) as f: wcs = WCS(f[0].header) if not wcs.has_celestial: wcs = None except Exception: wcs = None wcss[file_id] = wcs x, y = get_source_xy(catalog_source, epoch, wcs) if numpy.hypot(x - source.x, y - source.y) < tol: if any(source1.id == catalog_source.id and (getattr(source1, 'file_id', None) is None or source1.file_id == file_id) for source1 in matching_catalog_sources): self.add_warning( 'Data file ID {}: Multiple matches for ' 'catalog source "{}" within {} ' 'pixel{}'.format( file_id, catalog_source.id, tol, '' if tol == 1 else 's')) break match_found = True break if match_found: # Copy catalog source data to extracted source and set # the latter as a new catalog source for attr in ('id', 'catalog_name', 'mags', 'label', 'mag', 'mag_error'): val = getattr(catalog_source, attr, None) if val is not None: setattr(source, attr, val) matching_catalog_sources.append(source) if not matching_catalog_sources: raise RuntimeError( 'Could not match any detected sources to the catalog ' 'sources provided') catalog_sources = matching_catalog_sources if getattr(self, 'photometry_settings', None) is not None: # Do batch photometry using refstar positions; explicitly disable # photometric calibration even if present in data file headers # by setting field_cal_results to False since we need raw # (uncalibrated) mags here phot_data = [source for source in run_photometry_job( self, self.photometry_settings, self.file_ids, catalog_sources) if source.mag] if not phot_data: raise RuntimeError('No catalog sources could be photometered') else: # If photometry is disabled, use instrumental magnitudes provided # by the user phot_data = catalog_sources if len(self.file_ids) > 1: if any(getattr(source, 'file_id', None) is None for source in phot_data): raise ValueError( '"file_id" is required for all sources when photometry ' 'is not enabled') else: # Assume the same file ID for all sources if processing a single # file file_id = self.file_ids[0] for source in phot_data: if getattr(source, 'file_id', None) is None: source.file_id = file_id if any(getattr(source, 'mag', None) is None for source in phot_data): raise ValueError( '"mag" is required for all sources when photometry is not ' 'enabled') # Get filters from data file headers (will need them to map # to catalog mags filters = {} for source in phot_data: file_id = source.file_id try: source.filter = filters[file_id] except KeyError: # noinspection PyBroadException try: with get_data_file_fits(self.user_id, file_id) as f: source.filter = f[0].header.get('FILTER') except Exception: source.filter = None filters[file_id] = source.filter min_snr = getattr(field_cal, 'min_snr', None) max_snr = getattr(field_cal, 'max_snr', None) if min_snr or max_snr: # Exclude sources based on SNR if not min_snr: min_snr = 0 if not max_snr: max_snr = numpy.inf new_phot_data = [] for source in phot_data: mag_error = getattr(source, 'mag_error', 0) if mag_error and not min_snr <= 1/mag_error <= max_snr: continue new_phot_data.append(source) phot_data = new_phot_data if not phot_data: raise RuntimeError('All sources violate SNR constraints') if getattr(field_cal, 'source_inclusion_percent', None): # Keep only sources that are present in the given fraction of images nmin = max(int(field_cal.source_inclusion_percent/100 * len(self.file_ids) + 0.5), 1) source_ids_to_keep, source_ids_to_remove = [], [] for source in phot_data: id = source.id if id in source_ids_to_keep or id in source_ids_to_remove: continue if len([s for s in phot_data if s.id == id]) < nmin: source_ids_to_remove.append(id) else: source_ids_to_keep.append(id) if source_ids_to_remove: if source_ids_to_keep: phot_data = [source for source in phot_data if source.id in source_ids_to_keep] else: raise ValueError( 'No sources found that are present in ' + 'all images' if nmin == len(self.file_ids) else 'at least one image' if nmin == 1 else 'at least {:d} images'.format(nmin)) # Initialize custom filter mapping filter_lookup = { catalog_name: known_catalogs[catalog_name].filter_lookup for catalog_name in {catalog_source.catalog_name for catalog_source in catalog_sources if getattr(catalog_source, 'catalog_name', '')} if catalog_name in known_catalogs and getattr(known_catalogs[catalog_name], 'filter_lookup', None) } for catalog_name, lookup in getattr( field_cal, 'custom_filter_lookup', {}).items(): filter_lookup.setdefault(catalog_name, {}).update(lookup) # For each data file ID, match photometry results to catalog sources # and use (mag, ref_mag) pairs to obtain zero point result_data = [] context = dict(numpy.__dict__) eps = 1e-7 for file_id in self.file_ids: sources = [] for source in phot_data: if source.file_id == file_id: for catalog_source in catalog_sources: if catalog_source.id == source.id: # Get reference magnitude for the current filter flt = getattr(source, 'filter', None) # noinspection PyBroadException try: source.catalog_name = \ catalog_source.catalog_name expr = filter_lookup[source.catalog_name][flt] # Evaluate magnitude expression in the # NumPy-enabled context extended with mags # available for the current catalog source ctx = dict(context) ctx.update( {f: m.value for f, m in catalog_source.mags.items()}) try: mag = Mag(value=eval(expr, ctx, {})) except Exception: # Could not compute reference magnitude # (e.g. missing the given filter); retry # by getting magnitude directly by filter # name raise Exception() else: # Calculate the resulting magnitude error # by coadding contributions from each filter err = 0 for f, m in catalog_source.mags.items(): e = getattr(m, 'error', None) if e: # Partial derivative of final mag # with resp. to the current filter ctx[f] += eps # noinspection PyBroadException try: err += (( eval(expr, ctx, {}) - mag.value)/eps*e)**2 except Exception: pass finally: ctx[f] = m.value if err: mag.error = numpy.sqrt(err) except Exception: # No custom filter expression for the current # filter+catalog combination; try filter name # as is try: mag = catalog_source.mags[flt] except (AttributeError, KeyError): # No magnitude available for the current # filter+catalog; skip this source continue m = getattr(mag, 'value', None) if m is None: # Missing catalog magnitude value continue source.ref_mag = m e = getattr(mag, 'error', None) if e: source.ref_mag_error = e sources.append(source) break if not sources: self.add_error('Data file ID {}: No calibration sources'.format( file_id)) continue mags, mag_errors, ref_mags, ref_mag_errors = numpy.transpose([ (source.mag, getattr(source, 'mag_error', None) or 0, source.ref_mag, getattr(source, 'ref_mag_error', None) or 0) for source in sources ]) n = len(sources) d = ref_mags - mags m0 = d.mean() m0_error = numpy.sqrt((mag_errors**2 + ref_mag_errors**2).sum())/n if abs(m0_error) < 1e-7: if n > 1: m0_error = d.std()/numpy.sqrt(n) else: m0_error = None result_data.append(FieldCalResult( file_id=file_id, phot_results=sources, zero_point=m0, zero_point_error=m0_error, )) # Update photometric calibration info in data file header try: with get_data_file_fits(self.user_id, file_id, 'update') as f: hdr = f[0].header hdr['PHOT_M0'] = m0, 'Photometric zero point' if m0_error: hdr['PHOT_M0E'] = ( m0_error, 'Photometric zero point error') if getattr(field_cal, 'name', None): hdr['PHOT_CAL'] = field_cal.name, 'Field cal name' elif getattr(field_cal, 'id', None): hdr['PHOT_CAL'] = field_cal.id, 'Field cal ID' except Exception as e: self.add_warning( 'Data file ID {}: Error saving photometric calibration ' 'info to FITS header'.format(file_id, e)) self.result.data = result_data ``` #### File: resources/job_plugins/stacking_job.py ```python from typing import List as TList from marshmallow.fields import Integer, List, Nested, String from skylib.combine.stacking import combine from ... import app from ...models import Job, JobResult from ...schemas import AfterglowSchema, Float from ..data_files import ( create_data_file, get_data_file_data, get_data_file_db, get_root) __all__ = ['StackingJob'] class StackingSettings(AfterglowSchema): mode: str = String(default='average') scaling: str = String(default=None) rejection: str = String(default=None) percentile: int = Integer(default=50) lo: float = Float(default=0) hi: float = Float(default=100) class StackingJobResult(JobResult): file_id: int = Integer() class StackingJob(Job): type = 'stacking' description = 'Stack Images' result: StackingJobResult = Nested(StackingJobResult, default={}) file_ids: TList[int] = List(Integer(), default=[]) # alignment_settings: AlignmentSettings = Nested( # AlignmentSettings, default={}) stacking_settings: StackingSettings = Nested(StackingSettings, default={}) def run(self): settings = self.stacking_settings if settings.mode not in ('average', 'sum', 'percentile', 'mode'): raise ValueError( 'Stacking mode must be "average", "sum", "percentile", or ' '"mode"') if settings.scaling is not None and \ settings.scaling.lower() not in ('none', 'average', 'median', 'mode'): raise ValueError( 'Stacking mode must be "none", "average", "median", or "mode"') if settings.scaling is not None: settings.scaling = settings.scaling.lower() if settings.scaling == 'none': settings.scaling = None if settings.rejection is not None and \ settings.rejection.lower() not in ('none', 'chauvenet', 'iraf', 'minmax', 'sigclip'): raise ValueError( 'Rejection mode must be "none", "chauvenet", "iraf", "minmax", ' 'or "sigclip"') if settings.rejection is not None: settings.rejection = settings.rejection.lower() if settings.rejection == 'none': settings.rejection = None lo, hi = settings.lo, settings.hi if settings.rejection == 'iraf': if lo is not None: if lo % 1: raise ValueError( 'Number of lowest values to clip for rejection=iraf ' 'must be integer') lo = int(lo) if hi is not None: if hi % 1: raise ValueError( 'Number of highest values to clip for rejection=iraf ' 'must be integer') hi = int(hi) # Load data files if not self.file_ids: return data_files = [get_data_file_data(self.user_id, file_id) for file_id in self.file_ids] # Check data dimensions shape = data_files[0][0].shape for i, data_file in enumerate(list(data_files[1:])): if data_file[0].shape != shape: self.add_error( 'Data file {0} shape mismatch: expected {1[1]}x{1[0]}, got ' '{2[1]}x{2[0]}'.format( self.file_ids[i + 1], shape, data_file[0].shape)) data_files.remove(data_file) # Combine using the given settings data, header = combine( data_files, mode=settings.mode, scaling=settings.scaling, rejection=settings.rejection, percentile=settings.percentile, lo=lo, hi=hi, max_mem_mb=app.config.get('JOB_MAX_RAM'), callback=self.update_progress)[0] # Create a new data file in the given session and return its ID adb = get_data_file_db(self.user_id) try: self.result.file_id = create_data_file( adb, None, get_root(self.user_id), data, header, duplicates='append', session_id=self.session_id).id adb.commit() except Exception: adb.rollback() raise finally: adb.remove() ``` #### File: public_api/v1/field_cals.py ```python from flask import Response, request from .... import app, auth, json_response from ....models import FieldCal from ....resources.field_cals import * from ....schemas.api.v1 import FieldCalSchema from . import url_prefix resource_prefix = url_prefix + 'field-cals/' @app.route(resource_prefix[:-1], methods=['GET', 'POST']) @auth.auth_required('user') def field_cals() -> Response: """ Return or create field cal(s) GET /field-cals - return a list of all user's field cals POST /field-cals?name=... - create field cal with the given name and parameters :return: GET: JSON response containing a list of serialized field cals POST: JSON-serialized field cal """ if request.method == 'GET': # List all field cals return json_response( [FieldCalSchema(cal) for cal in query_field_cals(auth.current_user.id)]) if request.method == 'POST': # Create field cal return json_response(FieldCalSchema(create_field_cal( auth.current_user.id, FieldCal( FieldCalSchema(_set_defaults=True, **request.args.to_dict()), _set_defaults=True))), 201) @app.route(resource_prefix + '<id_or_name>', methods=['GET', 'PUT', 'DELETE']) @auth.auth_required('user') def field_cal(id_or_name: str) -> Response: """ Return, update, or delete a field cal GET /field-cals/[id or name] - return a single field cal with the given ID or name PUT /field-cals/[id or name]?... - update field cal parameters DELETE /field-cals/[id or name] - delete the given field cal :param id_or_name: field cal ID (integer) or name :return: GET, PUT: JSON-serialized field cal DELETE: empty response """ cal = get_field_cal(auth.current_user.id, id_or_name) if request.method == 'GET': # Return specific field cal resource return json_response(FieldCalSchema(cal)) if request.method == 'PUT': # Update field cal return json_response(FieldCalSchema(update_field_cal( auth.current_user.id, cal.id, FieldCal(FieldCalSchema(**request.args.to_dict()), only=list(request.args.keys()))))) if request.method == 'DELETE': # Delete field cal delete_field_cal(auth.current_user.id, cal.id) return json_response() ```
{ "source": "john-tornblom/mltree_check", "score": 2 }
#### File: john-tornblom/mltree_check/mltree_check.py ```python import z3 class Walker(object): symtab = None feature_names = None def __init__(self, feature_names=None): self.symtab = dict() self.feature_names = feature_names if feature_names is not None: for name in feature_names: self.symtab[name] = z3.Real(name) def accept(self, tree, parent_id, node_id): left_id = tree.children_left[node_id] right_id = tree.children_right[node_id] if left_id < 0 or right_id < 0: return self.terminal(tree, node_id) sym = self.symbol(tree, node_id) cond = sym <= tree.threshold[node_id] iftrue = self.accept(tree, node_id, left_id) iffalse = self.accept(tree, node_id, right_id) return [z3.If(cond, t, f) for t, f in zip(iftrue, iffalse)] def terminal(self, tree, node_id): if tree.n_outputs != 1: raise Exception('Unsupported value type in terminal') return tree.value[node_id][0, :] def symbol(self, tree, node_id): idx = tree.feature[node_id] if idx < 0: idx += tree.n_features if self.feature_names is None: name = 'x%d' % (idx + 1) else: name = self.feature_names[idx] if not name in self.symtab: self.symtab[name] = z3.Real(name) return self.symtab[name] def translate(tree, feature_names=None, target_names=None): w = Walker(feature_names) symbols = dict() res = w.accept(tree.tree_, 0, 0) for idx, y in enumerate(res): if target_names is None: name = 'y%d' % (idx+1) else: name = target_names[idx] symbols[name] = y symbols.update(w.symtab) return symbols def check(*args): s = z3.Solver() s.add(*args) res = s.check() if res.r > 0: return s.model() ```
{ "source": "johntremblay/sb", "score": 2 }
#### File: speechbrain/nnet/attention.py ```python import torch from torch.nn.parameter import Parameter from torch.nn import Linear import logging import torch.nn as nn import warnings from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.functional import linear, softmax, dropout from torch.nn.functional import pad import numpy as np import math import torch.nn.functional as F from typing import Optional from speechbrain.dataio.dataio import length_to_mask from speechbrain.nnet.attention_utilities.longformer_diagonaled_mm_tvm import ( mask_invalid_locations, ) from speechbrain.nnet.attention_utilities.longformer_sliding_chunks import ( sliding_chunks_matmul_qk, sliding_chunks_matmul_pv, ) from speechbrain.nnet.attention_utilities.longformer_sliding_chunks import ( sliding_chunks_no_overlap_matmul_qk, sliding_chunks_no_overlap_matmul_pv, ) from speechbrain.nnet.attention_utilities.linformer_utilities import get_EF logger = logging.getLogger(__name__) class ContentBasedAttention(nn.Module): """ This class implements content-based attention module for seq2seq learning. Reference: NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, Bahdanau et.al. https://arxiv.org/pdf/1409.0473.pdf Arguments --------- attn_dim : int Size of the attention feature. output_dim : int Size of the output context vector. scaling : float The factor controls the sharpening degree (default: 1.0). Example ------- >>> enc_tensor = torch.rand([4, 10, 20]) >>> enc_len = torch.ones([4]) * 10 >>> dec_tensor = torch.rand([4, 25]) >>> net = ContentBasedAttention(enc_dim=20, dec_dim=25, attn_dim=30, output_dim=5) >>> out_tensor, out_weight = net(enc_tensor, enc_len, dec_tensor) >>> out_tensor.shape torch.Size([4, 5]) """ def __init__(self, enc_dim, dec_dim, attn_dim, output_dim, scaling=1.0): super(ContentBasedAttention, self).__init__() self.mlp_enc = nn.Linear(enc_dim, attn_dim) self.mlp_dec = nn.Linear(dec_dim, attn_dim) self.mlp_attn = nn.Linear(attn_dim, 1, bias=False) self.mlp_out = nn.Linear(enc_dim, output_dim) self.scaling = scaling self.softmax = nn.Softmax(dim=-1) # reset the encoder states, lengths and masks self.reset() def reset(self): """Reset the memory in the attention module. """ self.enc_len = None self.precomputed_enc_h = None self.mask = None def forward(self, enc_states, enc_len, dec_states): """Returns the output of the attention module. Arguments --------- enc_states : torch.Tensor The tensor to be attended. enc_len : torch.Tensor The real length (without padding) of enc_states for each sentence. dec_states : torch.Tensor The query tensor. """ if self.precomputed_enc_h is None: self.precomputed_enc_h = self.mlp_enc(enc_states) self.mask = length_to_mask( enc_len, max_len=enc_states.size(1), device=enc_states.device ) dec_h = self.mlp_dec(dec_states.unsqueeze(1)) attn = self.mlp_attn( torch.tanh(self.precomputed_enc_h + dec_h) ).squeeze(-1) # mask the padded frames attn = attn.masked_fill(self.mask == 0, -np.inf) attn = self.softmax(attn * self.scaling) # compute context vectors # [B, 1, L] X [B, L, F] context = torch.bmm(attn.unsqueeze(1), enc_states).squeeze(1) context = self.mlp_out(context) return context, attn class LocationAwareAttention(nn.Module): """This class implements location-aware attention module for seq2seq learning. Reference: Attention-Based Models for Speech Recognition, Chorowski et.al. https://arxiv.org/pdf/1506.07503.pdf Arguments --------- attn_dim : int Size of the attention feature. output_dim : int Size of the output context vector. conv_channels : int Number of channel for location feature. kernel_size : int Kernel size of convolutional layer for location feature. scaling : float The factor controls the sharpening degree (default: 1.0). Example ------- >>> enc_tensor = torch.rand([4, 10, 20]) >>> enc_len = torch.ones([4]) * 10 >>> dec_tensor = torch.rand([4, 25]) >>> net = LocationAwareAttention( ... enc_dim=20, ... dec_dim=25, ... attn_dim=30, ... output_dim=5, ... conv_channels=10, ... kernel_size=100) >>> out_tensor, out_weight = net(enc_tensor, enc_len, dec_tensor) >>> out_tensor.shape torch.Size([4, 5]) """ precomputed_enc_h: Optional[torch.Tensor] def __init__( self, enc_dim, dec_dim, attn_dim, output_dim, conv_channels, kernel_size, scaling=1.0, ): super(LocationAwareAttention, self).__init__() self.mlp_enc = nn.Linear(enc_dim, attn_dim) self.mlp_dec = nn.Linear(dec_dim, attn_dim) self.mlp_attn = nn.Linear(attn_dim, 1, bias=False) self.conv_loc = nn.Conv1d( 1, conv_channels, kernel_size=2 * kernel_size + 1, padding=kernel_size, bias=False, ) self.mlp_loc = nn.Linear(conv_channels, attn_dim) self.mlp_attn = nn.Linear(attn_dim, 1, bias=False) self.mlp_out = nn.Linear(enc_dim, output_dim) self.scaling = scaling self.softmax = nn.Softmax(dim=-1) # reset the encoder states, lengths and masks self.reset() def reset(self): """Reset the memory in attention module. """ self.enc_len = None self.precomputed_enc_h = None self.mask = None self.prev_attn = None def forward(self, enc_states, enc_len, dec_states): """Returns the output of the attention module. Arguments --------- enc_states : torch.Tensor The tensor to be attended. enc_len : torch.Tensor The real length (without padding) of enc_states for each sentence. dec_states : torch.Tensor The query tensor. """ if self.precomputed_enc_h is None: self.precomputed_enc_h = self.mlp_enc(enc_states) self.mask = length_to_mask( enc_len, max_len=enc_states.size(1), device=enc_states.device ) # multiply mask by 1/Ln for each row self.prev_attn = self.mask * (1 / enc_len.float()).unsqueeze(1) # compute location-aware features # [B, 1, L] -> [B, C, L] attn_conv = self.conv_loc(self.prev_attn.unsqueeze(1)) # [B, C, L] -> [B, L, C] -> [B, L, F] attn_conv = self.mlp_loc(attn_conv.transpose(1, 2)) dec_h = self.mlp_dec(dec_states.unsqueeze(1)) attn = self.mlp_attn( torch.tanh(self.precomputed_enc_h + dec_h + attn_conv) ).squeeze(-1) # mask the padded frames attn = attn.masked_fill(self.mask == 0, -np.inf) attn = self.softmax(attn * self.scaling) # set prev_attn to current attn for the next timestep self.prev_attn = attn.detach() # compute context vectors # [B, 1, L] X [B, L, F] context = torch.bmm(attn.unsqueeze(1), enc_states).squeeze(1) context = self.mlp_out(context) return context, attn class KeyValueAttention(nn.Module): """ This class implements a single-headed key-value attention module for seq2seq learning. Reference: "Attention Is All You Need" by Vaswani et al., sec. 3.2.1 Arguments --------- enc_dim : int Size of the encoder feature vectors from which keys and values are computed. dec_dim : int Size of the decoder feature vectors from which queries are computed. attn_dim : int Size of the attention feature. output_dim : int Size of the output context vector. Example ------- >>> enc_tensor = torch.rand([4, 10, 20]) >>> enc_len = torch.ones([4]) * 10 >>> dec_tensor = torch.rand([4, 25]) >>> net = KeyValueAttention(enc_dim=20, dec_dim=25, attn_dim=30, output_dim=5) >>> out_tensor, out_weight = net(enc_tensor, enc_len, dec_tensor) >>> out_tensor.shape torch.Size([4, 5]) """ def __init__(self, enc_dim, dec_dim, attn_dim, output_dim): super(KeyValueAttention, self).__init__() self.key_linear = nn.Linear(enc_dim, attn_dim) self.query_linear = nn.Linear(dec_dim, attn_dim) self.value_linear = nn.Linear(enc_dim, output_dim) self.scaling = torch.sqrt(torch.tensor(attn_dim).float()) # reset the encoder states, lengths and masks self.reset() def reset(self): """Reset the memory in the attention module. """ self.values = None self.keys = None self.mask = None def forward(self, enc_states, enc_len, dec_states): """Returns the output of the attention module. Arguments --------- enc_states : torch.Tensor The tensor to be attended. enc_len : torch.Tensor The real length (without padding) of enc_states for each sentence. dec_states : torch.Tensor The query tensor. """ if self.keys is None: self.keys = self.key_linear(enc_states) self.values = self.value_linear(enc_states) self.mask = length_to_mask( enc_len, max_len=enc_states.size(1), device=enc_states.device ).unsqueeze(2) query = self.query_linear(dec_states).unsqueeze(2) scores = torch.matmul(self.keys, query) / self.scaling scores = scores.masked_fill(self.mask == 0, -np.inf) normalized_scores = scores.softmax(1).transpose(1, 2) out = torch.matmul(normalized_scores, self.values).squeeze(1) return out, normalized_scores class MultiheadAttention(nn.Module): """ The class is a wrapper of MultiHead Attention for torch.nn.MultiHeadAttention. Reference: https://pytorch.org/docs/stable/nn.html Arguments ---------- num_heads : int parallel attention heads. dropout : float a Dropout layer on attn_output_weights (default: 0.0). bias : bool add bias as module parameter (default: True). add_bias_kv : bool add bias to the key and value sequences at dim=0. add_zero_attn : bool add a new batch of zeros to the key and value sequences at dim=1. kdim : int total number of features in key (default: None). vdim : int total number of features in value (default: None). Example ------- >>> inputs = torch.rand([8, 60, 512]) >>> net = MultiheadAttention(nhead=8, d_model=inputs.shape[-1]) >>> outputs, attn = net(inputs, inputs, inputs) >>> outputs.shape torch.Size([8, 60, 512]) """ def __init__( self, nhead, d_model, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, ): super().__init__() self.att = nn.MultiheadAttention( embed_dim=d_model, num_heads=nhead, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, kdim=kdim, vdim=vdim, ) def forward( self, query, key, value, attn_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, ): """ Arguments ---------- query : tensor (N, L, E) where L is the target sequence length, N is the batch size, E is the embedding dimension. key : tensor (N, S, E) where S is the source sequence length, N is the batch size, E is the embedding dimension. value : tensor (N, S, E) where S is the source sequence length, N is the batch size, E is the embedding dimension. key_padding_mask : tensor (N, S) where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of True will be ignored while the position with the value of False will be unchanged. attn_mask : tensor 2D mask (L, S) where L is the target sequence length, S is the source sequence length. 3D mask (N*num_heads, L, S) where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with True is not allowed to attend while False values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Outputs ------- attn_output : tensor (L, N, E) where L is the target sequence length, N is the batch size, E is the embedding dimension. attn_output_weights : tensor (N, L, S) where N is the batch size, L is the target sequence length, S is the source sequence length. """ # give tensors of shape (time, batch, fea) query = query.permute(1, 0, 2) key = key.permute(1, 0, 2) value = value.permute(1, 0, 2) output, attention = self.att( query, key, value, attn_mask=attn_mask, key_padding_mask=key_padding_mask, ) # reshape the output back to (batch, time, fea) output = output.permute(1, 0, 2) return output, attention class PositionalwiseFeedForward(nn.Module): """The class implements the positional-wise feed forward module in “Attention Is All You Need”. Arguments ---------- d_ffn: int Dimension of representation space of this positional-wise feed forward module. input_shape : tuple Expected shape of the input. Alternatively use ``input_size``. input_size : int Expected size of the input. Alternatively use ``input_shape``. dropout: float Fraction of outputs to drop. activation: torch class activation functions to be applied (Recommendation: ReLU, GELU). Example ------- >>> inputs = torch.rand([8, 60, 512]) >>> net = PositionalwiseFeedForward(256, input_size=inputs.shape[-1]) >>> outputs = net(inputs) >>> outputs.shape torch.Size([8, 60, 512]) """ def __init__( self, d_ffn, input_shape=None, input_size=None, dropout=0.1, activation=nn.ReLU, ): super().__init__() if input_shape is None and input_size is None: raise ValueError("Expected one of input_shape or input_size") if input_size is None: input_size = input_shape[-1] self.ffn = nn.Sequential( nn.Linear(input_size, d_ffn), activation(), nn.Dropout(dropout), nn.Linear(d_ffn, input_size), ) def forward(self, x): # give a tensor of shap (time, batch, fea) x = x.permute(1, 0, 2) x = self.ffn(x) # reshape the output back to (batch, time, fea) x = x.permute(1, 0, 2) return x class LongformerSelfAttention(nn.Module): """ This class comes from: https://github.com/allenai/longformer Longformer is an open-source project developed by the Allen Institute for Artificial Intelligence (AI2). AI2 is a non-profit institute with the mission to contribute to humanity through high-impact AI research and engineering. The Longformer paper: @article{ Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={<NAME> and <NAME> and <NAME>}, journal={arXiv:2004.05150}, year={2020} } Parts of the code found herein were modified by: <NAME> (<EMAIL>) in order to fit SpeechBrain's interface. """ def __init__( self, layer_id, num_attention_heads, hidden_size, attention_probs_dropout_prob, attention_window, attention_mode, attention_dilation, ): super(LongformerSelfAttention, self).__init__() if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, num_attention_heads) ) self.num_heads = num_attention_heads self.head_dim = int(hidden_size / num_attention_heads) self.embed_dim = hidden_size self.attention_dilation = attention_dilation # Not implemented yet self.query = nn.Linear(hidden_size, self.embed_dim) self.key = nn.Linear(hidden_size, self.embed_dim) self.value = nn.Linear(hidden_size, self.embed_dim) self.query_global = nn.Linear(hidden_size, self.embed_dim) self.key_global = nn.Linear(hidden_size, self.embed_dim) self.value_global = nn.Linear(hidden_size, self.embed_dim) self.dropout = attention_probs_dropout_prob self.layer_id = layer_id self.attention_window = attention_window[self.layer_id] self.attention_dilation = self.attention_dilation[self.layer_id] self.attention_mode = attention_mode assert self.attention_window > 0 assert self.attention_dilation > 0 assert self.attention_mode in [ "sliding_chunks", "sliding_chunks_no_overlap", ] if self.attention_mode in [ "sliding_chunks", "sliding_chunks_no_overlap", ]: assert ( self.attention_dilation == 1 ), "dilatation is not implemented yet" def forward( self, hidden_states, output_attentions=False, ): hidden_states = hidden_states.transpose(0, 1) seq_len, bsz, embed_dim = hidden_states.size() assert embed_dim == self.embed_dim q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) q /= math.sqrt(self.head_dim) q = q.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) k = k.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) if self.attention_mode == "sliding_chunks": attn_weights = sliding_chunks_matmul_qk( q, k, self.attention_window, padding_value=0 ) elif self.attention_mode == "sliding_chunks_no_overlap": attn_weights = sliding_chunks_no_overlap_matmul_qk( q, k, self.attention_window, padding_value=0 ) else: raise False mask_invalid_locations( attn_weights, self.attention_window, self.attention_dilation, False ) assert list(attn_weights.size())[:3] == [bsz, seq_len, self.num_heads] assert attn_weights.size(dim=3) in [ self.attention_window * 2 + 1, self.attention_window * 3, ] attn_weights_float = F.softmax( attn_weights, dim=-1, dtype=torch.float32 ) # use fp32 for numerical stability attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout( attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training, ) v = v.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) attn = 0 if self.attention_mode == "sliding_chunks": attn += sliding_chunks_matmul_pv( attn_probs, v, self.attention_window ) elif self.attention_mode == "sliding_chunks_no_overlap": attn += sliding_chunks_no_overlap_matmul_pv( attn_probs, v, self.attention_window ) else: raise False attn = attn.type_as(hidden_states) assert list(attn.size()) == [ bsz, seq_len, self.num_heads, self.head_dim, ] attn = ( attn.transpose(0, 1).reshape(seq_len, bsz, embed_dim).contiguous() ) context_layer = attn.transpose(0, 1) if output_attentions: # without global attention, return local attention probabilities # batch_size x num_heads x sequence_length x window_size # which is the attention weights of every token attending to its neighbours attn_weights = attn_weights.permute(0, 2, 1, 3) outputs = ( (context_layer, (attn_weights.sum(dim=1) / self.num_heads)) if output_attentions else (context_layer,) ) return outputs class LinearMultiheadAttention(nn.Module): """ This class comes from (it was adjusted to fit SpeechBrain's design): https://github.com/kuixu/Linear-Multihead-Attention """ __annotations__ = { "bias_k": torch._jit_internal.Optional[torch.Tensor], "bias_v": torch._jit_internal.Optional[torch.Tensor], } __constants__ = [ "q_proj_weight", "k_proj_weight", "v_proj_weight", "in_proj_weight", "e_proj_weight", "f_proj_weight", ] def __init__( self, embed_dim, num_heads, dropout=0.1, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, seq_len=512, proj_k=128, param_sharing="none", method="convolution", layerwise_proj=None, ): super(LinearMultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = ( self.kdim == embed_dim and self.vdim == embed_dim ) self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter("in_proj_weight", None) else: self.in_proj_weight = Parameter( torch.empty(3 * embed_dim, embed_dim) ) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) self.method = method if param_sharing != "layerwise": self.e_proj = get_EF( seq_len, proj_k, method=self.method, head_dim=self.embed_dim, bias=True, ) if param_sharing == "key_value": self.f_proj = self.e_proj elif param_sharing == "layerwise": self.layerwise_proj = layerwise_proj self.f_proj = self.e_proj = self.layerwise_proj else: self.f_proj = get_EF( seq_len, proj_k, method=self.method, head_dim=self.embed_dim, bias=True, ) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter("in_proj_bias", None) self.out_proj = Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.method == "learnable": xavier_uniform_(self.e_proj.weight) xavier_uniform_(self.f_proj.weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) # if self.method == "learnable": # if self.e_proj.bias is not None: # xavier_normal_(self.e_proj.bias) # if self.f_proj.bias is not None: # xavier_normal_(self.f_proj.bias) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if "_qkv_same_embed_dim" not in state: state["_qkv_same_embed_dim"] = True super(LinearMultiheadAttention, self).__setstate__(state) def forward( self, query, key, value, attn_mask: Optional[torch.Tensor] = None, key_padding_mask: Optional[torch.Tensor] = None, need_weights: Optional[bool] = True, ): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. This is an additive mask (i.e. the values will be added to the attention layer). A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not self._qkv_same_embed_dim: # print(self.e_proj_weight.size()) return linear_multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, e_proj=self.e_proj, f_proj=self.f_proj, method=self.method, ) else: # print(self.e_proj_weight.size()) return linear_multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, e_proj=self.e_proj, f_proj=self.f_proj, method=self.method, ) def linear_multi_head_attention_forward( query, # type: Tensor key, # type: Tensor value, # type: Tensor embed_dim_to_check, # type: int num_heads, # type: int in_proj_weight, # type: Tensor in_proj_bias, # type: Tensor bias_k, # type: Optional[Tensor] bias_v, # type: Optional[Tensor] # bias_e, # type: Optional[Tensor] # bias_f, # type: Optional[Tensor] add_zero_attn, # type: bool dropout_p, # type: float out_proj_weight, # type: Tensor out_proj_bias, # type: Tensor training=True, # type: bool key_padding_mask=None, # type: Optional[Tensor] need_weights=True, # type: bool attn_mask=None, # type: Optional[Tensor] use_separate_proj_weight=False, # type: bool q_proj_weight=None, # type: Optional[Tensor] k_proj_weight=None, # type: Optional[Tensor] v_proj_weight=None, # type: Optional[Tensor] e_proj=None, # type: Optional[Tensor] f_proj=None, # type: Optional[Tensor] method="learnable", # type: str static_k=None, # type: Optional[Tensor] static_v=None, # type: Optional[Tensor] ): # type: (...) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. bias_e, bias_f: bias of the two linear projection to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. e_proj_weight, f_proj_weight: linear projection weight. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ # give tensors of shape (time, batch, feature) query = query.permute(1, 0, 2) key = key.permute(1, 0, 2) value = value.permute(1, 0, 2) tgt_len, bsz, embed_dim = query.size() if method == "learnable": proj_k, seq_len = e_proj.weight.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert ( head_dim * num_heads == embed_dim ), "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk( 3, dim=-1 ) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear( key, k_proj_weight_non_opt, in_proj_bias[embed_dim: (embed_dim * 2)], ) v = linear( value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):] ) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( attn_mask.dtype ) if attn_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead." ) attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError( "The size of the 2D attn_mask is not correct." ) elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: raise RuntimeError( "The size of the 3D attn_mask is not correct." ) else: raise RuntimeError( "attn_mask's dimension {} is not supported".format( attn_mask.dim() ) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None ##======= linformer =========## if method == "learnable": k = k.permute(1, 2, 0) k = linear(k, e_proj.weight[:, 0:tgt_len], e_proj.bias) v = v.permute(1, 2, 0) v = linear(v, f_proj.weight[:, 0:tgt_len], f_proj.bias) elif method == "convolution": k = k.permute(1, 2, 0) v = v.permute(1, 2, 0) k = e_proj(k) v = f_proj(v) q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if add_zero_attn: src_len += 1 k = torch.cat( [ k, torch.zeros( (k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device, ), ], dim=1, ) v = torch.cat( [ v, torch.zeros( (v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device, ), ], dim=1, ) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [ bsz * num_heads, tgt_len, src_len, ] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float("-inf")) else: attn_output_weights += attn_mask attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout( attn_output_weights, p=dropout_p, training=training ) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) # reshape the output back to (batch, time, feature) attn_output = attn_output.permute(1, 0, 2) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) return attn_output, (attn_output_weights.sum(dim=1) / num_heads) else: return attn_output, None ```
{ "source": "johntsi/preast_qa", "score": 3 }
#### File: preast_qa/general_modules/create_embeddings.py ```python import torch import os from tqdm import tqdm from my_tokenizer import construct_tokenizer def create_embeddings(glove_path): """ Creates an embedding matrix for all the tokens in the vocabulary and saves them in a .pt file Load 300d cached glove embeddings and loop through the vocabulary tokens from the tokenizer to init them with (1) zeros if the token is the padding token (2) the glove vector if the token is part of glove (3) the glove vector plus some guassian noise if the sub-token is part of glove (4) random normal vector if completelly unknown Args: glove_path: str The path for the 300d glove emebeddings Download from: https://nlp.stanford.edu/projects/glove/ """ glove_vocab, glove_token2id, glove_vectors, d_emb = torch.load(glove_path) glove_vocab = set(glove_vocab) tokenizer = construct_tokenizer() not_found = [] new_vectors = torch.zeros((len(tokenizer.vocab), d_emb), dtype = torch.float) for idx in tqdm(tokenizer.vocab.values()): token = tokenizer.ids_to_tokens[idx] if (token == tokenizer.pad_token): vector = torch.zeros((1, d_emb), dtype = torch.float) elif token in glove_vocab: vector = glove_vectors[glove_token2id[token]].unsqueeze(0) elif "##" in token: reduced_token = token[2:] if reduced_token in glove_vocab: # plus some gaussian noise vector = glove_vectors[glove_token2id[reduced_token]].unsqueeze(0) + torch.normal(0, 0.005, size = (1, d_emb)) else: not_found.append(token) vector = torch.normal(0, 0.01, size = (1, d_emb)) else: not_found.append(token) vector = torch.normal(0, 0.01, size = (1, d_emb)) new_vectors[int(idx)] = vector print(f"{len(not_found)} tokens and subtokens were not found in pre-trained glove") embeddings_path = os.path.join(os.path.dirname(glove_path), "embeddings.pt") torch.save(new_vectors, embeddings_path) print(f"Saved embeddings in {embeddings_path}") ``` #### File: preast_qa/general_modules/my_losses.py ```python import torch from torch import nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss class DecoderLoss(nn.Module): """ Loss function for answer generation computes the negative log-likelihood of the ground truth tokens averaged per number of valid tokens """ def __init__(self, pad_idx, unk_idx): super(DecoderLoss, self).__init__() self.pad_idx = pad_idx self.unk_idx = unk_idx def forward(self, probs, a_trg): """ Args: probs: the probabilities of the model over the extended vocabulary for each token (3d float tensor) [n_ans x T x d_ext_vocab] a_trg: the indices of the ground truth tokens in the extended vocabulary (2d long tensor) [n_ans x T] Retuns: dec_loss: negative average log-likelihood for each example (1d float tensor) [n_ans] """ current_device = torch.device(f"cuda:{torch.cuda.current_device()}") if torch.cuda.is_available() else torch.device("cpu") # take into account only non-padding and non-unkown tokens # [n_ans x T] mask = (a_trg != self.pad_idx) * (a_trg != self.unk_idx) mask = mask.to(current_device) # number of valid tokens per example n_steps = mask.sum(axis = 1) # (1d long) [n_ans] # probabilities of the ground-truth (valid positions) in the sequences (2d float) [n_ans x T] target_probs = torch.gather(probs, 2, a_trg.unsqueeze(2)).squeeze(2).masked_fill(mask == 0, 1) # negative average log-probabilities dec_loss = - torch.log(target_probs).sum(dim = 1) / n_steps # (1d float) [n_ans] return dec_loss class RankerLoss(nn.Module): """ Loss functions for the pointwise and pairiwse rankers """ def __init__(self, args, label_smoothing = False): super(RankerLoss, self).__init__() self.method = args.rnk_method if self.method == "pointwise": self.loss_fn = BCEWithLogitsLoss(reduction = "none") self.label_smoothing = label_smoothing self.epsilon = args.epsilon_smoothing else: self.K = args.max_num_passages def forward(self, rnk_scores, rel): """ Args: rnk_scores: the scores of the ranker module Pointwise ranker: (2d float tensor) [bs x K] Pairwise ranker: (4f float tensor) [bs x K x K x 3] rel: ground-truth relevance labels for each passage (2d long tensor) [bs x K] Retuns: rnk_loss: Pointwise: negative average log-likelihood of the correct labels for example averaged per number of passages in the example Pairwise: negative average log-likelihood of the correct labels for each example averaged per number of comparisons K**2 (1d float tensor) [n_ans] """ if self.method == "pointwise": rel = rel.float() if self.label_smoothing: rel = rel * (1 - self.epsilon) # ranking loss per example averaged over the number of available passages rnk_loss = self.loss_fn(rnk_scores, rel).mean(dim = 1) else: current_device = torch.device(f"cuda:{torch.cuda.current_device()}") if torch.cuda.is_available() else torch.device("cpu") # batch size and number of passages bs, K = rel.size() # transform the pointwise relevance labels to pairwise relevance labels # (3d float tensor) [bs x K x K r = torch.ones([bs, K, K], dtype = torch.long, device = current_device) r = r.masked_fill(rel.unsqueeze(2) > rel.unsqueeze(1), 2) r = r.masked_fill(rel.unsqueeze(2) < rel.unsqueeze(1), 0) # negative average log likelihood of the correct pairwise labels per example # averaged per number of comparisons rnk_loss = - torch.log(torch.gather(F.softmax(rnk_scores, dim = -1), 3, r.unsqueeze(3)).squeeze(3)).sum(dim = (1, 2)) / K**2 return rnk_loss class ClassifierLoss(nn.Module): def __init__(self, args, label_smoothing=False): super(ClassifierLoss, self).__init__() self.loss_fn = BCEWithLogitsLoss(reduction="none") # positive class label smoothing for regularization self.epsilon = args.epsilon_smoothing self.label_smoothing = label_smoothing def forward(self, scores, ans): """ Args: scores: non-probabilites scores from the classifier module (1d float tensor) [bs] ans: ground-truth labels for the answerability of each example (1d long tensor) [bs] Retuns: cls_loss: negative log-likelihood for each example (1d float tensor) [bs] """ ans = ans.float() if self.label_smoothing: ans = ans * (1 - self.epsilon) cls_loss = self.loss_fn(scores, ans) return cls_loss ``` #### File: preast_qa/general_modules/postprocess_decoded_seq.py ```python def postprocess_decoded_seq(answers): """ Corrects for some extra spaces that are created by the decode method of the tokenizer like in numerical strings example: 1, 000, 000 --> 1,000,000 Args: answers: list[str] Returns: new_answers: list[str] """ new_answers = [] for answer in answers: parts = answer.split(", ") if len(parts) > 1: try: new0 = parts[0] for i in range(1, len(parts)): if new0[-1].isnumeric() and parts[i][0].isnumeric(): if len(parts[i]) > 3 and parts[i][3].isnumeric(): new0 = ", ".join([new0, parts[i]]) else: new0 = ",".join([new0, parts[i]]) else: new0 = ", ".join([new0, parts[i]]) except IndexError: print("--> IndexError:", answer) new0 = answer else: new0 = answer parts = new0.split(". ") if len(parts) > 1: new1 = parts[0] for i in range(1, len(parts)): try: if new1[-1].isnumeric() and parts[i][0].isnumeric(): new1 = ".".join([new1, parts[i]]) else: new1 = ". ".join([new1, parts[i]]) except IndexError: new1 = parts[1] else: new1 = new0 parts = new1.split(" : ") if len(parts) > 1: new2 = parts[0] for i in range(1, len(parts)): if new2[-1].isnumeric() and parts[i][0].isnumeric(): new2 = ":".join([new2, parts[i]]) else: new2 = " : ".join([new2, parts[i]]) else: new2 = new1 new_answers.append(new2) return new_answers ``` #### File: preast_qa/models/attention.py ```python import torch from torch import nn import torch.nn.functional as F from math import sqrt class MultiHeadAttention(nn.Module): """ Multi Head Attention module as described in "Attention is all you need" After applying a linear transformation splits keys, values and queries in n heads Then calculates the scaled similarity scores between queries and keys and normallizes them along the dimension corresponding to the keys Finally transforms the values according to the normallized scores and applies another linear transformation """ def __init__(self, heads, d_model, dropout_rate): super(MultiHeadAttention, self).__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model, bias=False) self.v_linear = nn.Linear(d_model, d_model, bias=False) self.k_linear = nn.Linear(d_model, d_model, bias=False) self.dropout = nn.Dropout(dropout_rate) self.out_linear = nn.Linear(d_model, d_model, bias=False) self.temperature = sqrt(self.d_k) def forward(self, k, v, q, mask=None): """ k == v always k: (3d, float tensor), [bs x seq_len_k x d_model] v: (3d, float tensor), [bs x seq_len_v x d_model] q: (3d, float tensor), [bs x seq_len_q x d_model] the mask corresponds to k and is (3d) [bs x seq_len_k x 1] or [bs x seq_len_k x seq_len_k] (decoder) if k is passages(encoder) dim(0) = bs x K if k is passages(decoder) dim(1) = K x seq_len_passages if k is the concatinated passages and questions then dim(0) = bs x (K + 1) Args: k, v, q: (3d float tensors) mask: (3d long tensor) corresponding to k Returns: (3d float tensor), same shape as k and v """ # get batch size and sequence lengths bs, seq_len_k, _ = k.size() seq_len_q = q.size(1) # perform linear operation k = self.k_linear(k) v = self.v_linear(v) q = self.q_linear(q) # split into h heads k = k.view(bs, seq_len_k, self.h, self.d_k).transpose( 1, 2 ) # [bs x heads x seq_len_k x d_k] v = v.view(bs, seq_len_k, self.h, self.d_k).transpose( 1, 2 ) # [bs x heads x seq_len_k x d_k] q = q.view(bs, seq_len_q, self.h, self.d_k).transpose( 1, 2 ) # [bs x heads x seq_len_q x d_k] # calculate the scaled similarity scores between queries and keys scores = ( torch.matmul(q, k.transpose(-2, -1)) / self.temperature ) # (4d) [bs x heads x seq_len_q x seq_len_k] # apply the key mask if mask is not None: mask = mask.unsqueeze(1).transpose(-2, -1) # (4d) [bs x 1 x 1 x seq_len_k] scores = scores.masked_fill( mask == 0, -1e9 ) # (4d) [bs x heads x seq_len_q x seq_len_k] # normallize scores along the seq_len_k dimension and apply dropout scores = self.dropout(F.softmax(scores, dim=-1)) # transform the values by multiplying them with the normallized scores attn = torch.matmul(scores, v) # (4d) [bs x heads x seq_len_q x d_k] # concatinate the heads along the last dimension attn_concat = attn.transpose(1, 2).reshape(bs, seq_len_q, self.d_model) # apply final linear transformation out = self.out_linear(attn_concat) # (3d): [bs x seq_len_q x d_model] return out class DualAttention(nn.Module): """ Dual Attention Module as implemented in Xiong et al 2017 First calculates a similarity matrix between Ex and Ey Then gets A and B by normallizing along the last dimensions And finally obtains dual representations Gx and Gy by a series of matrix multiplications and concatinations """ def __init__(self, d_model, dropout_rate=0): super(DualAttention, self).__init__() self.similarity_linear = nn.Linear(3 * d_model, 1, bias=False) self.dropout = nn.Dropout(dropout_rate) self.d_model = d_model def forward(self, Ex, Ey, mask_x, mask_y): """ Given 2 sequence representations X and Y and their masks produces bidirectionally informed representations Gx (Y-->X) and Gy (X-->Y) The X-sequence can be 4d, where some extra steps are applied Args Ex: 4d float tensor [bs x K x len_x x d_model] or 3d float tensor [bs x len_x x d_model] Ey: 3d float tensor [bs x len_y x d_model] mask_x: 4d bool tensor [bs x K x len_x x 1] or 3d bool tensor [bs x len_x x 1] mask_y: 3d bool tensor [bs x len_y x 1] Returns Gx: 4d float tensor [bs x K x len_x x 5 * d_model] or 3d float tensor [bs x len_x x 5 * d_model] Gy: 3d float tensor [bs x len_y x 5 * d_model] """ if len(Ex.size()) == 3: bs, len_x, _ = Ex.size() len_y = Ey.size(1) Ex = Ex.view(bs, len_x, 1, self.d_model).expand(bs, len_x, len_y, self.d_model) Ey = Ey.view(bs, 1, len_y, self.d_model).expand(bs, len_x, len_y, self.d_model) mask_x = mask_x.view(bs, len_x, 1) mask_y = mask_y.view(bs, 1, len_y) # 4d float tensor [bs x len_x x len_y x 3 * d_model] E_cat = torch.cat([Ex, Ey, torch.mul(Ex, Ey)], dim = -1) # 3d float tensor [bs x len_x x len_y] U = self.similarity_linear(E_cat).squeeze(-1) U = U.masked_fill(mask_x * mask_y == 0, -1e9) A = self.dropout(F.softmax(U, dim = 2)) B = self.dropout(F.softmax(U, dim = 1).transpose(-2, -1)) # reduce the extra dimension Ex = torch.narrow(Ex, 2, 0, 1).squeeze(2) Ey = torch.narrow(Ey, 1, 0, 1).squeeze(1) A_1bar = torch.matmul(A, Ey) # [bs x len_x x d_model] B_1bar = torch.matmul(B, Ex) # [bs x len_y x d_model] A_2bar = torch.matmul(A, B_1bar) # [bs x len_x x d_model] B_2bar = torch.matmul(B, A_1bar) # [bs x len_y x d_model] Gx = torch.cat([Ex, A_1bar, A_2bar, torch.mul(Ex, A_1bar), torch.mul(Ex, A_2bar)], dim = -1) Gy = torch.cat([Ey, B_1bar, B_2bar, torch.mul(Ey, B_1bar), torch.mul(Ey, B_2bar)], dim = -1) else: bs, K, len_x, _ = Ex.size() len_y = Ey.size(1) # create an extra dimension in Ey Ey = Ey.unsqueeze(1).expand(bs, K, len_y, self.d_model) # (4d): [bs x K x len_y x d_model] # concatinate Ex, Ey and their element-wise multiplication along the last dimension # (5d): [bs x K x len_x x len_y x 3 * d_model] E_cat = torch.cat( [ Ex.unsqueeze(3).expand(bs, K, len_x, len_y, self.d_model), Ey.unsqueeze(2).expand(bs, K, len_x, len_y, self.d_model), torch.mul( Ex.unsqueeze(3).expand(bs, K, len_x, len_y, self.d_model), Ey.unsqueeze(2).expand(bs, K, len_x, len_y, self.d_model), ), ], dim=-1, ) # similarity between embeddings of the X and Y sequences # reduces the last dimension by multiplying E_cat with a vector U = self.similarity_linear(E_cat).squeeze(-1) # (4d): [bs x K x len_x x len_y] # apply the two masks U = U.masked_fill(mask_y.unsqueeze(1).transpose(-1, -2) == 0, -1e9).masked_fill( mask_x == 0, -1e9 ) # normallize along the len_y to get weights A and along the len_x dimension to get weights B A = self.dropout(F.softmax(U, dim=-1)) # (4d): [bs x K x len_x x len_y] B = self.dropout(F.softmax(U, dim=-2)).transpose(-2, -1) # (4d): [bs x K x len_y x len_x] # get updated representations A_1bar = torch.matmul(A, Ey) # (4d) [bs x K x len_x x d_model] B_1bar = torch.matmul(B, Ex) # (4d): [bs x K x len_y x d_model] A_2bar = torch.matmul(A, B_1bar) # (4d): [bs x K x len_x x d_model] B_2bar = torch.matmul(B, A_1bar) # (4d): [bs x K x len_y x d_model] # reduce the extra dimension in the y-sequence Ey = torch.narrow(Ey, 1, 0, 1).squeeze(1) # [bs x len_y x d_model] # Get a unique representation for question by taking the max along the K dimension B_1bar_m, _ = torch.max(B_1bar, dim=1) # [bs x len_y x d_model] B_2bar_m, _ = torch.max(B_2bar, dim=1) # [bs x len_y x d_model] # DCN for dual attention representations # Gp (4d): [bs x K x len_x x 5 * d_model] # Gq (3d): [bs x len_y x 5 * d_model] Gx = torch.cat([Ex, A_1bar, A_2bar, torch.mul(Ex, A_1bar), torch.mul(Ex, A_2bar)], dim=-1) Gy = torch.cat([Ey, B_1bar_m, B_2bar_m, torch.mul(Ey, B_1bar_m), torch.mul(Ey, B_2bar_m)], dim=-1) return Gx, Gy class TripleAttention(nn.Module): """ Extension of the DualAttention but for three sequences Obtains globally updated representations for the three sequences """ def __init__(self, d_model, dropout_rate = 0): super(TripleAttention, self).__init__() self.pq_similarity_linear = nn.Linear(3 * d_model, 1, bias = False) self.pa_similarity_linear = nn.Linear(3 * d_model, 1, bias = False) self.qa_similarity_linear = nn.Linear(3 * d_model, 1, bias = False) self.dropout = nn.Dropout(dropout_rate) self.d_model = d_model def forward(self, Ep, Eq, Ea, mask_p, mask_q, mask_a): """ Args Ep: 3d float tensor [bs x L x d_model] Eq: 3d float tensor [bs x J x d_model] Ea: 3d float tensor [bs x N x d_model] mask_p: 3d bool tensor [bs x L x 1] mask_q: 3d bool tensor [bs x J x 1] mask_a: 3d bool tensor [bs x J x 1] Returns Gp: 3d float tensor [bs x L x 9 * d_model] Gy: 3d float tensor [bs x J x 9 * d_model] Ga: 3d float tensor [bs x N x 9 * d_model] """ bs = len(Ep) L, J, N = Ep.size(1), Eq.size(1), Ea.size(1) Epq = Ep.view(bs, L, 1, self.d_model).expand(bs, L, J, self.d_model) Eqp = Eq.view(bs, 1, J, self.d_model).expand(bs, L, J, self.d_model) Epa = Ep.view(bs, L, 1, self.d_model).expand(bs, L, N, self.d_model) Eap = Ea.view(bs, 1, N, self.d_model).expand(bs, L, N, self.d_model) Eqa = Eq.view(bs, J, 1, self.d_model).expand(bs, J, N, self.d_model) Eaq = Ea.view(bs, 1, N, self.d_model).expand(bs, J, N, self.d_model) Upq = self.pq_similarity_linear(torch.cat([Epq, Eqp, torch.mul(Epq, Eqp)], dim = -1)).squeeze(-1) # [bs x L x J] Upa = self.pa_similarity_linear(torch.cat([Epa, Eap, torch.mul(Epa, Eap)], dim = -1)).squeeze(-1) # [bs x L x N] Uqa = self.qa_similarity_linear(torch.cat([Eqa, Eaq, torch.mul(Eqa, Eaq)], dim = -1)).squeeze(-1) # [bs x J x N] Upq = Upq.masked_fill(mask_p * mask_q.transpose(1, 2) == 0, -1e9) Upa = Upa.masked_fill(mask_p * mask_a.transpose(1, 2) == 0, -1e9) Uqa = Uqa.masked_fill(mask_q * mask_a.transpose(1, 2) == 0, -1e9) Apq = self.dropout(F.softmax(Upq, dim = 2)) # [bs x L x J] Bpq = self.dropout(F.softmax(Upq, dim = 1).transpose(1, 2)) # [bs x J x L] Apa = self.dropout(F.softmax(Upa, dim = 2)) # [bs x L x N] Bpa = self.dropout(F.softmax(Upa, dim = 1).transpose(1, 2)) # [bs x N x L] Aqa = self.dropout(F.softmax(Uqa, dim = 2)) # [bs x J x N] Bqa = self.dropout(F.softmax(Uqa, dim = 1).transpose(1, 2)) # [bs x N x J] Apq_bar = torch.matmul(Apq, Eq) # [bs x L x d_model] Bpq_bar = torch.matmul(Bpq, Ep) # [bs x J x d_model] Apa_bar = torch.matmul(Apa, Ea) # [bs x L x d_model] Bpa_bar = torch.matmul(Bpa, Ep) # [bs x N x d_model] Aqa_bar = torch.matmul(Aqa, Ea) # [bs x J x d_model] Bqa_bar = torch.matmul(Bqa, Eq) # [bs x N x d_model] Gp = torch.cat([Ep, Apq_bar, Apa_bar, torch.mul(Ep, Apq_bar), torch.mul(Ep, Apa_bar), torch.matmul(Apq, Bpq_bar), torch.matmul(Apq, Aqa_bar), torch.matmul(Apa, Bpa_bar), torch.matmul(Apa, Bqa_bar)], dim = -1) Gq = torch.cat([Eq, Bpq_bar, Aqa_bar, torch.mul(Eq, Bpq_bar), torch.mul(Eq, Aqa_bar), torch.matmul(Bpq, Apq_bar), torch.matmul(Bpq, Apa_bar), torch.matmul(Aqa, Bpa_bar), torch.matmul(Aqa, Bqa_bar)], dim = -1) Ga = torch.cat([Ea, Bpa_bar, Bqa_bar, torch.mul(Ea, Bpa_bar), torch.mul(Ea, Bqa_bar), torch.matmul(Bpa, Apq_bar), torch.matmul(Bpa, Apa_bar), torch.matmul(Bqa, Bpq_bar), torch.matmul(Bqa, Aqa_bar)], dim = -1) return Gp, Gq, Ga class AdditiveAttention(nn.Module): """ Attention module that computes a distribution over the tokens in the key, as well as a context vector, given the tokens in the query. The implementation is very similar to Bahdanau et al 2015. Here it is used only to compute the additive attention between the questions and the answers at the last part of the decoder. The context vector is used to estimate the lambdas, which are the weights of the distributions in the copying mechanism and the alphas are used to define the distribution over the tokens in the question. """ def __init__(self, d_model): super(AdditiveAttention, self).