metadata
dict
text
stringlengths
60
3.49M
{ "source": "joway/PyAlgorithm", "score": 3 }
#### File: algorithm/hash/horner_hash.py ```python from algorithm.calculation.horner import horner def horner_hash(key, size): _BASE = 32 return horner(key, _BASE) % size if __name__ == '__main__': print(horner_hash('test', 10)) ``` #### File: algorithm/searches/binary_search.py ```python def binary_search(val, sorted_data): length = len(sorted_data) # [start, stop] start = 0 stop = length - 1 while start <= stop: mid = (stop + start) // 2 if sorted_data[mid] < val: start = mid + 1 elif sorted_data[mid] > val: stop = mid - 1 else: return mid return -1 ``` #### File: datastructure/graphs/dfs.py ```python from .graph import Graph ''' ''' class DFS(Graph): def __init__(self, size=10, graph=None): super().__init__(size=size, graph=graph) @classmethod def dsf(cls, graph): pass ``` #### File: datastructure/graphs/dijkstra.py ```python import copy from .graph import Graph ''' ๅ•ๆบๆœ€็Ÿญ่ทฏ ไธ€ๆฌกๆ€งๅพ—ๅˆฐๅ•ไธช็‚นๅˆฐๅ…จ้ƒจ็‚น็š„ๆœ€็Ÿญ่ทฏๅพ„ ๅนฟๅบฆไผ˜ๅ…ˆๆœ็ดข ''' class Dijkstra(Graph): def __init__(self, size=10, graph=None): super().__init__(size=size, graph=graph) self.result = copy.deepcopy(self.graph) def shortest_path(self, start=None, end=None): S = {start: 0} # ๅˆๅง‹ๅŒ– U U = {v: self.graph[start][v] for v in range(0, self.size) if v != start} while len(S) < self.size: # min ๅ‡ฝๆ•ฐ็š„ key ๅ‚ๆ•ฐไผ ๅ…ฅไธ€ไธชๅ‡ฝๆ•ฐ # keyๅ‡ฝๆ•ฐ่ฟ”ๅ›ž็š„็ป“ๆžœไฝœไธบๆฏ”่พƒๅคงๅฐๆˆ–ๆŽ’ๅบ็š„ไพๆฎ min_key = min(U, key=U.get) S[min_key] = U.get(min_key) U = {v: min(self.graph[min_key][v] + S[min_key], U[v]) for v in U.keys() if v != min_key} return S.get(end or 0) ``` #### File: array/medium/combinationSum2.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/combination-sum-ii/ Example: given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ] """ def combinationSum2(self, candidates, target, init=True): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ if init: candidates.sort() rets = [] for i in candidates: if i > target: break elif i == target: rets.append([i]) else: _temp = list(candidates) _temp.remove(i) rets += ([sorted([i] + x) for x in self.combinationSum2(_temp, target - i, False)]) result = [] for r in rets: if r not in result: result.append(r) return result if __name__ == '__main__': candidates = [10, 1, 2, 7, 6, 1, 5] target = 8 result = Solution().combinationSum2(candidates, target) print(result) ``` #### File: array/medium/combinationSum3.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/combination-sum-iii/ Example: Example 1: Input: k = 3, n = 7 Output: [[1,2,4]] Example 2: Input: k = 3, n = 9 Output: [[1,2,6], [1,3,5], [2,3,4]] """ def search(self, pre_nums, k, n): rets = [] _start = max(pre_nums) + 1 if pre_nums else 1 for i in range(_start, 10): _cur = pre_nums + [i] if k == 1 and i == n: rets += [_cur] break if k > 1 and i < n: rets += self.search(_cur, k - 1, n - i) return rets def combinationSum3(self, k, n): """ :type k: int :type n: int :rtype: List[List[int]] """ return self.search([], k, n) if __name__ == '__main__': result = Solution().combinationSum3(3, 9) print(result) ``` #### File: array/medium/searchRange.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/search-for-a-range/ Example: Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4] """ def binary_search(self, val, sorted_data): length = len(sorted_data) # [start, stop] start = 0 stop = length - 1 while start <= stop: mid = (stop + start) // 2 if sorted_data[mid] < val: start = mid + 1 elif sorted_data[mid] > val: stop = mid - 1 else: return mid return -1 def searchRange(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ pos = self.binary_search(target, nums) if pos == -1: return [-1, -1] start = pos end = pos left = 1 right = 1 while left or right: if left and pos - left >= 0 and nums[pos - left] == target: start = pos - left left += 1 else: left = 0 if right and pos + right < len(nums) and nums[pos + right] == target: end = pos + right right += 1 else: right = 0 return [start, end] if __name__ == '__main__': # nums = [5, 7, 7, 8, 8, 10] nums = [2, 2] result = Solution().searchRange(nums, 3) print(result) ``` #### File: tests/number/test_number.py ```python from algorithm.numberTheory.fibonacci import fibonacci_log_n from tests.base_test_case import BaseTestCase class SearchTest(BaseTestCase): def setUp(self): super().setUp() self.num = 100 def test_fibonacci_log_n(self): print(fibonacci_log_n(self.num)) ``` #### File: tests/problem/test_eightqueen.py ```python from algorithm.problem import eightqueen from tests.base_test_case import BaseTestCase class EightQueenTestCase(BaseTestCase): def setUp(self): super().setUp() def test_eight_queen(self): self.loop(eightqueen, [1, 2, 4]) ``` #### File: tests/sort/test_merge_sort.py ```python import math from algorithm.sorts.merge_sort import merge_sort from algorithm.sorts.merge_withInsert import merge_with_insert from tests.sort.base_sort import BaseSortTestCase class MergeBaseSortTestCase(BaseSortTestCase): def test_merge(self): self.loop(merge_sort, self.data) def test_merge_worst(self): self.loop(merge_sort, self.reverse_data) def test_merge_with_insert(self): self.loop(merge_with_insert, self.data, int(math.log(self.length, 2))) def test_merge_with_insert_worst(self): self.loop(merge_with_insert, self.reverse_data, int(math.log(self.length, 2))) ``` #### File: tests/tree/test_binary_heap.py ```python from datastructure.trees.binary_heap import BinaryHeap from tests.base_test_case import BaseTestCase class BinaryHeapTestCase(BaseTestCase): def setUp(self): super().setUp() def test_binary_tree(self): data = [x for x in range(0, 15)] heap = BinaryHeap(data, False) print(heap) heap.del_last() print(heap) ```
{ "source": "joway/python-china", "score": 2 }
#### File: python-china/users/views.py ```python from django.http import HttpResponse from django.http import HttpResponseRedirect from django.views.decorators.csrf import csrf_exempt from users.models import User from users.services import AuthService def redirect(request): """ redirect to auth server url and get the code """ return HttpResponseRedirect(AuthService.get_auth_url()) @csrf_exempt def login(request): """ login with code """ access_token, refresh_token = AuthService.get_tokens(code=request.POST['code']) user_info = AuthService.get_user_info(access_token=access_token) try: user = User.objects.get(email=user_info['email']) except User.DoesNotExist: user = User.objects.create_user(email=user_info['email'], username=user_info['username'], avatar=user_info['avatar']) return HttpResponse(access_token) def callback(request): """ get the code and request for jwt token """ access_token, refresh_token = AuthService.get_tokens(code=request.GET['code']) return HttpResponse(access_token) ```
{ "source": "joway/statsd-server", "score": 3 }
#### File: joway/statsd-server/monitor.py ```python import socket import psutil import statsd as statsd_lib from settings import STATSD_HOST, STATSD_PORT hostname = socket.gethostname() statsd = statsd_lib.StatsClient(host=STATSD_HOST, port=STATSD_PORT, prefix=hostname) def monitoring_gauge(key, obj): for item in obj.__dict__: statsd.gauge('%s.%s' % (key, item), int(obj.__getattribute__(item))) def monitoring_mem(): monitoring_gauge('mem', psutil.virtual_memory()) def monitoring_swap(): monitoring_gauge('swap', psutil.swap_memory()) def monitoring_cpu(): monitoring_gauge('cpu', psutil.cpu_times()) def monitoring_net(): monitoring_gauge('net', psutil.net_io_counters()) ```
{ "source": "joweeba/mrtaskman", "score": 2 }
#### File: mrtaskman/client/package_cache_test.py ```python __author__ = '<EMAIL> (<NAME>)' import json import logging import os import threading import time import unittest from client import package_cache class PackageCacheTest(unittest.TestCase): def setUp(self): self.path = '/tmp/cache_test' self.min_duration_seconds = 0 self.max_size_bytes = 100 * 1024 self.low_watermark_percentage = 0.6 self.high_watermark_percentage = 0.8 # Clear old cache, if any. os.system('rm -rf %s' % self.path) self.cache = package_cache.PackageCache( self.min_duration_seconds, self.max_size_bytes, self.path, self.low_watermark_percentage, self.high_watermark_percentage) def tearDown(self): os.system('rm -rf %s' % self.path) def tearDownTestCase(self): os.system('rm -rf %s' % self.path) def testSetUpAndTearDown(self): logging.info('setUp done. tearing down...') def testDotCacheInfoMatchesSettings(self): dot_cache_info_file = open(os.path.join(self.path, '.cache_info')) cache_info = json.load(dot_cache_info_file) self.assertEqual(cache_info['min_duration_seconds'], self.min_duration_seconds) self.assertEqual(cache_info['max_size_bytes'], self.max_size_bytes) self.assertEqual(cache_info['low_watermark_percentage'], self.low_watermark_percentage) self.assertEqual(cache_info['high_watermark_percentage'], self.high_watermark_percentage) def testSecondCacheClientDoesNotTrampleCacheInfoFile(self): second_cache = package_cache.PackageCache( 20, 100, self.path, self.low_watermark_percentage, self.high_watermark_percentage) self.testDotCacheInfoMatchesSettings() def testSecondCacheClientObeysLock(self): second_cache = package_cache.PackageCache( 20, 100, self.path, self.low_watermark_percentage, self.high_watermark_percentage) # Acquire lock via first cache. self.cache._Lock() event = threading.Event() def DoSecondThread(second_cache, event): second_cache._Lock() second_cache._Unlock() event.set() # Tell second cache to attempt to acquire the lock (should block.) second_thread = threading.Thread(target=DoSecondThread, args=(second_cache, event)) second_thread.start() self.assertFalse(event.is_set()) time.sleep(0.5) self.assertFalse(event.is_set()) # Release the lock and expect first thread to finish. self.cache._Unlock() self.assertTrue(event.wait(10.0)) second_thread.join(10.0) def testCopyToDirectory_NeedsDownload(self): name = 'name' version = 1 tmp_dir = os.tempnam('/tmp', 'testCopyToDirectory_NeedsDownload') def MockOnCacheMiss(n, v, p): self.assertEqual(name, n) self.assertEqual(version, v) try: os.system('mkdir -p %s' % tmp_dir) self.cache.CopyToDirectory( { 'name': name, 'version': version, }, tmp_dir, MockOnCacheMiss) finally: os.system('rm -rf %s' % tmp_dir) def testAddToDownloading(self): name = 'name' version = 1 tmp_dir = os.tempnam('/tmp', 'testCopyToDirectory_NeedsDownload') pid = os.getpid() def MockOnCacheMiss(n, v, p): self.assertEqual(name, n) self.assertEqual(version, v) downloading = open(os.path.join(self.path, '.downloading'), 'r') records = json.load(downloading) downloading.close() record = records[package_cache.MakePackageString(name, version)] self.assertEqual(pid, record['pid']) self.assertTrue(record['timestamp'] <= time.mktime(time.gmtime())) try: os.system('mkdir -p %s' % tmp_dir) self.cache.CopyToDirectory( { 'name': name, 'version': version, }, tmp_dir, MockOnCacheMiss) finally: os.system('rm -rf %s' % tmp_dir) def testRemoveFromDownloading(self): name = 'name' version = 1 tmp_dir = os.tempnam('/tmp', 'testCopyToDirectory_NeedsDownload') pid = os.getpid() def MockOnCacheMiss(n, v, p): self.assertEqual(name, n) self.assertEqual(version, v) downloading = open(os.path.join(self.path, '.downloading'), 'r') records = json.load(downloading) downloading.close() record = records[package_cache.MakePackageString(name, version)] self.assertEqual(pid, record['pid']) self.assertTrue(record['timestamp'] <= time.mktime(time.gmtime())) try: os.system('mkdir -p %s' % tmp_dir) self.cache.CopyToDirectory( { 'name': name, 'version': version, }, tmp_dir, MockOnCacheMiss) finally: os.system('rm -rf %s' % tmp_dir) downloading = open(os.path.join(self.path, '.downloading'), 'r') records = json.load(downloading) downloading.close() record = records.get(package_cache.MakePackageString(name, version), None) self.assertIsNone(record) def testRemoveFromIndex(self): name = 'name' version = 1 tmp_dir = os.tempnam('/tmp', 'testCopyToDirectory_NeedsDownload') pid = os.getpid() def MockOnCacheMiss(n, v, p): self.assertEqual(name, n) self.assertEqual(version, v) try: os.system('mkdir -p %s' % tmp_dir) self.cache.CopyToDirectory( { 'name': name, 'version': version, }, tmp_dir, MockOnCacheMiss) finally: os.system('rm -rf %s' % tmp_dir) index = open(os.path.join(self.path, '.index'), 'r') records = json.load(index) index.close() record = records[package_cache.MakePackageString(name, version)] self.assertEqual(pid, record['pid']) self.assertNotEqual(tmp_dir, record['cache_dir']) self.assertTrue(self.path in record['cache_dir']) self.assertTrue(record['timestamp'] <= time.mktime(time.gmtime())) self.assertEqual(0, record['size_bytes']) self.cache._Lock() self.cache._RemoveFromIndex(package_cache.MakePackageString(name, version)) self.cache._Unlock() index = open(os.path.join(self.path, '.index'), 'r') records = json.load(index) index.close() record = records.get(package_cache.MakePackageString(name, version), None) self.assertIsNone(record) def testWaitOnDownload(self): name = 'name' version = 1 tmp_dir = os.tempnam('/tmp', 'testWaitOnDownload') tmp_dir2 = os.tempnam('/tmp', 'testWaitOnDownload2') os.system('mkdir -p %s' % tmp_dir) os.system('mkdir -p %s' % tmp_dir2) second_cache = package_cache.PackageCache( 20, 100, self.path, self.low_watermark_percentage, self.high_watermark_percentage) event = threading.Event() def DoSecondThread(second_cache, event): try: # Should block. second_cache.CopyToDirectory({'name': name, 'version': version}, tmp_dir2, None) finally: event.set() # Tell second cache to attempt to acquire the lock (should block.) second_thread = threading.Thread(target=DoSecondThread, args=(second_cache, event)) def MockOnCacheMiss(n, v, p): self.assertEqual(name, n) self.assertEqual(version, v) os.system('echo "nothing" > %s' % os.path.join(p, 'file.txt')) second_thread.start() time.sleep(1.5) try: self.cache.CopyToDirectory( { 'name': name, 'version': version, }, tmp_dir, MockOnCacheMiss) finally: event.wait() filename = os.path.join(tmp_dir2, 'file.txt') try: with open(filename): pass except IOError: self.fail('%s did not exist' % filename) os.system('rm -rf %s' % tmp_dir) os.system('rm -rf %s' % tmp_dir2) # TODO(jeff.carollo): testCopyDirectory. def main(): # Set up logging. FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT, level=logging.INFO) unittest.main() if __name__ == '__main__': main() ``` #### File: server/handlers/api_handlers.py ```python from google.appengine.ext import blobstore from google.appengine.ext import db from google.appengine.ext.db import datastore_query from google.appengine.ext.webapp import blobstore_handlers from models import tasks from util import device_info import csv import datetime import json import StringIO import urllib import webapp2 def FormatModelDataAsCsv(models, keys): """Takes list of db.Models and returns CSV representation as StingIO.""" data_csv = StringIO.StringIO() data_writer = csv.DictWriter(data_csv, keys) for model in models: d = db.to_dict(model) encoded_d = {} for (key, value) in d.iteritems(): if isinstance(value, basestring): encoded_d[key] = value.encode('utf-8', 'ignore') else: encoded_d[key] = value data_writer.writerow(encoded_d) data_csv.flush() return data_csv def Utf8Encode(string): return string.encode('utf-8', 'ignore') def GetExecutor(executor): device_data = device_info.GetDeviceInfo(executor) if device_data is not None: executor = device_data['device_name'] return executor TASK_RESULT_KEYS = [ 'task_id', 'executor', 'assigned_worker', 'assigned_time', 'completed_time', 'exit_code', 'stderr_url', 'stdout_url', 'stderr_blobkey', 'stdout_blobkey', ] def FormatTaskResultsAsCsv(task_list): """Specially format Tasks with TaskResults for CSV transmission.""" data_csv = StringIO.StringIO() data_writer = csv.DictWriter(data_csv, TASK_RESULT_KEYS) for task in task_list: if task.executor_requirements[0] == 'macos': continue executor = GetExecutor(task.executor_requirements[0]) encoded_d = {} encoded_d['task_id'] = task.key().id() encoded_d['executor'] = Utf8Encode(executor) encoded_d['assigned_worker'] = Utf8Encode(task.assigned_worker) encoded_d['assigned_time'] = task.assigned_time encoded_d['completed_time'] = task.completed_time encoded_d['exit_code'] = task.result.exit_code encoded_d['stderr_url'] = Utf8Encode(task.result.stderr_download_url) encoded_d['stdout_url'] = Utf8Encode(task.result.stdout_download_url) encoded_d['stderr_blobkey'] = Utf8Encode(task.result.stderr.key().__str__()) encoded_d['stdout_blobkey'] = Utf8Encode(task.result.stdout.key().__str__()) data_writer.writerow(encoded_d) data_csv.flush() return data_csv class ListResultsAfterDate(webapp2.RequestHandler): """Retrieves a special-formatted list of results newer than after_date.""" def get(self, after_date): cursor = self.request.get('cursor', None) limit = int(self.request.get('limit', 1000)) try: after_date = int(urllib.unquote(after_date)) except: self.response.out.write('after_date must be an integer timestamp.') self.response.set_status(400) return after_date = datetime.datetime.fromtimestamp(after_date) # Fetch data. (results, next_cursor) = tasks.GetResultsAfterDate( after_date, limit, cursor) # Format data as CSV. data_csv = FormatTaskResultsAsCsv(results) # Create response. response = {} response['kind'] = 'csv_data#task_results' response['headers'] = TASK_RESULT_KEYS response['data'] = data_csv.getvalue() response['next_cursor'] = next_cursor # Write response. json.dump(response, self.response.out, check_circular=False) self.response.headers['Content-Type'] = 'application/json' app = webapp2.WSGIApplication([ ('/api/task_results/list_after_date/after_date/(.+)', ListResultsAfterDate), ], debug=True) ``` #### File: server/index/index_handlers.py ```python __author__ = '<NAME> (<EMAIL>)' import logging import webapp2 from index import migrate_tasks_pipeline from index import task_results_pipeline class IndexHandler(webapp2.RequestHandler): def get(self): self.response.out.write(''' <html> <head><title>Index</title></head> <body> <form method="POST" action='/index'> <input type="hidden" name="action" value="migrate_tasks"></input> <input type="submit" value="Migrate Tasks"></input> </form> <form method="POST" action='/index'> <input type="hidden" name="action" value="task_results"></input> <input type="submit" value="Task Results"></input> </form> </body> </html> ''') self.response.headers['Content-Type'] = 'text/html' def post(self): logging.info('request: %s', self.request.body.decode('utf-8')) action = self.request.get('action', None) if not action: self.response.out.write('Need to give an action.') self.response.set_status(400) return if action == 'migrate_tasks': pipeline = migrate_tasks_pipeline.MigrateTasksPipeline() pipeline.start() self.redirect( pipeline.base_path + "/status?root=" + pipeline.pipeline_id) return if action == 'task_results': pipeline = task_results_pipeline.TaskResultsPipeline() pipeline.start() self.redirect( pipeline.base_path + "/status?root=" + pipeline.pipeline_id) return self.response.out.write('Invalid action: %s' % action) self.response.set_status(400) app = webapp2.WSGIApplication([ ('/index', IndexHandler), ], debug=True) ``` #### File: server/index/migrate_tasks_pipeline.py ```python __author__ = '<NAME> (<EMAIL>)' import logging from mapreduce import base_handler from mapreduce import mapreduce_pipeline from mapreduce import operation from models import tasks class MigrateTasksPipeline(base_handler.PipelineBase): def run(self): yield mapreduce_pipeline.MapperPipeline( 'MigrateTasks', 'index.migrate_tasks_pipeline.Map', 'mapreduce.input_readers.DatastoreInputReader', params={ 'entity_kind': 'models.tasks.Task', 'batch_size': 100, }, shards=100) def Map(model): if model.parent() is not None: model_dict = db.to_dict(model) model2 = tasks.Task(key=db.Key.from_path('Task', model.key().id()), **model_dict) operation.db.Put(model2) ``` #### File: workers/macos/worker.py ```python __author__ = '<EMAIL> (<NAME>)' import cStringIO import datetime import httplib import json import logging import os import socket import StringIO import subprocess import sys import time import urllib2 import gflags from client import mrtaskman_api from client import package_installer from client import package_cache from common import device_info from common import http_file_upload from common import parsetime from common import split_stream FLAGS = gflags.FLAGS gflags.DEFINE_string('log_filename', '', 'Where to log stuff. Required.') gflags.DEFINE_string('worker_name', '', 'Unique worker name.') gflags.DEFINE_list('worker_capabilities', ['macos', 'android'], 'Things this worker can do.') # Package cache flags. gflags.DEFINE_boolean('use_cache', True, 'Whether or not to use package cache.') gflags.DEFINE_string('cache_path', '/usr/local/worker_cache', 'Where to cache packages.') gflags.DEFINE_integer('min_duration_seconds', 60, 'Minimum time to cache something.') gflags.DEFINE_integer('max_cache_size_bytes', 2 * 1024 * 1024 * 1024, 'Maximum size of the cache in bytes.') gflags.DEFINE_float('low_watermark_percentage', 0.6, 'When cleaning up, keeps at least this much cache.') gflags.DEFINE_float('high_watermark_percentage', 0.8, 'When cleaning up, deletes to below this line.') class TaskError(Exception): pass class MrTaskmanUnrecoverableHttpError(TaskError): pass class MrTaskmanRecoverableHttpError(TaskError): pass def GetHostname(): return socket.gethostname() class MacOsWorker(object): """Executes macos tasks.""" def __init__(self, worker_name, log_stream): self.worker_name_ = worker_name self.log_stream_ = log_stream self.api_ = mrtaskman_api.MrTaskmanApi() self.hostname_ = GetHostname() self.capabilities_ = {'executor': self.GetCapabilities()} self.executors_ = {} for capability in self.capabilities_['executor']: self.executors_[capability] = self.ExecuteTask self.use_cache_ = FLAGS.use_cache if self.use_cache_: self.package_cache_ = package_cache.PackageCache( FLAGS.min_duration_seconds, FLAGS.max_cache_size_bytes, FLAGS.cache_path, FLAGS.low_watermark_percentage, FLAGS.high_watermark_percentage) def GetCapabilities(self): capabilities = device_info.GetCapabilities() capabilities.append('macos') capabilities.append(self.worker_name_) return capabilities def AssignTask(self): """Makes a request to /tasks/assign to get assigned a task. Returns: Task if a task was assigned, or None. """ try: task = self.api_.AssignTask(self.worker_name_, self.hostname_, self.capabilities_) return task except urllib2.HTTPError, e: logging.info('Got %d HTTP response from MrTaskman on AssignTask.', e.code) return None except urllib2.URLError, e: logging.info('Got URLError trying to reach MrTaskman: %s', e) return None def SendResponse(self, task_id, stdout, stderr, task_result): while True: try: # TODO(jeff.carollo): Refactor. device_sn = device_info.GetDeviceSerialNumber() task_result['device_serial_number'] = device_sn response_url = self.api_.GetTaskCompleteUrl(task_id) if not response_url: logging.info('No task complete url for task_id %s', task_id) return response_url = response_url.get('task_complete_url', None) if not response_url: logging.info('No task complete url for task_id %s', task_id) return self.api_.SendTaskResult(response_url, stdout, stderr, task_result) logging.info('Successfully sent response for task %s: %s', task_id, self.api_.MakeTaskUrl(task_id)) return except urllib2.HTTPError, error_response: body = error_response.read() code = error_response.code if code == 404: logging.warning('TaskCompleteUrl timed out.') continue logging.warning('SendResponse HTTPError code %d\n%s', code, body) return except urllib2.URLError, e: logging.info( 'Got URLError trying to send response to MrTaskman: %s', e) logging.info('Retrying in 10 seconds') time.sleep(10) continue def GetTaskCompleteUrl(self, task_id): try: return self.api_.GetTaskCompleteUrl(task_id) except urllib2.HTTPError, error_response: body = error_response.read() code = error_response.code logging.warning('GetTaskCompleteUrl HTTPError code %d\n%s', code, body) def ShouldWaitForDevice(self): """Returns True iff this worker controls a device which is offline.""" if not device_info.DEVICE_SN: return False return not device_info.DeviceIsConnected() def PollAndExecute(self): logging.info('Polling for work...') device_active = True while True: try: if self.ShouldWaitForDevice(): if device_active: logging.info('Device %s is offline. Waiting for it to come back.', device_info.DEVICE_SN) device_active = False time.sleep(10) continue if not device_active: logging.info('Device came back online.') device_active = True # TODO(jeff.carollo): Wrap this in a catch-all Excepion handler that # allows us to continue executing in the face of various task errors. task = self.AssignTask() if not task: time.sleep(10) continue except KeyboardInterrupt: logging.info('Caught CTRL+C. Exiting.') return task_stream = cStringIO.StringIO() task_logs = None self.log_stream_.AddStream(task_stream) try: logging.info('Got a task:\n%s\n', json.dumps(task, 'utf-8', indent=2)) config = task['config'] task_id = int(task['id']) attempt = task['attempts'] # Figure out which of our executors we can use. executor = None allowed_executors = config['task']['requirements']['executor'] for allowed_executor in allowed_executors: try: executor = self.executors_[allowed_executor] except KeyError: pass if executor is not None: break if executor is None: # TODO: Send error response to server. # This is probably our fault - we said we could do something # that we actually couldn't do. logging.error('No matching executor from %s', allowed_executors) raise Exception('No allowed executors matched our executors_:\n' + '%s\nvs.%s\n' % (allowed_executors, self.executors_)) try: # We've got a valid executor, so use it. (results, stdout, stderr) = executor(task_id, attempt, task, config) except MrTaskmanUnrecoverableHttpError: logging.error( 'Unrecoverable MrTaskman HTTP error. Aborting task %d.', task_id) continue finally: self.log_stream_.RemoveStream(task_stream) task_logs = task_stream.getvalue().decode('utf-8') task_stream.close() try: results['worker_log'] = task_logs.encode('utf-8') self.SendResponse(task_id, stdout, stderr, results) except MrTaskmanUnrecoverableHttpError: logging.error( 'Unrecoverable MrTaskman HTTP error. Aborting task %d.', task_id) logging.info('Polling for work...') # Loop back up and poll for the next task. def ExecuteTask(self, task_id, attempt, task, config): logging.info('Recieved task %s', task_id) try: tmpdir = package_installer.TmpDir() # Download the files we need from the server. files = config.get('files', []) self.DownloadAndStageFiles(files) # Install any packages we might need. # TODO(jeff.carollo): Handle any exceptions raised here. packages = config.get('packages', []) self.DownloadAndInstallPackages(packages, tmpdir) # We probably don't want to run forever. Default to 12 minutes. timeout = config['task'].get('timeout', '12m') timeout = parsetime.ParseTimeDelta(timeout) # Get any environment variables to inject. env = config['task'].get('env', {}) env = env.update(os.environ) # Get our command and execute it. command = config['task']['command'] logging.info('Running command %s', command) (exit_code, stdout, stderr, execution_time, result_metadata) = ( self.RunCommandRedirectingStdoutAndStderrWithTimeout( command, env, timeout, tmpdir.GetTmpDir())) logging.info('Executed %s with result %d', command, exit_code) results = { 'kind': 'mrtaskman#task_complete_request', 'task_id': task_id, 'attempt': attempt, 'exit_code': exit_code, 'execution_time': execution_time.total_seconds(), 'result_metadata': result_metadata } return (results, stdout, stderr) finally: tmpdir.CleanUp() def RunCommandRedirectingStdoutAndStderrWithTimeout( self, command, env, timeout, cwd): command = ' '.join([command, '>stdout', '2>stderr']) # TODO: More precise timing through process info. begin_time = datetime.datetime.now() timeout_time = begin_time + timeout process = subprocess.Popen(args=command, env=env, shell=True, cwd=cwd) ret = None while None == ret and (datetime.datetime.now() < timeout_time): time.sleep(0.02) ret = process.poll() finished_time = datetime.datetime.now() if finished_time >= timeout_time and (None == ret): logging.info('command %s timed out.', command) process.terminate() process.wait() ret = -99 execution_time = finished_time - begin_time try: stdout = file(os.path.join(cwd, 'stdout'), 'rb') except IOError, e: logging.error('stdout was not written.') stdout = file(os.path.join(cwd, 'stdout'), 'w') stdout.write('No stdout.') stdout.flush() stdout.close() stdout = file(os.path.join(cwd, 'stdout'), 'rb') try: stderr = file(os.path.join(cwd, 'stderr'), 'rb') except IOError, e: logging.error('stderr was not written.') stderr = file(os.path.join(cwd, 'stderr'), 'w') stderr.write('No stderr.') stderr.flush() stderr.close() stderr = file(os.path.join(cwd, 'stderr'), 'rb') try: result_metadata_file = file(os.path.join(cwd, 'result_metadata'), 'r') result_metadata = json.loads(result_metadata_file.read().decode('utf-8')) except: result_metadata = None return (ret, stdout, stderr, execution_time, result_metadata) def DownloadAndStageFiles(self, files): logging.info('Not staging files: %s', files) # TODO: Stage files. def DownloadAndInstallPackages(self, packages, tmpdir): # TODO(jeff.carollo): Create a package cache if things take off. for package in packages: attempts = 0 while True: try: # TODO(jeff.carollo): Put package cache code here. if self.use_cache_: self.package_cache_.CopyToDirectory( package, tmpdir.GetTmpDir(), package_installer.DownloadAndInstallPackage) else: package_installer.DownloadAndInstallPackage( package['name'], package['version'], tmpdir.GetTmpDir()) break except urllib2.HTTPError, e: logging.error('Got HTTPError %d trying to grab package %s.%s: %s', e.code, package['name'], package['version'], e) raise MrTaskmanUnrecoverableHttpError(e) except (urllib2.URLError, httplib.IncompleteRead, httplib.BadStatusLine, httplib.HTTPException), e: logging.error('Got URLError trying to grab package %s.%s: %s', package['name'], package['version'], e) logging.info('Retrying in 10') attempts += 1 # TODO(jeff.carollo): Figure out a robust way to do this. # Likely need to just try a few times to get around Internet blips # then mark task as failed for package reasons. if attempts < 10: time.sleep(10) continue else: logging.error('Failed to grab package for 100 attempts. Aborting.') raise MrTaskmanUnrecoverableHttpError(e) except IOError, e: logging.error('Got IOError trying to grab package %s.%s: %s', package['name'], package['version'], e) raise MrTaskmanUnrecoverableHttpError(e) def main(argv): try: argv = FLAGS(argv) except gflags.FlagsError, e: sys.stderr.write('%s\n' % e) sys.exit(1) return # Set default socket timeout to 2 hours so that we catch missing timeouts. socket.setdefaulttimeout(2 * 60 * 60) if not FLAGS.log_filename: sys.stderr.write('Flag --log_filename is required.\n') sys.exit(-9) return try: from third_party import portalocker log_file = file(FLAGS.log_filename, 'a+') portalocker.lock(log_file, portalocker.LOCK_EX | portalocker.LOCK_NB) except Exception, e: logging.exception(e) print 'Could not get exclusive lock.' sys.exit(-10) return try: FORMAT = '%(asctime)-15s %(message)s' log_stream = split_stream.SplitStream(sys.stdout, log_file) logging.basicConfig(format=FORMAT, level=logging.DEBUG, stream=log_stream) macos_worker = MacOsWorker(FLAGS.worker_name, log_stream=log_stream) # Run forever, executing tasks from the server when available. macos_worker.PollAndExecute() finally: logging.shutdown() log_file.flush() portalocker.unlock(log_file) log_file.close() if __name__ == '__main__': main(sys.argv) ```
{ "source": "joweenflores/stock_trading_api", "score": 3 }
#### File: backend/models/stocks.py ```python from typing import TYPE_CHECKING from sqlalchemy import Column, String, Date, ForeignKey, TIMESTAMP, Integer, Boolean, Numeric from sqlalchemy.sql import func from sqlalchemy.orm import relationship from ..db.base_class import Base if TYPE_CHECKING: from .traders import Trade, Offer, Portfolio # noqa: F401 # Stocks based on Philippine Stock Exchange # https://edge.pse.com.ph/companyDirectory/form.do class Stock(Base): symbol = Column(String(5), index=True, unique=True) name = Column(String(256)) sector_id = Column(Integer, ForeignKey('sector.id'), nullable=True) sub_sector_id = Column(Integer, ForeignKey('subsector.id'), nullable=True) listing_date = Column(Date(), server_default=func.now()) active = Column(Boolean(), default=True) # FK Reverse Relations price_history = relationship("PriceHistory", backref="stock") trade = relationship("Trade", backref="stock") offer = relationship("Offer", backref="stock") portfolio = relationship("Portfolio", backref="stock") def __repr__(self): return f"<Stock(symbol='{self.symbol}')>" class PriceHistory(Base): stock_id = Column(Integer, ForeignKey('stock.id')) buy = Column(Numeric(10, 3)) sell = Column(Numeric(10, 3)) timestamp = Column(TIMESTAMP(timezone=True), server_default=func.now(), onupdate=func.current_timestamp()) def __repr__(self): return f"<PriceHistory(buy='{self.buy}', sell='{self.sell}')>" class Sector(Base): name = Column(String(50)) # FK Reverse Relations stock = relationship('Stock', backref="sector", uselist=False) def __repr__(self): return f"<Sector(name='{self.name}')>" class SubSector(Base): name = Column(String(50)) # FK Reverse Relations stock = relationship('Stock', backref="subsector", uselist=False) def __repr__(self): return f"<SubSector(name='{self.name}')>" ```
{ "source": "joWeiss/iota.lib.py", "score": 3 }