__init__() self.d_model = d_model self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model, bias=False) self.energy_layer = nn.Sequential(nn.Tanh(), nn.Linear(d_model, 1, bias=False)) def forward(self, k, v, q, mask): """ Args k: output of the encoder for question representations (Mq) (3d float tensor) [bs x J x d_model] v: is the same as k q: output of the decoder for answer representation (Ma) (3d float tensor) [bs x T x d_model] mask: corresponding mask for the keys (3d long tensor) [bs x J x 1] Returns context: a vector representation for the answers informed by the questions (3d float tensor) [bs x T x d_model] alphas: a distribution over the tokens in the questions (3d float tensor) [bs x T x J] """ J = k.size(-2) # seq len for questions T = q.size(-2) # seq len for ansers bs = k.size(0) # batch size # linear transformation of key and query k = self.k_linear(k) q = self.q_linear(q) # create extra dimensions in k and q that corresponds to the seq_len of the other one k = k.unsqueeze(2).expand(bs, J, T, self.d_model) # (4d) [bs x J x T x d_model] q = ( q.unsqueeze(2).expand(bs, T, J, self.d_model).transpose(1, 2) ) # (4d) [bs x J x T x d_model] # this layer adds the representation of every token in the question (J) # to every token in the representation of the answer (T), thats why we expanded the dimensions before # then reduces the last dimension of the tokens (d_model) by passing them through a (d_model x 1) weight scores = self.energy_layer(k + q).squeeze(-1) # (3d) [bs x J x T] # apply the mask by zeroing all the correspoding positions scores = scores.masked_fill(mask == 0, -1e9) # normallization across the question tokens dimension (J) since this is the key # to get a distribution over the questions tokens for each example and for each decoding step "t" alphas = F.softmax(scores.transpose(-2, -1), dim=-1) # (3d) [bs x T x J] # reduce the seq_len_questions dimension to get a context vector context = torch.bmm(alphas, v) # [bs x T x d_model] return context, alphas class CombinedAttention(nn.Module): """ This is very similar to the Additive Attention module, it computes the context and alphas using the passage representations as keys and values and the answer representations as queries. The alphas are modified by the betas, which are the passage relevancies, as calculated by the ranker module, thus performing a sort of sentence level attention, where the model learns to attend only to the relevant passages. """ def __init__(self, d_model): super(CombinedAttention, self).__init__() self.d_model = d_model self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model, bias=False) self.energy_layer = nn.Sequential(nn.Tanh(), nn.Linear(d_model, 1, bias=False)) def forward(self, k, v, q, mask, betas): """ Args k: output of the encoder for passage representations (Mp) (4d float tensor) [bs x K x L x d_model] v: is the same as k q: output of the decoder for answer representation (Ma) (3d float tensor) [bs x T x d_model] mask: corresponding mask for the keys (4d long tensor) [bs x K x L x 1] betas: the relevance scores from the ranker (2d float tensor) [n_ans x K] Returns context: a vector representation for the answers informed by the passages (3d float tensor) [bs x T x d_model] modified_alphas: a distribution over the tokens in the passages (renormallized by the betas) (3d float tensor) [bs x T x K * L] """ # dimension sizes # batch size (bs) # num passages (K) # seq_len_passages (L) # seq_len_answers (T) # concatinated length of passages (KL) bs, K, L, _ = k.size() T = q.size(1) KL = int(K * L) # merge the K and seq_len_passages # basically this concatinates all the passages in an example making one long sequence # with length K * L k = k.view(bs, KL, self.d_model) mask = mask.view(bs, KL, 1) # linear transformation on keys and queries k = self.k_linear(k) q = self.q_linear(q) # create extra dimensions in k and q that corresponds to the seq_len of the other one # the same is done for the mask k = k.unsqueeze(2).expand( bs, KL, T, self.d_model ) # (4d) [bs x KL x T x d_model] q = ( q.unsqueeze(2).expand(bs, T, KL, self.d_model).transpose(1, 2) ) # (4d) [bs x KL x T x d_model] # this layer adds the representation of every token in the concatination of the passages (KL) # to every token in the representation of the answer (T), thats why we expanded the dimensions bewfore # then reduces the last dimension of the tokens (d_model) by passing them through a d_model x 1 weight scores = self.energy_layer(k + q).squeeze(-1) # (3d) [bs x KL x T] # apply the mask scores = scores.masked_fill(mask == 0, -1e9) # normallization across the passage dimension (KL) since this is the key alphas = F.softmax(scores, dim=1) # (3d) [bs x KL x T] alphas = alphas.view(bs, K, L, T) # renormallize with the relevance scores modified_alphas = alphas * betas.view(bs, K, 1, 1) modified_alphas /= modified_alphas.sum(dim=(1, 2), keepdims=True) modified_alphas = modified_alphas.view(bs, KL, T).transpose( -2, -1 ) # [bs x T x KL] v = v.view(bs, KL, self.d_model) # reduce the seq_len_questions dimension to get a context vector context = torch.bmm(modified_alphas, v) # (3d) [bs x seq_len_aswers x d_model] return context, modified_alphas ``` #### File: preast_qa/models/classifier.py ```python import torch from torch import nn class Classifier(nn.Module): """ Classification module for answer possibility of each example "linear" corresponds to the classification method of Nishida et al. "max" corresponds to the max pooling method of this implementation """ def __init__(self, args): super(Classifier, self).__init__() self.d_model = args.d_model self.K = args.max_num_passages self.method = args.cls_method if self.method == "linear": self.cls_layer = nn.Linear(self.K * self.d_model, 1, bias=False) elif self.method == "max": self.cls_layer = nn.Linear(self.d_model, 1, bias=False) def forward(self, Mp_cls): """ Args Mp_cls: the first token of every passage (cls token), (3d float tensor) [bs x K x d_model] Returns cls_scores: the score that the question is answerable given the set of passasges (1d float tensor) [bs] """ # input for the classifier if self.method == "linear": # concatinate the cls tokens along the model dimension x = Mp_cls.reshape(-1, self.K * self.d_model) # (2d) [bs x d_model * K] elif self.method == "max": # max pooling along the number of passages x = torch.max(Mp_cls, dim=1)[0] # (2d) [bs x d_model] # pass them through the cls layer to get the scores per example cls_scores = self.cls_layer(x).squeeze(-1) # (1d) [bs] return cls_scores ``` #### File: preast_qa/models/embedder.py ```python import torch from torch import nn import math class Embedder(nn.Module): """ Projects the indices of a sequnce using a linear layer and adds positional embeddings """ def __init__(self, glove_vectors, pad_idx, dropout_rate, max_seq_len = 100): """ glove vectors: the pre-trained glove embeddings of all the tokens in the fixed vocabulary (2d float tensor) [d_fixed x d_emb] pad_idx: int dropout_rate: float max_seq_len: int """ super(Embedder, self).__init__() d_emb = glove_vectors.size(1) # initialize embeddings matrix self.embedding_layer = nn.Embedding.from_pretrained( glove_vectors, padding_idx=pad_idx, freeze=False ) # initialize positional embeddings matrix positional_encoder = torch.zeros(max_seq_len, d_emb) position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_emb, 2).float() * (-math.log(10000.0) / d_emb)) positional_encoder[:, 0::2] = torch.sin(position * div_term) positional_encoder[:, 1::2] = torch.cos(position * div_term) positional_encoder = positional_encoder.unsqueeze(0) self.register_buffer("positional_encoder", positional_encoder) # initialie dropout layer self.dropout = nn.Dropout(dropout_rate) def forward(self, x): """ Args: x The indices of a sequence in the fixed vocabulary (2d long tensor) [batch_size x sequence_length] Returns: Embeddings for sequence x (3d float tensor) [batch_size x sequence_length x d_emb] """ seq_len = x.size(1) emb = self.embedding_layer(x) return self.dropout(emb + self.positional_encoder[0, :seq_len, :]) ``` #### File: preast_qa/models/sublayers.py ```python import torch from torch import nn import torch.nn.functional as F class HighwayNetwork(nn.Module): """ Highway network as implemented in Srivastava et al 2015 It is used to fuse the embeddings of GloVe and ELMo before entering the Reader or Decoder modules """ def __init__(self, d_emb, dropout_rate, non_lin = "relu", num_layers = 2): super(HighwayNetwork, self).__init__() non_lin = non_lin.lower() assert non_lin in ["relu", "tanh"] self.HighwayLayers = nn.Sequential(*[HighwayLayer(d_emb, dropout_rate) for _ in range(num_layers)]) def forward(self, x): """ Args x: (3d float tensor) Returns y: (3d float tensor), same dmensionality as x """ y = self.HighwayLayers(x) return y class HighwayLayer(nn.Module): """ Highway layer module for use in the Highway network module """ def __init__(self, d_emb, dropout_rate, non_lin = "relu"): super(HighwayLayer, self).__init__() self.H = nn.Sequential(nn.Linear(d_emb, d_emb), nn.ReLU() if non_lin == "relu" else nn.Tanh()) self.T = nn.Sequential(nn.Linear(d_emb, d_emb), nn.Sigmoid()) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): """ Args x: (3d float tensor) Returns y: (3d float tensor), same dmensionality as x """ T = self.T(x) y = self.dropout(torch.mul(self.H(x), T) + torch.mul(x, 1 - T)) return y class FeedForwardNetwork(nn.Module): """ 2-layer feed-forward network module with d_inner != d_model and a GELu activation in between. It is used as the last sublayer of the decoder module """ def __init__(self, d_model, d_inner): super(FeedForwardNetwork, self).__init__() self.lin1 = nn.Linear(d_model, d_inner) self.lin2 = nn.Linear(d_inner, d_model) def forward(self, x): """ Args x: (3d float tensor) Returns y: (3d float tensor), same dmensionality as x """ y = self.lin2(F.gelu(self.lin1(x))) return y ``` #### File: preast_qa/question_answering/qa_train_helpers.py ```python import torch from torch.utils.data import DataLoader, BatchSampler import matplotlib.pyplot as plt from matplotlib.lines import Line2D import numpy as np import os from datetime import datetime import seaborn as sns sns.set() from qa_metrics import calculate_ranking_metrics, calculate_auc_score from qa_dataset import QaDataset from qa_batch_sampler import QaBatchSampler from qa_collate_fn import qa_collate_fn from qa_model import QaModel from my_losses import DecoderLoss, RankerLoss, ClassifierLoss def init_dataloader(args, n_gpu): """ Initializes dataloader for training Args: args: argument parser object n_gpu: int Returns: dataloader: torch.utils.data.DataLoader """ if args.custom_batch_sampler: dataset = QaDataset(args) my_batch_sampler = BatchSampler(QaBatchSampler(dataset, args.batch_size, max(n_gpu, 1), args.num_answerable_per_batch), args.batch_size, drop_last = True) dataloader = DataLoader(dataset, batch_sampler = my_batch_sampler, collate_fn = qa_collate_fn, num_workers = args.num_workers, pin_memory = args.pin_memory and n_gpu > 0) else: dataloader = DataLoader(QaDataset(args), args.batch_size, collate_fn = qa_collate_fn, shuffle = True, num_workers = args.num_workers, pin_memory = args.pin_memory and n_gpu > 0, drop_last = True) print(f"Initialized dataset with {len(dataloader.dataset)} examples") print(f"Initialized dataloader with {dataloader.num_workers} number of workers") print(f" pin memory option set to {dataloader.pin_memory}") print(f" custom batch sampler set to {args.custom_batch_sampler}") return dataloader def init_model(args, dataloader, main_device, device_list, checkpoint = None): """ Initializes model in training mode Args: args: argument parser object dataloader: torch.utils.data.dataloader main_device: torch.device device_list: list[torch.device] checkpoint: dict (see ssave) Returns: model: torch.nn.module """ model = QaModel(args, dataloader.dataset.fixed_token2id, main_device, only_encoder = not args.include_dec) if checkpoint: model.load_state_dict({k: v.data if ("positional" in k) else checkpoint["model"][k] for k, v in model.state_dict().items()}) print(f"Loaded checkpoint from run: {args.run_name}") # Optionally parallelize model if len(device_list) > 1: model = torch.nn.DataParallel(model, device_ids = device_list, output_device = main_device) # send to device and start training mode model.to(main_device) model.train() return model def init_loss_fns(args, dataloader, main_device, device_list): """ Intialize the loss functions for the three tasks Args: args: argument parser object dataloader: torch.data.utils.Dataloader main_device: torch.device device_list: list[torch.device] Returns: dec_loss_fn: torch.nn.module rnk_loss_fn: torch.nn.module cls_loss_fn: torch.nn.module """ # initilaize individual loss functions and total_loss_fn for to combine them dec_loss_fn = DecoderLoss(dataloader.dataset.pad_idx, dataloader.dataset.unk_idx) rnk_loss_fn = RankerLoss(args, label_smoothing = True) cls_loss_fn = ClassifierLoss(args, label_smoothing = True) if len(device_list) > 1: dec_loss_fn = torch.nn.DataParallel(dec_loss_fn, device_ids = device_list, output_device = main_device) rnk_loss_fn = torch.nn.DataParallel(rnk_loss_fn, device_ids = device_list, output_device = main_device) cls_loss_fn = torch.nn.DataParallel(cls_loss_fn, device_ids = device_list, output_device = main_device) dec_loss_fn = dec_loss_fn.to(main_device) rnk_loss_fn = rnk_loss_fn.to(main_device) cls_loss_fn = cls_loss_fn.to(main_device) return dec_loss_fn, rnk_loss_fn, cls_loss_fn def plot_grad_flow(named_parameters, global_train_step, writer, gradient_save_path): """ Plots the gradients flowing through different layers in the net during training. Can be used for checking for possible gradient vanishing / exploding problems. Taken from https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10 Args: named_parameters: model parameters global_train_step: int writer: torch writer object gradient_save_path: str """ ave_grads = [] max_grads = [] layers = [] for n, p in named_parameters: if p.requires_grad and ("bias" not in n) and (p.grad is not None): writer.add_histogram(n, p.grad, global_train_step) if torch.max(p.grad).item() != .0: layers.append(n) ave_grads.append(p.grad.abs().mean()) max_grads.append(p.grad.abs().max()) else: layers.append(n) ave_grads.append(-0.5) max_grads.append(-1) plt.bar(np.arange(len(max_grads)), max_grads, alpha = 0.1, lw = 1, color = "c") plt.bar(np.arange(len(max_grads)), ave_grads, alpha = 0.1, lw = 1, color = "b") plt.hlines(0, 0, len(ave_grads) + 1, lw = 0.5, color = "k", alpha = 0.1) plt.xticks(range(0, len(ave_grads), 1), layers, rotation = 90, fontsize = 2.5) plt.yticks(fontsize = 6) plt.xlim(left = -0.75, right = len(ave_grads)) plt.ylim(bottom = -0.001, top = 0.02) # zoom in on the lower gradient regions plt.xlabel("Layers", fontsize = 6) plt.ylabel("average gradient", fontsize = 6) plt.title("Gradient flow", fontsize = 6) plt.grid(True) plt.legend([Line2D([0], [0], color = "c", lw = 4), Line2D([0], [0], color = "b", lw = 4), Line2D([0], [0], color = "k", lw = 4)], ['max-gradient', 'mean-gradient', 'zero-gradient']) plt.tight_layout() file_path = os.path.join(gradient_save_path, str(global_train_step) + ".png") plt.savefig(file_path, dpi = 400) def get_store_dicts(): """ To store stats and metrics during training """ results_init = {"loss": {"dec": [], "rnk": [], "cls": []}, "ranking": {"trg": [], "prob": []}, "classification": {"trg": [], "prob": []}, "style": [], "lambdas": {"passage": [], "question": [], "vocabulary": []}} performance = {"loss": {}, "ranking": {}, "classification": {}, "other": {}, "lambdas": {}} return results_init, performance def pprint_and_log(writer, results, performance, global_train_step, lr, args): """ calculates performance of the sampled iterations during the last <args.print_and_log_every> iterations prints performance logs performance to the summary writer Args: writer: torch writer object results: dict[dict] (from get_store_dicts) performance: dict[dict] (from get_store_dicts) global_train_step: int lr: float args: argument parser object """ performance["loss"]["rnk"] = np.mean(results["loss"]["rnk"]) performance["loss"]["cls"] = np.mean(results["loss"]["cls"]) performance["other"]["learning_rate"] = lr performance["ranking"]["map"], performance['ranking']["mrr"] = calculate_ranking_metrics(*results["ranking"].values()) performance["classification"]["auc"] = calculate_auc_score(*results["classification"].values()) if args.include_dec: mask_qa = np.array([1 if style == "qa" else 0 for style in results["style"]]).astype(np.bool) mask_nlg = ~mask_qa results["loss"]["dec"] = np.array(results["loss"]["dec"]) performance["loss"]["dec"] = results["loss"]["dec"].mean() performance["loss"]["dec_qa"] = results["loss"]["dec"][mask_qa].mean() if mask_qa.any() else 0 performance["loss"]["dec_nlg"] = results["loss"]["dec"][mask_nlg].mean() if mask_nlg.any() else 0 results["lambdas"]["passage"] = np.array(results["lambdas"]["passage"]) results["lambdas"]["question"] = np.array(results["lambdas"]["question"]) results["lambdas"]["vocabulary"] = np.array(results["lambdas"]["vocabulary"]) performance["lambdas"]["passage_all"] = np.mean(results["lambdas"]["passage"]) performance["lambdas"]["question_all"] = np.mean(results["lambdas"]["question"]) performance["lambdas"]["vocabulary_all"] = np.mean(results["lambdas"]["vocabulary"]) performance["lambdas"]["passage_qa"] = results["lambdas"]["passage"][mask_qa].mean() if mask_qa.any() else 0 performance["lambdas"]["question_qa"] = results["lambdas"]["question"][mask_qa].mean() if mask_qa.any() else 0 performance["lambdas"]["vocabulary_qa"] = results["lambdas"]["vocabulary"][mask_qa].mean() if mask_qa.any() else 0 performance["lambdas"]["passage_nlg"] = results["lambdas"]["passage"][mask_nlg].mean() if mask_nlg.any() else 0 performance["lambdas"]["question_nlg"] = results["lambdas"]["question"][mask_nlg].mean() if mask_nlg.any() else 0 performance["lambdas"]["vocabulary_nlg"] = results["lambdas"]["vocabulary"][mask_nlg].mean() if mask_nlg.any() else 0 performance["loss"]["total"] = performance["loss"]["dec"] + args.gamma_rnk * performance["loss"]["rnk"] + \ args.gamma_cls * performance["loss"]["cls"] performance["other"]["nlg_percent"] = mask_nlg.mean() performance["other"]["ans_percent"] = len(results["loss"]["dec"]) / len(results["loss"]["cls"]) else: performance["loss"]["total"] = args.gamma_rnk * performance["loss"]["rnk"] + \ args.gamma_cls * performance["loss"]["cls"] performance["loss"]["dec"] = 0 dt = datetime.now().time().replace(microsecond = 0) print("[{}] Step {}: DEC {:.4f} | RNK {:.4f} | CLS {:.4f} | TTL {:.4f} | MAP {:.4f} | AUC {:.4f} | lr = {:.6f}".format( dt, str(global_train_step).zfill(5), performance["loss"]["dec"], performance["loss"]["rnk"], performance["loss"]["cls"], performance["loss"]["total"], performance["ranking"]["map"], performance["classification"]["auc"], performance["other"]["learning_rate"])) if writer is not None: for field in ["loss", "ranking", "classification", "lambdas", "other"]: for metric in performance[field].keys(): writer.add_scalar(field + "/" + metric, performance[field][metric], global_train_step) ``` #### File: preast_qa/style_transfer/st_eval.py ```python from torch.utils.data import DataLoader import torch import os from multiprocessing import cpu_count import json from tqdm import tqdm import sys os.chdir("style_transfer") sys.path.append("./../models") sys.path.append("./../general_modules") from st_dataset import StDataset from st_argument_parser_helper import parse_arguments from st_collate_fn import st_collate_fn from st_eval_helpers import get_architecture, decode_fn, init_eval_model from postprocess_decoded_seq import postprocess_decoded_seq from my_tokenizer import construct_tokenizer tokenizer = construct_tokenizer() def eval(args): assert args.mode in ["eval", "infer"] # number of cpu and gpu devices n_gpu = torch.cuda.device_count() n_cpu = cpu_count() print(f"Number of cuda devices: {n_gpu} | Number of CPU cores: {n_cpu}") # specify main device and all devices (if gpu available) device_list = [torch.device(f"cuda:{i}") for i in range(n_gpu)] main_device = device_list[0] if n_gpu > 0 else torch.device("cpu") print(f"Main device: {main_device}") print(f"Parallel devices = {device_list}") checkpoint_path = os.path.join(args.checkpoint_path, args.run_name) specific_checkpoint = os.listdir(checkpoint_path)[-1] if args.run_subname == "" else args.run_subname specific_checkpoint_path = os.path.join(checkpoint_path, specific_checkpoint) checkpoint = torch.load(specific_checkpoint_path, map_location = main_device) print(f"Loaded checkpoint: {specific_checkpoint} of run: {args.run_name}") args = get_architecture(checkpoint["args"], args) if args.eval_path == "": eval_path = os.path.join("evaluation", args.run_name, specific_checkpoint.split("_")[-1].split(".")[0]) else: eval_path = args.eval_path os.makedirs(eval_path, exist_ok = True) dataloader = DataLoader(StDataset(args), args.batch_size, collate_fn = st_collate_fn, shuffle = False, num_workers = args.num_workers, drop_last = False) print(f"Initialized dataset with {len(dataloader.dataset)} examples") model = init_eval_model(args, dataloader.dataset.fixed_token2id, main_device, device_list, checkpoint["model"]) with torch.no_grad(): for i, batch in tqdm(enumerate(iter(dataloader)), miniters = 1000): take_eval_step(batch, model, main_device, eval_path, args.mode) def take_eval_step(batch, model, main_device, eval_path, mode): # Representations of the sequences in the fixed vocabulary (indices) passage_fixed_vectors = batch[0].to(main_device) # 2d long tensor [batch_size x seq_len_passage] query_fixed_vectors = batch[1].to(main_device) # (2d long tensor [batch_size x seq_len_question] qa_answer_fixed_vectors = batch[2].to(main_device) # 2d long tensor [batch_size x seq_len_qa] # Representation of the concatination of passage, question and qa_answer in the extended vocabulary source_ext_vectors = batch[5].to(main_device) # (2d long tensor) [batch_size x seq_len_passage + seq_len_question + seq_len_answer] if batch[6] is not None: batch_ext_token2id, is_extended = batch[6], True else: batch_ext_token2id, is_extended = tokenizer.vocab, False # the target nlg answers for each example (empty if in inference mode) trg_nlg_answers = batch[7] query_ids = batch[8] d_ext_vocab = source_ext_vectors.max().item() + 1 del batch # forward pass preds, avg_lambdas, lengths = model(passage_fixed_vectors, query_fixed_vectors, qa_answer_fixed_vectors, source_ext_vectors, d_ext_vocab, autoregressive = True) # optionally add the extra tokens in the tokenizer if is_extended: extra_tokens = list(batch_ext_token2id.keys())[len(tokenizer.vocab):] tokenizer.add_tokens(extra_tokens) # decode the predictions into strings pred_nlg_answers = decode_fn(preds, tokenizer) pred_nlg_answers = postprocess_decoded_seq(pred_nlg_answers) # restore tokenizer to each original vocabulary if is_extended: tokenizer.remove_tokens(extra_tokens) if mode == "infer": with open(os.path.join(eval_path, "predictions_infer.json"), "a") as f: for pred_nlg, q_id in zip(pred_nlg_answers, query_ids): json.dump({"answers": [pred_nlg], "query_id": int(q_id)}, f) f.write("\n") else: with open(os.path.join(eval_path, "predictions_eval.json"), "a") as f: for pred_nlg, q_id in zip(pred_nlg_answers, query_ids): json.dump({"answers": [pred_nlg], "query_id": int(q_id)}, f) f.write("\n") with open(os.path.join(eval_path, "reference_eval.json"), "a") as f: for trg_nlg, q_id in zip(trg_nlg_answers, query_ids): json.dump({"answers": trg_nlg, "query_id": int(q_id)}, f) f.write("\n") with open(os.path.join(eval_path, "lambdas.json"), "a") as f: for l, q_id in zip(avg_lambdas.tolist(), query_ids): json.dump({"lambdas": {"vocabulary": l[0], "question": l[1], "qa_answer": l[2], "passage": l[3]}, "query_id": int(q_id)}, f) f.write("\n") with open(os.path.join(eval_path, "lengths.json"), "a") as f: for length, q_id in zip(lengths.tolist(), query_ids): json.dump({"length": length, "query_id": int(q_id)}, f) f.write("\n") if __name__ == '__main__': args = parse_arguments() eval(args) ``` #### File: preast_qa/style_transfer/st_model.py ```python import torch from torch import nn import torch.nn.functional as F import os from create_embeddings import create_embeddings from embedder import Embedder from reader import StReader from transformer_blocks import StTransformerDecoder from multi_src_pointer_gen import StMultiSrcPointerGen import my_constants class StModel(nn.Module): """ Transformer-based encoder-decoder that learns a function f(passage, question, extractive answers) --> abstractive answer The encoder is made of shared and sequence-specific transformer encoder-blocks for the three input sequences and several dual attention modules to blend cross-sequence information The decoder is modified transformer decoder, where each layers has 2 more encoder-decoder attention sublayers to account for the extra input sequences A multi-source-pointer-generator is employed to either copy from the three input sequences or generate a token from the fixed vocabulary. """ def __init__(self, args, fixed_token2id): """ Args: args: argument parser object fixed_token2id: dict[str: int] """ super(StModel, self).__init__() # load glove embeddings for the fixed vocabulary data_path = "./../data" if "embeddings.pt" not in os.listdir(data_path): glove_path = os.path.join(data_path, args.embeddings_name) create_embeddings(glove_path) glove_vectors = torch.load(os.path.join(data_path, "embeddings.pt")) self.pad_idx = fixed_token2id[my_constants.pad_token] self.eos_idx = fixed_token2id[my_constants.eos_token] self.unk_idx = fixed_token2id[my_constants.unk_token] self.bos_idx = fixed_token2id[my_constants.nlg_token] self.cls_idx = fixed_token2id[my_constants.cls_token] self.qa_idx = fixed_token2id[my_constants.qa_token] self.max_seq_len_passage = args.max_seq_len_passage self.max_seq_len_question = args.max_seq_len_question self.max_seq_len_qa_answer = args.max_seq_len_qa_answer self.max_seq_len_nlg_answer = args.max_seq_len_nlg_answer max_seq_len = max(self.max_seq_len_passage, self.max_seq_len_question, self.max_seq_len_qa_answer, self.max_seq_len_nlg_answer) self.d_vocab, self.d_emb = glove_vectors.size() self.d_model = args.d_model self.embedder = Embedder(glove_vectors, self.pad_idx, args.emb_dropout_rate, max_seq_len) self.reader = StReader(args, self.d_emb, self.pad_idx) self.decoder = StTransformerDecoder(args, self.d_emb) # special token mask (exclude this from output vocabulary distribution) special_mask_idx = [self.pad_idx, self.unk_idx, self.bos_idx, self.cls_idx, self.qa_idx] self.multi_source_pointer_gen = StMultiSrcPointerGen(self.d_model, self.d_vocab, self.d_emb, special_mask_idx) # whether to share the weights of input and output embeddings if args.tie_embeddings: self.multi_source_pointer_gen.vocab_generator[1].weight = nn.Parameter(self.embedder.embedding_layer.weight.data) def forward(self, p, q, qa, source_ext, d_ext_vocab, nlg = None, autoregressive = False): """ Inputs p: The indices of the tokens in the passages (2d long tensor) [batch_size x seq_len_passages] q: The indices of the tokens in the question (2d long tensor) [batch_size x seq_len_question] qa: The indices of the tokens in the QA answer (2d long tensor) [batch_size x seq_len_qa] source_ext: The indicies of the tokens of the concatination of passages, question and QA answer (2d long tesnor) [batch_size x num_passages * seq_len_passages + seq_len_question + seq_len_qa] d_ext_vocab: the size of the extended vocabulary (int) nlg: The indices of the tokens in the NLG answer (2d long tensor) [batch_size x seq_len_nlg] autoregressive: whether the model is in autoregressive mode (bool) Returns (Regular) dec_scores: The probabilities in the extedned vocabulary of the predictions of the NLG answers (3d float tensor) [batch_size x seq_len_nlg x d_ext_vocab] (Autoregressive) preds: Indices in the extended vocabulary of the NLG predictions (2d long tensor) [batch_size x seq_len_nlg] avg_lambdas: the average weight of each distribution for each answer (2d float tensor) [batch_size x 4] lengths: the length of each answer (1d long tensor) [bs] """ bs = p.size(0) # batch_size d_ext_vocab = max(d_ext_vocab, self.d_vocab) current_device = torch.device(f"cuda:{torch.cuda.current_device()}") if torch.cuda.is_available() else torch.device("cpu") mask_p, mask_q, mask_qa, mask_nlg = self.create_masks(p, q, qa, nlg, device = current_device) # pass the sequences trough the embedding layer # 3d float tensor [bs x len x d_emb] p_emb = self.embedder(p) q_emb = self.embedder(q) qa_emb = self.embedder(qa) # pass the sequences through the reader # 3d float tensors [bs x len x d_model] Mp, Mq, Mqa = self.reader(p_emb, q_emb, qa_emb, mask_p, mask_q, mask_qa) if not autoregressive: nlg_emb = self.embedder(nlg) # pass the outputs of the encoder and the answer input tokens through the decoder Mnlg = self.decoder(Mp, Mq, Mqa, nlg_emb, mask_p, mask_q, mask_qa, mask_nlg) # (3d): [bs x T x d_model] # pass the betas, the outputs of the encoder and the decoder through the multi-source pointer generator # to get the predictions for the answer sequence, along with the source tokens for estimating the final distr # (3d float): [bs x T x d_ext_vocab] dec_scores, lambdas = self.multi_source_pointer_gen(Mp, Mq, Mqa, Mnlg, mask_p, mask_q, mask_qa, source_ext, current_device, d_ext_vocab) return dec_scores, lambdas else: cond1, cond2 = True, True preds, sum_lambdas, lengths = None, None, None not_completed = torch.ones(bs, dtype = torch.bool, device = current_device) decoding_step = 1 bos_init = torch.ones(bs, dtype = torch.long, device = current_device) * self.bos_idx seq_indices = bos_init.clone() while cond1 and cond2: num_not_completed = not_completed.long().sum() # (3d): [num_not_completed x decoding_step x d_emb] nlg_emb = self.embedder(seq_indices[not_completed].view(num_not_completed, decoding_step)) # pass the outputs of the encoder and the answer input tokens through the decoder Mnlg = self.decoder(Mp[not_completed], Mq[not_completed], Mqa[not_completed], nlg_emb, mask_p[not_completed], mask_q[not_completed], mask_qa[not_completed]) # (3d): [num_not_completed x decoding_step x d_model] # pass the betas, the outputs of the encoder and the decoder through the multi-source pointer generator # to get the predictions for the answer sequence, along with the source tokens for estimating the final distr # dec_scores: (3d): [num_not_completed x decoding_step x d_ext_vocab] dec_scores, lambdas = self.multi_source_pointer_gen(Mp[not_completed], Mq[not_completed], Mqa[not_completed], Mnlg, mask_p[not_completed], mask_q[not_completed], mask_qa[not_completed], source_ext[not_completed], current_device, d_ext_vocab) dec_scores_i = torch.zeros((bs, d_ext_vocab), dtype = torch.float, device = current_device) dec_scores_i[:, self.pad_idx] = 1. dec_scores_i[not_completed, :] = dec_scores[:, -1, :] preds_i = torch.argmax(dec_scores_i, dim = -1) # append to the predicitons and lambdas of this decoding step to parent tensors if preds is not None: preds = torch.cat([preds, preds_i.unsqueeze(1)], dim = 1) # [bs x decoding_step] sum_lambdas[not_completed] += lambdas[:, -1, :] # [bs x 4] lengths += not_completed.long() # [bs] # initialize the parents tensors with the first decoding step predictions and lambdas else: preds = preds_i.contiguous().unsqueeze(1) # [bs x 1] sum_lambdas = lambdas[:, -1, :] # [bs x 4] lengths = torch.ones(bs, dtype = torch.long, device = current_device) # [bs] # prepare the extra input for the next decoding step # if the prediction was not in the fixed vocab, we correct it with the unk token seq_indices = torch.cat([bos_init.unsqueeze(1), preds], dim = 1) seq_indices[(seq_indices > self.d_vocab - 1)] = self.unk_idx # get the new not_completed mask not_completed = (seq_indices != self.eos_idx).all(dim = 1) # update conditions for stopping cond1 = not_completed.any().item() cond2 = seq_indices.size(-1) < self.max_seq_len_nlg_answer # increase the decoding step decoding_step += 1 padding = self.max_seq_len_nlg_answer - preds.size(1) - 1 if padding > 0: preds = F.pad(preds, (0, padding), "constant", self.pad_idx) avg_lambdas = sum_lambdas / lengths.unsqueeze(1) return preds, avg_lambdas, lengths def create_masks(self, p, q, qa, nlg = None, device = None): """ Args: p: 2d long tensor [bs x L] q: 2d long tensor [bs x J] qa: 2d long tensor [bs x N] nlg: 2d long tensor [bs x T] device: torch.device Returns: mask_p: 3d bool tensor [bs x L x 1] mask_q: 3d bool tensor [bs x J x 1] mask_qa: 3d bool tensor [bs x N x 1] mask_nlg: 3d bool tensor [bs x T x T] """ # create standard masks mask_p = (p != self.pad_idx).unsqueeze(-1) mask_q = (q != self.pad_idx).unsqueeze(-1) mask_a = (qa != self.pad_idx).unsqueeze(-1) if nlg is not None: # standard mask for answer mask_nlg_src = (nlg != self.pad_idx).unsqueeze(-1) # (3d): [batch_size x seq_len_answer x 1] # no-peak into the future mask for answer T = nlg.size(1) mask_nlg_trg = torch.tril(torch.ones([1, T, T], dtype = torch.float, device = device)) # (3d) [1 x seq_len_answer x seq_len_answer] # combined mask for answer mask_nlg = torch.mul(mask_nlg_src, mask_nlg_trg).transpose(-1, -2).bool() else: mask_nlg = None return mask_p, mask_q, mask_a, mask_nlg ``` #### File: preast_qa/style_transfer/st_train.py ```python import torch from tensorboardX import SummaryWriter import numpy as np import os from datetime import datetime from multiprocessing import cpu_count import gc import random import sys os.chdir("style_transfer") sys.path.append("./../models") sys.path.append("./../general_modules") from st_argument_parser_helper import parse_arguments from st_train_helpers import init_dataloader, init_model, pprint_and_log from my_losses import DecoderLoss from my_train_helpers import init_optimizer, ssave def train(args): args.mode = "train" # number of cpu and gpu devices n_gpu = torch.cuda.device_count() n_cpu = cpu_count() print(f"Number of cuda devices: {n_gpu} | Number of CPU cores: {n_cpu}") # specify main device and all devices (if gpu available) device_list = [torch.device(f"cuda:{i}") for i in range(n_gpu)] main_device = device_list[0] if n_gpu > 0 else torch.device("cpu") print(f"Main device: {main_device}") print(f"Parallel devices = {device_list}") if args.deterministic: torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) torch.backends.cudnn.enabled = False torch.backends.cudnn.deterministic = True # initialize cuDNN backend if args.cudnn_backend and n_gpu > 0: torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = False # paths for saveing gradient flow and checkpoints if args.saving: checkpoint_path = os.path.join(args.checkpoint_path, args.run_name) else: checkpoint_path = None # load checkpoint and fetch its arguments if args.load_checkpoint: # most recent checkpoint if not specificed specific_checkpoint = os.listdir(checkpoint_path)[-1] if args.run_subname == "" else args.run_subname specific_checkpoint_path = os.path.join(checkpoint_path, specific_checkpoint) checkpoint = torch.load(specific_checkpoint_path, map_location = main_device) args = checkpoint["args"] print(f"Loaded arguments from {specific_checkpoint_path}") else: checkpoint = None # initialize dataloader module dataloader = init_dataloader(args) # initialize masque model, optionally load checkpoint and wrap in DataParallel model = init_model(args, dataloader, main_device, device_list, checkpoint) # intialize custom optimizer, optionally load state from checkpoint optimizer, current_epoch, current_train_step, global_train_step = init_optimizer(args, model, dataloader, checkpoint) results = {"loss": [], "lambdas": {"vocab": [], "question": [], "qa_answer": [], "passage": []}} # initialize summary writer writer = SummaryWriter(os.path.join("runs", args.run_name)) if args.saving else None # initilaize the loss function loss_fn = DecoderLoss(dataloader.dataset.pad_idx, dataloader.dataset.unk_idx) if n_gpu > 1: loss_fn = torch.nn.DataParallel(loss_fn, device_ids = device_list, output_device = main_device) loss_fn = loss_fn.to(main_device) # create folders for saving gradient flow and checkpoint if need if not bool(checkpoint) and args.saving: os.mkdir(checkpoint_path) gc.collect() for epoch in range(current_epoch, args.max_epochs): for train_step, batch in enumerate(dataloader, start = current_train_step): global_train_step += 1 try: take_train_step(batch, model, optimizer, loss_fn, main_device, results) except RuntimeError as e: # to catch OOM errors print("[{}]".format(datetime.now().time().replace(microsecond = 0)), global_train_step, e) del batch gc.collect() for device_id in range(n_gpu): with torch.cuda.device(f"cuda:{device_id}"): torch.cuda.empty_cache() # empty cache after the first (optimizing) iteration if args.cudnn_backend and global_train_step == 1: gc.collect() for device_id in range(n_gpu): with torch.cuda.device(f"cuda:{device_id}"): torch.cuda.empty_cache() # print and log to the summary writer if (not global_train_step % args.print_and_log_every) and global_train_step: pprint_and_log(writer, results, global_train_step, optimizer.get_learning_rate()) results = {"loss": [], "lambdas": {"vocab": [], "question": [], "qa_answer": [], "passage": []}} # save checkpoint if (not global_train_step % args.save_every) and global_train_step: ssave(model, optimizer, args, epoch, current_train_step, global_train_step, checkpoint_path, "ST_model") current_train_step = 0 gc.collect() print("[{}] Finished epoch {}".format(datetime.now().time().replace(microsecond = 0), epoch)) if bool(writer): ssave(model, optimizer, args, epoch + 1, current_train_step, global_train_step, checkpoint_path, "ST_model") if writer is not None: writer.close() def take_train_step(batch, model, optimizer, loss_fn, device, results): # Representations of the sequences in the fixed vocabulary (indices) passage_fixed_vectors = batch[0].to(device) # 2d long tensor [batch_size x seq_len_passage] query_fixed_vectors = batch[1].to(device) # (2d long tensor [batch_size x seq_len_question] qa_answer_fixed_vectors = batch[2].to(device) # 2d long tensor [batch_size x seq_len_qa] nlg_answer_src_vectors = batch[3].to(device) # (2d long tensor) [batch_size x seq_len_nlg - 1] # Representation of the NLG answer in the extended vocabulary (shifted, ends with eos token) nlg_answer_trg_vectors = batch[4].to(device) # (2d long tensor) [batch_size x seq_len_nlg - 1] # Representation of the concatination of passage, question and qa_answer in the extended vocabulary source_ext_vectors = batch[5].to(device) # (2d long tensor) [batch_size x seq_len_passage + seq_len_question + seq_len_answer] d_ext_vocab = source_ext_vectors.max().item() + 1 del batch # forward pass dec_scores, lambdas = model(passage_fixed_vectors, query_fixed_vectors, qa_answer_fixed_vectors, source_ext_vectors, d_ext_vocab, nlg_answer_src_vectors) # calculate loss per example loss = loss_fn(dec_scores, nlg_answer_trg_vectors) # add the average loss to the computational graph loss.mean().backward() # clip gradients torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) # apply gradients optimizer.step() optimizer.zero_grad() # store losses and lambdas per example with torch.no_grad(): lambda_vocab, lambda_question, lambda_qa_answer, lambda_passage = torch.split(lambdas.mean(dim = 1), 1, dim = -1) results["loss"].extend(loss.tolist()) results["lambdas"]["vocab"].extend(lambda_vocab.tolist()) results["lambdas"]["question"].extend(lambda_question.tolist()) results["lambdas"]["qa_answer"].extend(lambda_qa_answer.tolist()) results["lambdas"]["passage"].extend(lambda_passage.tolist()) if __name__ == '__main__': args = parse_arguments() train(args) ```
{ "source": "johnttan/lolesports_scraper", "score": 3 }
#### File: johnttan/lolesports_scraper/playerdatabase.py ```python import json import pymongo from pprint import pprint from pymongo import MongoClient from config import configuration as cfg from playerinfo import playerinfo client = MongoClient(cfg['deployurl']) db = client[cfg['deploydatabase']] cUsers = db.Users cPlayers = db.Players cGames = db.Games cPlayers.create_index("playername", unique=True) def initializeplayers(): for playername, info in playerinfo.items(): player = { 'playername': playername, 'teamname': info[1], 'role': info[0], 'statistics': {}, 'latestgame': {}, 'gamesplayed': [] } cPlayers.update({'playername':playername}, player, upsert=True) def updateplayerdata(): for playername, info in playerinfo.items(): gamesplayed = [] gamesplayedarray = [] latestgameplayedid = 0 gamesplayedquery = cGames.find({'playerlist': playername},) for game in gamesplayedquery: gamesplayed.append(game) for game in gamesplayed: gamesplayedarray.append(game['gameID']) for game in gamesplayed: if game['gameID'] == max(gamesplayedarray): latestgame = game cPlayers.update({'playername':playername}, {'$set':{'gamesplayed':gamesplayed, 'latestgame':latestgame}}) def updateplayerdatabygame(game): for playername, player in game['players'].items(): for player in cPlayers.find({'playername':playername}): if not any(game1['gameID'] == game['gameID'] for game1 in player[gamesplayed]): cPlayers.update({'playername':playername}, {'$set':{'gamesplayed':gamesplayed}}) exports = { 'initializeplayers': initializeplayers, 'updateplayerdata': updateplayerdata, 'updateplayerdatabygame': updateplayerdatabygame } ``` #### File: johnttan/lolesports_scraper/scoring.py ```python from scoreformula import scoreformuladict as calculate from scoreconfig import scoreconfiguration as sconfig from pprint import pprint def calctotalscore(score): return (sum(score.values())) def calcdeathscore(playername, game, player): return calculate['deathscore'](player['deaths']) def calcwinscore(playername, game, player): return calculate['winscore'](player['win']) def calccsscore(playername, game, player): cs = player['minion_kills'] for playername1, player1 in game['players'].items(): if playername1 != playername and player1['role'] == player['role']: oppcs = player1['minion_kills'] role = player['role'] try: oppcs except NameError: print('{} wrong role'.format(playername)) csscore = calculate['csscore'](cs, oppcs, role) return csscore def calcgoldscore(playername, game, player): gold = player['total_gold'] gamegold = 0 for playername1, player1 in game['players'].items(): gamegold += player1['total_gold'] if player1['teamname'] == player['teamname'] and player1['role'] == player['role']: oppgold = player1['total_gold'] goldscore = calculate['goldscore'](gold, oppgold, gamegold) return goldscore def calcpartscore(playername, game, player): kills = player['kills'] assists = player['assists'] teamkills = 0 for playername1, player1 in game['players'].items(): if player1['teamname'] == player['teamname']: teamkills += player1['kills'] partscore = calculate['partscore'](kills, assists, teamkills) return partscore def calckdascore(playername, game, player): kills = player['kills'] deaths = player['deaths'] assists = player['assists'] role = player['role'] kdascore = calculate['kdascore'](kills, deaths, assists, role) return kdascore """ Takes in game dictionary, playername returns score dictionary for particular player """ def calcplayerscore(playername, game, player): score = {} for scorefield in sconfig['scorearray']: score[scorefield + 'score'] = globals()['calc' + scorefield + 'score'](playername, game, player) score['totalscore'] = calctotalscore(score) return score """ Takes in game dictionary, returns game dictionary with all scores calculated. This is imported in databasescoring.py """ def calcgamescore(game): for playername, player in game['players'].items(): player['score'] = calcplayerscore(playername, game, player) return game exports = { 'calcgamescore': calcgamescore } ```
{ "source": "johnttaylor/foxtail", "score": 2 }
#### File: nqbp/nqbplib/my_globals.py ```python import os import logging # Globals _NQBP_WORK_ROOT = '' _NQBP_PRJ_DIR = '' _NQBP_PKG_ROOT = '' _NQBP_PRE_PROCESS_SCRIPT = None _NQBP_PRE_PROCESS_SCRIPT_ARGS = '' _NQBP_INITIAL_LIBDIRS = [] _NQBP_XPKG_MODEL = None # Initialize globals OUT = logging.getLogger( 'nqbp' ) # def NQBP_VERSION(): return "v0.1.1" # def NQBP_TEMP_EXT(): return '_temp_nqbp' # def NQBP_NAME_LIBDIRS(): return 'libdirs.b' # def NQBP_NAME_SOURCES(): return 'sources.b' def NQBP_XPKG_MODEL_OUTCAST(): return 'outcast' def NQBP_XPKG_MODEL_MIXED(): return 'mixed' def NQBP_XPKG_MODEL_LEGACY(): return 'legacy' def NQBP_WRKPKGS_DIRNAME(): if ( NQBP_XPKG_MODEL() == NQBP_XPKG_MODEL_OUTCAST() ): return 'xpkgs' else: return 'xsrc' def NQBP_PUBLICAPI_DIRNAME(): if NQBP_XPKG_MODEL() == NQBP_XPKG_MODEL_OUTCAST(): return NQBP_WORK_ROOT() + os.sep + 'xinc' + os.sep + 'src' else: return NQBP_PKG_ROOT() + os.sep + 'xsrc' # def NQBP_PKG_TOP(): return 'top' # def NQBP_PRJ_DIR_MARKER1(): return "projects" # def NQBP_PRJ_DIR_MARKER2(): return "tests" # def NQBP_PRJ_DIR( newval=None ): global _NQBP_PRJ_DIR if ( newval != None ): if ( newval.endswith(os.sep) ): newval [:-1] _NQBP_PRJ_DIR = newval return _NQBP_PRJ_DIR # def NQBP_WORK_ROOT( newval=None ): global _NQBP_WORK_ROOT if ( newval != None ): if ( newval.endswith(os.sep) ): newval [:-1] _NQBP_WORK_ROOT = newval return _NQBP_WORK_ROOT # def NQBP_PKG_ROOT( newval=None ): global _NQBP_PKG_ROOT if ( newval != None ): if ( newval.endswith(os.sep) ): newval [:-1] _NQBP_PKG_ROOT = newval return _NQBP_PKG_ROOT def NQBP_PKG_NAME(): return NQBP_PKG_ROOT().replace( NQBP_WORK_ROOT(), "" ) # def NQBP_PRE_PROCESS_SCRIPT( newval=None ): global _NQBP_PRE_PROCESS_SCRIPT if ( newval != None ): _NQBP_PRE_PROCESS_SCRIPT = newval return _NQBP_PRE_PROCESS_SCRIPT # def NQBP_PRE_PROCESS_SCRIPT_ARGS( newval=None ): global _NQBP_PRE_PROCESS_SCRIPT_ARGS if ( newval != None ): _NQBP_PRE_PROCESS_SCRIPT_ARGS = newval return _NQBP_PRE_PROCESS_SCRIPT_ARGS # def NQBP_XPKG_MODEL(): global _NQBP_XPKG_MODEL if ( _NQBP_XPKG_MODEL == None ): val = os.environ.get('NQBP_XPKG_MODEL') if ( val == NQBP_XPKG_MODEL_OUTCAST() ): _NQBP_XPKG_MODEL = NQBP_XPKG_MODEL_OUTCAST() elif ( val == NQBP_XPKG_MODEL_MIXED() ): _NQBP_XPKG_MODEL = NQBP_XPKG_MODEL_MIXED(); else: _NQBP_XPKG_MODEL = NQBP_XPKG_MODEL_LEGACY(); return _NQBP_XPKG_MODEL ``` #### File: windows/avr_gcc_arduino/atmega328p_uno.py ```python import sys, os from nqbplib import base from nqbplib import utils from nqbplib import my_globals class ToolChain( base.ToolChain ): #-------------------------------------------------------------------------- def __init__( self, exename, prjdir, build_variants, env_tools, env_support, env_cc_ver, env_bsp_ver, default_variant='release', env_error=None ): base.ToolChain.__init__( self, exename, prjdir, build_variants, default_variant ) self._ccname = 'AVR-GCC-ATMega328p Ardunio' self._cc = os.path.join( env_tools, env_cc_ver, 'hardware', 'tools', 'avr', 'bin', 'avr-gcc' ) self._asm = os.path.join( env_tools, env_cc_ver, 'hardware', 'tools', 'avr', 'bin', 'avr-gcc' ) self._ld = os.path.join( env_tools, env_cc_ver, 'hardware', 'tools', 'avr', 'bin', 'avr-gcc' ) self._ar = os.path.join( env_tools, env_cc_ver, 'hardware', 'tools', 'avr', 'bin', 'avr-gcc-ar' ) self._objcpy = os.path.join( env_tools, env_cc_ver, 'hardware', 'tools', 'avr', 'bin', 'avr-objcopy' ) self._asm_ext = 'asm' self._asm_ext2 = 'S' # Cache potential error for environment variables not set self._env_error = env_error; self._clean_pkg_dirs.extend( ['arduino', '_arduino'] ) # set the name of the linker output (not the final output) self._link_output = '-o ' + exename + '.elf' # Define paths core_path = os.path.join(my_globals.NQBP_WORK_ROOT(), env_support, 'arduino', 'hardware', 'avr', env_bsp_ver, 'cores', 'arduino' ) hardware_path = os.path.join(my_globals.NQBP_WORK_ROOT(), env_support, 'arduino', 'hardware', 'avr', env_bsp_ver, 'variants', 'standard' ) self._base_release.inc = self._base_release.inc + " -I{} -I{} ".format(core_path, hardware_path) # common_flags = ' -mmcu=atmega328p -Os' link_and_compile_flags = ' -flto' asm_and_compile_flags = ' -MMD -DARDUINO_AVR_UNO -DARDUINO_ARCH_AVR' self._base_release.cflags = self._base_release.cflags + common_flags + link_and_compile_flags + asm_and_compile_flags + ' -ffunction-sections -fdata-sections' self._base_release.c_only_flags = self._base_release.c_only_flags + ' -std=gnu11 -fno-fat-lto-objects' self._base_release.cppflags = self._base_release.cppflags + ' -std=gnu++11 -fpermissive -fno-exceptions -fno-rtti -fno-threadsafe-statics' self._base_release.asmflags = common_flags + asm_and_compile_flags + ' -c -x assembler-with-cpp' self._base_release.linklibs = ' -Wl,--start-group -lm -Wl,--end-group' self._base_release.linkflags = common_flags + link_and_compile_flags + ' -fuse-linker-plugin -Wl,--gc-sections' self._ar_options = 'rcs ' + self._ar_library_name self._debug_release.cflags = self._debug_release.cflags + ' -DCFG_DEBUG=2' self._debug_release.asmflags = self._debug_release.asmflags + ' -DCFG_DEBUG=2' self._optimized_release.cflags = self._optimized_release.cflags + ' -DCFG_DEBUG=0' self._optimized_release.asmflags = self._optimized_release.asmflags + ' -DCFG_DEBUG=2' # # Build Config/Variant: "xyz" # # Common/base options, flags, etc. #self._base_xyz = self._base_release.copy() #self._base_xyz.cflags = '-c -DBUILD_TIME_UTC={:d}'.format(self._build_time_utc) # Optimized options, flags, etc. #self._optimized_xyz = self._optimized_release.copy() # Debug options, flags, etc. #self._debug_xyz = self._debug_release.copy() # Create new build variant - but ONLY if it DOES NOT already exist #if ( not self._bld_variants.has_key('xyz') ): # self._bld_variants['xyz'] = { 'nop':'none' } # Add to dictionary of options for the 'xyz' build variant #self._bld_variants['xyz']['base'] = self._base_xyz #self._bld_variants['xyz']['optimized'] = self._optimized_xyz #self._bld_variants['xyz']['debug'] = self._debug_xyz #-------------------------------------------------------------------------- def link( self, arguments, inf, local_external_setting, variant ): # Run the linker base.ToolChain.link(self, arguments, inf, local_external_setting, variant ) # switch to the build variant output directory vardir = '_' + self._bld utils.push_dir( vardir ) # Output Banner message self._printer.output("= Creating EEPROM (eep) file ..." ) # construct objcopy command options = '-O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load --no-change-warnings --change-section-lma .eeprom=0' objcpy = '{} {} {} {}'.format( self._objcpy, options, self._final_output_name + '.elf', self._final_output_name + '.eep' ) # Generate the .HEX file if ( arguments['-v'] ): self._printer.output( objcpy ) if ( utils.run_shell(self._printer, objcpy) ): self._printer.output("=") self._printer.output("= Build Failed: Failed to create .EEP file from the .ELF" ) self._printer.output("=") sys.exit(1) # Output Banner message self._printer.output("= Creating HEX file ..." ) # construct objcopy command options = '-O ihex -R .eeprom' objcpy = '{} {} {} {}'.format( self._objcpy, options, self._final_output_name + '.elf', self._final_output_name + '.hex' ) # Generate the .HEX file if ( arguments['-v'] ): self._printer.output( objcpy ) if ( utils.run_shell(self._printer, objcpy) ): self._printer.output("=") self._printer.output("= Build Failed: Failed to create .HEX file from the .ELF" ) self._printer.output("=") sys.exit(1) # Return to project dir utils.pop_dir() #-------------------------------------------------------------------------- def get_asm_extensions(self): extlist = [ self._asm_ext, self._asm_ext2 ] return extlist #-------------------------------------------------------------------------- def validate_cc( self ): if ( self._env_error != None ): exit( "ERROR: The {} environment variable is not set.".format( self._env_error) ) return base.ToolChain.validate_cc(self) ``` #### File: windows/mingw_w64/console_exe.py ```python import sys from nqbplib import base from nqbplib import utils class ToolChain( base.ToolChain ): def __init__( self, exename, prjdir, build_variants, default_variant='release' ): base.ToolChain.__init__( self, exename, prjdir, build_variants, default_variant ) self._ccname = 'Mingw_W64' # more stuff to clean self._clean_list.extend( ['xml'] ) # Disable the following 'string warnings' because they generate false-positives (i.e. issues with GCC itself) self._base_release.cflags = self._base_release.cflags + '-Wno-stringop-truncation -Wno-stringop-overflow ' # Force ANSI standard printfs/scanf self._base_release.cflags = self._base_release.cflags + '-D__USE_MINGW_ANSI_STDIO=1' # Turn off ALL optimization on the debug build self._debug_release.cflags = self._debug_release.cflags + ' -O0' # statically link my C/C++ libraries #self._base_release.linkflags = self._base_release.linkflags + ' -static -static-libgcc -static-libstdc++ ' # # Build Config/Variant: "xyz" # # Common/base options, flags, etc. #self._base_xyz = self._base_release.copy() #self._base_xyz.cflags = '-c -DBUILD_TIME_UTC={:d}'.format(self._build_time_utc) # Optimized options, flags, etc. #self._optimized_xyz = self._optimized_release.copy() # Debug options, flags, etc. #self._debug_xyz = self._debug_release.copy() # Create new build variant - but ONLY if it DOES NOT already exist #if ( not self._bld_variants.has_key('xyz') ): # self._bld_variants['xyz'] = { 'nop':'none' } # Add to dictionary of options for the 'xyz' build variant #self._bld_variants['xyz']['base'] = self._base_xyz #self._bld_variants['xyz']['optimized'] = self._optimized_xyz #self._bld_variants['xyz']['debug'] = self._debug_xyz #-------------------------------------------------------------------------- def validate_cc( self ): t = base.ToolChain.validate_cc(self) if ( not '64' in t[1].decode() ): utils.output( "ERROR: Incorrect build of GCC (target does NOT equal 64Bit version)" ) sys.exit(1) return t ``` #### File: nqbp/other/genfsm_base.py ```python import sys import os import subprocess # from nqbplib.docopt.docopt import docopt from nqbplib import utils # usage = """ genfsm - Generates source code from Cadifra FSM Diagrams (.cdd files) =============================================================================== Usage: genfsm [options] <basename> <namespaces> [<sinelabore>...] Arguments: <basename> Base name for the FSM. The Cadifra diagram must have this same file name. All generated output files will have the <basename> as part of their file names. <basename> IS case sensitive! <namespaces> The encapsulated namespace(s) for the generated files. The Format is: 'Rte::Db::Record' <sinelabore> Optional arguments passed directly to the Sinelabore code generator Options: -d NEVENTS When NEVENTS is greater then 0 code for an event queue is generated where NEVENTS is the size of the event queue. [Default: 0] -h, --help Display command help. NOTES: o The environment variable SINELABORE_PATH is required/used to specify the location of the Sinelabore code generator JAR files (and it supporting JAR files). o The script assumes that Graphviz's dot.exe is in the command path. GraphViz is used to generated the FSM diagram for Doxygen. See http://www.graphviz.org """ copyright_header = """* This file is part of the Colony.Core Project. The Colony.Core Project is an * open source project with a BSD type of licensing agreement. See the license * agreement (license.txt) in the top/ directory or on the Internet at * http://integerfox.com/colony.core/license.txt * * Copyright (c) 2014-2020 <NAME> * * Redistributions of the source code must retain the above copyright notice.""" # import subprocess import re import sys #------------------------------------------------------------------------------ # Parse command line def run( argv, copyright=None ): global copyright_header # Process command line args... args = docopt(usage, version="0.0.1", options_first=True ) sargs = ' '.join( args['<sinelabore>'] ) # Check the environment variables sinpath = os.environ.get( "SINELABORE_PATH" ) if ( sinpath == None ): exit( "ERROR: The SINELABORE_PATH environment variable is not set." ) # Set copyright header (if specified) if ( copyright != None ): copyright_header = copyright # Convert namespace arg to list names = args['<namespaces>'].split('::') # Filenames fsmdiag = args['<basename>'] + ".cdd" base = args['<basename>'] + "Context_" evque = args['<basename>'] + "EventQueue_" fsm = args['<basename>'] cfg = 'codegen.cfg' # Generated File names oldfsm = fsm + '.h' oldfsmcpp = fsm + '.cpp' oldevt = fsm + '_ext.h' oldtrace = fsm + '_trace.h' oldtrace2 = fsm + '_trace.java' newfsm = fsm + '_.h' newfsmcpp = fsm + '_.cpp' newevt = fsm + '_ext_.h' newtrace = fsm + '_trace_.h' # Delete 'optional' old/previous files utils.delete_file( evque + ".h" ) utils.delete_file( evque + ".cpp" ) # Create the config file for Sinelabore geneatedCodegenConfig( cfg, base, names ) # Build Sinelabore command cmd = 'java -jar -Djava.ext.dirs={} {}/codegen.jar {} -p CADIFRA -doxygen -o {} -l cppx -Trace {}'.format( sinpath, sinpath, sargs, fsm, fsmdiag ) cmd = utils.standardize_dir_sep( cmd ) # Invoke Sinelabore command print(cmd) p = subprocess.Popen( cmd, shell=True ) r = p.communicate() if ( p.returncode != 0 ): exit("ERROR: Sinelabore encounterd an error or failed to run." ) # Clean-up config file (don't want it being checked into version control) os.remove( cfg ) # Mangle the event names so that I can have many FSMs in the same namespace with the same event names eventList = get_events_names( oldevt ) mangle_event_names( oldevt, eventList, fsm, ' ' ) mangle_event_names( oldfsmcpp, eventList, fsm, '"', '0', '=' ) mangle_event_names( oldtrace, eventList, fsm, '"' ) cleanup_global_define( oldevt, fsm, names ) # Generate Context/Base class actions, guards = getContextMethods( fsmdiag ) generatedContextClass( base, names, getHeader(), actions, guards ) # Generated event queuue class depth = args['-d'].strip() if ( depth != '0' ): generateEventClass( evque, names, fsm, newfsm, depth ) # Post process the generated file(s) to work better with Doxygen cleanup_for_doxygen( fsm + ".h", args['<namespaces>'] + "::" + fsm ) cleanup_for_doxygen( oldtrace ) cleanup_for_doxygen( oldevt ) # Post process the generated file(s) cleanup_trace( oldfsmcpp, names, fsm, oldfsm, oldtrace, newtrace ) cleanup_includes( oldfsm, names, oldfsm, newfsm, oldevt, newevt, base + '.h' ) cleanup_includes( oldfsmcpp, names, oldfsm, newfsm, oldevt, newevt, base + '.h' ) # Housekeeping for naming convention utils.delete_file( newfsm ) utils.delete_file( newfsmcpp ) utils.delete_file( newevt ) utils.delete_file( newtrace ) utils.delete_file( oldtrace2 ) # remove unwanted JAVA file os.rename( oldfsm, newfsm ) os.rename( oldfsmcpp, newfsmcpp ) os.rename( oldevt, newevt ) os.rename( oldtrace, newtrace ) #------------------------------------------------------------------------------ def get_events_names( ext_header_file ): found_start = False events = [] with open( ext_header_file ) as inf: for line in inf: line = line.lstrip() # Capture events if ( found_start ): if ( line.find("_NO_MSG") == -1 ): event = line.strip().split('=')[0] event = event.strip().split(',')[0] events.append( event.strip() ) # All events found -->can exit the function else: break; # Find the start of the events if ( line.startswith( "enum" ) ): found_start = True # Return found events return events # def mangle_event_names( file, events, prefix, pre_del1, pre_del2=None, pre_del3=None ): tmpfile = file + ".tmp" found_indexes = False with open( file ) as inf: with open( tmpfile, "w") as outf: for line in inf: # Replace event names for e in events: # Brute force approach to replacing whole event names (i.e. properly handle evStop & evStopped) old_ev = pre_del1 + e new_ev = pre_del1 + prefix + "_" + e line = line.replace(old_ev,new_ev,1) if ( pre_del2 != None ): old_ev = pre_del2 + e new_ev = pre_del2 + prefix + "_" + e line = line.replace(old_ev,new_ev,1) if ( pre_del3 != None ): old_ev = pre_del3 + e new_ev = pre_del3 + prefix + "_" + e line = line.replace(old_ev,new_ev,1) # Fix event name indexes if ( found_indexes ): line = fix_indexes( line, prefix ); found_indexes = False elif ( line.find( "const unsigned short evt_idx[]={" ) != -1 ): found_indexes = True outf.write( line ) os.remove( file ) os.rename( tmpfile, file ) # def fix_indexes( line, prefix ): line = line.replace('};','').strip() k = len(prefix) + 1 offsets = line.strip().split(",") idx = 0 newoffsets = [] # Strip off potential trailing ',' (e.g. happens when there are no 'true' events) if ( offsets[len(offsets)-1] == '' ): del offsets[len(offsets)-1] for i in offsets: n = int(i) newidx = n + idx * k idx += 1 newoffsets.append( str(newidx) ) newline = " " + ','.join(newoffsets) + '};\n' return newline # def cleanup_for_doxygen( headerfile, classname='<not-used>' ): tmpfile = headerfile + ".tmp" skip_state = 0 with open( headerfile ) as inf: with open( tmpfile, "w") as outf: for line in inf: if ( line.startswith( "namespace") and skip_state == 0 ): outf.write( "#ifndef DOXYGEN_WILL_SKIP_THIS\n\n"); outf.write( line ); skip_state += 1 continue if ( line.startswith( "#endif") and skip_state == 1): outf.write( "#endif // !DOXYGEN_WILL_SKIP_THIS\n\n"); outf.write( line ); skip_state += 1 continue if ( line.find( 'Here is the graph that shows the state machine' ) == -1 ): outf.write( line ) else: outf.write( "/** \class {}\n\nHere is the graph that shows the state machine this class implements\n\n\dot\n".format( classname ) ) os.remove( headerfile ) os.rename( tmpfile, headerfile ) # def cleanup_global_define( headerfile, fsm_name, namespaces ): tmpfile = headerfile + ".tmp" skip_state = 0 with open( headerfile ) as inf: with open( tmpfile, "w") as outf: for line in inf: if ( line.startswith( '#define InnermostStates ' )-1 ): outf.write( line ) else: tokens = line.split() outf.write( '#define {}{}_InnermostStates {};\n'.format(flatten_namespaces(namespaces), fsm_name, tokens[2])) os.remove( headerfile ) os.rename( tmpfile, headerfile ) # def cleanup_includes( headerfile, namespaces, oldfsm, newfsm, oldevt, newevt, base ): tmpfile = headerfile + ".tmp" path = path_namespaces( namespaces ) with open( headerfile ) as inf: with open( tmpfile, "w") as outf: for line in inf: if ( line.find( '#include "{}"'.format(oldfsm) ) != -1): outf.write( '#include "{}{}"\n'.format(path, newfsm) ) elif ( line.find( '#include "{}"'.format(oldevt) ) != -1) : outf.write( '#include "{}{}"\n'.format(path, newevt) ) elif ( line.find( '#include "{}"'.format(base) ) != -1) : outf.write( '#include "{}{}"\n'.format(path, base) ) else: outf.write( line ) os.remove( headerfile ) os.rename( tmpfile, headerfile ) # def cleanup_trace( cppfile, namespaces, base, oldfsm, old_trace_headerfile, new_trace_headerfile ): # Add xx_trace_.h include to xxx_.cpp tmpfile = cppfile + ".tmp" path = path_namespaces( namespaces ) newstate = 'stateVars = stateVarsCopy;' newcount = 0 # Update the state machine .cpp file with Tracing tweaks prev_line = '' with open( cppfile ) as inf: with open( tmpfile, "w") as outf: for line in inf: # Remove Trace call from the initialize method if ( f"{base}TraceEvent(" in line and f"{base}::initialize()" in prev_line ): pass # Keep the current line... else: outf.write( line ) if ( line.find( '#include "{}"'.format(oldfsm) ) != -1): outf.write( '#include "{}{}"\n'.format(path, new_trace_headerfile) ) # Add trace for transitioned TO state (but skip the initialize() method because trace + statically created instance DON'T mix) elif ( line.find( newstate ) != -1 ): newcount += 1 if ( newcount > 1 ): outf.write( ' CPL_SYSTEM_TRACE_MSG( SECT_, ( " New State=%s", getNameByState(getInnermostActiveState()) ));\n' ) prev_line = line os.remove( cppfile ) os.rename( tmpfile, cppfile ) # add CPL trace hooks tmpfile = old_trace_headerfile + ".tmp" path = path_namespaces( namespaces ) trace_fn = 'TraceEvent(int evt);' enum = 'enum ' + base + 'TraceEvent' comment = '/* Simulation which' with open( old_trace_headerfile ) as inf: with open( tmpfile, "w") as outf: for line in inf: if ( line.find( '#define' ) != -1): outf.write( line ) outf.write( '\n' ) outf.write( '#include "Cpl/System/Trace.h"\n' ) outf.write( '\n' ) outf.write( '/// Trace Section\n' ) outf.write( '#define SECT_ "{}::{}"\n'.format( "::".join(namespaces), base ) ) outf.write( '\n' ) elif ( line.find( trace_fn ) != -1 ): outf.write( '#define {}TraceEvent(a) CPL_SYSTEM_TRACE_MSG( SECT_, ( " Old State=%s, Event=%s", getNameByState(getInnermostActiveState()), {}TraceEvents[a] ));\n'.format( base, base) ) elif ( line.find( enum ) != -1 ): pass elif ( line.find( comment ) != -1 ): pass else: outf.write( line ) os.remove( old_trace_headerfile ) os.rename( tmpfile, old_trace_headerfile ) #------------------------------------------------------------------------------ def getContextMethods( fname ): actions = [] guards = [] with open(fname) as f: for line in f: g = re.search(r'[a-zA-Z0-9]+\(\)(?!