#### File: commands/extended/helpers.py ```python class Helpers(object): """ Adds additional helper functions that aren't part of the core or extended API. """ def __init__(self, api): self.api = api def is_promotable(self, tail): # type: (TransactionHash) -> bool """ Determines if a tail transaction is promotable. :param tail: Transaction hash. Must be a tail transaction. """ return self.api.check_consistency(tails=[tail])['state'] ``` #### File: commands/extended/send_transfer.py ```python from __future__ import absolute_import, division, print_function, \ unicode_literals from typing import List, Optional import filters as f from iota import Address, Bundle, ProposedTransaction, TransactionHash from iota.commands import FilterCommand, RequestFilter from iota.commands.extended.prepare_transfer import PrepareTransferCommand from iota.commands.extended.send_trytes import SendTrytesCommand from iota.crypto.types import Seed from iota.filters import SecurityLevel, Trytes __all__ = [ 'SendTransferCommand', ] class SendTransferCommand(FilterCommand): """ Executes ``sendTransfer`` extended API command. See :py:meth:`iota.api.Iota.send_transfer` for more info. """ command = 'sendTransfer' def get_request_filter(self): return SendTransferRequestFilter() def get_response_filter(self): pass def _execute(self, request): change_address = request['changeAddress'] # type: Optional[Address] depth = request['depth'] # type: int inputs = request['inputs'] # type: Optional[List[Address]] min_weight_magnitude = request['minWeightMagnitude'] # type: int seed = request['seed'] # type: Seed transfers = request['transfers'] # type: List[ProposedTransaction] reference = request['reference'] # type: Optional[TransactionHash] security_level = request['securityLevel'] # int pt_response = PrepareTransferCommand(self.adapter)( changeAddress = change_address, inputs = inputs, seed = seed, transfers = transfers, securityLevel = security_level, ) st_response = SendTrytesCommand(self.adapter)( depth = depth, minWeightMagnitude = min_weight_magnitude, trytes = pt_response['trytes'], reference = reference, ) return { 'bundle': Bundle.from_tryte_strings(st_response['trytes']), } class SendTransferRequestFilter(RequestFilter): def __init__(self): super(SendTransferRequestFilter, self).__init__( { # Required parameters. 'depth': f.Required | f.Type(int) | f.Min(1), 'seed': f.Required | Trytes(result_type=Seed), # Loosely-validated; testnet nodes require a different value # than mainnet. 'minWeightMagnitude': f.Required | f.Type(int) | f.Min(1), 'transfers': ( f.Required | f.Array | f.FilterRepeater(f.Required | f.Type(ProposedTransaction)) ), # Optional parameters. 'changeAddress': Trytes(result_type=Address), 'securityLevel': SecurityLevel, # Note that ``inputs`` is allowed to be an empty array. 'inputs': f.Array | f.FilterRepeater(f.Required | Trytes(result_type=Address)), 'reference': Trytes(result_type=TransactionHash), }, allow_missing_keys = { 'changeAddress', 'inputs', 'reference', 'securityLevel', }, ) ``` #### File: commands/extended/helpers_test.py ```python from __future__ import absolute_import, division, print_function, \ unicode_literals from unittest import TestCase from iota import Iota, TransactionHash from iota.adapter import MockAdapter class HelpersTestCase(TestCase): def setUp(self): super(HelpersTestCase, self).setUp() self.api = api = Iota('mock://') self.api.adapter = MockAdapter() # noinspection SpellCheckingInspection self.transaction = ( 'TESTVALUE9DONTUSEINPRODUCTION99999KPZOTR' 'VDB9GZDJGZSSDCBIX9QOK9PAV9RMDBGDXLDTIZTWQ' ) def test_positive_is_promotable(self): """ Transaction is promotable """ self.api.adapter.seed_response('checkConsistency', { 'state': True, }) self.assertTrue(self.api.helpers.is_promotable(tail=self.transaction)) def test_negative_is_promotable(self): """ Transaction is not promotable """ self.api.adapter.seed_response('checkConsistency', { 'state': False, 'info': 'Inconsistent state', }) self.assertFalse(self.api.helpers.is_promotable(tail=self.transaction)) ```
{ "source": "JowellDev/jomoney", "score": 2 }
#### File: api/endpoints/transaction_routes.py ```python from typing import List from fastapi import APIRouter, Depends from sqlalchemy.orm import Session from db.session import get_db from schemas.transactions import Transaction, TransactionSchema router = APIRouter() @router.get('/', response_model=List[Transaction]) def get_all_transactions(db: Session = Depends(get_db)): return {"message": "get transaction"} @router.get('/{transaction_id}', response_model=Transaction) def get_transaction(transaction_id: int, db: Session = Depends(get_db)): return {"message": "show transaction"} ``` #### File: jomoney/db/session.py ```python from typing import Generator from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from core.config import Config SQLALCHEMY_DATABASE_URL = Config.DB_URL engine = create_engine(SQLALCHEMY_DATABASE_URL) sessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) def get_db() -> Generator: try: db = sessionLocal() yield db finally: db.close() ```
{ "source": "J-Owens/soccerdata", "score": 3 }
#### File: soccerdata/tests/test_Integration.py ```python import pandas as pd import pytest import soccerdata as foo # TODO: integration tests # Names of common leagues equal for all classes # Number of clubs equal for all common leagues over classes # Clubnames equal for all common leagues over classes # Number of games equal for all common leagues/seasons over classes # Scores per game equal for all common leagues over classes @pytest.mark.e2e def test_five38_vs_elo(): """We should be able to retrieve the Elo history for all teams in these leagues.""" league_sel = [ 'ENG-Premier League', 'ESP-La Liga', 'FRA-Ligue 1', 'GER-Bundesliga', 'ITA-Serie A', ] five38 = foo.FiveThirtyEight(leagues=league_sel, seasons='1819') five38_games = five38.read_games() elo = foo.ClubElo() elo_hist = pd.concat([elo.read_team_history(team) for team in set(five38_games['home_team'])]) assert set(five38_games['home_team']) - set(elo_hist['team']) == set() ``` #### File: soccerdata/tests/test_MatchHistory.py ```python import pandas as pd # Unittests ------------------------------------------------------------------- # Reader def test_epl_2y(match_epl_2y): df = match_epl_2y.read_games() assert isinstance(df, pd.DataFrame) assert len(df.index.get_level_values("season").unique()) == 2 ``` #### File: soccerdata/tests/test_SoFIFA.py ```python import pandas as pd import pytest # Unittests ------------------------------------------------------------------- @pytest.mark.fails_gha def test_sofifa_ratings(sofifa_bundesliga): assert isinstance(sofifa_bundesliga.read_ratings(), pd.DataFrame) ```
{ "source": "jowggernaut/rare-earth-modelling", "score": 3 }
#### File: API/algoritmoOtimizacao/ElementoClass.py ```python from algoritmoOtimizacao.CoisaFisicaClass import Coisa_Fisica class Elemento(Coisa_Fisica): def __init__(elemento, nome: str, simbolo: str, preco: float, ca0: float): super().__init__(nome, preco) elemento.simbolo = simbolo elemento.ca0 = ca0 def concentracoes_aquoso(elemento, chutes: list, n_celulas: int): cas = {'ca1': chutes[0]} for i in range(2, n_celulas + 1): cas['ca' + str(i)] = chutes[i - 1] return cas ``` #### File: API/algoritmoOtimizacao/SubstanciaClass.py ```python from algoritmoOtimizacao.CoisaFisicaClass import Coisa_Fisica class Substancia(Coisa_Fisica): def __init__(substancia, nome, preco, propriedades_fisqui): assert type(propriedades_fisqui) == dict super().__init__(nome, preco) for key in propriedades_fisqui: setattr(substancia, key, propriedades_fisqui[key]) ```
{ "source": "jowiho/nand2tetris", "score": 3 }
#### File: projects/06/HackAssembler.py ```python import os, re, sys class SymbolTable: symbols = { 'SP': 0, 'LCL': 1, 'ARG': 2, 'THIS': 3, 'THAT': 4, 'R0': 0, 'R1': 1, 'R2': 2, 'R3': 3, 'R4': 4, 'R5': 5, 'R6': 6, 'R7': 7, 'R8': 8, 'R9': 9, 'R10': 10, 'R11': 11, 'R12': 12, 'R13': 13, 'R14': 14, 'R15': 15, 'SCREEN': 0x4000, 'KBD': 0x6000 } nextVariableAddress = 16 def register_label(self, label, address): self.symbols[label] = address def resolve(self, symbol): if not symbol in self.symbols: self.symbols[symbol] = self.nextVariableAddress self.nextVariableAddress += 1 return self.symbols[symbol] class CodeWriter: def __init__(self, file, symbol_table): self.file = file self.symbol_table = symbol_table def encode(self, instruction): if instruction[0] == '@': self._write(self._encode_a(instruction)) else: self._write(self._encode_c(instruction)) def _write(self, line): self.file.write(line + '\n') def _encode_destination(self, destination): encoded = "" encoded += '1' if 'A' in destination else '0' encoded += '1' if 'D' in destination else '0' encoded += '1' if 'M' in destination else '0' return encoded def _encode_opcode(self, opcode): if 'M' in opcode: opcode = opcode.replace('M', 'A') firstbit = "1" else: firstbit = "0" if opcode == '0': return firstbit + "101010" if opcode == '1': return firstbit + "111111" if opcode == '-1': return firstbit + "111010" if opcode == 'D': return firstbit + "001100" if opcode == 'A': return firstbit + "110000" if opcode == '!D': return firstbit + "001101" if opcode == '!A': return firstbit + "110001" if opcode == '-D': return firstbit + "001111" if opcode == '-A': return firstbit + "110011" if opcode == 'D+1': return firstbit + "011111" if opcode == 'A+1': return firstbit + "110111" if opcode == 'D-1': return firstbit + "001110" if opcode == 'A-1': return firstbit + "110010" if opcode == 'D+A': return firstbit + "000010" if opcode == 'D-A': return firstbit + "010011" if opcode == 'A-D': return firstbit + "000111" if opcode == 'D&A': return firstbit + "000000" if opcode == 'D|A': return firstbit + "010101" raise Exception("Unknown opcode " + opcode) def _encode_jump(self, jump): if jump == 'JGT': return "001" if jump == 'JEQ': return "010" if jump == 'JGE': return "011" if jump == 'JLT': return "100" if jump == 'JNE': return "101" if jump == 'JLE': return "110" if jump == 'JMP': return "111" return "000" def _encode_a(self, instruction): address = instruction[1:] if not address.isdigit(): address = self.symbol_table.resolve(address) return "{0:016b}".format(int(address)) def _encode_c(self, instruction): if ';' in instruction: operation, jump = instruction.split(';') else: operation = instruction jump = "" if '=' in operation: destination, opcode = operation.split('=') else: destination = "" opcode = operation return "111" + self._encode_opcode(opcode) + self._encode_destination(destination) + self._encode_jump(jump) class Parser: def __init__(self, code_writer, symbol_table): self.writer = code_writer self.symbol_table = symbol_table def parseFile(self, filename): # First pass: register labels in symbol table and keep only instructions instructions = [] with open(filename) as file: for line in file.readlines(): line = self._strip(line) if len(line): if line[0] == '(': self.symbol_table.register_label(line[1:-1], len(instructions)) else: instructions.append(line) # Second pass: encode instructions for instruction in instructions: self.writer.encode(instruction) def _strip(self, line): line = re.sub('//.*', '', line) line = re.sub(r'\s', '', line) return line def translate_file(asm_filename): hack_filename = os.path.splitext(asm_filename)[0] + ".hack" with open(hack_filename, "w") as asm_file: symbol_table = SymbolTable() writer = CodeWriter(asm_file, symbol_table) parser = Parser(writer, symbol_table) parser.parseFile(asm_filename) def main(argv): if len(argv) == 1 and os.path.splitext(argv[0])[1] == ".asm": translate_file(argv[0]) else: print("Usage: HackAssembler.py #.asm") sys.exit(1) if __name__ == '__main__': main(sys.argv[1:]) ```
{ "source": "jowinjohnchemban/Python", "score": 4 }
#### File: Python/maths/simple_calculator.py ```python def add(a,b): #Addition + return (a+b) def sub(a,b): #Subtraction - return (a-b) def prd(a,b): #Multiplication ร— return (a*b) def div(a,b): #Division รท return (a/b) def main(): n = 1 #default Addition while(n != 0): n=int(input("\n 1. Addition\n 2. Subtraction\n 3. Multiplication\n 4. Division\n 0. Exit\n\n Enter your Choice!\n")) #MENU if(n == 0): exit() a=int(input("\n\n First Number : ")) #First Input b=int(input("\n\n Second Number : ")) #Second Input try: #Output if(n == 1): print("\n Sum=",add(a,b)) elif(n == 2): print("\n Difference=",sub(a,b)) elif(n == 3): print("\n Product=",prd(a,b)) elif(n == 4): print("\n Quotient=",div(a,b)) else: print("Unknown Entry!") except: print("\n\n E : Exception Occured") if __name__ == "__main__": main() ```
{ "source": "Jownao/Clock_RealTIme", "score": 3 }
#### File: Jownao/Clock_RealTIme/clock.py ```python from tkinter import * from tkinter import ttk from tkinter import font import time import datetime def quit(*args): root.destroy() def clock_time(): time = datetime.datetime.now() time = (time.strftime("%H:%M:%S")) txt.set(time) root.after(1000,clock_time) root = Tk() root.attributes("-fullscreen",False) root.configure(background='black') root.bind('x',quit) root.after(1000,clock_time) fnt = font.Font(family = 'Helvetica',size = 30,weight = 'bold') txt = StringVar() lbl = ttk.Label(root, textvariable=txt, font = fnt, foreground = 'white', background = 'black') lbl.place(relx = 0.5,rely = 0.5,anchor=CENTER) root.title('Relรณgio Futurista') root.geometry("500x300") root.mainloop() ```
{ "source": "Jownao/TelegramBotAPI_jownao", "score": 3 }
#### File: TelegramBotAPI_jownao/pBot/telegrambot.py ```python import telebot from telebot import types chave = "<KEY>" bot = telebot.TeleBot(chave) @bot.message_handler(commands=["badalo"]) def responder(mensagem): bot.reply_to(mensagem,"badalado em vocรช") @bot.message_handler(commands=["redes"]) def responder(mensagem): bot.reply_to(mensagem,"Jownao se encontra atualmente nessas redes sociais:\n"+ "Instagram: instagram.com/jownao\n"+ "Twitch: twitch.tv/jownao\n"+ "Github: github.com/Jownao") @bot.message_handler(commands=["amigos"]) def responder(mensagem): bot.reply_to(mensagem,"Amigos:\n"+ "Carlo\nRulio\nVicsk\nAlbert\nzaboyz ltda") @bot.message_handler(func=lambda m: True) def echo_all(message): if message == "oi": bot.reply_to(message, "Iae de boa ?") else: bot.reply_to(message, message.text) chat_id = "798429701" # or add KeyboardButton one row at a time: markup = types.ReplyKeyboardMarkup() itembtna = types.KeyboardButton('Badalo') itembtnv = types.KeyboardButton('de') itembtnc = types.KeyboardButton('Sino') itembtnd = types.KeyboardButton('Macho') itembtne = types.KeyboardButton('Veio') markup.row(itembtna, itembtnv) markup.row(itembtnc, itembtnd, itembtne) bot.send_message(chat_id, "Escolha oque desejar meu caro:", reply_markup=markup) bot.polling() ```
{ "source": "jowolf/Django-QuickPages", "score": 2 }
#### File: Django-QuickPages/quickpages/models.py ```python from django.db import models #from django.utils.safestring import mark_safe from taggit.managers import TaggableManager #### Custom Managers class PublishedManager (models.Manager): def published (self): return self.filter (published=True) def unpublished (self): return self.filter (published=False) # This is specific to our site (eRacks.com), but here as an example for those who wish to use it: class PRManager (models.Manager): def presspages (self): return self.filter (template__endswith="press.html").exclude (title__startswith='eRacks').order_by ('-created') #### Models class QuickPage (models.Model): slug = models.CharField (max_length=1024, unique=True, help_text="This is the url. Slashes are OK, but not necessary.") name = models.CharField (max_length=512, help_text="Name - short, typically one or two words.") title = models.CharField (max_length=512, help_text="Page title, and optional H1 tag (see Heading)") published = models.BooleanField (default=True, help_text="Published=shown. If not, gives 404") javascript = models.CharField (max_length=1024, blank=True, help_text="Comma-separated filenames, relative to MEDIA_ROOT or STATIC_ROOT") css = models.CharField (max_length=1024, blank=True, help_text="Comma-separated filenames, relative to MEDIA_ROOT or STATIC_ROOT") heading = models.BooleanField (default=True, help_text='If "Heading" is checked, "Title" is added to the top of the content in an H1 tag.') meta_title = models.CharField (max_length=512, blank=True, help_text="Meta title") description = models.TextField (blank=True, help_text="Meta description") keywords = models.TextField (blank=True, help_text="Meta keywords") comments = models.TextField (blank=True, help_text="Internal developer/editor comments, not shown") content = models.TextField (blank=True, help_text='HTML Content - main content div of the page.') #help_text='HTML Content - <a href="javascript:mce_setup();">Click Here</a> to edit - see <a href="http://wiki.moxiecode.com/index.php/TinyMCE:Configuration">TinyMCE Configuration</a> for more options.') template = models.CharField (max_length=100, blank=True, help_text="Optional template - default is quickpages/base.html, which you can also simply replace in your project tree.") # site = model.ForeignKey ('Site'...) updated = models.DateTimeField ('date modified', auto_now=True) created = models.DateTimeField ('date created', auto_now_add=True) objects = PublishedManager() pr_objects = PRManager() tags = TaggableManager(blank=True) def get_absolute_url (self): return '/' + self.slug def __unicode__ (self): return self.name types = ( ('raw','Raw - passed thru as is'), ('html','HTML - Use the built-in HTML Editor (warning: will strip certain tags, etc'), ) class QuickSnippet (models.Model): name = models.CharField(max_length=100, help_text="Name, identifier-style, no spaces, will be exported into request context") #slug = models.CharField(max_length=100) title = models.CharField(max_length=100, blank=True, help_text="Title, verbose name / short description") js = models.TextField(blank=True, help_text="Javascript for this snippet - &lt;script&gt; tags will be passed through") css = models.TextField(blank=True, help_text="CSS for this snippet - &lt;link&gt; tags will be passed through") #meta = models.ManyToManyField (Meta, blank=True) body = models.TextField(help_text="Body of snippet, available via {{ &lt;name&gt; }} in templates via context processor") comments = models.TextField (blank=True, help_text="Internal developer/editor comments, not shown") typ = models.CharField (max_length=20, default='raw', choices = types, help_text="Editor type - raw, html, etc - future: Markdown, etc") created = models.DateTimeField('date created', auto_now_add=True) updated = models.DateTimeField('date updated', auto_now=True) published = models.BooleanField(default=True) objects = PublishedManager() tags = TaggableManager(blank=True) def __unicode__ (self): #return mark_safe (self.body or self.title or self.name) return '%s (%s)' % (self.name, self.title) # TODO: Add template, image, possibly slug def get_absolute_url (self): return '/%s/' % self.name #slug url = property (get_absolute_url) ```
{ "source": "jowoni/compiler", "score": 3 }
#### File: jowoni/compiler/calclex.py ```python import sys sys.path.insert(0, "../..") import ply.lex as lex # reserved reserved = ( 'INT', 'RETURN', 'VOID', 'FOR', 'ELSE', 'IF', 'WHILE', 'BREAK', ) # List of token names. This is always required tokens = reserved + ( # Literals (identifier, integer constant, float constant, string constant, # char const) 'ID', # 'TYPEID', 'ICONST', 'FCONST', 'SCONST', 'CCONST', # Operators (+,-,*,/,%, &, ||, &&, !, <, <=, >, >=, ==) 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'MOD', 'AND', 'LOR', 'LAND', 'LNOT', 'LT', 'LE', 'GT', 'GE', 'EQ', # Assignment (=) 'EQUALS', # Increment/decrement (++,--) 'PLUSPLUS', 'MINUSMINUS', # Delimeters ( ) [ ] { } , ; 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'COMMA', 'SEMI', ) # Operators t_PLUS = r'\+' t_MINUS = r'-' t_TIMES = r'\*' t_DIVIDE = r'/' t_MOD = r'%' t_AND = r'&' t_LOR = r'\|\|' t_LT = r'<' t_GT = r'>' t_LE = r'<=' t_GE = r'>=' t_EQ = r'==' # Assignment operators t_EQUALS = r'=' # Increment/decrement t_PLUSPLUS = r'\+\+' t_MINUSMINUS = r'--' # Delimeters t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACKET = r'\[' t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_COMMA = r',' t_SEMI = r';' # A regular expression rule with some action code def t_NUMBER(t): r'\d+' t.value = int(t.value) return t # Define a rule so we can track line numbers def t_newline(t): r'\n+' t.lexer.lineno += len(t.value) # A string containing ignored characters (spaces and tabs) t_ignore = ' \t' # Error handling rule def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) # Identifiers and reserved words reserved_map = {} for r in reserved: reserved_map[r.lower()] = r def t_ID(t): r'[A-Za-z_][\w_]*' t.type = reserved_map.get(t.value, "ID") return t # Preprocessor directive (ignored) def t_preprocessor(t): r'\#(.)*?\n' t.lexer.lineno += 1 # Integer literal t_ICONST = r'\d+([uU]|[lL]|[uU][lL]|[lL][uU])?' # Floating literal t_FCONST = r'((\d+)(\.\d+)(e(\+|-)?(\d+))? | (\d+)e(\+|-)?(\d+))([lL]|[fF])?' # String literal t_SCONST = r'\"([^\\\n]|(\\.))*?\"' # Character constant 'c' or L'c' t_CCONST = r'(L)?\'([^\\\n]|(\\.))*?\'' # Build the lexer lexer = lex.lex() ```
{ "source": "Joword/DBMerge", "score": 3 }
#### File: Joword/DBMerge/utils.py ```python import pandas as pd from read_data import pmid_path,evidences def pmid_groupby(arg:str): evidences = pd.read_table(arg+".txt",sep='\t',dtype='str',encoding='utf-8') df1 = pd.DataFrame(pd.DataFrame(evidences).groupby(['variant_id'],as_index=False)['submitter','publication'].agg(lambda x:x.str.cat(sep='|')),dtype='str') return df1 def make_chgvs(): u'''ๅฐ†delๅ’Œdupไธ่ทŸ็ขฑๅŸบ๏ผŒinsๅŽ่ทŸ็ขฑๅŸบ :return: ''' with open(path,"r+") as file: with open("chgvs_index.txt","w+") as g: next(file) g.write("variantId\tchr\tstart\tstop\tref\talt\tgene\ttranscript\tchgvs\n") lines = [i.strip().split("\t") for i in file.readlines()] for line in lines: if len(line[8].split("alt: "))>1: if len(line[8].split("alt: ")[1].replace(" )","").split("del"))>1: g.write("\t".join([line[i] for i in range(0, 8)]+[str(line[7] + ":" + line[8].split("alt: ")[1].replace(" )","").split("del")[0] + "del")])+"\n") elif len(line[8].split("alt: ")[1].replace(" )","").split("dup"))>1: g.write("\t".join([line[i] for i in range(0, 8)]+[str(line[7] + ":" + line[8].split("alt: ")[1].replace(" )","").split("dup")[0] + "dup")])+"\n") else: g.write("\t".join([line[i] for i in range(0, 8)] + [str(line[7] + ":" + line[8].split("alt: ")[1].replace(" )",""))]) + "\n") elif len(line[8].split("alt: "))==1: if len(line[8].split("del")) >1 and len(line[8].split("ins"))==1: g.write("\t".join([line[i] for i in range(0, 8)]+[str(line[7]+":"+line[8].split("del")[0]+"del")])+"\n") elif len(line[8].split("dup"))>1 and len(line[8].split("ins"))==1: g.write("\t".join([line[i] for i in range(0, 8)]+[str(line[7]+":"+line[8].split("dup")[0]+"dup")])+"\n") elif len(line[8].split("del")) >1 and len(line[8].split("ins"))>1: g.write("\t".join([line[i] for i in range(0, 8)] + [str(line[7] + ":" + line[8].split("del")[0] + "del")+"ins"+line[8].split("ins")[1]]) + "\n") else: g.write("\t".join([line[i] for i in range(0, 8)] + [str(line[7] + ":" + line[8])]) + "\n") else: g.write("\t".join([line[i] for i in range(0, 8)]+[str(line[7]+":"+line[8])])+"\n") ```
{ "source": "jowr/jopy", "score": 3 }
#### File: jopy/jopy/base.py ```python from __future__ import print_function, division class JopyBaseClass(object): """The base class for all objects The mother of all classes in the jopy module. Implements basic functionality for debugging and exception handling. Extended description of function, just a usage example for the NumPy style docstrings. See also: http://sphinx-doc.org/ext/example_numpy.html#example-numpy """ def __init__(self): self.DEBUG = False @property def DEBUG(self): return self._DEBUG @DEBUG.setter def DEBUG(self, value): self._DEBUG = value @DEBUG.deleter def DEBUG(self): del self._DEBUG def autolog(self, message): """Centralised logging facility Use this function in your code to write to the log files. It can also be extended to perform some more sophisticated actions for advanced error detection. Function name and line number get prepended automatically. Parameters ---------- message : str message to log """ import inspect, logging # Get the previous frame in the stack, otherwise it would # be this function!!! func = inspect.currentframe().f_back.f_code msg = "%s: %s in %s:%i" % ( message, func.co_name, func.co_filename, func.co_firstlineno ) # Dump the message + the name of this function to the log. logging.debug(msg) if self.DEBUG: print(msg) ``` #### File: jopy/styles/__init__.py ```python import matplotlib.pyplot as plt try: from .plots import Figure except: from jopy.styles.plots import Figure def get_figure(orientation='landscape',width=110,fig=None,axs=False): """Creates a figure with some initial properties The object can be customised with the parameters. But since it is an object, it can also be modified later. Parameters ---------- orientation : str either landscape or portrait width : float width in mm, used for scaling the default A4 format if width is less than 10, use it as a factor to apply to A4 fig : matplotlib.figure.Figure, jopy.plots.Figure The figure object to handle, None creates a new figure axs : boolean True or False - Should an axis object be added to the figure? Returns ------- jopy.plots.Figure, matplotlib.figure.Figure The figure object """ if fig is None: fig = plt.figure() fig.__class__ = Figure sideA = 297. # height of A4 sideB = 210. # width of A4 mm_to_inch = 3.93700787401575/100.0 # factor mm to inch if width < 0: raise ValueError("size cannot be less than zero.") width *= mm_to_inch sideA *= mm_to_inch sideB *= mm_to_inch if orientation=='landscape': if width < 10*mm_to_inch: width *= sideA scale = width/sideA width = sideA*scale #=width height = sideB*scale elif orientation=='portrait': if width < 10*mm_to_inch: width *= sideB scale = width/sideB width = sideB*scale #=width height = sideA*scale else: raise ValueError("Unknown orientation") fig.set_size_inches(width,height) if axs: fig.add_subplot(111) return fig def plot_axis(data,kind,ax=None): if ax is None: ax = plt.gca() if __name__ == "__main__": from jopy.utils import module_class_dict import jopy.styles.mplib as mpl dic = module_class_dict(mpl) for i in dic: line_fig,map_fig = dic[i]()._show_info() line_fig.savefig(i+"_lines.pdf") map_fig.savefig(i+"_maps.pdf") ``` #### File: jopy/styles/plots.py ```python from __future__ import print_function, division import matplotlib import matplotlib.pyplot as plt import copy class Figure(matplotlib.figure.Figure): def _get_axis(self,**kwargs): ax = kwargs.pop('ax', self._get_axes()[0]) return ax def _get_axes(self,**kwargs): ax = kwargs.pop('ax', []) ax = kwargs.pop('axs', ax) if ax is None or len(ax)<1: try: ax = super(Figure, self)._get_axes() except: ax = [plt.gca()]; pass return ax def get_legend_handles_labels_axis(self,ax=None,axs=None): """Extracts the handles and labels from an axis or from a list of axes. Useful for manual legend processing and customisation. """ ax = self._get_axes(ax=ax,axs=axs) handles = []; labels = [] for a in ax: handlestmp, labelstmp = a.get_legend_handles_labels() handles.extend(handlestmp) labels.extend(labelstmp) return handles, labels, ax[0] def draw_legend(self, **kwargs): """Puts a legend on the provided axis. Can be used with kwargs like ncol=2 and alike, which are passed on to the corrresponding pyplot routines. """ tc = kwargs.pop('textcolour', matplotlib.rcParams["text.color"]) tc = kwargs.pop('textcolor', tc) #kwargs.setdefault('loc', 0) #kwargs.setdefault('frameon', True) h, l, a = self.get_legend_handles_labels_axis(ax=kwargs.pop('ax', None),axs=kwargs.pop('axs', None)) #handles = copy.copy(kwargs.pop('handles', handles)) handles = [] for h in kwargs.pop('handles', h): handles.append(copy.copy(h)) handles[-1].set_alpha(1.0) labels = [] for l in kwargs.pop('labels', l): labels.append(copy.copy(l)) legend = a.legend(handles,labels,**kwargs) try: rect = legend.get_frame() rect.set_facecolor(matplotlib.rcParams["grid.color"]) rect.set_linewidth(0) rect.set_edgecolor(tc) # Change the alpha value, make sure it is visible def set_alpha(objList): for o in objList: try: o.set_alpha(1.0) except: matplotlib.artist.setp(o, alpha=1.0); pass #mpl.artist.setp(o, markersize=6) #mpl.artist.setp(o, alpha=np.max([1.0,o.get_alpha()])) # h.set_alpha(np.max([1.0,h.get_alpha()])) # #mpl.artist.setp(h, alpha=np.max([1.0,h.get_alpha()])) # mpl.artist.setp(h, markersize=6) set_alpha(legend.legendHandles) set_alpha(legend.get_lines()) set_alpha(legend.get_patches()) # #for h in legend.legendHandles: # h.set_alpha(np.max([1.0,h.get_alpha()])) # #mpl.artist.setp(h, alpha=np.max([1.0,h.get_alpha()])) # mpl.artist.setp(h, markersize=6) # Change the legend label colors to almost black, too for t in legend.texts: t.set_color(tc) except AttributeError: # There are no labled objects pass return legend def to_file(self, name, **kwargs): dic = dict(bbox_inches='tight') dic.update(**kwargs) self.savefig(name, **dic) def to_raster(self, name, **kwargs): dic = dict(dpi=300) dic.update(**kwargs) if name.endswith(".png") or name.endswith(".jpg"): self.to_file(name, **dic) else: raise ValueError("You can only save jpg and png images as raster images.") def to_power_point(self, name, **kwargs): dic = dict(dpi=600, transparent=True) dic.update(**kwargs) if name.endswith(".png"): self.to_raster(name, **dic) else: raise ValueError("You should use png images with MS PowerPoint.") ``` #### File: jopy/jopy/utils.py ```python from __future__ import print_function, division import numpy as np from numpy import pi,e def module_class_dict(mod): """Get all classes from a module in a dict with the names Parameters ---------- mod : Python module The module to extract the classes from. """ mod_name = str(mod).split("'")[1] ret = {} for name, cls in mod.__dict__.items(): if isinstance(cls, type): if mod_name in str(cls): ret[name] = cls return ret # def module_class_dict(mod): # """ # Returns a list of names of the abstract base # classes that should not be instantiated. Can # be used to build an ignore list. # """ # mod_name = str(mod).split("'")[1] # print(mod_name) # ignList = {} # for i in inspect.getmembers(mod): # if inspect.isclass(i[1]): # ignList[i[0]] = i[1] # return ignList #dict([(name, cls) for name, cls in mod.__dict__.items() if isinstance(cls, type)]) def transition_factor(start=0.25, stop=0.75, position=0.5, order=2): """Weighting factor for smooth transition (from 0 to 1) This function returns a value between 0 and 1. A smooth transition is achieved by means of defining the position and the transition interval from start to stop parameter. Outside this interval, the 0 and the 1 are returned, respectively. This transition function with up to two smooth derivatives was taken from [1]. If you provide an order higher than 2, the generalised logistic function [2] will be used to calculated the transition curve. Parameters ---------- start : float start of transition interval; default 0.25 stop : float end of transition interval; default 0.75 position : float current position; default 0.5 order : integer Smooth up to which derivative?; default 2 Returns ------- float smooth transition between 0 and 1 from start to stop [-] Use tFactor in an equation like this: tFactor = transition_factor(start=start,stop=stop,position=position); smoothed = tFactor*1stValue + (1 - tFactor)*2ndValue; References ---------- [1] <NAME>, Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems, PhD thesis, Technical University <NAME>, 2008 [2] Generalised logistic function on http://en.wikipedia.org/wiki/Generalised_logistic_function """ a_map = [-1./2., -2./pi, -3./4., -8./pi] #First parameters b_map = [ 1./2., 1./2., 1./2., 1./2.] #Second parameters #Rename variables to match with Richter2008, p.68ff phi = 0.0 #"current phase"; a = 0.0 # "multiplier"; b = 0.0 # "addition"; x_t = 0.0 # "Start of transition"; x = 0.0 # "Current position"; DELTAx = 0.0 # "Length of transition"; #Parameters for generalised logistic function A = 0. #"Lower asymptote"; K = 1. #"Upper asymptote"; B = 8. #"Growth rate"; nu= 1. #"Symmetry changes"; Q = nu #"Zero correction"; M = nu #"Maximum growth for Q = nu"; X = 0. END = 0. START = 0. factor = 0. order = int(order) if order < 0: raise ValueError("This function only supports positive values for the order of smooth derivatives.") swapper = None if start>stop: swapper = start start = stop stop = swapper #raise Exception("There is only support for positive differences, please provide start < stop.") position = np.array(position) res = np.zeros_like(position) res[position < start] = 1.0 res[position > stop ] = 0.0 theMask = (position >= start) & (position <= stop) position = position[theMask] #0th to 2nd order if order <= 2: a = a_map[order]; b = b_map[order]; x = position; DELTAx = stop - start; x_t = start + 0.5*DELTAx; phi = (x - x_t) / DELTAx * pi; else: #higher order #We need to do some arbitrary scaling: END = 4.0 START = -2.0 factor= (END-START) / (stop-start) X = START + (position - start) * factor resTMP = np.zeros_like(position) if (order == 0): for i in range(len(position)): resTMP[i] = a * np.sin(phi[i]) + b elif (order == 1): for i in range(len(position)): resTMP[i] = a * ( 1./2. * np.cos(phi[i]) * np.sin(phi[i]) + 1./2.*phi[i]) + b elif (order == 2): for i in range(len(position)): resTMP[i] = a * ( 1./3. * np.cos(phi[i])**2. * np.sin(phi[i]) + 2./3. * np.sin(phi[i])) + b else: for i in range(len(position)): resTMP[i] = 1. - (A + (K-A) / np.power( 1. + Q * np.power(e,(-B*(X[i] - M))),1./nu)) res[theMask] = resTMP if swapper is None: return 1-res else: return res def transition_factor_alt(center = 0.5, length = 1.0, position = 0.0, order = 2): """Please see :py:func:`.transition_factor` for documentation """ return transition_factor(start=center-0.5*length, stop=center+0.5*length, position=position, order=order) ``` #### File: test/test_thermo/__init__.py ```python from __future__ import print_function, division import jopy.thermo class TestUtils(object): @classmethod def setup_class(cls): pass def test_lmtd(self): res = jopy.thermo.lmtd(0.0, 0.0) assert res == 0.0 res = jopy.thermo.lmtd(10.0, 10.0) print(res,10.0) @classmethod def teardown_class(cls): pass ```
{ "source": "jowsey/botflop", "score": 2 }
#### File: botflop/cogs/linking_panel.py ```python import os import discord import requests import json import logging import sys from discord.ext import commands, tasks from discord.ext.commands import has_permissions, MissingPermissions from dotenv import load_dotenv import aiohttp import asyncio class Linking(commands.Cog): def __init__(self, bot): self.bot = bot self.guild_id = int(os.getenv('guild_id')) self.crabwings_role_id = int(os.getenv('crabwings_role_id')) self.duckfeet_role_id = int(os.getenv('duckfeet_role_id')) self.elktail_role_id = int(os.getenv('elktail_role_id')) self.client_role_id = int(os.getenv('client_role_id')) self.subuser_role_id = int(os.getenv('subuser_role_id')) self.verified_role_id = int(os.getenv('verified_role_id')) @commands.Cog.listener() async def on_message(self, message): self.guild = self.bot.get_guild(self.guild_id) if message.author != self.bot.user and message.guild is None and self.guild.get_member(message.author.id) is not None: if "://" in message.content: return if self.guild in message.author.guilds: channel = message.channel await channel.send("Processing, please wait...") # Potential API key, so tries it out if len(message.content) == 48: url = "https://panel.birdflop.com/api/client/account" headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + message.content, } # response = requests.get(url, headers=headers) async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as response: # If API token is verified to be correct: if response.status == 200: # Formats response of account in JSON format json_response = await response.json() # Loads contents of users.json file = open('users.json', 'r') data = json.load(file) file.close() # Checks if user exists. If so, skips adding them to users.json client_id_already_exists = False discord_id_already_exists = False for user in data['users']: if user['client_id'] == json_response['attributes']['id']: client_id_already_exists = True logging.info("Client ID already exists") if user['discord_id'] == message.author.id: discord_id_already_exists = True logging.info("Discord ID already exists") if not client_id_already_exists and not discord_id_already_exists: data['users'].append({ 'discord_id': message.author.id, 'client_id': json_response['attributes']['id'], 'client_api_key': message.content }) json_dumps = json.dumps(data, indent=2) # Adds user to users.json file = open('users.json', 'w') file.write(json_dumps) file.close() member = self.guild.get_member(message.author.id) if member: url = "https://panel.birdflop.com/api/client" headers = { 'Accept': 'application/json', 'Authorization': 'Bearer ' + message.content, } async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as response: # If API token is verified to be correct, continues if response.status == 200: # Formats response for servers in JSON format servers_json_response = await response.json() user_client = False user_subuser = False user_crabwings = False user_duckfeet = False user_elktail = False for server in servers_json_response['data']: server_owner = server['attributes']['server_owner'] if server_owner: user_client = True elif not server_owner: user_subuser = True server_node = server['attributes']['node'] if server_node == "Crabwings - NYC": user_crabwings = True elif server_node == "Duckfeet - EU": user_duckfeet = True elif server_node == "Elktail - EU": user_elktail = True if user_client: role = discord.utils.get(self.guild.roles, id=self.client_role_id) await member.add_roles(role) if user_subuser: role = discord.utils.get(self.guild.roles, id=self.subuser_role_id) await member.add_roles(role) if user_crabwings: role = discord.utils.get(self.guild.roles, id=self.crabwings_role_id) await member.add_roles(role) if user_duckfeet: role = discord.utils.get(self.guild.roles, id=self.duckfeet_role_id) await member.add_roles(role) if user_elktail: role = discord.utils.get(self.guild.roles, id=self.elktail_role_id) await member.add_roles(role) role = discord.utils.get(self.guild.roles, id=self.verified_role_id) await member.add_roles(role) await channel.send( 'Your Discord account has been linked to your panel account! You may unlink your Discord and panel accounts by reacting in the #verification channel or by deleting your Verification API key.') logging.info("Success message sent to " + message.author.name + "#" + str( message.author.discriminator) + " (" + str( message.author.id) + ")" + ". User linked to API key " + message.content + " and client_id " + str( json_response['attributes']['id'])) elif discord_id_already_exists: await channel.send( 'Sorry, your Discord account is already linked to a panel account. If you would like to link your Discord account to a different panel account, please unlink your Discord account first by reacting in the #verification channel.') logging.info("Duplicate Discord message sent to " + message.author.name + "#" + str( message.author.discriminator) + " (" + str( message.author.id) + ")" + " for using API key " + message.content + " linked to client_id " + str( json_response['attributes']['id'])) elif client_id_already_exists: await channel.send( 'Sorry, your panel account is already linked to a Discord account. If you would like to link your panel account to a different Discord account, please unlink your panel account first by deleting its Verification API key and waiting up to 10 minutes.') logging.info("Duplicate panel message sent to " + message.author.name + "#" + str( message.author.discriminator) + " (" + str( message.author.id) + ")" + " for using API key " + message.content + " linked to client_id " + str( json_response['attributes']['id'])) else: # Says if API key is the corect # of characters but invalid await channel.send("Sorry, that appears to be an invalid API key.") logging.info( 'invalid sent to ' + message.author.name + "#" + str( message.author.discriminator) + " (" + str( message.author.id) + ")") else: # Says this if API key is incorrect # of characters await channel.send( 'Sorry, that doesn\'t appear to be an API token. An API token should be a long string resembling this: ```<KEY>```') logging.info("obvious incorrect sent to " + message.author.name + "#" + str( message.author.discriminator) + " (" + str(message.author.id) + ")") def setup(bot): bot.add_cog(Linking(bot)) ```
{ "source": "Jowsjw/Image-Classifier-Application", "score": 2 }
#### File: Jowsjw/Image-Classifier-Application/predict.py ```python import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms,models import json import PIL from PIL import Image def main(): in_arg = get_input_args() model = loadmodel(in_arg.modelpath) device=['cuda','cpu'] if gpu = True: model.to(device[0]) else: print๏ผˆ'Please turn on the GPU mode') probs, classes = predict(in_arg.image, model, in_arg.top_k,in_arg.cat_to_name) probability,labels = get_flower_name(predict(in_arg.image, model, in_arg.top_k,in_arg.cat_to_name)) print("image to predict:", in_arg.image) print("\n flower:",labels) print("\n probability:",probability) def get_input_args(): parser = argparse.ArgumentParser() parser.add_argument('--image', type=str, help='image path') parser.add_argument('--modelpath', type=str, help='the path that we save our model') parser.add_argument('--top_k', type=int, default=5, help='return top K classes') parser.add_argument('--cat_to_name', type=str, default='', help='helps us to find the flower names') return parser.parse_args() def loadmodel(modelpath): checkpoint = torch.load(modelpath) model = checkpoint['model'] model.state_dict=checkpoint['state_dict'] model.classifier=checkpoint['classifier'] model.class_to_idx = checkpoint['class_to_idx'] return model def process_image(image): ig = Image.open(image) ig = ig.resize((256,256)) ig = ig.crop((16,16,240,240)) ig = np.array(ig)/255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) ig = (ig - mean) / std ig = ig.transpose(2,0,1) return ig def predict(image, model, top_k,cat_to_name): image = process_image(image) image = torch.from_numpy(np.array([image])).float() model.eval() image = image.cuda() output = model.forward(image) ps = torch.exp(output).topk(topk) prob = ps[0][0] index = ps[1][0] convert = [] for i in range(len(model.class_to_idx.items())): convert.append(list(model.class_to_idx.items())[i][0]) label = [] for i in range(topk): label.append(convert[index[i]]) prob = prob.cpu() prob = prob.detach().numpy() return prob,label def get_flower_name(image, model, top_k,cat_to_name): with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) prob,classes = predict(image, model, top_k,cat_to_name) labels = [] for i in classes: labels.append(cat_to_name[i]) probability = [] for i in proba: probability.append(i) return probability,labels if __name__ == '__main__': main() ```
{ "source": "jowslive/face-recog", "score": 3 }
#### File: face-recog/Python/Trainer_All.py ```python import os # Importando o OS para passar uma pasta como caminho import cv2 # Importando o OpenCV import numpy as np # Importando o Numpy from PIL import Image # Importando o Image LBPHFace = cv2.face.LBPHFaceRecognizer_create(1, 1, 7,7) # CRIA O Mร‰TODO LBPH DE RECONHECIMENTO FACIAL path = 'C:/Users/joaob/Documents/Github/face-recog/Python/dataSet' # Caminho para a pasta que contรฉm as fotos def getImageWithID (path): imagePaths = [os.path.join(path, f) for f in os.listdir(path)] FaceList = [] IDs = [] for imagePath in imagePaths: faceImage = Image.open(imagePath).convert('L') # Abre a imagem e converte para cinza faceImage = faceImage.resize((110,110)) # Redimenciona a imagem para que o mรฉtodo reconhecedor LBPH possa ser treinado faceNP = np.array(faceImage, 'uint8') # Converte a imagem em um array Numpy ID = int(os.path.split(imagePath)[-1].split('.')[1]) # Recupera o ID do array FaceList.append(faceNP) # Acrescenta o array Numpy para a lista IDs.append(ID) # Acrescenta o ID para a lista de IDs cv2.imshow('Training Set', faceNP) # Mostra as imagens na lista cv2.waitKey(125) return np.array(IDs), FaceList # Os IDs serรฃo convertidos em um array Numpy IDs, FaceList = getImageWithID(path) # ------------------------------------ TREINANDO O RECONHECIMENTO FACIAL ---------------------------------------- print('TREINANDO OS ARQUIVOS......') LBPHFace.train(FaceList, IDs) print('Mร‰TODO LBPH RECONHECIDOR FACIAL COMPLETADO...') LBPHFace.save('Recogniser/trainingDataLBPH.xml') print ('TODOS ARQUIVOS XML FORAM SALVOS...') cv2.destroyAllWindows() ```
{ "source": "joxeankoret/capstone", "score": 2 }
#### File: python/capstone/arm.py ```python import ctypes, ctypes.util from arm_const import * # define the API class arm_op_mem(ctypes.Structure): _fields_ = ( ('base', ctypes.c_uint), ('index', ctypes.c_uint), ('scale', ctypes.c_int), ('disp', ctypes.c_int), ) class arm_op_shift(ctypes.Structure): _fields_ = ( ('type', ctypes.c_uint), ('value', ctypes.c_uint), ) class arm_op_value(ctypes.Union): _fields_ = ( ('reg', ctypes.c_uint), ('imm', ctypes.c_int), ('fp', ctypes.c_double), ('mem', arm_op_mem), ) class arm_op(ctypes.Structure): _fields_ = ( ('shift', arm_op_shift), ('type', ctypes.c_uint), ('value', arm_op_value), ) class _cs_arm(ctypes.Structure): _fields_ = ( ('cc', ctypes.c_uint), ('update_flags', ctypes.c_bool), ('writeback', ctypes.c_bool), ('op_count', ctypes.c_uint8), ('operands', arm_op * 20), ) def get_arch_info(a): return (a.cc, a.update_flags, a.writeback, a.operands[:a.op_count]) ```
{ "source": "Joxis/VKD", "score": 2 }
#### File: data/veri/data_manager.py ```python import os.path as osp import numpy as np from copy import deepcopy class Veri(object): """ VeRi Reference: """ def __init__(self, root='/data/datasets/', min_seq_len=0): self.root = osp.join(root, 'VeRi') self.train_name_path = osp.join(self.root, 'name_train.txt') self.query_name_path = osp.join(self.root, 'name_query.txt') self.track_gallery_info_path = osp.join(self.root, 'test_track.txt') train_names = self._get_names(self.train_name_path) query_names = self._get_names(self.query_name_path) train, num_train_tracklets, num_train_pids, num_train_imgs = self._process_train(train_names) gallery, num_gallery_tracklets, num_gallery_pids, num_gallery_imgs = self._process_gallery() query, num_query_tracklets, num_query_pids, num_query_imgs = self._process_query(query_names, gallery) gallery_img = [] num_gallery_tracklets = 0 for el in gallery: for fr in el[0]: gallery_img.append(([fr], el[1], el[2])) num_gallery_tracklets += 1 query_img, _, _, _ = self._process_query_image(query_names) num_imgs_per_tracklet = num_train_imgs + num_gallery_imgs + num_query_imgs total_num = np.sum(num_imgs_per_tracklet) min_num = np.min(num_imgs_per_tracklet) max_num = np.max(num_imgs_per_tracklet) avg_num = np.mean(num_imgs_per_tracklet) num_total_pids = num_train_pids + num_query_pids num_total_tracklets = num_train_tracklets + num_gallery_tracklets + num_query_tracklets print("=> VeRi loaded") print("Dataset statistics:") print(" -----------------------------------------") print(" subset | # ids | # tracklets | # images") print(" -----------------------------------------") print(" train | {:5d} | {:8d} | {:8d}".format(num_train_pids, num_train_tracklets, np.sum(num_train_imgs))) print(" query | {:5d} | {:8d} | {:8d}".format(num_query_pids, num_query_tracklets, np.sum(num_query_imgs))) print(" gallery | {:5d} | {:8d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets, np.sum(num_gallery_imgs))) print(" -----------------------------------------") print(" total | {:5d} | {:8d} | {:8d}".format(num_total_pids, num_total_tracklets, total_num)) print(" -----------------------------------------") print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num)) print(" -----------------------------------------") self.train = train self.query = query self.gallery = gallery self.gallery_img = gallery_img self.query_img = query_img self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids def _get_names(self, fpath): names = [] with open(fpath, 'r') as f: for line in f: new_line = line.rstrip() names.append(new_line) return names def _process_gallery(self): gallery = [] pids = [] num_images = [] with open(self.track_gallery_info_path) as fp: for line in fp.readlines(): imgs_names = [osp.join(self.root, f'image_test/{el}') for el in line.split(' ')] imgs_names = imgs_names[1:len(imgs_names)-1] pid, camera = map(int, line.split(' ')[0].replace('c', '').split('_')[:2]) camera -= 1 gallery.append((imgs_names, pid, camera)) num_images.append(len(imgs_names)) pids.append(pid) return gallery, len(gallery), len(set(pids)), num_images def _process_train(self, train_names): train = [] pids = [] num_images = [] train_names = sorted(train_names) hs = np.asarray([hash(el[:9]) for el in train_names]) displaces = np.nonzero(hs[1:] - hs[:-1])[0] + 1 displaces = np.concatenate([[0], displaces, [len(hs)]]) for idx in range(len(displaces) - 1): names = train_names[displaces[idx]: displaces[idx + 1]] imgs_names = [osp.join(self.root, f'image_train/{el}') for el in names] pid, camera = map(int, names[0].replace('c', '').split('_')[:2]) camera -= 1 train.append((imgs_names, pid, camera)) num_images.append(len(imgs_names)) pids.append(pid) # RE-LABEl pid_map = {pid: idx for idx, pid in enumerate(np.unique(pids))} for i in range(len(train)): pid = pids[i] train[i] = (train[i][0], pid_map[pid], train[i][2]) pids[i] = pid_map[pid] return train, len(train), len(set(pids)), num_images def _process_query(self, query_names, gallery): queries = [] pids = [] num_images = [] for qn in query_names: pid, camera = map(int, qn.replace('c', '').split('_')[:2]) camera -= 1 # look into gallery for el in gallery: if el[1] == pid and el[2] == camera: queries.append((deepcopy(el[0]), el[1], el[2])) num_images.append(len(el[0])) pids.append(el[1]) break return queries, len(queries), len(set(pids)), num_images def _process_query_image(self, query_names): queries = [] pids = [] num_images = [] for qn in query_names: imgs_names = [osp.join(self.root, f'image_query/{qn}')] pid, camera = map(int, qn.replace('c', '').split('_')[:2]) camera -= 1 queries.append((imgs_names, pid, camera)) num_images.append(len(imgs_names)) pids.append(pid) return queries, len(queries), len(set(pids)), num_images ``` #### File: VKD/model/loss.py ```python import torch from torch import nn as nn from torch.nn import functional as F def l2_norm(x: torch.Tensor): return x / torch.norm(x, dim=-1, keepdim=True) class MatrixPairwiseDistances(nn.Module): def __init__(self): super(MatrixPairwiseDistances, self).__init__() def __call__(self, x: torch.Tensor, y: torch.Tensor = None): if y is not None: # exact form of squared distances differences = x.unsqueeze(1) - y.unsqueeze(0) else: differences = x.unsqueeze(1) - x.unsqueeze(0) distances = torch.sum(differences * differences, -1) return distances class SmoothedCCE(nn.Module): def __init__(self, num_classes: int, eps: float = 0.1, reduction: str='sum'): super(SmoothedCCE, self).__init__() self.reduction = reduction assert reduction in ['sum', 'mean'] self.eps = eps self.num_classes = num_classes self.logsoftmax = nn.LogSoftmax(dim=1) self.factor_0 = self.eps / self.num_classes self.factor_1 = 1 - ((self.num_classes - 1) / self.num_classes) * self.eps def labels_to_one_hot(self, labels): onehot = torch.ones(len(labels), self.num_classes).to(labels.device) * self.factor_0 onehot[torch.arange(0, len(labels), dtype=torch.long), labels.long()] = self.factor_1 return onehot def forward(self, feats, target): """ target are long in [0, num_classes)! """ one_hots = self.labels_to_one_hot(target) if self.reduction == 'sum': loss = torch.sum(-torch.sum(one_hots * self.logsoftmax(feats), -1)) else: loss = torch.mean(-torch.sum(one_hots * self.logsoftmax(feats), -1)) return loss def __call__(self, *args, **kwargs): return super(SmoothedCCE, self).__call__(*args, **kwargs) class KDLoss(nn.Module): def __init__(self, temp: float, reduction: str): super(KDLoss, self).__init__() self.temp = temp self.reduction = reduction self.kl_loss = nn.KLDivLoss(reduction=reduction) def forward(self, teacher_logits: torch.Tensor, student_logits: torch.Tensor): student_softmax = F.log_softmax(student_logits / self.temp, dim=-1) teacher_softmax = F.softmax(teacher_logits / self.temp, dim=-1) kl = nn.KLDivLoss(reduction='none')(student_softmax, teacher_softmax) kl = kl.sum() if self.reduction == 'sum' else kl.sum(1).mean() kl = kl * (self.temp ** 2) return kl def __call__(self, *args, **kwargs): return super(KDLoss, self).__call__(*args, **kwargs) class LogitsMatching(nn.Module): def __init__(self, reduction: str): super(LogitsMatching, self).__init__() self.mse_loss = nn.MSELoss(reduction=reduction) def forward(self, teacher_logits: torch.Tensor, student_logits: torch.Tensor): return self.mse_loss(student_logits, teacher_logits) def __call__(self, *args, **kwargs): return super(LogitsMatching, self).__call__(*args, **kwargs) class SimilarityDistillationLoss(nn.Module): def __init__(self, metric: str): assert metric in ['l2', 'l1', 'huber'] super(SimilarityDistillationLoss, self).__init__() self.distances = MatrixPairwiseDistances() self.metric = metric def forward(self, teacher_embs: torch.Tensor, student_embs: torch.Tensor): teacher_distances = self.distances(teacher_embs) student_distances = self.distances(student_embs) if self.metric == 'l2': return 0.5 * nn.MSELoss(reduction='mean')(student_distances, teacher_distances) if self.metric == 'l1': return 0.5 * nn.L1Loss(reduction='mean')(student_distances, teacher_distances) if self.metric == 'huber': return 0.5 * nn.SmoothL1Loss(reduction='mean')(student_distances, teacher_distances) raise ValueError() def __call__(self, *args, **kwargs): return super(SimilarityDistillationLoss, self).__call__(*args, **kwargs) class OnlineTripletLoss(nn.Module): def __init__(self, margin='soft', batch_hard=True, reduction='mean'): super(OnlineTripletLoss, self).__init__() self.batch_hard = batch_hard self.reduction = reduction if isinstance(margin, float) or margin == 'soft': self.margin = margin else: raise NotImplementedError( 'The margin {} is not recognized in TripletLoss()'.format(margin)) def forward(self, feat, id=None, pos_mask=None, neg_mask=None, mode='id', dis_func='eu', n_dis=0): if dis_func == 'cdist': feat = feat / feat.norm(p=2, dim=1, keepdim=True) dist = self.cdist(feat, feat) elif dis_func == 'eu': dist = self.cdist(feat, feat) if mode == 'id': if id is None: raise RuntimeError('foward is in id mode, please input id!') else: identity_mask = torch.eye(feat.size(0)).byte() identity_mask = identity_mask.cuda() if id.is_cuda else identity_mask same_id_mask = torch.eq(id.unsqueeze(1), id.unsqueeze(0)) negative_mask = same_id_mask ^ 1 positive_mask = same_id_mask ^ identity_mask.bool() elif mode == 'mask': if pos_mask is None or neg_mask is None: raise RuntimeError('foward is in mask mode, please input pos_mask & neg_mask!') else: positive_mask = pos_mask same_id_mask = neg_mask ^ 1 negative_mask = neg_mask else: raise ValueError('unrecognized mode') if self.batch_hard: if n_dis != 0: img_dist = dist[:-n_dis, :-n_dis] max_positive = (img_dist * positive_mask[:-n_dis, :-n_dis].float()).max(1)[0] min_negative = (img_dist + 1e5 * same_id_mask[:-n_dis, :-n_dis].float()).min(1)[0] dis_min_negative = dist[:-n_dis, -n_dis:].min(1)[0] z_origin = max_positive - min_negative # z_dis = max_positive - dis_min_negative else: max_positive = (dist * positive_mask.float()).max(1)[0] min_negative = (dist + 1e5 * same_id_mask.float()).min(1)[0] z = max_positive - min_negative else: pos = positive_mask.topk(k=1, dim=1)[1].view(-1, 1) positive = torch.gather(dist, dim=1, index=pos) pos = negative_mask.topk(k=1, dim=1)[1].view(-1, 1) negative = torch.gather(dist, dim=1, index=pos) z = positive - negative if isinstance(self.margin, float): b_loss = torch.clamp(z + self.margin, min=0) elif self.margin == 'soft': if n_dis != 0: b_loss = torch.log(1 + torch.exp( z_origin)) + -0.5 * dis_min_negative # + torch.log(1+torch.exp(z_dis)) else: b_loss = torch.log(1 + torch.exp(z)) else: raise NotImplementedError("How do you even get here!") if self.reduction == 'mean': return b_loss.mean() return b_loss.sum() def cdist(self, a, b): ''' Returns euclidean distance between a and b Args: a (2D Tensor): A batch of vectors shaped (B1, D) b (2D Tensor): A batch of vectors shaped (B2, D) Returns: A matrix of all pairwise distance between all vectors in a and b, will be shape of (B1, B2) ''' diff = a.unsqueeze(1) - b.unsqueeze(0) return ((diff ** 2).sum(2) + 1e-12).sqrt() def __call__(self, *args, **kwargs): return super(OnlineTripletLoss, self).__call__(*args, **kwargs) ``` #### File: VKD/utils/saver.py ```python import subprocess from pathlib import Path import cv2 import numpy as np import torch import json from torch.utils.tensorboard import SummaryWriter from model.net import TriNet class Saver(object): """ """ def __init__(self, path: str, uuid: str): self.path = Path(path) / uuid self.path.mkdir(exist_ok=True, parents=True) self.chk_path = self.path / 'chk' self.chk_path.mkdir(exist_ok=True) self.log_path = self.path / 'logs' self.log_path.mkdir(exist_ok=True) self.params_path = self.path / 'params' self.params_path.mkdir(exist_ok=True) # TB logs self.writer = SummaryWriter(str(self.path)) # Dump the `git log` and `git diff`. In this way one can checkout # the last commit, add the diff and should be in the same state. for cmd in ['log', 'diff']: with open(self.path / f'git_{cmd}.txt', mode='wt') as f: subprocess.run(['git', cmd], stdout=f) def load_logs(self): with open(str(self.params_path / 'params.json'), 'r') as fp: params = json.load(fp) with open(str(self.params_path / 'hparams.json'), 'r') as fp: hparams = json.load(fp) return params, hparams @staticmethod def load_net(path: str, chk_name: str, dataset_name: str): with open(str(Path(path) / 'params' / 'hparams.json'), 'r') as fp: net_hparams = json.load(fp) with open(str(Path(path) / 'params' / 'params.json'), 'r') as fp: net_params = json.load(fp) assert dataset_name == net_params['dataset_name'] net = TriNet(backbone_type=net_hparams['backbone_type'], pretrained=True, num_classes=net_hparams['num_classes']) net_state_dict = torch.load(Path(path) / 'chk' / chk_name) net.load_state_dict(net_state_dict) return net def write_logs(self, model: torch.nn.Module, params: dict): with open(str(self.params_path / 'params.json'), 'w') as fp: json.dump(params, fp) with open(str(self.params_path / 'hparams.json'), 'w') as fp: json.dump(model.get_hparams(), fp) def write_image(self, image: np.ndarray, epoch: int, name: str): out_image_path = self.log_path / f'{epoch:05d}_{name}.jpg' cv2.imwrite(str(out_image_path), image) image = image[..., ::-1] self.writer.add_image(f'{name}', image, epoch, dataformats='HWC') def dump_metric_tb(self, value: float, epoch: int, m_type: str, m_desc: str): self.writer.add_scalar(f'{m_type}/{m_desc}', value, epoch) def save_net(self, net: torch.nn.Module, name: str = 'weights', overwrite: bool = False): weights_path = self.chk_path / name if weights_path.exists() and not overwrite: raise ValueError('PREVENT OVERWRITE WEIGHTS') torch.save(net.state_dict(), weights_path) def dump_hparams(self, hparams: dict, metrics: dict): self.writer.add_hparams(hparams, metrics) ```
{ "source": "joxoby/ign-conan", "score": 2 }
#### File: urdfdom_headers/all/conanfile.py ```python import os from conans import CMake, ConanFile, tools class URDFDomHeaders(ConanFile): name = "urdfdom_headers" license = "BSD" author = "<NAME> <EMAIL>" url = "https://github.com/ros/urdfdom" description = "Headers for URDF parsers" topics = ("robotics", "simulation") settings = "os", "compiler", "build_type", "arch" generators = "cmake", "cmake_find_package_multi" @property def _source_subfolder(self): return "source_subfolder" def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("urdfdom_headers-1.0.4", self._source_subfolder) def requirements(self): pass # for req in self.conan_data["requirements"]: # self.requires(req) def _configure_cmake(self): cmake = CMake(self) cmake.definitions["BUILD_TESTING"] = False cmake.configure(source_folder=self._source_subfolder) return cmake def build(self): cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() def package_info(self): pass ```
{ "source": "Joy127690GitHub/Sensor_evaluation", "score": 3 }
#### File: Sensor_evaluation/ultrasonic_sm/oscilloscope2.py ```python import time import numpy as np from matplotlib.lines import Line2D import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.widgets import CheckButtons import pandas as pd #import PySerialTest.py class Scope(): def __init__(self, ax, maxt=30): self.ax = ax self.maxt = maxt #in second ๆ—ถ้—ด่ฝด้•ฟๅบฆ self.data_time = 7*[pd.Series(dtype='int64')] self.node_addr = 7*[pd.Series(dtype='int64')] self.data_dist = 7*[pd.Series(dtype='int64')] self.data_amp = 7*[pd.Series(dtype='int64')] #self.scat=7*[plt.scatter([],[])] self.start_time = 7*[0] self.last_record = 7*[0] class Scope_line(Scope): def __init__(self,fig, ax, ax_limit, blind_zone, maxt=30): super().__init__(ax) self.color_cycle=['b', 'g', 'c', 'm', 'y', 'k', 'w'] self.fig = fig self.blind_zone = blind_zone #ax ๅ‚ๆ•ฐ่ฎพ็ฝฎ #็ฌฌไธ€่ฝด๏ผšไธป่ฝดaxๅ‚ๆ•ฐ่ฎพ็ฝฎ๏ผšTime_Distance self.ax.set_title("Time vs Distance(lines on/off via clicking legend)") self.ax.set_xlim(0, self.maxt) #ๆจชๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ self.ax.set_ylim(-0.02*ax_limit, 1.1*ax_limit)#็บตๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ, #default for UCC2500 test self.ax.set_xlabel('Time (second)') self.ax.set_ylabel('Distance (mm)') #self.ax.axhline(y=blind_zone,color='r', label='Blind zone') #็ฌฌไบŒ่ฝด๏ผšๅ‰ฏ่ฝดax2ๅ‚ๆ•ฐ่ฎพ็ฝฎ self.ax2 = self.ax.twinx() self.ax2.set_ylabel('Amplitude (dB SPL)') self.ax2.set_ylim(-0.02*255, 1.1*255)#็บตๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ, self.line_index = 0 self.count_win_move = 1 #ๆ›ฒ็บฟๆ—ถ้—ด็ช—็งปๅŠจๆฌกๆ•ฐ def update(self, i, *frames_data): #ๆ—ถ้—ด็ช—ๅ†…็š„ๆ•ฐๆฎๆ˜พ็คบ็š„็ผ“ๅ†ฒๅญ˜ๅ‚จ try: if len(frames_data[i]['Timestamp']) >1: #็ฉบ็š„ๆ•ฐๆฎๅธงๅฐ†ๅธฆๆฅๅŽ็ปญไปฃ็ ็š„ไธๅฏ้ข„ๆต‹็š„็ดขๅผ•้”™่ฏฏ๏ผŒ่ฟ™้‡Œๅˆคๆ–ญ่ฟ‡ๆปค if self.count_win_move == 1: self.start_time[i] = frames_data[i]['Timestamp'][0] self.data_time[i] = frames_data[i]['Timestamp'][self.last_record[i]:-1]-self.start_time[i] self.node_addr[i] = frames_data[i]['Node_address'][self.last_record[i]:-1] self.data_dist[i] = frames_data[i]['Distance'][self.last_record[i]:-1] self.data_amp[i] = frames_data[i]['Amplitude'][self.last_record[i]:-1] if self.data_time[i].iloc[-1] > (self.maxt * self.count_win_move): # reset the arrays #ๆ˜พ็คบ็ช—ๅฃ็งปๅŠจ self.last_record[i] = len(self.data_time[i])-1 #print('self.last_record[i]:',self.last_record[i]) self.count_win_move +=1 #่ฎพ็ฝฎๅๆ ‡่ฝด็งปๅŠจ self.ax.set_xlim(self.maxt*(self.count_win_move-1), self.maxt*self.count_win_move) self.ax.figure.canvas.draw() else: pass except IndexError as ex: #for handling empty frames_data problem print('Error: Frames_data '+ str(ex)+'. Size:', frames_data[i].shape ) time.sleep(1) else: if i == self.line_index: #ๅ•ๆฌกๆ‰ง่กŒ self.ax.add_line(Line2D(self.data_time[i], self.data_dist[i],linestyle='-', color=self.color_cycle[i], animated=True, label='Node.'+str(int(self.node_addr[i][0]))+' Dist.')) self.ax2.add_line(Line2D(self.data_time[i],self.data_amp[i],linestyle=':', color=self.color_cycle[i], animated=True, label='Node.'+str(int(self.node_addr[i][0]))+' Amp.')) self.list_lines = (self.ax.lines+self.ax2.lines) if i == (len(frames_data)-1): #็ญ‰ๅพ…ๆ‰€ๆœ‰ๆ›ฒ็บฟๅˆ›ๅปบๅฎŒๆฏ•๏ผŒๅˆ›ๅปบlegend self.leg = self.fig.legend(fancybox=True, shadow=True, loc='lower center',ncol=len(self.list_lines)) self.ax.axhline(y=self.blind_zone,xmin=0, xmax=1,color='r', label='Blind zone')#axline้œ€ๆ”พๅœจlegendๅˆ›ๅปบไน‹ๅŽ๏ผŒๅฆๅˆ™ไผšๅ‡บ้—ฎ้ข˜ self.fig.canvas.draw() self.init_legend(self.list_lines) self.fig.canvas.mpl_connect('pick_event', self.on_pick) self.line_index +=1 else: self.ax.lines[i].set_data(self.data_time[i], self.data_dist[i]) self.ax2.lines[i].set_data(self.data_time[i], self.data_amp[i]) self.list_lines = self.ax.lines + self.ax2.lines return self.list_lines def init_legend(self,lines): self.lined = {} # Will map legend lines to original lines. for legline, origline in zip(self.leg.get_lines(), lines): legline.set_picker(True) # Enable picking on the legend line. #print('legline.get_picker:', legline.get_picker()) self.lined[legline] = origline def on_pick(self,event): # On the pick event, find the original line corresponding to the legend # proxy line, and toggle its visibility. legline = event.artist origline = self.lined[legline] visible = not origline.get_visible() origline.set_visible(visible) # Change the alpha on the line in the legend so we can see what lines have been toggled. legline.set_alpha(1.0 if visible else 0.2) self.fig.canvas.draw() class Scope_line2(Scope): def __init__(self, ax, ax_limit, rax, maxt=30): super().__init__(ax) self.color_cycle=['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] #ax ๅ‚ๆ•ฐ่ฎพ็ฝฎ #็ฌฌไธ€่ฝด๏ผšไธป่ฝดaxๅ‚ๆ•ฐ่ฎพ็ฝฎ๏ผšTime_Distance self.ax.set_title("Time vs Distance") self.ax.set_xlim(0, self.maxt) #ๆจชๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ self.ax.set_ylim(-0.02*ax_limit, 1.1*ax_limit)#็บตๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ, #default for UCC2500 test self.ax.set_xlabel('Time (second)') self.ax.set_ylabel('Distance (mm)') self.rax = rax #็ฌฌไบŒ่ฝด๏ผšๅ‰ฏ่ฝดax2ๅ‚ๆ•ฐ่ฎพ็ฝฎ self.ax2 = self.ax.twinx() self.ax2.set_ylabel('Amplitude (dB SPL)') self.ax2.set_ylim(-0.02*255, 1.1*255)#็บตๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ, self.line_index = 0 #ๆ›ฒ็บฟๆ—ถ้—ด็ช—็งปๅŠจๆฌกๆ•ฐ self.count_win_move = 1 def update(self, i, *frames_data): #ๆ—ถ้—ด็ช—ๅ†…็š„ๆ•ฐๆฎๆ˜พ็คบ็š„็ผ“ๅ†ฒๅญ˜ๅ‚จ try: if len(frames_data[i]['Timestamp']) >1: #็ฉบ็š„ๆ•ฐๆฎๅธงๅฐ†ๅธฆๆฅๅŽ็ปญไปฃ็ ็š„ไธๅฏ้ข„ๆต‹็š„็ดขๅผ•้”™่ฏฏ๏ผŒ่ฟ™้‡Œๅˆคๆ–ญ่ฟ‡ๆปค if self.count_win_move == 1: self.start_time[i] = frames_data[i]['Timestamp'][0] self.data_time[i] = frames_data[i]['Timestamp'][self.last_record[i]:-1]-self.start_time[i] self.node_addr[i] = frames_data[i]['Node_address'][self.last_record[i]:-1] self.data_dist[i] = frames_data[i]['Distance'][self.last_record[i]:-1] self.data_amp[i] = frames_data[i]['Amplitude'][self.last_record[i]:-1] if self.data_time[i].iloc[-1] > (self.maxt * self.count_win_move): # reset the arrays #ๆ˜พ็คบ็ช—ๅฃ็งปๅŠจ self.last_record[i] = len(self.data_time[i])-1 self.count_win_move +=1 #่ฎพ็ฝฎๅๆ ‡่ฝด็งปๅŠจ self.ax.set_xlim(self.maxt*(self.count_win_move-1), self.maxt*self.count_win_move) self.ax.figure.canvas.draw() else: pass except IndexError as ex: #for handling empty frames_data problem print('Error: Frames_data '+ str(ex)+'. Size:', frames_data[i].shape ) time.sleep(1) else: if i == self.line_index: #ๅ•ๆฌกๆ‰ง่กŒ self.ax.add_line(Line2D(self.data_time[i], self.data_dist[i],linestyle='-', color=self.color_cycle[i], animated=True, label='Node.'+str(int(self.node_addr[i][0]))+' Dist.')) self.ax2.add_line(Line2D(self.data_time[i],self.data_amp[i],linestyle=':', color=self.color_cycle[i], animated=True, label='Node.'+str(int(self.node_addr[i][0]))+' Amp.',visible=False)) self.list_lines = (self.ax.lines+self.ax2.lines) if i == (len(frames_data)-1): #็ญ‰ๅพ…ๆ‰€ๆœ‰ๆ›ฒ็บฟๅธธ่งๅฎŒๆฏ•๏ผŒๅˆ›ๅปบCheckbox self.init_checkbox() self.check.on_clicked(self.func_checkbox) self.ax.figure.canvas.draw() self.line_index +=1 else: self.ax.lines[i].set_data(self.data_time[i], self.data_dist[i]) self.ax2.lines[i].set_data(self.data_time[i], self.data_amp[i]) self.list_lines = self.ax.lines + self.ax2.lines return self.list_lines def init_checkbox(self): self.line_labels = [str(line.get_label()) for line in self.list_lines] visibility = [line.get_visible() for line in self.list_lines] self.check = CheckButtons(self.rax, self.line_labels, visibility) def func_checkbox(self,label): index = self.line_labels.index(label) self.list_lines[index].set_visible(not self.list_lines[index].get_visible()) class Scope_stem(Scope): def __init__(self,fig, ax, ax_limit, blind_zone): super().__init__(ax) self.fig = fig self.blind_zone = blind_zone self.ax.set_xlim(-0.02*ax_limit, 1.1*ax_limit) #ๆจชๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ #for UCC2500 test self.ax.set_ylim(-0.02*255, 1.1*255)#็บตๅๆ ‡้˜ˆๅ€ผ่ฎพ็ฝฎ, #for amplitude 100% self.ax.set_xlabel('Distance (mm)') self.ax.set_ylabel('Amplitude (dB SPL)') self.ax.set_title("Distance vs Amplitude") self.colorline_cycle=['C0-', 'C1-', 'C2-', 'C4-', 'C5-', 'C6-', 'C7-'] self.colormarker_cycle=['C0o', 'C1o', 'C2o', 'C4o', 'C5o', 'C6o', 'C7o'] self.basefmt=' ' self.markerline= 7*[None] self.stemlines= 7*[None] self.baseline=7*[None] self.stem_container = 7*[None] self.container_labels = 7*[None] self.count_sample = 5 #ๆ˜พ็คบ้‡‡ๆ ทๆฌกๆ•ฐ้™ๅˆถ๏ผŒไป…ๆ˜พ็คบ่ฟž็ปญ5ๆฌก็š„้‡‡ๆ ทๅ€ผ self.count_win_move = 1 #ๆ›ฒ็บฟๆ—ถ้—ด็ช—็งปๅŠจๆฌกๆ•ฐ self.line_index = 0 def update(self, i, *frames_data): #ๆ—ถ้—ด็ช—ๅ†…็š„ๆ•ฐๆฎๆ˜พ็คบ็š„็ผ“ๅ†ฒๅญ˜ๅ‚จ try: if len(frames_data[i]['Timestamp']) >=self.count_sample: #็ฉบ็š„ๆ•ฐๆฎๅธงๅฐ†ๅธฆๆฅๅŽ็ปญไปฃ็ ็š„ไธๅฏ้ข„ๆต‹็š„็ดขๅผ•้”™่ฏฏ๏ผŒ่ฟ™้‡Œๅˆคๆ–ญ่ฟ‡ๆปค if self.count_win_move == 1: self.start_time[i] = frames_data[i]['Timestamp'][0] self.data_time[i] = frames_data[i]['Timestamp'][-self.count_sample:-1]-self.start_time[i] self.node_addr[i] = frames_data[i]['Node_address'][-self.count_sample:-1] self.data_dist[i] = frames_data[i]['Distance'][-self.count_sample:-1] self.data_amp[i] = frames_data[i]['Amplitude'][-self.count_sample:-1] self.count_win_move +=1 self.ax.figure.canvas.draw() else: pass except IndexError as ex: #for handling empty frames_data problem print('Error: Frames_data '+ str(ex)+'. Size:', frames_data[i].shape ) time.sleep(1) else: #self.markerline[i], self.stemlines[i], self.baseline[i] self.stem_container[i]= self.ax.stem(self.data_dist[i], self.data_amp[i], linefmt=self.colorline_cycle[i], markerfmt=self.colormarker_cycle[i], basefmt=self.basefmt, label='Node.'+str(int(self.node_addr[i].iloc[-1])),#self.node_addr[i] is Pandas series type, iloc should be used, cannot use self.node_addr[i][-1] use_line_collection=True) self.stem_container[i].markerline.set_markersize(3) if i == self.line_index: #ๅ•ๆฌกๆ‰ง่กŒ self.container_labels[i] = self.stem_container[i].get_label() if i == (len(frames_data)-1): #็ญ‰ๅพ…ๆ‰€ๆœ‰ๆ›ฒ็บฟๅˆ›ๅปบๅฎŒๆฏ•๏ผŒๅˆ›ๅปบlegend self.leg = self.fig.legend(self.stem_container[0:len(frames_data)], #่ฟ™้‡Œ่ฆ็”จๅˆ‡็‰‡๏ผŒๅฆๅˆ™None typeๅœจ่ฟ™้‡ŒไผšๆŠฅUserWarning้”™่ฏฏ self.container_labels[0:len(frames_data)], fancybox=True, shadow=True, loc='lower center',ncol=len(frames_data) ) self.ax.axvline(x=self.blind_zone,ymin=0, ymax=1,linestyle=':',color='r', label='Blind zone')#axline้œ€ๆ”พๅœจlegendๅˆ›ๅปบไน‹ๅŽ๏ผŒๅฆๅˆ™ไผšๅ‡บ้—ฎ้ข˜ self.fig.canvas.draw() #self.init_legend(self.stem_container[0:len(frames_data)]) #self.fig.canvas.mpl_connect('pick_event', self.on_pick) self.line_index +=1 else: pass #return self.markerline, self.stemlines, self.baseline return self.stem_container[i] if __name__ == "__main__": def emitter(p=0.03): #้šๆœบๆ•ฐๆฎๆต็”Ÿๆˆๅ™จ """Return a random value in [0, 1) with probability p, else 0.""" t =0, while True: v = np.random.rand(1) t += v if v > p: yield t, 0., 0. else: yield t, np.random.rand(1), 50*(np.random.rand(1)+1), #ๆณจๆ„ๅ‹ฟๅฟ˜ไบ†้€—ๅท # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() scope = Scope(ax) frames_data = emitter() print(next(frames_data)) # pass a generator in "emitter" to produce data for the update func ani = animation.FuncAnimation(fig, scope.update, frames_data, interval=10, blit=True) plt.show() ``` #### File: Sensor_evaluation/ultrasonic_sm/sensor_eval_app3.py ```python import sys import time from PyQt5. QtWidgets import QMainWindow from matplotlib.backends.qt_compat import QtCore, QtWidgets from matplotlib.backends.backend_qt5agg import ( FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure import matplotlib.animation as animation from matplotlib.animation import FFMpegWriter from comm_serial import SerialRW_SM from oscilloscope2 import * #from oscilloscope3 import Record_plot as Rp from sensor_eval_ui import * from ultra_sm import Ultra_sm_std as sm from ultra_sm_sync import Ultra_sm_sync as sm_sync class My_AppWindow(QMainWindow, Ui_MainWindow): def __init__(self): super().