\;)',line) a = re.search(r'[a-zA-Z0-9]+\(\)\;', line) if ( g != None ): guards.append( g.group(0) ) if ( a != None ): actions.append( a.group(0).split(';')[0] ) # Remove any duplicates from the grep'd methods return sorted(list(set(actions))), sorted(list(set(guards))) def path_namespaces( namespaces ): flat = '' for n in namespaces: flat += n + "/" return flat def flatten_namespaces( namespaces ): flat = "" for n in namespaces: flat += n + "_" return flat def nested_namespaces( namespaces ): nest = "" for n in namespaces: nest += "namespace {} {} ".format(n,'{') return nest def end_nested_namespaces( namespaces ): nest = "" for n in namespaces: nest += "};" nest += " /// end namespace(s)" return nest def cfg_namespaces( namespaces ): nest = "*" for n in namespaces: if ( nest == "*" ): nest = n + " " else: nest += "{} namespace {} ".format('{',n) return nest def end_cfg_namespaces( namespaces ): nest = "" count = len(namespaces) if ( count > 1 ): for n in range(1,count): nest += "};" return nest def generatedContextClass( class_name, namespaces, header, actions, guards ): fname = class_name + '.h' flat = flatten_namespaces(namespaces) with open(fname,"w") as f: f.write( "#ifndef {}{}x_h_\n".format( flat, class_name ) ) f.write( "#define {}{}x_h_\n".format( flat, class_name ) ) f.write( header ) f.write( "\n\n/* This file is auto-generated DO NOT MANUALLY EDIT this file! */\n\n" ) f.write( "\n" ) f.write( "/// Namespace(s)\n" ) f.write( "{}\n".format( nested_namespaces(namespaces) ) ) f.write( "\n\n" ) f.write( "/// Context (aka actions/guards) for my Finite State Machine\n" ) f.write( "class {}\n".format( class_name ) ) f.write( "{\n" ) f.write( "public:\n" ) for a in actions: f.write( " /// Action\n" ) f.write( " virtual void {} noexcept = 0;\n".format( a ) ) f.write( "\n" ) f.write( "\n" ) f.write( "public:\n" ) for g in guards: f.write( " /// Guard\n" ) f.write( " virtual bool {} noexcept = 0;\n".format( g ) ) f.write( "\n" ) f.write( "\n" ) f.write( "public:\n" ) f.write( " /// Virtual Destructor\n" ) f.write( " virtual ~{}(){}{}\n".format( class_name, "{","}" ) ) f.write( "\n" ) f.write( "};\n" ) f.write( "\n" ) f.write( "{}\n".format( end_nested_namespaces(namespaces) ) ) f.write( "#endif /// end header latch\n" ) def generateEventClass( class_name, namespaces, parent_class, parent_header, depth ): fname = class_name + '.h' flat = flatten_namespaces(namespaces) path = path_namespaces( namespaces ) macroname = parent_class.upper() with open(fname,"w") as f: f.write( "#ifndef {}{}x_h_\n".format( flat, class_name ) ) f.write( "#define {}{}x_h_\n".format( flat, class_name ) ) f.write( getHeader() ) f.write( "\n\n/* This file is auto-generated DO NOT MANUALLY EDIT this file! */\n\n" ) f.write( "\n" ) f.write( '#include "{}{}"\n'.format(path, parent_header) ) f.write( '#include "Cpl/Container/RingBuffer.h"\n' ) f.write( "\n\n" ) f.write( "/// Namespace(s)\n" ) f.write( "{}\n".format( nested_namespaces(namespaces) ) ) f.write( "\n\n" ) f.write( "/// Event Queue for FSM events.\n" ) f.write( "class {}: public {}, public Cpl::Container::RingBuffer<{}_EVENT_T>\n".format( class_name, parent_class, macroname ) ) f.write( "{\n" ) f.write( "protected:\n" ) f.write( " /// Memory for Event queue\n" ) f.write( " {}_EVENT_T m_eventQueMemory[{}];\n".format( macroname, depth) ) f.write( "\n") f.write( " /// Flag for tracking re-entrant events\n" ) f.write( " bool m_processingFsmEvent;\n" ) f.write( "\n") f.write( "public:\n" ) f.write( " /// Constructor\n" ) f.write( " {}();\n".format( class_name) ) f.write( "\n") f.write( "public:\n" ) f.write( " /// This method properly queues and process event messages\n" ) f.write( " virtual void generateEvent( {}_EVENT_T msg );\n".format( macroname ) ) f.write( "};\n" ) f.write( "\n" ) f.write( "{}\n".format( end_nested_namespaces(namespaces) ) ) f.write( "#endif /// end header latch\n" ) fname = class_name + '.cpp' flat = flatten_namespaces(namespaces) with open(fname,"w") as f: f.write( getHeader() ) f.write( "\n\n/* This file is auto-generated DO NOT MANUALLY EDIT this file! */\n\n" ) f.write( "\n" ) f.write( '#include "{}.h"\n'.format( class_name ) ) f.write( '#include "Cpl/System/FatalError.h"\n' ) f.write( '#include "Cpl/System/Trace.h"\n' ) f.write( "\n" ) f.write( '#define SECT_ "{}::{}"\n'.format( "::".join(namespaces), parent_class ) ) f.write( "\n" ) f.write( "/// Namespace(s)\n" ) f.write( "{}\n".format( nested_namespaces(namespaces) ) ) f.write( "\n\n" ) f.write( "{}::{}()\n".format( class_name, class_name ) ) f.write( ":Cpl::Container::RingBuffer<{}_EVENT_T>( {}, m_eventQueMemory )\n".format( macroname, depth ) ) f.write( ",m_processingFsmEvent(false)\n" ) f.write( " {\n" ) f.write( " }\n" ) f.write( "\n\n" ) f.write( "void {}::generateEvent( {}_EVENT_T msg )\n".format( class_name, macroname ) ) f.write( " {\n" ) f.write( " // Queue my event\n" ) f.write( " if ( !add( msg ) )\n" ) f.write( " {\n" ) f.write( ' Cpl::System::FatalError::logf( "{}::{}: - Buffer Overflow!" );\n'.format( "::".join(namespaces), class_name ) ) f.write( " }\n" ) f.write( "\n" ) f.write( " // Protect against in-thread 'feedback loops' that can potentially generate events\n" ) f.write( " if ( !m_processingFsmEvent )\n" ) f.write( " {\n" ) f.write( " m_processingFsmEvent = true;\n" ) f.write( " while( remove( msg ) )\n" ) f.write( " {\n" ) f.write( ' CPL_SYSTEM_TRACE_MSG( SECT_, ("Processing event:= %s, current state=%s ...", getNameByEvent(msg), getNameByState(getInnermostActiveState())) );\n' ) f.write( " if ( processEvent(msg) == 0 )\n" ) f.write( " {\n" ) f.write( ' CPL_SYSTEM_TRACE_MSG( SECT_, (" Event IGNORED:= %s", getNameByEvent(msg)) );\n' ) f.write( " }\n" ) f.write( ' CPL_SYSTEM_TRACE_MSG( SECT_, (" Event Completed:= %s, end state=%s", getNameByEvent(msg), getNameByState(getInnermostActiveState())) );\n' ) f.write( " }\n" ) f.write( "\n" ) f.write( " m_processingFsmEvent = false;\n" ) f.write( " }\n" ) f.write( " }\n" ) f.write( "\n" ) f.write( "{}\n".format( end_nested_namespaces(namespaces) ) ) #------------------------------------------------------------------------------ def geneatedCodegenConfig( fname, base, names ): cfg = '''# Output configuration options for the given language. Pipe them into a file for further use! # #Allows to define naming conventions for events PrefixEvents= # #Allows to define naming conventions for simple states PrefixSimpleStates= # #Allows to define naming conventions for composite states PrefixCompositeStates= # #Allows to define naming conventions for choice states PrefixChoice= # #Path to 'dot.exe'. #DotPath="C:\\Program Files\\Graphviz2.22\\bin\\dot.exe" #DotPath=/usr/local/bin/dot DotPath= # #Port the graphical statediagram.simulator listens for event strings. UdpPort=4445 # #Options 'yes' and 'no' are possible. If set to 'yes' only hot transitions are shown ShowOnlyHotTransitions=no # #It is possible to limit the length of the event text. This keeps the image compact. NumberOfTransitionChars=32 # #If set to 'yes' only correct models can be saved. SaveCheckedOnly=yes # #If set to 'yes' action code is displayed in the state diagram of the integrated statediagram.editor. DisplayEntryExitDoCode=yes # #Limit action code in the integrated statediagram.editor to the given number of chars. NumberOfEntryExitDoCodeChars=32 # # #Defines the text each generated file starts with. Copyright=$$HEADER$$ # #Defines if real tabs or spaces are used for indentation. Realtab=no # #If realtab is 'no' this key defines how many spaces to use per tab Tabsize=4 # #Some systems can use special compiler keywords to place the debug strings in program memory or a specifc segment TypeOfDbgString=const char # #If set to 'no' the data and time info is supressed in each file header IncludeDateFileHeaders=no # #Optional namespace used in the generated C#, Java and C++ file. Namespace=$$NAMESPACE_START$$ NamespaceEnd=$$NAMESPACE_END$$ # #Define a base classes for the generated machine class. BaseClassMachine=$$BASE$$ # #Define an optional base classes for the generated state classes. BaseClassStates= # #If set to yes virtual create methods are gen- erated in the factory class. CreateFactoryMethodsVirtual=No # #If set to yes all state classes are generated into a single cpp/h file. CreateOneCppStateHeaderFileOnly=Yes # #If set to 'yes' a destructor for the state mchine class is generated. If set to 'virtual' a virtual destructor is generated. If set to 'no' no destructor is generated. StateMachineClassHasDestructor=no # #If set to 'yes' separte state classes are used. Otherwise action code is completely inlined into the state machine code SeparateStateClasses=no # ''' # Replace tokens cfg = cfg.replace( "$$BASE$$", base ) cfg = cfg.replace( "$$HEADER$$", getHeaderCfg() ) cfg = cfg.replace( "$$NAMESPACE_START$$", cfg_namespaces(names) ) cfg = cfg.replace( "$$NAMESPACE_END$$", end_cfg_namespaces(names) ) # create file with open(fname,"w") as f: f.write( cfg ) #------------------------------------------------------------------------------ def getHeader(): return '/*-----------------------------------------------------------------------------\n' + copyright_header + '\n*----------------------------------------------------------------------------*/\n/** @file */\n\n' def getHeaderCfg(): text = copyright_header.replace('\n', r'\n') return r'/*-----------------------------------------------------------------------------\n' + text + r'\n*----------------------------------------------------------------------------*/\n/** @file */\n\n' ``` #### File: nqbp/other/nrf_util_base.py ```python import sys import os from nqbplib.docopt.docopt import docopt from nqbplib import utils #------------------------------------------------------------------------------ # Create a dumb downed printer class to be compatible with utils.run_shell() method class Printer: def __init__(self): pass def output(self,line): print(line) #------------------------------------------------------------------------------ def get_default_zipfile_name( default_dir='_arduino'): zipfile = None # Make sure the default directory exists... if ( os.path.isdir(default_dir) ): files = utils.dir_list_filter_by_ext(default_dir, ['zip']) # set the default HEX file is ONE and ONLY ONE Hex file exists in the default directory if ( len(files) == 1 ): zipfile = os.path.join(default_dir, files[0] ) return zipfile #------------------------------------------------------------------------------ def run( argv ): # Parse command line args = docopt(__doc__, version="0.1") # Get environment variable for where the arduino tools are located ARDUINO_TOOLS = os.environ.get( 'ARDUINO_TOOLS' ) if ( ARDUINO_TOOLS == None ): print("The environment variable - ARDUINO_TOOLS - is NOT set.") sys.exit(1) ARDUINO_BSP_VER = os.environ.get( 'ARDUINO_BSP_VER' ) if ( ARDUINO_BSP_VER == None ): print("The environment variable - ARDUINO_BSP_VER - is NOT set.") sys.exit(1) ARDUINO_NRF_UTIL_VER = os.environ.get( 'ARDUINO_NRF_UTIL_VER' ) if ( ARDUINO_NRF_UTIL_VER == None ): print("The environment variable - ARDUINO_NRF_UTIL_VER - is NOT set.") sys.exit(1) # Default tool stuff nrfutil = os.path.join(ARDUINO_TOOLS, 'hardware', 'nrf52', ARDUINO_BSP_VER, 'tools', ARDUINO_NRF_UTIL_VER, 'binaries', 'win32', 'nrfutil' ) # Get hex file to program zipfile = get_default_zipfile_name(); if ( args['<zipfile>'] ): zipfile = args['<zipfile>'] if ( zipfile == None ): print("No ZIP file was specified OR multiple ZIP files exist in the default directory") sys.exit(1) # build options.... verbose = ' --verbose ' if args['-v'] else '' comport = ' --port '+args['-p'] baud = ' -b '+args['-b'] command = '' if ( not args['--nozip'] ): target = ' dfu serial -pkg {}'.format(zipfile) command = target + comport + baud extra = '' if not args['--extra'] else ' ' + args['--extra'] options = verbose + command + extra # Run NRFUTIL printer = Printer() cmd = nrfutil + ' ' + options if ( args['-v'] ): print(cmd) if (utils.run_shell(printer, cmd, False) ): print() print('** A FAILURE occurred while attempting to run nrfutil') print() sys.exit(1) ```
{ "source": "johnttaylor/Outcast", "score": 2 }
#### File: Outcast/bin/evie.py ```python import sys import os from subprocess import call from docopt.docopt import docopt import utils from my_globals import EVIE_VERSION from my_globals import OUTCAST_SCM_ADOPTED_TOOL #------------------------------------------------------------------------------ def load_command( scm, name ): try: command_module = __import__("scm.{}.{}".format(scm, name), fromlist=[scm]) except ImportError: exit("%r is not a Evie command. Use 'evie help' for list of commands." % name) return command_module #------------------------------------------------------------------------------ def display_command_list(scm): import pkgutil p = __import__("scm.{}".format(scm),fromlist=['git'] ) print( ' ' ) print( "Type 'evie help <command>' for details. Type 'evie --help' for base usage." ) print( "-------------------------------------------------------------------------------" ) for importer, modname, ispkg in pkgutil.iter_modules(p.__path__): if ( not ispkg ): cmd = load_command( scm, modname ) cmd.display_summary() print( ' ' ) def display_scm_types_list(): print( ' ' ) print( "Type 'evie --help' for additional help." ) print( "-------------------------------------------------------------------------------" ) bpath = os.path.join( os.path.dirname(__file__), 'scm' ) if ( os.path.exists( bpath ) ): files = os.listdir(bpath) for f in files: if ( os.path.isdir(os.path.join(bpath,f)) ): print(f) print( ' ' ) #------------------------------------------------------------------------------ # Parse command line args = docopt(__doc__, version=EVIE_VERSION(), options_first=True ) # Display list of build engines supported if ( args['--qry'] ): display_scm_types_list() else: # Determine which SCM tool to use scm = os.environ.get( OUTCAST_SCM_ADOPTED_TOOL() ) if ( scm == None ): scm = 'git' if ( args['--scm'] ): scm = args['--scm'] args['--scm'] = scm # Trap help on a specific command if ( args['<command>'] == 'help' ): # Display list of commands if none specified if ( args['<args>'] == [] ): display_command_list(scm) # Display command specific help else: load_command( scm, args['<args>'][0] ).run( args, ['--help'] ) # Trap no command specified elif ( args['<command>'] == None ): docopt(__doc__,argv=['--help']) # Run the command (if it exists) else: # Set quite & verbose modes utils.set_quite_mode( args['-q'] ) utils.set_verbose_mode( args['-v'] ) # run the command load_command( scm, args['<command>'] ).run( args, [args['<command>']] + args['<args>'] ) ``` #### File: Outcast/bin/orc.py ```python import sys import os from subprocess import call from docopt.docopt import docopt from my_globals import ORC_VERSION from my_globals import OUTCAST_SCM_ADOPTED_TOOL from my_globals import OUTCAST_SCM_PRIMARY_TOOL from my_globals import PACKAGE_ROOT import utils #------------------------------------------------------------------------------ def load_command( name ): try: command_module = __import__("commands.{}".format(name), fromlist=["commands"]) except ImportError: exit("{} is not a Orc command. Use 'orc help' for list of commands.".format(name) ) return command_module #------------------------------------------------------------------------------ def display_command_list(): import pkgutil import commands p = commands print( ' ' ) print( "Type 'orc help <command>' for more details. Type 'orc --help' for base usage." ) print( "-------------------------------------------------------------------------------" ) # Display the list of commands for importer, modname, ispkg in pkgutil.iter_modules(p.__path__): if ( not ispkg ): cmd = load_command( modname ) cmd.display_summary() print( ' ' ) #------------------------------------------------------------------------------ # MAIN if __name__ == '__main__': # Parse command line args = docopt(__doc__, version=ORC_VERSION(), options_first=True ) # Determine which 'adopted' SCM tool to use scm = os.environ.get( OUTCAST_SCM_ADOPTED_TOOL() ) if ( scm == None ): scm = 'git' if ( args['--scm'] ): scm = args['--scm'] args['--scm'] = scm # Determine which 'primary' SCM tool to use scm = os.environ.get( OUTCAST_SCM_PRIMARY_TOOL() ) if ( scm == None ): scm = 'git' if ( args['--primary-scm'] ): scm = args['--primary-scm'] args['--primary-scm'] = scm # Trap the special where option if ( args['--where'] ): print(__file__) exit(0) # Trap help on a specific command if ( args['<command>'] == 'help' ): # Display list of commands if none specified if ( args['<args>'] == [] ): display_command_list() # Display command specific help else: load_command( args['<args>'][0] ).run( args, ['--help'] ) # Run the command (if it exists) else: # Set quite & verbose modes utils.set_quite_mode( args['-q'] ) utils.set_verbose_mode( args['-v'] ) # Set the current working directory to the root directory repo_root = utils.find_root( args['--primary-scm'], args['-v'] ) utils.push_dir( repo_root ) PACKAGE_ROOT( repo_root ) # run the command load_command( args['<command>'] ).run( args, [args['<command>']] + args['<args>'] ) ``` #### File: bin/scm/copy.py ```python def display_summary(): print("{:<13}{}".format( 'copy', "Creates a non-tracked/local copy of a SCM Repository" )) # DOCOPT command line definition USAGE = """ Creates a non-tracked/local copy of the specified repository/branch/reference =============================================================================== usage: evie [common-opts] copy [options] <dst> <repo> <origin> <id> evie [common-opts] copy get-success-msg evie [common-opts] copy error Arguments: <dst> Parent directory for where the copy is placed. The directory is specified as a relative path to the root of primary repository. <repo> Name of the repository to copy. <origin> Path/URL to the repository. <id> Label/Tag/Hash/Version of code to be copied. get-success-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command is successful get-error-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command fails Options: -p PKGNAME Specifies the Package name if different from the <repo> name -b BRANCH Specifies the source branch in <repo>. The use/need of this option in dependent on the <repo> SCM type. --force Forces a true copy/clone to be created. The default behavior is SCM type specific. Options: -h, --help Display help for this command. Notes: o The command MUST be run in the root of the primary respostiory. """ ``` #### File: scm/git/copy.py ```python "" import os, sys import utils from docopt.docopt import docopt import scm.copy import scm.git.mount #--------------------------------------------------------------------------------------------------------- def display_summary(): scm.copy.display_summary() #------------------------------------------------------------------------------ def run( common_args, cmd_argv ): args = docopt(scm.copy.USAGE, argv=cmd_argv) # Use the mount command so as to have consistent pre/post GIT behavior with adopting non-integrated packages if ( not args['--force'] ): cmd_argv[0] = 'mount' cmd_argv.insert(1, '--noro') scm.git.mount.run( common_args, cmd_argv ) # Do a brute force copy else: # -b option is not supported/needed if ( args['-b'] != None ): sys.exit( "The '-b' option is not supported/needed. Use a 'remote-ref' as the <id> argument" ) # Default Package name pkg = args['<repo>'] if ( args['-p'] ): pkg = args['-p'] # Make sure the destination directory exists dst = os.path.join( os.getcwd(), args['<dst>'] ) utils.print_verbose( f"Destination for the copy: {dst}" ) utils.mkdirs( dst ) # Create a clone of the repo # NOTE: I hate cloning the entire repo - but I have not found a way to get JUST a snapshot by a remote-ref cmd = f'git clone --branch {args["<id>"]} --depth=1 {args["<origin>"]}/{args["<repo>"]}.git {pkg}' utils.push_dir( dst ) t = utils.run_shell( cmd, common_args['-v'] ) utils.pop_dir() if ( utils.is_error(t) ): # Clean-up dst dir if there was failure utils.remove_tree( dst ) utils.check_results( t, f"ERROR: Failed the retreive/clone the specified package/repository. Note: the <id> ({args['<id>']}) MUST be a git TAG." ) # Remove the .git directoy since this is a non-tracked copy gitdir = os.path.join( dst, pkg, ".git" ) utils.remove_tree( gitdir, warn_msg="Not able to remove the .git directory for local copy" ) ``` #### File: scm/git/umount.py ```python import os, sys import utils from docopt.docopt import docopt import scm.umount #--------------------------------------------------------------------------------------------------------- def display_summary(): scm.umount.display_summary() #------------------------------------------------------------------------------ def run( common_args, cmd_argv ): args = docopt(scm.umount.USAGE, argv=cmd_argv) # Success Msg if ( args['get-success-msg'] ): print( "Repo unmount. You will need to perform a 'git add/rm' to remove the deleted files" ) return # Error Msg if ( args['get-error-msg'] ): print( "" ) # No addition info return # -b option is not supported/needed if ( args['-b'] != None ): sys.exit( "The '-b' option is not supported/needed. Use a 'remote-ref' as the <id> argument" ) # Default Package name pkg = args['<repo>'] if ( args['-p'] ): pkg = args['-p'] # Set the foreign package directory to be deleted dst = os.path.join( args['<dst>'] , pkg ) if ( not os.path.isdir(dst) ): sys.exit( f"ERROR: The Package/Directory - {dst} - does not exist." ) utils.print_verbose( f"Package/directory being removed: {dst}" ) # The is no 'git subtree rm' command -->we just simply delete the package directory utils.set_tree_readonly( dst, False ) utils.remove_tree( dst ) ``` #### File: scm/git/update.py ```python import os import utils from docopt.docopt import docopt import scm.update #------------------------------------------------------------------------------ def display_summary(): scm.update.display_summary() #------------------------------------------------------------------------------ def run( common_args, cmd_argv ): args = docopt(__doc__, argv=cmd_argv) # -b option is not supported/needed if ( args['-b'] != None ): sys.exit( "The '-b' option is not supported/needed. Use a 'remote-ref' as the <id> argument" ) # Default Package name pkg = args['<repo>'] if ( args['-p'] ): pkg = args['-p'] # Set directory for the subtree directory dst = os.path.join( args['<dst>'], pkg ) dst = utils.force_unix_dir_sep(dst) utils.print_verbose( f"Location of the copy being updated: {dst}" ) # Update the 'subtree' cmd = f'git subtree pull --prefix {dst} {args["<origin>"]}/{args["<repo>"]}.git {args["<id>"]} --squash' t = utils.run_shell( cmd, common_args['-v'] ) utils.check_results( t, "ERROR: Failed the update a subtree for the specified package/repository." ) ``` #### File: bin/scm/mount.py ```python def display_summary(): print("{:<13}{}".format( 'mount', "Creates a semi-tracked/local copy of a SCM Repository" )) # DOCOPT command line definition USAGE = """ Creates a semi-tracked/local copy of the specified repository/branch/reference =============================================================================== usage: evie [common-opts] mount [options] <dst> <repo> <origin> <id> evie [common-opts] mount [options] get-success-msg evie [common-opts] mount [options] get-error-msg Arguments: <dst> PARENT directory for where the copy is placed. The directory is specified as a relative path to the root of primary repository. <repo> Name of the repository to mount <origin> Path/URL to the repository <id> Label/Tag/Hash/Version of code to be mounted get-success-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command is successful get-error-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command fails Options: -p PKGNAME Specifies the Package name if different from the <repo> name -b BRANCH Specifies the source branch in <repo>. The use/need of this option in dependent on the <repo> SCM type. --noro Do NOT mark the package as read-only in the file system -h, --help Display help for this command Notes: o The command MUST be run in the root of the primary respostiory. o The 'mount' command is different from the 'copy' in that creates semi-tracked clone of the repository which can be updated directly from the source <repo> at a later date (think git subtrees) """ ``` #### File: scm/none/umount.py ```python import os import utils from docopt.docopt import docopt import scm.umount #--------------------------------------------------------------------------------------------------------- def display_summary(): scm.umount.display_summary() #------------------------------------------------------------------------------ def run( common_args, cmd_argv ): args = docopt(scm.umount.USAGE, argv=cmd_argv) # Return 'error' since this is just a stub exit(1) ``` #### File: bin/scm/rm.py ```python def display_summary(): print("{:<13}{}".format( 'rm', "Removes a previously copied SCM Repository" )) # DOCOPT command line definition USAGE=""" Removes a previously 'copied' repository =============================================================================== usage: evie [common-opts] rm [options] <dst> <repo> <origin> <id> evie [common-opts] rm [options] get-success-msg evie [common-opts] rm [options] get-error-msg Arguments: <dst> PARENT directory for where the package was copied. The directory is specified as a relative path to the root of primary repository. <repo> Name of the repository to remove <origin> Path/URL to the repository <id> Label/Tag/Hash/Version of code to be remove get-success-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command is successful get-error-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command fails Options: -p PKGNAME Specifies the Package name if different from the <repo> name -b BRANCH Specifies the source branch in <repo>. The use/need of this option in dependent on the <repo> SCM type. Options: -h, --help Display help for this command Notes: o The command MUST be run in the root of the primary respostiory. o This command only applied to repositories previously mounted using the 'copy' command. """ ``` #### File: bin/scm/update.py ```python def display_summary(): print("{:<13}{}".format( 'update', "Updates a previously mounted SCM Repository" )) # DOCOPT command line definition USAGE = """ Updates a previously mounted repository =============================================================================== usage: evie [common-opts] update [options] <dst> <repo> <origin> <id> evie [common-opts] update [options] get-success-msg evie [common-opts] update [options] get-error-msg Arguments: <dst> PARENT directory for where the copy-to-be-updated is located. The directory is specified as a relative path to the root of primary repository.<pkg> <repo> Name of the repository to update <origin> Path/URL to the repository <id> Label/Tag/Hash/Version of code to be updated get-success-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command is successful get-error-msg Returns a SCM specific message that informs the end user of additional action(s) that may be required when the command fails Options: -b BRANCH Specifies the source branch in <repo>. The use/need of this option in dependent on the <repo> SCM type. Options: -h, --help Display help for this command Notes: o The command MUST be run in the root of the primary respostiory. """ ```
{ "source": "johnturnerTCC/aws-iamctl", "score": 2 }
#### File: aws-iamctl/iamctl/harvester.py ```python # http://www.apache.org/licenses/LICENSE-2.0 # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import boto3 import json from botocore.exceptions import ClientError import re import fnmatch import logging import logging.config import csv import sys import os import argparse import time from datetime import datetime from progress.bar import ChargingBar, Bar from pyfiglet import Figlet from colorama import init,Fore, Back, Style from terminaltables import SingleTable from os.path import expanduser from os import path class Harvester: def close_file_handler(self): self.extract_file.close() def read_iam_file(self): with open('iam.json') as json_file: return json.load(json_file) def return_service_iam_actions(self,service_prefix): for p in self.iam_reference['serviceMap']: if (self.iam_reference['serviceMap'][p]['StringPrefix'] == service_prefix): return self.iam_reference['serviceMap'][p]['Actions'] def return_service_arns(self): arns=[] for p in self.iam_reference['serviceMap']: if ('ARNRegex' in self.iam_reference['serviceMap'][p]): arns.append({'ARNRegex':self.iam_reference['serviceMap'][p]['ARNRegex'], 'StringPrefix':self.iam_reference['serviceMap'][p]['StringPrefix']}) return arns def match_action_regex(self, match_action, service_prefix): matches = [] actions = self.return_service_iam_actions(service_prefix) for action in actions or []: if fnmatch.fnmatch(action, match_action): matches.append(action) return matches def match_resource_regex(self, match_resource): matches = [] arns = self.return_service_arns() for arn in arns or []: arn_regex = re.compile(arn['ARNRegex']) if arn_regex.match(match_resource): matches.append(arn) return matches def get_iam_roles(self): paginator = self.client.get_paginator('list_roles') response_iterator = paginator.paginate( PaginationConfig = { 'PageSize': 1000, 'StartingToken': None}) roles = response_iterator.build_full_result() self.logger.info("Number of roles: %d",len(roles['Roles'])) return roles['Roles'] def get_role_inline_policies(self, role_name): return self.client.list_role_policies( RoleName = role_name ) def get_role_attached_policies(self, role_name): return self.client.list_attached_role_policies( RoleName = role_name ) def get_policy(self, policy_arn): return self.client.get_policy(PolicyArn = policy_arn) def get_policy_version(self,policy_arn, version_id): return self.client.get_policy_version(PolicyArn = policy_arn, VersionId = version_id) def get_role_policy(self, rolename, inline_policy_name): return self.client.get_role_policy(RoleName = rolename, PolicyName = inline_policy_name) def get_role(self, role_name): return self.client.get_role(RoleName = role_name) def parse_statement_action(self,action_tag ,statement_action): actions = [] if(statement_action == "*"): self.logger.info("All Actions against all Services") actions.append({'service':'*' , action_tag:'*'}) else: self.logger.debug("Statement Action: " + statement_action) self.logger.debug(action_tag+": " + statement_action.encode("utf-8").decode().split(':')[1]) self.logger.debug("service: " + statement_action.encode("utf-8").decode().split(':')[0]) action_matches = self.match_action_regex(statement_action.encode("utf-8").decode().split(':')[1], statement_action.encode("utf-8").decode().split(':')[0]) for action in action_matches or []: actions.append({'service' : statement_action.encode("utf-8").decode().split(':')[0], action_tag:action}) self.logger.info("Statement Action: " + statement_action.encode("utf-8").decode().split(':')[0]+" : " + action ) return actions def parse_statement_resource(self,resource_tag, statement_resource): resources = [] if(statement_resource == "*"): self.logger.info("All resources for all Services") resources.append({'service' : '*' , resource_tag : '*'}) else: resource_matches = self.match_resource_regex(statement_resource) for resource in resource_matches: resources.append({'service' : resource['StringPrefix'], resource_tag : statement_resource}) self.logger.info("Statement Resource: " + resource['StringPrefix'] + " : " + statement_resource) return resources def mux(self,action_tag,actions,resource_tag,resources): #actions structure is: service, action #resources sturcture is: service, arn #muxedup structure is: service, action, arn self.logger.debug("I am muxed up and I received this actions:") self.logger.debug(str(actions)) self.logger.debug("I am muxed up and I received this resources:") self.logger.debug(str(resources)) muxedup=[] for action in actions: for resource in resources: if ((action['service'] == resource['service']) or (action['service'] == "*") or (resource['service'] == "*")): muxedup.append({'service': action['service'], 'action' : action[action_tag], 'arn' : resource[resource_tag]}) return muxedup def parse_policy(self,policy_document): # instantiate empty policy array and policy statement array policy_statement_array = [] parsed_policy = [] # determining if there is a single statement or an array of statements in the policy document # and appending those statement(s) to policy_statement_array # if not isinstance(policy_document['Statement'], list): policy_statement_array.append(policy_document['Statement']) else: policy_statement_array = policy_document['Statement'] # code that parses each policy statement into its components # and calls parse_statement_action for action/notaction, parse_statement_resource for resource/notresource block for policy_statement in policy_statement_array: self.logger.info("Statement Effect: "+policy_statement['Effect']) actions = [] statement_has_action = 'Action' # Checking if statement has action or notaction block if policy_statement.get('Action',False): statement_has_action = 'Action' else: statement_has_action = 'NotAction' # checking if Action is single item or a list if not isinstance(policy_statement[statement_has_action], list): actions=actions + self.parse_statement_action(statement_has_action, policy_statement[statement_has_action]) else: for statement_action in policy_statement[statement_has_action]: actions = actions+self.parse_statement_action(statement_has_action, statement_action) resources=[] statement_has_resource = 'Resource' # Checking if statment has resource or notresource block if policy_statement.get('Resource',False): statement_has_resource = 'Resource' else: statement_has_resource = 'NotResource' self.logger.debug("Statement Resource: "+str(policy_statement[statement_has_resource])) if not isinstance(policy_statement[statement_has_resource], list): resources=resources+self.parse_statement_resource(statement_has_resource, policy_statement[statement_has_resource]) else: for statement_resource in policy_statement[statement_has_resource]: resources = resources + self.parse_statement_resource(statement_has_resource, statement_resource) muxed_up=self.mux(statement_has_action,actions,statement_has_resource,resources) self.logger.debug("Going to print Muxed up results for: ") self.logger.debug(str(muxed_up)) parsed_policy.append({'effect' : policy_statement['Effect'], 'action_resources' : muxed_up }) return parsed_policy def write_out_exhaust(self, role): #self.logger.info("here is the exhaust",str(exhaust)) #exhaust: data: List<role> #role: rolename:string,trust:string,parsed_policies: List<policy> #policy: policyname: string, parsed_statements: List<statement> #statement: effect: string, action_resources: List<action_resource> #action_resource: service, action, arn #Final write out (vsad, somesuffix, trust, policyname, effect, service, action, resource) #MVP write out (rolename, trust, policyname, effect, service, action, resource) csv_out = self.csv_out for policy in role['policies']: self.logger.info("here is the policy",str(policy)) if policy['type'] == "trust": for statement in policy['statements']: csv_out.writerow((role['name'],role['path'],policy['name'],policy['type'], statement['effect'],statement['service'], statement['action'], None ,statement['principal'])) else: for statement in policy['statements']: for action_resource in statement['action_resources']: csv_out.writerow((role['name'], role['path'], policy['name'], policy['type'], statement['effect'], action_resource['service'], action_resource['action'], action_resource['arn'], None)) def get_role_trust(self, roleresponse): trustlist = [] for Statement in roleresponse['Statement']: for principal in Statement['Principal'].values(): if isinstance(principal, list): for subvalue in principal: trustlist.append({'effect' : Statement['Effect'], 'service' : 'sts', 'action' : 'AssumeRole', 'principal' : subvalue}) else: trustlist.append({'effect' : Statement['Effect'], 'service' : 'sts', 'action' : 'AssumeRole', 'principal' : principal}) self.logger.info(trustlist) return {'name': 'trust', 'type' : 'trust', 'statements' : trustlist} def process_role_attached_policies(self, attached_policies): parsed_attached_policies = [] for attached_policy in attached_policies: policyresponse = self.get_policy(attached_policy['PolicyArn'])['Policy'] self.logger.debug(str(policyresponse)) policyversion = self.get_policy_version(attached_policy['PolicyArn'], policyresponse['DefaultVersionId'])['PolicyVersion'] policy_document = policyversion['Document'] self.logger.info("Attached Policy Name: " + attached_policy['PolicyName']) self.logger.debug(str(policy_document)) parsed_policy = self.parse_policy(policy_document) parsed_attached_policies.append({'name': attached_policy['PolicyName'], 'type' : 'managed', 'statements' : parsed_policy}) return parsed_attached_policies def process_role_inline_policies(self, rolename, inline_policies): parsed_attached_policies = [] for inline_policy_name in inline_policies: policyresponse = self.get_role_policy(rolename, inline_policy_name) policy_document = policyresponse['PolicyDocument'] self.logger.info("Inline Policy Name: " + inline_policy_name) self.logger.debug(str(policy_document)) parsed_policy = self.parse_policy(policy_document) parsed_attached_policies.append({'name': inline_policy_name, 'type' : 'inline', 'statements' : parsed_policy}) return parsed_attached_policies def get_role_trust_policies(self, role_name): parsed_trust_policies=[] roleresponse= self.get_role(role_name ) self.logger.info("Going to print the trust policy next") self.logger.debug(str(roleresponse['Role']['AssumeRolePolicyDocument'])) trustresponse = self.get_role_trust(roleresponse['Role']['AssumeRolePolicyDocument']) self.logger.info("Going to print the trust policy next again") self.logger.info(trustresponse) parsed_trust_policies.append(trustresponse) return parsed_trust_policies def process_role(self, role): parsed_policies = [] self.logger.info("\nRole Name: " + role['RoleName']) #tbd call trust policies processor trust_policy = self.get_role_trust_policies(role['RoleName']) self.logger.debug("Going to print Processed Trust Policy") self.logger.debug(str(trust_policy)) parsed_policies.extend(trust_policy) inline_policies = self.get_role_inline_policies(role['RoleName'])['PolicyNames'] self.logger.debug("Going to print Raw Inline Policies") self.logger.debug(str(inline_policies)) processed_inline_policies=self.process_role_inline_policies(role['RoleName'], inline_policies) self.logger.debug("Going to print Processed Inline Policies") self.logger.debug(str(processed_inline_policies)) parsed_policies.extend(processed_inline_policies) attached_policies = self.get_role_attached_policies(role['RoleName'])['AttachedPolicies'] self.logger.debug("Going to print Raw Attached Policies") self.logger.debug(str(attached_policies)) processed_attached_policies = self.process_role_attached_policies(attached_policies) self.logger.debug("Going to print Processed Attached Policies") self.logger.debug(str(processed_attached_policies)) parsed_policies.extend(processed_attached_policies) return parsed_policies def harvest_iam_roles_from_account(self): roles=self.get_iam_roles() self.logger.info("Number of roles: %d", len(roles)) #bar = ProgressBar('Something') bar = ChargingBar('Harvesting IAM Roles from '+self.account_tag, max=len(roles),suffix='%(index)d/%(max)d - %(eta)ds') for role in roles: parsed_policies = self.process_role(role) self.write_out_exhaust({'name': role['RoleName'],'path':role['Path'],'policies':parsed_policies}) bar.next() self.close_file_handler() bar.finish() def __init__(self, cli_profile_name, account_tag, output_directory): # create self.logger, TBD change this to get logging conf based on class name self.logger = logging.getLogger(__name__) self.iam_reference = self.read_iam_file() self.cli_profile_name = cli_profile_name self.account_tag = account_tag self.output_directory = output_directory # Any clients created from this session will use credentials # from the [dev] section of ~/.aws/credentials. self.client = boto3.Session(profile_name=cli_profile_name).client('iam') self.filename = self.output_directory + '/' + account_tag + '_' + cli_profile_name + '_iam_tuples.csv' self.extract_file = open(self.filename, "w", newline = '') self.csv_out = csv.writer(self.extract_file) self.csv_out.writerow(('rolename', 'path', 'policyname', 'policytype', 'effect', 'service', 'action', 'arn', 'principal')) ```
{ "source": "johntzwei/bleurt", "score": 2 }
#### File: bleurt/bleurt/checkpoint.py ```python import json import os import tensorflow.compat.v1 as tf flags = tf.flags logging = tf.logging FLAGS = flags.FLAGS CONFIG_FILE = "bleurt_config.json" WEIGHTS_FILE = os.path.join("variables", "variables") def get_bleurt_params_from_flags_or_ckpt(): """Reads BLEURT's parameters from either flags or a json config file.""" logging.info("Reading BLEURT parameters") if FLAGS.init_bleurt_checkpoint: logging.info("Reading paramter from BLEURT checkpoint: {}".format( FLAGS.init_bleurt_checkpoint)) config = read_bleurt_config(FLAGS.init_bleurt_checkpoint) logging.info("Reads parameters from flags.") vocab_file = config["vocab_file"] do_lower_case = config["do_lower_case"] max_seq_length = config["max_seq_length"] bert_config_file = config["bert_config_file"] init_checkpoint = config["tf_checkpoint_variables"] # The following test gives the user the option to override `max_seq_length`. # This should only be used during fine-tuning. if FLAGS.max_seq_length: logging.warning("Overriding `max_seq_length`. This could have unintended" " consequences.") max_seq_length = FLAGS.max_seq_length else: logging.info("Reads parameters from flags.") assert FLAGS.vocab_file, "vocab_file missing" vocab_file = FLAGS.vocab_file assert FLAGS.do_lower_case, "do_lower_case missing" do_lower_case = FLAGS.do_lower_case assert FLAGS.max_seq_length, "max_seq_length missing" max_seq_length = FLAGS.max_seq_length assert FLAGS.bert_config_file, "config_file missing" bert_config_file = FLAGS.bert_config_file assert FLAGS.init_checkpoint, "init_checkpoint missing" init_checkpoint = FLAGS.init_checkpoint return { "vocab_file": vocab_file, "do_lower_case": do_lower_case, "max_seq_length": max_seq_length, "bert_config_file": bert_config_file, "init_checkpoint": init_checkpoint } def read_bleurt_config(path): """Reads and checks config file from a BLEURT checkpoint.""" assert tf.io.gfile.exists(path), \ "Could not find BLEURT checkpoint {}".format(path) config_path = os.path.join(path, CONFIG_FILE) assert tf.io.gfile.exists(config_path), \ ("Could not find BLEURT config file {}. Are you sure {}" " is a valid checkpoint?").format(config_path, path) logging.info("Config file found, reading.") with tf.io.gfile.GFile(config_path, "r") as f: raw_config = f.read() bleurt_config = json.loads(raw_config) logging.info("Will load checkpoint {}".format(bleurt_config["name"])) logging.info("Performs basic checks...") for k in bleurt_config: v = bleurt_config[k] logging.info("... {}:{}".format(k, v)) if not isinstance(v, str): continue if k.endswith("_file") or k.endswith("_dir"): fname = os.path.join(path, bleurt_config[k]) assert tf.io.gfile.exists(fname), "File {} missing.".format(fname) bleurt_config[k] = fname bleurt_config["chkpt_dir"] = path bleurt_config["tf_checkpoint_variables"] = os.path.join(path, WEIGHTS_FILE) return bleurt_config def finalize_bleurt_checkpoint(tf_export_path): """Makes a BLEURT checkpoint from A TF Estimator export.""" logging.info("Finalizing BLEURT checkpoint.") assert tf.io.gfile.exists(tf_export_path), "SavedModel export not found!" bleurt_params = get_bleurt_params_from_flags_or_ckpt() vocab_file = os.path.join(tf_export_path, "vocab.txt") tf.io.gfile.copy(bleurt_params["vocab_file"], vocab_file, overwrite=True) bert_config_file = os.path.join(tf_export_path, "bert_config.json") tf.io.gfile.copy( bleurt_params["bert_config_file"], bert_config_file, overwrite=True) bleurt_config = { "name": FLAGS.bleurt_checkpoint_name, "vocab_file": "vocab.txt", "bert_config_file": "bert_config.json", "do_lower_case": bleurt_params["do_lower_case"], "max_seq_length": bleurt_params["max_seq_length"] } config_string = json.dumps(bleurt_config) config_file = os.path.join(tf_export_path, "bleurt_config.json") with tf.io.gfile.GFile(config_file, "w+") as f: f.write(config_string) logging.info("BLEURT checkpoint created.") ```
{ "source": "johnuberbacher/Django-Blog", "score": 2 }
#### File: Django-Blog/djangoBlogApp/views.py ```python from django.shortcuts import render, get_object_or_404 from django.views.generic import ListView, DetailView, CreateView, UpdateView, DeleteView from .models import Post, Category from .forms import PostForm, UpdatePostForm from django.urls import reverse_lazy, reverse from django.http import HttpResponseRedirect class HomeView(ListView): model = Post template_name = 'home.html' ordering = ['-id'] class ArticleDetailView(DetailView): model = Post template_name = 'details.html' def get_context_data(self, *args, **kwargs): context = super(ArticleDetailView, self).get_context_data(*args, **kwargs) getDetailInfo = get_object_or_404(Post, id=self.kwargs['pk']) total_likes = getDetailInfo.total_likes() #models.py function context['related_posts'] = Post.objects.all() context['total_likes'] = total_likes return context class AddPostView(CreateView): model = Post form_class = PostForm template_name = 'add_post.html' #fields = '__all__' class UpdatePostView(UpdateView): model = Post form_class = UpdatePostForm template_name = 'update_post.html' class DeletePostView(DeleteView): model = Post template_name = 'delete_post.html' success_url = reverse_lazy('home') class AddCategoryView(CreateView): model = Category template_name = 'add_category.html' fields = '__all__' def CategoryView(request, categories): category_posts = Post.objects.filter(category=categories.replace('-',' ')) return render(request, 'categories.html', {'categories': categories.title().replace('-', ' '), 'category_posts': category_posts}) def LikeView(request, pk): post = get_object_or_404(Post, id=request.POST.get('post_id')) post.likes.add(request.user) return HttpResponseRedirect(reverse('article_detail', args=[str(pk)] )) ```
{ "source": "johnugeorge/medperf", "score": 3 }