__init__() self.setupUi(self) #็ช—ๅฃๆŽงไปถๅธƒ็ฝฎๅฎž็Žฐ๏ผŒๆ–นๆณ•็ปงๆ‰ฟ่‡ชUi_MainWindow self.thread_sampling = Thread_sampling()#ๆ•ฐๆฎ่ฏปๅ–ๅ’Œๅฏผๅ…ฅ็บฟ็จ‹ self.thread_sampling.start() self.frames_data = self.thread_sampling.data_records() self.ani1 = None # the global animiation type should be defined, ๅฆๅˆ™ไผšๅ‡บ็Žฐ่Žซๅ็š„Funcanimationไธๆ‰ง่กŒ๏ผŒไธๆ˜พ็คบ self.add_fig2tab_1() self.ani2 = None self.add_fig2tab_2() self.ani3 = None self.add_fig2tab_3() def add_fig2tab_1(self): #ๆ ‡็ญพ1ๅฎนๅ™จ็ป˜ๅ›พ๏ผš========= layout1 = QtWidgets.QVBoxLayout(self.tab_1) #ๆ ‡็ญพๅฎนๅ™จไธŠๆทปๅŠ ๅธƒๅฑ€ๅฏน่ฑก self.fig1 = Figure(figsize=(5, 3)) #ๅˆ›ๅปบMatplotlib็š„ๅ›พ่กจๅฏน่ฑก tab_canvas = FigureCanvas(self.fig1)#ๅฐ†Matplotlib็š„ๅ›พ่กจ็ฝฎไบŽ็”ปๅธƒไธŠ self.ax_tab1 = tab_canvas.figure.subplots() #ๅˆ›ๅปบๅญๅ›พ่ฝดๅŸŸใ€‚่ฟ™้‡Œไธ่ƒฝ็›ดๆŽฅ็”จsubplots()ๅˆ›ๅปบfigure, ax, ๅฆๅˆ™ไผšๅ‡บ็Žฐ็‹ฌ็ซ‹Matplotlib็š„ๅ›พ่กจ็ช—ๅฃ self.fig1.subplots_adjust(bottom=0.12) layout1.addWidget(tab_canvas) #ๅฐ†Matplotlib็š„็”ปๅธƒๅ…ณ่”ๅˆฐๆ ‡็ญพๅฎนๅ™จ็š„layoutไธญ self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(tab_canvas, self)) #ๅœจ็”ปๅธƒไธŠๆทปๅŠ ๅ›พ่กจ็š„ๆ“ไฝœ่œๅ• #ๅœจ่ฝดๅŸŸไธญๆทปๅŠ ๅŠจๆ€็คบๆณขๅ™จๆ›ฒ็บฟ scope_line=Scope_line(fig=self.fig1, ax=self.ax_tab1, ax_limit = self.thread_sampling.ax_limit(), blind_zone = self.thread_sampling.ax_blind_zone()) try: self.ani1 = animation.FuncAnimation(self.fig1, scope_line.update, frames=len(self.frames_data),#init_func=scope_line.init, fargs=self.frames_data, interval=100, blit=True) except Exception as ex: print('error: Funcanimation:', ex) ''' Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) ani.save('Test.mp4', writer='ffmpeg') ''' def add_fig2tab_2(self): #ๆ ‡็ญพ2ๅฎนๅ™จ็ป˜ๅ›พ๏ผš============== layout2 = QtWidgets.QVBoxLayout(self.tab_2) #ๆ ‡็ญพๅฎนๅ™จไธŠๆทปๅŠ ๅธƒๅฑ€ๅฏน่ฑก self.fig2 = Figure(figsize=(5, 3)) #ๅˆ›ๅปบMatplotlib็š„ๅ›พ่กจๅฏน่ฑก tab_canvas2 = FigureCanvas(self.fig2)#ๅฐ†Matplotlib็š„ๅ›พ่กจ็ฝฎไบŽ็”ปๅธƒไธŠ self.ax_tab2 = tab_canvas2.figure.subplots() #ๅˆ›ๅปบๅญๅ›พ่ฝดๅŸŸใ€‚่ฟ™้‡Œไธ่ƒฝ็›ดๆŽฅ็”จsubplots()ๅˆ›ๅปบfigure, ax, ๅฆๅˆ™ไผšๅ‡บ็Žฐ็‹ฌ็ซ‹Matplotlib็š„ๅ›พ่กจ็ช—ๅฃ self.fig2.subplots_adjust(left=0.22) self.ax_ckbox2 = tab_canvas2.figure.add_axes([0.0, 0.48-0.08*len(self.frames_data)/2, #rect = [left, bottom, width, height] 0.13, 0.08*len(self.frames_data)]) layout2.addWidget(tab_canvas2) #ๅฐ†Matplotlib็š„็”ปๅธƒๅ…ณ่”ๅˆฐๆ ‡็ญพๅฎนๅ™จ็š„layoutไธญ self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(tab_canvas2, self)) #ๅœจ็”ปๅธƒไธŠๆทปๅŠ ๅ›พ่กจ็š„ๆ“ไฝœ่œๅ• #ๅœจ่ฝดๅŸŸไธญๆทปๅŠ ๅŠจๆ€็คบๆณขๅ™จๆ›ฒ็บฟ scope_line2=Scope_line2(self.ax_tab2, ax_limit = self.thread_sampling.ax_limit(),rax=self.ax_ckbox2) self.ani2 = animation.FuncAnimation(self.fig2, scope_line2.update, frames=len(self.frames_data), fargs=self.frames_data,interval=100, blit=True) def add_fig2tab_3(self): #ๆ ‡็ญพ3ๅฎนๅ™จ็ป˜ๅ›พ๏ผš============== #ๆŸฑ็Šถๅ›พ layout3 = QtWidgets.QVBoxLayout(self.tab_3) #ๆ ‡็ญพๅฎนๅ™จไธŠๆทปๅŠ ๅธƒๅฑ€ๅฏน่ฑก self.fig3 = Figure(figsize=(5, 3)) #ๅˆ›ๅปบMatplotlib็š„ๅ›พ่กจๅฏน่ฑก tab_canvas3 = FigureCanvas(self.fig3)#ๅฐ†Matplotlib็š„ๅ›พ่กจ็ฝฎไบŽ็”ปๅธƒไธŠ self.ax_tab3 = tab_canvas3.figure.subplots() #ๅˆ›ๅปบๅญๅ›พ่ฝดๅŸŸใ€‚่ฟ™้‡Œไธ่ƒฝ็›ดๆŽฅ็”จsubplots()ๅˆ›ๅปบfigure, ax, ๅฆๅˆ™ไผšๅ‡บ็Žฐ็‹ฌ็ซ‹Matplotlib็š„ๅ›พ่กจ็ช—ๅฃ self.fig3.subplots_adjust(bottom=0.12) layout3.addWidget(tab_canvas3) #ๅฐ†Matplotlib็š„็”ปๅธƒๅ…ณ่”ๅˆฐๆ ‡็ญพๅฎนๅ™จ็š„layoutไธญ self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(tab_canvas3, self)) #ๅœจ็”ปๅธƒไธŠๆทปๅŠ ๅ›พ่กจ็š„ๆ“ไฝœ่œๅ• #ๅœจ่ฝดๅŸŸไธญๆทปๅŠ ๅŠจๆ€็คบๆณขๅ™จๆ›ฒ็บฟ scope_stem=Scope_stem(fig=self.fig3, ax=self.ax_tab3, ax_limit = self.thread_sampling.ax_limit(), blind_zone = self.thread_sampling.ax_blind_zone()) self.ani3 = animation.FuncAnimation(self.fig3, scope_stem.update, frames=len(self.frames_data),#init_func=scope_line.init, fargs=self.frames_data, interval=100, blit=True) class Thread_sampling(QtCore.QThread): def __init__(self): super().__init__() self.ser_comm() self.ax_sensingRange = 2500 #in mm, default def ser_comm(self): com_port = 'COM6' com_cfg_sm = {'baudrate': 19200, 'bytesize': 8, 'parity': 'N', "stopbits": 1} # sensor module type ucc2500_7 = sm(sensing_range=2500,node_addr=0x7) ucc4000_2 = sm(sensing_range=4000,node_addr=0x2) ucc4000_3 = sm(sensing_range=4000,node_addr=0x3) ucc4000_7 = sm(sensing_range=4000,node_addr=0x7) #self.list_sm = [ucc2500] #self.list_sm = [ucc4000_7,] #self.list_sm = [ucc4000_7] #self.list_sm = [ucc4000_2,ucc4000_3] #print(len(self.list_sm)) # Sensor module type with sync function ucc4000_sync2 = sm_sync(sensing_range=4000,node_addr=0x2) ucc4000_sync3 = sm_sync(sensing_range=4000,node_addr=0x3) ucc2500_sync7 = sm_sync(sensing_range=2500,node_addr=0x7) self.list_sm = [ucc4000_sync2,ucc4000_sync3] #self.list_sm = [ucc4000_sync3] #self.list_sm = [ucc2500_sync7] #self.list_sm = [ucc2500] self.ser_sm = SerialRW_SM(com_port, com_cfg_sm,self.list_sm) try: if self.ser_sm.start(): ''' print("main thread wakes up") btn_connect = True ser.stop(btn_connect) ''' else: pass except Exception as ex: print (ex) def data_records(self): return self.ser_sm.records_data def ax_limit(self): for i in range(len(self.list_sm)): if self.list_sm[i].sensing_range > self.ax_sensingRange: self.ax_sensingRange = self.list_sm[i].sensing_range return self.ax_sensingRange def ax_blind_zone(self): return self.list_sm[0].blind_zone if __name__ == "__main__": # Check whether there is already a running QApplication (e.g., if running # from an IDE). qapp = QtWidgets.QApplication.instance() if not qapp: qapp = QtWidgets.QApplication(sys.argv) app = My_AppWindow() app.show() app.activateWindow() app.raise_() qapp.exec_() ```
{ "source": "joy13975/covidprof_submission", "score": 2 }
#### File: adapter/base/messaging.py ```python import logging class MessagingAdapter: def __init__(self, *kargs, message_handler=None, error_handler=None, **kwargs): self.message_handler = message_handler self.error_handler = error_handler def _listen(self, *args, **kwargs): pass def _reply(self, *args, **kwargs): pass def _upload_media(self, *args, **kwargs): pass def listen(self, *args, **kwargs): try: self._listen(*args, **kwargs) except KeyboardInterrupt: logging.info('\nStop') def reply(self, msg, *args, **kwargs): return self._reply(msg, *args, **kwargs) def upload_media(self, *args, **kwargs): return self._upload_media(*args, **kwargs) ``` #### File: src/adapter/c3aidatalake.py ```python import requests import pandas as pd def read_data_json(typename, api, body): """ read_data_json directly accesses the C3.ai COVID-19 Data Lake APIs using the requests library, and returns the response as a JSON, raising an error if the call fails for any reason. ------ typename: The type you want to access, i.e. 'OutbreakLocation', 'LineListRecord', 'BiblioEntry', etc. api: The API you want to access, either 'fetch' or 'evalmetrics'. body: The spec you want to pass. For examples, see the API documentation. """ response = requests.post( "https://api.c3.ai/covid/api/1/" + typename + "/" + api, json=body, headers={ 'Accept': 'application/json', 'Content-Type': 'application/json' } ) # if request failed, show exception if response.status_code != 200: raise Exception(response.json()["message"]) return response.json() def fetch(typename, body, get_all=False, remove_meta=True): """ fetch accesses the C3.ai COVID-19 Data Lake using read_data_json, and converts the response into a Pandas dataframe. fetch is used for all non-timeseries data in the C3.ai COVID-19 Data Lake, and will call read_data as many times as required to access all of the relevant data for a given typename and body. ------ typename: The type you want to access, i.e. 'OutbreakLocation', 'LineListRecord', 'BiblioEntry', etc. body: The spec you want to pass. For examples, see the API documentation. get_all: If True, get all records and ignore any limit argument passed in the body. If False, use the limit argument passed in the body. The default is False. remove_meta: If True, remove metadata about each record. If False, include it. The default is True. """ if get_all: has_more = True offset = 0 limit = 2000 df = pd.DataFrame() while has_more: body['spec'].update(limit=limit, offset=offset) response_json = read_data_json(typename, 'fetch', body) new_df = pd.json_normalize(response_json['objs']) df = df.append(new_df) has_more = response_json['hasMore'] offset += limit else: response_json = read_data_json(typename, 'fetch', body) df = pd.json_normalize(response_json['objs']) if remove_meta: df = df.drop(columns=[c for c in df.columns if ( 'meta' in c) | ('version' in c)]) return df def evalmetrics(typename, body, get_all=False, remove_meta=True): """ evalmetrics accesses the C3.ai COVID-19 Data Lake using read_data_json, and converts the response into a Pandas dataframe. evalmetrics is used for all timeseries data in the C3.ai COVID-19 Data Lake. ------ typename: The type you want to access, i.e. 'OutbreakLocation', 'LineListRecord', 'BiblioEntry', etc. body: The spec you want to pass. For examples, see the API documentation. get_all: If True, get all metrics and ignore limits on number of expressions and ids. If False, consider expressions and ids limits. The default is False. remove_meta: If True, remove metadata about each record. If False, include it. The default is True. """ if get_all: expressions = body['spec']['expressions'] ids = body['spec']['ids'] df = pd.DataFrame() for ids_start in range(0, len(ids), 10): for expressions_start in range(0, len(expressions), 4): body['spec'].update( ids=ids[ids_start: ids_start + 10], expressions=expressions[expressions_start: expressions_start + 4] ) response_json = read_data_json(typename, 'evalmetrics', body) new_df = pd.json_normalize(response_json['result']) new_df = new_df.apply(pd.Series.explode) df = pd.concat([df, new_df], axis=1) else: response_json = read_data_json(typename, 'evalmetrics', body) df = pd.json_normalize(response_json['result']) df = df.apply(pd.Series.explode) # get the useful data out if remove_meta: df = df.filter(regex='dates|data|missing') # only keep one date column date_cols = [col for col in df.columns if 'dates' in col] keep_cols = date_cols[:1] + \ [col for col in df.columns if 'dates' not in col] df = df.filter(items=keep_cols).rename(columns={date_cols[0]: "dates"}) df["dates"] = pd.to_datetime(df["dates"]) return df def getprojectionhistory(body, remove_meta=True): """ getprojectionhistory accesses the C3.ai COVID-19 Data Lake using read_data_json, and converts the response into a Pandas dataframe. ------ body: The spec you want to pass. For examples, see the API documentation. remove_meta: If True, remove metadata about each record. If False, include it. The default is True. """ response_json = read_data_json( "outbreaklocation", 'getprojectionhistory', body) df = pd.json_normalize(response_json) df = df.apply(pd.Series.explode) # get the useful data out if remove_meta: df = df.filter(regex='dates|data|missing|expr') # only keep one date column date_cols = [col for col in df.columns if 'dates' in col] keep_cols = date_cols[:1] + \ [col for col in df.columns if 'dates' not in col] df = df.filter(items=keep_cols).rename(columns={date_cols[0]: "dates"}) df["dates"] = pd.to_datetime(df["dates"]) # rename columns to simplify naming convention df = df.rename(columns=lambda x: x.replace(".value", "")) return df ``` #### File: src/adapter/c3ai.py ```python import requests from time import sleep import json import logging from multiprocessing.pool import ThreadPool class RequestException(Exception): pass class C3aiAdapter: limits = { 'biblioentry': 2000, 'populationdata': 2000, 'labordetail': 2000, 'linelistrecord': 5000, 'sequence': 8000, 'subsequence': 8000, 'biologicalasset': 8000, } @classmethod def request(cls, typename, api, body, max_retries=10, retry_wait=1): ''' Sends HTTP Post request to C3ai's data lake API. Retry on server error. ''' for nth_retry in range(1, max_retries+1): try: response = requests.post( 'https://api.c3.ai/covid/api/1/' + typename + '/' + api, json=body, headers={ 'Accept': 'application/json', 'Content-Type': 'application/json' }) except Exception as e: if 'Temporary failure in name resolution' in str(e): logging.error(f'Request to {typename}/{api} resulted in error ' f'{e}; ' f'retrying in {retry_wait}s ' f'({nth_retry}/{max_retries})') sleep(retry_wait) continue if response.status_code == 200: # Successful request return response.json() elif (500 <= response.status_code < 600) or \ 'too many requests' in repr(response).lower(): # Retry on server error or congestion if nth_retry >= max_retries: # raise RequestException(repr(response)) response return { 'error': f'Max request {max_retries} retries reached.', 'content': json.loads(response.content) } logging.error(f'Request to {typename}/{api} resulted in code ' f'{response.status_code}; ' f'retrying in {retry_wait}s ' f'({nth_retry}/{max_retries})') sleep(retry_wait) else: try: message = response.json()['message'] except Exception: message = 'Could not parse response JSON message: ' + \ repr(response) raise RequestException(message) @classmethod def fetch(cls, typename, body): return cls.request(typename, 'fetch', body) @classmethod def fetch_all(cls, typename, body, n_threads): stop_at_offset = -1 def thread_work(offset): nonlocal stop_at_offset if stop_at_offset != -1 and stop_at_offset <= offset: return [] thread_spec = body['spec'].copy() thread_spec['offset'] = offset p = cls.fetch(typename, {'spec': thread_spec}) if not p['hasMore']: stop_at_offset = offset return p spec = body['spec'] pagesize = spec.get('limit', cls.limits[typename.lower()]) groupsize = n_threads * pagesize base_offset = spec.get('offset', 0) while stop_at_offset == -1: with ThreadPool(n_threads) as pool: pages = pool.map(thread_work, range(base_offset, base_offset + groupsize, pagesize)) yield pages base_offset += groupsize @classmethod def get_all_biblioentry_ids(cls, n_threads=50): pages = cls.fetch_all( typename='biblioentry', body={ 'spec': {'include': 'id'} }, n_threads=n_threads ) for page in pages: for subpage in page: if subpage['count'] > 0: yield subpage['objs'] @classmethod def get_all_papers(cls, **kwargs): pages = cls.fetch_all( typename='biblioentry', body={ 'spec': { 'include': 'id,title,abstractText,hasFullText,authors,publishTime,url', **kwargs } }, n_threads=1, ) for page in pages: for subpage in page: if subpage['count'] > 0: yield subpage['objs'] @classmethod def get_text(cls, biblioentry_ids, n_threads=50): # Although GetArticleMetadata supports up to 10 ids, # it does not return the ids themselves, and if we # query using an id that actually doesn't have full # text, then we cannot know which paper is missing in # the result. Therefore just query one by one in parallel. def thread_work(biblioentry_id): text = cls.request( typename='biblioentry', api='getarticlemetadata', body={'ids': [biblioentry_id]} ) if 'value' in text: text = text['value']['value'] else: # There was an error and retries couldn't resolve # it. Just return that error message + content. text = [text] if len(text) > 0 and 'body_text' in text[0]: body_text = text[0]['body_text'] else: body_text = '' return body_text with ThreadPool(n_threads) as pool: return pool.map(thread_work, biblioentry_ids) ``` #### File: src/adapter/elastic_search.py ```python from datetime import datetime from elasticsearch_dsl import Document, Keyword, Text, Date, connections from elasticsearch_dsl.query import MultiMatch from .base.search_engine import SearchEngineBase # define a default article mapping class DefaultArticleMapping(Document): title = Text(analyzer='snowball') authors = Text() publishTime = Date() abstract = Text(analyzer='snowball') body = Text(analyzer='snowball') class Index: name = "covidprof" # set settings and possibly other attributes of the index like # analyzers settings = {"number_of_shards": 1, "number_of_replicas": 0} class ElasticSearchAdapter(SearchEngineBase): def __init__(self, mapping=DefaultArticleMapping): # establish a persistent elasticsearch connection connections.create_connection() # set the mapping as an instance attribute, for use in the _add method self.mapping = mapping # push the mapping template to elasticsearch and initialize the index self.mapping.init() def _add(self, documents): if isinstance(documents, dict): documents = [documents] for doc in documents: doc_without_id = {k: v for (k, v) in doc.items() if k != "id"} # convert publishTime from string to datetime if it exists if doc_without_id['publishTime'] != '': doc_without_id['publishTime'] = datetime.strptime(doc_without_id['publishTime'], '%Y-%m-%dT%H:%M:%S') else: doc_without_id['publishTime'] = None # save the doc self.mapping(meta={'id': doc['id']}, **doc_without_id).save() # refresh index to make changes live self.mapping._index.refresh() def _search(self, query, n, target_fields=['body', 'abstract'], frag_size=500, n_frags=3): # target_fields is in order of importance!! s = self.mapping.search() s.query = MultiMatch( query=query, fields=target_fields, ) for f in target_fields: s = s.highlight(f, pre_tags='', post_tags='', fragment_size=frag_size, number_of_fragments=n_frags) s = s.sort( {'_score': {'order': 'desc'}}, {'publishTime': {'order': 'desc'}}, ) return s[:n].execute() @classmethod def get_highlight_frags(cls, doc, fields=['body', 'abstract']): '''Extract highlighted fragments''' for field in fields: if field in doc.meta.highlight: return '\n\n'.join(doc.meta.highlight[field]) ``` #### File: src/adapter/tantivy_search.py ```python import os import tantivy from base.search_engine import SearchEngineBase class TantivyAdapter(SearchEngineBase): def __init__(self, index_path='tantivy_index', fields=[ ('id', True), ('title', True), ('authors', True), ('publishTime', True), ('abstract', True), ('body', True)] ): schema_builder = tantivy.SchemaBuilder() for field, stored in fields: schema_builder.add_text_field(field, stored=stored) self.schema = schema_builder.build() if not os.path.exists(index_path): os.mkdir(index_path) self.index = tantivy.Index(self.schema, index_path) def _add(self, documents): writer = self.index.writer() if isinstance(documents, dict): documents = [documents] for doc in documents: writer.add_document(tantivy.Document(**doc)) writer.commit() def _search(self, query, n=3, target_fields=['title', 'abstract', 'body']): # Reload the index to ensure it points to the last commit. self.index.reload() searcher = self.index.searcher() query = self.index.parse_query(query, target_fields) search_result = searcher.search(query, limit=n) return [searcher.doc(doc_addr) for _, doc_addr in search_result.hits] ``` #### File: covidprof_submission/src/build_index.py ```python import sys import os import json from time import time from glob import glob from itertools import chain import logging from datetime import datetime from adapter.c3ai import C3aiAdapter from adapter.elastic_search import ElasticSearchAdapter as SearchEngine from adapter.web import WebAdapter def download(skip_to=-1, stop_at=-1, get_paper_args={}, output='file'): a = C3aiAdapter() for page_i, papers_page in enumerate(a.get_all_papers(**get_paper_args)): t0 = time() if skip_to != -1 and page_i < int(skip_to): logging.info(f'Skipping page {page_i}') continue if stop_at != -1 and page_i >= int(stop_at): break logging.info(f'Downloading page {page_i}...') # Strip unnecessary info text_papers = [] for p in papers_page: del p['meta'] del p['version'] if p.get('hasFullText'): text_papers.append(p) else: p['text'] = '' text_paper_ids = [p['id'] for p in text_papers] # Fetch paper text texts = a.get_text(text_paper_ids) # Assign text to paper for p, t in zip(text_papers, texts): p['text'] = t # Output if output == 'file': with open(f'data/page_{page_i}.json', 'w') as f: json.dump(papers_page, f) elif output == 'yield': yield papers_page else: raise ValueError(f'Unknown output type {output}') logging.info(f'Page {page_i} downloaded in {time()-t0:.1f}s') page_i += 1 logging.info('Done') def _paper_to_doc(papers): for paper in papers: if type(paper['text']) is list: paper['text'] = '\n'.join(section['text'] for section in paper['text']) yield { 'id': paper['id'], 'title': paper.get('title', ''), 'authors': paper.get('authors', ''), 'publishTime': paper.get('publishTime', ''), 'abstract': paper.get('abstractText', ''), 'body': paper.get('text', ''), 'url': paper.get('url', ''), } def _get_doc_iters(): for path in sorted(glob('data/page_*.json')): with open(path, 'r') as f: papers = json.load(f) logging.info(f'Indexing {path}') yield _paper_to_doc(papers) def init_index(): t = SearchEngine() doc_iter = chain.from_iterable(_get_doc_iters()) t.add(doc_iter) def update_index(): a = C3aiAdapter() t = SearchEngine() # Get (latest ids) - (indexed ids) for i, ids_page in enumerate(a.get_all_biblioentry_ids()): new_ids = [] for id_obj in ids_page: paper_id = id_obj['id'] docs = t.search(paper_id, target_fields=['id'], n=1) if docs and docs[0]['id'][0] == paper_id: continue new_ids.append(paper_id) if not new_ids: logging.info(f'IDs page {i} has no new paper IDs.') continue logging.info(f'IDs page {i} new paper IDs: {new_ids}') # Get header and full text for these new papers pages = download(get_paper_args={'filter': ' || '.join(f'id=="{i}"' for i in new_ids)}, output='yield') for papers in pages: t.add(_paper_to_doc(papers)) def add(json_file): assert os.path.exists(json_file) with open(json_file, 'r') as f: page = json.load(f) t = SearchEngine() t.add(page) def add_web(url, page_type='generic'): # Download single page t = SearchEngine() w = WebAdapter() title, text = w.parse_page(url, page_type=page_type) print(text) print('-------------------------------') yn = input('Above text OK? (y/n)') if yn.lower().lower() != 'y': print('Abort') exit(0) date_str = input('Enter page last update date (YYYYmmdd): ') page_id = input('Enter page id: ') dt = datetime.strptime(date_str, '%Y%m%d') dt_str = dt.isoformat() page = { 'id': page_id, 'title': title, 'body': text, 'url': url, 'publishTime': dt_str, } t.add(page) def debug(): logging.warning(f'Debugging with args: {sys.argv}') a = C3aiAdapter() t = SearchEngine() import code code.interact(local={**locals(), **globals()}) if __name__ == '__main__': logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S' ) if len(sys.argv) < 2: logging.error('Specify mode: init or update') exit(1) mode = sys.argv[1] if mode == 'download': list(download(**dict(v.split('=') for v in sys.argv[2:]))) elif mode == 'init': init_index() elif mode == 'update': update_index() elif mode == 'add': assert len(sys.argv) >= 3, 'Provide filename' add(sys.argv[2]) elif mode == 'addweb': assert len(sys.argv) >= 2, 'Provide URL' add_web(sys.argv[2], **dict(v.split('=') for v in sys.argv[3:])) else: debug() ``` #### File: covidprof_submission/src/excerpt_gen.py ```python import requests import re from time import time from multiprocessing.pool import ThreadPool import json import logging import subprocess from time import sleep from bs4 import BeautifulSoup from adapter.elastic_search import ElasticSearchAdapter as SearchEngine from adapter.gpt3 import GPT3Adapter def get_model(model_name, use_gpu=False, pipieline_type='question-answering'): from transformers import pipeline device = -1 # -1 for CPU if use_gpu: device = 0 # First GPU device logging.info(f'Using GPU device: {device}') else: logging.info('Using CPU') logging.info(f'Initializing model "{model_name}"" ...') model = pipeline(pipieline_type, model=model_name, tokenizer=model_name, framework='pt', device=device) logging.info(f'Model max tokens: {model.tokenizer.model_max_length}') return model def preprocess_text(data): spchar_list = ['\n', '/', '\\', '[', ']'] data = data.translate({ord(x): x for x in spchar_list}) data = data.replace('\xa0', ' ') data = re.sub(r'(.)([\.\,\!\?\'\"\[\]\)\;\:])([^ ])', r'\1\2 \3', data) data = re.sub(r'(\[\d+\])+', '', data) data = re.sub(r' \n', '\n', data) data = re.sub(r'\n+', ' ', data) data = re.sub(r' +', ' ', data) return data def get_web_data(url): wiki_data = requests.get(url).text soup = BeautifulSoup(wiki_data, 'lxml') data = [] paragraphs = soup.select('p') excerpts = soup.select('div.excerpt') for k in excerpts + paragraphs: data.append(k.getText()) data = '\n'.join([str(s) for s in data]) data = preprocess_text(data) return data def split_data(data, part_len): base = 0 i = 0 parts = [] while True: part = data[base:base+part_len] last_period = part.rfind('.') if last_period == -1: last_period = part_len part = part[:last_period+1].strip() parts.append(part) base = base + last_period+1 if base >= len(data): break i += 1 return parts def get_find_answer_func(model, question): def find_answer(part): return model({ 'context': part, 'question': question, }) return find_answer def get_excerpts_text(top_answers): excerpts = [] sentences_before = 1 sentences_after = 1 for i, (ans, part) in top_answers: # Go n sentences ahead str_before = part[:ans['start']] ends_before = [m.end(0) for m in re.finditer(r'[^\.]\. ', str_before)] if ends_before: begin = ends_before[-min(len(ends_before), (sentences_before+1))] else: begin = ans['start'] str_after = part[ans['end']:] if len(str_after) < 2: end = ans['end'] + len(str_after) else: end = ans['end'] ends_after = [m.end(0) for m in re.finditer(r'[^\.]\.', str_after)] if ends_after: end += ends_after[min(len(ends_after) - 1, sentences_after)] ans_src = part[begin:end] excerpts.append((i, ans_src)) return excerpts class ExcerptGen: def __init__(self, model_name='deepset/bert-large-uncased-whole-word-masking-squad2', accelerator='cpu'): self._and_start_elastic_server() self.se = SearchEngine() self.accelerator = accelerator.lower() self.gpt3 = GPT3Adapter() self.model = None if self.accelerator != 'colab': self.model = get_model(model_name=model_name, use_gpu=self.accelerator == 'gpu') def _and_start_elastic_server(self): '''Make sure elasticsearch server is up''' logging.info('Checking Elasticsearch server status...') cmd = 'sudo service elasticsearch status'.split() try: checkstr = subprocess.check_output(cmd).decode('utf-8') except subprocess.CalledProcessError as e: if 'elasticsearch is not running' in e.output.decode('utf-8')\ .lower(): logging.info('Elasticsearch server is not running - ' 'attempting to start it now...') cmd = 'sudo service elasticsearch start'.split() run_result = subprocess.run(cmd) if run_result.returncode != 0: logging.error( 'Command failed with return code: ' f'{run_result.return_code}') exit() # Wait a bit after Elasticsearch server is up because # making a connection too soon will cause error sleep(5) return raise(e) if 'elasticsearch is running' in checkstr.lower(): # No need to do anything logging.info('Elasticsearch sever already running - good.') def get_excerpts_from_docs(self, question, docs, max_page_size=512*32): answers = [] find_answer = get_find_answer_func(self.model, question) logging.info(f'Get excerpts with max_page_size={max_page_size}') if self.accelerator == 'gpu': for doc in docs: # If p is too large it will crash the GPU... logging.info( f'Splitting doc with len={len(doc)}') parts = split_data(doc, max_page_size) logging.info( f'Doc len {len(doc)} split into {len(parts)} parts') part_answers = [find_answer(p) for p in parts] answers.append(max(part_answers, key=lambda a: a['score'])) elif self.accelerator == 'colab': answers = self.ask_colab(question, docs) else: n_threads = 8 with ThreadPool(n_threads) as pool: answers = pool.starmap(find_answer, enumerate(docs)) # Extract answer text area top_answers = sorted(enumerate(zip(answers, docs)), key=lambda v: v[1][0]['score'], reverse=True) return get_excerpts_text(top_answers) def get_excerpts(self, question, part_len=1024*2, top_n_answers=4, url='https://en.wikipedia.org/wiki/COVID-19_pandemic'): t0 = time() # Combine wikipedia data + c3ai c3ai_docs = self.se.search(question, 3) c3ai_texts = [preprocess_text(d['body'] if d['body'] else d['abstract']) for d in c3ai_docs] web_text = get_web_data(url) if self.accelerator in ('gpu', 'colab'): # GPU/colab is fast enough to not need further text breakdown parts = [web_text, *c3ai_texts] logging.info(f'Data ({sum(len(p) for p in parts)}) (no split)') else: c3ai_text = '\n\n\n'.join(c3ai_texts) evidence_pool = '\n\n\n'.join((web_text, c3ai_text)) parts = split_data(evidence_pool, part_len=part_len) logging.info( f'Data ({len(evidence_pool)}) split into {len(parts)} parts') logging.info(f'Data gathering: {time()-t0:.1f}s') excerpts = self.get_excerpts_from_docs(question, parts)[:top_n_answers] return excerpts def ask_colab(self, question, docs, conn_str='http://192.168.1.9:8899/ask'): r = requests.post( conn_str, headers={'Content-Type': 'application/json', 'Accept': 'application/json'}, json={'question': question, 'docs': docs}, timeout=60 ) if r.status_code == 200: return json.loads(r.content) else: logging.error(f'Colab server returned code {r.status_code}!') logging.error(r.content) return r.content ``` #### File: covidprof_submission/src/get_excerpts_client.py ```python import requests import json from time import time # conn_str = 'http://172.16.17.32:58899/get_excerpts' conn_str = 'http://localhost:8899/get_excerpts' headers = { 'Content-Type': 'application/json', 'Accept': 'application/json', } def get_excerpts(question, url='https://en.wikipedia.org/wiki/Coronavirus_disease_2019'): r = requests.post(conn_str, headers=headers, json={'question': question, 'url': url}) if r.status_code == 200: return json.loads(r.content.decode('utf-8')) else: print(f'Server returned status {r.status_code}') return r t0 = time() es = get_excerpts('is covid lethal or not?') print(f'get_excerpts(): {time()-t0:.1f}s') for e in es.split('", "'): print(e + '\n') ``` #### File: covidprof_submission/src/numerical.py ```python from adapter.c3aidatalake import evalmetrics from adapter.gpt3 import GPT3Adapter from datetime import datetime from dateutil.relativedelta import relativedelta import re import json import logging import seaborn as sns import matplotlib matplotlib.use('Agg') sns.set() def parse_date(date_str): return datetime.strptime(date_str, '%Y-%m-%d').date() def pretty_location(ugly_location): return ', '.join([' '.join(re.findall('[A-Z][^A-Z]*', component)) for component in ugly_location.replace(' ', '_').split('_')]) class Numerical(): def __init__(self): self.gpt3 = GPT3Adapter() @classmethod def _clean_spec_str(cls, spec_str): res = spec_str.replace('\n', '') # Add quotes to keys res = re.sub(r'([\w]+):', r'"\1":', res) return res @classmethod def _parse_spec_dates(cls, spec): try: from_date_str = spec['from'] to_date_str = spec['to'] from_date, to_date = cls.resolve_dates(from_date_str, to_date_str) spec['from'] = from_date spec['to'] = to_date except Exception as e: logging.error(e) logging.error('Bad input from GPT-3?') # best thing to do here just might be to ignore exception and tell # user we couldn't find the data return None, None def handle_request(self, text): spec_str = self.gpt3.parse_numerical_query(text) spec_json_str = self._clean_spec_str(spec_str) df = None try: # Set default spec values and do light preprocess spec = { 'type': 'case', 'location': 'UnitedStates', 'from': '1m', 'to': datetime.now().strftime('%Y-%m-%d'), } user_spec = json.loads(spec_json_str) no_user_location = 'location' not in user_spec no_user_from_date = 'from' not in user_spec no_user_to_date = 'to' not in user_spec logging.info(f'Numerical spec parsed from user input: {user_spec}') user_spec = { k.lower(): v.strip() for k, v in user_spec.items() if v.strip() } spec.update(user_spec) self._parse_spec_dates(spec) from_date_str = spec['from'].strftime('%Y-%m-%d') to_date_str = spec['to'].strftime('%Y-%m-%d') logging.info(f'Final numerical spec: {spec}') # Map metric name for labels etc loc_str = pretty_location(spec['location']) df, data_source = self.fetch_data(spec) # Deal with when data couldn't be fetched metric_name = { 'case': 'Confirmed Cases', 'death': 'Confirmed Deaths', 'recovery': 'Confirmed Recoveries', }[spec['type']] loc_output = loc_str + \ (' (you didn\'t specify a location)' if no_user_location else '') from_date_output = from_date_str + \ (' (you didn\'t specify a FROM date)' if no_user_from_date else '') to_date_output = to_date_str + \ (' (you didn\'t specify a TO date)' if no_user_to_date else '') if df is None: reply_text = \ (f'It looks like I don\'t have {metric_name} data' f' for {loc_output} from {from_date_output} to ' f'{to_date_output}. Try a different location or period?') return reply_text, None except json.JSONDecodeError: logging.error(f'Could not parse spec_str: {spec_str}') reply_text = ('I don\'t understand that request. ' 'Could you be a bit more specific?') return reply_text, None # Remove missing data missing_col = next(c for c in df.columns if c.endswith('missing')) df = df[df[missing_col] == 0] data_col = next(c for c in df.columns if 'data' in c) df = df.rename(columns={data_col: 'metric'}) df = df.loc[:, ['dates', 'metric']].sort_values('dates') # Make figure ax = df.plot.line(x='dates', lw=3, color='orange', figsize=(7, 4), legend=False) ax.set_xlabel('Dates', fontsize=12) ax.set_ylabel(f'No. of {metric_name}', fontsize=12) ax.set_title(f'{data_source} {metric_name} in {loc_str}', fontsize=16) f = ax.get_figure() f.tight_layout() png_filename = 'stats_graph.png' f.savefig(png_filename, format='png') diff = int(df.iloc[-1].metric - df.iloc[0].metric) if diff != 0: inc_red_str = 'increased' if diff > 0 else 'reduced' diff_pct = 100 * ((df.iloc[-1].metric/df.iloc[0].metric) - 1) \ if df.iloc[0].metric > 0 else float('inf') pct_sign = '+' if diff_pct > 0 else '-' reply_text = \ (f'This graph shows the number of {metric_name.lower()} ' f'in {loc_output} from {from_date_output} to ' f'{to_date_output}, ' f'sourced from {data_source} (via C3.ai). ' f'Over this period, numbers have {inc_red_str} by ' f'{diff} ({pct_sign}{diff_pct:.1f}%).') else: reply_text = ( f'Good news! There are no {metric_name.lower()} during this' f' period according to {data_source} (via C3.ai).') return reply_text, png_filename @classmethod def fetch_data(cls, spec, sources=['NYT', 'JHU', 'ECDC', 'CovidTrackingProject']): metric = spec['type'] if metric == 'recovery': sources = ['JHU'] spec_loc = spec['location'] if not spec_loc: spec_loc = 'UnitedStates' location = cls.resolve_location(spec_loc) evalmetrics_ids = cls.gen_evalmetrics_ids(location) data = None all_cols = [] stop_searching = False for source in sources: evalmetrics_expressions = \ cls.gen_evalmetrics_expressions(metric, source) for id_ in evalmetrics_ids: df = cls.evalmetrics_request( [id_], evalmetrics_expressions, spec['from'], spec['to']) all_cols.extend(df.columns) # Discard df if all missing missing_col = next( col for col in df.columns if col.endswith('missing')) if (df[missing_col] == 100).all(): continue data = df stop_searching = True break if stop_searching: break if data is None: logging.warning(f'No data for {evalmetrics_ids}') return data, source @classmethod def evalmetrics_request(cls, ids, expressions, from_date, to_date): table_name = "outbreaklocation" body = { 'spec': { 'ids': ids, 'expressions': expressions, 'interval': "DAY", 'start': from_date.strftime("%Y-%m-%d"), 'end': to_date.strftime("%Y-%m-%d"), } } return evalmetrics(table_name, body, get_all=True) @classmethod def gen_evalmetrics_ids(cls, location): # if the location is in the US and the county and city are both present, # query evalmetrics with the county first. if it fails, query evalmetrics using # city as county # if the location is outside the US and the city and province are both present, # query evalmetrics with the province first. if it fails, query evalmetrics using city as # province if location['country'] == 'UnitedStates': if 'city' in location: return [ '_'.join( [location['county'], location['province'], location['country']]), '_'.join([location['city'], location['province'], location['country']])] elif 'county' in location: return ['_'.join([location['county'], location['province'], location['country']])] else: if 'city' in location: return [ '_'.join([location['province'], location['country']]), '_'.join([location['city'], location['country']]) ] # the below rules apply to both US and non US countries that did not fulfill any of the conditions above if 'province' in location: return ['_'.join([location['province'], location['country']])] return [location['country']] @classmethod def gen_evalmetrics_expressions(cls, metric, source): if metric == 'death': return [f'{source}_ConfirmedDeaths'] elif metric == 'recovery': return [f'{source}_ConfirmedRecoveries'] else: return [f'{source}_ConfirmedCases'] @classmethod def resolve_location(cls, location_str): resolved = {} components = location_str.replace(' ', '_').split('_') components.reverse() resolved['country'] = components[0] if resolved['country'].lower() == 'UnitedStates'.lower(): if len(components) > 1: # this means the location at least contains a state resolved['province'] = components[1] if len(components) > 2: # this means the location at least contains a county resolved['county'] = components[2] if len(components) > 3: # this means the location at least contains a city resolved['city'] = components[3] else: if len(components) > 1: # this means the location at least contains a province resolved['province'] = components[1] if len(components) > 2: # this means the location at least contains a city resolved['city'] = components[2] return resolved @classmethod def resolve_date_str(cls, date_str): abs_date = None delta_date = None try: abs_date = parse_date(date_str) except ValueError: # must be delta search = re.search(r'(\d+)([dwmy])', date_str) n = int(search.group(1)) unit = search.group(2) delta_date = relativedelta(**{ { 'd': 'days', 'w': 'weeks', 'm': 'months', 'y': 'years', }[unit]: n }) return abs_date, delta_date @classmethod def resolve_dates(cls, from_date_str, to_date_str): '''Convert parsed date strings into date range''' from_date, delta_from = cls.resolve_date_str(from_date_str) to_date, delta_to = cls.resolve_date_str(to_date_str) if from_date: # From absolute date if to_date: # To absolute date pass # Both absolute, nothing to do else: # To delta date to_date = from_date + delta_to else: # From delta date if to_date: # To absolute date from_date = to_date - delta_from else: # To delta date # Assume TO is relative to today to_date = datetime.now().date() - delta_to from_date = to_date - delta_from # In some rare cases from_date can be in the future # e.g. "Thanksgiving" = 11/24 in US, 10/11 in Canada if from_date > to_date: from_date -= relativedelta(years=1) return from_date, to_date ```
{ "source": "joy13975/elfin", "score": 2 }
#### File: elfin/elfinpy/dbgen.py ```python import glob import numpy as np import codecs import json import argparse import shutil from collections import defaultdict from collections import OrderedDict import Bio.PDB from utilities import * from pdb_utilities import * nested_dict = lambda: defaultdict(nested_dict) def parse_args(args): """Parse command line arguments.""" parser = argparse.ArgumentParser( description='Generates the xdb database from preprocessed single and double modules.') parser.add_argument('--relaxed_pdbs_dir', default='./resources/pdb_prepped/') parser.add_argument('--metadata_dir', default='./resources/metadata/') parser.add_argument('--output', default='./resources/xdb.json') parser.add_argument('--aligned_pdb_dir', default='./resources/pdb_aligned/') return parser.parse_args(args) def main(test_args=None): """main""" args = parse_args(sys.argv[1:] if test_args is None else test_args) XDBGenerator( args.relaxed_pdbs_dir, args.metadata_dir, args.aligned_pdb_dir, args.output ).run() class XDBGenerator: def __init__( self, relaxed_pdbs_dir, metadata_dir, aligned_pdb_dir, out_file ): self.relaxed_pdbs_dir = relaxed_pdbs_dir module_types = ['doubles', 'singles', 'hubs'] shutil.move('metadata','resources/metadata' ) make_dir(aligned_pdb_dir) for mt in module_types: make_dir(aligned_pdb_dir + '/{}/'.format(mt)) self.hub_info = read_json(metadata_dir + '/hub_info.json') self.aligned_pdb_dir = aligned_pdb_dir self.out_file = out_file self.si = Bio.PDB.Superimposer() self.modules = nested_dict() self.n_to_c_tx = [] self.hub_tx = [] # Cache in memory because disk I/O is really heavy here self.single_pdbs = defaultdict(dict) self.double_pdbs = defaultdict(dict) def find_tip(self, term, struct, chain_id): term = term.lower() assert(term in {'c', 'n'}) chain = get_chain(struct, chain_id=chain_id) residues = chain.child_list n = len(residues) divider = 6 # The smaller the divider, the closer to terminus. assert(n > 0) if term == 'n': start_idx, end_idx = 0, n//divider else: start_idx, end_idx = (divider-1)*n//divider, n sum_coord = np.asarray([0., 0., 0.]) for r in residues[start_idx:end_idx]: sum_coord += r['CA'].get_coord().astype('float64') tip_vector = sum_coord/(end_idx - start_idx - 1) return tip_vector.tolist() def create_tx(self, mod_a, a_chain, mod_b, b_chain, rot, tran): tx_entry = \ OrderedDict([ ('mod_a', mod_a), ('mod_a_chain', a_chain), ('mod_b', mod_b), ('mod_b_chain', b_chain), ('rot', rot.tolist()), ('tran', np.asarray(tran).tolist()) ]) return tx_entry def process_hub(self, file_name): """Aligns a hub module to its A component (chain A), then computes the transform for aligning itself to its other components. """ # Load structures hub = read_pdb(file_name) # Centre the hub self.move_to_origin(hub) hub_fusion_factor = 4 hub_name = os.path.basename(file_name).replace('.pdb', '') hub_meta = self.hub_info.get(hub_name, None) assert(hub_meta != None) if hub_meta is None: raise ValueError('Could not get hub metadata for hub {}\n'.format(hub_name)) # Create module entry first comp_data = hub_meta['component_data'] del hub_meta['component_data'] hub_meta['chains'] = { c.id: { 'single_name': comp_data[c.id]['single_name'], 'n': nested_dict(), 'n_tip': nested_dict(), 'c': nested_dict(), 'c_tip': nested_dict(), 'n_residues': len(c.child_list) } for c in hub.get_chains() } hub_meta['radii'] = self.get_radii(hub) self.modules['hubs'][hub_name] = hub_meta # The current process does not allow hub to hub connections. Maybe this # need to be changed? for hub_chain_id in comp_data: chain_data = comp_data[hub_chain_id] comp_name = chain_data['single_name'] if chain_data['c_free']: b_name_gen = (tx['mod_b'] for tx in self.n_to_c_tx if tx['mod_a'] == comp_name) for single_b_name in b_name_gen: # Compute the transformation required to move a single # module B from its aligned position to the current hub's # "finger tip". # # Here we do not use the second quadrant method, because during # stitching none of the hubs' residues get changed. The stitching # will take place at the end of the hub's component's terminal. rc_hub_a = get_chain_residue_count(hub, hub_chain_id) rc_dbl_a = get_pdb_residue_count(self.single_pdbs[comp_name]) fusion_count = int_ceil(float(rc_dbl_a) / hub_fusion_factor) double = self.double_pdbs[comp_name][single_b_name] # Compute transformation matrix. # Find transform between component single and single b. hub_single_chain_id = \ list(self.single_pdbs[comp_name].get_chains())[0].id single_b_chain_id = \ list(self.single_pdbs[single_b_name].get_chains())[0].id dbl_tx_id = self.modules['singles'][comp_name]['chains'] \ [hub_single_chain_id]['c'] \ [single_b_name][single_b_chain_id] assert(dbl_tx_id is not None) dbl_n_to_c = self.n_to_c_tx[dbl_tx_id] dbl_tx = np.vstack( (np.hstack((dbl_n_to_c['rot'], np.transpose([dbl_n_to_c['tran']]))), [0,0,0,1]) ) # Find transform from hub to single A. rot, tran = self.get_rot_trans( fixed=hub, fixed_chain_id=hub_chain_id, moving=double, fixed_resi_offset=rc_hub_a - fusion_count, moving_resi_offset=rc_dbl_a - fusion_count, match_count=fusion_count ) # Rotation in BioPython is inversed. rot = np.transpose(rot) comp_to_single_tx = np.vstack( (np.hstack((rot, np.transpose([tran]))), [0,0,0,1]) ) # 1. Shift to hub's component frame. # 2. Shift to double B frame. dbl_raised_tx = np.matmul(comp_to_single_tx, dbl_tx); # Decompose transform. rot = dbl_raised_tx[:3, :3] tran = dbl_raised_tx[:3, 3] tx = self.create_tx( hub_name, hub_chain_id, single_b_name, single_b_chain_id, rot, tran) tx_id = len(self.n_to_c_tx) + len(self.hub_tx) self.modules['hubs'][hub_name]['chains'] \ [hub_chain_id]['c'] \ [single_b_name][single_b_chain_id] = tx_id self.modules['hubs'][hub_name]['chains'] \ [hub_chain_id]['c_tip'] = \ self.find_tip('c', hub, hub_chain_id) self.modules['singles'][single_b_name]['chains'] \ [single_b_chain_id]['n'] \ [hub_name][hub_chain_id] = tx_id self.hub_tx.append(tx) if chain_data['n_free']: a_name_gen = (tx['mod_a'] for tx in self.n_to_c_tx if tx['mod_b'] == comp_name) for single_a_name in a_name_gen: # Same as c_free except comp acts as single b rc_a = get_pdb_residue_count(self.single_pdbs[single_a_name]) rc_b = get_pdb_residue_count(self.single_pdbs[comp_name]) fusion_count = int_ceil(float(rc_b) / hub_fusion_factor) double = self.double_pdbs[single_a_name][comp_name] # Compute transformation matrix. # Find transform from double component B to hub component. rot, tran = self.get_rot_trans( fixed=hub, fixed_chain_id=hub_chain_id, moving=double, fixed_resi_offset=0, # start matching from the n-term of hub component, which is index 0 moving_resi_offset=rc_a, # start matching at the beginning of single b in the double match_count=fusion_count ) # Rotation in BioPython is inversed. rot = np.transpose(rot) dbl_to_hub_tx = np.vstack( (np.hstack((rot, np.transpose([tran]))), [0,0,0,1]) ) # 1. Shift to hub frame - do nothing; just dbl_to_hub_tx. # Decompose transform. rot = dbl_to_hub_tx[:3, :3] tran = dbl_to_hub_tx[:3, 3] single_a_chain_id = \ list(self.single_pdbs[single_a_name].get_chains())[0].id tx = self.create_tx( single_a_name, single_a_chain_id, hub_name, hub_chain_id, rot, tran) tx_id = len(self.n_to_c_tx) + len(self.hub_tx) self.modules['singles'][single_a_name]['chains'] \ [single_a_chain_id]['c'] \ [hub_name][hub_chain_id] = tx_id self.modules['hubs'][hub_name]['chains'] \ [hub_chain_id]['n'] \ [single_a_name][single_a_chain_id] = tx_id self.modules['hubs'][hub_name]['chains'] \ [hub_chain_id]['n_tip'] = \ self.find_tip('n', hub, hub_chain_id) self.hub_tx.append(tx) save_pdb( struct=hub, path=self.aligned_pdb_dir + '/hubs/' + hub_name + '.pdb' ) def process_double(self, file_name): """Aligns a double module to its A component and then computes the transform for aligning to its B component. Saves aligned structure to output folder. """ # Step 1: Load structures double = read_pdb(file_name) # Preprocessed pdbs have only 1 chain assert(len(list(double.get_chains())) == 1) double_name = file_name.split('/')[-1].replace('.pdb', '') single_a_name, single_b_name = double_name.split('-') single_a = self.single_pdbs[single_a_name] single_b = self.single_pdbs[single_b_name] rc_a = get_pdb_residue_count(single_a) rc_b = get_pdb_residue_count(single_b) rc_double = get_pdb_residue_count(double) rc_a_half = int_floor(float(rc_a)/2) rc_b_half = int_ceil(float(rc_b)/2) # fusion_factor should be deprecated in favour of "core range". dbl_fusion_factor = 8 fusion_count_a = int_ceil(float(rc_a) / dbl_fusion_factor) fusion_count_b = int_ceil(float(rc_b) / dbl_fusion_factor) # Step 2: Move double to align with the first single. self.align( moving=double, fixed=single_a, moving_resi_offset=rc_a_half - fusion_count_a, fixed_resi_offset=rc_a_half - fusion_count_a, match_count=fusion_count_a ) # Step 3: Get COM of the single_b as seen in the double. com_b = self.get_centre_of_mass( single_b, mother=double, child_resi_offset=rc_b_half - fusion_count_b, mother_resi_offset=rc_a + rc_b_half - fusion_count_b, match_count=fusion_count_b ) # Step 4: Get transformation of single B to part B inside double. # # Double is already aligned to first single so there is no need for # the first transformation. # # Only align residues starting from the middle of single B because # the middle suffers the least from interfacing displacements. rot, tran = self.get_rot_trans( moving=double, fixed=single_b, moving_resi_offset=rc_a + rc_b_half - fusion_count_b, fixed_resi_offset=rc_b_half - fusion_count_b, match_count=fusion_count_b ) # Rotation in BioPython is inversed. rot = np.transpose(rot) # Inverse result transform because we want the tx that takes the # single B module to part B inside double. tmp_tx = np.vstack( (np.hstack((rot, np.transpose([tran]))), [0,0,0,1]) ) inv_tx = np.linalg.inv(tmp_tx); # Decompose transform. rot = inv_tx[:3, :3] tran = inv_tx[:3, 3] # Step 5: Save the aligned molecules. # # Here the PDB format adds some slight floating point error. PDB is # already phased out so and we should really consider using mmCIF for # all modules. save_pdb( struct=double, path=self.aligned_pdb_dir + '/doubles/' + double_name + '.pdb' ) single_a_chain_id = list(single_a.get_chains())[0].id single_b_chain_id = list(single_b.get_chains())[0].id tx = self.create_tx( single_a_name, single_a_chain_id, single_b_name, single_b_chain_id, rot, tran) tx_id = len(self.n_to_c_tx) self.modules['singles'][single_a_name]['chains'] \ [single_a_chain_id]['c'][single_b_name][single_b_chain_id] = tx_id self.modules['singles'][single_b_name]['chains'] \ [single_b_chain_id]['n'][single_a_name][single_a_chain_id] = tx_id self.n_to_c_tx.append(tx) # Cache structure in memory self.double_pdbs[single_a_name][single_b_name] = double def process_single(self, file_name): """Centres a single module and saves to output folder.""" single_name = file_name.split('/')[-1].replace('.pdb', '') single = read_pdb(file_name) # Preprocessed pdbs have only 1 chain assert(len(list(single.get_chains())) == 1) # Check that there is only one chain chain_list = list(single.get_chains()) if len(chain_list) != 1: raise ValueError('Single PDB contains {} chains!\n'.format(len(chain_list))) self.move_to_origin(single) save_pdb( struct=single, path=self.aligned_pdb_dir + '/singles/' + single_name + '.pdb' ) self.modules['singles'][single_name] = { 'chains': { chain_list[0].id: { 'n': nested_dict(), 'c': nested_dict(), 'n_residues': len(chain_list[0].child_list) } }, 'radii': self.get_radii(single) } # Cache structure in memory self.single_pdbs[single_name] = single def dump_xdb(self): """Writes alignment data to a json file.""" to_dump = \ OrderedDict([ ('modules', self.modules), ('n_to_c_tx', self.n_to_c_tx) ]) json.dump(to_dump, open(self.out_file, 'w'), separators=(',', ':'), ensure_ascii=False, indent=4) def get_centre_of_mass( self, child, mother=None, child_resi_offset=0, mother_resi_offset=0, match_count=-1 ): """Computes centre-of-mass coordinate of a Bio.PDB.Structure.Structure. Args: - child - Bio.PDB.Structure.Structure for which the centre-of-mass should be calculated. - mother - Bio.PDB.Structure.Structure onto which child is to be first aligned. - moving_resi_offset - the residue offset of the moving Bio.PDB.Structure.Structure when extracting carbon alpha coordinates. - fixed_resi_offset - the residue offset of the fixed Bio.PDB.Structure.Structure when extracting carbon alpha coordinates. - match_count - number of residues from which carbon alpha coordinates are extracted. Returns: - com - 3x1 numpy array of the centre-of-mass. """ CAs = [r['CA'].get_coord().astype('float64') for r in child.get_residues()] com = np.mean(CAs, axis=0) if mother is not None: # This is for finding COM of a single inside a double _, tran = self.get_rot_trans( moving=child, fixed=mother, moving_resi_offset=child_resi_offset, fixed_resi_offset=mother_resi_offset, match_count=match_count ) com += tran return com def get_radii(self, pose): """Computes three different measures of the radius. Args: - pose - Bio.PDB.Structure.Structure Returns: - _ - an dict containing: average of all atoms distances, max carbon alpha distance, and max heavy atom distance, each calculated against the centre-of-mass. """ if not pose.at_origin: raise ValueError('get_radii() must be called with centered modules.') natoms = 0; rg_sum = 0; max_ca_dist = 0; nHeavy = 0; max_heavy_dist = 0; for a in pose.get_atoms(): dist = np.linalg.norm( a.get_coord().astype('float64')); rg_sum += dist; if(a.name =='CA'): max_ca_dist = max(max_ca_dist, dist); if(a.element != 'H'): max_heavy_dist = max(max_heavy_dist, dist); nHeavy = nHeavy + 1; natoms = natoms + 1; average_all = rg_sum / natoms; return { 'average_all': average_all, 'max_ca_dist': max_ca_dist, 'max_heavy_dist': max_heavy_dist } def move_to_origin(self, pdb): """Centres a Bio.PDB.Structure.Structure to the global origin.""" com = self.get_centre_of_mass(pdb) # No rotation - just move to centre pdb.transform([[1,0,0],[0,1,0],[0,0,1]], -com) # Tag the pdb pdb.at_origin = True def align( self, **kwargs ): """Moves the moving Bio.PDB.Structure.Structure to the fixed Bio.PDB.Structure.Structure. """ moving = kwargs.pop('moving') fixed = kwargs.pop('fixed') moving_resi_offset = kwargs.pop('moving_resi_offset', 0) fixed_resi_offset = kwargs.pop('fixed_resi_offset', 0) match_count = kwargs.pop('match_count', -1) rot, tran = self.get_rot_trans( moving=moving, fixed=fixed, moving_resi_offset=moving_resi_offset, fixed_resi_offset=fixed_resi_offset, match_count=match_count ) # BioPython's own transform() deals with the inversed rotation # correctly. moving.transform(rot, tran) def get_rot_trans( self, **kwargs ): """Computes the rotation and transformation matrices using BioPython's superimposer. Args: - moving - the Bio.PDB.Structure.Structure that is to move towards the other (fixed). - fixed - the Bio.PDB.Structure.Structure that the other (moving) is to align to. - moving_resi_offset - the residue offset of the moving Bio.PDB.Structure.Structure when extracting carbon alpha coordinates. - fixed_resi_offset - the residue offset of the fixed Bio.PDB.Structure.Structure when extracting carbon alpha coordinates. - match_count - number of residues from which carbon alpha coordinates are extracted. ----IMPORT NOTE---- The rotation from BioPython is the second dot operand instead of the conventional first dot operand. This means instead of the standard R*v + T, the actual transform is done with v'*R + T. Hence, the resultant rotation matrix might need transposing if not passed back into BioPython. ----IMPORT NOTE---- Returns: - (rot, tran) - a tuple containing the rotation and transformation matrices. """ moving = kwargs.pop('moving') moving_chain_id = kwargs.pop('moving_chain_id', 'A') fixed = kwargs.pop('fixed') fixed_chain_id = kwargs.pop('fixed_chain_id', 'A') moving_resi_offset = kwargs.pop('moving_resi_offset', 0) fixed_resi_offset = kwargs.pop('fixed_resi_offset', 0) match_count = kwargs.pop('match_count', -1) moving_chain = get_chain(moving, chain_id=moving_chain_id) moving_residues = moving_chain.child_list \ [moving_resi_offset:(moving_resi_offset+match_count)] ma = [r['CA'] for r in moving_residues] fixed_chain = get_chain(fixed, chain_id=fixed_chain_id) fixed_residues = fixed_chain.child_list \ [fixed_resi_offset:(fixed_resi_offset+match_count)] fa = [r['CA'] for r in fixed_residues] self.si.set_atoms(fa, ma) return self.si.rotran def run(self): """Calls the processing functions for singles, doubles, and hubs in that order. Dumps alignment data into json database. """ # Single modules single_files = glob.glob(self.relaxed_pdbs_dir + '/singles/*.pdb') n_singles = len(single_files) for i in range(0, n_singles): print('Centering single [{}/{}] {}' \ .format(i+1, n_singles, single_files[i])) self.process_single(single_files[i]) # Double modules double_files = glob.glob(self.relaxed_pdbs_dir + '/doubles/*.pdb') nDoubles = len(double_files) for i in range(0, nDoubles): print('Aligning double [{}/{}] {}' \ .format(i+1, nDoubles, double_files[i])) self.process_double(double_files[i]) # Hub modules hub_files = glob.glob(self.relaxed_pdbs_dir + '/hubs/*.pdb') nHubs = len(hub_files) for i in range(0, nHubs): print('Aligning hub [{}/{}] {}' \ .format(i+1, nHubs, hub_files[i])) self.process_hub(hub_files[i]) self.n_to_c_tx += self.hub_tx print('Total: {} singles, {} doubles, {} hubs'.format(n_singles, nDoubles, nHubs)) self.dump_xdb() if __name__ =='__main__': safe_exec(main) ``` #### File: obsolete/pymol_helpers/gen_spec_sol_rot.py ```python import argparse, sys import numpy as np import kabsch from utilities import * def get_spec_sol_rot(spec_file, sol_csv): if spec_file.rfind('.csv') != -1: spec_pts = read_csv_points(spec_file) elif spec_file.rfind('.json') != -1: with open(spec_file, 'r') as file: spec_pts = np.asarray(json.load(file)['coms']) else: print 'Unknown spec file format' solPts = read_csv_points(sol_csv) # Centre both pts to their ends centred_spec = spec_pts - spec_pts[-1] centred_sol = solPts - solPts[-1] # Equalise sample points sol_up_pts = upsample(centred_spec, centred_sol) sol_up_pts = sol_up_pts - sol_up_pts[-1] # Find Kabsch rotation for solution -> spec rot = Kabsch.kabsch(sol_up_pts, centred_spec) return gen_pymol_txm(rot) def main(): ap = argparse.ArgumentParser( description='Generate spec to solution rotation string for Pymol') ap.add_argument('spec_file') ap.add_argument('sol_file') args = ap.parse_args() print(get_spec_sol_rot(args.spec_file, args.sol_file)) if __name__ == '__main__': main() ``` #### File: elfin/elfinpy/pdb_utilities.py ```python import Bio.PDB DIRTY_ATOMS = {'1H', '2H', '3H', 'OXT'} BACKBONE_NAMES = {'N', 'CA', 'C', 'O', 'H', 'HA'} def get_pdb_residue_count(pdb): """Returns the residue count of a Bio.PDB.Structure.Structure.""" return sum([len(c.child_list) for c in pdb.child_list[0].child_list]) def get_chain_residue_count(struct, chain_id): """Returns the residue count of a Bio.PDB.Structure.Structure.""" return len(get_chain(struct, chain_id).child_list) def copy_residues(pdb, chain_ids=None): return [r.copy() for r in get_residues(pdb, chain_ids)] def get_residues(pdb, chain_ids=None): """Returns returns residues copied from a PDB. Args: - pdb - Bio.PDB.Structure.Structure. - chain_ids - strip residues from these specific chain_ids only. Returns: - residues - a list of Bio.PDB.Residue.Residue. """ residues = [] for model in pdb: for chain in model: if chain_ids == None or chain.id in chain_ids: residues.extend(chain.child_list) return residues def get_chain(struct, chain_id='A'): """Returns a specific chain from a Bio.PDB.Structure.Structure.""" return struct.child_list[0].child_dict[chain_id] def get_chains(struct): """Returns all chains of a Bio.PDB.Structure.Structure.""" return struct.child_list[0].child_list def read_pdb( read_path, pdb_name=None ): """Reads a PDB file and returns a BioPython structure. Args: - read_path - PDB string file path to read from. - pdb_name - a string to set as the name of the Bio.PDB.Structure.Structure. Returns: - structure - Bio.PDB.Structure.Structure. """ if pdb_name == None: pdb_name = read_path.split('/')[-1].replace('.', '_') parser = Bio.PDB.PDBParser(PERMISSIVE=False) structure = parser.get_structure(pdb_name, read_path) return structure def save_cif(**kwargs): """Saves a Bio.PDB.Structure.Structure as a CIF file. Does not automatically append .cif extension. Args: - struct - Bio.PDB.Structure.Structure to be saved. - path - CIF string file path. """ struct = kwargs.pop('struct') path = kwargs.pop('path') with open(path, 'w') as file: io = Bio.PDB.mmcifio.MMCIFIO() io.set_structure(struct) io.save(file) # Temporary fix for CIF files not getting parsed properly by Rosetta: add # a dummy section at the end. ("Note that the final table in the cif file # may not be recognized - adding a dummy entry (like `_citation.title # ""`) to the end of the file may help.") file.writelines('_citation.title "Elfin"') def save_pdb(**kwargs): """Saves a Bio.PDB.Structure.Structure as a PDB file. Args: - struct - Bio.PDB.Structure.Structure to be saved. - save_path - string file path. """ struct = kwargs.pop('struct') path = kwargs.pop('path') io = Bio.PDB.PDBIO() io.set_structure(struct) io.save(path) def main(): """main""" raise RuntimeError('This module should not be executed as a script') if __name__ =='__main__': main() ``` #### File: elfin/elfinpy/stitch.py ```python from collections import deque from collections import namedtuple import sys import argparse import numpy as np import Bio.PDB import Bio.SubsMat.MatrixInfo import Bio.PDB.StructureBuilder try: import utilities as utils import pdb_utilities as pdb_utils except ImportError: from . import utilities as utils from . import pdb_utilities as pdb_utils def parse_args(args): desc = ('Create CIF atom model from design solution JSON exported ' 'by elfin-ui.') parser = argparse.ArgumentParser(description=desc) parser.add_argument('input_file') parser.add_argument('-o', '--out_file', default='') parser.add_argument('-x', '--xdb', default='./resources/xdb.json') parser.add_argument('-p', '--pdb_dir', default='./resources/pdb_aligned/') parser.add_argument('-c', '--cappings_dir', default='./resources/pdb_cappings') parser.add_argument('-m', '--metadata_dir', default='./resources/metadata/') parser.add_argument('-s', '--show_fusion', action='store_true') parser.add_argument('-d', '--disable_capping', action='store_true') parser.add_argument('--skip_unused', action='store_true') return parser.parse_args(args) def main(test_args=None): args = parse_args(sys.argv[1:] if test_args is None else test_args) input_ext = args.input_file[args.input_file.rfind('.'):].lower() if input_ext == '.json': spec = utils.read_json(args.input_file) xdb = utils.read_json(args.xdb) struct = Stitcher( spec, xdb, args.pdb_dir, args.cappings_dir, args.metadata_dir, args.show_fusion, args.disable_capping, args.skip_unused ).run() if args.out_file == '': args.out_file = args.input_file args.out_file = '.'.join(args.out_file.split('.')[:-1] + ['cif']) print('Saving to:', args.out_file) pdb_utils.save_cif(struct=struct, path=args.out_file) else: print('Unknown input file type: \"{}\"'.format(input_ext)) exit() def validate_spec(spec): if 'networks' not in spec: return 'No networks object in spec.' else: if not spec['networks']: return 'Spec file has no module networks.' if 'pg_networks' in spec: n_pgn = len(spec['pg_networks']) if n_pgn > 0: return ('Spec file has {} path guide networks. ' 'It should have zero.').format(n_pgn) def get_node(network, json_name): node = network[json_name] utils.check_mod_type(node['module_type']) return node TermIdentifierBase = namedtuple( 'TermIdentifierBase', ['ui_name', 'chain_id', 'term']) class TermIdentifier(TermIdentifierBase): """Small class to hold terminus identifier data""" def __new__(cls, *args, **kwargs): self = super(TermIdentifier, cls).__new__(cls, *args, **kwargs) utils.check_term_type(self.term) return self def __repr__(self): return ':'.join((str(getattr(self, f)) for f in self._fields)) def same_chain_as(self, other): return self.ui_name == other.ui_name and \ self.chain_id == other.chain_id ChainIdentifierBase = namedtuple('ChainIdentifierBase', ['src', 'dst']) class ChainIdentifier(ChainIdentifierBase): """ Small class to hold source and destination TermIdentifiers for a chain """ def __new__(cls, *args, **kwargs): self = super(ChainIdentifier, cls).__new__(cls, *args, **kwargs) assert self.src.term == 'n' assert self.dst.term == 'c' return self def __repr__(self): return '{}->{}'.format(self.src, self.dst) # Returns a list of all leaf TermIdentifiers. # # A leaf is a terminus that is either unoccupied or on a hub node. def find_leaves(network, xdb): try: res = [] for ui_name in network: node = get_node(network, ui_name) mod_type = node['module_type'] mod_name = node['module_name'] chains = xdb['modules'][mod_type + 's'][mod_name]['chains'] cl = node['c_linkage'] nl = node['n_linkage'] if mod_type == 'hub': for c in chains: if chains[c]['n']: res.append(TermIdentifier(ui_name, c, 'c')) if chains[c]['c']: res.append(TermIdentifier(ui_name, c, 'n')) else: # Guaranteed to be 'single' thanks to get_node() if not nl: res.append(TermIdentifier( ui_name, cl[0]['source_chain_id'], 'n')) if not cl: res.append(TermIdentifier( ui_name, nl[0]['source_chain_id'], 'c')) return res except KeyError as ke: print('KeyError:', ke) print('Probably bad input format.') exit() # Walks the a chain starting with the src TermIdentifier, according to the # network JSON object, yielding each TermIdentifier and next_linkage on the # fly. def walk_chain(network, src): ui_name, chain_id, term = src while True: node = get_node(network, ui_name) # Advance until either a hub or a single with dangling terminus is # encountered. next_linkages = [ l for l in node[utils.opposite_term(term) + '_linkage'] if l['source_chain_id'] == chain_id ] assert len(next_linkages) <= 1, \ 'Expected only next_linkages size <= 1 (since' \ 'each node has max 2 linkages, one N and one C).' term_iden = TermIdentifier(ui_name, chain_id, term) next_linkage = next_linkages[0] if next_linkages else None yield term_iden, next_linkage if not next_linkage: break ui_name, chain_id = \ next_linkage['target_mod'], \ next_linkage['target_chain_id'] # Walks the network and returns a generator of ChainIdentifiers. # # This method guarantees that src->dst is in the direction of N->C. def decompose_network(network, xdb, skip_unused=False): src_q = deque() visited = set() # Find entry node to begin walking the network with. leaves = find_leaves(network, xdb) assert leaves, 'No leave nodes for network.' src_q.extend(leaves) while src_q: src = src_q.popleft() if src in visited: # This could happen when termini identifiers on hubs are added # before the termini on the other end of those chains are popped # out of the queue. continue visited.add(src) mod_type = None chain_walker = walk_chain(network, src) for term_iden, next_linkage in chain_walker: ui_name, chain_id, term = term_iden node = get_node(network, ui_name) mod_type = node['module_type'] if not next_linkage: dst = TermIdentifier( ui_name, chain_id, utils.opposite_term(term)) if dst not in visited: visited.add(dst) srcdst = (src, dst) if term == 'n' else (dst, src) chain_iden = ChainIdentifier(*srcdst) yield chain_iden if mod_type == 'hub': # Add unvisited components as new chain sources. hub = xdb['modules']['hubs'][node['module_name']] for hub_chain_id in hub['chains']: hub_chain = hub['chains'][hub_chain_id] for term in utils.TERM_TYPES: if hub_chain[term]: # If not dormant. iden = (ui_name, hub_chain_id, term) if iden not in visited: src_q.append(iden) break if mod_type == 'hub': # This is a "bypass" hub, i.e. the current hub component has # interfaceable N and C terms, and the current chain goes # through it without ending here. # # In this case, check for unused components that might not # need to be placed since they aren't leaves nor connect to # any leaf nodes. hub = xdb['modules']['hubs'][node['module_name']] for hub_chain_id in hub['chains']: if hub_chain_id == chain_id: continue c_links = len([l for l in node['c_linkage'] if l['source_chain_id'] == hub_chain_id]) n_links = len([l for l in node['n_linkage'] if l['source_chain_id'] == hub_chain_id]) if c_links == n_links == 0: if skip_unused: print('Skipping unused hub component:', ui_name, hub_chain_id) else: srcdst = ( TermIdentifier(ui_name, hub_chain_id, 'n'), TermIdentifier(ui_name, hub_chain_id, 'c') ) yield ChainIdentifier(*srcdst) ModInfo = namedtuple('ModInfo', ['mod_type', 'mod_name', 'res', 'res_n']) def transform_residues(res, rot, tran): for r in res: for a in r: # Do the transform manually because BioPython has non # standard multiplication order. a.coord = rot.dot(a.coord) + tran # Blend residue lists M = (1-w)M + wF, where M is an atom coordinate in # moving_res, F is an atom coordinate in fixed_res, and w is the corresponding # weight in weights. # # Also removes dirty atoms. If residues are not the same (name), only backbone # atoms are blended. def blend_residues(moving_res, fixed_res, weights): # temporarily disable blending because it's causing horrible # residue distortions return assert len(moving_res) == len(fixed_res) assert len(moving_res) == len(weights) for m, f, w in zip(moving_res, fixed_res, weights): # Remove dirty atoms. They seem to crop up in the process of # optimizing PDBs even if preprocess.py already removed them once. # # Also remove atoms not in fixed residue - this is only known to # happen to CYS (HG) and HIS (HE1/HE2). if m.resname == f.resname: # Complain about absent atoms for a in m: if a.name not in pdb_utils.DIRTY_ATOMS and a.name not in f: print(a.name, 'not in', f.resname) to_remove = [a for a in m if a.name in pdb_utils.DIRTY_ATOMS or a.name not in f] for da in to_remove: m.detach_child(da.name) # Compute new position based on combination of two positions. def compute_coord(a, b): return (1-w)*a.coord + w*b.coord for ma in m: if m.resname == f.resname: # Identical residues should have the same atom positions assert ma.name in f ma.coord = compute_coord(ma, f[ma.name]) else: # Only modify backbone atoms. if ma.name in pdb_utils.BACKBONE_NAMES and \ ma.name in f: ma.coord = compute_coord(ma, f[ma.name]) class Stitcher: def __init__( self, spec, xdb, pdb_dir, cappings_dir, metadata_dir, show_fusion=False, disable_capping=False, skip_unused=False, ): spec_complaint = validate_spec(spec) if spec_complaint: print('Error:', spec_complaint) exit() self.spec = spec self.xdb = xdb self.pdb_dir = pdb_dir self.cr_dir = cappings_dir self.show_fusion = show_fusion self.disable_capping = disable_capping self.skip_unused = skip_unused self.si = Bio.PDB.Superimposer() self.chain_id = 0 # Parse and convert capping repeat indicies into a dictionary self.capping_repeat_idx = {} meta_csv = utils.read_csv( metadata_dir + '/repeat_indicies.csv', delim=' ') for row in meta_csv: mod_name = row[0].split('.')