#### File: commands/dataset/dataset.py ```python import typer from medperf.commands.dataset import ( DatasetsList, DatasetRegistration, DataPreparation, DatasetBenchmarkAssociation, ) from medperf.decorators import clean_except import medperf.config as config app = typer.Typer() @app.command("ls") @clean_except def datasets( all: bool = typer.Option(False, help="Get all datasets from the platform") ): """Lists all datasets from the user by default. Use all to get all datasets in the platform """ ui = config.ui comms = config.comms comms.authenticate() DatasetsList.run(comms, ui) @app.command("create") @clean_except def create( benchmark_uid: int = typer.Option( ..., "--benchmark", "-b", help="UID of the desired benchmark" ), data_path: str = typer.Option( ..., "--data_path", "-d", help="Location of the data to be prepared" ), labels_path: str = typer.Option( ..., "--labels_path", "-l", help="Labels file location" ), ): """Runs the Data preparation step for a specified benchmark and raw dataset """ comms = config.comms ui = config.ui comms.authenticate() data_uid = DataPreparation.run(benchmark_uid, data_path, labels_path, comms, ui) DatasetRegistration.run(data_uid, comms, ui) DatasetBenchmarkAssociation.run(data_uid, benchmark_uid, comms, ui) ui.print("✅ Done!") @app.command("submit") @clean_except def register( data_uid: str = typer.Option( ..., "--data_uid", "-d", help="Unregistered Dataset UID" ) ): """Submits an unregistered Dataset instance to the backend """ comms = config.comms ui = config.ui comms.authenticate() DatasetRegistration.run(data_uid, comms, ui) ui.print("✅ Done!") @app.command("associate") @clean_except def associate( data_uid: str = typer.Option( ..., "--data_uid", "-d", help="Registered Dataset UID" ), benchmark_uid: int = typer.Option( ..., "-benchmark_uid", "-b", help="Benchmark UID" ), ): """Associate a registered dataset with a specific benchmark. The dataset and benchmark must share the same data preparation cube. """ comms = config.comms ui = config.ui comms.authenticate() DatasetBenchmarkAssociation.run(data_uid, benchmark_uid, comms, ui) ui.print("✅ Done!") ``` #### File: commands/dataset/list.py ```python from tabulate import tabulate from medperf.ui import UI from medperf.comms import Comms from medperf.entities import Dataset class DatasetsList: @staticmethod def run(comms: Comms, ui: UI, all: bool = False): """List all local and remote users created by user. Use "all" to list all remote datasets in the platform Args: comms (Comms): Communications instance ui (UI): UI instance all (bool, optional): List all datasets in the platform. Defaults to False. """ # Get local and remote datasets local_dsets = Dataset.all(ui) if all: remote_dsets = comms.get_datasets() else: remote_dsets = comms.get_user_datasets() local_uids = set([dset.generated_uid for dset in local_dsets]) remote_uids = set([dset["generated_uid"] for dset in remote_dsets]) # Build data table headers = ["UID", "Name", "Data Preparation Cube UID", "Registered", "Local"] # Get local dsets information local_dsets_data = [ [ dset.generated_uid, dset.name, dset.preparation_cube_uid, dset.uid is not None, dset.generated_uid in remote_uids, ] for dset in local_dsets ] # Get remote dsets information filtered by local remote_dsets_data = [ [dset["generated_uid"], dset["name"], "-", True, False] for dset in remote_dsets if dset["generated_uid"] not in local_uids ] # Combine dsets dsets_data = local_dsets_data + remote_dsets_data tab = tabulate(dsets_data, headers=headers) ui.print(tab) ``` #### File: commands/dataset/submit.py ```python from medperf.ui import UI from medperf.comms import Comms from medperf.entities import Dataset from medperf.utils import pretty_error class DatasetRegistration: @staticmethod def run(data_uid: str, comms: Comms, ui: UI): """Registers a database to the backend. Args: data_uid (str): UID Hint of the unregistered dataset """ dset = Dataset(data_uid, ui) if dset.uid: pretty_error( "This dataset has already been registered.", ui, add_instructions=False ) if dset.request_registration_approval(ui): ui.print("Uploading...") dset.upload(comms) dset.set_registration() ``` #### File: medperf/commands/login.py ```python import os import stat from medperf.ui import UI from medperf.comms import Comms import medperf.config as config from medperf.utils import storage_path class Login: @staticmethod def run(comms: Comms, ui: UI): """Login to the medperf server. Must be done only once. """ cred_path = storage_path(config.credentials_path) comms.login(ui) token = comms.token if os.path.exists(cred_path): os.remove(cred_path) with open(cred_path, "w") as f: f.write(token) os.chmod(cred_path, stat.S_IREAD) ``` #### File: commands/mlcube/associate.py ```python from medperf.ui import UI from medperf.comms import Comms class AssociateCube: @classmethod def run(cls, cube_uid: str, benchmark_uid: int, comms: Comms, ui: UI): """Associates a cube with a given benchmark Args: cube_uid (str): UID of model MLCube benchmark_uid (int): UID of benchmark comms (Comms): Communication instance ui (UI): UI instance """ with ui.interactive(): ui.text = "Creating association request" comms.associate_cube(cube_uid, benchmark_uid) ui.print("Association request created") ``` #### File: medperf/entities/dataset.py ```python from typing import List import yaml import os import logging from medperf.ui import UI from medperf.comms import Comms import medperf.config as config from medperf.utils import ( get_dsets, approval_prompt, pretty_error, storage_path, dict_pretty_print, ) class Dataset: """ Class representing a Dataset Datasets are stored locally in the Data Owner's machine. They contain information regarding the prepared dataset, such as name and description, general statistics and an UID generated by hashing the contents of the data preparation output. """ def __init__(self, data_uid: int, ui: UI): """Creates a new dataset instance Args: data_uid (int): The dataset UID as found inside ~/medperf/data/ Raises: NameError: If the dataset with the given UID can't be found, this is thrown. """ data_uid = self.__full_uid(data_uid, ui) self.data_uid = data_uid self.dataset_path = os.path.join( storage_path(config.data_storage), str(data_uid) ) self.data_path = os.path.join(self.dataset_path, "data") registration = self.get_registration() self.uid = registration["uid"] self.name = registration["name"] self.description = registration["description"] self.location = registration["location"] self.preparation_cube_uid = registration["data_preparation_mlcube"] self.generated_uid = registration["generated_uid"] self.input_data_hash = registration["input_data_hash"] self.split_seed = registration["split_seed"] self.metadata = registration["metadata"] self.status = registration["status"] self.state = registration["state"] @property def registration(self): return { "uid": self.uid, "name": self.name, "description": self.description, "location": self.location, "data_preparation_mlcube": self.preparation_cube_uid, "input_data_hash": self.input_data_hash, "generated_uid": self.generated_uid, "split_seed": self.split_seed, "metadata": self.metadata, "status": self.status, "state": self.state, } @classmethod def all(cls, ui: UI) -> List["Dataset"]: """Gets and creates instances of all the locally prepared datasets Returns: List[Dataset]: a list of Dataset instances. """ logging.info("Retrieving all datasets") data_storage = storage_path(config.data_storage) try: uids = next(os.walk(data_storage))[1] except StopIteration: logging.warning("Couldn't iterate over the dataset directory") pretty_error("Couldn't iterate over the dataset directory") tmp_prefix = config.tmp_reg_prefix dsets = [] for uid in uids: not_tmp = not uid.startswith(tmp_prefix) reg_path = os.path.join(data_storage, uid, config.reg_file) registered = os.path.exists(reg_path) if not_tmp and registered: dsets.append(cls(uid, ui)) return dsets def __full_uid(self, uid_hint: str, ui: UI) -> str: """Returns the found UID that starts with the provided UID hint Args: uid_hint (int): a small initial portion of an existing local dataset UID Raises: NameError: If no dataset is found starting with the given hint, this is thrown. NameError: If multiple datasets are found starting with the given hint, this is thrown. Returns: str: the complete UID """ dsets = get_dsets() match = [uid for uid in dsets if uid.startswith(str(uid_hint))] if len(match) == 0: pretty_error(f"No dataset was found with uid hint {uid_hint}.", ui) elif len(match) > 1: pretty_error(f"Multiple datasets were found with uid hint {uid_hint}.", ui) else: return match[0] def get_registration(self) -> dict: """Retrieves the registration information. Returns: dict: registration information as key-value pairs. """ regfile = os.path.join(self.dataset_path, config.reg_file) with open(regfile, "r") as f: reg = yaml.safe_load(f) return reg def set_registration(self): regfile = os.path.join(self.dataset_path, config.reg_file) with open(regfile, "w") as f: yaml.dump(self.registration, f) def request_association_approval(self, benchmark: "Benchmark", ui: UI) -> bool: """Prompts the user for aproval regarding the association of the dataset with a given benchmark. Args: benchmark (Benchmark): Benchmark to be associated with Returns: bool: Wether the user approved the association or not """ msg = "Please confirm that you would like to associate" msg += f" the dataset {self.name} with the benchmark {benchmark.name}." msg += " [Y/n]" approved = approval_prompt(msg, ui,) return approved def request_registration_approval(self, ui: UI) -> bool: """Prompts the user for approval concerning uploading the registration to the backend. Returns: bool: Wether the user gave consent or not. """ if self.status == "APPROVED": return True dict_pretty_print(self.registration, ui) ui.print( "Above is the information and statistics that will be registered to the database" ) approved = approval_prompt( "Do you approve the registration of the presented data to the MLCommons comms? [Y/n] ", ui, ) self.status = "APPROVED" return approved def upload(self, comms: Comms): """Uploads the registration information to the comms. Args: comms (Comms): Instance of the comms interface. """ dataset_uid = comms.upload_dataset(self.registration) self.uid = dataset_uid return self.uid ``` #### File: medperf/entities/result.py ```python import os import yaml import logging from typing import List from medperf.ui import UI from medperf import config from medperf.comms import Comms from medperf.utils import storage_path, approval_prompt, dict_pretty_print, results_ids class Result: """ Class representing a Result entry Results are obtained after successfully running a benchmark execution flow. They contain information regarding the components involved in obtaining metrics results, as well as the results themselves. This class provides methods for working with benchmark results and how to upload them to the backend. """ def __init__( self, result_path: str, benchmark_uid: str, dataset_uid: str, model_uid: str, ): """Creates a new result instance Args: result_path (str): Location of the reuslts.yaml file. benchmark_uid (str): UID of the executed benchmark. dataset_uid (str): UID of the dataset used. model_uid (str): UID of the model used. """ self.path = result_path self.benchmark_uid = benchmark_uid self.dataset_uid = dataset_uid self.model_uid = model_uid self.status = "PENDING" self.results = {} self.get_results() self.uid = self.results.get("uid", None) @classmethod def all(cls, ui: UI) -> List["Result"]: """Gets and creates instances of all the user's results """ logging.info("Retrieving all results") results_ids_tuple = results_ids(ui) results_storage = storage_path(config.results_storage) results = [] for result_ids in results_ids_tuple: b_id, m_id, d_id = result_ids results_file = os.path.join( results_storage, b_id, m_id, d_id, config.results_filename ) results.append(cls(results_file, b_id, d_id, m_id)) return results def todict(self): with open(self.path, "r") as f: results = yaml.safe_load(f) result_dict = { "name": f"{self.benchmark_uid}_{self.model_uid}_{self.dataset_uid}", "results": results, "metadata": {}, "approval_status": self.status, "benchmark": self.benchmark_uid, "model": self.model_uid, "dataset": self.dataset_uid, } return result_dict def request_approval(self, ui: UI) -> bool: """Prompts the user for approval concerning uploading the results to the comms Returns: bool: Wether the user gave consent or not """ if self.status == "APPROVED": return True dict_pretty_print(self.todict(), ui) ui.print("Above are the results generated by the model") approved = approval_prompt( "Do you approve uploading the presented results to the MLCommons comms? [Y/n]", ui, ) return approved def upload(self, comms: Comms): """Uploads the results to the comms Args: comms (Comms): Instance of the communications interface. """ result_uid = comms.upload_results(self.todict()) self.uid = result_uid self.results["uid"] = result_uid self.set_results() def set_results(self): write_access = os.access(self.path, os.W_OK) logging.debug(f"file has write access? {write_access}") if not write_access: logging.debug("removing outdated and inaccessible results") os.remove(self.path) with open(self.path, "w") as f: yaml.dump(self.results, f) def get_results(self): with open(self.path, "r") as f: self.results = yaml.safe_load(f) ``` #### File: commands/dataset/test_submit.py ```python import pytest from medperf.entities import Dataset from medperf.tests.utils import rand_l from medperf.commands.dataset import DatasetRegistration PATCH_REGISTER = "medperf.commands.dataset.submit.{}" @pytest.fixture def dataset(mocker): dset = mocker.create_autospec(spec=Dataset) mocker.patch(PATCH_REGISTER.format("Dataset"), return_value=dset) return dset @pytest.mark.parametrize("data_uid", [str(x) for x in rand_l(1, 5000, 5)]) def test_run_retrieves_specified_dataset(mocker, comms, ui, dataset, data_uid): # Arrange dataset.uid = None spy = mocker.patch(PATCH_REGISTER.format("Dataset"), return_value=dataset) # Act DatasetRegistration.run(data_uid, comms, ui) # Assert spy.assert_called_once_with(data_uid, ui) @pytest.mark.parametrize("uid", rand_l(1, 5000, 5)) def test_run_fails_if_dataset_already_registered(mocker, comms, ui, dataset, uid): # Arrange dataset.uid = uid spy = mocker.patch( PATCH_REGISTER.format("pretty_error"), side_effect=lambda *args, **kwargs: exit(), ) # Act with pytest.raises(SystemExit): DatasetRegistration.run("1", comms, ui) # Assert spy.assert_called_once() def test_run_passes_if_dataset_has_no_uid(mocker, comms, ui, dataset): # Arrange dataset.uid = None spy = mocker.patch( PATCH_REGISTER.format("pretty_error"), side_effect=lambda *args, **kwargs: exit(), ) # Act DatasetRegistration.run("1", comms, ui) # Assert spy.assert_not_called() def test_run_requests_approval(mocker, comms, ui, dataset): # Arrange dataset.uid = None spy = mocker.patch.object( dataset, "request_registration_approval", return_value=True ) # Act DatasetRegistration.run("1", comms, ui) # Assert spy.assert_called_once() @pytest.mark.parametrize("approved", [True, False]) class TestWithApproval: def test_run_uploads_dataset_if_approved( self, mocker, comms, ui, dataset, approved ): # Arrange dataset.uid = None mocker.patch.object( dataset, "request_registration_approval", return_value=approved ) spy = mocker.patch.object(dataset, "upload") # Act DatasetRegistration.run("1", comms, ui) # Assert if approved: spy.assert_called_once() else: spy.assert_not_called() def test_run_updates_registration_if_approved( self, mocker, comms, ui, dataset, approved ): # Arrange dataset.uid = None mocker.patch.object( dataset, "request_registration_approval", return_value=approved ) spy = mocker.patch.object(dataset, "set_registration") # Act DatasetRegistration.run("1", comms, ui) # Assert if approved: spy.assert_called_once() else: spy.assert_not_called() ``` #### File: commands/result/test_create.py ```python import pytest from unittest.mock import call from medperf.tests.utils import rand_l from medperf.commands.result import BenchmarkExecution from medperf.entities import Dataset, Benchmark, Cube PATCH_EXECUTION = "medperf.commands.result.create.{}" @pytest.fixture def cube(mocker): def cube_gen(): cube = mocker.create_autospec(spec=Cube) cube.uid = 1 return cube return cube_gen @pytest.fixture def execution(mocker, comms, ui, cube): mock_dset = mocker.create_autospec(spec=Dataset) mock_bmark = mocker.create_autospec(spec=Benchmark) mocker.patch(PATCH_EXECUTION.format("init_storage")) mocker.patch(PATCH_EXECUTION.format("Dataset"), side_effect=mock_dset) mocker.patch(PATCH_EXECUTION.format("Benchmark"), side_effect=mock_bmark) exec = BenchmarkExecution(0, 0, 0, comms, ui) exec.dataset.uid = 1 exec.dataset.data_uid = "data_uid" exec.dataset.preparation_cube_uid = "prep_cube" exec.benchmark.data_preparation = "prep_cube" exec.benchmark.models = [0] exec.evaluator = cube() exec.model_cube = cube() return exec def test_validate_fails_if_preparation_cube_mismatch(mocker, execution): # Arrange execution.dataset.preparation_cube_uid = "dset_prep_cube" execution.benchmark.data_preparation = "bmark_prep_cube" spy = mocker.patch( PATCH_EXECUTION.format("pretty_error"), side_effect=lambda *args, **kwargs: exit(), ) # Act with pytest.raises(SystemExit): execution.validate() # Assert spy.assert_called_once() @pytest.mark.parametrize("model_uid", rand_l(5, 5000, 5)) def test_validate_fails_if_model_not_in_benchmark(mocker, execution, model_uid): # Arrange execution.model_uid = model_uid # model not in benchmark spy = mocker.patch( PATCH_EXECUTION.format("pretty_error"), side_effect=lambda *args, **kwargs: exit(), ) # Act with pytest.raises(SystemExit): execution.validate() # Assert spy.assert_called_once() def test_validate_passes_under_right_conditions(mocker, execution): # Arrange spy = mocker.patch(PATCH_EXECUTION.format("pretty_error")) # Act execution.validate() # Assert spy.assert_not_called() @pytest.mark.parametrize("evaluator_uid", rand_l(1, 5000, 5)) @pytest.mark.parametrize("model_uid", rand_l(1, 5000, 5)) def test_get_cubes_retrieves_expected_cubes( mocker, execution, evaluator_uid, model_uid ): # Arrange spy = mocker.patch( PATCH_EXECUTION.format("BenchmarkExecution._BenchmarkExecution__get_cube") ) execution.benchmark.evaluator = evaluator_uid execution.model_uid = model_uid evaluator_call = call(evaluator_uid, "Evaluator") model_call = call(model_uid, "Model") calls = [evaluator_call, model_call] # Act execution.get_cubes() # Assert spy.assert_has_calls(calls) @pytest.mark.parametrize("cube_uid", rand_l(1, 5000, 5)) @pytest.mark.parametrize("name", [str(x) for x in rand_l(1, 500, 1)]) def test__get_cube_retrieves_cube(mocker, execution, cube_uid, name): # Arrange comms = execution.comms spy = mocker.patch(PATCH_EXECUTION.format("Cube.get")) mocker.patch(PATCH_EXECUTION.format("check_cube_validity")) # Act execution._BenchmarkExecution__get_cube(cube_uid, name) # Assert spy.assert_called_once_with(cube_uid, comms) def test__get_cube_checks_cube_validity(mocker, execution, cube): # Arrange ui = execution.ui mocker.patch(PATCH_EXECUTION.format("Cube.get"), return_value=cube) spy = mocker.patch(PATCH_EXECUTION.format("check_cube_validity")) # Act execution._BenchmarkExecution__get_cube(1, "test") # Assert spy.assert_called_once_with(cube, ui) def test_run_cubes_executes_expected_cube_tasks(mocker, execution): # Arrange execution.dataset.data_path = "data_path" execution.model_cube.cube_path = "cube_path" model_spy = mocker.patch.object(execution.model_cube, "run") eval_spy = mocker.patch.object(execution.evaluator, "run") mocker.patch("os.path.join", return_value="") mocker.patch( PATCH_EXECUTION.format("results_path"), return_value="", ) # Act execution.run_cubes() # Assert assert model_spy.call_count == 1 assert model_spy.call_args_list[0][1]["task"] == "infer" assert eval_spy.call_count == 1 assert eval_spy.call_args_list[0][1]["task"] == "evaluate" def test_run_executes_expected_flow(mocker, comms, ui, execution): # Arrange val_spy = mocker.patch(PATCH_EXECUTION.format("BenchmarkExecution.validate")) get_spy = mocker.patch(PATCH_EXECUTION.format("BenchmarkExecution.get_cubes")) run_spy = mocker.patch(PATCH_EXECUTION.format("BenchmarkExecution.run_cubes")) mocker.patch(PATCH_EXECUTION.format("cleanup")) # Act BenchmarkExecution.run(1, 1, 1, comms, ui) # Assert val_spy.assert_called_once() get_spy.assert_called_once() run_spy.assert_called_once() ``` #### File: tests/mocks/cube.py ```python class MockCube: def __init__(self, is_valid): self.name = "Test" self.valid = is_valid def is_valid(self): return self.valid def run(self): pass ``` #### File: medperf/ui/stdin.py ```python from contextlib import contextmanager from .ui import UI class StdIn(UI): """ Class for using sys.stdin/sys.stdout exclusively. Used mainly for automating execution with class-like objects. Using only basic IO methods ensures that piping from the command-line. Should not be used in normal execution, as hidden prompts and interactive prints will not work as expected. """ def print(self, msg: str = ""): return print(msg) def print_error(self, msg: str): return self.print(msg) def start_interactive(self): pass def stop_interactive(self): pass @contextmanager def interactive(self): yield self @property def text(self): return "" @text.setter def text(self, msg: str = ""): return def prompt(self, msg: str) -> str: return input(msg) def hidden_prompt(self, msg: str) -> str: return self.prompt(msg) ``` #### File: medperf/ui/ui.py ```python from abc import ABC, abstractmethod from contextlib import contextmanager class UI(ABC): @abstractmethod def print(self, msg: str = ""): """Display a message to the interface. If on interactive session overrides previous message """ @abstractmethod def print_error(self, msg: str): """Display an error message to the interface""" @abstractmethod def start_interactive(self): """Initialize an interactive session for animations or overriding messages. If the UI doesn't support this, the function can be left empty. """ @abstractmethod def stop_interactive(self): """Terminate an interactive session. If the UI doesn't support this, the function can be left empty. """ @abstractmethod @contextmanager def interactive(self): """Context managed interactive session. Expected to yield the same instance """ @abstractmethod def text(self, msg: str): """Displays a messages that overwrites previous messages if they were created during an interactive session. If not supported or not on an interactive session, it is expected to fallback to the UI print function. Args: msg (str): message to display """ @abstractmethod def prompt(msg: str) -> str: """Displays a prompt to the user and waits for an answer""" @abstractmethod def hidden_prompt(self, msg: str) -> str: """Displays a prompt to the user and waits for an aswer. User input is not displayed Args: msg (str): message to use for the prompt Returns: str: user input """ ``` #### File: cli/medperf/utils.py ```python from __future__ import annotations from pexpect import spawn import logging from typing import List, Tuple from datetime import datetime import hashlib import os from shutil import rmtree import tarfile import yaml from pathlib import Path from colorama import Fore, Style import re import medperf.config as config from medperf.ui import UI def storage_path(subpath: str): """Helper funciton that converts a path to storage-related path""" return os.path.join(config.storage, subpath) def get_file_sha1(path: str) -> str: """Calculates the sha1 hash for a given file. Args: path (str): Location of the file of interest. Returns: str: Calculated hash """ BUF_SIZE = 65536 sha1 = hashlib.sha1() with open(path, "rb") as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) return sha1.hexdigest() def init_storage(): """Builds the general medperf folder structure. """ parent = config.storage data = storage_path(config.data_storage) cubes = storage_path(config.cubes_storage) results = storage_path(config.results_storage) tmp = storage_path(config.tmp_storage) dirs = [parent, data, cubes, results, tmp] for dir in dirs: if not os.path.isdir(dir): logging.info(f"Creating {dir} directory") os.mkdir(dir) def cleanup(): """Removes clutter and unused files from the medperf folder structure. """ if os.path.exists(storage_path(config.tmp_storage)): logging.info("Removing temporary data storage") rmtree(storage_path(config.tmp_storage), ignore_errors=True) dsets = get_dsets() prefix = config.tmp_reg_prefix unreg_dsets = [dset for dset in dsets if dset.startswith(prefix)] for dset in unreg_dsets: logging.info("Removing unregistered dataset") dset_path = os.path.join(storage_path(config.data_storage), dset) if os.path.exists(dset_path): rmtree(dset_path, ignore_errors=True) def get_dsets() -> List[str]: """Retrieves the UID of all the datasets stored locally. Returns: List[str]: UIDs of prepared datasets. """ dsets = next(os.walk(storage_path(config.data_storage)))[1] return dsets def pretty_error(msg: str, ui: "UI", clean: bool = True, add_instructions=True): """Prints an error message with typer protocol and exits the script Args: msg (str): Error message to show to the user clean (bool, optional): Run the cleanup process before exiting. Defaults to True. add_instructions (bool, optional): Show additional instructions to the user. Defualts to True. """ logging.warning( "MedPerf had to stop execution. See logs above for more information" ) if msg[-1] != ".": msg = msg + "." if add_instructions: msg += f" See logs at {config.log_file} for more information" ui.print_error(msg) if clean: cleanup() exit(1) def cube_path(uid: int) -> str: """Gets the path for a given cube. Args: uid (int): Cube UID. Returns: str: Location of the cube folder structure. """ return os.path.join(storage_path(config.cubes_storage), str(uid)) def generate_tmp_datapath() -> Tuple[str, str]: """Builds a temporary folder for prepared but yet-to-register datasets. Returns: str: General temporary folder location str: Specific data path for the temporary dataset """ dt = datetime.utcnow() ts = str(int(datetime.timestamp(dt))) tmp = config.tmp_reg_prefix + ts out_path = os.path.join(storage_path(config.data_storage), tmp) out_path = os.path.abspath(out_path) out_datapath = os.path.join(out_path, "data") if not os.path.isdir(out_datapath): logging.info(f"Creating temporary dataset path: {out_datapath}") os.makedirs(out_datapath) return out_path, out_datapath def check_cube_validity(cube: "Cube", ui: "UI"): """Helper function for pretty printing the cube validity process. Args: cube (Cube): Cube to check for validity ui (UI): Instance of an UI implementation """ logging.info(f"Checking cube {cube.name} validity") ui.text = "Checking cube MD5 hash..." if not cube.is_valid(): pretty_error("MD5 hash doesn't match") logging.info(f"Cube {cube.name} is valid") ui.print(f"> {cube.name} MD5 hash check complete") def untar_additional(add_filepath: str) -> str: """Untars and removes the additional_files.tar.gz file Args: add_filepath (str): Path where the additional_files.tar.gz file can be found. Returns: str: location where the untared files can be found. """ logging.info(f"Uncompressing additional_files.tar.gz at {add_filepath}") addpath = str(Path(add_filepath).parent) tar = tarfile.open(add_filepath) tar.extractall(addpath) tar.close() os.remove(add_filepath) return addpath def approval_prompt(msg: str, ui: "UI") -> bool: """Helper function for prompting the user for things they have to explicitly approve. Args: msg (str): What message to ask the user for approval. Returns: bool: Wether the user explicitly approved or not. """ logging.info("Prompting for user's approval") approval = None while approval is None or approval not in "yn": approval = ui.prompt(msg.strip() + " ").lower() logging.info(f"User answered approval with {approval}") return approval == "y" def dict_pretty_print(in_dict: dict, ui: "UI"): """Helper function for distinctively printing dictionaries with yaml format. Args: in_dict (dict): dictionary to print """ logging.debug(f"Printing dictionary to the user: {in_dict}") ui.print() ui.print("=" * 20) in_dict = {k: v for (k, v) in in_dict.items() if v is not None} ui.print(yaml.dump(in_dict)) ui.print("=" * 20) def combine_proc_sp_text(proc: spawn, ui: "UI") -> str: """Combines the output of a process and the spinner. Joins any string captured from the process with the spinner current text. Any strings ending with any other character from the subprocess will be returned later. Args: proc (spawn): a pexpect spawned child ui (UI): An instance of an UI implementation Returns: str: all non-carriage-return-ending string captured from proc """ static_text = ui.text proc_out = "" while proc.isalive(): line = byte = proc.read(1) while byte and not re.match(b"[\r\n]", byte): byte = proc.read(1) line += byte if not byte: break line = line.decode("utf-8", "ignore") if line: # add to proc_out list for logging proc_out += line ui.text = ( f"{static_text} {Fore.WHITE}{Style.DIM}{line.strip()}{Style.RESET_ALL}" ) return proc_out def get_folder_sha1(path: str) -> str: """Generates a hash for all the contents of the folder. This procedure hashes all of the files in the folder, sorts them and then hashes that list. Args: path (str): Folder to hash Returns: str: sha1 hash of the whole folder """ hashes = [] for root, _, files in os.walk(path, topdown=False): for file in files: filepath = os.path.join(root, file) hashes.append(get_file_sha1(filepath)) hashes = sorted(hashes) sha1 = hashlib.sha1() for hash in hashes: sha1.update(hash.encode("utf-8")) return sha1.hexdigest() def results_path(benchmark_uid, model_uid, data_uid): out_path = storage_path(config.results_storage) bmark_uid = str(benchmark_uid) model_uid = str(model_uid) data_uid = str(data_uid) out_path = os.path.join(out_path, bmark_uid, model_uid, data_uid) out_path = os.path.join(out_path, config.results_filename) return out_path def results_ids(ui: UI): results_storage = storage_path(config.results_storage) results_ids = [] try: bmk_uids = next(os.walk(results_storage))[1] for bmk_uid in bmk_uids: bmk_storage = os.path.join(results_storage, bmk_uid) model_uids = next(os.walk(bmk_storage))[1] for model_uid in model_uids: bmk_model_storage = os.path.join(bmk_storage, model_uid) data_uids = next(os.walk(bmk_model_storage))[1] bmk_model_data_list = [ (bmk_uid, model_uid, data_uid) for data_uid in data_uids ] results_ids += bmk_model_data_list except StopIteration: msg = "Couldn't iterate over the results directory" logging.warning(msg) pretty_error(msg, ui) return results_ids def setup_logger(logger, log_lvl): fh = logging.FileHandler(config["log_file"]) fh.setLevel(log_lvl) logger.addHandler(fh) def list_files(startpath): tree_str = "" for root, dirs, files in os.walk(startpath): level = root.replace(startpath, "").count(os.sep) indent = " " * 4 * (level) tree_str += "{}{}/\n".format(indent, os.path.basename(root)) subindent = " " * 4 * (level + 1) for f in files: tree_str += "{}{}\n".format(subindent, f) return tree_str ``` #### File: chexpert_prep/project/check.py ```python import pandas as pd import argparse import os import yaml from utils import get_image_data_df class Checker: def __init__(self, data_path, data_file): self.data_path = data_path self.data_file = os.path.join(data_path, data_file) self.df = pd.read_csv(self.data_file) def run(self): self.__check_na() self.__check_images_data() def __check_na(self): na_series = self.df.isna().sum() na_cols = ", ".join(na_series[na_series != 0].index) assert na_series.sum() == 0, f"Some columns contain null values: {na_cols}" def __check_images_data(self): img_data = get_image_data_df(self.df, self.data_path) assert img_data["width"].min() >= 320, "Image width is less than 320" assert img_data["height"].min() >= 320, "Image width is less than 320" assert img_data["min"].min() >= 0, "Image pixel range goes below 0" assert ( img_data["max"].max() > 1 ), "Image pixel is in float format. 8 byte format expected" assert img_data["max"].max() <= 255, "Image pixel range goes beyond 255" if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--data_path", "--data-path", type=str, required=True, help="prepared data path" ) parser.add_argument( "--params_file", "--params-file", type=str, required=True, help="Configuration file for the data-preparation step", ) args = parser.parse_args() with open(args.params_file, "r") as f: params = yaml.full_load(f) checker = Checker(args.data_path, params["output_datafile"]) checker.run() ``` #### File: chexpert_prep/project/utils.py ```python import os from PIL import Image import numpy as np def get_image_data_df(df, data_path): img_df = df.apply( lambda x: get_image_data(x["Path"], data_path), axis=1, result_type="expand" ) img_df = img_df.rename( {0: "width", 1: "height", 2: "min", 3: "max", 4: "mean", 5: "std"}, axis=1 ) return img_df def get_image_data(img_path, data_path): img_path = os.path.join(data_path, img_path) with Image.open(img_path) as im: img = np.array(im) w, h = img.shape min_val = img.min() max_val = img.max() mean_val = img.mean() std_val = img.std() return [w, h, min_val, max_val, mean_val, std_val] ``` #### File: metric/project/metric_utils.py ```python import os import matplotlib.pyplot as plt # import cv2 from PIL import Image import numpy as np import nibabel as nib # !pip install -q torch_snippets pytorch_model_summary # from torch_snippets import * from torchvision import transforms # from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader import torch import torch.nn as nn import torch.nn.functional as F from torchvision.models import vgg16_bn import time from typing import List class CTScanDataset(Dataset): """ KAGGLE dataset. Accredit to https://pytorch.org/tutorials/beginner/data_loading_tutorial.html """ def __init__(self, data_dir, transform=None): """ Args: data_dir: data folder directory transform (callable, optional): Optional transform to be applied on a sample. """ self.root_dir = data_dir self.files = os.listdir(data_dir) self.transform = transform def __len__(self): return len(self.files) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # file_path = os.path.join(self.root_dir, self.files[idx]) with open(os.path.join(self.root_dir, self.files[idx]), "rb") as f: data = np.load(f) feature = data[:-1, :, :].astype("float32") label = data[-1, :, :].astype("int8") if self.transform: sample = self.transform(sample) return feature, label class ComboLoss(nn.Module): def __init__(self, weight=None, size_average=True, alpha=0.5, ce_ratio=0.5): super(ComboLoss, self).__init__() self.alpha = alpha self.ce_ratio = ce_ratio def forward(self, inputs, targets, smooth=1): e = 0.0000001 inputs = torch.sigmoid(inputs) # flatten label and prediction tensors inputs = inputs.contiguous().view(-1) targets = targets.contiguous().view(-1) # True Positives, False Positives & False Negatives intersection = (inputs * targets).sum() dice = (2.0 * intersection + smooth) / (inputs.sum() + targets.sum() + smooth) inputs = torch.clamp(inputs, e, 1.0 - e) out = -( self.alpha * (targets * torch.log(inputs)) + ((1 - self.alpha) * (1.0 - targets) * torch.log(1.0 - inputs)) ) weighted_ce = out.mean(-1) combo = (self.ce_ratio * weighted_ce) - ((1 - self.ce_ratio) * dice) return combo def conv(in_channels, out_channels): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) def up_conv(in_channels, out_channels): return nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2), nn.ReLU(inplace=True), ) # Calculate DICE score def dice_coef(y_true, y_pred, smooth=0.0001): y_true_f = y_true.flatten() y_pred_f = y_pred.flatten() # should y_pred be a label? intersection = torch.sum(y_true_f * y_pred_f) return (2.0 * intersection + smooth) / ( torch.sum(y_true_f) + torch.sum(y_pred_f) + smooth ) # Calculate DICE score for multiple labels def dice_coef_multilabel(y_true, y_pred, numLabels): dice = 0 dice_classes = [] for index in range(numLabels): dice_class = dice_coef(y_true[:, index, :], y_pred[:, index, :]) dice += dice_class dice_classes.append(dice_class) return dice / numLabels, dice_classes ``` #### File: metric/project/mlcube.py ```python import os import yaml import typer import subprocess app = typer.Typer() def exec_python(cmd: str) -> None: """Execute a python script as a subprocess Args: cmd (str): command to run as would be written inside the terminal """ splitted_cmd = cmd.split() process = subprocess.Popen(splitted_cmd, cwd=".") process.wait() @app.command("evaluate") def evaluate( labels: str = typer.Option(..., "--labels"), predictions: str = typer.Option(..., "--predictions"), parameters_file: str = typer.Option(..., "--parameters_file"), output_path: str = typer.Option(..., "--output_path"), ): labels_csv = labels preds_csv = predictions cmd = f"python3 app.py --labels_csv={labels_csv} --preds_csv={preds_csv} --parameters_file={parameters_file} --output_file={output_path}" exec_python(cmd) """ @app.command("infer") def infer( labels: str = typer.Option(..., "--labels"), predictions: str = typer.Option(..., "--predictions"), parameters_file: str = typer.Option(..., "--parameters_file"), output_path: str = typer.Option(..., "--output_path"), ): with open(params_file, "r") as f: params = yaml.safe_load(f) #model_file = os.path.join(model_info, "unet_full.pth") #names_file = os.path.join(data_path, "0024_49.npy") #names_file = os.path.join(data_path) #uppercase = params["uppercase"] # data, additional files, output #cmd = f"python3 app.py --data_p = {data_path} --model_info={model_file} --out={out_path}" cmd = f"python3 app.py --labels_csv={labels_csv} --preds_csv={preds_csv} --parameters_file={parameters_file} --output_file={output_path}" exec_python(cmd) #if uppercase: # cmd += f" --uppercase={uppercase}" print("exec cmd") exec_python(cmd) """ @app.command("hotfix") def hotfix(): pass if __name__ == "__main__": print("Starting app") app() ``` #### File: server/benchmark/admin.py ```python from django.contrib import admin from .models import Benchmark class BenchmarkAdmin(admin.ModelAdmin): list_display = ( "name", "description", "docs_url", "owner", "is_valid", "is_active", "metadata", "user_metadata", "demo_dataset_tarball_url", "demo_dataset_tarball_hash", "demo_dataset_generated_uid", "data_preparation_mlcube", "reference_model_mlcube", "data_evaluator_mlcube", "dataset_list", "model_list", "approved_at", "approval_status", "created_at", "modified_at", ) def dataset_list(self, obj): return ",".join([gp.dataset.name for gp in obj.benchmarkdataset_set.all()]) dataset_list.short_description = "Registered Datasets" def model_list(self, obj): return ",".join([gp.model_mlcube.name for gp in obj.benchmarkmodel_set.all()]) model_list.short_description = "Registered Models" admin.site.register(Benchmark, BenchmarkAdmin) ``` #### File: server/benchmarkdataset/views.py ```python from .models import BenchmarkDataset from django.http import Http404 from rest_framework.generics import GenericAPIView from rest_framework.response import Response from rest_framework import status from .permissions import IsAdmin, IsDatasetOwner, IsBenchmarkOwner from .serializers import ( BenchmarkDatasetListSerializer, DatasetApprovalSerializer, ) class BenchmarkDatasetList(GenericAPIView): permission_classes = [IsAdmin | IsBenchmarkOwner | IsDatasetOwner] serializer_class = BenchmarkDatasetListSerializer queryset = "" def post(self, request, format=None): """ Associate a dataset to a benchmark """ serializer = BenchmarkDatasetListSerializer( data=request.data, context={"request": request} ) if serializer.is_valid(): serializer.save(initiated_by=request.user) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class BenchmarkDatasetApproval(GenericAPIView): serializer_class = BenchmarkDatasetListSerializer queryset = "" def get_object(self, pk): try: return BenchmarkDataset.objects.filter(dataset__id=pk) except BenchmarkDataset.DoesNotExist: raise Http404 def get(self, request, pk, format=None): """ Retrieve all benchmarks associated with a dataset """ benchmarkdataset = self.get_object(pk) serializer = BenchmarkDatasetListSerializer(benchmarkdataset, many=True) return Response(serializer.data) class DatasetApproval(GenericAPIView): permission_classes = [IsAdmin | IsBenchmarkOwner | IsDatasetOwner] serializer_class = DatasetApprovalSerializer queryset = "" def get_object(self, dataset_id, benchmark_id): try: return BenchmarkDataset.objects.filter( dataset__id=dataset_id, benchmark__id=benchmark_id ) except BenchmarkDataset.DoesNotExist: raise Http404 def get(self, request, pk, bid, format=None): """ Retrieve approval status of benchmark dataset associations """ benchmarkdataset = self.get_object(pk, bid) serializer = DatasetApprovalSerializer(benchmarkdataset, many=True) return Response(serializer.data) def put(self, request, pk, bid, format=None): """ Update approval status of the last benchmark dataset association """ benchmarkdataset = self.get_object(pk, bid).order_by("-created_at").first() serializer = DatasetApprovalSerializer( benchmarkdataset, data=request.data, context={"request": request} ) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk, bid, format=None): """ Delete a benchmark dataset association """ benchmarkdataset = self.get_object(pk, bid) benchmarkdataset.delete() return Response(status=status.HTTP_204_NO_CONTENT) ``` #### File: server/benchmark/serializers.py ```python from rest_framework import serializers from django.utils import timezone from .models import Benchmark class BenchmarkSerializer(serializers.ModelSerializer): class Meta: model = Benchmark fields = "__all__" read_only_fields = ["owner", "approved_at", "approval_status"] def validate(self, data): owner = self.context["request"].user pending_benchmarks = Benchmark.objects.filter( owner=owner, approval_status="PENDING" ) if len(pending_benchmarks) > 0: raise serializers.ValidationError( "User can own at most one pending benchmark" ) return data class BenchmarkApprovalSerializer(serializers.ModelSerializer): class Meta: model = Benchmark read_only_fields = ["owner", "approved_at"] fields = "__all__" def update(self, instance, validated_data): for k, v in validated_data.items(): setattr(instance, k, v) if instance.approval_status != "PENDING": instance.approved_at = timezone.now() instance.save() return instance def validate(self, data): owner = self.instance.owner if "approval_status" in data: if ( data["approval_status"] == "PENDING" and self.instance.approval_status != "PENDING" ): pending_benchmarks = Benchmark.objects.filter( owner=owner, approval_status="PENDING" ) if len(pending_benchmarks) > 0: raise serializers.ValidationError( "User can own at most one pending benchmark" ) if ( data["approval_status"] != "PENDING" and self.instance.state == "DEVELOPMENT" ): raise serializers.ValidationError( "User cannot approve or reject when benchmark is in development stage" ) if self.instance.state == "OPERATION": editable_fields = [ "is_valid", "is_active", "user_metadata", "approval_status", ] for k, v in data.items(): if k not in editable_fields: if v != getattr(self.instance, k): raise serializers.ValidationError( "User cannot update non editable fields in Operation mode" ) return data ``` #### File: server/dataset/models.py ```python from django.db import models from django.contrib.auth.models import User class Dataset(models.Model): DATASET_STATE = ( ("DEVELOPMENT", "DEVELOPMENT"), ("OPERATION", "OPERATION"), ) name = models.CharField(max_length=20) description = models.CharField(max_length=20, blank=True) location = models.CharField(max_length=100, blank=True) owner = models.ForeignKey(User, on_delete=models.PROTECT) input_data_hash = models.CharField(max_length=128) generated_uid = models.CharField(max_length=128, unique=True) split_seed = models.IntegerField() data_preparation_mlcube = models.ForeignKey( "mlcube.MlCube", on_delete=models.PROTECT, related_name="benchmark_preprocessor_mlcube", ) is_valid = models.BooleanField(default=True) state = models.CharField( choices=DATASET_STATE, max_length=100, default="DEVELOPMENT" ) generated_metadata = models.JSONField(default=dict, blank=True, null=True) user_metadata = models.JSONField(default=dict, blank=True, null=True) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) def __str__(self): return self.name class Meta: ordering = ["modified_at"] ``` #### File: server/dataset/serializers.py ```python from rest_framework import serializers from .models import Dataset class DatasetSerializer(serializers.ModelSerializer): class Meta: model = Dataset fields = "__all__" read_only_fields = ["owner"] class DatasetDetailSerializer(serializers.ModelSerializer): class Meta: model = Dataset fields = "__all__" read_only_fields = ["owner"] def validate(self, data): if self.instance.state == "OPERATION": editable_fields = ["is_valid", "user_metadata"] for k, v in data.items(): if k not in editable_fields: if v != getattr(self.instance, k): raise serializers.ValidationError( "User cannot update non editable fields in Operation mode" ) return data ``` #### File: server/mlcube/models.py ```python from django.db import models from django.contrib.auth.models import User class MlCube(models.Model): MLCUBE_STATE = ( ("DEVELOPMENT", "DEVELOPMENT"), ("OPERATION", "OPERATION"), ) name = models.CharField(max_length=20, unique=True) git_mlcube_url = models.CharField(max_length=256) git_parameters_url = models.CharField(max_length=256) tarball_url = models.CharField(max_length=256, blank=True) tarball_hash = models.CharField(max_length=100, blank=True) owner = models.ForeignKey(User, on_delete=models.PROTECT) state = models.CharField( choices=MLCUBE_STATE, max_length=100, default="DEVELOPMENT" ) is_valid = models.BooleanField(default=True) metadata = models.JSONField(default=dict, blank=True, null=True) user_metadata = models.JSONField(default=dict, blank=True, null=True) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) def __str__(self): return self.name class Meta: verbose_name_plural = "MlCubes" ordering = ["modified_at"] ``` #### File: server/mlcube/views.py ```python from django.http import Http404 from rest_framework.generics import GenericAPIView from rest_framework.response import Response from rest_framework import status from .models import MlCube from .serializers import MlCubeSerializer, MlCubeDetailSerializer from .permissions import IsAdmin, IsMlCubeOwner class MlCubeList(GenericAPIView): serializer_class = MlCubeSerializer queryset = "" def get(self, request, format=None): """ List all mlcubes """ mlcubes = MlCube.objects.all() serializer = MlCubeSerializer(mlcubes, many=True) return Response(serializer.data) def post(self, request, format=None): """ Creates a new mlcube """ serializer = MlCubeSerializer(data=request.data) if serializer.is_valid(): serializer.save(owner=request.user) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class MlCubeDetail(GenericAPIView): serializer_class = MlCubeDetailSerializer queryset = "" def get_permissions(self): if self.request.method == "PUT": self.permission_classes = [IsAdmin | IsMlCubeOwner] elif self.request.method == "DELETE": self.permission_classes = [IsAdmin] return super(self.__class__, self).get_permissions() def get_object(self, pk): try: return MlCube.objects.get(pk=pk) except MlCube.DoesNotExist: raise Http404 def get(self, request, pk, format=None): """ Retrieve a mlcube instance. """ mlcube = self.get_object(pk) serializer = MlCubeDetailSerializer(mlcube) return Response(serializer.data) def put(self, request, pk, format=None): """ Update a mlcube instance. """ mlcube = self.get_object(pk) serializer = MlCubeDetailSerializer(mlcube, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk, format=None): """ Delete a mlcube instance. """ mlcube = self.get_object(pk) mlcube.delete() return Response(status=status.HTTP_204_NO_CONTENT) ``` #### File: server/user/views.py ```python from django.http import Http404 from rest_framework.generics import GenericAPIView from rest_framework.response import Response from rest_framework import status from django.contrib.auth.models import User from .serializers import UserSerializer from .permissions import IsAdmin, IsOwnUser class UserList(GenericAPIView): permission_classes = [IsAdmin] serializer_class = UserSerializer queryset = "" def get(self, request, format=None): """ List all users """ users = User.objects.all() serializer = UserSerializer(users, many=True) return Response(serializer.data) def post(self, request, format=None): """ Creates a new user """ serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserDetail(GenericAPIView): serializer_class = UserSerializer queryset = "" def get_permissions(self): if self.request.method == "PUT" or self.request.method == "GET": self.permission_classes = [IsAdmin | IsOwnUser] elif self.request.method == "DELETE": self.permission_classes = [IsAdmin] return super(self.__class__, self).get_permissions() def get_object(self, pk): try: return User.objects.get(pk=pk) except User.DoesNotExist: raise Http404 def get(self, request, pk, format=None): """ Retrieve a user instance. """ user = self.get_object(pk) serializer = UserSerializer(user) return Response(serializer.data) def put(self, request, pk, format=None): """ Update a user instance. """ user = self.get_object(pk) serializer = UserSerializer(user, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk, format=None): """ Delete a user instance. """ user = self.get_object(pk) user.delete() return Response(status=status.HTTP_204_NO_CONTENT) ```
{ "source": "johnugeorge/mlcube", "score": 2 }
#### File: mlcube_singularity/mlcube_singularity/singularity_run.py ```python import os import logging import typing as t from omegaconf import DictConfig, OmegaConf from mlcube.shell import Shell from mlcube.runner import (Runner, RunnerConfig) __all__ = ['Config', 'SingularityRun'] from mlcube.validate import Validate logger = logging.getLogger(__name__) class Config(RunnerConfig): """ Helper class to manage `singularity` environment configuration.""" DEFAULT = OmegaConf.create({ 'runner': 'singularity', 'image': '${singularity.image}', 'image_dir': '${runtime.workspace}/.image', 'singularity': 'singularity', 'build_args': '--fakeroot', 'build_file': 'Singularity.recipe' }) @staticmethod def merge(mlcube: DictConfig) -> None: mlcube.runner = OmegaConf.merge(mlcube.runner, mlcube.get('singularity', OmegaConf.create({}))) @staticmethod def validate(mlcube: DictConfig) -> None: validator = Validate(mlcube.runner, 'runner') validator.check_unknown_keys(Config.DEFAULT.keys())\ .check_values(['image', 'image_dir', 'singularity'], str, blanks=False) class SingularityRun(Runner): CONFIG = Config def __init__(self, mlcube: t.Union[DictConfig, t.Dict], task: t.Text) -> None: super().__init__(mlcube, task) def configure(self) -> None: """Build Singularity Image on a current host.""" s_cfg: DictConfig = self.mlcube.runner # Get full path to a singularity image. By design, we compute it relative to {mlcube.root}/workspace. image_uri: t.Text = os.path.join(s_cfg.image_dir, s_cfg.image) if os.path.exists(image_uri): logger.info("Image found (%s).", image_uri) return # Make sure a directory to store image exists. If paths are like "/opt/...", the call may fail. os.makedirs(os.path.dirname(image_uri), exist_ok=True) # Let's assume build context is the root MLCube directory recipe_path: t.Text = self.mlcube.runtime.root recipe_file: t.Text = os.path.join(recipe_path, s_cfg.build_file) if not os.path.exists(recipe_file): raise IOError(f"Singularity recipe not found: {recipe_file}") Shell.run( 'cd', recipe_path, ';', s_cfg.singularity, 'build', s_cfg.build_args, image_uri, s_cfg.build_file ) def run(self) -> None: """ """ image_uri: t.Text = os.path.join(self.mlcube.runner.image_dir, self.mlcube.runner.image) if not os.path.exists(image_uri): self.configure() # Deal with user-provided workspace Shell.sync_workspace(self.mlcube, self.task) mounts, task_args = Shell.generate_mounts_and_args(self.mlcube, self.task) logger.info(f"mounts={mounts}, task_args={task_args}") volumes = Shell.to_cli_args(mounts, sep=':', parent_arg='--bind') Shell.run(self.mlcube.runner.singularity, 'run', volumes, image_uri, ' '.join(task_args)) ```
{ "source": "johnurbanik/ABM-SEIR", "score": 3 }
#### File: agentseir_vi/api_client/client.py ```python import json import requests class APIClient: """ Simple API client for the Covid19 Tracking project API (https://covidtracking.com/data/api). TODO: Incorporate pandas for JSON/CSV parsing so that data comes back in a more standard, structured, usable format without all the extra columns. For now, example of such code is available in notebooks/initialInvestigation TODO: Extend this to query for specific states. """ ROUTES = { 'states': {'url': '/states', 'filter': 'state'}, 'states_info': {'url': '/states/info', 'filter': 'state'}, 'us': {'url': '/us'}, } def __init__(self): self._cache = {} def clear(self): """Class instances cache all data indefinitely, call this to clear""" self._cache = {} def states(self, *states): return self._get('states', states) def states_info(self, *states): return self._get('states_info', states) def us(self): return self._get('us') def _get(self, key, filter_by=None): route = self.ROUTES[key] url = "https://covidtracking.com/api%s" % rout['url'] if key not in self._cache: self._cache[key] = requests.get(url).json() if filter_by: fKey = route['filter'] return list(filter(lambda x: x[fKey] in filter_by, self._cache[key])) else: return self._cache[key] ``` #### File: agentseir_vi/model/base.py ```python import json import mesa from mesa import Agent, Model from mesa.time import BaseScheduler from mesa.datacollection import DataCollector import jax.numpy as np import jax.random as jrand import numpyro as ny import numpyro.distributions as dist from agentseir_vi.model.utils import log_to_file class Epidemic(BaseScheduler): ''' A scheduler that steps through time for the agents of a model. As opposed to modeling individual agents, as in standard mesa models, agents and their properties are kept in a set of numpy arrays. This allows for use of numpyro and drastically improves the performance. Thus, a scheduler over a model is used, and agent actions are controlled directly. ''' def __init__(self, model): # For now, just use super. # If we want to change how time is stepped through (i.e. different phases) # this would be where to do it. self.PRNGKey = jrand.PRNGKey(0) # TODO: Better seed self.params = self.model.params super().__init__(model) def step(self): self.update_agent_states() # Update the counts of the various states self.update_counts() if self.model.log_file: self.model.write_logs() # Write some logs, if enabled # NB: At some point, it may make sense to make agents move. For now, they're static. ############################# Transmission logic ################################### # Get all the currently contagious agents, and have them infect new agents. # TODO: include hospital transmission, vary transmissability by state. contagious = np.asarray( (self.model.epidemic_state == self.model.STATE_PRESYMPTOMATIC) | (self.model.epidemic_state == self.model.STATE_ASYMPTOMATIC) | (self.model.epidemic_state == self.model.STATE_SYMPTOMATIC) ).nonzero() # For each contagious person, infect some of its neighbors based on their hygiene and the contagious person's social radius. # Use jax.random instead of numpyro here to keep these deterministic. # TODO: figure out a way to do this in a (more) vectorized manner. Probably some sort of kernel convolution method with each radius. Should also look into numpyro's scan. for x,y in zip(*contagious): radius = self.model.social_radius[x, y] base_isolation = self.model.base_isolation[x, y] nx, ny = np.meshgrid( # pylint: disable=unbalanced-tuple-unpacking np.arange(x - radius, x + radius), np.arange(y - radius, y + radius) ) neighbor_inds = np.vstack([nx.ravel(), ny.ravel()]) # Higher base_isolation leads to less infection. # TODO: modify isolation so that symptomatic agents isolate more. infection_attempts = jrand.choice( self.PRNGKey, neighbor_inds, shape=int(len(neighbor_inds) * (1 - base_isolation)) ) potentially_infected_hygiene = self.model.hygiene[infection_attempts[:, 0], infection_attempts[:, 1]] susceptible = self.model.epidemic_state[infection_attempts[:, 0], infection_attempts[:, 1]] == self.model.STATE_SUSCEPTIBLE indexer = jrand.bernoulli( self.PRNGKey, potentially_infected_hygiene.ravel(), len(infection_attempts) ) got_infected = np.zeros(self.model.epidemic_state.shape, dtype=np.bool_) got_infected[potentially_infected_hygiene[indexer]] = True # Set the date to become infectious self.model.epidemic_state[got_infected & susceptible] = self.model.STATE_EXPOSED self.model.date_infected[got_infected & susceptible] = self.time self.model.date_contagious[got_infected & susceptible] = self.time + self.params.EXPOSED_PERIOD def update_agent_states(self): # Get all of the newly contagious agents, swap them to being contagious newly_contagious = np.asarray( (self.model.date_contagious <= self.time) & (self.model.epidemic_state < self.model.STATE_PRESYMPTOMATIC) ).nonzero() self.model.epidemic_state[newly_contagious] = self.model.STATE_PRESYMPTOMATIC # Also set the time in which they will become symptomatic, recover, die, etc. # This could also be done at transmission time. self.model.date_symptomatic[newly_contagious] = self.time + self.params.INCUBATION_PERIOD self.model.date_recovered[newly_contagious] = self.time + self.params.RECOVERY_PERIOD self.model.date_hospitalized[newly_contagious] = self.time + self.params.INCUBATION_PERIOD + self.params.SYMPTOM_TO_HOSP_PERIOD self.model.date_died[newly_contagious] = self.time + self.params.RECOVERY_PERIOD + self.params.SYMPTOM_TO_HOSP_PERIOD + self.params.HOSP_DEATH_PERIOD # Progress presymptomatic to asymptomatic/symptomatic newly_asymptomatic = np.asarray( (self.model.epidemic_state == self.model.STATE_PRESYMPTOMATIC) & (self.model.date_symptomatic <= self.time) & ~(self.params.SYMPTOMATIC) ).nonzero() self.model.epidemic_state[newly_asymptomatic] = self.model.STATE_ASYMPTOMATIC newly_symptomatic = np.asarray( (self.model.epidemic_state == self.model.STATE_PRESYMPTOMATIC) & (self.model.date_symptomatic <= self.time) & ~(self.params.SYMPTOMATIC) ).nonzero() self.model.epidemic_state[newly_symptomatic] = self.model.STATE_SYMPTOMATIC # Progress symptomatic to hospital newly_hospitalized = np.asarray( (self.model.will_be_hospitalized) & (self.model.date_hospitalied <= self.time) & (self.model.epidemic_state == self.model.STATE_SYMPTOMATIC) ).nonzero() self.model.epidemic_state[newly_hospitalized] = self.model.STATE_HOSPITALIZED # Progress hospitalized to death newly_dead = np.asarray( (self.model.epidemic_state == self.model.STATE_HOSPITALIZED) & (self.model.will_die) & (self.model.date_died <= self.time) ).nonzero() self.model.epidemic_state[newly_dead] = self.model.STATE_DEAD # Progress recovered to recovered if they won't die newly_recovered = np.asarray( ~(self.model.will_die) & (self.model.date_recovered <= self.time) & (self.model.epidemic_state < self.model.STATE_RECOVERED) # Small optimization? ).nonzero() self.model.epidemic_state[newly_recovered] = self.model.STATE_RECOVERED def update_counts(self): self.model.susceptible_count[self.time] = (self.model.epidemic_state == self.model.STATE_SUSCEPTIBLE).sum() self.model.exposed_count[self.time] = (self.model.epidemic_state == self.model.STATE_EXPOSED).sum() self.model.presymptomatic_count[self.time] = (self.model.epidemic_state == self.model.STATE_PRESYMPTOMATIC).sum() self.model.asymptomatic_count[self.time] = (self.model.epidemic_state == self.model.STATE_ASYMPTOMATIC).sum() self.model.symptomatic_count[self.time] = (self.model.epidemic_state == self.model.STATE_SYMPTOMATIC).sum() self.model.hospitalized_count[self.time] = (self.model.epidemic_state == self.model.STATE_HOSPITALIZED).sum() self.model.infected_count[self.time] = self.model.presymptomatic_count[self.time] + self.model.asymptomatic_count[self.time] + self.model.symptomatic_count[self.time] + self.model.hospitalized_count[self.time] self.model.recovered_count[self.time] = (self.model.epidemic_state == self.model.STATE_RECOVERED).sum() self.model.died_count[self.time] = (self.model.epidemic_state == self.model.STATE_DEAD).sum() class Population(Model): ''' A population is a square grid of agents. For now, they stay in the same place, and infect other agents around them based on their risk tolerance, social radius, and their neighbors hygiene. Additionally, agents modify their social radius based on sampling their neighborhood and their base_isolation. ''' STATE_SUSCEPTIBLE = 0 STATE_EXPOSED = 1 STATE_PRESYMPTOMATIC = 2 STATE_SYMPTOMATIC = 3 STATE_ASYMPTOMATIC = 4 STATE_HOSPITALIZED = 5 STATE_DEAD = 6 STATE_RECOVERED = 7 def __init__(self, N, params, log_file=None): ''' params: class or dict containing the global parameters for the model. ''' self.log_file = log_file self.params = params self.num_steps = N # Agents # self.people = None # ID array for easy reference self.age = None # Float 0-100 self.sex = None # Boolean, since we don't have good data for intersex people self.risk_tolerance = None # Float, 0-1 self.risk_factors = None # Integer 0-5, number of co-morbidities self.hygiene = None # Float, 0-1 ''' 0 -> can stay home 1 -> private commuter 2 -> public transit commuter 3 -> essential worker ''' self.worker_class = None ''' 0-> susceptible, 1-> exposed, 2-> presymptomatic, 3 -> symptomatic, 4-> asymptomatic, 5 -> hospitalized, 6 -> dead, 7 -> recovered ''' self.epidemic_state = None # self.location = None # Position on grid self.social_radius = None # Int 0-10, how far out grid do they socialize with self.base_isolation = None # How much attention they are paying to growth of epidemic locally # Dates are all ints for the step number self.date_infected = None self.date_contagious = None self.date_recovered = None self.date_hospitalized = None self.date_died = None # Global params: # self.lockdown_level = 0.0 # Float 0-1 # Counters self.susceptible_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.exposed_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.presymptomatic_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.asymptomatic_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.symptomatic_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.hospitalized_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.infected_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.recovered_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.died_count = np.zeros(shape=self.num_steps, dtype=np.int_) self.scheduler = Epidemic(self) def init_agents(self, num_steps=1000, pop_size=(1e2, 1e2), initial_infections=2): self.age = ny.sample('age', dist.Uniform(0, 100)) self.sex = ny.sample('sex', dist.Binomial(1, .5)) self.risk_tolerance = ny.sample('risk', dist.Beta(2, 5)) # self.risk_factors = ny.sample('health', dist.Binomial(5, .3)) self.hygiene = ny.sample('hygiene', dist.Beta(2, 5)) # self.worker_type = ny.sample('worker_type', dist.Categorical((.6, .1, .2, .1))) self.epidemic_state = ny.sample('state', dist.Binomial(1, initial_infections/pop_size[0]*pop_size[1])) self.social_radius = ny.sample('radius', dist.Binomial(10, .2)) self.base_isolation = ny.sample('base_isolation', dist.Beta(2, 2)) # TODO: make these depend on risk factors as well self.will_be_hospitalized = ny.sample('hosp', dist.Binomial(1, self.params.HOSP_AGE_MAP[self.age])) self.will_die = ny.sample('die', dist.Binomial(1, self.params.DEATH_MAP[self.age])) # The lengths of the infection are handled on a per agent basis via scenarios, these are just placeholders. self.date_infected = np.where(self.epidemic_state > 0, np.zeros(shape=pop_size), np.full(shape=pop_size, fill_value=np.inf)) self.date_contagious = np.where(self.epidemic_state > 0, np.ceil(self.params.EXPOSED_PERIOD), np.full(shape=pop_size, fill_value=np.inf)) self.date_symptomatic = np.full(shape=pop_size, fill_value=np.inf) self.date_recovered = np.full(shape=pop_size, fill_value=np.inf) self.date_hospitalized = np.full(shape=pop_size, fill_value=np.inf) self.date_died = np.full(shape=pop_size, fill_value=np.inf) def step(self): self.scheduler.step() def write_logs(self): current_time = self.scheduler.time data = dict( current_susceptible=int(self.susceptible_count), current_exposed=int(self.exposed_count), current_presymptomtic=int(self.presymptomatic_count), current_asymptomatic=int(self.asymptomatic_count), current_symptomatic=int(self.symptomatic_count), current_hospitalized=int(self.hospitalized_count), current_infected=int(self.infected_count), current_recovered=int(self.recovered_count), current_dead=int(self.died_count), total_contagious_count=int((self.date_contagious < current_time).sum()), total_infected_count=int((self.date_infected < current_time).sum()), total_hospitalized_count=int((self.date_hospitalized < current_time).sum()), ) info = json.dumps(data) log_to_file(self.log_file, info) ```
{ "source": "johnurbanik/prospector", "score": 3 }