[0].replace('DHR', 'D') self.capping_repeat_idx[mod_name] = \ [int(idx) for idx in row[1:]] def deposit_chain(self, network, chain_iden): # n -src-> c ... n -dst-> c print('Deposit chain:', chain_iden) src, dst = chain_iden atom_chain = self.new_chain() # Build context to pass to subroutines. def context(): return 0 context.atom_chain = atom_chain context.network = network context.last_node = None chain_walker = walk_chain(network, src) for term_iden, next_linkage in chain_walker: context.term_iden = term_iden context.next_linkage = next_linkage print('Deposit {}->{}'.format(repr(term_iden), next_linkage['target_mod'] if next_linkage else None)) context.node = get_node(network, term_iden.ui_name) context.mod_info = self.get_mod_info( context.node, term_iden.chain_id) context.pref_res = [] context.main_res = [r.copy() for r in context.mod_info.res] context.suff_res = [] if context.last_node: # Midway through the chain - always displace N term. self.displace_terminus(context, 'n') else: # Start of chain on the N side - cap N term. self.cap_terminus(context, 'n') if next_linkage: # There's a next node - always displace C term. self.displace_terminus(context, 'c') else: # There's no next node - cap C term. self.cap_terminus(context, 'c') all_res = context.pref_res + context.main_res + context.suff_res for r in all_res: r.id = (r.id[0], self.next_residue_id(), r.id[2]) rot = np.transpose(np.asarray(context.node['rot'])) r.transform(rot, context.node['tran']) atom_chain.add(r) if self.show_fusion: # curr_chain = Bio.PDB.Chain.Chain(chain_id) # chains.append(curr_chain) print('TODO: show_fusion') context.last_node = context.node context.last_term_iden = term_iden print('') self.model.add(atom_chain) def cap_terminus(self, deposit_context, term): utils.check_term_type(term) if self.disable_capping: print('Capping disabled') return # Unpack context. mod_info = deposit_context.mod_info residues = deposit_context.main_res chain_id = deposit_context.term_iden.chain_id if mod_info.mod_type == 'single': cap_name = mod_info.mod_name.split('_')[0 if term == 'n' else -1] elif mod_info.mod_type == 'hub': # If we were to cap hubs, we need to first check whether N # term is an open terminus in this hub. hub = self.xdb['modules']['hubs'][mod_info.mod_name] chain = hub['chains'][chain_id] cap_name = chain['single_name'] if chain[term]: # Continue to capping as usual. pass else: # No need to cap a hub component term that is a # closed interface. return print('Capping {}({})'.format(term, cap_name)) pdb_path = '{}/{}_{}.pdb'.format(self.cr_dir, cap_name, 'NI' if term == 'n' else 'IC') cap_and_repeat = pdb_utils.read_pdb(pdb_path) cap_res = self.get_capping( prime_res=residues, cap_res=pdb_utils.get_residues(cap_and_repeat), cr_r_ids=self.capping_repeat_idx[cap_name], term=term ) if term == 'n': deposit_context.pref_res = cap_res else: deposit_context.suff_res = cap_res # Computes the capping residues. Displaces primary residues (thus modifies # the prime_res parameter). def get_capping(self, prime_res, cap_res, cr_r_ids, term): utils.check_term_type(term) # Find residue index at which the residue id[1] matches capping # start index. Residue id often does not start from 1 and is never # 0-based. rid_range = tuple(cr_r_ids[:2]) if term == 'n' else tuple(cr_r_ids[2:]) for i, el in enumerate(cap_res): if el.id[1] == rid_range[0]: match_start = i break else: raise ValueError('Could not find residue index {}'.format( rid_range[0])) match_len = rid_range[1] - rid_range[0] + 1 # Inclusive match_end = match_start + match_len # N: match left, C: match right prime_align_res = prime_res[:match_len] \ if term == 'n' else \ prime_res[-match_len:] cap_align_res = cap_res[match_start:match_end] prim_atoms = [r['CA'] for r in prime_align_res] cap_atoms = [r['CA'] for r in cap_align_res] self.si.set_atoms(prim_atoms, cap_atoms) rot, tran = self.si.rotran result = [] cap_protrude_res = cap_res[:match_start] + cap_res[match_end:] for r in cap_protrude_res: rr = r.copy() rr.transform(rot, tran) result.append(rr) # Also transform cap align res to the right frame. for r in cap_align_res: r.transform(rot, tran) # Displace prime_res using linear weights, the same method as # displace_terminus(). # Linear weights (0, 1] - default for 'c'. disp_w = [i/match_len for i in range(1, match_len + 1)] if term == 'n': disp_w.reverse() # Want [1, 0) for N term. blend_residues(prime_align_res, cap_align_res, disp_w) return result def displace_terminus(self, deposit_context, term): utils.check_term_type(term) if term == 'n': assert deposit_context.last_node # Node A is on the C end, so we get the N end node, and swap # order. a_node = deposit_context.last_node a_chain_id = deposit_context.last_term_iden.chain_id a_info = self.get_mod_info(a_node, a_chain_id) b_node = deposit_context.node b_chain_id = deposit_context.term_iden.chain_id b_info = deposit_context.mod_info elif term == 'c': next_linkage = deposit_context.next_linkage assert next_linkage # Node A is on the N end, so we get the C end node. a_node = deposit_context.node a_chain_id = deposit_context.term_iden.chain_id a_info = deposit_context.mod_info b_ui_name, b_chain_id = next_linkage['target_mod'], \ next_linkage['target_chain_id'] b_node = get_node(deposit_context.network, b_ui_name) b_info = self.get_mod_info(b_node, b_chain_id) types = (a_info.mod_type, b_info.mod_type) if types == ('single', 'single'): a_single_name = a_info.mod_name b_single_name = b_info.mod_name elif types == ('hub', 'single'): hub = self.xdb['modules']['hubs'][a_info.mod_name] a_single_name = hub['chains'][a_chain_id]['single_name'] b_single_name = b_info.mod_name elif types == ('single', 'hub'): a_single_name = a_info.mod_name hub = self.xdb['modules']['hubs'][b_info.mod_name] b_single_name = hub['chains'][b_chain_id]['single_name'] else: raise ValueError('Unknown type tuple:', types) a_single_len = self.get_single_len(a_single_name) b_single_len = self.get_single_len(b_single_name) dbl_name = a_single_name + '-' + b_single_name dbl_pdb = pdb_utils.read_pdb( self.pdb_dir + '/doubles/' + dbl_name + '.pdb') dbl_res = pdb_utils.get_residues(dbl_pdb) main_res = deposit_context.main_res if term == 'n': # Displace N term residues (first half of main_res) based on # linear weights. In the double, start from B module. # # main_res: [n ... | ... c] # disp_w: [1....0] # dbl: [n ... | ... c] [n ... | ... c] if b_info.mod_type == 'hub': # Lift double (in A frame) to hub arm frame with A at the # arm's tip. chains = \ self.xdb['modules']['singles'][a_single_name]['chains'] tx_id = chains[a_chain_id]['c'][b_info.mod_name][b_chain_id] tx = self.xdb['n_to_c_tx'][tx_id] rot = np.asarray(tx['rot']) tran = np.asarray(tx['tran']) else: # Guaranteed to be 'single' thanks to get_node() # Drop double to B frame. rot, tran = self.get_drop_tx(a_single_name, b_single_name) transform_residues(dbl_res, rot, tran) disp_n = b_single_len // 2 disp_w = [i/disp_n for i in range(1, disp_n + 1)] main_disp = main_res[:disp_n] dbl_part = dbl_res[-b_single_len:-b_single_len+disp_n] disp_w.reverse() # Make it 1 -> 0 elif term == 'c': # Displace C term residues (second half of main_res) based on # linear weights. In the double, start from end of A module and go # backwards. # # main_res: [n ... | ... c] # disp_w: [0....1] # dbl: [n ... | ... c] [n ... | ... c] if a_info.mod_type == 'hub': # Step 1: Drop double to B frame. rot, tran = self.get_drop_tx(a_single_name, b_single_name) # Step 2: Lift double (in B frame) to hub arm frame. chains = self.xdb['modules']['hubs'][a_info.mod_name]['chains'] tx_id = chains[a_chain_id]['c'][b_single_name][b_chain_id] tx = self.xdb['n_to_c_tx'][tx_id] hub_rot = np.asarray(tx['rot']) hub_tran = np.asarray(tx['tran']) tran = hub_rot.dot(tran) + hub_tran rot = hub_rot.dot(rot) transform_residues(dbl_res, rot, tran) disp_n = a_single_len // 2 disp_w = [i/disp_n for i in range(1, disp_n + 1)] main_disp = main_res[-disp_n:] dbl_part = dbl_res[disp_n:disp_n+disp_n] blend_residues(main_disp, dbl_part, disp_w) def get_drop_tx(self, a_single_name, b_single_name): a_chains = self.xdb['modules']['singles'][a_single_name]['chains'] assert len(a_chains) == 1 a_chain_id = list(a_chains.keys())[0] a_b_chains = a_chains[a_chain_id]['c'][b_single_name] assert len(a_b_chains) == 1 b_chain_id = list(a_b_chains.keys())[0] tx_id = a_b_chains[b_chain_id] tx = self.xdb['n_to_c_tx'][tx_id] # Inverse tx because dbgen.py computes the tx that takes the # single B module to part B inside double. rot = np.transpose(tx['rot']) tran = rot.dot(-np.asarray(tx['tran'])) return rot, tran # Returns the number of residues in a single module. def get_single_len(self, mod_name): chains = self.xdb['modules']['singles'][mod_name]['chains'] assert len(chains) == 1 chain_id = list(chains.keys())[0] return chains[chain_id]['n_residues'] def get_mod_info(self, node, chain_id): mod_type = node['module_type'] mod_name = node['module_name'] # Obtain module residues. pdb = pdb_utils.read_pdb(self.pdb_dir + '/' + mod_type + 's/' + mod_name + '.pdb') res = pdb_utils.get_residues(pdb, chain_id) res_n = len(res) return ModInfo(mod_type, mod_name, res, res_n) def deposit_chains(self, network): chain_iden_gen = decompose_network(network, self.xdb, self.skip_unused) for chain_iden in chain_iden_gen: self.deposit_chain(network, chain_iden) def new_chain(self): return Bio.PDB.Chain.Chain(self.next_chain_id()) def next_chain_id(self): cid = str(self.chain_id) self.chain_id += 1 return cid def reset_residue_id(self): self.residue_id = 1 def next_residue_id(self): rid = self.residue_id self.residue_id += 1 return rid def run(self): self.reset_residue_id() self.model = Bio.PDB.Model.Model(0) if self.show_fusion: print('Note: show_fusion is on') networks = self.spec['networks'] for nw_name in networks: print('Processing network \"{}\"'.format(nw_name)) complaint = self.deposit_chains(networks[nw_name]) if complaint: print('Error: {}', complaint) exit() # Create output sb = Bio.PDB.StructureBuilder.StructureBuilder() sb.init_structure('0') structure = sb.get_structure() structure.add(self.model) return structure if __name__ == '__main__': utils.safe_exec(main) ``` #### File: elfin/elfinpy/v1_design_convert.py ```python import argparse, sys import copy try: from elfin_graph import ElfinGraph from elfin_node import ElfinNode from utilities import * except ImportError as e: from .elfin_graph import ElfinGraph from .elfin_node import ElfinNode from .utilities import * def compute_old_graph_txm(xdb, graph): nodes = graph.nodes double_data = xdb['double_data'] for i in range(len(nodes)-1): node_a = nodes[i] node_b = nodes[i+1] rel = double_data[node_a.name][node_b.name] for j in range(i+1): nodes[j].transform(rel['rot'], rel['tran']) def parse_args(args): parser = argparse.ArgumentParser(description='Converts old Elfin core intermediate output into new format'); parser.add_argument('input') # No dash means mandatory parser.add_argument('--output') parser.add_argument('--xdb_path', default='resources/xdb.json') parser.add_argument('--multichain_test', action='store_true') return parser.parse_args(args) def v1_to_v2(input_json, xdb_path, multichain_test=False):# Elfin core output # Make sure we're working with the old format keys = input_json.keys() if not 'nodes' in keys: print('Error: input file is not a v1 elfin solution file.') exit(1) n_nodes = len(input_json['nodes']) nodes = [ ElfinNode( id=i, name=el, trim=[(False if i == 0 else True), (False if i == n_nodes - 1 else True)], cterm_node_id=((i+1) if i < n_nodes - 1 else -1) ) for (i, el) in enumerate(input_json['nodes']) ] graph = ElfinGraph('c1', nodes) # c1 for chain number 1 graphs = [graph] assert(len(graphs) == 1) xdb = read_json(xdb_path) for g in graphs: compute_old_graph_txm(xdb, g) if multichain_test: graphs.append(copy.deepcopy(graph)) # Note: flipping z direction can cause problems in PyMol # visualisation (can't view as cartoon) graphs[0].transform([[-1,0,0],[0,-1,0],[0,0,1]],[100,100,0]) graphs[1].transform([[1,0,0],[0,1,0],[0,0,1]],[-100,-100,0]) graphs[1].name = 'c2' return graphs def main(test_args=None): print('Deprecated. For code reference only.') exit() args = parse_args(sys.argv[1:] if test_args is None else test_args) graphs = v1_to_v2( read_json(args.input), args.xdb_path, args.multichain_test) output_file = args.output if output_file == None: output_file = args.input.replace('.json', '.v2.json') with open(output_file, 'w') as ofp: json.dump(graphs, ofp, default=lambda o: o.__dict__) print('Saved to: ' + output_file) if __name__ == '__main__': main() ```
{ "source": "joy13975/elfin-old", "score": 2 }
#### File: scripts/PyMolUtils/ColorByRes.py ```python import colorsys,sys from pymol import cmd aa_1_3 = { 'A': 'ALA', 'C': 'CYS', 'D': 'ASP', 'E': 'GLU', 'F': 'PHE', 'G': 'GLY', 'H': 'HIS', 'I': 'ILE', 'K': 'LYS', 'L': 'LEU', 'M': 'MET', 'N': 'ASN', 'P': 'PRO', 'Q': 'GLN', 'R': 'ARG', 'S': 'SER', 'T': 'THR', 'V': 'VAL', 'W': 'TRP', 'Y': 'TYR', } aa_3_1 = { 'ALA' : 'A', 'CYS' : 'C', 'ASP' : 'D', 'GLU' : 'E', 'PHE' : 'F', 'GLY' : 'G', 'HIS' : 'H', 'ILE' : 'I', 'LYS' : 'K', 'LEU' : 'L', 'MET' : 'M', 'ASN' : 'N', 'PRO' : 'P', 'GLN' : 'Q', 'ARG' : 'R', 'SER' : 'S', 'THR' : 'T', 'VAL' : 'V', 'TRP' : 'W', 'TYR' : 'Y', } aa_types = { 'A': 'hydrophobic', 'C': 'cysteine', 'D': 'negative', 'E': 'negative', 'F': 'aromatic', 'G': 'glycine', 'H': 'polar', 'I': 'hydrophobic', 'K': 'positive', 'L': 'hydrophobic', 'M': 'hydrophobic', 'N': 'polar', 'P': 'proline', 'Q': 'polar', 'R': 'positive', 'S': 'polar', 'T': 'polar', 'V': 'hydrophobic', 'W': 'aromatic', 'Y': 'aromatic', } def color_by_restype(selection="all", hydrophobic='grey90', aromatic='lightpink', polar='palecyan', positive='blue', negative='red', cysteine='paleyellow', proline='palegreen', glycine='green', ): """ usage: color_by_restype <selection>, <optional overrides of default colors> e.g. color_by_restype protein and chain A, hydrophobic=wheat Residue groups: Default colours: hydrophobic: AILMV grey90 aromatic: FWY lightpink polar: HNQST palecyan positive: KR blue negative: DE red cysteine: C paleyellow proline: P palegreen glycine: G green """ colors = { 'hydrophobic': hydrophobic, 'aromatic': aromatic, 'polar': polar, 'positive': positive, 'negative': negative, 'cysteine': cysteine, 'proline': proline, 'glycine': glycine, } for aa in aa_types: sel = selection + " and r. %s" % aa_1_3[aa] # print sel,"-->", colors[aa_types[aa]] cmd.color(colors[aa_types[aa]],sel) cmd.extend("color_by_restype",color_by_restype) ``` #### File: scripts/PyMolUtils/Compare.py ```python import numpy as np from pymol import cmd # Not sure how to just figure out where elfin is located # So we need to load our library this way elfinDir = '/Users/joy/src/elfin/' elfinPyLibDir = elfinDir + '/src/python/' elfinMovieDir = elfinDir + '/movieOutput/' import imp utils = imp.load_source('utils', elfinPyLibDir + '/utils.py') Kabsch = imp.load_source('Kabsch', elfinPyLibDir + '/Kabsch.py') def compare_sol(specFile, solCSV): if specFile.rfind('.csv') != -1: specPts = utils.readCSVPoints(specFile) elif specFile.rfind('.json') != -1: with open(specFile, 'r') as file: specPts = np.asarray(json.load(file)['coms']) else: print 'Unknown spec file format' solPts = utils.readCSVPoints(solCSV) # Centre both pts centredSpec = specPts - np.mean(specPts, axis=0) centredSol = solPts - np.mean(solPts, axis=0) # Draw specification draw_pts(centredSpec, color=[0.7,0,0]) # Equalise sample points specUpPts = utils.upsample(centredSpec, centredSol) draw_pts(specUpPts, color=[0.5,0.5,0]) # Find Kabsch rotation for solution -> spec R = Kabsch.kabsch(centredSpec, specUpPts) centredSpecR = np.dot(centredSpec, R) draw_pts(centredSpecR, color=[0,0.5,0.7]) cmd.reset() cmd.set("depth_cue", 0) cmd.extend("compare_sol", compare_sol) ``` #### File: scripts/Python/GenPymolTransform.py ```python import argparse, sys import numpy as np from utils import * def main(): ap = argparse.ArgumentParser(description='Generate Grid Search configurations'); ap.add_argument('pairName') ap.add_argument('--xdbPath', default='res/xDB.json') ap.add_argument('--pairDir', default='/Users/joy/src/elfin/res/aligned/pair/') args = ap.parse_args() xDB = readJSON(args.xdbPath) resetString = \ ('delete {}\n' + \ 'load {}\n' + \ 'hide everything, {}\n' + \ 'show cartoon, {}\n') \ .format( args.pairName, args.pairDir + '/' + args.pairName + '.pdb', args.pairName, args.pairName ) singleNames = args.pairName.split('-') rel = xDB['pairsData'][singleNames[0]][singleNames[1]] rotTp = np.transpose(rel['rot']) rotTpTran = np.append(rotTp, np.transpose([rel['tran']]), axis=1) pymolRotMat = np.append(rotTpTran, [[0,0,0,1]], axis=0) pymolRotMatStr = '[' + ', '.join(map(str, pymolRotMat.ravel())) + ']' txString = \ 'cmd.transform_selection({}, {}, homogenous=0)' \ .format( "\'" + args.pairName + "\'", pymolRotMatStr ) print resetString print txString if __name__ == '__main__': main() ``` #### File: scripts/Python/xDBStat.py ```python from utils import * def main(): (avgD, minD, maxD) = getXDBStat(readJSON('res/xDB.json')) print 'Distances avg: {}, min: {}, max: {}'.format(avgD, minD, maxD) if __name__ =='__main__': safeExec(main) ``` #### File: elfin-old/tests/TestLv2.py ```python import glob from Designer import * import Greedy from utils import * import time import numpy as np def main(): xDB = readJSON('res/xDB.json') bmDir = 'bm/l10' designers = [] designers.append(Greedy.GreedyDesigner(xDB, 'maxHeavy')) # MCDesigner # ... # Process all benchmarks for jsonFile in glob.glob(bmDir + '/*.json'): spec = readJSON(jsonFile) # we add one point between each pair of com coms = np.asarray(spec['coms']) targetLen = len(coms) mids = np.asarray([np.mean(p, axis=0) for p in zip(coms, np.roll(coms, -1, axis=0))[0:-1]]) spec['coms'] = np.append([val for p in zip(coms, mids) for val in p], [coms[-1]], axis=0) for designer in designers: designerName = designer.__class__.__name__ print 'Benchmarking {} on {}, target length={}'.format( designerName, jsonFile, targetLen) startTime = time.clock() (nodes,shape,score) = designer.design(spec, targetLen) print "{:.2f}s, score: {}".format(time.clock() - startTime, score) if nodes == spec['nodes']: print 'Pass' else: print 'Failed' # pauseCode() makePdbFromNodes(xDB, nodes, 'res/centered_pdb/pair', jsonFile.replace('.json', '_' + designerName + '_LV2.pdb')) if __name__ =='__main__': safeExec(main) ```
{ "source": "joy13975/elfin", "score": 3 }
#### File: extensions/deprecated/center_of_mass.py ```python from __future__ import print_function from pymol import cmd def com(selection, state=None, mass=None, object=None, quiet=0, **kwargs): quiet = int(quiet) if (object == None): try: object = cmd.get_legal_name(selection) object = cmd.get_unused_name(object + "_COM", 0) except AttributeError: object = 'COM' cmd.delete(object) if (state != None): x, y, z = get_com(selection, mass=mass, quiet=quiet) if not quiet: print("[%f %f %f]" % (x, y, z)) cmd.pseudoatom(object, pos=[x, y, z], **kwargs) cmd.show("spheres", object) else: for i in range(cmd.count_states()): x, y, z = get_com(selection, mass=mass, state=i + 1, quiet=quiet) if not quiet: # print("State %d:%f %f %f" % (i + 1, x, y, z)) print("[%f, %f, %f]" % (i + 1, x, y, z)) cmd.pseudoatom(object, pos=[x, y, z], state=i + 1, **kwargs) cmd.show("spheres", 'last ' + object) cmd.extend("com", com) def get_com(selection, state=1, mass=None, quiet=1): """ DESCRIPTION Calculates the center of mass Author: <NAME> Michigan State University slaw (at) msu . edu """ quiet = int(quiet) totmass = 0.0 if mass != None and not quiet: print("Calculating mass-weighted COM") state = int(state) model = cmd.get_model(selection, state) x, y, z = 0, 0, 0 for a in model.atom: if (mass != None): m = a.get_mass() x += a.coord[0] * m y += a.coord[1] * m z += a.coord[2] * m totmass += m else: x += a.coord[0] y += a.coord[1] z += a.coord[2] if (mass != None): return [x / totmass, y / totmass, z / totmass] else: return [x / len(model.atom), y / len(model.atom), z / len(model.atom)] cmd.extend("get_com", get_com) # vi:expandtab:sw=3 ``` #### File: extensions/deprecated/compare_solutions.py ```python from pymol import cmd import numpy as np import elfinpy def compare_solutions(spec_file=None, sol_csv_file=None): """ Compares solution center-of-mass points again the specification. Args: - spec_file - a csv or json file string path - sol_csv_file - a csv file string path """ if spec_file is None or sol_csv_file is None: print(compare_solutions.__doc__) else: if spec_file.rfind('.csv') != -1: spec_pts = elfinpy.read_csv_points(spec_file) elif spec_file.rfind('.json') != -1: with open(spec_file, 'r') as file: spec_pts = np.asarray(json.load(file)['coms']) else: print 'Unknown spec file format' sol_pts = elfinpy.read_csv_points(sol_csv_file) # Centre both pts centred_spec = spec_pts - np.mean(spec_pts, axis=0) centred_sol = sol_pts - np.mean(sol_pts, axis=0) # Draw specification draw_pts(centred_spec, color=[0.7,0,0]) # Equalise sample points specUpPts = elfinpy.upsample(centred_spec, centred_sol) draw_pts(specUpPts, color=[0.5,0.5,0]) # Find Kabsch rotation for solution -> spec R = kabsch.run_kabsch(centred_spec, specUpPts) centredSpecR = np.dot(centred_spec, R) draw_pts(centredSpecR, color=[0,0.5,0.7]) cmd.reset() cmd.set("depth_cue", 0) cmd.extend("compare_solutions", compare_solutions) print('Compare Solutios Loaded') def main(): raise RuntimeError('This module should not be executed as a script') if __name__ =='__main__': main() ``` #### File: pymol_scripts/extensions/extension_template.py ```python def main(): """main""" raise RuntimeError('This module should not be executed as a script') if __name__ =='__main__': main() in_pymol = False try: import pymol in_pymol = True except ImportError as ie: main() if in_pymol: from pymol import cmd print('Template Extension Loaded') ```
{ "source": "joy13975/elfin-ui", "score": 2 }
#### File: elfin-ui/elfin/livebuild_helper.py ```python import colorsys import random import json import collections import functools import bpy import bmesh import mathutils import mathutils.bvhtree from . import addon_paths # Global (Const) Variables ----------------------- blender_pymol_unit_conversion = 10.0 # Color Change Placeholder # # An option for Place/Extrude operator enums so that user can change the # color before choosing a module. This makes changing display color fast # because once a module is selected via the enum list, changing the display # color causes constant re-linking and that causes lag. color_change_placeholder = '-Change Color-' color_change_placeholder_enum_tuple = \ (color_change_placeholder, color_change_placeholder, '') # Prototype List Empty Placeholder # An option to inform the user that the prototype list is empty empty_list_placeholder = '-List Empty-' empty_list_placeholder_enum_tuple = \ (empty_list_placeholder, empty_list_placeholder, '') nop_enum_selectors = { color_change_placeholder, empty_list_placeholder } # Classes ---------------------------------------- # Singleton Metaclass # Credits to https://stackoverflow.com/questions/6760685/ # creating-a-singleton-in-python class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super( Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class LivebuildState(metaclass=Singleton): def __init__(self): self.reset() def get_all_extrudables(self, sel_mod): self.n_extrudables = get_extrusion_prototype_list(sel_mod, 'n') self.c_extrudables = get_extrusion_prototype_list(sel_mod, 'c') return self.n_extrudables, self.c_extrudables def update_derivatives(self): res = [color_change_placeholder_enum_tuple] + \ [module_enum_tuple(mod_name) for mod_name in self.get_all_module_names()] self.placeables = res if len(res) > 1 else [ empty_list_placeholder_enum_tuple] # Find max hub termini self.max_hub_branches = 0 for hub_name in self.xdb['modules']['hubs']: hub_branches = max_hub_free_termini(hub_name, self.xdb) self.max_hub_branches = max(hub_branches, self.max_hub_branches) def get_all_module_names(self): groups = (self.xdb['modules']['singles'], self.xdb['modules']['hubs']) xdb_mod_names = {k for group in groups for k in group.keys()} return (mod_name for mod_name in self.library if mod_name in xdb_mod_names) def load_xdb(self, skip_derivatives_update=False): with open(addon_paths.xdb_path, 'r') as file: self.xdb = collections.OrderedDict(json.load(file)) if not skip_derivatives_update: self.update_derivatives() print('{}: Xdb loaded'.format(__class__.__name__)) def load_library(self, skip_derivatives_update=False): with bpy.types.BlendDataLibraries.load(addon_paths.modlib_path) as \ (data_from, data_to): self.library = data_from.objects if not skip_derivatives_update: self.update_derivatives() print('{}: Module library loaded'.format(__class__.__name__)) def load_path_guide(self): with bpy.types.BlendDataLibraries.load(addon_paths.pguide_path) as \ (data_from, data_to): self.pguide = data_from.objects print('{}: Path guide library loaded'.format(__class__.__name__)) def reset(self): self.n_extrudables = [empty_list_placeholder_enum_tuple] self.c_extrudables = [empty_list_placeholder_enum_tuple] self.placeables = [empty_list_placeholder_enum_tuple] self.max_hub_branches = 0 self.load_all() self.num = 3 def load_all(self): self.load_xdb(skip_derivatives_update=True) self.load_library(skip_derivatives_update=True) self.load_path_guide() self.update_derivatives() random.seed() class ColorWheel(metaclass=Singleton): hue_diff = 0.14 lightness_base = 0.4 lightness_variance = 0.3 saturation_base = 0.8 saturation_variance = .2 def __init__(self): self.hue = random.random() def next_color(self, ): self.hue += (self.hue_diff / 2) + random.random() * (1 - self.hue_diff) lightness = self.lightness_base + \ random.random() * self.lightness_variance saturation = self.saturation_base + \ random.random() * self.saturation_variance return colorsys.hls_to_rgb( self.hue % 1.0, lightness % 1.0, saturation % 1.0 ) class object_receiver: """Decorator for functions that receive a Blender object. Passes object to func by argument if specified, otherwise use the selected object. """ def __init__(self, func): self.func = func functools.update_wrapper(self, func) def __call__(self, obj=None, *args, **kwargs): if not obj: if get_selection_len() == 0: print('No object specified nor selected.') return return [self.func(obj, *args, **kwargs) for obj in get_selected(-1)] else: return self.func(obj, *args, **kwargs) # Quick Access Methods --------------------------- @object_receiver def get_mirrors(obj): return obj.elfin.mirrors @object_receiver def get_elfin(obj): return obj.elfin @object_receiver def show_links(obj): obj.elfin.show_links() def count_obj(): return len(bpy.data.objects) def get_xdb(): return LivebuildState().xdb def hub_is_symmetric(hub_name): return LivebuildState().xdb['modules']['hubs'][hub_name]['symmetric'] def get_n_to_c_tx(mod_a, chain_a, mod_b, chain_b): xdb = get_xdb() if mod_is_single(mod_a): meta_a = xdb['modules']['singles'][mod_a] elif mod_is_hub(mod_a): meta_a = xdb['modules']['hubs'][mod_a] tx_id = meta_a['chains'][chain_a]['c'][mod_b][chain_b] tx_json = xdb['n_to_c_tx'][tx_id] tx = mathutils.Matrix(tx_json['rot']).to_4x4() tx.translation = tx_json['tran'] return tx def mod_is_hub(mod_name): return mod_name in get_xdb()['modules']['hubs'] def mod_is_single(mod_name): return mod_name in get_xdb()['modules']['singles'] def get_selection_len(): return len(bpy.context.selected_objects) def get_selected(n=1): """ Return the first n selected object, or None if nothing is selected. """ if get_selection_len(): selection = bpy.context.selected_objects if n == 1: return selection[0] elif n == -1: return selection[:] else: return selection[:n] else: return [] # Helpers ---------------------------------------- def add_module(mod_name, color, follow_selection=True): lmod = import_module(mod_name) give_module_new_color(lmod, color) # Cache active_object because it changes with create_network() location = [0, 0, 0] if follow_selection and get_selection_len(): location = bpy.context.active_object.\ matrix_world.translation.copy() for s in get_selected(-1): s.select = False # Imported objects are hidden by default. lmod.hide = False # Create a new empty object as network parent. network_parent = create_network('module') network_parent.matrix_world.translation = location lmod.parent = network_parent # Select new object. lmod.select = True # If not set to lmod, it would be the parent, which will lead to # failure when trying to select parent via Shift-G + P bpy.context.scene.objects.active = lmod return lmod def get_ordered_selection(): # Returns objects such that obj_a was selected before obj_b. obj_a, obj_b = None, None if get_selection_len() == 2: obj_a, obj_b = get_selected(-1) if bpy.context.active_object == obj_a: obj_a, obj_b = obj_b, obj_a return obj_a, obj_b def max_hub_free_termini(mod_name, xdb=None): free_termini = 0 if not xdb: xdb = get_xdb() hub_meta = xdb['modules']['hubs'][mod_name] for chain_id, termini_meta in hub_meta['chains'].items(): free_termini += \ (len(termini_meta['n']) > 0) + (len(termini_meta['c']) > 0) return free_termini def selection_check( selection=None, n_modules=0, n_joints=0, n_bridges=0, n_networks=0, n_pg_networks=0): """Counts objects in all (or provided) selection and checks whether all expected counts are met. """ if selection is None: selection = get_selected(-1) for obj in selection: if obj.elfin.is_module(): n_modules -= 1 if n_modules < 0: return False elif obj.elfin.is_joint(): n_joints -= 1 if n_joints < 0: return False elif obj.elfin.is_bridge(): n_bridges -= 1 if n_bridges < 0: return False elif obj.elfin.is_network(): n_networks -= 1 if n_networks < 0: return False elif obj.elfin.is_pg_network(): n_pg_networks -= 1 if n_pg_networks < 0: return False return n_modules == n_joints == n_bridges == \ n_networks == n_pg_networks == 0 def find_symmetric_hub(network_parents): """Returns the symmetric hub center piece if there is one, else None. """ xdb = get_xdb() walkers = [walk_network(np.children[0]) for np in network_parents] for walker in walkers: for m in walker: m_name = m.elfin.module_name if m_name in xdb['modules']['hubs'] and hub_is_symmetric(m_name): return m return None def transfer_network(mod, existing_network=None): """Move all modules or pguides on the same network as mod under a new network parent object. """ old_network = mod.parent if old_network.elfin.is_network(): network_type = 'module' elif old_network.elfin.is_pg_network(): network_type = 'pguide' else: print('Invalid object passed to transfer_network():', mod) return new_network = create_network(network_type) # Gather all network objects into a list and calculate COM com = mathutils.Vector([0, 0, 0]) network_obj = [] walker = walk_network if network_type == 'module' else walk_pg_network # old network must be walked instead of using children because when # severing, we rely on link information to decide whether to split # networks. for m in walker(mod): network_obj.append(m) com += m.matrix_world.translation existing_network_children = existing_network.children \ if existing_network else () for c in existing_network_children: network_obj.append(c) com += c.matrix_world.translation com = com / len(network_obj) new_network.location = com # Mandatory update to reflect new parent transform bpy.context.scene.update() for m in network_obj: change_parent_preserve_transform(m, new_network) if not old_network.children: print('---First network destroy:', old_network.name) old_network.elfin.destroy() if existing_network and \ existing_network != old_network and \ not existing_network.children: print('---Second network destroy:', existing_network.name) existing_network.elfin.destroy() def create_network(network_type): """Creates and returns a new arrow object as a network parent object, preserving selection. """ selection = get_selected(-1) for s in selection: s.select = False bpy.ops.object.empty_add(type='ARROWS') nw = get_selected() nw.select = False nw.elfin.init_network(nw, network_type) for s in selection: s.select = True return nw def check_network_integrity(network): """Returns the network (list of modules) consists of a single network and is spatially well formed, meaning all interfaces of the network must be the way they were found by elfin as elfin had placed them via extrusion. Network level transformations should not destroy well-formed-ness. """ ... # Currently not needed return NotImplementedError def import_joint(): """Links a bridge object and initializes it using two end joints.""" joint = None try: with bpy.data.libraries.load(addon_paths.pguide_path) as \ (data_from, data_to): data_to.objects = ['joint'] joint = bpy.context.scene.objects.link(data_to.objects[0]).object joint.elfin.init_joint(joint) return joint except Exception as e: if joint: # In case something went wrong before this line in try joint.elfin.obj_ptr = joint joint.elfin.destroy() raise e def import_bridge(joint_a, joint_b): """Links a bridge object and initializes it using two end joints.""" bridge = None try: with bpy.data.libraries.load(addon_paths.pguide_path) as \ (data_from, data_to): data_to.objects = ['bridge'] bridge = bpy.context.scene.objects.link(data_to.objects[0]).object bridge.elfin.init_bridge(bridge, joint_a, joint_b) return bridge except Exception as e: if bridge: # In case something went wrong before this line in try bridge.elfin.obj_ptr = bridge bridge.elfin.destroy() raise e def module_menu(self, context): self.layout.menu("INFO_MT_elfin_add", icon="PLUGIN") def walk_pg_network(joint, initial=True): """A generator that traverses the path guide network depth-first and yields each object on the way, without repeating. """ if not joint.elfin.is_joint(): joint = joint.elfin.pg_neighbors[0].obj if initial: for pg in joint.parent.children: pg.elfin.node_walked = False yield joint joint.elfin.node_walked = True for bridge_nb in joint.elfin.pg_neighbors: bridge = bridge_nb.obj for other_end_nb in bridge.elfin.pg_neighbors: other_end = other_end_nb.obj if not other_end.elfin.node_walked: yield from walk_pg_network(other_end, initial=False) def walk_network(module, initial=True): """A generator that traverses the module network depth-first and yields each object on the way, without repeating. """ if not module.elfin.is_module(): return if initial: for pg in module.parent.children: pg.elfin.node_walked = False yield module module.elfin.node_walked = True # Walk n-terminus first for n_obj in module.elfin.n_linkage: if not n_obj.target_mod.elfin.node_walked: yield from walk_network(module=n_obj.target_mod, initial=False) # Then c-terminus for c_obj in module.elfin.c_linkage: if not c_obj.target_mod.elfin.node_walked: yield from walk_network(module=c_obj.target_mod, initial=False) IncompatibleModuleError = ValueError('Modules are not compatible!') def extrude_terminus(which_term, selector, sel_mod, color, reporter): """Extrudes selector module at the which_term of sel_mod""" assert which_term in {'n', 'c'} all_ext_mods = [] result_signal = {'FINISHED'} ext_mod = None try: sel_mod_name = sel_mod.elfin.module_name sel_mod.select = False # Extract chain IDs and module name c_chain, ext_mod_name, n_chain = \ selector.split('.') ext_mod = import_module(ext_mod_name) all_ext_mods.append(ext_mod) extrude_from = n_chain if which_term == 'n' else c_chain extrude_into = c_chain if which_term == 'n' else n_chain sel_ext_type_pair = (sel_mod.elfin.module_type, ext_mod.elfin.module_type) print(('Extruding module {to_mod} (chain {to_chain})' ' from {from_mod}\'s {terminus}-Term (chain {from_chain})'). format(to_mod=selector, to_chain=extrude_into, from_mod=sel_mod_name, terminus=which_term.upper(), from_chain=extrude_from)) def project_extruded_mod(fixed_mod, ext_mod, src_chain=extrude_from): tx = get_tx( fixed_mod, src_chain, extrude_into, ext_mod, which_term, sel_ext_type_pair ) if not tx and reporter is not None: reporter.report({'ERROR'}, str(IncompatibleModuleError)) raise IncompatibleModuleError ext_mod.matrix_world = tx * ext_mod.matrix_world # Create link if which_term == 'n': n_link = fixed_mod.elfin.new_n_link( src_chain, ext_mod, extrude_into) c_link = ext_mod.elfin.new_c_link( extrude_into, fixed_mod, src_chain) else: c_link = fixed_mod.elfin.new_c_link( src_chain, ext_mod, extrude_into) n_link = ext_mod.elfin.new_n_link( extrude_into, fixed_mod, src_chain) print('Debug: done linking') # Touch up bpy.context.scene.update() # Update to get the correct matrices change_parent_preserve_transform(ext_mod, fixed_mod.parent) give_module_new_color(ext_mod, color) ext_mod.hide = False # Unhide (default is hidden) ext_mod.select = True # Because ModuleLifetimeWatcher.on_module_enter() runs # asynchronously, a newly added module can be immediately deleted # just before or during the routine up to this point. In that # case, we need to ensure link integrity. if fixed_mod.elfin.destroy_entered or \ ext_mod.elfin.destroy_entered: n_link.sever() c_link.sever() return [ext_mod] # for mirror linking xdb = get_xdb() if sel_ext_type_pair in {('single', 'single'), ('single', 'hub')}: project_extruded_mod(sel_mod, ext_mod) if sel_mod.elfin.mirrors: all_ext_mods += mirrored_extrude( root_mod=sel_mod, new_mirrors=[ext_mod], ext_mod_name=ext_mod_name, extrude_func=project_extruded_mod) elif sel_ext_type_pair == ('hub', 'single'): # # Extrude from hub to single. # hub_meta = xdb['modules']['hubs'][sel_mod_name] def extrude_hub_single(sel_mod, new_mod): project_extruded_mod(sel_mod, new_mod, src_chain=extrude_from) mirrors = [new_mod] if hub_meta['symmetric']: # Calculate non-occupied chain IDs hub_all_chains = set(hub_meta['chains'].keys()) if which_term == 'n': hub_busy_chains = set(sel_mod.elfin.n_linkage.keys()) else: hub_busy_chains = set(sel_mod.elfin.c_linkage.keys()) hub_free_chains = hub_all_chains - hub_busy_chains imported = mirrored_symhub_extrude( sel_mod, mirrors, hub_free_chains, ext_mod_name, project_extruded_mod) all_ext_mods.extend(imported) return mirrors first_mirror_group = extrude_hub_single(sel_mod, ext_mod) if sel_mod.elfin.mirrors: all_ext_mods += mirrored_extrude( root_mod=sel_mod, new_mirrors=first_mirror_group, ext_mod_name=ext_mod_name, extrude_func=extrude_hub_single) elif sel_ext_type_pair == ('hub', 'hub'): # # Extrude from hub to hub is NOT allowed. # raise NotImplementedError else: raise ValueError( 'Invalid sel_ext_type_pair: {}'.format(sel_ext_type_pair)) except Exception as e: if ext_mod: # In case something went wrong before this line in try ext_mod.elfin.obj_ptr = ext_mod ext_mod.elfin.destroy() sel_mod.select = True # Restore selection if e != IncompatibleModuleError: raise e result_signal = {'CANCELLED'} return all_ext_mods, result_signal def execute_extrusion(which_term, selector, color, reporter): """Executes extrusion respecting mirror links and filers mirror selections """ if selector in nop_enum_selectors: return {'FINISHED'} filter_mirror_selection() for sel_mod in get_selected(-1): _, signal = extrude_terminus( which_term, selector, sel_mod, color, reporter) return signal return {'FINISHED'} def get_extrusion_prototype_list(sel_mod, which_term): """Generates a prototype list appropriately filtered for extrusion. """ assert which_term in {'n', 'c'} enum_tuples = [color_change_placeholder_enum_tuple] # Selection length is guranteed by poll() sel_mod_name = sel_mod.elfin.module_name sel_mod_type = sel_mod.elfin.module_type xdb = get_xdb() if sel_mod_type == 'hub': hub_meta = xdb['modules']['hubs'][sel_mod_name] if which_term == 'n': occupied_termini = sel_mod.elfin.n_linkage.keys() else: occupied_termini = sel_mod.elfin.c_linkage.keys() for src_chain_id, chain_meta in hub_meta['chains'].items(): if src_chain_id in occupied_termini: continue for single_name in chain_meta[which_term]: single_chains = chain_meta[which_term][single_name] assert(len(single_chains) == 1) dst_chain_id = list(single_chains.keys())[0] enum_tuples.append( module_enum_tuple( single_name, extrude_from=src_chain_id, extrude_into=dst_chain_id, direction=which_term)) # Only allow one chain to be extruded because other # "mirrors" will be generated automatically if hub_meta['symmetric']: break elif sel_mod_type == 'single': # Checks for occupancy by counting n/c termini links if which_term == 'n': link_len = len(sel_mod.elfin.n_linkage) else: link_len = len(sel_mod.elfin.c_linkage) if link_len == 0: single_meta = xdb['modules']['singles'][sel_mod_name] chain_meta = single_meta['chains'] chain_id_list = list(chain_meta.keys()) assert len(chain_id_list) == 1 single_chain_name = chain_id_list[0] term_meta = chain_meta[single_chain_name][which_term] for ext_mod_name in term_meta: for ext_mod_chain_name in term_meta[ext_mod_name]: enum_tuples.append( module_enum_tuple( ext_mod_name, extrude_from=single_chain_name, extrude_into=ext_mod_chain_name, direction=which_term)) else: raise ValueError('Unknown module type: ', sel_mod_type) # Remove color change placeholder if nothing can be extruded return enum_tuples if len(enum_tuples) > 1 else [] def change_parent_preserve_transform(child, new_parent): mw = child.matrix_world.copy() child.parent = new_parent child.matrix_world = mw def get_tx( fixed_mod, extrude_from, extrude_into, ext_mod, which_term, mod_types ): """Returns the transformation matrix for when ext_mod is extruded from fixed_mod's which_term. """ assert which_term in {'n', 'c'} fixed_mod_name = fixed_mod.elfin.module_name ext_mod_name = ext_mod.elfin.module_name tx = None try: if which_term == 'n': mod_params = (ext_mod_name, extrude_into, fixed_mod_name, extrude_from) else: mod_params = (fixed_mod_name, extrude_from, ext_mod_name, extrude_into) n_to_c_tx = get_n_to_c_tx(*mod_params) if mod_types == ('single', 'single'): tx = scale_and_shift(n_to_c_tx, which_term == 'n', fixed_mod) elif mod_types == ('single', 'hub'): # dbgen.py only creates Hub-to-Single transforms. Single-to-Hub is # therefore always the inverse. tx = scale_and_shift(n_to_c_tx, True, fixed_mod) elif mod_types == ('hub', 'single'): tx = scale_and_shift(n_to_c_tx, False, fixed_mod) else: raise ValueError('Invalid mod_types: ({}, {})'.format(*mod_types)) except KeyError as ke: tx = None raise ke return tx def unlink_mirror(modules=None): mods = modules[:] if modules else bpy.context.selected_objects[:] if not mods: return for m in mods: m.elfin.mirrors = None def link_by_mirror(modules=None): mirrors = modules[:] if modules else bpy.context.selected_objects[:] if not mirrors: return m0 = mirrors[0] for i in range(1, len(mirrors)): if mirrors[i].elfin.module_name != m0.elfin.module_name: print('Error: selected modules are not of the same prototype') return for m in mirrors: m.elfin.mirrors = mirrors[:] def mirrored_symhub_extrude( root_symhub, new_mirrors, hub_free_chains, ext_mod_name, extrude_func): imported = [] for src_chain_id in hub_free_chains: mirror_mod = import_module(ext_mod_name) imported.append(mirror_mod) # Assign to the same network. mirror_mod.parent = root_symhub.parent extrude_func(root_symhub, mirror_mod, src_chain_id) new_mirrors += imported for m in new_mirrors: m.elfin.mirrors = new_mirrors return imported def mirrored_extrude( root_mod, new_mirrors, ext_mod_name, extrude_func): imported = [] for m in root_mod.elfin.mirrors: if m != root_mod: mirror_mod = import_module(ext_mod_name) imported.append(mirror_mod) # Assign to the same network. mirror_mod.parent = m.parent new_mirrors += extrude_func(m, mirror_mod) for m in new_mirrors: m.elfin.mirrors = new_mirrors return imported def filter_mirror_selection(): for s in bpy.context.selected_objects: if s.select and s.elfin.mirrors: for m in s.elfin.mirrors: # Note that m could be the next s! if m and m != s: m.select = False def suitable_for_extrusion(context): """Checks selection is not none and is homogenous. """ selection = context.selected_objects n_objs = len(selection) if n_objs == 0: return False # In object mode? if selection[0].mode != 'OBJECT': return False # Homogenous? first_mod_name = selection[0].elfin.module_name for o in selection: if not o.elfin.is_module() or o.elfin.module_name != first_mod_name: return False return True def give_module_new_color(mod, new_color=None): mat = bpy.data.materials.new(name='mat_' + mod.name) mat.diffuse_color = new_color if new_color else ColorWheel().next_color() mod.data.materials.append(mat) mod.active_material = mat def get_module_collision_map(): """Checks all elfin modules for collision and returns a map of which modules collide which. """ bpy.context.scene.update() mods = [o for o in bpy.context.scene.objects if o.elfin.is_module()] collision_map = {mod: [] for mod in mods} for mod in collision_map: collision_map[mod] = find_overlap(mod, mods) return collision_map def find_overlap(test_obj, obj_list, scale_factor=0.90): """ Tests whether an object's mesh overlaps with any mesh in obj_list. The collision check will be skipped for test_obj itself, and its immediate neighbors. Args: - test_obj - the object under test. - obj_list - optional; the list of objects to test against. - scale_factor - optional; the scale to apply before testing. Returns: - list of colliding objects """ bpy.context.scene.update() scale = mathutils.Matrix.Scale(scale_factor, 4) mod_bm = bmesh.new() mod_bm.from_mesh(test_obj.data) mod_bm.transform(test_obj.matrix_world * scale) mod_bvh_tree = mathutils.bvhtree.BVHTree.FromBMesh(mod_bm) colliding_objs = [] for ob in obj_list: # Skip the test subject itself and its immediate neigbors. if ob == test_obj or test_obj.elfin.find_link(ob): continue ob_bm = bmesh.new() ob_bm.from_mesh(ob.data) ob_bm.transform(ob.matrix_world * scale) ob_bvh_tree = mathutils.bvhtree.BVHTree.FromBMesh(ob_bm) overlaps = mod_bvh_tree.overlap(ob_bvh_tree) if len(overlaps) > 0: colliding_objs.append(ob) return colliding_objs def scale_and_shift(n_to_c_tx, invert=False, fixed_mod=None): tx = pymol_to_blender_scale(n_to_c_tx) if invert: tran = tx.translation.copy() tx.translation = [0, 0, 0] tx.transpose() tx.translation = tx * -tran if fixed_mod is not None: tx = equalize_frame(tx, fixed_mod) return tx def equalize_frame(tx, fixed_mod): trans, rot, _ = fixed_mod.matrix_world.decompose() delta = rot.to_matrix().to_4x4() delta.translation = trans return delta * tx def scaleless_rot_tran(obj): mw = obj.matrix_world.copy() # Decompose matrix_world to remove 0.1 scale tran = mathutils.Matrix.Translation(mw.translation) rot = mw.to_euler().to_matrix().to_4x4() return rot, tran def pymol_to_blender_scale(n_to_c_tx): tx = mathutils.Matrix(n_to_c_tx) for i in range(0, 3): tx[i][3] /= blender_pymol_unit_conversion return tx def get_compatible_hub_chains(hub_name, single_term, single_name): assert single_term in {'n', 'c'} hub_term = {'n': 'c', 'c': 'n'}[single_term] chain_meta = get_xdb()['modules']['hubs'][hub_name]['chains'] compat_hub_chains = [] for chain_name in chain_meta: if single_name in chain_meta[chain_name][hub_term].keys(): compat_hub_chains.append(chain_name) return compat_hub_chains def module_enum_tuple(mod_name, extrude_from=None, extrude_into=None, direction=None): """Creates an enum tuple storing the single module selector, prefixed or suffixed by the terminus of a hub from/to which the single module is extruded. Enum selector format: C-Chain ID, Module, N-Chain ID Example context: Let module A receive an extrusion opereation which attempts to add B to A's n-terminus. args: - mod_name: module B's name. - extrude_from: module A's chain ID that is receiving extrusion. - extrude_into: module B's chain ID that is complementing the extrusion. - direction: is B being added to A's c-terminus or n-terminus. """ if direction is not None: assert direction in {'n', 'c'} assert extrude_from is not None if extrude_into is None: extrude_into = '' # Keep the selector format: n_chain, mod, c_chain if direction == 'c': mod_sel = '.'.join([extrude_from, mod_name, extrude_into]) display = ':{}(C) -> (N){}:{}.'.format(extrude_from, extrude_into, mod_name) elif direction == 'n': mod_sel = '.'.join([extrude_into, mod_name, extrude_from]) display = ':{}(N) -> (C){}:{}.'.format(extrude_from, extrude_into, mod_name) else: mod_sel = '.'.join(['', mod_name, '']) display = mod_sel return (mod_sel, display, '') def import_module(mod_name): """Links a module object from library.blend. Supports all module types.""" lmod = None try: with bpy.data.libraries.load(addon_paths.modlib_path) as \ (data_from, data_to): data_to.objects = [mod_name] lmod = bpy.context.scene.objects.link(data_to.objects[0]).object lmod.elfin.init_module(lmod, mod_name) # Force newly loaded module to not be in selected status lmod.select = False return lmod except Exception as e: if lmod: # In case something went wrong before this line in try lmod.elfin.obj_ptr = lmod lmod.elfin.destroy() raise e ```
{ "source": "joy13975/enconv", "score": 3 }
#### File: enconv/enconv/encheck.py ```python import argparse import os from time import sleep from .encoding_converter import EncodingConverter exclude_files = ['.DS_Store'] include_extensions = ['txt'] def main(*args, **kwargs): ap = argparse.ArgumentParser(description='Guess text encoding of files in folder') ap.add_argument('input_dir', help='Input directory', type=str) ap.add_argument('-gl', '--guess_length', help='Number of bytes to use for guessing. -1=all', default=1024) args = ap.parse_args() if not os.path.isdir(args.input_dir): print('Input directory is not a directory') exit(1) args_dict = vars(args) filenames = [f for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f))] for filename in filenames: if filename in exclude_files or filename.split('.')[-1] not in include_extensions: continue ec_args = args_dict.copy() input_path = os.path.join(args.input_dir, filename) ec_args['input_file'] = input_path ec = EncodingConverter(**ec_args) if ec.input_encoding.lower() == 'guess': guess_result = ec.guess() print(f'Guess for {filename}:\n{guess_result}') ec.input_encoding = guess_result['encoding'] if __name__ == '__main__': main() ```
{ "source": "joy13975/Orchestock", "score": 3 }
#### File: Orchestock/Orchestonks/notes.py ```python import re A4 = 440 C0 = A4 * (2.0 ** -4.75) notes = 'CDEFGAB' scale = ['C', 'SC', 'D', 'SD', 'E', 'F', 'SF', 'G', 'SG', 'A', 'SA', 'B'] def note_to_freq(note): note = note.upper() match = re.match(r'^([SF])?([A-G])(\d+)$', note) assert match is not None sharpflat, note_name, octave = match.groups() octave = int(octave) # Regularize notes to sharp only note_index = notes.index(note_name) if sharpflat == 'F': note_index -= 1 sharpflat = '' if note_name in 'CF' else 'S' elif sharpflat is None: sharpflat = '' scale_index = scale.index(sharpflat + notes[note_index]) return C0 * (2.0 ** (octave + (scale_index / 12))) ``` #### File: Orchestock/Orchestonks/tone_player.py ```python from time import time, sleep import math import sounddevice as sd import numpy as np from enum import IntEnum, auto from notes import note_to_freq class ToneStatus(IntEnum): Inactive = 0 Active = 1 Dead = 2 class Tone: def __init__(self, freq, volume, duration): self.freq = freq self.volume = volume # 0~1 self.duration = duration # ms self.status = ToneStatus.Inactive self._start_time = -1 def start(self): if self.status >= ToneStatus.Active: return self.status = ToneStatus.Active self._start_time = time() def check_expired(self): if self.duration == -1 or self._start_time == -1: return if (time() - self._start_time) * 1000 >= self.duration: self.status = ToneStatus.Dead def sample(self): return self.freq, self.volume, int(self.status) class TonePlayer: def __init__(self): self.chunk_size = 512 self.fs = 2048*10 sd.default.samplerate = self.fs self.tones = dict() self.sample_i = 0 def _sample_callback(self, out_data, frame_count, time_info, status): end = self.sample_i + frame_count out_data[:] = self._mix_samples( self.sample_i, end).reshape(frame_count, 1) self.sample_i = end def __enter__(self): self.stream = sd.OutputStream(channels=1, blocksize=self.chunk_size, callback=self._sample_callback) self.stream.start() return self def __exit__(self, exc_type, exc_value, traceback): self.stream.close() def _logistic(self, x, k=1, x0=1, L=1): return L/(1+(np.exp(-k*(x - x0)))) def _mix_samples(self, i, j): self.tones = {k: v for k, v in self.tones.items() if not v.status == ToneStatus.Dead} if self.tones: for t in self.tones.values(): t.check_expired() freq, volume, status = \ [np.asmatrix(a) for a in zip(*(t.sample() for t in self.tones.values()))] sines = np.asmatrix( np.sin((freq / self.fs).T * 2.0 * np.pi * np.arange(i, j))) # Multiply by envelop based on tone status: # Inactive -> Fade In # Active -> Identity # Dead -> Fade Out k = (6*np.pi)/self.chunk_size x0 = self.chunk_size / 2 fade_in = self._logistic(np.arange(j-i), x0=x0, k=k) identity = np.ones(j-i) fade_out = self._logistic(np.arange(j-i), x0=x0, k=-k) fade_mat = np.asmatrix([fade_in, identity, fade_out]) fade_mask = np.asmatrix(np.diag(np.ones(3)))[status.A1] samples = (volume * (np.multiply(fade_mask*fade_mat, sines))).A1 for t in self.tones.values(): t.start() else: samples = np.array([0.0]*(j-i)) return samples def play(self, freq, duration=-1, volume=0.5): if isinstance(freq, str): freq = note_to_freq(freq) tone = Tone(freq, volume, duration) tone_id = id(tone) self.tones[tone_id] = tone return tone_id def stop(self, tone_id=-1): if tone_id == -1: self.tones.clear() elif tone_id in self.tones: del self.tones[tone_id] def test(self): octave = 4 notes = [f'c{octave}', f'e{octave}', f'g{octave}', f'c{octave+1}'] duration = 4000 n = 2 * len(notes) interval = (duration / n) / 1000 for i, note in enumerate(notes + notes[::-1]): d = duration * (n - i)/n p.play(note_to_freq(note), d) sleep(interval) if __name__ == "__main__": with TonePlayer() as p: p.test() import code code.interact(local={**locals(), **globals()}) ```
{ "source": "Joy917/fast-transfer", "score": 2 }
#### File: fast-transfer/src/_sever_qt4.py ```python from PySide import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(798, 732) self.gridLayout = QtGui.QGridLayout(Form) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.groupBox_2 = QtGui.QGroupBox(Form) self.groupBox_2.setObjectName(_fromUtf8("groupBox_2")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.groupBox_2) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) spacerItem = QtGui.QSpacerItem(20, 20, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.checkBox_time = QtGui.QCheckBox(self.groupBox_2) self.checkBox_time.setObjectName(_fromUtf8("checkBox_time")) self.horizontalLayout.addWidget(self.checkBox_time) self.dateTimeEdit_start = QtGui.QDateTimeEdit(self.groupBox_2) self.dateTimeEdit_start.setDateTime(QtCore.QDateTime(QtCore.QDate(2017, 1, 1), QtCore.QTime(0, 0, 0))) self.dateTimeEdit_start.setCalendarPopup(True) self.dateTimeEdit_start.setObjectName(_fromUtf8("dateTimeEdit_start")) self.horizontalLayout.addWidget(self.dateTimeEdit_start) self.label_2 = QtGui.QLabel(self.groupBox_2) self.label_2.setObjectName(_fromUtf8("label_2")) self.horizontalLayout.addWidget(self.label_2) self.dateTimeEdit_end = QtGui.QDateTimeEdit(self.groupBox_2) self.dateTimeEdit_end.setDateTime(QtCore.QDateTime(QtCore.QDate(2018, 1, 1), QtCore.QTime(0, 0, 0))) self.dateTimeEdit_end.setCalendarPopup(True) self.dateTimeEdit_end.setObjectName(_fromUtf8("dateTimeEdit_end")) self.horizontalLayout.addWidget(self.dateTimeEdit_end) spacerItem1 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem1) self.verticalLayout_2.addLayout(self.horizontalLayout) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) spacerItem2 = QtGui.QSpacerItem(20, 20, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem2) self.checkBox_ip = QtGui.QCheckBox(self.groupBox_2) self.checkBox_ip.setObjectName(_fromUtf8("checkBox_ip")) self.horizontalLayout_3.addWidget(self.checkBox_ip) self.lineEdit_ip = QtGui.QLineEdit(self.groupBox_2) self.lineEdit_ip.setObjectName(_fromUtf8("lineEdit_ip")) self.horizontalLayout_3.addWidget(self.lineEdit_ip) spacerItem3 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem3) self.verticalLayout_2.addLayout(self.horizontalLayout_3) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) spacerItem4 = QtGui.QSpacerItem(20, 20, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem4) self.checkBox_fuzzy = QtGui.QCheckBox(self.groupBox_2) self.checkBox_fuzzy.setObjectName(_fromUtf8("checkBox_fuzzy")) self.horizontalLayout_4.addWidget(self.checkBox_fuzzy) self.lineEdit_fuzzysearch = QtGui.QLineEdit(self.groupBox_2) self.lineEdit_fuzzysearch.setObjectName(_fromUtf8("lineEdit_fuzzysearch")) self.horizontalLayout_4.addWidget(self.lineEdit_fuzzysearch) spacerItem5 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem5) self.verticalLayout_2.addLayout(self.horizontalLayout_4) self.gridLayout.addWidget(self.groupBox_2, 1, 0, 1, 2) self.groupBox = QtGui.QGroupBox(Form) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.verticalLayout = QtGui.QVBoxLayout(self.groupBox) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.textBrowser_log = QtGui.QTextBrowser(self.groupBox) self.textBrowser_log.viewport().setProperty("cursor", QtGui.QCursor(QtCore.Qt.IBeamCursor)) self.textBrowser_log.setMouseTracking(True) self.textBrowser_log.setObjectName(_fromUtf8("textBrowser_log")) self.verticalLayout.addWidget(self.textBrowser_log) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.lineEdit_pagenumStart = QtGui.QLineEdit(self.groupBox) self.lineEdit_pagenumStart.setMaximumSize(QtCore.QSize(50, 16777215)) self.lineEdit_pagenumStart.setObjectName(_fromUtf8("lineEdit_pagenumStart")) self.horizontalLayout_2.addWidget(self.lineEdit_pagenumStart) self.label_3 = QtGui.QLabel(self.groupBox) self.label_3.setMaximumSize(QtCore.QSize(20, 16777215)) self.label_3.setObjectName(_fromUtf8("label_3")) self.horizontalLayout_2.addWidget(self.label_3) self.lineEdit_pagenumEnd = QtGui.QLineEdit(self.groupBox) self.lineEdit_pagenumEnd.setMaximumSize(QtCore.QSize(50, 16777215)) self.lineEdit_pagenumEnd.setObjectName(_fromUtf8("lineEdit_pagenumEnd")) self.horizontalLayout_2.addWidget(self.lineEdit_pagenumEnd) spacerItem6 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem6) self.pushButton_pageup = QtGui.QPushButton(self.groupBox) self.pushButton_pageup.setObjectName(_fromUtf8("pushButton_pageup")) self.horizontalLayout_2.addWidget(self.pushButton_pageup) self.pushButton_pagedown = QtGui.QPushButton(self.groupBox) self.pushButton_pagedown.setObjectName(_fromUtf8("pushButton_pagedown")) self.horizontalLayout_2.addWidget(self.pushButton_pagedown) self.verticalLayout.addLayout(self.horizontalLayout_2) self.gridLayout.addWidget(self.groupBox, 0, 0, 1, 2) self.horizontalLayout_5 = QtGui.QHBoxLayout() self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.label_notice = QtGui.QLabel(Form) self.label_notice.setMinimumSize(QtCore.QSize(600, 0)) self.label_notice.setObjectName(_fromUtf8("label_notice")) self.horizontalLayout_5.addWidget(self.label_notice) spacerItem7 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_5.addItem(spacerItem7) self.pushButton_check = QtGui.QPushButton(Form) self.pushButton_check.setObjectName(_fromUtf8("pushButton_check")) self.horizontalLayout_5.addWidget(self.pushButton_check) self.gridLayout.addLayout(self.horizontalLayout_5, 2, 0, 1, 2) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "LogManager", None)) self.groupBox_2.setTitle(_translate("Form", "Search Setting", None)) self.checkBox_time.setText(_translate("Form", "time๏ผš", None)) self.label_2.setText(_translate("Form", "-----", None)) self.checkBox_ip.setText(_translate("Form", "IP๏ผš ", None)) self.checkBox_fuzzy.setText(_translate("Form", "fuzzy๏ผš", None)) self.groupBox.setTitle(_translate("Form", "Log Display", None)) self.label_3.setText(_translate("Form", "---", None)) self.pushButton_pageup.setText(_translate("Form", "page up ", None)) self.pushButton_pagedown.setText(_translate("Form", "page down", None)) self.label_notice.setText(_translate("Form", "Notice:", None)) self.pushButton_check.setText(_translate("Form", "Check", None)) ``` #### File: fast-transfer/test/testLogging.py ```python import logging,time,os # ่Žทๅ–ๆ—ฅๅฟ—ๅฎžไพ‹ๆ–นๆณ• def getLogger(name): # ๆ“ไฝœ้ข‘็นๅฏไปฅๆ นๆฎๆ—ฅๆœŸๅ‘ฝๅๆ—ฅๅฟ—๏ผŒ้ฟๅ…ๅ•ไธชๆ—ฅๅฟ—ๆ–‡ไปถ่ฟ‡ๅคง date = time.strftime("%Y-%m-%d", time.localtime()) # ่Žทๅ–ๆ—ฅๅฟ—ๅฎžไพ‹ logger = logging.getLogger(name) # ๆ—ฅๅฟ—ๆ‰“ๅฐๅ†…ๅฎนๆ ผๅผ fmt = logging.Formatter("%(asctime)s [%(levelname)s] [%(name)s]: %(message)s\n", datefmt="%Y-%m-%d %H:%M:%S") # ่พ“ๅ‡บๆ ผๅผๅŠๆ—ฅๅฟ—ๆ–‡ไปถไฝ็ฝฎ path = os.getcwd() file_handler = logging.FileHandler(r"{}/log/{}_{}.log".format(path,date,name)) file_handler.setFormatter(fmt) # ้…็ฝฎๆ—ฅๅฟ—ๅฎžไพ‹ logger.addHandler(file_handler) logger.setLevel(logging.INFO) return logger logger = getLogger("Test") logger.info("่ฟ™ๆ˜ฏไธ€ๆกๆต‹่ฏ•ไฟกๆฏ") ```
{ "source": "Joy917/News-Spider", "score": 2 }
#### File: News-Spider/spiders/thehill_spider.py ```python import threading from bs4 import BeautifulSoup import re import time import utils import entity TOTALS = 0 def get_header(): header = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36", "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9", "cache-control": "max-age=0", "upgrade-insecure-requests": "1", "Connection": "close", "cookie": 'kppid=1a4aac943d4; has_js=1; _ga=GA1.2.2070443439.1621870819; _cb_ls=1; _cb=m_5H0BiRoPOB2AREW; _ntv_uid=3fc25902-f7b9-43c1-946d-ae954e9fecb3; __gads=ID=612340c38c6544d5:T=1621870819:S=ALNI_Mb3_tCo_FRQqwxu6qrFGkd2s5TS0A; ccpaUUID=dd3c619b-abd7-4f46-9c47-de11bb7d07c3; dnsDisplayed=true; ccpaApplies=false; signedLspa=false; ntv_as_us_privacy=1---; cuid=8d4cc250f5752790244f1621870826449_1624462826449; OB-USER-TOKEN=<PASSWORD>; _pbjs_userid_consent_data=3524755945110770; _gid=GA1.2.168308596.1622039723; _cb_svref=null; FCCDCF=[["<KEY>],null,["[[],[],[],[],null,null,true]",1622039970296]]; _gat=1; _chartbeat2=.1621870822200.1622040648167.101.BPo3cED3o9ufDVEs-9B1aCjJBDC-pN.8' } return header def driver_url(driver, url): driver.get(url) result = driver.find_element_by_xpath("//body/div[@id='page']/div[@id='main']/div[@id='content']/ol[1]") soup = BeautifulSoup(result.get_attribute('innerHTML'), "html.parser") driver.quit() return soup def start_crawl(file_path, keywords, start_time, end_time): keywords_str = "%20".join(keywords) driver = utils.get_webdriver() item_set = set() for page in range(0, 10): url = f"https://thehill.com/search/query/{keywords_str}?page={page}" try: soup = driver_url(driver, url) search_result = soup.find_all("li", class_=re.compile("search-result")) if search_result and len(search_result) > 0: # ็ญ›้€‰ๆทปๅŠ ๆ–‡็ซ ๆ—ถ้—ดๅ’Œurl title for li in search_result: origin_date = li.find_next("p", class_="date").string.strip() date_list = origin_date.split("/") date = date_list[2] + date_list[0] + date_list[1] if int(date) < int(start_time): return item_set if int(date) > int(end_time): continue article = entity.Article() a = li.find_next("h3", class_="title").find_next("a") href = a.get("href") if not href.startswith("https://thehill.com/"): href = "https://thehill.com" + href article.url = href article.title = a.string article.title_cn = utils.translate(article.title) article.date = date # ่งฃๆžๆญฃๆ–‡ try: title, publish_date, content = utils.get_title_time_content(href, header=get_header()) article.text = content article.text_cn = utils.translate(article.text) except Exception as exc: pass time.sleep(1) item_set.add(article) else: return item_set except Exception as exc: return item_set try: global TOTALS TOTALS += len(item_set) utils.write_xlsx_apend(file_path, item_set) item_set.clear() except: pass driver.quit() def save_to_excel(file_path, keywords, item_set): # ๅ†™ๅ…ฅๆ•ฐๆฎ utils.write_xlsx_apend(file_path, item_set) class Task(threading.Thread): def __init__(self, thread_id, name, dir_name, keywords, start_time, end_time, signal): super().__init__() self.thread_id = thread_id self.name = name self.dir_name = dir_name self.keywords = keywords self.start_time = start_time self.end_time = end_time self._signal = signal def run(self): try: self._signal.emit(f"{self.name} start...") start = time.time() file_path = f"{self.dir_name}\\{utils.now_timestamp()}-{self.name}.xlsx" # ๅˆ›ๅปบ็ฉบExcelๅนถๅ†™ๅ…ฅ่กจๅคด utils.create_xlsx_with_head(file_path=file_path, sheet_name='+'.join(self.keywords)) start_crawl(file_path, self.keywords, self.start_time, self.end_time) end = time.time() used_time = round((end - start) / 60, 2) msg = f"{self.name} end, totals:{TOTALS}, used:{used_time} min" self._signal.emit(msg) except: self._signal.emit(f"{self.name} failed end") if __name__ == '__main__': keywords = ["Tokyo"] start_time = "20210623" end_time = "20210630" # ๅˆ›ๅปบ็ฉบExcelๅนถๅ†™ๅ…ฅ่กจๅคด utils.create_xlsx_with_head("./TheHill.xlsx", sheet_name='+'.join(keywords)) item_set = start_crawl("./TheHill.xlsx", keywords=keywords, start_time=start_time, end_time=end_time) ```
{ "source": "Joy917/ToolScripts", "score": 3 }
#### File: ToolScripts/common/transfer.py ```python import os import re def normal_path(*args): return os.path.normpath(os.path.join(*args)) class Transfer: def __init__(self): self.DESKTOP_PATH = normal_path("C:/Users", os.getenv("USERNAME"), "Desktop") self.DEFAULT_SIZE_PER = 1024 * 1024 * 10 def split_file(self, src_file: str, output_dir=""): """ ๆ‹†ๅˆ†ๆ–‡ไปถ :param src_file: ๆบๆ–‡ไปถ่ทฏๅพ„ :param output_dir: ๅˆ‡ๅˆ†ๆ–‡ไปถ่พ“ๅ‡บ็›ฎๅฝ• :return: """ if not os.path.isfile(src_file): raise Exception(f"The given path:{src_file} is not file!") if not output_dir: output_dir = self.DESKTOP_PATH file_size = os.path.getsize(src_file) print(f"src file size:{file_size // (1024 * 1024)} M") count = file_size // self.DEFAULT_SIZE_PER mod = file_size % self.DEFAULT_SIZE_PER if mod > 0: count += 1 with open(file=src_file, mode="rb") as fr: # ๅˆ‡ๅ‰ฒๆบๆ–‡ไปถ่‡ณ็›ฎๆ ‡ๅคงๅฐ for i in range(0, count): target_file = normal_path(output_dir, f"{os.path.basename(src_file)}_{i}") with open(file=target_file, mode="wb") as fw: fw.write(fr.read(self.DEFAULT_SIZE_PER)) print("sub file name:", target_file) print("split finished!") def fit_file(self, files_dir: str, target_file_name: str, output_dir=""): """ๅˆๅนถๆ–‡ไปถ :param files_dir: ๅˆ‡ๅˆ†ๆ–‡ไปถๆ‰€ๅœจ็›ฎๅฝ• :param target_file_name: ๅˆๅนถๆ–‡ไปถๅ :param output_dir: ๅˆๅนถๆ–‡ไปถ่พ“ๅ‡บ็›ฎๅฝ• :return: """ if not (os.path.exists(files_dir) and os.path.isdir(files_dir)): raise Exception(f"The given path:{files_dir} does not exist or is not a folder!") if not output_dir: output_dir = self.DESKTOP_PATH target_file_path = normal_path(output_dir, target_file_name) if os.path.exists(target_file_path): raise Exception("The output folder already exists target file!") regex = re.compile(target_file_name + "_\d+") split_files = [] # ่Žทๅ–็›ฎๆ ‡ๆ–‡ไปถๅˆ—่กจๅนถๆ นๆฎ็ผ–ๅทๆŽ’ๅบ for file in os.listdir(files_dir): if not re.match(regex, file): continue index = file.rsplit("_", 1)[1] split_files.insert(int(index), normal_path(files_dir, file)) # ็ป„่ฃ…ๆ–‡ไปถ with open(file=target_file_path, mode="ab") as fw: for sub_file in split_files: with open(file=sub_file, mode="rb") as fr: fw.write(fr.read()) print(f"{target_file_path} fit finished!") if __name__ == '__main__': file = "HadoopๆƒๅจๆŒ‡ๅ—_็ฌฌๅ››็‰ˆ_ไธญๆ–‡็‰ˆ.pdf" transfer = Transfer() # transfer.split_file("E:/ๅคฉๅคฉๅ‘ไธŠ/HadoopๆƒๅจๆŒ‡ๅ—_็ฌฌๅ››็‰ˆ_ไธญๆ–‡็‰ˆ.pdf") transfer.fit_file("C:/Users/Joy/Desktop/", file) ```
{ "source": "joyabhatt/jb-inhibition", "score": 2 }