#### File: prospector/pages/onboarding.py ```python import streamlit as st import pandas as pd def onboarding(state): st.title("20 Questions, Belief Distribution Edition") st.write("---") prompt = st.text_input("What is your Question?", state.q.prompt or "") state.q.set_prompt(prompt) # For Validation support_options = ['(-inf,inf)', '[a, inf)', '[a,b]'] support = st.selectbox("What type of support does your question have?", support_options, support_options.index(state.q.get_support_type())) dtype_options = ['Numeric', 'Date'] state.q.dtype = st.selectbox("Are the values of your forecast domain dates or numbers?", dtype_options, dtype_options.index(state.q.dtype)) if support == support_options[0]: neg_inf = True bot_label = "What is the value you expect almost all results to be above" else: neg_inf = False bot_label = "What is the minimum value that your question may occupy?" if state.q.dtype == 'Numeric': bottom = st.number_input(bot_label, value=0) else: bottom = pd.to_datetime( st.date_input( bot_label, max_value=(pd.Timestamp.today() + pd.DateOffset(years=100)).to_pydatetime() ) ) if support_options.index(support) in [0, 1]: pos_inf = True top_label = "What is the value you expect almost all results to be below" else: pos_inf = False top_label = "What is the maximum value that your question may occupy?" if state.q.dtype == 'Numeric': top = st.number_input(top_label, value=100) else: top = pd.to_datetime( st.date_input( top_label, value=(pd.Timestamp.today() + pd.DateOffset(years=10)).to_pydatetime(), max_value=(pd.Timestamp.today() + pd.DateOffset(years=100)).to_pydatetime() ) ) state.q.set_domain(bottom, top, neg_inf, pos_inf) if st.button("Submit"): state.page = "Dashboard" state.q.initialize_program() ``` #### File: prospector/utilities/engine.py ```python import streamlit as st import numpy as np from scipy.optimize import differential_evolution as dev from scipy.optimize import Bounds, LinearConstraint, minimize from mystic.coupler import and_ from mystic.solvers import diffev2, fmin_powell from mystic.symbolic import generate_penalty, generate_constraint, generate_solvers, generate_conditions, replace_variables from utilities.np_helper import shift import json # The evaluations are stochastic, so we can't cache for now. # @st.cache(allow_output_mutation=True) def evaluate(program): if "objective" in program: n = program["num_bins"] # pen_statements = replace_variables( # "\n".join([p["penalty"] for p in program["answers"]]), # variables=[f"bin_{i}" for i in range(n)], markers="x" # ) # pens = generate_penalty(generate_conditions(pen_statements, nvars=n)) # constraint_statements = replace_variables( # "\n".join([p["constraint"] for p in program["constraints"]]), # variables=[f"bin_{i}" for i in range(n)], markers="x" # ) # cons = generate_constraint(generate_solvers(constraint_statements, nvars=n)) # # results = fmin_powell( # # cost=program["objective"], x0=[1.0/n] * n, # # bounds=program["bounds"], # # constraints=cons, # # penalty=pens, disp=False, # # full_output=True # # ) # results = diffev2( # cost=program["objective"], x0=[(0.0, 1.0/n)] * n, # npop=10*n, bounds=program["bounds"], # scale=0.7, cross=0.5, # maxiter=300, # constraints=cons, # penalty=pens, disp=False, # full_output=True # ) # st.write(results) # return results obj = [ lambda x: np.sum(x * np.ma.log(x).filled(0)), # lambda x: np.nansum((shift(x, -1) - x)**2) * .5*n + np.nansum((shift(x, -2) - x)**2) * .25*n ] pens = obj + [p['np_pen'] for p in program['answers']] def obj_fun(z, pens): return sum(f(z) for f in pens) import inspect return minimize(obj_fun, args=pens, x0=np.ones(n)/n, bounds=Bounds(np.zeros(n),np.ones(n)), constraints=LinearConstraint(np.ones(n), 1, 1)) else: return "" ```
{ "source": "JohnUrban/pufferfish", "score": 2 }
#### File: pufferfish/pufferfish/CovBedClass.py ```python import os from collections import defaultdict import numpy as np import pandas as pd ##np.seterr(divide='raise', invalid='raise') np.seterr(divide='ignore', invalid='raise') ##np.seterr(divide='ignore', invalid='ignore') import rpy2.robjects as robjects ksmooth = robjects.r['ksmooth'] kmeans = robjects.r['kmeans'] intvec = robjects.IntVector fltvec = robjects.FloatVector matrixr = robjects.r.matrix r = robjects.r from rpy2.robjects.packages import SignatureTranslatedAnonymousPackage as stap from puffR import * puffR = stap(puffRstring, 'puffR') import sys, datetime from scipy.stats import spearmanr import pandas as pd ## 2020 - potentially begin converting to pandas code where better #from scipy.stats.mstats import winsorize def s50(counts, stages, x=[50]): """ counts,stages,x lists Returns sX for all x for a list of numbers "counts". Default: 50 Assumes all values in list x are between 0 and 100. Interpretation: Returns stage at which >= 50% of reads is hit. """ n = len(counts) x_to_stage = {e:0 for e in x} count_sum = sum(counts) total = 0 i=0 for e in sorted(x): target = count_sum*e/100.0 while total < target and counts: total += counts[i] lastcount = counts[i] laststage = stages[i] i+=1 try: x_to_stage[e] = laststage except UnboundLocalError: x_to_stage[e] = "." return x_to_stage TMP_DIR = ".pufferfish_tmp_dir" TMP_DIR = TMP_DIR[1:] class CovBed(object): def __init__(self, covbedfile, count_only=False, replace=False, replace_with='0', replace_this='.', stringcols=False): ## "replace" means if you see the "replace_this" character in the count column, make it "replace_with" ## Made to deal with "." --> 0 by default when replace used. self.fopen = False self.connection = None self.file = covbedfile self.stringcols = stringcols self.start = {} self.end = {} self.count = {} self.chromosomes = set([]) self.median = None self.mean = None self.sd = None self.mad = None self.rank = None self.rankstd = None self.sum = None self.nbins = None self.localmeds = None self.count_only=count_only ## When False, start/end dicts are initialized, but remain empty: useful when comparing 2 bedgraphs of identical coords. See also MultiCovBed (though that currently requires a "stage file") self._extract_data(replace, replace_with, replace_this) def open(self): if self.fopen: self.close() self.connection = open(self.file, 'r') self.fopen = True def close(self): self.connection.close() def _add_chromosome(self, chrom): self.chromosomes.add(chrom) self.start[chrom] = [] self.end[chrom] = [] self.count[chrom] = [] def _update_data(self, chrom, start, end, count): if chrom not in self.chromosomes: self._add_chromosome(chrom) if not self.count_only: ## This allows the start/end dicts to be initialized, but remain empty self.start[chrom].append(start) self.end[chrom].append(end) self.count[chrom].append(count) def _finalize_data(self): ## convert set to list self.chromosomes = sorted(list(self.chromosomes)) #convert lists to np arrays for chrom in self.chromosomes: self.start[chrom] = np.array(self.start[chrom]) self.end[chrom] = np.array(self.end[chrom]) self.count[chrom] = np.array(self.count[chrom]) def _extract_data(self, replace=False, replace_with='0', replace_this='.'): self.open() for line in self.connection: chrom, start, end, count = line.strip().split() if replace and count == replace_this: count = replace_with if self.stringcols: self._update_data(chrom, start, end, float(count)) else: self._update_data(chrom, int(start), int(end), float(count)) ### JAN 9, 2018 -- I changed above int(float(count)) to float(count) ### At this point, I don't know what it might break... ## But now that I am using this more generally for signal data - not just counts - I need it as float self._finalize_data() self.close() def get_mean(self): if self.mean is None: counts = np.concatenate(self.count.values()) self.mean = float(np.mean(counts)) self.sd = float(np.std(counts)) return self.mean def get_sd(self): if self.sd is None: counts = np.concatenate(self.count.values()) self.mean = float(np.mean(counts)) self.sd = float(np.std(counts,ddof=1)) return self.sd def _get_median(self): counts = np.concatenate(self.count.values()) self.median = float(np.median(counts)) def _safe_median_(self, x, unsafe=0, safe=1, trimmedMeanFirst=True, meanFirst=True, extreme=0.25): ''' if median is unsafe, make it safe. Optionally try chekcing and using safety of mean first''' ans = np.median(x) if ans == unsafe and trimmedMeanFirst: sys.stderr.write('Unsafe 1\n') sort = sorted(ans) l = len(sort) if l > 3: ## other wise, depending on extreme it will exclude none, or sides (equiv to median), or all e = int(round(extreme*l)) if e < (l-e): sort = sort[e:(l-e)] ans = np.mean(sort) if ans == unsafe and meanFirst: sys.stderr.write('Unsafe 2\n') ans = np.mean(x) ## Checks median or mean depending on safety of median and meanfirst option. if ans == unsafe: sys.stderr.write('Unsafe 3\n') ans = safe return ans def _get_local_medians(self, halfwidth=10, besafe=True, unsafe=0, safe=1, trimmedMeanFirst=True, meanFirst=True, extreme=0.25): ''' halfwidth is the number of bins to each side. First position, A, is halfwidth Last position, Z, is L-halfwidth Positions 0 to A get local median from 0-A+halfwidth+1. Positions Z+1 to L get local median from Z-halfwidth to L. All others get position, P-haldwidth to P+halfwidth+1. Note: when besafe=True, if the median is the unsafe value, it is changed to a safe value. when meanfirst=True and/or trimmedMeanFirst=True, it will check if the mean and/or trimmedMean gives a safe value, and use that. trimmed mean takes precedent over mean; mean takes precedent over default safe value. Use case: you likely plan to do local median normalization, but 0s will give ZeroDivError. Pseudocounts are sometimes used to prevent this, as well as eliminating 0 bins. This is just a catch/check. For trimming, the extreme proportion is substracted from both ends of sorted values before taking mean. (e.g. mean of bins 5:14 inclusive for 25% of 20 bins)''' self.localmeds = {} for chrom in self.chromosomes: counts = np.array(self.count[chrom]) L = len(self.count[chrom]) A = halfwidth Z = L-halfwidth self.localmeds[chrom] = np.zeros(L) if halfwidth > L: # Entire contig is just locally median norm'd self.localmeds[chrom][0:L] = self._safe_median_( x = counts, unsafe=unsafe, safe=safe, trimmedMeanFirst=trimmedMeanFirst, meanFirst=meanFirst, extreme=extreme ) else: # Init positions self.localmeds[chrom][0:A] = self._safe_median_( x = counts[0:(A+halfwidth+1)], unsafe=unsafe, safe=safe, trimmedMeanFirst=trimmedMeanFirst, meanFirst=meanFirst, extreme=extreme ) # End positions self.localmeds[chrom][(Z+1):L] = self._safe_median_( counts[(Z-halfwidth):L], unsafe=unsafe, safe=safe, trimmedMeanFirst=trimmedMeanFirst, meanFirst=meanFirst, extreme=extreme ) if Z >= A: ''' If Z < A, then entire contig has already been median norm'd with end positions overwriting overlapping start positions. If Z > A, then there is at least one position in the middle.''' # Middle positions: for i in range(A,Z+1): self.localmeds[chrom][i] = self._safe_median_( x = counts[(i-halfwidth):(i+halfwidth+1)], unsafe=unsafe, safe=safe, trimmedMeanFirst=trimmedMeanFirst, meanFirst=meanFirst, extreme=extreme ) def _get_mad(self, relearn=False): if self.median is None or relearn: self._get_median() counts = np.concatenate(self.count.values()) absdiffs = np.abs((counts - self.get_median())) self.mad = float(np.median(absdiffs)) def _get_sum(self): counts = np.concatenate(self.count.values()) self.sum = float(np.sum(counts)) def _get_nbins(self): self.nbins = len(np.concatenate(self.count.values())) def _rank_data(self): counts = np.concatenate(self.count.values()) ranks = np.array(pd.Series(counts).rank()) assert len(counts) == len(ranks) self.rankdict = {counts[i]:ranks[i] for i in range(len(counts))} self.rank = {} for chrom in self.count.keys(): self.rank[chrom] = [self.rankdict[e] for e in self.count[chrom]] def _rank_standardize_data(self): counts = np.concatenate(self.count.values()) ranks = np.array(pd.Series(counts).rank()) assert len(counts) == len(ranks) highest = self.get_nbins() lowest = 1.0 M = (lowest+highest)/2.0 self.rankdict = {counts[i]:((ranks[i]-M)/M) for i in range(len(counts))} self.rankstd = {} for chrom in self.count.keys(): self.rankstd[chrom] = [self.rankdict[e] for e in self.count[chrom]] ## counts = [] ## for chrom in self.chromosomes: ## counts.append(self.count[chrom]) ## self.median = float(np.median(counts)) def get_median(self, relearn=False): if self.median is None or relearn: self._get_median() return self.median def get_mad(self, relearn=False): if self.mad is None or relearn: self._get_mad() return self.mad def get_nbins(self): if self.nbins is None: self._get_nbins() return self.nbins def median_normalize_x(self, x, relearn=False): #x is np.array return x/self.get_median(relearn=relearn) def robust_z_normalize_x(self, x, relearn=False): #x is np.array return (x-self.get_median(relearn=relearn))/self.get_mad(relearn=relearn) def median_normalize_data(self, relearn=False): if relearn: self._get_median() for chrom in self.chromosomes: self.count[chrom] = self.median_normalize_x(self.count[chrom]) def local_median_normalize_data(self, halfwidth=10, relearn=False): ''' halfwidth is the number of bins to each side. First position, A, is halfwidth Last position, Z, is L-halfwidth Positions 0 to A get local median from 0-A+halfwidth+1. Positions Z+1 to L get local median from Z-halfwidth to L. All others get position, P-haldwidth to P+halfwidth+1.''' if relearn or self.localmeds is None: self._get_local_medians(halfwidth=halfwidth) for chrom in self.chromosomes: self.count[chrom] = np.array(self.count[chrom]) / self.localmeds[chrom] def robust_z_normalize_data(self, relearn=False): if relearn: self._get_median() self._get_mad() for chrom in self.chromosomes: self.count[chrom] = self.robust_z_normalize_x(self.count[chrom]) def rank_normalize_data(self, relearn=False): if self.rank is None or relearn: self._rank_data() for chrom in self.chromosomes: self.count[chrom] = self.rank[chrom] def rank_standardize_data(self, relearn=False): if self.rankstd is None or relearn: self._rank_standardize_data() for chrom in self.chromosomes: self.count[chrom] = self.rankstd[chrom] def spxr_normalize_data(self, x=1e6, relearn=False): ''' ''' if self.sum is None or relearn: self._get_sum() scale_factor = float(x) / self.sum self.scale_data(scale=scale_factor) def scale_data(self, scale=1): for chrom in self.chromosomes: self.count[chrom] = scale*self.count[chrom] def log2_data(self, scale=1): for chrom in self.chromosomes: self.count[chrom] = np.log2(self.count[chrom]) def log10_data(self, scale=1): for chrom in self.chromosomes: self.count[chrom] = np.log10(self.count[chrom]) def expanded_bdg(self, bdg): ##bdg is just what should be in the 4th column string = '' for chrom in self.chromosomes: for i in range(len(self.start[chrom])): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(bdg[chrom][i])]) + "\n" return string def expanded_bdg_two_cols(self, bdg1, bdg2): string = '' for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(bdg1[chrom][i]), str(bdg2[chrom][i])]) + "\n" return string def collapsed_bdg(self, bdg): ##bdg is just what should be in the 4th column string = '' for chrom in self.chromosomes: if len(self.start[chrom]) > 1: #init start = self.start[chrom][0] value = bdg[chrom][0] for i in range(1, len(self.start[chrom]) ): if bdg[chrom][i] != value: string += ('\t').join([chrom, str(start), str(self.end[chrom][i-1]), str(value)]) + "\n" start = self.start[chrom][i] value = bdg[chrom][i] ##finish chrom string += ('\t').join([chrom, str(start), str(self.end[chrom][i]), str(value)]) + "\n" else: #only 1 bin (very tiny contig) string += ('\t').join([chrom, str(self.end[chrom][0]), str(self.end[chrom][0]), str(bdg[chrom][0])]) + "\n" return string def get_bdg(self, bdg, collapsed=False): if not collapsed: return self.expanded_bdg(bdg) else: return self.collapsed_bdg(bdg) def filtered_bdg(self, relation = ">", value = 0, bdg=None): ##bdg is just what should be in the 4th column ## for this might typically be self.count if bdg is None: bdg = self.count string = '' if relation == "gt": keep = lambda x: x > value elif relation == "ge": keep = lambda x: x >= value elif relation == "lt": keep = lambda x: x < value elif relation == "le": keep = lambda x: x <= value elif relation == "eq": keep = lambda x: x == value elif relation == "ne": keep = lambda x: x != value for chrom in self.chromosomes: for i in range(len(self.start[chrom])): if keep(bdg[chrom][i]): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(bdg[chrom][i])]) + "\n" return string def __str__(self): return self.get_bdg(self.count) def get_chromosomes(self): return self.chromosomes def get_start_dict(self): return self.start def get_end_dict(self): return self.end def get_count_dict(self): return self.count def ksmooth_counts(self, bw=10000, rescueNaN=False, localWindow=5): for chrom in self.chromosomes: x = self.start[chrom] y = self.count[chrom] k = ksmooth(x = fltvec(x), y = fltvec(y), bandwidth = bw) self.count[chrom] = np.array(k[1]) ## RESCUE NANs if rescueNaN: # 1. Compute global mean of self.count[chrom] mu = np.nanmean(self.count[chrom]) # 2. Calculate local means (pd and convert to np) new = np.array(pd.DataFrame(self.count[chrom]).rolling(3, center=True, axis=0, min_periods=1).mean().transpose())[0] # 3. Replace any NaN in new with global mean new = np.where(np.isnan(new),mu,new) # 4. Replace any NaN in self.count[chrom] w/ corresponding value in new final = np.where(np.isnan(self.count[chrom]),new,self.count[chrom]) # 5. Overwrite self.count[chrom] - I know this can be done in #4, but felt like keeping it separate. self.count[chrom] = final def computeSkew(self): ''' Converts values, V, in counts to skew = (V[i]-V[i-1]) / (V[i]+V[i-1]). For i in 2:N. The first element is 0.''' for chrom in self.chromosomes: n = len(self.count[chrom]) Next = self.count[chrom][1:n] Prev = self.count[chrom][:n-1] Diff = (Next - Prev)*100.0 ## 100.0 to ensure floats Sum = (Next + Prev)*1.0 ## 1.0 to ensure floats Skew = [0.0] + list(Diff / Sum) self.count[chrom] = np.array(Skew) def computePercentChange(self): ''' Converts values, V, in counts to skew = (V[i]-V[i-1]) / V[i-1]. For i in 2:N. The first element is 0.''' for chrom in self.chromosomes: n = len(self.count[chrom]) Next = self.count[chrom][1:n] Prev = self.count[chrom][:n-1] Diff = (Next - Prev)*100.0 ## 100.0 to ensure floats, and make as Pct PctChange = [0.0] + list(Diff / Prev) self.count[chrom] = np.array(PctChange) def computeSkewChange(self): self.computeSkew() for chrom in self.chromosomes: n = len(self.count[chrom]) Next = self.count[chrom][1:n] Prev = self.count[chrom][:n-1] Diff = (Next - Prev)*1.0 ## 1.0 to ensure floats PctChange = [0.0] + list(Diff / 200.0) ## /200 b/c Skew was mult by 100 and I want to divide by 2 (similar to Hyrien segmentaiton of RFD) self.count[chrom] = np.array(PctChange) def computePercentChangeDerivative(self): ''' Converts values, V, in counts to skew = (V[i]-V[i-1]) / V[i-1]. For i in 2:N. The first element is 0.''' self.computePercentChange() self.computePercentChange() def normalize_to_other(self, other, pseudocount=0.01): #other is another CovBed object with same bins from same genome for chrom in self.chromosomes: #print chrom self.count[chrom] = (np.array(self.count[chrom])+pseudocount)/(np.array(other.count[chrom])+pseudocount) def _opt_handle_zero_bins(self, other, chrom, setToControlDist=False, pseudoZeroBins=False, addMinOtherPlusOneToBoth=False): t = np.array(self.count[chrom]) c = np.array(other.count[chrom]) if setToControlDist: ## Assumes we are working with Z scores c = other.get_mad() * c + other.get_median() t = other.get_mad() * t + other.get_median() if pseudoZeroBins: ## slightly modify bins that have 0 in control (to avoid division) g = c == 0 ng = c != 0 m = np.abs(c[ng]).min() ## /10.0 t[g] = t[g]+m c[g] = c[g]+m if addMinOtherPlusOneToBoth: ## Shift entire distro up -- not meant to be used with pseudoZeroBins, but won't throw error either. m = np.abs(c.min()) + 1 t = t + m c = c + m return t, c def pct_diff_from_other(self, other, setToControlDist=False, pseudoZeroBins=False, addMinOtherPlusOneToBoth=False): #other is another CovBed object with same bins from same genome #I'm not supporting pseudo counts at this point -- in favor of removing 0 bins from both samples for chrom in self.chromosomes: t, c = self._opt_handle_zero_bins(other, chrom, setToControlDist, pseudoZeroBins, addMinOtherPlusOneToBoth) self.count[chrom] = 100.0*(t-c)/c def pct_skew_given_other(self, other, setToControlDist=False, pseudoZeroBins=False, addMinOtherPlusOneToBoth=False): #other is another CovBed object with same bins from same genome #I'm not supporting pseudo counts at this point -- in favor of removing 0 bins from both samples for chrom in self.chromosomes: t, c = self._opt_handle_zero_bins(other, chrom, setToControlDist, pseudoZeroBins, addMinOtherPlusOneToBoth) ###self.count[chrom] = 100.0*(np.array(self.count[chrom]) - np.array(other.count[chrom]))/(np.abs(np.array(self.count[chrom])) + np.abs(np.array(other.count[chrom]))) self.count[chrom] = 100.0*(t - c)/(np.abs(t) + np.abs(c)) def subtract_other(self, other, pseudocount=0.01): #other is another CovBed object with same bins from same genome for chrom in self.chromosomes: #print chrom self.count[chrom] = np.array(self.count[chrom]) - np.array(other.count[chrom]) def normalize_with_glocalMedRatioNorm(self, other=None, pseudocount=0.01, globalweight=1, minlocalbins=3, minpropdata=0.1): #other is another CovBed object with same bins from same genome covd = self.create_local_medRatioNorm_dict(other=other, pseudocount=pseudocount) #print 'globalweight', globalweight covmeds = self.get_params_from_local_medRatioNorm_dict_with_glocalweighting(covd=covd, globalweight=globalweight, minlocalbins=minlocalbins, minpropdata=minpropdata) for chrom in self.chromosomes: norms = np.array(map(lambda x: covmeds[x], self.count[chrom])) if other is not None: self.count[chrom] = (1.0/norms)*(np.array(self.count[chrom])+pseudocount)/(np.array(other.count[chrom])+pseudocount) else: self.count[chrom] = norms*(np.array(self.count[chrom])+pseudocount) print("INDEV") #print(covd) #print() #print(covmeds) #print() #return (covd, covmeds) def impute_zeros(self, bw): '''When requiring mapq to be stringent, it leaves stretches of 0 that could benefit from being imputed. The 0 score often causes a state change in HMMs and can also lead to very inflated scores in FE after pseudocount added (if numerator is non-zero - e.g. 10/0.1 = 100) So this smooths the counts... and only uses the resulting smoothed values to substitute 0s. This means in very long 0 regions (e.g. contigs with no coverage), the score will remain 0 as desired.''' for chrom in self.chromosomes: x = self.start[chrom] y = self.count[chrom] k = puffR.impute_zeros(x = fltvec(x), y = fltvec(y), bw = bw) self.count[chrom] = np.array(k) def global_winsorize_counts(self, floor=0.00001, ceiling=0.99999): '''Set anything below the value of the floor quantile to that value. Set anything above the value of the ceiling quantile to that value.''' counts = np.concatenate(self.count.values()) wange = np.quantile(counts, [floor, ceiling]) for chrom in self.chromosomes: self.count[chrom][self.count[chrom] < wange[0]] = wange[0] self.count[chrom][self.count[chrom] > wange[1]] = wange[1] def local_winsorize_counts(self, floor=0.0001, ceiling=0.9999): '''Set anything below the value of the floor quantile to that value. Set anything above the value of the ceiling quantile to that value.''' counts = np.concatenate(self.count.values()) gwange = np.quantile(counts, [floor, ceiling]) for chrom in self.chromosomes: counts = np.array(self.counts[chrom]) cwange = np.quantile(counts, [floor, ceiling]) pass def create_local_medRatioNorm_dict(self, other=None, pseudocount=0.0): #other is another CovBed object with same bins from same genome covd = defaultdict(list) for chrom in self.chromosomes: if other is not None: ratios = (np.array(self.count[chrom])+pseudocount)/(np.array(other.count[chrom])+pseudocount) else: ratios = np.array(self.count[chrom])+pseudocount for i in range(len(self.count[chrom])): latecov = self.count[chrom][i] ratio = ratios[i] covd[latecov].append(ratio) return covd def get_params_from_local_medRatioNorm_dict_with_globalweighting(self, covd, globalweight=30): #covd = output from create_local_medRatioNorm_dict #globalweight = how many global_med values to add to a local bin global_med = [np.median(np.concatenate(covd.values()))]*globalweight covmeds = dict() for key in sorted(covd.keys()): ratios = np.concatenate([global_med,covd[key]]) covmeds[key] = np.median(ratios) return covmeds def get_params_from_local_medRatioNorm_dict_with_glocalweighting(self, covd, globalweight=10, minlocalbins=3, minpropdata=0.1): #covd = output from create_local_medRatioNorm_dict #globalweight = how many global_med values to add to a local bin N = len(np.concatenate(covd.values())) pN = round(minpropdata*N) #print 'pN', pN global_med = [np.median(np.concatenate(covd.values()))]*globalweight #print 'G', global_med covmeds = dict() latecovs = sorted(covd.keys()) halfbins = int((minlocalbins+1)//2) ## halves from odds rounded up n = len(latecovs) for i in range(n): ## FIRST SATISFY MIN BINS if minlocalbins >=3: l = max(0, i-halfbins) r = min(i+halfbins, n-1) nl = i-l nr = r - i if l == 0: add = minlocalbins - nl r += add if r > n-1: ## CATCH -- this shouldn't happen print "WARN: get_params_from_local_medRatioNorm_dict_with_glocalweighting #1" r = n-1 if r == n-1: sub = minlocalbins - nr l -= sub if l < 0: ## CATCH -- this shouldn't happen print "WARN: get_params_from_local_medRatioNorm_dict_with_glocalweighting #2" l = 0 bins = [latecovs[j] for j in range(l,r)] else: bins = [latecovs[i]] # [covd[j] for j in range(i,i+minlocalbins)] nbins = len(bins) #print "nbins post minbins", nbins ## SECOND, SATISFY MIN PROP OF DATA direction = 'R' localvals = list(np.concatenate([covd[latecov] for latecov in bins])) nvals = len(localvals) finiteloop=n while nvals < pN: if direction == 'R' and r <= n-1: # use r before r change since it only went up to but did not include r before localvals.append(covd[latecovs[r]]) r += 1 direction = 'L' nvals = len(localvals) finiteloop=n elif direction == 'L' and l > 0: # use l AFTER l change since used l already l-=1 localvals.append(covd[latecovs[l]]) direction = 'R' nvals = len(localvals) finiteloop=n else: finiteloop-=1 if finiteloop <= 0: print "WARN: get_params_from_local_medRatioNorm_dict_with_glocalweighting #3" break ## GET GLOCAL MEDIAN RATIO ratios = np.concatenate([global_med, localvals]) #print ratios covmeds[latecovs[i]] = np.median(ratios) return covmeds class MultiCovBed(object): ## assumes all covbeds in list have same exact elements in 1st 3 colums and are all identically ordered ## this should be true if all are outputs from getcov using the same genome file (just different bams) def __init__(self, stagefile): # 'stagefile' is a FOFN-like file with 2 columns: 1=stage_integer,2=bincounts_filepaths ## where stage integer is time points -- e.g. 1,2,3,4,5 ## stage_ints can be used on replicates (i.e. can use same int >1 time) self.stagefile = stagefile self.nfiles = 0 self.nbins = 0 self.covbeds = {} self.stages = {} self.stagelist = [] self.files = {} self.count = {} self.median = {} self.start = {} self.end = {} self.chromosomes = set([]) self._parse_stagefile() self._extract_data() self.corscores = {} self.rksmooth = None self.smooth_corscores = {} self.cor_states = {} self.s50 = {} self.a50 = {} self.filtered = {'start':{}, 'end':{}, 'count':{k:{} for k in range(self.nfiles)}} self.filteredchromosomes = [] self.ntest = None ###################### ## INITIALIZATION ###################### def _parse_stagefile(self): i = 0 with open(self.stagefile) as f: for line in f: stage, fname = line.strip().split() self.stages[i] = int(stage) self.files[i] = fname self.stagelist.append(int(stage)) i+=1 self.nfiles = len(self.files.keys()) def _extract_data(self): for i in sorted(self.files.keys()): self.add_covbed(findex = i) def add_covbed(self, findex): covbed = CovBed(self.files[findex]) if not self.chromosomes: self._initialize(covbed) self.count[findex] = covbed.get_count_dict() def _initialize(self, covbed): self.start = covbed.get_start_dict() self.end = covbed.get_end_dict() self.chromosomes = sorted(list(covbed.get_chromosomes())) ###################### ## Operations ###################### def _get_median(self, findex): counts = np.concatenate(self.count[findex].values()) self.median[findex] = float(np.median(counts)) def get_median(self, findex, refresh=False): if refresh: self._get_median(findex) try: return self.median[findex] except KeyError as e: self._get_median(findex) return self.median[findex] def _refresh_medians(self): ## will re-calculate medians every time called for findex in range(self.nfiles): self._get_median(findex) def normalize(self, x, denom): #x is np.array # denom is float return x/denom def normalize_findex_by_x(self,findex, x): for chrom in self.chromosomes: self.count[findex][chrom] = self.normalize(self.count[findex][chrom], x) def nomalize_data_by_xdict(self,xdict): for findex in range(self.nfiles): self.normalize_findex_by_x(findex, xdict[findex]) def median_normalize_findex(self,findex, refresh=False): self.normalize_findex_by_x(findex, x = self.get_median(findex, refresh)) def median_normalize_data(self, refresh=False): for findex in range(self.nfiles): self.median_normalize_findex(findex, refresh) def ksmooth_counts(self, bw=10000): for chrom in self.chromosomes: for findex in range(self.nfiles): x = self.start[chrom] y = self.count[findex][chrom] k = ksmooth(x = fltvec(x), y = fltvec(y), bandwidth = bw) self.count[findex][chrom] = np.array(k[1]) def expanded_bdg(self, bdg): string = '' for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(bdg[chrom][i])]) + "\n" return string def expanded_bdg_two_cols(self, bdg1, bdg2): string = '' for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(bdg1[chrom][i]), str(bdg2[chrom][i])]) + "\n" return string def collapsed_bdg(self, bdg): string = '' for chrom in self.chromosomes: #init start = self.start[chrom][0] value = bdg[chrom][0] for i in range(1, len(self.start[chrom]) ): if bdg[chrom][i] != value: string += ('\t').join([chrom, str(start), str(self.end[chrom][i-1]), str(value)]) + "\n" start = self.start[chrom][i] value = bdg[chrom][i] ##finish chrom string += ('\t').join([chrom, str(start), str(self.end[chrom][i]), str(value)]) + "\n" return string def get_bdg(self, bdg, collapsed=False): if not collapsed: return self.expanded_bdg(bdg) else: return self.collapsed_bdg(bdg) def find_slopes(self, stagelist=''): if not stagelist: stagelist = self.stagelist self.slopes = {} for chrom in self.chromosomes: self.slopes[chrom] = [] for i in range(len(self.start[chrom])): counts = [self.count[j][chrom][i] for j in range(self.nfiles)] try: slope = np.polyfit(x = stagelist, y = counts, deg = 1)[0] except FloatingPointError: slope = 0 self.slopes[chrom].append(slope) def get_slope_bdg(self, collapsed=False): ##assumes self.slopes already present return self.get_bdg(self.slopes, collapsed) def cor_score(self, stagelist=''): if not stagelist: stagelist = self.stagelist for chrom in self.chromosomes: self.corscores[chrom] = [] for i in range(len(self.start[chrom])): counts = [self.count[j][chrom][i] for j in range(self.nfiles)] try: ## score = np.nan_to_num( np.corrcoef(x = [stagelist, counts])[0,1] ) score = np.corrcoef(x = [stagelist, counts])[0,1] except FloatingPointError: score = 0 self.corscores[chrom].append(score) def get_corscore_bdg(self, collapsed=False): if not self.corscores: self.cor_score() return self.get_bdg(self.corscores, collapsed) def ksmooth_corscores(self, bw=10000): if not self.corscores: self.cor_score() for chrom in self.chromosomes: x = self.start[chrom] y = self.corscores[chrom] k = ksmooth(x = fltvec(x), y = fltvec(y), bandwidth = bw) self.smooth_corscores[chrom] = np.array(k[1]) def get_smooth_corscore_bdg(self, collapsed=False): return self.get_bdg(self.smooth_corscores, collapsed) def get_cor_states(self, smoothed=False, emodel="normal"): if not self.corscores: self.cor_score() if smoothed and not self.smooth_corscores: sys.stderr.write("Smoothing cor scores with default bandwidth") self.ksmooth_corscores() if smoothed: scores = self.smooth_corscores else: scores = self.corscores for chrom in self.chromosomes: ## sys.stderr.write( chrom + "\n" ) v = puffR.viterbi_puff(emissions = puffR.emissions, transitions = puffR.transitions, initial = puffR.initial, states = intvec([1,2,3]), emitted_data = fltvec(scores[chrom]), emodel = emodel, logprobs=False) ## f = puffR.forward_puff(emissions = puffR.emissions, transitions = puffR.transitions, initial = puffR.initial, states = intvec([-1,0,1]), emitted_data = fltvec(scores[chrom]), emodel = emodel, logprobs=False) ## b = puffR.backward_puff(emissions = puffR.emissions, transitions = puffR.transitions, initial = puffR.initial, states = intvec([-1,0,1]), emitted_data = fltvec(scores[chrom]), emodel = emodel, logprobs=False) self.cor_states[chrom] = np.array(list(v[0])) def get_cor_state_bdg(self, collapsed=False): return self.get_bdg(self.cor_states, collapsed) def calc_s50(self, x=[50], stagelist=''): if not stagelist: stagelist = self.stagelist for chrom in self.chromosomes: self.s50[chrom] = [] for i in range(len(self.start[chrom])): counts = [self.count[j][chrom][i] for j in range(self.nfiles)] ans = s50(counts,stagelist,x=x) ans = ans[x[0]] self.s50[chrom].append(ans) def get_s50_bdg(self): if not self.s50: self.calc_s50() string = '' for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): if self.s50[chrom][i] != ".": string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(self.s50[chrom][i])]) + "\n" return string def analyze_state0_bins(self): ## assumes median normalized (or otherwise) if not self.corscores: self.cor_score() if not self.cor_states: self.get_cor_states() counts = {k:[] for k in range(self.nfiles)} for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): if self.cor_states[chrom][i] == 2:#states are 1,2,3 for -1,0,1 for j in range(self.nfiles): counts[j].append( self.count[j][chrom][i] ) ## mean would be skewed above 1 since even if the count of numbers < 1 equals the count of numbers > 1, the mean will be >1. total_median = [np.median(counts.values())] medians = {findex:np.median(counts[findex]) for findex in range(self.nfiles)} self.state0_medians = {0:medians,1:total_median} def _need_more_cycles(self): for m in self.state0_medians[0].values(): if m != 1: return True return False def _normalize_data_by_state0_median(self): for findex in range(self.nfiles): if self.state0_medians[0][findex] != 1: self.normalize_findex_by_x(findex, self.state0_medians[0][findex]) def find_cn1(self, n_iter=10, max_empty_bin_pct=0.4, max_offending_samples_pct=0.4, verbose=True): if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - getting medians before and after filtering..\n") self._refresh_medians() ## get medians for first time if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - medians before filtering were %s...\n" % (str(self.median))) sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - filtering..\n") self.filter_null_contigs(max_empty_bin_pct, max_offending_samples_pct) ## filter bad contigs self._refresh_medians() ## get medians after filtration if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - medians after filtering were %s...\n" % (str(self.median))) sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - median normalizing..\n") self.median_normalize_data() # median norm self._refresh_medians() ## get medians after normalization if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - medians (of all bins) after normalizing should be 1 and were %s...\n" % (str(self.median))) sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - getting bin correlations \n") self.cor_score() # give correlation score to each bin if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 - getting state path \n") self.get_cor_states() # get state path through bins self.analyze_state0_bins() # get median of 0-correlation (most likely cn=1) bins for i in range(n_iter): if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 iter %d starting 0-corr medians: %s...\n" % (i+1, str(self.state0_medians))) if self._need_more_cycles(): # if 0-corr median from any sample != 1, re-normalize by 0-corr median, est new correlations, get updated statepath, get new 0corr medians self._normalize_data_by_state0_median() self.cor_score() self.get_cor_states() self.analyze_state0_bins() else: if verbose: sys.stderr.write(str(datetime.datetime.now()) +": ..CN=1 iter %d canceled - 0-corr medians all = 1...\n" % (i+1)) break def filter_null_contigs(self, max_empty_bin_pct=0.4, max_offending_samples_pct=0.4): ##default: if >40% of samples have >40% empty bins on a chrom, remove it sample_thres = max_offending_samples_pct*self.nfiles for chrom in self.chromosomes: nbins = len(self.start[chrom]) bin_thres = max_empty_bin_pct*nbins n_bad_samp = 0 for findex in range(self.nfiles): n_bad_bins = len(self.count[findex][chrom][self.count[findex][chrom] == 0]) if n_bad_bins > bin_thres: n_bad_samp += 1 if n_bad_samp > sample_thres: self.filtered['start'][chrom] = self.start.pop(chrom) self.filtered['end'][chrom] = self.end.pop(chrom) for findex in range(self.nfiles): counts = (self.count[findex]).pop(chrom) self.filtered['count'][findex][chrom] = counts self.filteredchromosomes.append(chrom) self.chromosomes.remove(chrom) def pct_state(self, state=3): total = 0 nstate = 0 for chrom in self.chromosomes: total += len(self.cor_states[chrom]) nstate += sum(self.cor_states[chrom][self.cor_states[chrom] == state]) return 100.0*nstate/total def n_state(self, state=3): nstate = 0 for chrom in self.chromosomes: nstate += sum(self.cor_states[chrom][self.cor_states[chrom] == state]) return nstate def eFDR1(self, stage=3, n_iter=10): ## shuffles stages -- not best way since many permutations uphold correlations... ## assumes find_cn1 already run if self.ntest is None: self.ntest = self.n_state(3) controls = [] for i in range(n_iter): stagelist = self.stagelist[:] #clone it np.random.shuffle(stagelist) sys.stderr.write(str(stagelist)+"\n") ## PRINT TEMP self.cor_score(stagelist) self.get_cor_states() controls.append(self.n_state(3)) return self.ntest, controls, 100.0*np.array(controls)/self.ntest def eFDR2(self): ## pass def pval(self): # for each bin, shuffle scores, take cor, store -- get 1000 of these, p ~ n_gt_cor/N # BH correct p-values - only keep bins with q < 0.1 ## OR -- take state+ bins, combine counts in all for each stage, do this ## that would be less tests and it would not treat all bins independently - would treat regions independently ## hmmm.... maybe not worth doing this at all... pass def discretize_cor_values(self): self.dcorscores = {} for chrom in self.chromosomes: self.dcorscores[chrom] = map(round, np.array(self.corscores[chrom])*4+5) #9-sided dice emission symbols 1-9 (for Rindexing) where 1-4 neg, 5=0, 6-9pos ###################### ## Printing etc ###################### def get_counts_bdg(self): string = '' for chrom in self.chromosomes: for i in range(len( self.start[chrom] )): string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i])] + [str(self.count[j][chrom][i]) for j in range(self.nfiles)]) + "\n" return string def get_filtered_contigs_bdg(self): string = '' for chrom in self.filteredchromosomes: for i in range(len( self.filtered['start'][chrom] )): string += ('\t').join([chrom, str(self.filtered['start'][chrom][i]), str(self.filtered['end'][chrom][i])] + [str(self.filtered['count'][j][chrom][i]) for j in range(self.nfiles)]) + "\n" return string def __str__(self): return self.get_counts_bdg() ## DOES NOT BEHAVE IN USEFUL WAY - i.e. results not more useful than s50 (probably less so). ## def calc_a50(self,x=[50]): ## ## ASSUMES COUNTS ARE MEDIAN NORMALIZED ## ## for all cn=1 areas, s50=3 -- i.e. 50% of normalized read counts seen halfway through ## ## a50 is trying to mask cn=1 to highlight when 50% of amplification is done ## ## it does this by subtracting 1 from the median normalized counts (and taking max of that or 0 to avoid negatives) ## ## --> and later ignoring anything that is "." ## ## this is experimental - not totally sure it will give what I want ## for chrom in self.chromosomes: ## self.a50[chrom] = [] ## for i in range(len(self.start[chrom])): ## counts = [max([self.count[j][chrom][i]-1,0]) for j in range(self.nfiles)] ## ans = s50(counts,self.stagelist,x=x) ## ans = ans[x[0]] ## self.a50[chrom].append(ans) ## ## def get_a50_bdg(self): ## if not self.a50: ## self.calc_a50() ## string = '' ## for chrom in self.chromosomes: ## for i in range(len( self.start[chrom] )): ## if self.a50[chrom][i] != ".": ## string += ('\t').join([chrom, str(self.start[chrom][i]), str(self.end[chrom][i]), str(self.a50[chrom][i])]) + "\n" #### if i > 20: break #### if i > 20: break ## return string ``` #### File: pufferfish/pufferfish/findpuffs.py ```python import sys, os, gzip import datetime from CovBedClass import * import cPickle as pickle from loaddata import load_pickle def run(parser, args): if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..initializing...\n") if args.input: if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Loading files...\n") f = MultiCovBed(args.input) elif args.inpickle: if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Un-pickling...\n") f = load_pickle(args.inpickle) f.filter_null_contigs(args.max_empty_bin_pct, args.max_offending_samples_pct) ## filter bad contigs if args.smoothbeforemedian: f.ksmooth_counts(bw=args.smoothbeforemedian) ## smooth before finding median ## if args.mediannorm: if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..median normalizing...\n") f.median_normalize_data() if args.smoothbeforecor: f.ksmooth_counts(bw=args.smoothbeforecor) ## smooth counts before getting cor in bins - prob should not do both b4median and b4cor ## if args.calcbincors: if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..calc corscores...\n") f.cor_score() ## if args.smoothcors: if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..ksmoothing corscores...\n") f.ksmooth_corscores(bw=args.corsmoothbandwidth) if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..getting viterbi state paths...\n") f.get_cor_states() if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..getting slopes in bins...\n") f.find_slopes() if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Pickling...\n") if not args.outpickle.endswith('.gz'): args.outpickle += '.gz' if os.path.exists(args.outpickle): os.remove(args.outpickle) with gzip.open(args.outpickle,'wb') as pkfile: pickle.dump(f, pkfile) ##sys.stderr.write(str(datetime.datetime.now()) +": ..printing meta-bdg with median norm scores from all files...\n") ##print f ##print f.get_corscor_bdg() ##sys.stderr.write(str(datetime.datetime.now()) +": ..printing ksmoothed corscores...\n") ##print f.get_smooth_corscor_bdg() ##sys.stderr.write(str(datetime.datetime.now()) +": ..printing viterbi state paths...\n") ##print f.get_cor_state_bdg() ##sys.stderr.write(str(datetime.datetime.now()) +": ..analyzing 0-state bins...\n") ##f.analyze_state0_bins() ##print f.state0_medians ``` #### File: pufferfish/pufferfish/generate.py ```python import sys, datetime from CovBedClass import * from pk2txt import bdgmsg, newmsg from normalize import protocol1, protocol2, protocol3, protocol4, protocol5, protocol6, normalize from hmm_fxns_for_R import * def run(parser, args): bedgraph = CovBed(args.bedgraph) if not args.quiet: newmsg("finding state path") ## CONSTRUCT EMISSIONS PROBABILITY MATRIX FOR R eprobs, nstates = help_get_emission_probs(args.mu, args.sigma, args.mu_scale) ## CONSTRUCT TRANSITIONS PROBABILITY MATRIX FOR R tprobs = help_get_transition_probs(args.leave_special_state, args.leave_other, args.special_idx, nstates) ## CONSTRUCT INITIAL PROBABILITY MATRIX FOR R iprobs = help_get_initial_probs(nstates, args.special_idx, args.init_special, args.initialprobs) ## HIDDEN MARKOV MODEL: Find most probable path through states statepath, emitted_data = generate_hmmR(bedgraph, args.emodel, eprobs=eprobs, tprobs=tprobs, iprobs=iprobs) ## if not args.quiet: bdgmsg("state path", False) sys.stdout.write(bedgraph.expanded_bdg_two_cols(emitted_data, statepath)) ``` #### File: pufferfish/pufferfish/hmm_state_mean_correction.py ```python import sys, argparse, pybedtools, scipy.stats from collections import defaultdict import numpy as np from CovBedClass import * from pk2txt import bdgmsg, newmsg parser = argparse.ArgumentParser(description=""" Given: (i) HMM STATE bedGraph from pufferfish (ii) Target signal bedGraph to normalize Find mean of each state. Return (and/or): (i) Normalized target bedGraph -- where each target value is divided by the mean of its HMM state The desired outcome is that the target signal becomes centered on CN=1. Downstream steps can then make the assumption of CN=1 for all bins. (ii) Mean level bedGraph where each bin is assigned the mean of its state. Can be used to: - visually compare to original signal - use awk on target bdg vs mean level bdg downstream to normalize, signif test, or other """, formatter_class= argparse.RawTextHelpFormatter) parser.add_argument('--signal', '-i', '-f', type= str, help='''Path to signal bedGraph that usually has cols: chr, start, end, signal-to-correct. Can tell algo what col to look at.''') parser.add_argument('--states', '-i2', '-f2', type=str, help='''Path to bedGraph that usually has cols: chr, start, end, HMM state. Can tell algo what col to look at. chr/start/end should be identical in values and sort order as --signal.''') parser.add_argument('--signalcol', '-s', type=int, default=4, help='''1-based column that signal found in. Default = 4''') parser.add_argument('--statecol', '-S', type=int, default=4, help='''1-based column that signal found in. Default = 4''') parser.add_argument('--chrcol', type=int, default=1, help='''1-based column that chr/seq name found in. Default = 1''') parser.add_argument('--startcol', type=int, default=2, help='''1-based column that start coordinate found in. Default = 2''') parser.add_argument('--endcol', type=int, default=3, help='''1-based column that end coordinate found in. Default = 3''') parser.add_argument('--levels', type= str, help='''By default, the CN normalized bedGraph is written to stdout. Using this flag and providing a file name tells the program to also write a bedGraph to that file name for the means of the states over each bin. ''') parser.add_argument('--levels_only', action='store_true', default=False, help='''By default, the CN normalized bedGraph is written to stdout. Using this flag tells the program to only return the levels bedGraph (to stdout by default if --levels not used). ''') parser.add_argument('--normbdg', type= str, default=False, help='''By default, the CN normalized bedGraph is written to stdout. This redirects it into a filename provided. ''') parser.add_argument('-c', '--collapsed', action='store_true', default=False, help='''Return collapsed variable-step bedGraph instead of expanded single-step bedGraph. This is often a much smaller file.''') parser.add_argument('-q', '--quiet', action='store_true', default=False, help='''QUIET.''') args = parser.parse_args() sigcol = args.signalcol-1 statecol = args.statecol-1 chrcol = args.chrcol-1 startcol = args.startcol-1 endcol = args.endcol-1 ##def run(parser, args): if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Loading files...\n") signal = CovBed(args.signal) states = CovBed(args.states, count_only=True) ## FIRST GET STATE MEANS if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Learning state means...\n") ## MEANS: Sum up data over each state and tally the number of times the state was observed. statesum = defaultdict(float) ## Sum of signal over each state stateobs = defaultdict(float) ## Number times state is observed. for chrom in states.chromosomes: numbins = len(states.count[chrom]) for i in range(numbins): state = states.count[chrom][i] emission = signal.count[chrom][i] statesum[state] += emission stateobs[state] += 1.0 ## MEANS: Divide Sum of data over each state by number of times the state was observed. statemeans = defaultdict(float) for state, n in stateobs.iteritems(): statemeans[state] = statesum[state] / float(n) ## NORMALIZE BY STATE MEANS if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Normalizing emissions to state means...\n") ## NORM: Create dictionary that contains chroms w/ lists of signal/statemean normsig = defaultdict(list) levels = defaultdict(list) for chrom in signal.chromosomes: numbins = len(signal.count[chrom]) for i in range(numbins): state = states.count[chrom][i] emission = signal.count[chrom][i] statemean = statemeans[state] levels[chrom].append( statemean ) normsig[chrom].append( emission / statemean ) ## OUTPUT: if not args.levels_only: if args.normbdg: normsigout = open(args.normbdg, 'w') else: normsigout = sys.stdout if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Writing normalized signal bedGraph...\n") normsigout.write(signal.get_bdg(normsig, args.collapsed)) if args.normbdg: normsigout.close() if args.levels or args.levels_only: if args.levels: levelsout = open(args.levels, 'w') elif args.levels_only: ## "levels_only and levels" already taken care of by first condition levelsout = sys.stdout if not args.quiet: sys.stderr.write(str(datetime.datetime.now()) +": ..Writing state level means bedGraph...\n") levelsout.write(signal.get_bdg(levels, args.collapsed)) if args.levels: levelsout.close() ``` #### File: pufferfish/pufferfish/pufferfish_main.py ```python import os.path import sys import argparse #logger import logging logger = logging.getLogger('pufferfish') # pufferfish imports #import pufferfish.version pfv = '0.0.0' ## FUNCTIONS def run_subtool(parser, args): ## the function to be used in subparser.set_defaults(func=func) ## it selects the module that the sub-parser is made for ## then uses the "run" function in that module if args.command == 'mapreads': import mapreads as submodule elif args.command == 'getcov': import getcov as submodule elif args.command == 'findpuffs': import findpuffs as submodule elif args.command == 'dump': import pk2txt as submodule elif args.command == 'puffcn': import cn as submodule elif args.command == 'puffcnpy': import cnpy as submodule elif args.command == 'summits': import findsummits as submodule elif args.command == 'normalize': import normalize as submodule elif args.command == 'hmm': import generalhmm as submodule elif args.command == 'generate': import generate as submodule elif args.command == 'filter': import filterfish as submodule elif args.command == 'help': import helper as submodule # run the chosen submodule submodule.run(parser, args) ## This subclass is used as parser_class for submodule sub-parsers class ArgumentParserWithDefaults(argparse.ArgumentParser): ## Child/sub of argparse.ArgumentParser class (the super) def __init__(self, *args, **kwargs): super(ArgumentParserWithDefaults, self).__init__(*args, **kwargs) ## Add arguments that can be used by all sub-commands self.add_argument("-q", "--quiet", help='''Do not output warnings to stderr.''', action="store_true", dest="quiet") def main(): logging.basicConfig() ## Create top-level parser parser = argparse.ArgumentParser(prog="pufferfish", description=''' PufferFish - HMM-based approach(es) to finding and analyzing developmentally regulated amplicons (genomic sites that are programmed to increase in copy number over time).''', formatter_class=argparse.RawTextHelpFormatter)#ArgumentDefaultsHelpFormatter parser.add_argument('-v', '--version', help='''Installed pufferfish version.''', action='version', version='%(prog)s ' + pfv)#str(pufferfish.version.__version__)) subparsers = parser.add_subparsers(title='[sub-commands]', dest='command', parser_class=ArgumentParserWithDefaults) ## Create a sub-command parser for mapreads parser_mapreads = subparsers.add_parser('mapreads', help='''Depends on Bowtie2 and SAMtools. Maps fasta/fastq files to genome (can provide bt2 index or fasta reference (which will first be converted to bt2 index). Maps reads to genome and filters out unmapped reads before sorting and indexing.''') parser_mapreads.add_argument('fastxfiles', metavar='fastxfiles', nargs='+', type=str, help='''Paths to as many fasta/fastq files as youd like to map. Can be gz or bz2.''') parser_mapreads_reftype = parser_mapreads.add_mutually_exclusive_group(required=True) parser_mapreads_reftype.add_argument('-b', '--bt2', type=str, help='''Path to bt2 index prefix.''') parser_mapreads_reftype.add_argument('-r', '--ref_fasta', type=str, help='''Path to reference fasta. A bt2 index will be generated in same dir.''') parser_mapreads.add_argument('--threads', '-p', type=int, default=1, help='''Number of parallel threads for bowtie2 to use. Default: 1.''') parser_mapreads.add_argument('--dry', action='store_true', default=False, help='''Only writes out the commands that will be used if set.''') parser_mapreads.set_defaults(func=run_subtool) ## ## Create a sub-command parser for filterdup ## parser_mapreads = subparsers.add_parser('filterdup', ## help='''Depends on Picard Tools 2.1.1, BEDtools, pybedtools, pysam. ##Remove optical duplicates and marks PCR duplicates. ##All PCR duplicates except K at a given site are removed. ##K is determined by a binomial calculuation using a bin size and number of reads in a given bin. ##Then any duplicates in that bin are subject to filtering down to K. ##1. Remove optical duplicates and mark PCR duplicates. ##2. Make bins ##3. Get read count in those bins ##4. For each bin, check if there are marked reads. If so, calculate K and filter. ##5. write remaining reads as you go... ##''') ## parser_filterdup.add_argument('bams', metavar='bams', nargs='+', ## type=str, ## help=''' Paths to BAM files that need duplicate filtering.''') ## parser_filterdup.add_argument('-g', '--genome', type=str, ## help='''Path to BEDtools genome file describing reference reads were mapped to.''') ## parser_filterdup.add_argument() ## parser_filterdup.add_argument('--dry', action='store_true', default=False, help='''Only writes out the commands that will be used if set.''') ## ## parser_filterdup.set_defaults(func=run_subtool) ## ## Create sub-command parser for getcov ## TODO add filterdup possibility from macs2... rm pcr dups parser_getcov = subparsers.add_parser('getcov', help=''' Depends on SAMtools and BEDtools.''') parser_getcov.add_argument('bams', metavar='bams', nargs='+', type=str, help=''' Paths to as many bam files as you need to get coverage for. Can include a file-of-filenames (FOFN) and tarballs as well.''') parser_getcov.add_argument('-f','--filterdup', type=str, help='''Provide /path/to/picard.jar (picard v2.1.1 or higher)''') parser_getcov.add_argument('-g', '--genome', type=str, required=True, help='''Path to file.genome as needed and defined by BEDTools. See "bedtools makewindows" or "bedtools coverage"''') parser_getcov.add_argument('-w', '--window', type=str, default='500', help='''Integer window size - will be counting in windows of this size. Default: 500.''') parser_getcov.add_argument('-s', '--step', type=str, default='500', help='''Integer step size - will slide window over this much. Default: 500.''') parser_getcov.add_argument('-Q', '--mapq', type=str, default='0', help='''Integer mapq cut-off - only include reads with mapping quality >= INT. Default: 0.''') parser_getcov.add_argument('-m', '--picardmem', type=str, default='4g', help='''Provide memory needed/available to Picard MarkDuplicates as integer_letter string, such as 500m, 1g, 2g, 64g, etc. Default: 4g.''') parser_getcov.add_argument('--keepopt',action='store_true', default=False, help='''Optical duplicates are removed by default. This flag says to mark them instead.''') parser_getcov.add_argument('--rmdup',action='store_true', default=False, help='''PCR duplicates are marked by default. This flag will result in removing them (as well as optical duplicates).''') parser_getcov.add_argument('--dry',action='store_true', default=False, help='''Only writes out the commands that will be used if set.''') parser_getcov.add_argument('--clean',action='store_true',default=False,help='''Remove intermediate files... Default: False.''') parser_getcov.add_argument('--force',action='store_true',default=False,help='''Ignore assertions. Good for made-up filenames when debugging in dry-runs. Do not use this for real run. Default: False.''') parser_getcov.set_defaults(func=run_subtool) ## Create sub-command parser for findpuffs parser_findpuffs = subparsers.add_parser('findpuffs', help='''Take in getcov bedGraphs, do stuff.''') parser_findpuffs_input = parser_findpuffs.add_mutually_exclusive_group(required=True) parser_findpuffs_input.add_argument('-i','--input', type=str, help='''Input file -- a tab-sep file with 2 columns (stage number, filename) with a single line for all getcov bedGraph files you wish to include. Example: 1\tstage1.bedGraph''') parser_findpuffs_input.add_argument('-ip','--inpickle', type=str, help='''Pickle file (e.g. data.pk) containing already processed getcov bedGraphs as MultiCovBed object.''') parser_findpuffs.add_argument('-op','--outpickle', type=str, default='data.fp.pk', help='''Name for output pickle file (e.g. data.fp.pk.gz) that will contain the MultiCovBed object made when this is run. Pickled data is automatically gzipped. If .gz not at end of given filename, it will be added. If the filename exists it will be erased and written over. Default: data.fp.pk.gz''') parser_findpuffs.add_argument('-s1', '--smoothbeforemedian', default=False, type=int, help='''Smooth counts in bins before finding the median bin counts (and before median normalization). Must provide integer window size to smooth in (should be longer than bin size) -- e.g. if bin size = 500, smoothing bandwidth could be 10000. One probably should not do both --smoothbeforemedian and --smoothbeforecor. Pick one or none.''') parser_findpuffs.add_argument('-s2', '--smoothbeforecor', default=False, type=int, help='''Smooth counts in bins after median normalization, but before finding correlations in each bin. Must provide integer window size to smooth in (should be longer than bin size) -- e.g. if bin size = 500, smoothing bandwidth could be 10000. One probably should not do both --smoothbeforemedian and --smoothbeforecor. Pick one or none.''') parser_findpuffs.add_argument('-bw', '--corsmoothbandwidth', type=int, default=15000, help='''For smoothing correlation scores. Provide integer window size to smooth in (should be longer than bin size) -- e.g. if bin size = 500, smoothing bandwidth could be 10000. Default: 15000.''') parser_findpuffs.add_argument('-mep', '--max_empty_bin_pct', type=float, default=0.4, help='''For filtering contigs out, contig is allowed to have up to X (proportion between 0 and 1) bins with 0 coverage. Default: 0.4.''') parser_findpuffs.add_argument('-mop', '--max_offending_samples_pct', type=float, default=0.4, help='''For filtering contigs out, contig is allowed to exceed max_empty_bin_pct in Y (proportion between 0 and 1) of the samples. Default: 0.4.''') parser_findpuffs.set_defaults(func=run_subtool) ## Create sub-command for dump parser_dump = subparsers.add_parser('dump', help=''' Take in pickled object containing MultiCovBed object where statepath has been found. Output bedGraph of statepath and/or BED file containing coordinates of states.''') parser_dump.add_argument('-ip', '--inpickle', type=str, required=True, help='''Path to input pickle.''') parser_dump.add_argument('-p','--prefix', type=str, required=True, help='''Output files with provided --prefix''') parser_dump.add_argument('-c', '--counts', default=False, action='store_true', help='''Output counts as expanded single-step, bedGraph-like file. Counts will be normalized. Columns 4+ will have counts from files in order files were given. Can use this with awk to create bedGraphs for each -- e.g. for i in {4..8}; do awk -v "i=$i" 'OFS="\t" {print $1,$2,$3,$i}' q30.w500.s500.default.counts.bedGraph > q30.w500.s500.default.counts.$i.bedGraph; done ''') parser_dump.add_argument('-fc', '--filtered_counts', default=False, action='store_true', help='''Output counts from filtered contigs as expanded single-step, bedGraph-like file. Counts will likely NOT be normalized (as filtereing is done prior to median normalization). Columns 4+ will have counts from files in order files were given. Can use this with awk to create bedGraphs for each -- e.g. awk 'OFS="\t" {print $1,$2,$3,$4}' filtered_counts.bedGraph > file.filtered_counts.bedGraph ''') parser_dump.add_argument('-vc','--viterbi_collapsed', default=False, action='store_true', help='''Output viterbi statepath expanded single-step bedGraph with provided --prefix''') parser_dump.add_argument('-ve','--viterbi_expanded', default=False, action='store_true', help='''Output viterbi statepath collapsed varstep bedGraph with provided --prefix''') parser_dump.add_argument('-cc','--correlations_collapsed', default=False, action='store_true', help='''Output bin correlation scores as collapsed varstep bedGraph with provided --prefix''') parser_dump.add_argument('-ce','--correlations_expanded', default=False, action='store_true', help='''Output bin correlation scores as expanded single-step bedGraph with provided --prefix''') parser_dump.add_argument('-scc','--smoothed_correlations_collapsed', default=False, action='store_true', help='''Output smoothed bin correlation scores as collapsed varstep bedGraph with provided --prefix''') parser_dump.add_argument('-sce','--smoothed_correlations_expanded', default=False, action='store_true', help='''Output smoothed bin correlation scores as expanded single-step bedGraph with provided --prefix''') parser_dump.add_argument('-sc','--slopes_collapsed', default=False, action='store_true', help='''Output bin slopes as collapsed varstep bedGraph with provided --prefix''') parser_dump.add_argument('-se','--slopes_expanded', default=False, action='store_true', help='''Output bin slopes as expanded single-step bedGraph with provided --prefix''') parser_dump.set_defaults(func=run_subtool) ## create sub-sommand for puffcn (puff copy number) parser_puffcn = subparsers.add_parser('puffcn', help = '''Given a latest-stage sample (where all or most puffs have grown) and an optional earliest stage sample (for additional Fold-enrichment normalization), define whether a region is best explained by cn=1,2,4,8,16,32,64. Ideally, this can give an idea of where replication forks approximately reach from each firing.''') parser_puffcn.add_argument('-l','--latestage', type=str, required=True, help='''Provide path to bedGraph (e.g. made from getcov) for a late stage sample.''') parser_puffcn.add_argument('-e','--earlystage', type=str, required=False, default=False, help=''' Optional: Provide path to bedGraph (e.g. made from getcov) for an early stage sample. This is used after smoothing and median normalization to further normalize the late-stage sample (e.g. can correct for sequencing biases)''') parser_puffcn.add_argument('--replace', action='store_true', default=False, help='''Turn on "replace" functionality. By default this will replace '.' in the count column of bedGraphs with '0'. Use --replace_with and --replace_this to change.''') parser_puffcn.add_argument('--replace_this', type=str, default='.', help='''Used with --replace. Specify the character in count column to replace. Default = '.' ''') parser_puffcn.add_argument('--replace_with', type=str, default='0', help='''Used with --replace. Specify the character to replace the --replace_this character with. Must be a string that can be converted to a float. Default = '0' ''') ## PROTOCOLS parser_puffcn_protocol = parser_puffcn.add_mutually_exclusive_group(required=True) parser_puffcn_protocol.add_argument('-1', '--protocol1', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_puffcn_protocol.add_argument('-2', '--protocol2', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then they are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_puffcn_protocol.add_argument('-3', '--protocol3', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then they are smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. Then the HMM is run. Note: if early is not present, this is same as protocol 4.''') parser_puffcn_protocol.add_argument('-4', '--protocol4', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. Then the HMM is run. Note: if early is not present, this is same as protocol 3.''') parser_puffcn_protocol.add_argument('-5', '--protocol5', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. (i.e. L/E -> smooth) Then the HMM is run. Note: if early is not present, this is same as protocol 6.''') parser_puffcn_protocol.add_argument('-6', '--protocol6', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. (i.e. smooth -> L/E) Then the HMM is run. Note: if early is not present, this is same as protocol 5.''') parser_puffcn_protocol.add_argument('-7', '--protocol7', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Then the HMM is run. Note: No median normalization or smoothing is performed. If only late is given, then this is just an identity/pass-through function.''') parser_puffcn_protocol.add_argument('-8', '--protocol8', action='store_true', default=False, help='''SKEW. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = (V[i]-V[i-1]) / (V[i]+V[i-1])''') parser_puffcn_protocol.add_argument('-9', '--protocol9', action='store_true', default=False, help='''PERCENT CHANGE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_puffcn_protocol.add_argument('-10', '--protocol10', action='store_true', default=False, help='''SKEW CHANGE or SKEW DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_puffcn_protocol.add_argument('-11', '--protocol11', action='store_true', default=False, help='''PERCENT CHANGE DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_puffcn_protocol.add_argument('-12', '--protocol12', action='store_true', default=False, help=''' Median ratio normalization. Late is normalized to early. Then those ratios are median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_puffcn_protocol.add_argument('-13', '--protocol13', action='store_true', default=False, help=''' Median ratio normalization with pre-smoothing. Late (and early if present) is smoothed. Late is normalized to early. Then those ratios are median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_puffcn_protocol.add_argument('-14', '--protocol14', action='store_true', default=False, help=''' Median ratio normalization with post-smoothing. Late is normalized to early. Then those ratios are smoothed. Then median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_puffcn_protocol.add_argument('-15', '--protocol15', action='store_true', default=False, help=''' Median ratio normalization with end-smoothing. Late is normalized to early. Then those ratios are median normalized. Then smoothed. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_puffcn_protocol.add_argument('-16', '--protocol16', action='store_true', default=False, help=''' Glocal Median ratio normalization. Late is normalized to early. Then those ratios are median normalized based on coverage value in late. This is similar to a coverage-based local version of what's used in DEseq2 (or TMM for EdgeR).''') parser_puffcn_protocol.add_argument('-17', '--protocol17', action='store_true', default=False, help=''' First normalizes late stage to median (X/Med), and scales it with --scalecov to make the median equal scalecov. It does the same to early if present. Then Late is normalized to Early (FE) using given pseudocount (not pseudocount given has same ratio to median in both samples). It then does median ratio normalization. It then returns it as is or logged if --log10 or --log2 specified''') parser_puffcn_protocol.add_argument('-18', '--protocol18', action='store_true', default=False, help='''Robust Z scores. If early (control) sample given, first is control norm (late/early, test/control) followed by robust Z. The fold-change calculation is not treated specially as it might be with other options. However, the robust Z should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_puffcn_protocol.add_argument('-19', '--protocol19', action='store_true', default=False, help='''Rank scores. If early (control) sample given, first is control norm (late/early, test/control) followed by ranking. The fold-change calculation is not treated specially as it might be with other options. However, the rank should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_puffcn_protocol.add_argument('-20', '--protocol20', action='store_true', default=False, help='''Robust Z score differences between two samples. Requires both late (test) and early (control) samples. Robust Z scores are calculated independently for each sample. Then R_control is subtracted from R_test = R_t - R_c.''') parser_puffcn_protocol.add_argument('-21', '--protocol21', action='store_true', default=False, help='''Rank score differences between two samples. Requires both late (test) and early (control) samples. Rank scores are calculated independently for each sample. Then R_control is subtracted from R_test = R_t - R_c.''') parser_puffcn_protocol.add_argument('-22', '--protocol22', action='store_true', default=False, help='''Signal Per Million Reads (Or Counts or Per Million whatever can be summed up in the 4th column). Bin_spmr = 1e6*Bin/Sum(Bins). Use --SPXR to change scaling factor from 1e6 to X. If early (control) given, both are SPMR'd independently, then late/early (test/control). When an early (control) sample is provided, you may also want to check the default pseudocount applied.''') parser_puffcn_protocol.add_argument('-23', '--protocol23', action='store_true', default=False, help='''Rank standardize scores. First rank, then subtract and divide by middle: (r-M)/M, where r is a bins rank, and M is the theoretical middle rank: M=(min+max)/2. If early (control) sample given, first is control norm (late/early, test/control) followed by ranking. The fold-change calculation is not treated specially as it might be with other options. However, the rank should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_puffcn.add_argument('--stringcols', action='store_true', default=False, help='''Just treat columns other than 4 as strings...''') parser_puffcn.add_argument('--log2', action='store_true', default=False, help='''Return log2 values. Default = False.''') parser_puffcn.add_argument('--log10', action='store_true', default=False, help='''Return log10 values. Default = False.''') parser_puffcn.add_argument('--scalecov', type=float, default=1, help='''Multiply coverage by this as part of protocol 17.''') parser_puffcn.add_argument('--SPXR', type=float, default=1e6, help='''In essence, this is like --scalecov with a different default: 1e6.''') parser_puffcn.add_argument('--pseudoZeroBins', action='store_true', default=False, help='''Not to be confused with --pseudo. This option applies only to protocols 24-27 right now. It only need be used when there are zeros in the control (early) sample. In protocols 26 and 27, this is likely to happen from the robust z-score pre-processing. If an error is thrown, try --pseudoZeroBins or --addMinOtherPlusOneToBoth. --pseudoZeroBins adds min(abs(values))/10 to bins in both samples that were 0 in contorl (early). --addMinOtherPlusOneToBoth shifts both distributions up by min(control values)+1, setting the min control value to 1. These are not meant to be used together, but won't throw an error if they are.''') parser_puffcn.add_argument('--addMinOtherPlusOneToBoth', action='store_true', default=False, help='''This option applies only to protocols 24-27 right now. It only need be used when there are zeros in the control (early) sample. In protocols 26 and 27, this is likely to happen from the robust z-score pre-processing. If an error is thrown, try --pseudoZeroBins or --addMinOtherPlusOneToBoth. --pseudoZeroBins adds min(abs(values))/10 to bins in both samples that were 0 in contorl (early). --addMinOtherPlusOneToBoth shifts both distributions up by min(control values)+1, setting the min control value to 1. These are not meant to be used together, but won't throw an error if they are.''') parser_puffcn.add_argument('-m', '--emodel', type=str, default='normal', help='''Specify emissions model to assume for HMM. Options: normal, exponential, poisson, geometric, gamma, and discrete. Default: normal. Note that all you ever need to do is given the expected means and standard deviations for each state from sampled data. The normal model will use those directly. Poisson will use the means as lambda. Exponential will use the means as B w/ rate 1/B. Geometric will also use the means as 1/mu. Gamma will estimate alpha and beta (shape and scale) parameters from the means and standard deviations - if you have A/B in mind, convert to mu and sigma by A*B and (A*B^2)^0.5. Note that the exponential is same as the gamma when shape is set to 1, making mu and sigma equal B. Thus, if you do gamma w/ muscale=1, then you should get same as exponential. "Discrete" is when you have a finite number of categories that occur at various frequencies like the sides of a coin or dice. This expects a nState X nSymbol matrix in --mu. "Discrete" assumes the symbols emitted are sequential integers from 1:N where N = number states.''') parser_puffcn.add_argument('-p', '--path', type=str, default='viterbi', help='''Specify whether to take state path defined by viterbi or posterior decoding. Options: viterbi, posterior. Default: viterbi.''') parser_puffcn.add_argument('-s', '--scale', action='store_true', default=False, help='''Before going back into the HMM, re-scale counts back towards original magnitude by multiplying by median. This will also scale the HMM state means by the median to cooperate.''') parser_puffcn.add_argument('-c', '--collapsed', action='store_true', default=False, help='''Return collapsed variable-step bedGraph instead of expanded single-step bedGraph. This is often a much smaller file.''') parser_puffcn.add_argument('-ps', '--pseudo', type=float, default=0.1, help=''' Before normalizing late to early, add this pseudocount to all counts in order to avoid division by zero. Should be between 0 and 1. Should be small enough to not change other values much, but big enough such that numbers divided by 0+pseudo do not become massive. Default: 0.1.''') parser_puffcn.add_argument('-bw', '--bandwidth', type=int, default=2500, help=''' If kernel smoothing, specify bandwidth (int). Bandwidth should be bigger when no early stage normalization to try to smooth out sequencing biases, mappability biases, etc. Default: 2500.''') parser_puffcn.add_argument('--endsmoothing', action='store_true', default=False, help=''' Add smoothing to the absolute end of any of the protocols for more flexibility here. This comes after log-transformation steps, for example, which optionally comes at the end of any protocol.''') parser_puffcn.add_argument('--replaceNaN', action='store_true', default=False, help=''' If kernel smoothing, NaNs can be generated. This option replaces those with local averages (see --localwinsize, default=5 bins). In cases where localaverages return NaN (very rare), it fills NaN with the global average for the given chrom/sequence (not whole geneome, so still local-ish).''') parser_puffcn.add_argument('--localwinsize', type=int, default=5, help=''' If kernel smoothing and/or using --replaceNan, this specifies the number of bins to use (centered on this so odd numbers preferable). Default = 5.''') parser_puffcn.add_argument('--impute', type=int, default=False, help=''' If imputing, specify bandwidth (int) for kernel smoothing. This bandwidth is generally longer than the one you would provide for regular smoothing. Only bins with a count of 0 will take on smoothed (imputed) values. Try: 10000. NOTE: In practice, this lead to its own set of problems and I do not recommend using it in its current form.''') parser_puffcn.add_argument('--counts', type=str, default=False, help=''' Use this flag and specify an output prefix for the final normalized late stage bin counts bedGraph.''') parser_puffcn.set_defaults(func=run_subtool) parser_puffcn.add_argument('--levels', action='store_true', default=False, help=''' Use this flag to output levels bdg instead of state bdg. Levels are the means 1,2,4,8,16,32,64. These are obtained by 2**(state-1).''') parser_puffcn.add_argument('--mu', '--discreteEmat', type=str, default='1,2,4,8,16,32,64', help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state means were previously hard-coded. This option allows some flexibility from the command-line to change the state means. Default: 1,2,4,8,16,32,64 To change: Provide comma-seprated list of state means. The number of states will be calculated from this list. If changing state sigmas (used in normal model), it must have same number of states represented. NOTE: If using exponential or geometric distribution, provide the expected mean RCN values of the states as you would for normal or poisson models. This script will automatically take their inverses to work in the exponential and geometric models. NOTE2: For "--emodel discrete" can call --mu as --discreteEmat for better-readability at commandline. Instead of a comma-sep list of means, provide comma-/semicolon-separated values to make up a nState X nSymbol matrix. Example of a 3-state x 4 symbol matrix: "0.97,0.01,0.01,0.01;0.01,0.97,0.01,0.01;0.01,0.01,0.01,0.97". That can be thought of as 3 4-sided dice.''') parser_puffcn.add_argument('--sigma', type=str, default=None, help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state sigmas (stdevs) were previously hard-coded. This option allows some flexibility from the command-line to change the state sigmas. Default: if not changed, defaults to square root of state means (Poisson-like). To change: Provide comma-seprated list of state sigmas. Alternatively: Use --mu_scale (default False) with a scaling factor multiplied against the MUs. The number of states is calculated from this state mean list, which defaults to 7. If changing state sigmas (used in normal model), it must have same number of states represented as state means.''') parser_puffcn.add_argument('--mu_scale', type=float, default=None, help=''' See --sigma for more details on sigmas. Use this to scale means (--mu) to use as stdevs (sigma) instead of taking square roots of means. For example, --mu_scale 0.5 will use mu*0.5 as the stdev.''') ## parser_puffcn.add_argument('--changestate', type=float, default=0.001, ## help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. ##The default transition probabilities were previously hard-coded. ##For now, there are two parameters for transition probabilities: changing states or staying in a state. ##They are shard by all states. ##This option allows some flexibility from the command-line to change the probability of changing states. ##Default: 0.001. ##NOTE: To ensure transition probabilities from state i to j sum to 1, ## the final transition probabilities will actually be X/sum(all trans i to j), ## where X is 0.001 by default or what user has given. ##''') ## ## parser_puffcn.add_argument('--samestate', type=float, default=0.999, ## help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. ##The default transition probabilities were previously hard-coded. ##For now, there are two parameters for transition probabilities: changing states or staying in a state. ##They are shard by all states. ##This option allows some flexibility from the command-line to change the probability of staying in the current state (not changing). ##Default: 0.999. ##NOTE: To ensure transition probabilities from state i to j sum to 1, ## the final transition probabilities will actually be X/sum(all trans i to j), ## where X is 0.999 by default or what user has given. ##''') parser_puffcn.add_argument('--special_idx', type=int, default=0, help='''Only for use if you're very familiar with the program (and change defaults). The default state means is 1,2,4,8,16,32,64. The default index for the mean that represents copy number 1 is 0. In this lingo - CN=1 is the special state, and the 0-based index of the special state in that list is 0. If you were to change parameters that affect where the special state is in the list, make sure to change this index. This index is only used to help construct initial probabilities and transition probabilies. If understood, it can be used to designate any single special state (not necessarily the one that corresponds to CN=1). The other parameters to use with this are: --init_special (probability of starting in the special state (usually CN=1). The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). --prob_leave_special --prob_stay_special --prob_other_to_special --prob_other_to_other --prob_other_to_self Alternative to, an initial probability vector can be given with --initialprobs ''') parser_puffcn.add_argument('--init_special', type=float, default=0.997, help='''Probability of starting in the 'special state' (usually copy number = 1). Default: 0.997. The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). ''') parser_puffcn.add_argument('--leave_special_state', type=float, default=0.001, help='''Probability of leaving the 'special state' (usually copy number = 1). Default: 0.001. If number is betwen 0 and 1, it will be assumed a probability. If number given is > 1, then it will be treated as the average length (number of bins) of the special state. For example, if 1000 is given, it will be 1/1000 = 0.001. In terms of bp lengths, one would need to multiply n_bins * bin_length OR divide bp length by bin_length Thus, if you want to see a change every 500 kb w/ 500 bp bins, then 500kb/500 = 1 kb = 1000 -- which will be interpreted as 0.001. Or as another example, if you expect to see a change every 2 Mb with 100 bp bins, then 2e6/1e2 = 1e4 = 10 kb = 10000, interpreted as 0.0001. The probability of staying in this state is the complement: 1-p ''') parser_puffcn.add_argument('--leave_other', type=str, default=None, help='''Probability of leaving one of the other states. This defaults to --leave_special_state making all transition probabilities out of states the same (0.001 by default). To change, provide a probability of leaving (p). If the first number is betwen 0 and 1, it will be assumed a probability. If the first number given is > 1, then it will be treated as the average length (number of bins). For example, if 1000 is given, it will be 1/1000 = 0.001. If only 1 number is given, then that is assumed to be the probability of transitioning to all the other states. You can also give a comma-separated pair of 2 probabilities: prob of leaving to special state prob of leaving to another 'non-special' state. Make sure the probabilities sum to what you expect the overall probability of leaving the state is... which should be p_to_special + p_to_nonspecial * (num_non_special-1) = p_to_special + p_to_nonspecial (nstates-2) For example, in a 7-state model: 0.001,0.0002 --> 0.001 + 0.0002 * 5 = 0.001 + 0.001 = 0.002 OR 0.001,0.001 --> 0.001 + 0.001 * 5 = 0.006 If the second number is > 1, the same rules apply as to the first number. For other analyses, I've used: 0.00001,0.000000000001 OR 0.001,0.0000000001 The probability of staying in these states is the complement: 1-p1-p2 NOTE: the program forces the transition probabilities of a given state to sum to 1. ''') parser_puffcn.add_argument('--initialprobs', type=str, default=None, help='''PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state means were previously hard-coded. This option allows some flexibility from the command-line to change the state means. Default: [0.997, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005] The default will change with more or less states described w/ --mu and --sigma. By default, the first state will start out as 0.997 as above, all other states will be (1-0.997)/n_other_states. That behavior also changes with following parameters: --special_idx -- determines which state (not necessarily first) will be given default 0.997 (OR other with --initcn1) --init_special (probability of starting in the special state (usually CN=1). The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). --leave_special_state --prob_other_to_special --prob_other_to_other --prob_other_to_self To change the initial probs manually: Provide comma-separated list of initial probs -e.g.: '0.997,0.0005,0.0005,0.0005,0.0005,0.0005,0.0005' This must have same number of states represented as state means (--mu; default 7). ''') parser_puffcn.add_argument('--transprobs', type=str, default=None, help='''Provide trans probs with semi-colon separated rows that have comma-separated values. E.g. a 2-state t matrix where self-self is 0.99 and self-other is 0.01 looks like: 0.99,0.01;0.01,0.99 ''') ##'0.997,0.0005,0.0005,0.0005,0.0005,0.0005,0.0005' [0.997, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005] parser_puffcn.add_argument('--kmeans', type=int, default=None, help='''PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default HMM parameters were previously hard-coded. There are now other options available to tune the paramters. This option is the first way to learn parameters. It uses kmeans clustering of the data to estimate initial, transition, and emission probs. For now, you need to make an assumption about k by providing an integer. This model probably works best when you expect 2-3 states... This option over-rides all other parameter options (which will be ignored). ''') parser_puffcn.add_argument('--iters', type=int, default=1, help='''Number of iterations to run for updating parameters. Default: 1 (no updates). ''') parser_puffcn.add_argument('--converge', type=float, default=1e-9, help='''When multiple iterations, stop iterating if difference between the log likelihood of the current state path is less than this much different than previous. Default = 1e-9. ''') parser_puffcn.add_argument('--learnpseudo', type=float, default=1e-323, help='''When learning state transitions from previous state path, zero counts can throw a wrench into the spokes. This prevents that. Can be 1e-323 to Inf, but recommend <= 1. Default pseudocount is basically the lowest non-zero number possible: 1e-323.. ''') parser_puffcn.add_argument('--emitpseudo', type=float, default=1e-7, help='''Specifically for --model discrete. When learning emission fequencies from previous state path, zero counts can throw a wrench into the spokes. This prevents that. Can be 1e-323 to Inf, but recommend <= 1. Default pseudocount: 1e-7 (1 in 10 million). ''') parser_puffcn.add_argument('--constrainEmit', action='store_true', default=False, help='''When iterating, do not update the emission probabilities: constrain them to what was given to initialize. ''') parser_puffcn.add_argument('--outpfx', type=str, default=None, help='''Prefix for output. If not used, all output goes to stdout. This is particularly useful when iters > 1, which outputs the statepath from each round. If an out prefix is not specified and iters > 1, you will be warned/reminded in a stderr message that can be ignored if purposeful. ''') parser_puffcn.set_defaults(func=run_subtool) ## create sub-command for summits parser_summits = subparsers.add_parser('summits', help=''' Find summits...''') parser_summits.add_argument('-l','--latestage', type=str, required=True, help='''Provide path to bedGraph (e.g. made from getcov) for a late stage sample.''') parser_summits.add_argument('-e','--earlystage', type=str, required=False, default=False, help=''' Optional: Provide path to bedGraph (e.g. made from getcov) for an early stage sample. This is used after smoothing and median normalization to further normalize the late-stage sample (e.g. can correct for sequencing biases)''') parser_summits.add_argument('--replace', action='store_true', default=False, help='''Turn on "replace" functionality. By default this will replace '.' in the count column of bedGraphs with '0'. Use --replace_with and --replace_this to change.''') parser_summits.add_argument('--replace_this', type=str, default='.', help='''Used with --replace. Specify the character in count column to replace. Default = '.' ''') parser_summits.add_argument('--replace_with', type=str, default='0', help='''Used with --replace. Specify the character to replace the --replace_this character with. Must be a string that can be converted to a float. Default = '0' ''') parser_summits_protocol = parser_summits.add_mutually_exclusive_group(required=True) parser_summits_protocol.add_argument('-1', '--protocol1', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_summits_protocol.add_argument('-2', '--protocol2', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then they are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_summits_protocol.add_argument('-3', '--protocol3', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then they are smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. Then the HMM is run. Note: if early is not present, this is same as protocol 4.''') parser_summits_protocol.add_argument('-4', '--protocol4', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. Then the HMM is run. Note: if early is not present, this is same as protocol 3.''') parser_summits_protocol.add_argument('-5', '--protocol5', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. (i.e. L/E -> smooth) Then the HMM is run. Note: if early is not present, this is same as protocol 6.''') parser_summits_protocol.add_argument('-6', '--protocol6', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. (i.e. smooth -> L/E) Then the HMM is run. Note: if early is not present, this is same as protocol 5.''') parser_summits_protocol.add_argument('-7', '--protocol7', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Note: No median normalization or smoothing is performed. If only late is given, then this is just an identity/pass-through function.''') parser_summits_protocol.add_argument('-8', '--protocol8', action='store_true', default=False, help='''SKEW. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = (V[i]-V[i-1]) / (V[i]+V[i-1])''') parser_summits_protocol.add_argument('-9', '--protocol9', action='store_true', default=False, help='''PERCENT CHANGE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_summits_protocol.add_argument('-10', '--protocol10', action='store_true', default=False, help='''SKEW CHANGE or SKEW DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_summits_protocol.add_argument('-11', '--protocol11', action='store_true', default=False, help='''PERCENT CHANGE DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_summits.add_argument('--stringcols', action='store_true', default=False, help='''Just treat columns other than 4 as strings...''') parser_summits.add_argument('-ps', '--pseudo', type=float, default=0.1, help=''' Before normalizing late to early, add this pseudocount to all counts in order to avoid division by zero. Should be between 0 and 1. Should be small enough to not change other values much, but big enough such that numbers divided by 0+pseudo do not become massive. Default: 0.1.''') parser_summits.add_argument('-bw', '--bandwidth', type=int, default=2500, help=''' If kernel smoothing, specify bandwidth (int). Bandwidth should be bigger when no early stage normalization to try to smooth out sequencing biases, mappability biases, etc. Default: 2500.''') parser_summits.add_argument('--impute', type=int, default=False, help=''' If imputing, specify bandwidth (int) for kernel smoothing. This bandwidth is generally longer than the one you would provide for regular smoothing. Only bins with a count of 0 will take on smoothed (imputed) values. Try: 10000.''') parser_summits_regions = parser_summits.add_mutually_exclusive_group(required=True) parser_summits_regions.add_argument('--regions', type=str, default=False, help = ''' Find summits in these regions - provide BED file.''') parser_summits_regions.add_argument('--states', type=str, default=False, help=''' Provide statepath bedGraph output by "cn" sub-command. Peak regions will be found automatically.''') parser_summits.add_argument('--thresh_state', type=int, default=1, help=''' Used with --states. Only consider regions with states higher than state given. Default: 1.''') parser_summits.add_argument('--merge1', type=float, default=10e3, help = '''Used with --states. After extracting only bins with higher state value than --thresh_state, merge bins if they are with in --merge1 bp from each other. Default: 10e3.''') parser_summits.add_argument('--minwidth', type=float, default=50e3, help = '''After extracting bins with states > --thresh_state and merging remaining bins that are within --merge1 bp of each other, only keep merged regions > --minwidth.''') parser_summits.add_argument('--merge2', type=float, default=40e3, help = '''After (i) extracting bins with states > --thresh_state, (ii) merging remaining bins that are within --merge1 bp of each other, (iii) retaining only merged regions > --minwidth, merge regions that are within --merge2 bp of each other.''') parser_summits.add_argument('--max_state_thresh', type=int, default=2, help = ''' After (i) extracting bins with states > --thresh_state, (ii) merging remaining bins that are within --merge1 bp of each other, (iii) retaining only merged regions > --minwidth, (iv) merging filtered regions that are within --merge2 bp of each other, only retain the remaining merged regions if their maximum state is > --max_State_thresh''') parser_summits.set_defaults(func=run_subtool) ## create sub-command for normalize parser_normalize = subparsers.add_parser('normalize', help = '''Given a latest-stage sample (where all or most puffs have grown) and an optional earliest stage sample (for additional Fold-enrichment normalization), just return the late-stage sample with normalized values as specified by protocol options below.''') parser_normalize.add_argument('-l','--latestage', type=str, required=True, help='''Provide path to bedGraph (e.g. made from getcov) for a late stage sample.''') parser_normalize.add_argument('-e','--earlystage', type=str, required=False, default=False, help=''' Optional: Provide path to bedGraph (e.g. made from getcov) for an early stage sample. This is used after smoothing and median normalization to further normalize the late-stage sample (e.g. can correct for sequencing biases)''') parser_normalize.add_argument('--replace', action='store_true', default=False, help='''Turn on "replace" functionality. By default this will replace '.' in the count column of bedGraphs with '0'. Use --replace_with and --replace_this to change.''') parser_normalize.add_argument('--replace_this', type=str, default='.', help='''Used with --replace. Specify the character in count column to replace. Default = '.' ''') parser_normalize.add_argument('--replace_with', type=str, default='0', help='''Used with --replace. Specify the character to replace the --replace_this character with. Must be a string that can be converted to a float. Default = '0' ''') parser_normalize_protocol = parser_normalize.add_mutually_exclusive_group(required=True) parser_normalize_protocol.add_argument('-1', '--protocol1', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_normalize_protocol.add_argument('-2', '--protocol2', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then they are median normalized. Then late stage is normalized to early stage if available. Then the HMM is run.''') parser_normalize_protocol.add_argument('-3', '--protocol3', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then they are smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. Then the HMM is run. Note: if early is not present, this is same as protocol 4.''') parser_normalize_protocol.add_argument('-4', '--protocol4', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. Then the HMM is run. Note: if early is not present, this is same as protocol 3.''') parser_normalize_protocol.add_argument('-5', '--protocol5', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. (i.e. L/E -> smooth) Then the HMM is run. Note: if early is not present, this is same as protocol 6.''') parser_normalize_protocol.add_argument('-6', '--protocol6', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. (i.e. smooth -> L/E) Then the HMM is run. Note: if early is not present, this is same as protocol 5.''') parser_normalize_protocol.add_argument('-7', '--protocol7', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Note: No median normalization or smoothing is performed. If only late is given, then this is just an identity/pass-through function.''') parser_normalize_protocol.add_argument('-8', '--protocol8', action='store_true', default=False, help='''SKEW. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = (V[i]-V[i-1]) / (V[i]+V[i-1])''') parser_normalize_protocol.add_argument('-9', '--protocol9', action='store_true', default=False, help='''PERCENT CHANGE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_normalize_protocol.add_argument('-10', '--protocol10', action='store_true', default=False, help='''SKEW CHANGE or SKEW DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_normalize_protocol.add_argument('-11', '--protocol11', action='store_true', default=False, help='''PERCENT CHANGE DERIVATIVE. Only accepts one file (e.g. latestage). For file with N rows, returns N-1 rows. For each value, V[i], in 4th column, for i in 2:N, it computes Skew = 100*(V[i]-V[i-1]) / V[i-1]''') parser_normalize_protocol.add_argument('-12', '--protocol12', action='store_true', default=False, help=''' Median ratio normalization. Late is normalized to early. Then those ratios are median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_normalize_protocol.add_argument('-13', '--protocol13', action='store_true', default=False, help=''' Median ratio normalization with pre-smoothing. Late (and early if present) is smoothed. Late is normalized to early. Then those ratios are median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_normalize_protocol.add_argument('-14', '--protocol14', action='store_true', default=False, help=''' Median ratio normalization with post-smoothing. Late is normalized to early. Then those ratios are smoothed. Then median normalized. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_normalize_protocol.add_argument('-15', '--protocol15', action='store_true', default=False, help=''' Median ratio normalization with end-smoothing. Late is normalized to early. Then those ratios are median normalized. Then smoothed. This is similar to a global version of what's used in DEseq2 (or TMM for EdgeR).''') parser_normalize_protocol.add_argument('-16', '--protocol16', action='store_true', default=False, help=''' Glocal Median ratio normalization. Late is normalized to early. Then those ratios are median normalized based on coverage value in late. This is similar to a coverage-based local version of what's used in DEseq2 (or TMM for EdgeR).''') parser_normalize_protocol.add_argument('-17', '--protocol17', action='store_true', default=False, help=''' First normalizes late stage to median (X/Med), and scales it with --scalecov to make the median equal scalecov. It does the same to early if present. Then Late is normalized to Early (FE) using given pseudocount (not pseudocount given has same ratio to median in both samples). It then does median ratio normalization. It then returns it as is or logged if --log10 or --log2 specified''') parser_normalize_protocol.add_argument('-18', '--protocol18', action='store_true', default=False, help='''Robust Z scores. If early (control) sample given, first is control norm (late/early, test/control) followed by robust Z. The fold-change calculation is not treated specially as it might be with other options. However, the robust Z should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_normalize_protocol.add_argument('-19', '--protocol19', action='store_true', default=False, help='''Rank scores. If early (control) sample given, first is control norm (late/early, test/control) followed by ranking. The fold-change calculation is not treated specially as it might be with other options. However, the rank should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_normalize_protocol.add_argument('-20', '--protocol20', action='store_true', default=False, help='''Robust Z score differences between two samples. Requires both late (test) and early (control) samples. Robust Z scores are calculated independently for each sample. Then R_control is subtracted from R_test = R_t - R_c.''') parser_normalize_protocol.add_argument('-21', '--protocol21', action='store_true', default=False, help='''Rank score differences between two samples. Requires both late (test) and early (control) samples. Rank scores are calculated independently for each sample. Then R_control is subtracted from R_test = R_t - R_c.''') parser_normalize_protocol.add_argument('-22', '--protocol22', action='store_true', default=False, help='''Signal Per Million Reads (Or Counts or Per Million whatever can be summed up in the 4th column). Bin_spmr = 1e6*Bin/Sum(Bins). Use --SPXR to change scaling factor from 1e6 to X. If early (control) given, both are SPMR'd independently, then late/early (test/control). When an early (control) sample is provided, you may also want to check the default pseudocount applied.''') parser_normalize_protocol.add_argument('-23', '--protocol23', action='store_true', default=False, help='''Rank standardize scores. First rank, then subtract and divide by middle: (r-M)/M, where r is a bins rank, and M is the theoretical middle rank: M=(min+max)/2. If early (control) sample given, first is control norm (late/early, test/control) followed by ranking. The fold-change calculation is not treated specially as it might be with other options. However, the rank should be the same or similar even if the t/c was not then median ratio normalized, for example, since that is just a scaling factor.''') parser_normalize_protocol.add_argument('-24', '--protocol24', action='store_true', default=False, help='''Pct difference from early (control): 100*(T-C)/abs(C). Usually for T and C values >= 0, but abs(C) allows both pos and neg values. This requires both test (late) and control (early) samples. It assumes samples are pre-prcoessed however you want. Other options below do pre-processing before this step.''') parser_normalize_protocol.add_argument('-25', '--protocol25', action='store_true', default=False, help='''Pct skew of late (test) vs early (control): 100*(T-C)/(abs(T)+abs(C)). Usually for T and C values >= 0, but (abs(T)+abs(C)) is an experimental way to allow both pos and neg values. This requires both test (late) and control (early) samples. It assumes samples are pre-prcoessed however you want. Other options below do pre-processing before this step.''') parser_normalize_protocol.add_argument('-26', '--protocol26', action='store_true', default=False, help='''Test Pct difference from early (control) after both test and control samples are transformed into Robust Z-scores: 100*(R_t-R_c)/abs(R_c). ''') parser_normalize_protocol.add_argument('-27', '--protocol27', action='store_true', default=False, help='''Pct skew given late (test) and early (control) samples, after both test and control samples are transformed into Robust Z-scores: 100*(R_t-R_c)/(abs(R_t)+abs(R_c)).''') parser_normalize_protocol.add_argument('-28', '--protocol28', action='store_true', default=False, help='''Test Pct difference from early (control) after both test and control samples are transformed into Ranks: 100*(R_t-R_c)/abs(R_c). ''') parser_normalize_protocol.add_argument('-29', '--protocol29', action='store_true', default=False, help='''Pct skew given late (test) and early (control) samples, after both test and control samples are transformed into Ranks: 100*(R_t-R_c)/(abs(R_t)+abs(R_c)).''') parser_normalize_protocol.add_argument('-30', '--protocol30', action='store_true', default=False, help='''Median ratio normalization. Late is normalized to early. Then those ratios are locally median normalized -- phycally local in the genome, with window size controlled by --halfwidth (default 10 bins to each side). This is similar to a what's used in DEseq2 (or TMM for EdgeR) -- on local genomic regions. A motivation to do this is to allow for non-linear corrections of ChIP vs control over a range of copy numbers, as is seen in intrachromosomal DNA amplification for example. The alternative is to use the global median ratio for everything, which assumes no distortion of ratios at different copy numbers. Note that if the experiment is to map relative copy numbers compared to a control DNA sample, the GLOBAL approach is what you would want to use. The local approach would make everything look like RCN=1 in that scenario. The local approach is aimed at eliminating effects on the ratios due to local biases such as copy number in order to leave only peaks due to ChIP, for example.''') parser_normalize.add_argument('--stringcols', action='store_true', default=False, help='''Just treat columns other than 4 as strings...''') parser_normalize.add_argument('--log2', action='store_true', default=False, help='''Return log2 values. Default = False.''') parser_normalize.add_argument('--log10', action='store_true', default=False, help='''Return log10 values. Default = False.''') parser_normalize.add_argument('--scalecov', type=float, default=1, help='''Multiply coverage by this as part of protocol 17.''') parser_normalize.add_argument('--SPXR', type=float, default=1e6, help='''In essence, this is like --scalecov with a different default: 1e6.''') parser_normalize.add_argument('--halfwidth', type=int, default=10, help='''In local operations (only protocol30, local med ratios atm), this is how many bins on each side of a central position is used to calculate a statistic. The total window size would therefore be: window = LHS + position + RHS = halfwidth + 1 + halfwidth = halfwidth*2 + 1. Default = 10. Note that the default has different spans depending on the input bin size. If using 500 bp bins, then 10 bins to each side equals 5 kb to each side (10.5 kb window), but just 1 kb (2.1 kb window) if using 100 bp bins.''') parser_normalize.add_argument('--pseudoZeroBins', action='store_true', default=False, help='''Not to be confused with --pseudo. This option applies only to protocols 24-27 right now. It only need be used when there are zeros in the control (early) sample. In protocols 26 and 27, this is likely to happen from the robust z-score pre-processing. If an error is thrown, try --pseudoZeroBins or --addMinOtherPlusOneToBoth. --pseudoZeroBins adds min(abs(nonzero control values)) to bins in both samples that were 0 in contorl (early). --addMinOtherPlusOneToBoth shifts both distributions up by min(control values)+1, setting the min control value to 1. Both use minimum values for each chrom/contig independently rather than a global min. This is intended to reduce the effects of the modifications, but may introduce its own issues. These are not meant to be used together, but won't throw an error if they are.''') parser_normalize.add_argument('--addMinOtherPlusOneToBoth', action='store_true', default=False, help='''This option applies only to protocols 24-27 right now. It only need be used when there are zeros in the control (early) sample. In protocols 26 and 27, this is likely to happen from the robust z-score pre-processing. If an error is thrown, try --pseudoZeroBins or --addMinOtherPlusOneToBoth. --pseudoZeroBins adds min(abs(nonzero control values)) to bins in both samples that were 0 in contorl (early). --addMinOtherPlusOneToBoth shifts both distributions up by min(control values)+1, setting the min control value to 1. These are not meant to be used together, but won't throw an error if they are. NOTE: Both use minimum values for each chrom/contig independently rather than a global min. This is intended to reduce the effects of the modifications, but may introduce its own issues. ''') parser_normalize.add_argument('--setToControlDist', action='store_true', default=False, help='''This option applies only to protocols 24-27 right now. It resets the contorl RZ scores back to original, and scales the test R_z in same way. Z_c = (X_c-med_c)/mad_c ; X_c = mad_c * Z_c + med_c ; X_t_c = mad_c * Z_t + med_c''') parser_normalize.add_argument('-c', '--collapsed', action='store_true', default=False, help='''Return collapsed variable-step bedGraph instead of expanded single-step bedGraph. This is often a much smaller file.''') parser_normalize.add_argument('-ps', '--pseudo', type=float, default=0.1, help=''' Before normalizing late to early, add this pseudocount to all counts in order to avoid division by zero. Should be between 0 and 1. Should be small enough to not change other values much, but big enough such that numbers divided by 0+pseudo do not become massive. Default: 0.1.''') parser_normalize.add_argument('-bw', '--bandwidth', type=int, default=2500, help=''' If kernel smoothing, specify bandwidth (int). Bandwidth should be bigger when no early stage normalization to try to smooth out sequencing biases, mappability biases, etc. Default: 2500.''') parser_normalize.add_argument('--endsmoothing', action='store_true', default=False, help=''' Add smoothing to the absolute end of any of the protocols for more flexibility here. This comes after log-transformation steps, for example, which optionally comes at the end of any protocol.''') parser_normalize.add_argument('--replaceNaN', action='store_true', default=False, help=''' If kernel smoothing, NaNs can be generated. This option replaces those with local averages (see --localwinsize, default=5 bins). In cases where localaverages return NaN (very rare), it fills NaN with the global average for the given chrom/sequence (not whole geneome, so still local-ish).''') parser_normalize.add_argument('--localwinsize', type=int, default=5, help=''' If kernel smoothing and/or using --replaceNan, this specifies the number of bins to use (centered on this so odd numbers preferable). Default = 5.''') parser_normalize.add_argument('--impute', type=int, default=False, help=''' If imputing, specify bandwidth (int) for kernel smoothing. This bandwidth is generally longer than the one you would provide for regular smoothing. Only bins with a count of 0 will take on smoothed (imputed) values. Try: 10000.''') ## parser_normalize.add_argument('--counts', type=str, default=False, ## help=''' Use this flag and specify an output prefix for the final normalized late stage bin counts bedGraph.''') parser_normalize.set_defaults(func=run_subtool) ###########GENERATE ## create sub-sommand for generate parser_generate = subparsers.add_parser('generate', help = '''Generate emitted_data and statepath bedGraphs.''') parser_generate.add_argument('-f','-b', '-i', '--bedgraph', type=str, required=True, help='''Provide path to bedGraph that contains the intervals in first 3 columns to return with generated data.''') parser_generate.add_argument('-m', '--emodel', type=str, default='normal', help='''Specify emissions model to assume for HMM. Options: normal, exponential. Default: normal.''') parser_generate.add_argument('--mu', type=str, default='1,2,4,8,16,32,64', help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state means were previously hard-coded. This option allows some flexibility from the command-line to change the state means. Default: 1,2,4,8,16,32,64 To change: Provide comma-seprated list of state means. The number of states will be calculated from this list. If changing state sigmas (used in normal model), it must have same number of states represented. NOTE: If using exponential or geometric distribution, provide the expected mean RCN values of the states as you would for normal or poisson models. This script will automatically take their inverses to work in the exponential and geometric models.''') parser_generate.add_argument('--sigma', type=str, default=None, help=''' PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state sigmas (stdevs) were previously hard-coded. This option allows some flexibility from the command-line to change the state sigmas. Default: if not changed, defaults to square root of state means (Poisson-like). To change: Provide comma-seprated list of state sigmas. Alternatively: Use --mu_scale (default False) with a scaling factor multiplied against the MUs. The number of states is calculated from this state mean list, which defaults to 7. If changing state sigmas (used in normal model), it must have same number of states represented as state means.''') parser_generate.add_argument('--mu_scale', type=float, default=None, help=''' See --sigma for more details on sigmas. Use this to scale means (--mu) to use as stdevs (sigma) instead of taking square roots of means. For example, --mu_scale 0.5 will use mu*0.5 as the stdev.''') parser_generate.add_argument('--special_idx', type=int, default=0, help='''Only for use if you're very familiar with the program (and change defaults). The default state means is 1,2,4,8,16,32,64. The default index for the mean that represents copy number 1 is 0. In this lingo - CN=1 is the special state, and the 0-based index of the special state in that list is 0. If you were to change parameters that affect where the special state is in the list, make sure to change this index. This index is only used to help construct initial probabilities and transition probabilies. If understood, it can be used to designate any single special state (not necessarily the one that corresponds to CN=1). The other parameters to use with this are: --init_special (probability of starting in the special state (usually CN=1). The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). --prob_leave_special --prob_stay_special --prob_other_to_special --prob_other_to_other --prob_other_to_self Alternative to, an initial probability vector can be given with --initialprobs ''') parser_generate.add_argument('--init_special', type=float, default=0.997, help='''Probability of starting in the 'special state' (usually copy number = 1). Default: 0.997. The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). ''') parser_generate.add_argument('--leave_special_state', type=float, default=0.001, help='''Probability of leaving the 'special state' (usually copy number = 1). Default: 0.001. If number is betwen 0 and 1, it will be assumed a probability. If number given is > 1, then it will be treated as the average length (number of bins) of the special state. For example, if 1000 is given, it will be 1/1000 = 0.001. In terms of bp lengths, one would need to multiply n_bins * bin_length OR divide bp length by bin_length Thus, if you want to see a change every 500 kb w/ 500 bp bins, then 500kb/500 = 1 kb = 1000 -- which will be interpreted as 0.001. Or as another example, if you expect to see a change every 2 Mb with 100 bp bins, then 2e6/1e2 = 1e4 = 10 kb = 10000, interpreted as 0.0001. The probability of staying in this state is the complement: 1-p ''') parser_generate.add_argument('--leave_other', type=str, default=None, help='''Probability of leaving one of the other states. This defaults to --leave_special_state making all transition probabilities out of states the same (0.001 by default). To change, provide a probability of leaving (p). If the first number is betwen 0 and 1, it will be assumed a probability. If the first number given is > 1, then it will be treated as the average length (number of bins). For example, if 1000 is given, it will be 1/1000 = 0.001. If only 1 number is given, then that is assumed to be the probability of transitioning to all the other states. You can also give a comma-separated pair of 2 probabilities: prob of leaving to special state prob of leaving to another 'non-special' state. Make sure the probabilities sum to what you expect the overall probability of leaving the state is... which should be p_to_special + p_to_nonspecial * (num_non_special-1) = p_to_special + p_to_nonspecial (nstates-2) For example, in a 7-state model: 0.001,0.0002 --> 0.001 + 0.0002 * 5 = 0.001 + 0.001 = 0.002 OR 0.001,0.001 --> 0.001 + 0.001 * 5 = 0.006 If the second number is > 1, the same rules apply as to the first number. For other analyses, I've used: 0.00001,0.000000000001 OR 0.001,0.0000000001 The probability of staying in these states is the complement: 1-p1-p2 NOTE: the program forces the transition probabilities of a given state to sum to 1. ''') parser_generate.add_argument('--initialprobs', type=str, default=None, help='''PuffCN has been optimized for mapping DNA puffs in the fungus fly. The default state means were previously hard-coded. This option allows some flexibility from the command-line to change the state means. Default: [0.997, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005] The default will change with more or less states described w/ --mu and --sigma. By default, the first state will start out as 0.997 as above, all other states will be (1-0.997)/n_other_states. That behavior also changes with following parameters: --special_idx -- determines which state (not necessarily first) will be given default 0.997 (OR other with --initcn1) --init_special (probability of starting in the special state (usually CN=1). The probabity of starting in a another state (usually copy number variant states) defaults to (1-init_special)/(nstates-1). --leave_special_state --prob_other_to_special --prob_other_to_other --prob_other_to_self To change the initial probs manually: Provide comma-separated list of initial probs -e.g.: '0.997,0.0005,0.0005,0.0005,0.0005,0.0005,0.0005' This must have same number of states represented as state means (--mu; default 7). ''') parser_generate.set_defaults(func=run_subtool) ## create sub-command for filter/filterfish parser_filter = subparsers.add_parser('filter', help = '''Given a latest-stage sample (where all or most puffs have grown) and an optional earliest stage sample (for additional Fold-enrichment normalization), just return the late-stage sample with normalized values as specified by protocol options below.''') parser_filter.add_argument('--counts', type=str, default=False, help=''' Use this flag and specify an output prefix for the final normalized late stage bin counts bedGraph.''') parser_filter_unit = parser_filter.add_mutually_exclusive_group() parser_filter_unit.add_argument('-sd1','--stdev_above', action='store_true', default=False, help='''Use value given as multiple of standard deviations above the mean.''') parser_filter_unit.add_argument('-sd2','--stdev_below', action='store_true', default=False, help='''Use value given as multiple of standard deviations BELOW the mean.''') parser_filter_unit.add_argument('-mu','--mean', action='store_true', default=False, help='''Use value given as multiple of the mean.''') parser_filter.add_argument('-V','--value', type=float, required=True, help='''Value to filter on -- a float. Required.''') parser_filter.add_argument('-R','--relation', type=str, default=">", help='''Relationship to value to filter on -- i.e. greater than, less than, etc. Accepted values are: gt, ge, lt, le, eq, ne -- respectively representing the relations >, >=, <, <=, ==, !=''') parser_filter.add_argument('-l','--latestage', type=str, required=True, help='''Provide path to bedGraph (e.g. made from getcov) for a late stage sample.''') parser_filter.add_argument('-e','--earlystage', type=str, required=False, default=False, help=''' Optional: Provide path to bedGraph (e.g. made from getcov) for an early stage sample. This is used after smoothing and median normalization to further normalize the late-stage sample (e.g. can correct for sequencing biases)''') parser_filter_protocol = parser_filter.add_mutually_exclusive_group(required=True) parser_filter_protocol.add_argument('-s','--skipnorm', action='store_true', default=False, help='''Use provided bedGraph (late option) directly -- skip any normalization procedure.''') parser_filter_protocol.add_argument('-1', '--protocol1', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are median normalized. Then late stage is normalized to early stage if available..''') parser_filter_protocol.add_argument('-2', '--protocol2', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then they are median normalized. Then late stage is normalized to early stage if available.''') parser_filter_protocol.add_argument('-3', '--protocol3', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then they are smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. Note: if early is not present, this is same as protocol 4.''') parser_filter_protocol.add_argument('-4', '--protocol4', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first median normalized. Then late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. Note: if early is not present, this is same as protocol 3.''') parser_filter_protocol.add_argument('-5', '--protocol5', action='store_true', default=False, help='''Late stage is normalized to early stage if available. Then late/early is smoothed with bandwidth given by --bandwidth. (i.e. L/E -> smooth). Note: if early is not present, this is same as protocol 6.''') parser_filter_protocol.add_argument('-6', '--protocol6', action='store_true', default=False, help='''Late stage (and early stage if present) bin counts are first smoothed with bandwidth given by --bandwidth. Then late stage is normalized to early stage if available. (i.e. smooth -> L/E). Note: if early is not present, this is same as protocol 5.''') parser_filter.add_argument('-c', '--collapsed', action='store_true', default=False, help='''Return collapsed variable-step bedGraph instead of expanded single-step bedGraph. This is often a much smaller file.''') parser_filter.add_argument('-ps', '--pseudo', type=float, default=0.1, help=''' Before normalizing late to early, add this pseudocount to all counts in order to avoid division by zero. Should be between 0 and 1. Should be small enough to not change other values much, but big enough such that numbers divided by 0+pseudo do not become massive. Default: 0.1.''') parser_filter.add_argument('-bw', '--bandwidth', type=int, default=2500, help=''' If kernel smoothing, specify bandwidth (int). Bandwidth should be bigger when no early stage normalization to try to smooth out sequencing biases, mappability biases, etc. Default: 2500.''') parser_filter.add_argument('--impute', type=int, default=False, help=''' If imputing, specify bandwidth (int) for kernel smoothing. This bandwidth is generally longer than the one you would provide for regular smoothing. Only bins with a count of 0 will take on smoothed (imputed) values. Try: 10000.''') parser_filter.set_defaults(func=run_subtool) ## create sub-command for help parser_help = subparsers.add_parser('help', help=''' Gives more extensive guidance on using pufferfish.''') parser_help.set_defaults(func=run_subtool) ## parse the args and call the selected function args = parser.parse_args() ## check if args.quiet set (a default to all sub-modules from ArgumentParserWithDefaults class) if args.quiet: logger.setLevel(logging.ERROR) ## attempt to run args.func (which calls run_subtool() for all), catch errors try: args.func(parser, args) except IOError, e: ## often pipe will break for various reasons and will raise sigpipe error ## can import errno and do "if e.errno != errno.EPIPE:" ## but errno.EPIPE = 32 -- so just use 32 here if e.errno != 32: ## ignore SIGPIPE raise ## Run main when this script used from command-line if __name__ == "__main__": main() ## If needed parallelization ## Would have to parellize from here.... ## from joblib import Parallel, delayed ## import time ## from glob import glob ## folder = "del" ## files = glob('{}/*.txt'.format(folder)) ## def sleep(f): ## print f ## time.sleep(0.001) ## ## for f in files: ## ## sleep(f) #args.parallel ## Parallel(n_jobs=2)(delayed(sleep)(f) for f in files) ``` #### File: pufferfish/pufferfish/signalcorrect.py ```python import sys, argparse, pybedtools, scipy.stats from collections import defaultdict import numpy as np parser = argparse.ArgumentParser(description=""" Given gcmedian.txt and signal file, Generate updated signal file corrected for gcfemedian... NOTE: if gcfmedian obtained on FE can only use on FE signal. If gcmedian done on SPMR, can only use on SPMR signal. Etc. NOTE2: signal bins being corrected need to be same bins GC analyzed in. """, formatter_class= argparse.RawTextHelpFormatter) parser.add_argument('--signal', '-a', '-i', '-f', type= str, help='''Path to signal bedGraph that has cols: chr, start, end, GCprop, signal-to-correct.Can tell algo what cols to look for.''') parser.add_argument('--scalefactors', '-b', type=str, help='''Path to gc median parameter table.''') parser.add_argument('--gccol', '-g', type=int, default=6, help='''Column GC proportions found in. Default = 6''') parser.add_argument('--signalcol', '-s', type=int, default=4, help='''Column signal found in. Default = 4''') parser.add_argument('--chrcol', '-c', type=int, default=1, help='''Column chr name found in. Default = 1''') parser.add_argument('--startcol', '-S', type=int, default=2, help='''Column start coordinate found in. Default = 2''') parser.add_argument('--endcol', '-E', type=int, default=3, help='''Column end coordinate found in. Default = 3''') parser.add_argument('--mean', '-M', action='store_true', default=False, help='''Subtract GC mean from signal instead of GC median.''') parser.add_argument('--control', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the GC_median over each bin given the bin's GC content. This can be used (1) in a browser, (2) as part of command-line subtraction, fold-enrcichment and other operations w/ paste/awk and a signal file, (3) down stream significance tests outside of this program, etc etc.''') parser.add_argument('--mad', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the median absolute deviation from each GC_median over each bin given the bin's GC content. This can be used (1) in a browser, (2) as part of command-line operations w/ paste/awk and a signal and/or median file, (3) down stream significance tests outside of this program, etc etc.''') parser.add_argument('--zscore', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the zscore over each bin. The z-score is obtained by (bin_value - gc_mean)/gc_std_dev given the bin's GC content.''') parser.add_argument('--robust_zscore', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the zscore over each bin. The z-score is obtained by (bin_value - gc_median)/(c*gc_mad) given the bin's GC content. When MedianAD is 0, c*gc_mad = 1.253314*MeanAD When MedianAD is not 0, c*gc_mad = 1.4826*MedianAD According to Wikipedia -- this should use 1.4826 https://en.wikipedia.org/wiki/Median_absolute_deviation According to IBM - 1.486: See: https://www.ibm.com/support/knowledgecenter/en/SSWLVY_1.0.0/com.ibm.spss.analyticcatalyst.help/analytic_catalyst/modified_z.html or 1.483 according to another source (which is 1.4826 rounded)... or 1.4296 according to another (1.43 rounded)... ''') parser.add_argument('--madunits', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the zscore-like madunits over each bin. The z-score-like madunits are obtained by (bin_value - gc_median)/gc_mad given the bin's GC content. When MAD is 0, it attempts to replace MAD with the MeanAD from the median. When both MAD and MeanAD are 0, it attempts to replace MAD with 0.67449*std_dev. When all are 0 (should not happen) - it replaces MAD with 1. This also differs from the robust_zscore because it does not scale the MAD. The robust_zscore does scale MAD: (x-MED)/scaled_MAD. ''') parser.add_argument('--medfe', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the fold enrichment of bin/med_gc over each bin given the bin's GC content. This can be used with smoothing to get long-range mean relative copy numbers. Long-range RCNs over each bin can be used to scale the bin's value (bin/bin_RCN) before subtracting GC_med or getting z-score in subsequent steps. When median is 0, it is changed to 1 for the denominator. This may or may not give the desired effect.''') parser.add_argument('--meanfe', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the fold enrichment of bin/mean_gc over each bin given the bin's GC content. This can be used with smoothing to get long-range mean relative copy numbers. Long-range RCNs over each bin can be used to scale the bin's value (bin/bin_RCN) before subtracting GC_med or getting z-score in subsequent steps. When mean is 0, it is changed to 1 for the denominator. This may or may not give the desired effect.''') parser.add_argument('--subtractmed', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the median-subtracted scores of bin-med_gc over each bin given the bin's GC content.''') parser.add_argument('--subtractmean', type= str, default=False, help='''Give an output prefix to also output a bedGraph that contains the mean-subtracted scores of bin-med_gc over each bin given the bin's GC content.''') args = parser.parse_args() ## could also use NS-seq medians to correct its own signal... ## could do that all in the first step -- either to treatment signal, FE signal, or both... ## if do raw signa or raw spmr -- will still need to normalize for copy/number -- and/or do local lambda peak calling def name_bdg(bdg): if not bdg.endswith('.bedGraph'): return bdg + '.bedGraph' return bdg gccol = args.gccol-1 sigcoltocorrect = args.signalcol-1 chrcol = args.chrcol-1 startcol = args.startcol-1 endcol = args.endcol-1 gcsub = 0 if args.mean: gcsub = 1 ## READ IN GC STATS INFORMATION statdict = defaultdict(list) with open(args.scalefactors) as table: for row in table: row = row.strip().split() statdict[int(row[0])] = [float(e) for e in row] ## WRITE BEDGRAPHS if args.control: ## WRITE MEDIAN CONTROL BEDGRAPH IF DESIRED (mean printed out if --mean specified) conbdg = open(name_bdg(args.control),'w') if args.mad: ## WRITE MAD BEDGRAPH IF DESIRED madbdg = open(name_bdg(args.mad),'w') if args.zscore: zbdg = open(name_bdg(args.zscore), 'w') if args.robust_zscore: rzbdg = open(name_bdg(args.robust_zscore), 'w') if args.madunits: madunitbdg = open(name_bdg(args.madunits), 'w') if args.medfe: febdg = open(name_bdg(args.medfe), 'w') if args.meanfe: mufebdg = open(name_bdg(args.meanfe), 'w') if args.subtractmed: submedbdg = open(name_bdg(args.subtractmed), 'w') if args.subtractmean: submubdg = open(name_bdg(args.subtractmean), 'w') with open(args.signal) as table: for row in table: row = row.strip().split() gc = int(100.0*float(row[gccol])) ## if args.bdg: ## sig = float(row[sigcoltocorrect]) ## newsig = sig - statdict[gc][gcsub] ## out = [row[chrcol], row[startcol], row[endcol], newsig] ## outmsg = ("\t").join([str(e) for e in out]) ## sigbdg.write( outmsg + '\n' ) if args.control: curr_gc_med = statdict[gc][gcsub] out = [row[chrcol], row[startcol], row[endcol], curr_gc_med] outmsg = ("\t").join([str(e) for e in out]) conbdg.write( outmsg + '\n' ) if args.mad: curr_gc_mad = statdict[gc][3] out = [row[chrcol], row[startcol], row[endcol], curr_gc_mad] outmsg = ("\t").join([str(e) for e in out]) madbdg.write( outmsg + '\n' ) if args.zscore: #(bin - median) sig = float(row[sigcoltocorrect]) mu = statdict[gc][1] std = statdict[gc][2] zscore = (sig - mu) / std out = [row[chrcol], row[startcol], row[endcol], zscore] outmsg = ("\t").join([str(e) for e in out]) zbdg.write( outmsg + '\n' ) if args.robust_zscore: #(bin - median) sig = float(row[sigcoltocorrect]) med = statdict[gc][0] mad = statdict[gc][3] mad2 = statdict[gc][4] if mad == 0: denom = 1.253314*mad2 else: denom = 1.4826*mad zscore = (sig - med) / denom out = [row[chrcol], row[startcol], row[endcol], zscore] outmsg = ("\t").join([str(e) for e in out]) rzbdg.write( outmsg + '\n' ) if args.madunits: #(bin - median) sig = float(row[sigcoltocorrect]) med = statdict[gc][0] mad = statdict[gc][3] mad2 = statdict[gc][4] std = statdict[gc][2] if mad != 0: denom = mad elif mad == 0 and mad2 != 0: denom = mad2 elif mad == 0 and mad2 == 0 and std > 0: denom = 0.67449 * std else: denom = 1 zscore = (sig - med) / denom out = [row[chrcol], row[startcol], row[endcol], zscore] outmsg = ("\t").join([str(e) for e in out]) madunitbdg.write( outmsg + '\n' ) if args.medfe: sig = float(row[sigcoltocorrect]) med = statdict[gc][0] if med == 0: med = 1 fe = sig / med out = [row[chrcol], row[startcol], row[endcol], fe] outmsg = ("\t").join([str(e) for e in out]) febdg.write( outmsg + '\n' ) if args.meanfe: sig = float(row[sigcoltocorrect]) mean = statdict[gc][1] if mean == 0: mean = 1 fe = sig / mean out = [row[chrcol], row[startcol], row[endcol], fe] outmsg = ("\t").join([str(e) for e in out]) mufebdg.write( outmsg + '\n' ) if args.subtractmed: sig = float(row[sigcoltocorrect]) newsig = sig - statdict[gc][0] out = [row[chrcol], row[startcol], row[endcol], newsig] outmsg = ("\t").join([str(e) for e in out]) submedbdg.write( outmsg + '\n' ) if args.subtractmean: sig = float(row[sigcoltocorrect]) newsig = sig - statdict[gc][1] out = [row[chrcol], row[startcol], row[endcol], newsig] outmsg = ("\t").join([str(e) for e in out]) submubdg.write( outmsg + '\n' ) if args.control: conbdg.close() if args.mad: madbdg.close() if args.zscore: zbdg.close() if args.robust_zscore: rzbdg.close() if args.madunits: madunitbdg.close() if args.medfe: febdg.close() if args.meanfe: mufebdg.close() if args.subtractmed: submedbdg.close() if args.subtractmean: submeanbdg.close() ### THIS WILL BE DELETED EVENTUALLY ## IT IS HERE FOR POSTERITY SO OLDER PIPELINES DO NOT GO BELLY UP if not (args.control or args.mad or args.zscore or args.robust_zscore or args.madunits or args.medfe or args.meanfe or args.subtractmed or args.subtractmean): ## If bedGraph type not specified... then it must be an older pipeline OR user wants subtracmed bedGraph with open(args.signal) as table: for row in table: row = row.strip().split() gc = int(100.0*float(row[gccol])) sig = float(row[sigcoltocorrect]) newsig = sig - statdict[gc][gcsub] out = [row[chrcol], row[startcol], row[endcol], newsig] print ("\t").join([str(e) for e in out]) ``` #### File: pufferfish/switchblade/OEM.py ```python import sys import numpy as np import argparse ## ## Date Created: October 02, 2013 ## Author: <NAME> ## ## June 11,2014:: modified to take variable step csv -- ## ## Future improvements to this script might include ## - writing the output file directly instead of building up and storing the oemDict ## I imagine this will help on the human genome ## - making it write out in correct order ## as of now, the order is scrambled b/c it loops over keys (chromosome names) of a dictionary ## ## September 2021:: ## - modified to use argparse. ############################################################################## ''' ARGUMENT PARSER ''' ############################################################################## parser = argparse.ArgumentParser(description=""" DESCRIPTION Origin Efficiency Metric. Usage: OEM.py -i inputCSV [-w W -p pseudocount -o outname.ext -H --csvformat] INPUT: CSV containing chromosome position and coverage for both strands. OUTPUT: bedGraph or CSV of OEM for each position. input CSV: chr,pos,fwd,rev outputFormat = either 'bdg' or 'csv' bdg will return a bedGraph, a tab-delimited BED3 + score format: chr start end oem Note that bedGraphs (and BED files) are 0-based, half open intervals Thus, the first base of a sequence would be identified as: chr 0 1 score i.e. start = 0, end = 1 -- but the end is not included, thus only base 0 is represented here csv will return a CSV file similar to the input of format: chr,pos,oem The CSV output (and input) is 1-based. Thus, base 1 of a sequence would be represented as: chr,1,oem """, formatter_class= argparse.RawTextHelpFormatter) parser_input = parser.add_mutually_exclusive_group() parser_input.add_argument('-i', "--input", type= str, default="-", help='''input CSV: chr,pos,fwdcov,revcov. Use "-" or "stdin" or leave blank during piping.''') parser.add_argument('-o', "--outname", type= str, default="-", help='''Defaults to stdout. Otherwise, specify a filename for output: e.g. output.bedGraph or output.csv. Use "-" or "stdout" or leave blank during piping. ''') parser.add_argument('-H', '--hasheader', action='store_true', default=False, help='''Use this flag if the inputCSV has the header line 'chr,pos,fwd_str,rev_str'.''') parser.add_argument('-c', '--csvformat', action='store_true', default=False, help='''Use this flag for CSV output formatting instead of bedGraph formatting.''') parser.add_argument('-w', '--windowsize', type=int, default=10000, help='''Window size to use. Default = 10000 (10 kb). windowSize is how big the window is to left of a position (for WL and CL calculations) and to the right (for WR and CR). This should be set to '10000' if unsure.''') parser.add_argument('-p', '--pseudocount', type=int, default=0, help='''Pseudocount to use. Default = 0. The pseudocount is used to prevent division by 0. In 10kb bins on yeast genome it is unlikely to get a division-by-zero error. This is not necessarily true for the human genome or smaller window sizes, thus a pseudocount can help. Suggested pseudocount if needed is 1, but using sequencing depth and other knowledge to decide is better.''') args = parser.parse_args() ############################################################################## ''' FUNCTIONS ''' ############################################################################## def okazakiFileReader(inputfile, header=True): """Takes in .csv a la <NAME>, returns Dict with that info """ # Open connection to input.csv if inputfile in ('-','stdin'): okazaki = sys.stdin else: okazaki = open(inputfile, "r") # If header line present, store it if header: headerLine = okazaki.readline()[:-1].split(",") # initialize dictionary for storing information from file okazakiDict = {} # Parse file line by line for line in okazaki: line = line[:-1].split(",") chromosome, pos, fwd, rev = line[0], int(line[1]), float(line[2]), float(line[3]) try: #okazakiDict[chromosome] okazakiDict[chromosome]["pos"] += [pos] okazakiDict[chromosome]["fwd"] += [fwd] okazakiDict[chromosome]["rev"] += [rev] except KeyError: okazakiDict[chromosome] = {} okazakiDict[chromosome]["pos"] = [pos] okazakiDict[chromosome]["fwd"] = [fwd] okazakiDict[chromosome]["rev"] = [rev] if inputfile in ('-','stdin'): okazaki.close() return okazakiDict def OEMDict(okazakiDict, windowSize=500, pseudocount=0): """Takes in okazakiDict, returns oemDict""" # chr names chromosomes = okazakiDict.keys() # initialize oemDict oemDict = {} # start loop over all chromosomes for chromosome in chromosomes: sys.stderr.write( "Processing chromosome: " + str(chromosome) + "\n") chrLen = len(okazakiDict[chromosome]["pos"]) sys.stderr.write( "Chromosome Length = " + str(chrLen) + "\n" ) ## GIVE DUMMY LINE AND STOP IF CHRLEN < MinLen == (w+1)*2 if chrLen < (windowSize+1)*2: oemDict[chromosome] = {'pos':[1], 'oem':[0]} continue ### CONTINUE IF CHRLEN >= MinLen == (w+1)*2 # Set the start and end position (end position is 10,000 bp less than last position) (JB) start = windowSize-1 end = chrLen - windowSize ## make sure this works # Calculate the first window (JB) -- float() used to avoid default 'int division' WL = float(sum(okazakiDict[chromosome]['fwd'][0:start+1])) + pseudocount ## goes up to and includes start as in R CL = float(sum(okazakiDict[chromosome]['rev'][0:start+1])) + pseudocount WR = float(sum(okazakiDict[chromosome]['fwd'][start+1:start+1+windowSize])) + pseudocount ## starts at 1 above start as in R CR = float(sum(okazakiDict[chromosome]['rev'][start+1:start+1+windowSize])) + pseudocount # Set up the storage oem (JB) pos = okazakiDict[chromosome]['pos'][start:end] ##+! oemDict[chromosome] = {'pos':pos, 'oem':[0]*len(pos)} oem = (WL / (WL + CL)) - (WR / (WR + CR)) oemDict[chromosome]['oem'][0] = oem ## Iterative steps numPositions = len(range(start,end)) percentsToReport = range(0,101,10) Pos = start for i in range(1, numPositions): # report progress ## -- since this script goes so fast, progress other than which chr is currently being worked on was not necessary to report ##percentComplete = int(100.0*(i+1)/numPositions) ## i+1 b/c initialization added in ##if percentComplete in percentsToReport: ##print str(percentComplete) + "% complete for chromosome: " + str(chromosome) ##percentsToReport[int(percentComplete/10.0)] = -1 # Update the pos Pos += 1 # Update WL, CL, WR, CR WL = WL + okazakiDict[chromosome]['fwd'][Pos] - okazakiDict[chromosome]['fwd'][Pos - windowSize] CL = CL + okazakiDict[chromosome]['rev'][Pos] - okazakiDict[chromosome]['rev'][Pos - windowSize] #WR = WR + okazakiDict[chromosome]['fwd'][Pos+windowSize-1] - okazakiDict[chromosome]['fwd'][Pos] #CR = CR + okazakiDict[chromosome]['rev'][Pos+windowSize-1] - okazakiDict[chromosome]['rev'][Pos] WR = WR + okazakiDict[chromosome]['fwd'][Pos+windowSize] - okazakiDict[chromosome]['fwd'][Pos] CR = CR + okazakiDict[chromosome]['rev'][Pos+windowSize] - okazakiDict[chromosome]['rev'][Pos] ## I am considering making it directly centered on pos by having the first window end on pos and 2nd window start on pos ## No reason that shouldn't/cannot be done and it is more reflective of the pos ## This will require some changes in the other parts of script as well such as end position # Store the oem oem = (WL / (WL + CL)) - (WR / (WR + CR)) oemDict[chromosome]['oem'][i] = oem return oemDict def writeOEM2Bdg(oemDict, out): """Takes in oemDict and writes out a bedgraph This will equate to chromosome, oemDict[chromosome]['pos'][i]-1, oemDict[chromosome]['pos'][i], oemDict[chromosome]['oem'][i] Note that bedGraphs are 0-based, half-open intervals""" chromosomes = oemDict.keys() for chromosome in chromosomes: numPositions = len(oemDict[chromosome]['pos']) for i in range(numPositions): chrom = str(chromosome) start = str(oemDict[chromosome]['pos'][i]-1) end = str(oemDict[chromosome]['pos'][i]) oem = str(oemDict[chromosome]['oem'][i]) out.writelines('\t'.join([str(e) for e in [chrom, start, end, oem]]) + "\n") def writeOEM2CSV(oemDict, out): """Takes in oemDict and writes out a CSV similar to input CSV: chr,pos,oem This will equate to chromosome, oemDict[chromosome]['pos'][i], oemDict[chromosome]['oem'][i] Note that this outputCSV is a 1-based position as was the inputCSV If you are to make a bedGraph from the commandline, it will require something like: awk '{gsub(/,/,"\t"); print}' output.csv | awk '{print $1 "\t" $2-1 "\t" $2 "\t" $3}' > output.bedGraph""" chromosomes = oemDict.keys() for chromosome in chromosomes: numPositions = len(oemDict[chromosome]['pos']) for i in range(numPositions): chrom = str(chromosome) pos = str(oemDict[chromosome]['pos'][i]) oem = str(oemDict[chromosome]['oem'][i]) out.writelines(','.join([str(e) for e in [chrom, pos, oem]]) + "\n") ############################################################################## ''' EXECUTION ''' ############################################################################## ##If run from the linux commandline then execute the following #### See 6.1.1 here for more info on how this works: http://docs.python.org/2/tutorial/modules.html if __name__ == "__main__": #EXECUTE okazakiDict = okazakiFileReader(args.input, args.hasheader) oemDict = OEMDict(okazakiDict, args.windowsize, args.pseudocount) ## OUT if args.outname in ("-","stdout"): out = sys.stdout else: out = open(args.outname, 'w') ## WRITING OUT if args.csvformat: writeOEM2CSV(oemDict, out) else: writeOEM2Bdg(oemDict, out) ## QUIT if args.outname in ("-","stdout"): out.close() quit() ```
{ "source": "JohnUrban/squiggler", "score": 2 }
#### File: squiggler/squiggler/model_tools.py ```python import sys import h5py import logging import matplotlib.pyplot as plt logger = logging.getLogger('squiggler') import os, squiggler # model header: kmer, level_mean, level_stdv, sd_mean, sd_stdv, weight # older base caller also had "variant" between kmer and level_mean def get_path(strand): if strand == "template": return "/Analyses/Basecall_2D_000/BaseCalled_template/Model" elif strand == "complement": return "/Analyses/Basecall_2D_000/BaseCalled_complement/Model" def print_model_from_f5(f5, path): ## read = [e for e in f5["Analyses/EventDetection_000/Reads"]][0] for event in f5[path]: print ("\t").join([str(e) for e in event]) def print_model_attr_from_f5(f5, path): ## read = [e for e in f5["Analyses/EventDetection_000/Reads"]][0] for attr in f5[path].attrs: print ("\t").join([str(attr), str(f5[path].attrs[attr])]) def store_model_attr_from_f5(f5, path): ## read = [e for e in f5["Analyses/EventDetection_000/Reads"]][0] attributes = {} for attr in f5[path].attrs: attributes[str(attr)] = float(f5[path].attrs[attr]) return attributes def print_model_type_from_f5(f5): try: print f5["/Analyses/Basecall_2D_000/Configuration/general/"].attrs["model_type"] except: print "No model type found." def read_model_f5(f5): ##kmer, level_mean, level_stdv, sd_mean, sd_stdv, weight t = get_path("template") c = get_path("complement") strands = {1:t, 2:c} model = {1:{}, 2:{}} for strand in strands.keys(): for event in f5[strands[strand]]: kmer = str(event[0]) level_mean = float(event[1]) level_stdv = float(event[2]) sd_mean = float(event[3]) sd_stdv = float(event[4]) weight = float(event[5]) model[strand][kmer] = [level_mean, level_stdv, sd_mean, sd_stdv, weight] return model def read_model_tsv(template_tsv, complement_tsv): ##kmer, level_mean, level_stdv, sd_mean, sd_stdv, weight t = open(template_tsv, 'r') c = open(complement_tsv, 'r') strands = {1:t, 2:c} model = {1:{}, 2:{}} for strand in strands: for event in strands[strand]: event = event.strip().split() kmer = str(event[0]) level_mean = float(event[1]) level_stdv = float(event[2]) sd_mean = float(event[3]) sd_stdv = float(event[4]) weight = float(event[5]) model[strand][kmer] = [level_mean, level_stdv, sd_mean, sd_stdv, weight] strands[strand].close() return model def get_stored_model(model_type): ## model types: r7, r7.3 if model_type == "r7.3": template_modelfh = os.path.join(squiggler.__path__[0], 'models', 'template_model_r7.3.tsv') complement_modelfh = os.path.join(squiggler.__path__[0], 'models', 'complement_model_r7.3.tsv') elif model_type == "r7": template_modelfh = os.path.join(squiggler.__path__[0], 'models', 'template_model_r7.tsv') complement_modelfh = os.path.join(squiggler.__path__[0], 'models', 'complement_model_r7.tsv') return read_model_tsv(template_modelfh, complement_modelfh) def run(parser, args): f5 = h5py.File(args.fast5) path = get_path(strand=args.type) if args.get == "model": if args.header: ## print ("\t").join(['#kmer', 'level_mean', 'level_stdv', 'sd_mean', 'sd_stdv','weight']) print ("\t").join([h[0] for h in f5[path].dtype.descr]) print_model_from_f5(f5, path) elif args.get == "attr": print_model_attr_from_f5(f5, path) elif args.get == "type": print_model_type_from_f5(f5) ``` #### File: squiggler/squiggler/plot_events.py ```python import sys import h5py import numpy as np import logging import matplotlib.pyplot as plt from hmm import * logger = logging.getLogger('squiggler') from events_tools import * def run(parser, args): f5 = h5py.File(args.fast5) ## if args.raw: ## basecalled = False ## elif args.basecalled: ## basecalled = True ## else: ## basecalled = is_basecalled(f5) plot_events(f5, args.save) ```
{ "source": "johnusher/ardpifi", "score": 3 }
#### File: ardpifi/classifier/classify copy.py ```python import base64 import os import sys import numpy as np import tflite_runtime.interpreter as tflite def main(): interpreter = tflite.Interpreter(model_path()) classifier = Classifier(interpreter) for line in sys.stdin: if not line.strip() or line.strip().startswith('#'): continue data = base64.b64decode(line.strip()) array = np.frombuffer(data, dtype=np.uint8).reshape((28, 28)).transpose() output = classifier.classify(array) print(output) def model_path(): script_dir = os.path.dirname(__file__) return os.path.join(script_dir, 'model.tflite') # Order of letters should match the one in train.py _LETTERS = ['Other'] + list('CDMNOS') class Classifier: def __init__(self, interpreter): interpreter.allocate_tensors() self._input_details = interpreter.get_input_details() self._output_details = interpreter.get_output_details() self._interpreter = interpreter def classify(self, array): # TODO: The data might have to be transposed. # TODO: The image should be blurred a bit to be more similar to the # training dataset. # Get the values between 0 and 1. normalized = array.astype(np.float32) / array.max() # Stretch shape to [1, 28, 28, 1] normalized = np.expand_dims(normalized, 2) normalized = np.expand_dims(normalized, 0) self._interpreter.set_tensor(self._input_details[0]['index'], normalized) self._interpreter.invoke() logits = self._interpreter.get_tensor(self._output_details[0]['index'])[0] probs = _softmax(logits) prob, letter = max(zip(probs, _LETTERS)) return prob, letter def _softmax(x): return np.exp(x) / sum(np.exp(x)) if __name__ == '__main__': main() ```
{ "source": "John-Uskglass/MultiProject", "score": 3 }
#### File: John-Uskglass/MultiProject/Main.py ```python import time #Custom imports #e.g. from file import class as name #Constants # e.g. GENERIC_CONSTANT = "Status_Test_String" THE_FINAL_COUNTDOWN = 10 #Code e.g. class Name(): class Rocket(): def __init__(self): self.countdown = THE_FINAL_COUNTDOWN self.run(self.countdown) def run(self, countdown): if countdown != 0: print(f"{countdown} until liftoff!") countdown -= 1 time.sleep(1) self.run(countdown) else: print(f"{countdown}...\nblastoff!!!!!") if __name__ == '__main__': Rocket = Rocket() print("Main Ran Perfectly") ```
{ "source": "JohnvandeVrugt/toonapilib4domoticz", "score": 3 }
#### File: toonapilib4domoticz/devices/device.py ```python import Domoticz import toonapilib class Device: _previous_value = "" def __init__(self, name, unit, plugin_devices, toon): self._name = name self._unit = unit self._plugin_devices = plugin_devices self._toon = toon self._previous_value = "" @property def plugin_devices(self): return self._plugin_devices @property def exists(self): return self._unit in self._plugin_devices @property def name(self): return self._name @property def toon(self): return self._toon @property def unit(self): return self._unit @property def previous_value(self): return self._previous_value def set_previous_value(self, str_new_value): self._previous_value = str_new_value def create(self): Domoticz.Log("Creating " + self.name + " as unit " + self.unit) def on_command(self, unit, command, level, hue): return def update(self): return class DeviceCommandException(Exception): """An error occurred while issuing a command""" class DeviceCreateException(Exception): """An error occurred while creating the device""" class DeviceUpdateException(Exception): """An error occurred while updating the device""" ``` #### File: toonapilib4domoticz/devices/hotwater_active.py ```python import Domoticz from devices.configuration import config from devices.device import Device from devices.device import DeviceCreateException from devices.device import DeviceUpdateException class DeviceHotWaterActive(Device): domoticz_device_type = 244 domoticz_subtype = 62 domoticz_switch_type = 0 domoticz_image = 9 def __init__(self, plugin_devices, toon): super().__init__(config.STR_UNIT_HOT_WATER_ACTIVE, config.STD_UNIT_HOT_WATER_ACTIVE, plugin_devices, toon) def create(self): if not super().exists: try: Domoticz.Log("Creating hot water active device " + self.name) Domoticz.Device(Name=self.name, Unit=self.unit, Type=self.domoticz_device_type, Subtype=self.domoticz_subtype, Switchtype=self.domoticz_switch_type, Image=self.domoticz_image).Create() except DeviceCreateException as ex: Domoticz.Log("An error occurred creating " + self.name) Domoticz.Log("Exception: " + str(ex)) elif config.debug: Domoticz.Log("Unit " + str(self.unit) + " exists - nothing to do") return self def update(self): super().update() str_value = "" try: hot_water_on = 1 if self.toon.burner_state == "water_heating" else 0 str_value = str(hot_water_on) if str_value != self.previous_value: if config.debug: Domoticz.Log("Update hot water active: " + str_value) self.plugin_devices[self.unit].Update(hot_water_on, str(hot_water_on)) except DeviceUpdateException as ex: Domoticz.Log("An error occurred updating " + self.name) Domoticz.Log("Exception: " + str(ex)) self.set_previous_value(str_value) ```
{ "source": "johnvanhienen/gotrack", "score": 4 }
#### File: johnvanhienen/gotrack/common.py ```python import datetime import os import csv class Common: def is_time_between(begin_time, end_time): current_time = datetime.datetime.now().time() if begin_time < end_time: return current_time >= begin_time and current_time <= end_time def formattime(triptime): # Remove date triptime = triptime.split('T')[-1] # Remove timezone triptime = triptime.split('+')[0] return triptime def writetofile(data, headers, filelocation): file_exists = os.path.isfile(filelocation) with open(filelocation, 'a+', newline='') as f: writer = csv.writer(f, delimiter=';') if not file_exists: writer.writerow(headers) writer.writerow(data) ```
{ "source": "john-vastola/ML-from-scratch-seminar", "score": 2 }
#### File: ML-from-scratch-seminar/Gaussian Process/bills_GP.py ```python import autograd.numpy as np import pylab as pl np.random.seed(2837) N = 21 f_true = lambda x: np.sin(x) sig_obs = 0.2 X = np.linspace(-2*np.pi, 2*np.pi, N) Y = f_true(X) + np.random.normal(0, sig_obs, len(X)) eta = 0.01 theta0 = 0.3, 0.3 X_pred = np.linspace(-np.pi, np.pi, 2*N) + 0.2 #l = 2. k = lambda x1,x2 : 1.**2 * np.exp(-(x1-x2)**2 / l**2) #k = lambda x1,x2 : 0.5**2 * np.exp( -np.sin(x1-x2) / l**2 ) def build_k(*theta): k = lambda x1,x2 : theta[0]**2 * np.exp(-(x1-x2)**2 / theta[1]**2) return k class GP(object): def __init__(self, k, sig2_obs=0.1**2): self.X_obs = None self.Y_obs = None self.k = k self.sig2_obs = sig2_obs def build_Sig(self, k, X1, X2): #Sig = np.zeros((len(X1),len(X2))) Sig = k(X1[:,None], X2) #for i,j in np.ndindex(*Sig.shape): #Sig[i,j] = k(X1[i], X2[j]) return Sig def set_obs_data(self, X, Y): self.N = len(X) self.X_obs = np.array(X) self.Y_obs = np.array(Y) self.Sig_obs = self.build_Sig(self.k, X, X) + self.sig2_obs * np.eye(self.N) return self.Sig_obs def set_predict_points(self, X): self.M = len(X) self.X_pred = np.array(X) self.Sig_pred_internal = self.build_Sig(self.k, X, X) self.Sig_cross = self.build_Sig(self.k, X, self.X_obs) self.M = self.Sig_cross @ np.linalg.inv(self.Sig_obs) self.mu_pred = self.M @ self.Y_obs self.Sig_pred = self.Sig_pred_internal - self.M @ self.Sig_cross.T def sample_prediction(self): self.Y_pred = np.random.multivariate_normal(self.mu_pred, self.Sig_pred) return self.Y_pred def ll_obs_data(self, theta): k = build_k(*theta) X, Y = self.X_obs, self.Y_obs Sig = self.build_Sig(k, X, X) + self.sig2_obs * np.eye(self.N) ll = -0.5 * Y.T @ np.linalg.inv(Sig) @ Y - 0.5 * np.log(np.linalg.det(Sig)) return ll def train(f_ll, theta0, eta, T): from autograd import grad f_grad = lambda theta: - grad(f_ll)(theta) theta = np.array(theta0) print(" > t=0, theta=%s" % str(theta)) for t in range(1, T+1): theta -= eta * f_grad(theta) print(" > t=%d, theta=%s" % (t, str(theta))) return theta # BEFORE LEARNING k = build_k(*theta0) gp = GP(k, sig2_obs=sig_obs**2) Sig_obs = gp.set_obs_data(X, Y) gp.set_predict_points(X_pred) # PLOT TRAINING DATA AND PRE-LEARNING PREDICTION pl.figure(1) pl.plot(X, Y, 'bo', label="Data") pl.plot(gp.X_pred, gp.mu_pred, 'b', lw=0.5) #y = gp.sample_prediction() #pl.plot(gp.X_pred, y, "or", ms=1.) #y = gp.sample_prediction() #pl.plot(gp.X_pred, y, "og", ms=1.) # PLOT PRE-LEARNING COV MATRIX pl.figure(2) pl.imshow(Sig_obs) pl.colorbar() # TRAIN theta = train(gp.ll_obs_data, theta0, eta, T=100) # PLOT POST-LEARNING PREDICTION pl.figure(1) k2 = build_k(*theta) gp2 = GP(k2, sig2_obs=sig_obs**2) Sig_obs2 = gp2.set_obs_data(X, Y) gp2.set_predict_points(X_pred) pl.plot(gp2.X_pred, gp2.mu_pred, 'g', lw=1.) # PLOT POST-LEARNING COV MATRIX pl.figure(3) pl.imshow(Sig_obs2) pl.colorbar() ```
{ "source": "JohnVCZ/Web-scraper", "score": 3 }
#### File: JohnVCZ/Web-scraper/Web_scraper.py ```python from time import time import requests from bs4 import BeautifulSoup as BS import csv import sys # training website INPUT = "https://volby.cz/pls/ps2017nss/ps3?xjazyk=CZ" def get_districts(web): """ Přijímá webovku a vrátí extrahovaný seznam odkazů na stránky volebních okresů + základní webovku. EG.: Ze stránky Volby.cz vrací [okres_1.cz, okres_2.cz, ... okres_N.cz]. :param web: :return adr_okresu: :return base_adr: """ base_adr = web[0:web.rfind("/")] soup = suck_n_chop(web) tab_lines = [tr.find_all("a") for tr in soup.find_all("tr")] adr_okresu = [base_adr + "/" + group[2]["href"] for group in tab_lines if len(group) != 0 if group[0].text[0:2] == "CZ"] return adr_okresu, base_adr def get_municipalities(web_list, base_adr): """ Přijímá seznam okresních webů + základní webovku a vrací seznam webů obcí. EG.: Z webu brno-venkov.cz vrací [Opatovice.cz, Ostopovice.cz, ...]. :param web_list: :param base_adr: :return adr_obci: """ assert web_list != [], "Problém: seznam adres je prázdný." adr_obci = [] for web in web_list: soup = suck_n_chop(web) tab_lines = [tr.find_all("a") for tr in soup.find_all("tr")] adr_obci = [base_adr + "/" + element["href"] for group in tab_lines if len(group) != 0 for element in group if element.text.isnumeric()] return adr_obci def extract_data(web_list): """ Přijímá cílové webovky (obce), cucá data a vrací je v seznamu. EG.: return [[code, location ...], [62500, Brno ...], ...] :param web_list: :return db: """ assert web_list != [], "Problém: seznam adres je prázdný." db = [(complete_first_line(suck_n_chop(web_list[0])))] for web in web_list: soup = suck_n_chop(web) # získá kód obce code = [] start = web.find("obec=") + 5 i = start while web[i].isnumeric(): code.append(web[i]) i += 1 code = "".join(code) # vytvoří řádek v CSVčku db.append(make_package(soup, code)) return db def complete_first_line(soup): """ Přijímá soap webu, ze které získá jména všech polit. stran a vrátí popisky osy X v CSV tabulce. :param soup: :return first_line: """ first_line = ["code", "location", "registered", "envelopes", "valid"] tabs = soup.find_all("div", {"class": "t2_470"}) par_lines = [tr.find_all("td") for tab in tabs for tr in tab.find_all("tr") if len(tr) == 11] for party in range(len(par_lines)): first_line.append(par_lines[party][1].text) return first_line def make_package(soup, code): """ Získá z poskytnuté polévky informace a vrátí je v balíku - seřazené jako řádek v CSV. Zvenku také získá kód označující obec. :param soup: :param code: :return package: """ # code package = [code] # location for title in soup.find_all("h3"): if title.text[1:6] == "Obec:": package.append(title.text[7:].strip()) # registered tab = soup.find("table") lines = [tr for tr in tab.find_all("tr")] inventory = [td for td in lines[2]] package.append("".join(inventory[7].text.split("\xa0"))) # envelopes package.append("".join(inventory[9].text.split("\xa0"))) # valid package.append("".join(inventory[15].text.split("\xa0"))) # parties tabs = soup.find_all("table") par_lines = [tr.find_all("td") for tab in tabs[1:] for tr in tab.find_all("tr") if len(tr) == 11] for party in range(len(par_lines)): package.append("".join(par_lines[party][2].text.split("\xa0"))) return package def suck_n_chop(web): """ Vyšle požadavek, zkontroluje příjem a vrátí soap. :param web: :return BS(resp.text, "html.parser"): """ resp = requests.get(web) assert resp.status_code == 200, "Problém se spojením: {}".format(resp.status_code) return BS(resp.text, "html.parser") def save_csv(db, file_name): """ Přijíme data o volbách a uloží data do csv souboru s přijatým názvem. :param db: :param file_name: """ with open(file_name + ".csv", "w", newline="") as file: writer = csv.writer(file) writer.writerows(db) def main(CSV_NAME): """ Jedna funkce vládne všem, jedna jim všem káže... - 200 obcí za 20 sec. Všech cca 6300 obcí si žádá cca 13 minut!!! """ # fixtures # web = "https://volby.cz/pls/ps2017nss" # okresy = ["https://volby.cz/pls/ps2017nss/ps32?xjazyk=CZ&xkraj=11&xnumnuts=6203"] # obce = ["https://volby.cz/pls/ps2017nss/ps311?xjazyk=CZ&xkraj=11&xobec=582786&xvyber=6202"] # db = [["name", "age", "sex"], ["Ondrej", "23", "M"], ["Lucie", "21", "F"]] time_1 = time() okresy, web = get_districts(INPUT) print("Nalezeno okresů:", len(okresy)) obce = get_municipalities(okresy, web) print("Nalezeno obcí:", len(obce)) print("Zpracovávám. Čekejte prosím...") db = extract_data(obce) save_csv(db, CSV_NAME) print("Úspěšně dokončeno a uloženo.") time_2 = time() time_total = int(time_2 - time_1) print("TOTAL TIME:", time_total, "secs") if __name__ == "__main__": if len(sys.argv) != 2: print("\nUSAGE: Web_scraper.py OutputFileName\n") else: main(sys.argv[1:2]) ```
{ "source": "john-veillette/mne_ari", "score": 2 }
#### File: mne_ari/ari/ari.py ```python from mne.stats.cluster_level import ( _find_clusters, _setup_adjacency, _reshape_clusters, _cluster_indices_to_mask ) import numpy as np from .parametric import ARI from .permutation import pARI def all_resolutions_inference(X, alpha = .05, tail = 0, ari_type = 'parametric', adjacency = None, n_permutations = 10000, thresholds = None, seed = None, statfun = None, shift = 0): ''' Implements all-resolutions inference as in [1] or [2]. Tries a range of cluster thresholds between chosen alpha and the Bonferroni corrected threshold. You can manually specify thresholds to try if you want Parameters ---------- x: (n_observation, n_times, n_vertices) array for one-sample/paired test or a list of two such arrays for independent sample test alpha: (float) the false discovry control level tail: 1 or 'greater', 0 or 'two-sided', -1 or 'less'; ignored if statfun is provided. adjacency: defines neighbors in the data, as in mne.stats.spatio_temporal_cluster_1samp_test type: (str) 'parametric' to perform ARI as in [1] and 'permutation' as in [2] n_permutations: (int) number of permutations to perform thresholds: (iterable) optional, manually specify cluster inclusion thresholds to search over shift: (float) shift for candidate critical vector family. Corresponds to delta parameter in [2]. If statfun p-values are anti-conservative, increasing this can increase power for detecting larger clusters (at the cost of decreased power for smaller clusters). Therefore, this corresponds to the minimum size cluster we're interested in detecting. Default is 0 (interested in any sized cluster). Only for permutation-based ARI, ignored otherwise. statfun: a custom statistics function to compute p-values. Should take an (n_observations, n_tests) array (or list of such arrays) as input and return an (n_tests,) array of p-values. If this argument is used, the tail argument is ignored. Returns ---------- p_vals: (sample_shape array) the p-values from the mass univariate test true_positive_proportions: (sample_shape array) highest true positive proportion for each coordinate in p_vals across all thresholds. clusters: list of sample_shape boolean masks or empty list clusters in which true positive proportion exceeds 1 - alpha References ---------- [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. All-Resolutions Inference for brain imaging. Neuroimage. 2018 Nov 1;181:786-796. doi: 10.1016/j.neuroimage.2018.07.060 [2] <NAME>, et al. "Permutation-based true discovery proportions for fMRI cluster analysis." arXiv preprint arXiv:2012.00368 (2020). ''' # initialize ARI object, which computes p-value if ari_type == 'parametric': ari = ARI(X, alpha, tail, n_permutations, seed, statfun) elif ari_type == 'permutation': ari = pARI(X, alpha, tail, n_permutations, seed, statfun, shift) else: raise ValueError("type must be 'parametric' or 'permutation'.") p_vals = ari.p_values true_discovery_proportions = np.zeros_like(p_vals) n_times = p_vals.shape[0] n_tests = p_vals.size # setup adjacency structure if needed if adjacency is not None and adjacency is not False: adjacency = _setup_adjacency(adjacency, n_tests, n_times) # handle threshold arguments, construct default if needed if thresholds is None: # search grid up to max p-val thresholds = np.geomspace(alpha, np.min(p_vals), num = 1000) elif thresholds == 'all': thresholds = p_vals.flatten() else: # verify user-input thresholds if not hasattr(thresholds, '__iter__'): thresholds = [thresholds] for thres in thresholds: # make sure cluster thresholds are valid p-values assert(thres >= 0) assert(thres <= 1) for thres in thresholds: if adjacency is None: # use lattice adjacency clusters, _ = _find_clusters(p_vals, thres, -1) else: clusters, _ = _find_clusters(p_vals.flatten(), thres, -1, adjacency) if clusters: # reshape to boolean mask clusters = _cluster_indices_to_mask(clusters, n_tests) clusters = _reshape_clusters(clusters, true_discovery_proportions.shape) for clust in clusters: # compute the true-positive proportion for this cluster tdp = ari.true_discovery_proportion(clust) # update results array if new TPF > old TPF tdp_old = true_discovery_proportions[clust] tdp_new = np.full_like(tdp_old, tdp) tdps = np.stack([tdp_old, tdp_new], axis = 0) true_discovery_proportions[clust] = tdps.max(axis = 0) # get clusters where true discovery proportion exceeds threshold clusters, _ = _find_clusters(true_discovery_proportions.flatten(), 1 - alpha, 1, adjacency) if clusters: clusters = _cluster_indices_to_mask(clusters, n_tests) clusters = _reshape_clusters(clusters, true_discovery_proportions.shape) return p_vals, true_discovery_proportions, clusters ``` #### File: mne_ari/ari/permutation.py ```python from ._permutation import _permutation_1samp, _permutation_ind import numpy as np def _optimize_lambda(p, alpha, delta = 0): ''' finds best lambda parameter given the permutation distribution of p-values based on https://github.com/angeella/pARI/blob/master/src/lambdaCalibrate.cpp but only supports Simes family ''' b = p.shape[1] # number of permutations mm = p.shape[0] # number of tests T = np.empty(b) idV = np.arange(1 + delta, 1 + mm) deltaV = np.full(mm - delta, delta) mV = np.full(mm - delta, mm) ## sort columns of p-vals Y = np.sort(p, axis = 1) # compute lambda for each permutation for bb in range(b): lam = (mV - deltaV) % Y[delta:mm, bb] / ((idV - deltaV) * alpha) T[bb] = np.min(lam) # minimum over hypotheses T = np.sort(T) idx = np.floor(alpha * b).astype(int) return T[idx] def _get_critical_vector(p, alpha, lam, delta = 0): ''' based on https://github.com/angeella/pARI/blob/master/R/criticalVector.R but only support Simes family ''' m = p.shape[0] cc = np.arange(1, m + 1) vf = np.vectorize(lambda x: ((x - delta) * alpha * lam) / (m - delta)) return vf(cc) class pARI: ''' A class that handles permuation-based All-Resolutions Inference as in [1]. [1] Andreella, Angela, et al. "Permutation-based true discovery proportions for fMRI cluster analysis." arXiv preprint arXiv:2012.00368 (2020). ''' def __init__(self, X, alpha, tail = 0, n_permutations = 10000, seed = None, statfun = None, shift = 0): ''' uses permutation distribution to estimate best critical vector ''' if tail == 0 or tail == 'two-sided': self.alternative = 'two-sided' elif tail == 1 or tail == 'greater': self.alternative = 'greater' elif tail == -1 or tail == 'less': self.alternative = 'less' else: raise ValueError('Invalid input value for tail!') self.alpha = alpha assert(shift >= 0) self.delta = shift # same default as pARIBrain, see [1] if type(X) in [list, tuple]: self.sample_shape = X[0][0].shape X = [np.reshape(x, (x.shape[0], -1)) for x in X] # flatten samples p = _permutation_ind(X, n_permutations, self.alternative, seed, statfun) else: self.sample_shape = X[0].shape X = np.reshape(X, (X.shape[0], -1)) # flatten samples p = _permutation_1samp(X, n_permutations, self.alternative, seed, statfun) self.p = p[:, 0] # just the observed values self.lam = _optimize_lambda(p, self.alpha, self.delta) self.crit_vec = _get_critical_vector(p, self.alpha, self.lam, self.delta) def true_discovery_proportion(self, mask): ''' given a boolean mask, gives the true discovery proportion for the specified cluster ''' assert(mask.shape == self.sample_shape) mask = mask.flatten() m = mask.sum() # number of tests in mask p = self.p # observed p-values p_vec = p[mask] # p-values in subset u = np.empty(m) for i in range(m): u[i] = np.sum(p_vec <= self.crit_vec[i]) - i n_discoveries = np.max(u) # a lower bound tdp = n_discoveries / m try: assert(tdp >= 0) assert(tdp <= 1) except: raise Exception("Something weird happened," + " and we got a TDP outside of the range [0, 1]." + " Did you use a custom stat function?" + " Are you sure your p-values make sense?") return tdp @property def p_values(self): return np.reshape(self.p, self.sample_shape) ```
{ "source": "john-veillette/mne-ari", "score": 2 }
#### File: mne-ari/mne_ari/permutation.py ```python from mne.utils import check_random_state from typing import Iterable import numpy as np ''' This module provides mass univariate permutation tests for mutlidimensional arrays. Note that the (univariate, not cluster-based) permutation test provided in MNE as mne.stats.permutation_t_test applies a t-max correction for multiple comparisons to its p-values, making those p-values unsuitable for all-resolutions inference. Hence, we provide our own implementations here. They're not the fastest permutation tests in the world with those for loops, but they're pretty memory efficient since they never hold the full permutation distribution in memory at once. ''' def _compare(obs, perm, tail): if tail == 1: mask = (perm >= obs) elif tail == -1: mask = (perm <= obs) return mask def _permutation_test_1samp(X, n_permutations = 10000, tail = 0, seed = None): rng = check_random_state(seed) greater_ct = np.zeros_like(X[0]) lesser_ct = np.zeros_like(X[0]) obs = X.mean(0) for i in range(n_permutations): flips = rng.choice([-1, 1], size = X.shape[0]) broadcast_shape = [X.shape[0]] + (len(X.shape) - 1)*[1] flips = np.reshape(flips, broadcast_shape) perm_X = flips * X perm_effect = perm_X.mean(0) greater_ct += _compare(obs, perm_effect, 1) lesser_ct += _compare(obs, perm_effect, -1) if tail == 1: p = (greater_ct + 1) / (n_permutations + 1) elif tail == -1: p = (lesser_ct + 1) / (n_permutations + 1) elif tail == 0: p1 = (greater_ct + 1) / (n_permutations + 1) p2 = (lesser_ct + 1) / (n_permutations + 1) p = 2 * np.stack([p1, p2], 0).min(0) else: raise ValueError("Cannot compute p-value with meaningless tail = %d."%tail) return p def _permutation_test_ind(X, n_permutations = 10000, tail = 0, seed = None): rng = check_random_state(seed) n1 = len(X[0]) X = np.concatenate(X, axis = 0) greater_ct = np.zeros_like(X[0]) lesser_ct = np.zeros_like(X[0]) idxs = np.arange(len(X)) obs = X[:n1].mean(0) - X[n1:].mean(0) for i in range(n_permutations): rng.shuffle(idxs) perm_X = X[idxs] perm_effect = perm_X[:n1].mean(0) - perm_X[n1:].mean(0) greater_ct += _compare(obs, perm_effect, 1) lesser_ct += _compare(obs, perm_effect, -1) if tail == 1: p = (greater_ct + 1) / (n_permutations + 1) elif tail == -1: p = (lesser_ct + 1) / (n_permutations + 1) elif tail == 0: p1 = (greater_ct + 1) / (n_permutations + 1) p2 = (lesser_ct + 1) / (n_permutations + 1) p = 2 * np.stack([p1, p2], 0).min(0) else: raise ValueError("Cannot compute p-value with meaningless tail = %d."%tail) return p def permutation_test(X, **kwargs): """ Parameters ---------- X : array, shape (n_samples, n_tests) if one-sample; list of 2 arrays if independent samples Samples (observations) by number of tests (variables). n_permutations : int, Number of permutations. tail : -1 or 0 or 1 (default = 0) If tail is 1, the alternative hypothesis is that the mean of the data is greater than 0 (upper tailed test). If tail is 0, the alternative hypothesis is that the mean of the data is different than 0 (two tailed test). If tail is -1, the alternative hypothesis is that the mean of the data is less than 0 (lower tailed test). """ if isinstance(X, list) or isinstance(X, tuple): assert(len(X) == 2) assert(X[0].shape[1:] == X[1].shape[1:]) return _permutation_test_ind(X, **kwargs) else: return _permutation_test_1samp(X, **kwargs) ```
{ "source": "john-veillette/PsychRNN", "score": 2 }
#### File: PsychRNN/docs/conf.py ```python project = 'PsychRNN' copyright = '2020, <NAME>*, <NAME>*, <NAME>, <NAME>, <NAME> (* indicates equal contribution)' author = '<NAME>*, <NAME>*, <NAME>, <NAME>, <NAME> (* indicates equal contribution)' exec(open("../psychrnn/_version.py", "r").read()) # get __version__ variable # The short X.Y version version = ".".join(__version__.split(".")[0:-1]) # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.imgmath', 'sphinx.ext.viewcode', 'nbsphinx', 'sphinx.ext.mathjax', 'sphinx_copybutton', "sphinx_rtd_theme", 'sphinxcontrib.napoleon', 'autodocsumm', ] #include autosummary by defualt autodoc_default_options = { 'autosummary': True, } autodata_content = 'both' autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The master toctree document. master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', 'notebooks/.ipynb_checkpoints'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} html_sidebars = { '**': ['customtoc.html', 'localtoc.html','relations.html', 'searchbox.html', 'sourcelink.html'], } nbsphinx_prolog = r""" {% set docname = 'docs/' + env.doc2path(env.docname, base=None) %} .. raw:: html <div class="admonition note"> This page was generated from <a class="reference external" href="https://github.com/murraylab/PsychRNN/blob/v{{ env.config.release|e }}/{{ docname|e }}">{{ docname|e }}</a>. Interactive online version: <a href="https://colab.research.google.com/github/murraylab/PsychRNN/blob/v{{ env.config.release|e }}/{{ docname|e }}"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>. <script> if (document.location.host) { $(document.currentScript).replaceWith( '<a class="reference external" ' + 'href="https://nbviewer.jupyter.org/url' + (window.location.protocol == 'https:' ? 's/' : '/') + window.location.host + window.location.pathname.slice(0, -4) + 'ipynb">View in <em>nbviewer</em></a>.' ); } </script> </div> """ # Taken from https://stackoverflow.com/questions/8821511/substitutions-in-sphinx-code-blocks def ultimateReplace(app, docname, source): result = source[0] for key in app.config.ultimate_replacements: result = result.replace(key, app.config.ultimate_replacements[key]) source[0] = result ultimate_replacements = { "{release}" : release } def setup(app): app.add_config_value('ultimate_replacements', {}, True) app.connect('source-read', ultimateReplace) # Napoleon settings napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_init_with_doc = False napoleon_include_private_with_doc = False napoleon_include_special_with_doc = False napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = False napoleon_use_rtype = True napoleon_use_keyword = False napoleon_custom_sections = None ``` #### File: psychrnn/backend/curriculum.py ```python from __future__ import division from __future__ import print_function from os import makedirs, path import numpy as np def default_metric(curriculum_params, input_data, correct_output, output_mask, output, epoch, losses, verbosity): """ Default metric to use to evaluate performance when using Curriculum learning. Advance is true if accuracy >= threshold, False otherwise. Arguments: curriculum_params (dict): Dictionary of the :class:`Curriculum` object parameters, containing the following keys: :Dictionary Keys: * **stop_training** (*bool*) -- True if the network has finished training and completed all stages. * **stage** (*int*) -- Current training stage (initial stage is 0). * **metric_values** (*list of [float, int]*) -- List of metric values and the stage at which each metric value was computed. * **tasks** (*list of :class:`psychrnn.tasks.task.Task` objects*) -- List of tasks in the curriculum. * **metric** (*function*) -- What metric function to use. :func:`default_metric` is an example of one in terms of inputs and outputs taken. * **accuracies** (*list of functions with the signature of* :func:`psychrnn.tasks.task.Task.accuracy_function`) -- Accuracy function to use at each stage. * **thresholds** (*list of float*) -- Thresholds for each stage that accuracy must reach to move to the next stage. * **metric_epoch** (*int*) -- Calculate the metric / test if advance to the next stage every metric_epoch training epochs. * **output_file** (*str*) -- Optional path for where to save out metric value and stage. input_data (ndarray(dtype=float, shape =(:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` ))): Task inputs. correct_output (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): Correct (target) task output given input_data. output_mask (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored. output (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): The network's output given input_data. epoch (*int*): The epoch number in training. losses (*list of float*): List of losses, computed during training. verbosity (*bool*): Whether to print information as training progresses. If True, prints accuracy every time it is computed. Returns: tuple: * **advance** (*bool*) -- True if the accuracy is >= the threshold for the current stage. False otherwise. * **metric_value** (*float*) -- Value of the computed accuracy. """ accuracy = curriculum_params['accuracies'][curriculum_params['stage']](correct_output,output, output_mask) threshold = curriculum_params['thresholds'][curriculum_params['stage']] if verbosity: print("Accuracy: " + str(accuracy)) return accuracy>=threshold, accuracy class Curriculum(object): """ Curriculum object. Allows training on a sequence of tasks when Curriculum is passed into :func:`~psychrnn.backend.rnn.RNN.train`. Arguments: tasks (list of :class:`~psychrnn.tasks.task.Task` objects): List of tasks to use in the curriculum. metric (function, optional): Function for calculating whether the stage advances and what the metric value is at each metric_epoch. Default: :func:`default_metric`. :Arguments: * **curriculum_params** (*dict*) -- Dictionary of the :class:`Curriculum` object parameters, containing the following keys: :Dictionary Keys: * **stop_training** (*bool*) -- True if the network has finished training and completed all stages. * **stage** (*int*) -- Current training stage (initial stage is 0). * **metric_values** (*list of [float, int]*) -- List of metric values and the stage at which each metric value was computed. * **tasks** (*list of :class:`psychrnn.tasks.task.Task` objects*) -- List of tasks in the curriculum. * **metric** (*function*) -- What metric function to use. :func:`default_metric` is an example of one in terms of inputs and outputs taken. * **accuracies** (*list of functions*) -- Accuracy function to use at each stage. * **thresholds** (*list of float*) -- Thresholds for each stage that accuracy must reach to move to the next stage. * **metric_epoch** (*int*) -- Calculate the metric and test if the model should advance to the next stage every :data:`metric_epoch` training epochs. * **output_file** (*str*) -- Optional path for saving out themetric value and stage. If the .npz filename extension is not included, it will be appended. * **input_data** (*ndarray(dtype=float, shape =(*:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` *))*) -- Task inputs. * **correct_output** (*ndarray(dtype=float, shape = (*:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` *))*) -- Correct (target) task output given input_data. * **output_mask** (*ndarray(dtype=float, shape = (*:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` *))*) -- Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored. * **output** (*ndarray(dtype=float, shape = (*:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` *))*) -- The network's output given input_data. * **epoch** (*int*) -- The epoch number in training. * **losses** (*list of float*) -- List of losses, computed during training. * **verbosity** (*bool*) -- Whether to print information as training progresses. :Returns: *tuple* * **advance** (*bool*) -- True if the the stage should be advanced. False otherwise. * **metric_value** (*float*) -- Value of the computed metric. accuracies (list of functions, optional): Optional list of functions to use to calculate network performance for the purposes of advancing tasks. Used by :func:`default_metric` to compute accuracy. Default: ``[tasks[i].accuracy_function for i in range(len(tasks))]``. thresholds (list of float, optional): Optional list of thresholds. If metric = default_metric, accuracies must reach the threshold for a given stage in order to advance to the next stage. Default: ``[.9 for i in range(len(tasks))]`` metric_epoch (int): Calculate the metric and test if the model should advance to the next stage every :data:`metric_epoch` training epochs. Default: 10 output_file (str): Optional path for saving out the metric value and stage. If the .npz filename extension is not included, it will be appended. Default: None. """ def __init__(self, tasks, **kwargs): self.stop_training = False self.stage = 0 self.metric_values = [] # List of tasks that make up the curriculum self.tasks = tasks #Optional function with parameters as in default_metric that returns whether to advance stage, and the accuracy / metric value self.metric = kwargs.get('metric', default_metric) #Optional list of accuracy functions to use for each task self.accuracies = kwargs.get('accuracies', [tasks[i].accuracy_function for i in range(len(tasks))]) assert len(self.accuracies)==len(self.tasks) # Optional list of accuracy cuttoff values to use with each tasks self.thresholds = kwargs.get('thresholds', [.9 for i in range(len(tasks))]) assert len(self.thresholds)==len(self.tasks) # How often to check metric? self.metric_epoch = kwargs.get('metric_epoch', 10) # Optional path to save out metric value and stage to self.output_file = kwargs.get('output_file', None) if self.output_file is not None: if path.dirname(self.output_file) != "" and not path.exists(path.dirname(self.output_file)): makedirs(path.dirname(self.output_file)) def metric_test(self, input_data, correct_output, output_mask, test_output, epoch, losses, verbosity = False): """Evaluates whether to advance the stage to the next task or not. Arguments: input_data (ndarray(dtype=float, shape =(:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` ))): Task inputs. correct_output (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): Correct (target) task output given input_data. output_mask (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored. test_output (ndarray(dtype=float, shape = (:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out`))): The network's output given input_data. epoch (*int*): The epoch number in training. losses (*list of float*): List of losses, computed during training. verbosity (*bool, optional*): Whether to print information as metric is computed and stages advanced. Default: False Returns: True if stage advances, False otherwise. """ advance, metric_value = self.metric(self.__dict__, input_data, correct_output, output_mask, test_output, epoch, losses, verbosity) self.metric_values.append([metric_value, self.stage]) if advance: self.stage+=1 if self.stage == len(self.tasks): self.stop_training = True if self.output_file is not None: np.save(self.output_file, self.metric_values) if verbosity: print("Metric values saved in file: %s" % self.output_file) if verbosity: print("Stage " + str(self.stage)) return True return False def get_generator_function(self): """ Return the generator function for the current task. Returns: :func:`psychrnn.tasks.task.Task.batch_generator` function: Task batch generator for the task at the current stage. """ return self.tasks[self.stage].batch_generator() ``` #### File: psychrnn/tasks/delayed_discrim.py ```python from __future__ import division from psychrnn.tasks.task import Task import numpy as np class DelayedDiscrimination(Task): """Delayed discrimination task. Following a fore period, the network receives an input, followed by a delay. After the delay the network receives a second input. The second input channel receives noisy input that is inversely ordered compared to the input received by the first input channel. The network must respond by activating the output node that corresponds to the input channel with the greater input as the first stimulus. Takes two channels of noisy input (:attr:`N_in` = 2). Two channel output (:attr:`N_out` = 2) with a one hot encoding (high value is 1, low value is .2). Loosely based on `<NAME>., <NAME>., <NAME>., & <NAME>. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470. <https://www.nature.com/articles/20939>`_ Args: dt (float): The simulation timestep. tau (float): The intrinsic time constant of neural state decay. T (float): The trial length. N_batch (int): The number of trials per training update. onset_time (float, optional): Stimulus onset time in terms of trial length :data:`T`. stim_duration_1 (float, optional): Stimulus 1 duration in terms of trial length :data:`T`. delay_duration (float, optional): Delay duration in terms of trial length :data:`T`. stim_duration_2 (float, optional): Stimulus 2 duration in terms of trial length :data:`T`. decision_duration (float, optional): Decision duration in terms of trial length :data:`T`. """ def __init__(self, dt, tau, T, N_batch, onset_time = None, stim_duration_1 = None, delay_duration = None, stim_duration_2 = None, decision_duration = None): super(DelayedDiscrimination,self).__init__(2, 2, dt, tau, T, N_batch) self.onset_time = onset_time self.stim_duration_1 = stim_duration_1 self.delay_duration = delay_duration self.stim_duration_2 = stim_duration_2 self.decision_duration = decision_duration self.frequency_pairs = [(18, 10), (22, 14), (26, 18), (30, 22), (34, 26)] # frequency pairs to select from self.decision_options = ['>', '<'] # decision options to select from self.lo = 0.2 # Low value for one hot encoding self.hi = 1.0 # High value for one hot encoding def _scale_p(self, f): """Scale frequency to be between .4 and 1.2.""" return 0.4 + 0.8 * (f - 10) / (34 - 10) def _scale_n(self, f): """ Scale frequency to be between .4 and 1.2, invert frequency ordering.""" return 0.4 + 0.8 * (34 - f) / (34 - 10) def generate_trial_params(self, batch, trial): """Define parameters for each trial. Implements :func:`~psychrnn.tasks.task.Task.generate_trial_params`. Args: batch (int): The batch number that this trial is part of. trial (int): The trial number of the trial within the batch *batch*. Returns: dict: Dictionary of trial parameters including the following keys: :Dictionary Keys: * **stimulus_1** (*float*) -- Start time for stimulus one. :data:`onset_time`. * **delay** (*float*) -- Start time for the delay. :data:`onset_time` + :data:`stimulus_duration_1`. * **stimulus_2** (*float*) -- Start time in for stimulus one. :data:`onset_time` + :data:`stimulus_duration_1` + :data:`delay_duration`. * **decision** (*float*) -- Start time in for decision period. :data:`onset_time` + :data:`stimulus_duration_1` + :data:`delay_duration` + :data:`stimulus_duration_2`. * **end** (*float*) -- End of decision period. :data:`onset_time` + :data:`stimulus_duration_1` + :data:`delay_duration` + :data:`stimulus_duration_2` + :data:`decision_duration`. * **stim_noise** (*float*) -- Scales the stimlus noise. Set to .1. * **f1** (*int*) -- Frequency of first stimulus. * **f2** (*int*) -- Frequency of second stimulus. * **choice** (*str*) -- Indicates whether :data:`f1` is '>' or '<' :data:`f2`. """ params = dict() if self.onset_time is None: onset_time = np.random.uniform(0, 1) * self.T / 8.0 else: onset_time = self.onset_time if self.stim_duration_1 is None: stim_duration_1 = np.random.uniform(0, 1) * self.T / 4.0 else: stim_duration_1 = self.stim_duration_1 if self.delay_duration is None: delay_duration = np.random.uniform(0, 1) * self.T / 4.0 else: delay_duration = self.delay_duration if self.stim_duration_2 is None: stim_duration_2 = np.random.uniform(0, 1) * self.T / 4.0 else: stim_duration_2 = self.stim_duration_2 if self.decision_duration is None: decision_duration = np.random.uniform(0, 1) * self.T / 8.0 else: decision_duration = self.decision_duration params['stimulus_1'] = onset_time params['delay'] = onset_time + stim_duration_1 params['stimulus_2'] = onset_time + stim_duration_1 + delay_duration params['decision'] = onset_time + stim_duration_1 + delay_duration + stim_duration_2 params['end'] = onset_time + stim_duration_1 + delay_duration + stim_duration_2 + decision_duration params['stim_noise'] = 0.1 fpair = self.frequency_pairs[np.random.choice(len(self.frequency_pairs))] gt_lt = np.random.choice(self.decision_options) if gt_lt == '>': f1, f2 = fpair choice = 0 else: f2, f1 = fpair choice = 1 params['f1'] = f1 params['f2'] = f2 params['choice'] = choice return params def trial_function(self, t, params): """Compute the trial properties at :data:`time`. Implements :func:`~psychrnn.tasks.task.Task.trial_function`. Based on the :data:`params` compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at :data:`time`. Args: time (int): The time within the trial (0 <= :data:`time` < :attr:`T`). params (dict): The trial params produced by :func:`generate_trial_params`. Returns: tuple: * **x_t** (*ndarray(dtype=float, shape=(*:attr:`N_in` *,))*) -- Trial input at :data:`time` given :data:`params`. First channel contains :data:`f1` during the first stimulus period, and :data:`f2` during the second stimulus period, scaled to be between .4 and 1.2. Second channel contains the frequencies but reverse scaled -- high frequencies correspond to low values and vice versa. Both channels have baseline noise. * **y_t** (*ndarray(dtype=float, shape=(*:attr:`N_out` *,))*) -- Correct trial output at :data:`time` given :data:`params`. The correct output is encoded using one-hot encoding during the decision period. * **mask_t** (*ndarray(dtype=bool, shape=(*:attr:`N_out` *,))*) -- True if the network should train to match the y_t, False if the network should ignore y_t when training. The mask is True for during the decision period and False otherwise. """ # ---------------------------------- # Initialize with noise # ---------------------------------- x_t = np.sqrt(2*.01*np.sqrt(10)*np.sqrt(self.dt)*params['stim_noise']*params['stim_noise'])*np.random.randn(self.N_in) y_t = np.zeros(self.N_out) mask_t = np.zeros(self.N_out) # ---------------------------------- # Retrieve parameters # ---------------------------------- stimulus_1 = params['stimulus_1'] delay = params['delay'] stimulus_2 = params['stimulus_2'] decision = params['decision'] end = params['end'] f1 = params['f1'] f2 = params['f2'] choice = params['choice'] # ---------------------------------- # Compute values # ---------------------------------- if stimulus_1 <= t < delay: x_t[0] += self._scale_p(f1) x_t[1] += self._scale_n(f1) if stimulus_2 <= t < decision: x_t[0] += self._scale_p(f2) x_t[1] += self._scale_n(f2) if decision <= t < end: y_t[choice] = self.hi y_t[1-choice] = self.lo mask_t = np.ones(self.N_out) return x_t, y_t, mask_t def accuracy_function(self, correct_output, test_output, output_mask): """Calculates the accuracy of :data:`test_output`. Implements :func:`~psychrnn.tasks.task.Task.accuracy_function`. Takes the channel-wise mean of the masked output for each trial. Whichever channel has a greater mean is considered to be the network's "choice". Returns: float: 0 <= accuracy <= 1. Accuracy is equal to the ratio of trials in which the network made the correct choice as defined above. """ chosen = np.argmax(np.mean(test_output*output_mask, axis=1), axis = 1) truth = np.argmax(np.mean(correct_output*output_mask, axis = 1), axis = 1) return np.mean(np.equal(truth, chosen)) ``` #### File: psychrnn/tasks/match_to_category.py ```python from __future__ import division from psychrnn.tasks.task import Task import numpy as np class MatchToCategory(Task): """ Multidirectional decision-making task. On each trial the network receives input from units representing different locations on a ring. Each input unit magnitude represents closeness to the angle of input. The network must determine which side of arbitrary category boundaries the input belongs to and respond accordingly. Takes :attr:`N_in` channels of noisy input arranged in a ring with gaussian signal around the ring centered at 0 at the stimulus angle. :attr:`N_out` channel output arranged as slices of a ring with a one hot encoding towards the correct category output based on the angular location of the gaussian input bump. Loosely based on `Freedman, <NAME>., and <NAME>. "Experience-dependent representation of visual categories in parietal cortex." Nature 443.7107 (2006): 85-88. <https://www.nature.com/articles/nature05078>`_ Args: dt (float): The simulation timestep. tau (float): The intrinsic time constant of neural state decay. T (float): The trial length. N_batch (int): The number of trials per training update. N_in (int, optional): The number of network inputs. Defaults to 16. N_out (int, optional): The number of network outputs. Defaults to 2. """ def __init__(self, dt, tau, T, N_batch, N_in=16, N_out=2): super(MatchToCategory,self).__init__(N_in, N_out, dt, tau, T, N_batch) def _gaussian_input(self,angle, scale = 1): """ Calculates angular gaussian pdf with mean at the :data:`angle` for N_in evenly arranged around the circumference of a unit circle. Args: angle (float): The angle on the input circle at which to center the gaussian. scale (float, optional): The scale of the gaussian function. Defaults to 1. Returns: ndarray(dtype=float, shape=(:attr:`N_in`,)): Normal pdf value at (angle - angle of N_in channel). """ g = np.zeros(self.N_in) map_g = np.linspace(0,2*np.pi,self.N_in) for ii in range(self.N_in): # Center N_in around angle, and truncate so -pi <= effective angle <= pi effective_angle = map_g[ii] - angle if effective_angle > np.pi: effective_angle = -2*np.pi + effective_angle elif effective_angle < -np.pi: effective_angle = 2*np.pi + effective_angle x = effective_angle/scale g[ii] = np.exp(-x**2/2.0) / (np.sqrt(2*np.pi)*scale) return g def generate_trial_params(self, batch, trial): """Define parameters for each trial. Implements :func:`~psychrnn.tasks.task.Task.generate_trial_params`. Args: batch (int): The batch number that this trial is part of. trial (int): The trial number of the trial within the batch *batch*. Returns: dict: Dictionary of trial parameters including the following keys: :Dictionary Keys: * **angle** (*float*) -- Angle at which to center the gaussian. Randomly selected. * **category** (*int*) -- Index of the N_out category channel that contains the :data:`angle`. * **onset_time** (*float*) -- Stimulus onset time. Set to 200. * **input_dur** (*float*) -- Stimulus duration. Set to 1000. * **output_dur** (*float*) -- Output duration. The time given to make a choice. Set to 800. * **stim_noise** (*float*) -- Scales the stimlus noise. Set to .1. """ params = dict() params['angle'] = 2*np.pi*np.random.rand() params['category'] = int(params['angle']/(2*np.pi/self.N_out)) params['onset_time'] = 200 params['input_dur'] = 1000. params['output_dur'] = 800. params['stim_noise'] = .1 return params def trial_function(self, t, params): """Compute the trial properties at :data:`time`. Implements :func:`~psychrnn.tasks.task.Task.trial_function`. Based on the :data:`params` compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at :data:`time`. Args: time (int): The time within the trial (0 <= :data:`time` < :attr:`T`). params (dict): The trial params produced by :func:`generate_trial_params`. Returns: tuple: * **x_t** (*ndarray(dtype=float, shape=(*:attr:`N_in` *,))*) -- Trial input at :data:`time` given :data:`params`. For ``params['onset_time'] < time < params['onset_time'] + params['input_dur']`` , gaussian pdf with mean = angle and scale = 1 is added to each input channel based on the channel's angle. * **y_t** (*ndarray(dtype=float, shape=(*:attr:`N_out` *,))*) -- Correct trial output at :data:`time` given :data:`params`. 1 in the :data:`params['category']` output channel during the output period defined by :data:`params['output_dur']`, 0 otherwise. * **mask_t** (*ndarray(dtype=bool, shape=(*:attr:`N_out` *,))*) -- True if the network should train to match the y_t, False if the network should ignore y_t when training. True during the output period, False otherwise. """ # ---------------------------------- # Initialize with noise # ---------------------------------- x_t = (1./(2*self.dt))*params['stim_noise']*np.random.randn(self.N_in) y_t = np.zeros(self.N_out) mask_t = np.zeros(self.N_out) # ---------------------------------- # Retrieve parameters # ---------------------------------- onset_time = params['onset_time'] input_dur = params['input_dur'] output_dur = params['output_dur'] angle = params['angle'] category = params['category'] if onset_time <= t < onset_time + input_dur: x_t += self._gaussian_input(angle) if onset_time + input_dur <= t < onset_time + input_dur + output_dur: y_t[category] += 1. mask_t = np.ones(self.N_out) return x_t, y_t, mask_t def accuracy_function(self, correct_output, test_output, output_mask): """Calculates the accuracy of :data:`test_output`. Implements :func:`~psychrnn.tasks.task.Task.accuracy_function`. Takes the channel-wise mean of the masked output for each trial. Whichever channel has a greater mean is considered to be the network's "choice". Returns: float: 0 <= accuracy <= 1. Accuracy is equal to the ratio of trials in which the network made the correct choice as defined above. """ chosen = np.argmax(np.mean(test_output*output_mask, axis=1), axis = 1) truth = np.argmax(np.mean(correct_output*output_mask, axis = 1), axis = 1) return np.mean(np.equal(truth, chosen)) ``` #### File: test/backend/test_loss_functions.py ```python import pytest import tensorflow as tf from psychrnn.backend.rnn import RNN from pytest_mock import mocker import sys if sys.version_info[0] == 2: from mock import patch else: from unittest.mock import patch # clears tf graph after each test. @pytest.fixture() def tf_graph(): yield tf.compat.v1.reset_default_graph() def get_params(): params = {} params['name'] = "test" params['N_in'] = 2 params['N_rec'] = 50 params['N_out'] = 2 params['N_steps'] = 200 params['dt'] = 10 params['tau'] = 100 params['N_batch'] = 50 return params def mean_squared_error(predictions, y, output_mask): """ Mean squared error. ``loss = mean(square(output_mask * (predictions - y)))`` Args: predictions (*tf.Tensor(dtype=float, shape =(*:attr:`N_batch`, :attr:`N_steps`, :attr:`N_out` *))*): Network output. y (*tf.Tensor(dtype=float, shape =(*?, :attr:`N_steps`, :attr:`N_out` *))*): Target output. output_mask (*tf.Tensor(dtype=float, shape =(*?, :attr:`N_steps`, :attr:`N_out` *))*): Output mask for :attr:`N_batch` trials. True when the network should aim to match the target output, False when the target output can be ignored. Returns: tf.Tensor(dtype=float): Mean squared error. """ return tf.reduce_mean(input_tensor=tf.square(output_mask * (predictions - y))) @patch.object(RNN, '__abstractmethods__', set()) def test_custom_loss(tf_graph, mocker): params = get_params() params['loss_function'] = 'my_mean_squared_error' rnn = RNN(params) mocker.patch.object(RNN, 'forward_pass') RNN.forward_pass.return_value = tf.fill([params['N_batch'], params['N_steps'], params['N_out']], float('nan')), tf.fill([params['N_batch'], params['N_steps'], params['N_rec']], float('nan')) with pytest.raises(UserWarning) as excinfo: rnn.build() assert 'my_mean_squared_error' in str(excinfo.value) rnn.destruct() params['my_mean_squared_error'] = mean_squared_error rnn = RNN(params) mocker.patch.object(RNN, 'forward_pass') RNN.forward_pass.return_value = tf.fill([params['N_batch'], params['N_steps'], params['N_out']], float('nan')), tf.fill([params['N_batch'], params['N_steps'], params['N_rec']], float('nan')) rnn.build() ```
{ "source": "john-veillette/pymc-learn", "score": 2 }
#### File: pmlearn/gaussian_process/gpr.py ```python import numpy as np import pymc3 as pm import theano from ..exceptions import NotFittedError from ..base import BayesianModel, BayesianRegressorMixin from .kernels import RBF class GaussianProcessRegressorMixin(BayesianRegressorMixin): """Mixin class for Gaussian Process Regression """ def predict(self, X, return_std=False): """ Perform Prediction Predicts values of new data with a trained Gaussian Process Regression model Parameters ---------- X : numpy array, shape [n_samples, n_features] return_std : Boolean Whether to return standard deviations with mean values. Defaults to False. """ if self.trace is None: raise NotFittedError('Run fit on the model before predict.') num_samples = X.shape[0] if self.cached_model is None: self.cached_model = self.create_model() self._set_shared_vars({'model_input': X, 'model_output': np.zeros(num_samples)}) with self.cached_model: f_pred = self.gp.conditional("f_pred", X) self.ppc = pm.sample_ppc(self.trace, vars=[f_pred], samples=2000) if return_std: return self.ppc['f_pred'].mean(axis=0), \ self.ppc['f_pred'].std(axis=0) else: return self.ppc['f_pred'].mean(axis=0) class GaussianProcessRegressor(BayesianModel, GaussianProcessRegressorMixin): """ Gaussian Process Regression built using PyMC3. Fit a Gaussian process model and estimate model parameters using MCMC algorithms or Variational Inference algorithms Parameters ---------- prior_mean : mean object The mean specifying the mean function of the GP. If None is passed, the mean "pm.gp.mean.Zero()" is used as default. kernel : covariance function (kernel) The function specifying the covariance of the GP. If None is passed, the kernel "RBF()" is used as default. Examples -------- >>> from sklearn.datasets import make_friedman2 >>> from pmlearn.gaussian_process import GaussianProcessRegressor >>> from pmlearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) >>> gpr.score(X, y) # doctest: +ELLIPSIS 0.3680... >>> gpr.predict(X[:2,:], return_std=True) # doctest: +ELLIPSIS (array([653.0..., 592.1...]), array([316.6..., 316.6...])) Reference ---------- <NAME> Williams (2006). Gaussian Processes for Machine Learning. """ def __init__(self, prior_mean=None, kernel=None): self.ppc = None self.gp = None self.num_training_samples = None self.num_pred = None self.prior_mean = prior_mean self.kernel = kernel super(GaussianProcessRegressor, self).__init__() def create_model(self): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ---------- model: the PyMC3 model. """ model_input = theano.shared(np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared(np.zeros(self.num_training_samples)) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, } model = pm.Model() with model: length_scale = pm.Gamma('length_scale', alpha=2, beta=1, shape=(1, self.num_pred)) signal_variance = pm.HalfCauchy('signal_variance', beta=5, shape=1) noise_variance = pm.HalfCauchy('noise_variance', beta=5, shape=1) if self.kernel is None: cov_function = signal_variance ** 2 * RBF( input_dim=self.num_pred, ls=length_scale) else: cov_function = self.kernel if self.prior_mean is None: mean_function = pm.gp.mean.Zero() else: mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.Latent(mean_func=mean_function, cov_func=cov_function) f = self.gp.prior('f', X=model_input.get_value()) y = pm.Normal('y', mu=f, sd=noise_variance, observed=model_output) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(GaussianProcessRegressor, self).save(file_prefix, params) def load(self, file_prefix): params = super(GaussianProcessRegressor, self).load( file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] class StudentsTProcessRegressor(BayesianModel, GaussianProcessRegressorMixin): """ StudentsT Process Regression built using PyMC3. Fit a StudentsT process model and estimate model parameters using MCMC algorithms or Variational Inference algorithms Parameters ---------- prior_mean : mean object The mean specifying the mean function of the StudentsT process. If None is passed, the mean "pm.gp.mean.Zero()" is used as default. Examples -------- >>> from sklearn.datasets import make_friedman2 >>> from pmlearn.gaussian_process import StudentsTProcessRegressor >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> spr = StudentsTProcessRegressor(kernel=kernel).fit(X, y) >>> spr.score(X, y) # doctest: +ELLIPSIS 0.3680... >>> spr.predict(X[:2,:], return_std=True) # doctest: +ELLIPSIS (array([653.0..., 592.1...]), array([316.6..., 316.6...])) Reference ---------- Rasmussen and Williams (2006). Gaussian Processes for Machine Learning. """ def __init__(self, prior_mean=None, kernel=None): self.ppc = None self.gp = None self.num_training_samples = None self.num_pred = None self.prior_mean = prior_mean self.kernel = kernel super(StudentsTProcessRegressor, self).__init__() def create_model(self): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ---------- model : the PyMC3 model """ model_input = theano.shared(np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared(np.zeros(self.num_training_samples)) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, } self.gp = None model = pm.Model() with model: length_scale = pm.Gamma('length_scale', alpha=2, beta=0.5, shape=(1, self.num_pred)) signal_variance = pm.HalfCauchy('signal_variance', beta=2, shape=1) noise_variance = pm.HalfCauchy('noise_variance', beta=2, shape=1) degrees_of_freedom = pm.Gamma('degrees_of_freedom', alpha=2, beta=0.1, shape=1) if self.kernel is None: cov_function = signal_variance ** 2 * RBF( input_dim=self.num_pred, ls=length_scale) else: cov_function = self.kernel if self.prior_mean is None: mean_function = pm.gp.mean.Zero() else: mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.Latent(mean_func=mean_function, cov_func=cov_function) f = self.gp.prior('f', X=model_input.get_value()) y = pm.StudentT('y', mu=f, lam=1 / signal_variance, nu=degrees_of_freedom, observed=model_output) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(StudentsTProcessRegressor, self).save(file_prefix, params) def load(self, file_prefix): params = super(StudentsTProcessRegressor, self).load( file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] class SparseGaussianProcessRegressor(BayesianModel, GaussianProcessRegressorMixin): """ Sparse Gaussian Process Regression built using PyMC3. Fit a Sparse Gaussian process model and estimate model parameters using MCMC algorithms or Variational Inference algorithms Parameters ---------- prior_mean : mean object The mean specifying the mean function of the GP. If None is passed, the mean "pm.gp.mean.Zero()" is used as default. Examples -------- >>> from sklearn.datasets import make_friedman2 >>> from pmlearn.gaussian_process import SparseGaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> sgpr = SparseGaussianProcessRegressor(kernel=kernel).fit(X, y) >>> sgpr.score(X, y) # doctest: +ELLIPSIS 0.3680... >>> sgpr.predict(X[:2,:], return_std=True) # doctest: +ELLIPSIS (array([653.0..., 592.1...]), array([316.6..., 316.6...])) Reference ---------- <NAME> Williams (2006). Gaussian Processes for Machine Learning. """ def __init__(self, prior_mean=None, kernel=None): self.ppc = None self.gp = None self.num_training_samples = None self.num_pred = None self.prior_mean = prior_mean self.kernel = kernel super(SparseGaussianProcessRegressor, self).__init__() def create_model(self): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ---------- model : the PyMC3 model """ model_input = theano.shared(np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared(np.zeros(self.num_training_samples)) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, } self.gp = None model = pm.Model() with model: length_scale = pm.Gamma('length_scale', alpha=2, beta=1, shape=(1, self.num_pred)) signal_variance = pm.HalfCauchy('signal_variance', beta=5, shape=1) noise_variance = pm.HalfCauchy('noise_variance', beta=5, shape=1) if self.kernel is None: cov_function = signal_variance ** 2 * RBF( input_dim=self.num_pred, ls=length_scale) else: cov_function = self.kernel if self.prior_mean is None: mean_function = pm.gp.mean.Zero() else: mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.MarginalSparse(mean_func=mean_function, cov_func=cov_function, approx="FITC") # initialize 20 inducing points with K-means # gp.util Xu = pm.gp.util.kmeans_inducing_points(20, X=model_input.get_value()) y = self.gp.marginal_likelihood('y', X=model_input.get_value(), Xu=Xu, y=model_output.get_value(), sigma=noise_variance) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(SparseGaussianProcessRegressor, self).save(file_prefix, params) def load(self, file_prefix): params = super(SparseGaussianProcessRegressor, self).load( file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] ``` #### File: pmlearn/linear_model/logistic.py ```python import numpy as np import pymc3 as pm import theano import theano.tensor as tt from .base import BayesianModel from .base import BayesianLinearClassifierMixin class LogisticRegression(BayesianModel, BayesianLinearClassifierMixin): """Bayesian Logistic Regression built using PyMC3 """ def __init__(self): super(LogisticRegression, self).__init__() self.num_cats = None def create_model(self): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ---------- the PyMC3 model """ model_input = theano.shared( np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared( np.zeros(self.num_training_samples, dtype='int')) model_cats = theano.shared( np.zeros(self.num_training_samples, dtype='int')) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, 'model_cats': model_cats } model = pm.Model() with model: alpha = pm.Normal('alpha', mu=0, sd=100, shape=(self.num_cats,)) betas = pm.Normal('beta', mu=0, sd=100, shape=(self.num_cats, self.num_pred)) c = model_cats linear_function = alpha[c] + tt.sum(betas[c] * model_input, 1) p = pm.invlogit(linear_function) y = pm.Bernoulli('y', p, observed=model_output) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_cats': self.num_cats, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(LogisticRegression, self).save(file_prefix, params) def load(self, file_prefix): params = super(LogisticRegression, self).load( file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_cats = params['num_cats'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] class HierarchicalLogisticRegression(BayesianModel, BayesianLinearClassifierMixin): """ Custom Hierachical Logistic Regression built using PyMC3. """ def __init__(self): super(HierarchicalLogisticRegression, self).__init__() self.num_cats = None def create_model(self): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ---------- the PyMC3 model """ model_input = theano.shared( np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared( np.zeros(self.num_training_samples, dtype='int')) model_cats = theano.shared( np.zeros(self.num_training_samples, dtype='int')) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, 'model_cats': model_cats } model = pm.Model() with model: mu_alpha = pm.Normal('mu_alpha', mu=0, sd=100) sigma_alpha = pm.HalfNormal('sigma_alpha', sd=100) mu_beta = pm.Normal('mu_beta', mu=0, sd=100) sigma_beta = pm.HalfNormal('sigma_beta', sd=100) alpha = pm.Normal('alpha', mu=mu_alpha, sd=sigma_alpha, shape=(self.num_cats,)) betas = pm.Normal('beta', mu=mu_beta, sd=sigma_beta, shape=(self.num_cats, self.num_pred)) c = model_cats linear_function = alpha[c] + tt.sum(betas[c] * model_input, 1) p = pm.invlogit(linear_function) y = pm.Bernoulli('y', p, observed=model_output) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_cats': self.num_cats, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(HierarchicalLogisticRegression, self).save(file_prefix, params) def load(self, file_prefix): params = super(HierarchicalLogisticRegression, self).load(file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_cats = params['num_cats'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] ``` #### File: mixture/tests/test_dirichlet_process.py ```python import unittest import shutil import tempfile import numpy as np # import pandas as pd # import pymc3 as pm # from pymc3 import summary # from sklearn.mixture import BayesianGaussianMixture as skBayesianGaussianMixture from sklearn.model_selection import train_test_split from pmlearn.exceptions import NotFittedError from pmlearn.mixture import DirichletProcessMixture class DirichletProcessMixtureTestCase(unittest.TestCase): def setUp(self): self.num_truncate = 3 self.num_components = 3 self.num_pred = 1 self.num_training_samples = 100 self.pi = np.array([0.35, 0.4, 0.25]) self.means = np.array([0, 5, 10]) self.sigmas = np.array([0.5, 0.5, 1.0]) self.components = np.random.randint(0, self.num_components, self.num_training_samples) X = np.random.normal(loc=self.means[self.components], scale=self.sigmas[self.components]) X.shape = (self.num_training_samples, 1) self.X_train, self.X_test = train_test_split(X, test_size=0.3) self.test_DPMM = DirichletProcessMixture() self.test_nuts_DPMM = DirichletProcessMixture() self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) # class DirichletProcessMixtureFitTestCase(DirichletProcessMixtureTestCase): # def test_advi_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_DPMM.fit(self.X_train) # # self.assertEqual(self.num_pred, self.test_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_DPMM.num_components) # self.assertEqual(self.num_truncate, self.test_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # def test_nuts_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_nuts_DPMM.fit(self.X_train, # inference_type='nuts', # inference_args={'draws': 1000, # 'chains': 2}) # # self.assertEqual(self.num_pred, self.test_nuts_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_components) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_nuts_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_nuts_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_nuts_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_nuts_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_nuts_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_nuts_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_nuts_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_nuts_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_nuts_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # class DirichletProcessMixturePredictTestCase(DirichletProcessMixtureTestCase): # def test_predict_returns_predictions(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds = self.test_DPMM.predict(self.X_test) # self.assertEqual(self.y_test.shape, preds.shape) # def test_predict_returns_mean_predictions_and_std(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds, stds = self.test_DPMM.predict(self.X_test, return_std=True) # self.assertEqual(self.y_test.shape, preds.shape) # self.assertEqual(self.y_test.shape, stds.shape) def test_predict_raises_error_if_not_fit(self): print('') with self.assertRaises(NotFittedError) as no_fit_error: test_DPMM = DirichletProcessMixture() test_DPMM.predict(self.X_train) expected = 'Run fit on the model before predict.' self.assertEqual(str(no_fit_error.exception), expected) # class DirichletProcessMixtureScoreTestCase(DirichletProcessMixtureTestCase): # def test_score_matches_sklearn_performance(self): # print('') # skDPMM = skBayesianGaussianMixture(n_components=3) # skDPMM.fit(self.X_train) # skDPMM_score = skDPMM.score(self.X_test) # # self.test_DPMM.fit(self.X_train) # test_DPMM_score = self.test_DPMM.score(self.X_test) # # self.assertAlmostEqual(skDPMM_score, test_DPMM_score, 0) # # # class DirichletProcessMixtureSaveAndLoadTestCase(DirichletProcessMixtureTestCase): # def test_save_and_load_work_correctly(self): # print('') # self.test_DPMM.fit(self.X_train) # score1 = self.test_DPMM.score(self.X_test) # self.test_DPMM.save(self.test_dir) # # DPMM2 = DirichletProcessMixture() # DPMM2.load(self.test_dir) # # self.assertEqual(self.test_DPMM.inference_type, DPMM2.inference_type) # self.assertEqual(self.test_DPMM.num_pred, DPMM2.num_pred) # self.assertEqual(self.test_DPMM.num_training_samples, # DPMM2.num_training_samples) # self.assertEqual(self.test_DPMM.num_truncate, DPMM2.num_truncate) # # pd.testing.assert_frame_equal(summary(self.test_DPMM.trace), # summary(DPMM2.trace)) # # score2 = DPMM2.score(self.X_test) # self.assertAlmostEqual(score1, score2, 0) ``` #### File: mixture/tests/test_gaussian_mixture.py ```python import unittest import shutil import tempfile import numpy as np # import pandas as pd # import pymc3 as pm # from pymc3 import summary # from sklearn.mixture import GaussianMixture as skGaussianMixture from sklearn.model_selection import train_test_split from pmlearn.exceptions import NotFittedError from pmlearn.mixture import GaussianMixture class GaussianMixtureTestCase(unittest.TestCase): def setUp(self): self.num_components = 3 self.num_pred = 1 self.num_training_samples = 100 self.pi = np.array([0.35, 0.4, 0.25]) self.means = np.array([0, 5, 10]) self.sigmas = np.array([0.5, 0.5, 1.0]) self.components = np.random.randint(0, self.num_components, self.num_training_samples) X = np.random.normal(loc=self.means[self.components], scale=self.sigmas[self.components]) X.shape = (self.num_training_samples, 1) self.X_train, self.X_test = train_test_split(X, test_size=0.3) self.test_GMM = GaussianMixture() self.test_nuts_GMM = GaussianMixture() self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) # class GaussianMixtureFitTestCase(GaussianMixtureTestCase): # def test_advi_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_GMM.fit(self.X_train) # # self.assertEqual(self.num_pred, self.test_GMM.num_pred) # self.assertEqual(self.num_components, self.test_GMM.num_components) # # self.assertAlmostEqual(self.pi[0], # self.test_GMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_GMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_GMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_GMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_GMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_GMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_GMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_GMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_GMM.summary['mean']['cluster_variance_2__0'], # 0) # # def test_nuts_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_nuts_GMM.fit(self.X_train, # inference_type='nuts') # # self.assertEqual(self.num_pred, self.test_nuts_GMM.num_pred) # self.assertEqual(self.num_components, self.test_nuts_GMM.num_components) # # self.assertAlmostEqual(self.pi[0], # self.test_nuts_GMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_nuts_GMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_nuts_GMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_nuts_GMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_nuts_GMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_nuts_GMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_nuts_GMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_nuts_GMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_nuts_GMM.summary['mean']['cluster_variance_2__0'], # 0) # # class GaussianMixturePredictTestCase(GaussianMixtureTestCase): # def test_predict_returns_predictions(self): # print('') # self.test_GMM.fit(self.X_train, self.y_train) # preds = self.test_GMM.predict(self.X_test) # self.assertEqual(self.y_test.shape, preds.shape) # def test_predict_returns_mean_predictions_and_std(self): # print('') # self.test_GMM.fit(self.X_train, self.y_train) # preds, stds = self.test_GMM.predict(self.X_test, return_std=True) # self.assertEqual(self.y_test.shape, preds.shape) # self.assertEqual(self.y_test.shape, stds.shape) def test_predict_raises_error_if_not_fit(self): print('') with self.assertRaises(NotFittedError) as no_fit_error: test_GMM = GaussianMixture() test_GMM.predict(self.X_train) expected = 'Run fit on the model before predict.' self.assertEqual(str(no_fit_error.exception), expected) # class GaussianMixtureScoreTestCase(GaussianMixtureTestCase): # def test_score_matches_sklearn_performance(self): # print('') # skGMM = skGaussianMixture(n_components=3) # skGMM.fit(self.X_train) # skGMM_score = skGMM.score(self.X_test) # # self.test_GMM.fit(self.X_train) # test_GMM_score = self.test_GMM.score(self.X_test) # # self.assertAlmostEqual(skGMM_score, test_GMM_score, 0) # # # class GaussianMixtureSaveAndLoadTestCase(GaussianMixtureTestCase): # def test_save_and_load_work_correctly(self): # print('') # self.test_GMM.fit(self.X_train) # score1 = self.test_GMM.score(self.X_test) # self.test_GMM.save(self.test_dir) # # GMM2 = GaussianMixture() # GMM2.load(self.test_dir) # # self.assertEqual(self.test_GMM.inference_type, GMM2.inference_type) # self.assertEqual(self.test_GMM.num_pred, GMM2.num_pred) # self.assertEqual(self.test_GMM.num_training_samples, # GMM2.num_training_samples) # pd.testing.assert_frame_equal(summary(self.test_GMM.trace), # summary(GMM2.trace)) # # score2 = GMM2.score(self.X_test) # self.assertAlmostEqual(score1, score2, 0) ``` #### File: pmlearn/mixture/util.py ```python import numpy as np # import pymc3 as pm from pymc3.math import logsumexp # import theano import theano.tensor as T from theano.tensor.nlinalg import det class logp_gmix(object): def __init__(self, mus, pi, tau, num_training_samples): self.mus = mus self.pi = pi self.tau = tau self.num_training_samples = num_training_samples def __call__(self, value): def logp_normal(mu, tau, value): # log probability of individual samples k = tau.shape[0] def delta(mu): return value - mu # delta = lambda mu: value - mu return (-1 / 2.) * (k * T.log(2 * np.pi) + T.log(1. / det(tau)) + (delta(mu).dot(tau) * delta(mu)).sum(axis=1)) logps = [T.log(self.pi[i]) + logp_normal(mu, self.tau, value) for i, mu in enumerate(self.mus)] return T.sum(logsumexp(T.stacklists(logps)[:, :self.num_training_samples], axis=0)) # Log likelihood of normal distribution # def logp_normal(mu, tau, value): # # log probability of individual samples # k = tau.shape[0] # # def delta(mu): # return value - mu # # delta = lambda mu: value - mu # return (-1 / 2.) * (k * T.log(2 * np.pi) + T.log(1./det(tau)) + # (delta(mu).dot(tau) * delta(mu)).sum(axis=1)) # Log likelihood of Gaussian mixture distribution # def logp_gmix(mus, pi, tau): # def logp_(value): # logps = [T.log(pi[i]) + logp_normal(mu, tau, value) # for i, mu in enumerate(mus)] # # return T.sum(logsumexp(T.stacklists(logps)[:, :self.num_training_samples], axis=0)) # # return logp_ ``` #### File: pmlearn/neural_network/multilayer_perceptron.py ```python import numpy as np import pymc3 as pm import theano from ..base import BayesianModel, BayesianClassifierMixin floatX = theano.config.floatX class MLPClassifier(BayesianModel, BayesianClassifierMixin): """ Multilayer perceptron classification built using PyMC3. Fit a Multilayer perceptron classification model and estimate model parameters using MCMC algorithms or Variational Inference algorithms Parameters ---------- Examples -------- Reference ---------- http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/ """ def __init__(self, n_hidden=5): self.n_hidden = n_hidden self.num_training_samples = None self.num_pred = None self.total_size = None super(MLPClassifier, self).__init__() def create_model(self): """ Returns ------- """ model_input = theano.shared(np.zeros([self.num_training_samples, self.num_pred])) model_output = theano.shared(np.zeros(self.num_training_samples)) self.shared_vars = { 'model_input': model_input, 'model_output': model_output, } self.total_size = len(model_output.get_value()) # Initialize random weights between each layer init_1 = np.random.randn(self.num_pred, self.n_hidden).astype(floatX) init_2 = np.random.randn(self.n_hidden, self.n_hidden).astype(floatX) init_out = np.random.randn(self.n_hidden).astype(floatX) model = pm.Model() with model: # Weights from input to hidden layer weights_in_1 = pm.Normal('w_in_1', 0, sd=1, shape=(self.num_pred, self.n_hidden), testval=init_1) # Weights from 1st to 2nd layer weights_1_2 = pm.Normal('w_1_2', 0, sd=1, shape=(self.n_hidden, self.n_hidden), testval=init_2) # Weights from hidden layer to output weights_2_out = pm.Normal('w_2_out', 0, sd=1, shape=(self.n_hidden,), testval=init_out) # Build neural-network using tanh activation function act_1 = pm.math.tanh(pm.math.dot(model_input, weights_in_1)) act_2 = pm.math.tanh(pm.math.dot(act_1, weights_1_2)) act_out = pm.math.sigmoid(pm.math.dot(act_2, weights_2_out)) # Binary classification -> Bernoulli likelihood y = pm.Bernoulli('y', act_out, observed=model_output, total_size=self.total_size) return model def save(self, file_prefix): params = { 'inference_type': self.inference_type, 'num_pred': self.num_pred, 'num_training_samples': self.num_training_samples } super(MLPClassifier, self).save(file_prefix, params) def load(self, file_prefix): params = super(MLPClassifier, self).load(file_prefix, load_custom_params=True) self.inference_type = params['inference_type'] self.num_pred = params['num_pred'] self.num_training_samples = params['num_training_samples'] ```
{ "source": "JohnVict0r/tsuru-django-sample", "score": 2 }
#### File: blog/posts/tests.py ```python from django import test from django.contrib import admin as django_admin from django.db import models as django_models from blog.posts import models class PostTestCase(test.TestCase): model = models.Post def assert_has_field(self, name): self.assertIn(name, self.model._meta.get_all_field_names()) def _field(self, name): return self.model._meta.get_field_by_name(name)[0] def test_should_have_title(self): self.assert_has_field("title") def test_title_should_be_CharField(self): self.assertIsInstance(self._field("title"), django_models.CharField) def test_title_should_have_at_most_500_characters(self): self.assertEqual(500, self._field("title").max_length) def test_should_have_body(self): self.assert_has_field("body") def test_body_should_be_a_TextField(self): self.assertIsInstance(self._field("body"), django_models.TextField) class PostAdminTestCase(test.TestCase): def test_Post_is_registered_within_django_admin(self): django_admin.autodiscover() self.assertIn(models.Post, django_admin.site._registry) ```