#### File: joyabhatt/jb-inhibition/aigame.py ```python from neuron import h from pylab import concatenate, figure, show, ion, ioff, pause,xlabel, ylabel, plot, Circle, sqrt, arctan, arctan2, close from copy import copy, deepcopy from random import uniform, seed, sample, randint from matplotlib import pyplot as plt import random import numpy as np from skimage.transform import downscale_local_mean, resize from skimage.color import rgb2gray import json import gym import sys from gym import wrappers from time import time from collections import OrderedDict from imgutils import getoptflow from imgutils import getObjectsBoundingBoxes, getObjectMotionDirection import cv2 from centroidtracker import CentroidTracker # make the environment - env is global so that it only gets created on a single node (important when using MPI with > 1 node) try: from conf import dconf env = gym.make(dconf['env']['name'],frameskip=dconf['env']['frameskip']) if dconf['env']['savemp4']: env = wrappers.Monitor(env, './videos/' + dconf['sim']['name'] + '/',force=True) env.reset() except: print('Exception in makeENV') env = gym.make('Pong-v0',frameskip=3) env = wrappers.Monitor(env, './videos/' + str(time()) + '/',force=True) env.reset() # get smallest angle difference def getangdiff (ang1, ang2): if ang1 > 180.0: ang1 -= 360.0 if ang2 > 180.0: ang2 -= 360.0 angdiff = ang1 - ang2 if angdiff > 180.0: angdiff-=360.0 elif angdiff < -180.0: angdiff+=360.0 return angdiff class AIGame: """ Interface to OpenAI gym game """ def __init__ (self,fcfg='sim.json'): # initialize variables self.env = env self.countAll = 0 self.ldir = ['E','NE','N', 'NW','W','SW','S','SE'] self.ldirpop = ['EV1D'+Dir for Dir in self.ldir] self.lratepop = ['ER'] # populations that we calculate rates for for d in self.ldir: self.lratepop.append('EV1D'+d) self.dFVec = OrderedDict({pop:h.Vector() for pop in self.lratepop}) # NEURON Vectors for firing rate calculations self.dFiringRates = OrderedDict({pop:np.zeros(dconf['net'][pop]) for pop in self.lratepop}) # python objects for firing rate calculations self.dAngPeak = OrderedDict({'EV1DE': 0.0,'EV1DNE': 45.0, # receptive field peak angles for the direction selective populations 'EV1DN': 90.0,'EV1DNW': 135.0, 'EV1DW': 180.0,'EV1DSW': 235.0, 'EV1DS': 270.0,'EV1DSE': 315.0}) self.AngRFSigma2 = dconf['net']['AngRFSigma']**2 # angular receptive field (RF) sigma squared used for dir selective neuron RFs if self.AngRFSigma2 <= 0.0: self.AngRFSigma2=1.0 self.input_dim = int(np.sqrt(dconf['net']['ER'])) # input image XY plane width,height self.dirSensitiveNeuronDim = int(np.sqrt(dconf['net']['EV1DE'])) # direction sensitive neuron XY plane width,height self.dirSensitiveNeuronRate = (dconf['net']['DirMinRate'], dconf['net']['DirMaxRate']) # min, max firing rate (Hz) for dir sensitive neurons self.intaction = int(dconf['actionsPerPlay']) # integrate this many actions together before returning reward information to model # these are Pong-specific coordinate ranges; should later move out of this function into Pong-specific functions self.courtYRng = (34, 194) # court y range self.courtXRng = (20, 140) # court x range self.racketXRng = (141, 144) # racket x range self.dObjPos = {'racket':[], 'ball':[]} self.last_obs = [] # previous observation self.last_ball_dir = 0 # last ball direction self.FullImages = [] # full resolution images from game environment self.ReducedImages = [] # low resolution images from game environment used as input to neuronal network model self.ldflow = [] # list of dictionary of optical flow (motion) fields if dconf['DirectionDetectionAlgo']['CentroidTracker']: self.ct = CentroidTracker() self.objects = OrderedDict() # objects detected in current frame self.last_objects = OrderedDict() # objects detected in previous frame def updateInputRates (self, dsum_Images): # update input rates to retinal neurons #fr_Images = np.where(dsum_Images>1.0,100,dsum_Images) #Using this to check what number would work for firing rate #fr_Images = np.where(dsum_Images<10.0,0,dsum_Images) fr_Images = 40/(1+np.exp((np.multiply(-1,dsum_Images)+123)/25)) fr_Images = np.subtract(fr_Images,np.min(fr_Images)) #baseline firing rate subtraction. Instead all excitatory neurons are firing at 5Hz. #print(np.amax(fr_Images)) self.dFiringRates['ER'] = np.reshape(fr_Images,400) #400 for 20*20 def computeMotionFields (self, UseFull=False): # compute and store the motion fields and associated data if UseFull: limage = self.FullImages else: limage = self.ReducedImages if len(limage) < 2: flow = np.zeros(shape=(limage[-1].shape[0],limage[-1].shape[1],2)) mag = np.zeros(shape=(limage[-1].shape[0],limage[-1].shape[1])) ang = np.zeros(shape=(limage[-1].shape[0],limage[-1].shape[1])) ang[mag == 0] = -100 goodInds = np.zeros(shape=(limage[-1].shape[0],limage[-1].shape[1])) self.ldflow.append({'flow':flow,'mag':mag,'ang':ang,'goodInds':goodInds,'thang':ang,'thflow':flow}) #return else: self.ldflow.append(getoptflow(limage[-2],limage[-1])) def computeAllObjectsMotionDirections(self, UseFull=False): #Detect the objects, and initialize the list of bounding box rectangles if len(self.FullImages)==0: return if UseFull: cimage = self.FullImages[-1] else: cimage = self.ReducedImages[-1] rects = getObjectsBoundingBoxes(cimage) cimage = np.ascontiguousarray(cimage, dtype=np.uint8) # update our centroid tracker using the computed set of bounding box rectangles self.objects = self.ct.update(rects) if len(self.last_objects)==0: self.last_objects = deepcopy(self.objects) flow = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim,2)) mag = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim)) ang = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim)) ang[mag == 0] = -100 goodInds = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim)) else: dirX, dirY = getObjectMotionDirection(self.objects, self.last_objects, rects, dims=np.shape(cimage)[0],\ FlowWidth=dconf['DirectionDetectionAlgo']['FlowWidth']) if np.shape(cimage)[0] != self.dirSensitiveNeuronDim or np.shape(cimage)[1] != self.dirSensitiveNeuronDim: dirX = resize(dirX, (self.dirSensitiveNeuronDim, self.dirSensitiveNeuronDim), anti_aliasing=True) dirY = resize(dirY, (self.dirSensitiveNeuronDim, self.dirSensitiveNeuronDim), anti_aliasing=True) mag, ang = cv2.cartToPolar(dirX, -1*dirY) ang = np.rad2deg(ang) ang[mag == 0] = -100 self.last_objects = deepcopy(self.objects) flow = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim,2)) flow[:,:,0] = dirX flow[:,:,1] = dirY goodInds = np.zeros(shape=(self.dirSensitiveNeuronDim,self.dirSensitiveNeuronDim)) self.ldflow.append({'flow':flow,'mag':mag,'ang':ang,'goodInds':goodInds,'thang':ang,'thflow':flow}) def updateDirSensitiveRates (self): # update firing rate of dir sensitive neurons using dirs (2D array with motion direction at each coordinate) if len(self.ldflow) < 1: return dflow = self.ldflow[-1] motiondir = dflow['thang'] # angles in degrees, but thresholded for significant motion; negative value means not used dAngPeak = self.dAngPeak dirSensitiveNeuronDim = self.dirSensitiveNeuronDim if motiondir.shape[0] != dirSensitiveNeuronDim or motiondir.shape[1] != dirSensitiveNeuronDim: motiondir = resize(motiondir, (dirSensitiveNeuronDim, dirSensitiveNeuronDim), anti_aliasing=True) AngRFSigma2 = self.AngRFSigma2 MaxRate = self.dirSensitiveNeuronRate[1] for pop in self.ldirpop: self.dFiringRates[pop] = self.dirSensitiveNeuronRate[0] * np.ones(shape=(dirSensitiveNeuronDim,dirSensitiveNeuronDim)) for y in range(motiondir.shape[0]): for x in range(motiondir.shape[1]): if motiondir[y,x] >= 0.0: # make sure it's a valid angle for pop in self.ldirpop: fctr = np.exp(-1.0*(getangdiff(motiondir[y][x],dAngPeak[pop])**2)/AngRFSigma2) #print('updateDirRates',pop,x,y,fctr,dAngPeak[pop],motiondir[y][x]) self.dFiringRates[pop][y,x] += MaxRate * fctr #print('motiondir',motiondir) for pop in self.ldirpop: self.dFiringRates[pop]=np.reshape(self.dFiringRates[pop],dirSensitiveNeuronDim**2) #print(pop,np.amin(self.dFiringRates[pop]),np.amax(self.dFiringRates[pop]),np.mean(self.dFiringRates[pop])) #print(pop,self.dFiringRates[pop]) def findobj (self, img, xrng, yrng): # find an object's x, y position in the image (assumes bright object on dark background) subimg = img[yrng[0]:yrng[1],xrng[0]:xrng[1],:] sIC = np.sum(subimg,2) #assuming the color of object is uniform, add values or r,g,b to get a single value pixelVal = np.amax(sIC) #find the pixel value representing object assuming a black background sIC[sIC<pixelVal]=0 #make binary image Obj_inds = [] for i in range(sIC.shape[0]): for j in range(sIC.shape[1]): if sIC[i,j]>0: Obj_inds.append([i,j]) if sIC.shape[0]*sIC.shape[1]==np.shape(Obj_inds)[0]: #if there is no object in the subimage ypos = -1 xpos = -1 else: ypos = np.median(Obj_inds,0)[0] #y position of the center of mass of the object xpos = np.median(Obj_inds,0)[1] #x position of the center of mass of the object return xpos, ypos def playGame (self, actions, epCount): #actions need to be generated from motor cortex # PLAY GAME rewards = []; proposed_actions =[]; total_hits = []; Images = [] input_dim = self.input_dim done = False courtYRng, courtXRng, racketXRng = self.courtYRng, self.courtXRng, self.racketXRng # coordinate ranges for different objects (PONG-specific) if self.intaction==1: lgwght = [1.0] else: lgwght = np.linspace(0.6, 1, self.intaction) # time-decay grayscale image weights (earlier indices with lower weights are from older frames) lgimage = [] # grayscale down-sampled images with decaying time-lagged input lgimage_ns = [] #grayscale full images with decaying time-lagged input if len(self.last_obs)==0: #if its the first action of the episode, there won't be any last_obs, therefore no last image lobs_gimage_ds = [] else: lobs_gimage = 255.0*rgb2gray(self.last_obs[courtYRng[0]:courtYRng[1],:,:]) lobs_gimage_ds = downscale_local_mean(lobs_gimage,(8,8)) lobs_gimage_ds = np.where(lobs_gimage_ds>np.min(lobs_gimage_ds)+1,255,lobs_gimage_ds) lobs_gimage_ds = 0.5*lobs_gimage_ds #use this image for motion computation only for adx in range(self.intaction): #for each action generated by the firing rate of the motor cortex, find the suggested-action by comparing the position of the ball and racket caction = actions[adx] #action generated by the firing rate of the motor cortex if np.shape(self.last_obs)[0]>0: #if last_obs is not empty xpos_Ball, ypos_Ball = self.findobj(self.last_obs, courtXRng, courtYRng) # get x,y positions of ball xpos_Racket, ypos_Racket = self.findobj(self.last_obs, racketXRng, courtYRng) # get x,y positions of racket #Now we know the position of racket relative to the ball. We can suggest the action for the racket so that it doesn't miss the ball. #For the time being, I am implementing a simple rule i.e. based on only the ypos of racket relative to the ball if ypos_Ball==-1: #guess about proposed move can't be made because ball was not visible in the court proposed_action = -1 #no valid action guessed elif ypos_Racket>ypos_Ball: #if the racket is lower than the ball the suggestion is to move up proposed_action = dconf['moves']['UP'] #move up elif ypos_Racket<ypos_Ball: #if the racket is higher than the ball the suggestion is to move down proposed_action = dconf['moves']['DOWN'] #move down elif ypos_Racket==ypos_Ball: proposed_action = dconf['moves']['NOMOVE'] #no move #self.FullImages.append(np.sum(self.last_obs[courtYRng[0]:courtYRng[1],:,:],2)) self.dObjPos['ball'].append([courtXRng[0]-1+xpos_Ball,ypos_Ball]) self.dObjPos['racket'].append([racketXRng[0]-1+xpos_Racket,ypos_Racket]) else: proposed_action = -1 #if there is no last_obs ypos_Ball = -1 #if there is no last_obs, no position of ball xpos_Ball = -1 #if there is no last_obs, no position of ball observation, reward, done, info = self.env.step(caction) #find position of ball after action xpos_Ball2, ypos_Ball2 = self.findobj(observation, courtXRng, courtYRng) ball_moves_towards_racket = False if xpos_Ball>0 and xpos_Ball2>0: if xpos_Ball2-xpos_Ball>0: ball_moves_towards_racket = True # use proposed action for reward only when the ball moves towards the racket current_ball_dir = 1 elif xpos_Ball2-xpos_Ball<0: ball_moves_towards_racket = False current_ball_dir = -1 else: ball_moves_towards_racket = False current_ball_dir = 0 #direction can't be determinted prob. because the ball didn't move in x dir. else: ball_moves_towards_racket = False current_ball_dir = 0 #direction can't be determined because either current or last position of the ball is outside the court if "followOnlyTowards" in dconf: if dconf["followOnlyTowards"] and not ball_moves_towards_racket: proposed_action = -1 # no proposed action if ball moving away from racket ball_hits_racket = 0 # previously I assumed when current_ball_dir is 0 there is no way to find out if the ball hit the racket if current_ball_dir-self.last_ball_dir<0 and reward==0 and xpos_Ball2>courtXRng[1]-courtXRng[0]-40: ball_hits_racket = 1 #print('Current_ball_dir', current_ball_dir) #print('Last ball dir', self.last_ball_dir) #print('current X pos Ball', xpos_Ball2) #print('last X pos Ball', xpos_Ball) #print('Court Range',courtXRng) print(ball_hits_racket) self.last_ball_dir = current_ball_dir total_hits.append(ball_hits_racket) # i dont think this can be more than a single hit in 5 moves. so check if sum is greater than 1, print error self.env.render() self.last_obs = observation # current observation will be used as last_obs for the next action if done: self.env.reset() self.last_obs = [] # when the game ends, and new game starts, there is no last observation self.last_ball_dir=0 done = False rewards.append(reward) proposed_actions.append(proposed_action) gray_Image = 255.0*rgb2gray(observation[courtYRng[0]:courtYRng[1],:,:]) # convert to grayscale; rgb2gray has 0-1 range so mul by 255 gray_ds = downscale_local_mean(gray_Image,(8,8)) # then downsample gray_ds = np.where(gray_ds>np.min(gray_ds)+1,255,gray_ds) # Different thresholding gray_ns = np.where(gray_Image>np.min(gray_Image)+1,255,gray_Image) lgimage_ns.append(lgwght[adx]*gray_ns) lgimage.append(lgwght[adx]*gray_ds) # save weighted grayscale image from current frame self.countAll += 1 # NB: previously we merged 2x2 pixels into 1 value. Now we merge 8x8 pixels into 1 value. # so the original 160x160 pixels will result into 20x20 values instead of previously used 80x80. if len(lgimage)>1: dsum_Images = np.maximum(lgimage[0],lgimage[1]) nsum_Images = np.maximum(lgimage_ns[0],lgimage_ns[1]) for gimage in lgimage[2:]: dsum_Images = np.maximum(dsum_Images,gimage) for gimage in lgimage_ns[2:]: nsum_Images = np.maximum(nsum_Images,gimage) else: dsum_Images = lgimage[0] nsum_Images = lgimage_ns[0] self.FullImages.append(nsum_Images) # save full images ----> THIS IS JUST USED FOR DIRECTIONS (for accuracy) self.ReducedImages.append(dsum_Images) # save the input image self.updateInputRates(dsum_Images) # update input rates to retinal neurons if self.intaction==1: #if only one frame used per play, then add the downsampled and scaled image from last_obs for direction computation if len(lobs_gimage_ds)>0: dsum_Images = np.maximum(dsum_Images,lobs_gimage_ds) if dconf['DirectionDetectionAlgo']['OpticFlow']: self.computeMotionFields(UseFull=dconf['DirectionDetectionAlgo']['UseFull']) # compute the motion fields elif dconf['DirectionDetectionAlgo']['CentroidTracker']: self.computeAllObjectsMotionDirections(UseFull=dconf['DirectionDetectionAlgo']['UseFull']) # compute the motion field using CetroidTracking self.updateDirSensitiveRates() # update motion sensitive neuron input rates if done: # done means that 1 episode of the game finished, so the environment needs to be reset. epCount.append(self.countAll) self.env.reset() self.env.frameskip = 3 self.countAll = 0 if np.sum(total_hits)>1: print('ERROR COMPUTING NUMBER OF HITS') for r in range(len(rewards)): if rewards[r]==-1: total_hits[r]=-1 #when the ball misses the racket, the reward is -1 return rewards, epCount, proposed_actions, total_hits ``` #### File: joyabhatt/jb-inhibition/imgutils.py ```python import numpy as np import cv2 # opencv # from skimage.registration import optical_flow_tvl1 from scipy import ndimage from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import generate_binary_structure, binary_erosion from collections import OrderedDict import copy from skimage.transform import downscale_local_mean, rescale def getoptflow (gimg0, gimg1, winsz=3, pyrscale=0.5, nlayer=3, niter=3, polyn=5, polysigma=1.1): # gets dense optical flow between two grayscale images (gimg0, gimg1) # using openCV's implementation the <NAME>'s algorithm. """ . @param winsz averaging window size; larger values increase the algorithm robustness to image . noise and give more chances for fast motion detection, but yield more blurred motion field. . @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image; . pyrscale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous . one. . @param nlayer number of pyramid layers including the initial image; levels=1 means that no extra . layers are created and only the original images are used. . noise and give more chances for fast motion detection, but yield more blurred motion field. . @param niter number of iterations the algorithm does at each pyramid level. . @param polyn size of the pixel neighborhood used to find polynomial expansion in each pixel; . larger values mean that the image will be approximated with smoother surfaces, yielding more . robust algorithm and more blurred motion field, typically poly_n =5 or 7. . @param polysigma standard deviation of the Gaussian that is used to smooth derivatives used as a . basis for the polynomial expansion; for polyn=5, you can set polysigma=1.1, for polyn=7, a . good value would be polysigma=1.5. """ # see help(cv2.calcOpticalFlowFarneback) for param choices flow = cv2.calcOpticalFlowFarneback(gimg0,gimg1, None, pyrscale, nlayer, winsz, niter, polyn, polysigma, 0) mag, ang = cv2.cartToPolar(flow[...,0], -flow[...,1]) ang = np.rad2deg(ang) thang = np.copy(ang) # now perform thresholding th = np.mean(mag) + np.std(mag) goodInds = np.where(mag<th,0,1) thflow = np.copy(flow) for y in range(thang.shape[0]): for x in range(thang.shape[1]): if mag[y,x] < th: thang[y,x] = -100 # invalid angle; angles should all be non-negative thflow[y,x,0] = thflow[y,x,1] = 0 # 0 flow return {'flow':flow,'mag':mag,'ang':ang,'goodInds':goodInds,'thang':thang,'thflow':thflow} def getoptflowframes (Images,winsz=3, pyrscale=0.5, nlayer=3, niter=3, polyn=5, polysigma=1.1): # get optical flow between all frames in 3D array of frames; index 0 is frame; next indices are y,x return [getoptflow(Images[i,:,:],Images[i+1,:,:],winsz=winsz,pyrscale=pyrscale,nlayer=nlayer,niter=niter,polyn=polyn,polysigma=polysigma) for i in range(Images.shape[0]-1)] # from https://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array def detectpeaks (image): """ Takes an image and detect the peaks usingthe local maximum filter. Returns a boolean mask of the peaks (i.e. 1 when the pixel's value is the neighborhood maximum, 0 otherwise) """ # define an 8-connected neighborhood neighborhood = generate_binary_structure(2,2) #apply the local maximum filter; all pixel of maximal value #in their neighborhood are set to 1 local_max = maximum_filter(image, footprint=neighborhood)==image #local_max is a mask that contains the peaks we are #looking for, but also the background. #In order to isolate the peaks we must remove the background from the mask. #we create the mask of the background background = (image==0) #a little technicality: we must erode the background in order to #successfully subtract it form local_max, otherwise a line will #appear along the background border (artifact of the local maximum filter) eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) #we obtain the final mask, containing only peaks, #by removing the background from the local_max mask (xor operation) detected_peaks = local_max ^ eroded_background return detected_peaks def getObjectsBoundingBoxes(frame): mask = frame > np.min(frame) labelim, nlabels = ndimage.label(mask) # each pixel in labelim contains labels of the object it belongs to. rects = [] for labels in range(nlabels): clabel = labels+1 o = ndimage.find_objects(labelim==clabel) # to get a bounding box # compute the (x, y)-coordinates of the bounding box for the object startX = o[0][0].start startY = o[0][1].start endX = o[0][0].stop endY = o[0][1].stop box = np.array([startX, startY, endX, endY]) #print('box centroid is:',[int((startX + endX) / 2.0),int((startY + endY) / 2.0)]) rects.append(box.astype("int")) return rects def getObjectMotionDirection(objects, last_objects, rects, dims, FlowWidth): dirX = np.zeros(shape=(dims,dims)) dirY = np.zeros(shape=(dims,dims)) MotionAngles = np.zeros(shape=(dims,dims)) objectIDs = list(objects.keys()) objectCentroids = list(objects.values()) last_objectIDs = list(last_objects.keys()) last_objectCentroids = list(last_objects.values()) directions = [] locations = [] for cvalue in objectIDs: cid = objectIDs.index(cvalue) cobj_centroid = objectCentroids[cid] if cvalue in last_objectIDs: lid = last_objectIDs.index(cvalue) lobj_centroid = last_objectCentroids[lid] for i in range(np.shape(rects)[0]): startX = rects[i][0] if startX<(FlowWidth/2): startX = 0 else: startX = startX-(FlowWidth/2) startY = rects[i][1] if startY<(FlowWidth/2): startY = 0 else: startY = startY-(FlowWidth/2) endX = rects[i][2] if endX>dims-(FlowWidth/2): endX = dims else: endX = endX+(FlowWidth/2) endY = rects[i][3] if endY>dims-(FlowWidth/2): endY = dims else: endY = endY+(FlowWidth/2) if cobj_centroid[1]>=startY and cobj_centroid[1]<=endY and cobj_centroid[0]>=startX and cobj_centroid[0]<=endX: targetX = range(int(startX),int(endX),1) targetY = range(int(startY),int(endY),1) for ix in targetX: for iy in targetY: dirX[ix][iy]= cobj_centroid[1]-lobj_centroid[1] #x direction dirY[ix][iy]= cobj_centroid[0]-lobj_centroid[0] #y direction cdir = [cobj_centroid[1]-lobj_centroid[1],cobj_centroid[0]-lobj_centroid[0]] directions.append(cdir) locations.append([cobj_centroid[1],cobj_centroid[0]]) else: lobj_centroid = [] return dirX, dirY ```
{ "source": "joyalbin/tvm", "score": 2 }
#### File: tvm/autotvm/tophub.py ```python import logging import os import json from .task import ApplyHistoryBest from .. import target as _target from ..contrib.util import tempdir from ..contrib.download import download AUTOTVM_TOPHUB_ROOT_PATH = os.path.join(os.path.expanduser('~'), ".tvm", "tophub") logger = logging.getLogger('autotvm') def _alias(name): """convert alias for some packages""" table = { 'vtacpu': 'vta', } return table.get(name, name) def context(target, extra_files=None): """Return the dispatch context with pre-tuned parameters. The corresponding downloaded *.log files under tophub root path will be loaded. Users can also add their own files in argument `extra_files`. Parameters ---------- target: Target The compilation target extra_files: list of str, optional Extra log files to load """ rootpath = AUTOTVM_TOPHUB_ROOT_PATH best_context = ApplyHistoryBest([]) if isinstance(target, str): target = _target.create(target) big_target = str(target).split()[0] if os.path.isfile(os.path.join(rootpath, big_target + ".log")): best_context.load(os.path.join(rootpath, big_target + ".log")) for opt in target.options: if opt.startswith("-device"): model = _alias(opt[8:]) if os.path.isfile(os.path.join(rootpath, model) + ".log"): best_context.load(os.path.join(rootpath, model) + ".log") if extra_files: for filename in extra_files: best_context.load(filename) return best_context def download_package(backend): """Download pre-tuned parameters of operators for a backend Parameters ---------- backend: str The name of package """ rootpath = AUTOTVM_TOPHUB_ROOT_PATH if not os.path.isdir(rootpath): # make directory splits = os.path.split(rootpath) for j in range(1, len(splits)+1): path = os.path.join(*splits[:j]) if not os.path.isdir(path): os.mkdir(path) backend = _alias(backend) logger.info("Download pre-tuned parameters for %s", backend) download("https://raw.githubusercontent.com/uwsaml/tvm-distro/master/tophub/%s.log" % backend, os.path.join(rootpath, backend + ".log"), True, verbose=0) def check_package(backend): """Check whether have pre-tuned parameters of the certain target. If not, will download it. Parameters ---------- backend: str The name of package """ backend = _alias(backend) if os.path.isfile(os.path.join(AUTOTVM_TOPHUB_ROOT_PATH, backend + ".log")): return download_package(backend) def list_packages(): """List all available pre-tuned op parameters for targets Returns ------- ret: List All available packets """ path = tempdir() filename = path.relpath("info.json") logger.info("Download meta info for pre-tuned parameters") download("https://raw.githubusercontent.com/uwsaml/tvm-distro/master/tophub/info.json", filename, True, verbose=0) with open(filename, "r") as fin: text = "".join(fin.readlines()) info = json.loads(text) keys = list(info.keys()) keys.sort() return [(k, info[k]) for k in keys] ```
{ "source": "joyalicegu/botany", "score": 3 }
#### File: joyalicegu/botany/menu_screen.py ```python import curses import math import os import traceback import threading import time import random import getpass import json import sqlite3 import string import re import completer import datetime class CursedMenu(object): #TODO: name your plant '''A class which abstracts the horrors of building a curses-based menu system''' def __init__(self, this_plant, this_data): '''Initialization''' self.initialized = False self.screen = curses.initscr() curses.noecho() curses.raw() if curses.has_colors(): curses.start_color() try: curses.curs_set(0) except curses.error: # Not all terminals support this functionality. # When the error is ignored the screen will look a little uglier, but that's not terrible # So in order to keep botany as accesible as possible to everyone, it should be safe to ignore the error. pass self.screen.keypad(1) self.plant = this_plant self.visited_plant = None self.user_data = this_data self.plant_string = self.plant.parse_plant() self.plant_ticks = str(int(self.plant.ticks)) self.exit = False self.infotoggle = 0 self.maxy, self.maxx = self.screen.getmaxyx() # Highlighted and Normal line definitions if curses.has_colors(): self.define_colors() self.highlighted = curses.color_pair(1) else: self.highlighted = curses.A_REVERSE self.normal = curses.A_NORMAL # Threaded screen update for live changes screen_thread = threading.Thread(target=self.update_plant_live, args=()) screen_thread.daemon = True screen_thread.start() # Recusive lock to prevent both threads from drawing at the same time self.screen_lock = threading.RLock() self.screen.clear() self.show(["water","look","garden","visit", "instructions"], title=' botany ', subtitle='options') def define_colors(self): # set curses color pairs manually curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.init_pair(2, curses.COLOR_WHITE, curses.COLOR_BLACK) curses.init_pair(3, curses.COLOR_GREEN, curses.COLOR_BLACK) curses.init_pair(4, curses.COLOR_BLUE, curses.COLOR_BLACK) curses.init_pair(5, curses.COLOR_MAGENTA, curses.COLOR_BLACK) curses.init_pair(6, curses.COLOR_YELLOW, curses.COLOR_BLACK) curses.init_pair(7, curses.COLOR_RED, curses.COLOR_BLACK) curses.init_pair(8, curses.COLOR_CYAN, curses.COLOR_BLACK) ESC_CODE_TO_PAIR = { '' : 0, # normal '0' : 0, # normal '30' : 1, # black '31' : 7, # red '32' : 3, # green '33' : 6, # yellow '34' : 4, # blue '35' : 5, # magenta '36' : 8, # cyan '37' : 2 # white } def esc_code_to_color(self, esc_code): return curses.color_pair(self.ESC_CODE_TO_PAIR.get(esc_code, 0)) def show(self, options, title, subtitle): # Draws a menu with parameters self.set_options(options) self.update_options() self.title = title self.subtitle = subtitle self.selected = 0 self.initialized = True self.draw_menu() def update_options(self): # Makes sure you can get a new plant if it dies if self.plant.dead or self.plant.stage == 5: if "harvest" not in self.options: self.options.insert(-1,"harvest") else: if "harvest" in self.options: self.options.remove("harvest") def set_options(self, options): # Validates that the last option is "exit" if options[-1] != 'exit': options.append('exit') self.options = options def draw(self): # Draw the menu and lines self.maxy, self.maxx = self.screen.getmaxyx() self.screen_lock.acquire() self.screen.refresh() try: self.draw_default() self.screen.refresh() except Exception as exception: # Makes sure data is saved in event of a crash due to window resizing self.screen.clear() self.screen.addstr(0, 0, "Enlarge terminal!", curses.A_NORMAL) self.screen.refresh() self.__exit__() traceback.print_exc() self.screen_lock.release() def draw_menu(self): # Actually draws the menu and handles branching request = "" try: while request != "exit": self.draw() request = self.get_user_input() self.handle_request(request) self.__exit__() # Also calls __exit__, but adds traceback after except Exception as exception: self.screen.clear() self.screen.addstr(0, 0, "Enlarge terminal!", curses.A_NORMAL) self.screen.refresh() self.__exit__() #traceback.print_exc() except IOError as exception: self.screen.clear() self.screen.refresh() self.__exit__() def ascii_render(self, filename, ypos, xpos): # Prints ASCII art from file at given coordinates this_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),"art") this_filename = os.path.join(this_dir,filename + '.txt') this_file = open(this_filename,"r") this_string = this_file.readlines() this_file.close() self.screen_lock.acquire() for y, line in enumerate(this_string, 2): self.screen.addstr(ypos+y, xpos, line, curses.A_NORMAL) # self.screen.refresh() self.screen_lock.release() def ansi_render(self, filename, ypos, xpos): # Prints ANSI art from file at given coordinates # Falls back on ASCII if no ANSI version exists # Assumes curses.has_colors() this_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)),"art") this_filename = os.path.join(this_dir,filename + '.ansi') if not os.path.exists(this_filename): self.ascii_render(filename, ypos, xpos) return this_file = open(this_filename,"r") this_string = this_file.readlines() this_file.close() self.screen_lock.acquire() color = curses.A_NORMAL for y, line in enumerate(this_string, 2): code_text_pairs = [tuple(token.split('m', 1)) if 'm' in token else (None, token) for token in line.rstrip('\r\n').split('\x1b[') ] color_text_pairs = [(color, text) if code == None else (self.esc_code_to_color(code), text) for (code, text) in code_text_pairs] x = 0 for (color, text) in color_text_pairs: # Handle overflowing art gracefully text = text[:max(0, self.maxx-(xpos+x))] if not text: continue self.screen.addstr(ypos+y, xpos+x, text, color) x += len(text) self.screen_lock.release() def art_render(self, filename, ypos, xpos): if curses.has_colors(): self.ansi_render(filename, ypos, xpos) else: self.ascii_render(filename, ypos, xpos) def draw_plant_ascii(self, this_plant): ypos = 0 xpos = int((self.maxx-37)/2 + 25) plant_art_list = [ 'poppy', 'cactus', 'aloe', 'flytrap', 'jadeplant', 'fern', 'daffodil', 'sunflower', 'baobab', 'lithops', 'hemp', 'pansy', 'iris', 'agave', 'ficus', 'moss', 'sage', 'snapdragon', 'columbine', 'brugmansia', 'palm', 'pachypodium', ] if this_plant.dead == True: self.art_render('rip', ypos, xpos) elif datetime.date.today().month == 10 and datetime.date.today().day == 31: self.art_render('jackolantern', ypos, xpos) elif this_plant.stage == 0: self.art_render('seed', ypos, xpos) elif this_plant.stage == 1: self.art_render('seedling', ypos, xpos) elif this_plant.stage == 2: this_filename = plant_art_list[this_plant.species]+'1' self.art_render(this_filename, ypos, xpos) elif this_plant.stage == 3 or this_plant.stage == 5: this_filename = plant_art_list[this_plant.species]+'2' self.art_render(this_filename, ypos, xpos) elif this_plant.stage == 4: this_filename = plant_art_list[this_plant.species]+'3' self.art_render(this_filename, ypos, xpos) def draw_default(self): # draws default menu clear_bar = " " * (int(self.maxx*2/3)) self.screen_lock.acquire() self.screen.addstr(1, 2, self.title, curses.A_STANDOUT) # Title for this menu self.screen.addstr(3, 2, self.subtitle, curses.A_BOLD) #Subtitle for this menu # clear menu on screen for index in range(len(self.options)+1): self.screen.addstr(4+index, 4, clear_bar, curses.A_NORMAL) # display all the menu items, showing the 'pos' item highlighted for index in range(len(self.options)): textstyle = self.normal if index == self.selected: textstyle = self.highlighted self.screen.addstr(4+index ,4, clear_bar, curses.A_NORMAL) self.screen.addstr(4+index ,4, "%d - %s" % (index+1, self.options[index]), textstyle) self.screen.addstr(12, 2, clear_bar, curses.A_NORMAL) self.screen.addstr(13, 2, clear_bar, curses.A_NORMAL) self.screen.addstr(12, 2, "plant: ", curses.A_DIM) self.screen.addstr(12, 9, self.plant_string, curses.A_NORMAL) self.screen.addstr(13, 2, "score: ", curses.A_DIM) self.screen.addstr(13, 9, self.plant_ticks, curses.A_NORMAL) # display fancy water gauge if not self.plant.dead: water_gauge_str = self.water_gauge() self.screen.addstr(4,14, water_gauge_str, curses.A_NORMAL) else: self.screen.addstr(4,13, clear_bar, curses.A_NORMAL) self.screen.addstr(4,14, "( RIP )", curses.A_NORMAL) # draw cute ascii from files if self.visited_plant: # Needed to prevent drawing over a visited plant self.draw_plant_ascii(self.visited_plant) else: self.draw_plant_ascii(self.plant) self.screen_lock.release() def water_gauge(self): # build nice looking water gauge water_left_pct = 1 - ((time.time() - self.plant.watered_timestamp)/86400) # don't allow negative value water_left_pct = max(0, water_left_pct) water_left = int(math.ceil(water_left_pct * 10)) water_string = "(" + (")" * water_left) + ("." * (10 - water_left)) + ") " + str(int(water_left_pct * 100)) + "% " return water_string def update_plant_live(self): # updates plant data on menu screen, live! while not self.exit: self.plant_string = self.plant.parse_plant() self.plant_ticks = str(int(self.plant.ticks)) if self.initialized: self.update_options() self.draw() time.sleep(1) def get_user_input(self): # gets the user's input try: user_in = self.screen.getch() # Gets user input except Exception as e: self.__exit__() if user_in == -1: # Input comes from pipe/file and is closed raise IOError ## DEBUG KEYS - enable these lines to see curses key codes # self.screen.addstr(2, 2, str(user_in), curses.A_NORMAL) # self.screen.refresh() # Resize sends curses.KEY_RESIZE, update display if user_in == curses.KEY_RESIZE: self.maxy,self.maxx = self.screen.getmaxyx() self.screen.clear() self.screen.refresh() # enter, exit, and Q Keys are special cases if user_in == 10: return self.options[self.selected] if user_in == 27: return self.options[-1] if user_in == 113: self.selected = len(self.options) - 1 return # this is a number; check to see if we can set it if user_in >= ord('1') and user_in <= ord(str(min(7,len(self.options)))): self.selected = user_in - ord('0') - 1 # convert keypress back to a number, then subtract 1 to get index return # increment or Decrement down_keys = [curses.KEY_DOWN, 14, ord('j')] up_keys = [curses.KEY_UP, 16, ord('k')] if user_in in down_keys: # down arrow self.selected += 1 if user_in in up_keys: # up arrow self.selected -=1 # modulo to wrap menu cursor self.selected = self.selected % len(self.options) return def format_garden_data(self,this_garden): # Returns list of lists (pages) of garden entries plant_table = [] for plant_id in this_garden: if this_garden[plant_id]: if not this_garden[plant_id]["dead"]: this_plant = this_garden[plant_id] plant_table.append((this_plant["owner"], this_plant["age"], int(this_plant["score"]), this_plant["description"])) return plant_table def format_garden_entry(self, entry): return "{:14.14} - {:>16} - {:>8}p - {}".format(*entry) def sort_garden_table(self, table, column, ascending): """ Sort table in place by a specified column """ def key(entry): entry = entry[column] # In when sorting ages, convert to seconds if column == 1: coeffs = [24*60*60, 60*60, 60, 1] nums = [int(n[:-1]) for n in entry.split(":")] if len(nums) == len(coeffs): entry = sum(nums[i] * coeffs[i] for i in range(len(nums))) return entry return table.sort(key=key, reverse=not ascending) def filter_garden_table(self, table, pattern): """ Filter table using a pattern, and return the new table """ def filterfunc(entry): if len(pattern) == 0: return True entry_txt = self.format_garden_entry(entry) try: result = bool(re.search(pattern, entry_txt)) except Exception as e: # In case of invalid regex, don't match anything result = False return result return list(filter(filterfunc, table)) def draw_garden(self): # draws community garden # load data from sqlite db this_garden = self.user_data.retrieve_garden_from_db() # format data self.clear_info_pane() if self.infotoggle == 2: # the screen IS currently showing the garden (1 page), make the # text a bunch of blanks to clear it out self.infotoggle = 0 return # if infotoggle isn't 2, the screen currently displays other stuff plant_table_orig = self.format_garden_data(this_garden) self.infotoggle = 2 # print garden information OR clear it index = 0 sort_column, sort_ascending = 0, True sort_keys = ["n", "a", "s", "d"] # Name, Age, Score, Description plant_table = plant_table_orig self.sort_garden_table(plant_table, sort_column, sort_ascending) while True: entries_per_page = self.maxy - 16 index_max = min(len(plant_table), index + entries_per_page) plants = plant_table[index:index_max] page = [self.format_garden_entry(entry) for entry in plants] self.screen_lock.acquire() self.draw_info_text(page) # Multiple pages, paginate and require keypress page_text = "(%d-%d/%d) | sp/next | bksp/prev | s <col #>/sort | f/filter | q/quit" % (index, index_max, len(plant_table)) self.screen.addstr(self.maxy-2, 2, page_text) self.screen.refresh() self.screen_lock.release() c = self.screen.getch() if c == -1: # Input comes from pipe/file and is closed raise IOError self.infotoggle = 0 # Quit if c == ord("q") or c == ord("x") or c == 27: break # Next page elif c in [curses.KEY_ENTER, curses.KEY_NPAGE, ord(" "), ord("\n")]: index += entries_per_page if index >= len(plant_table): break # Previous page elif c == curses.KEY_BACKSPACE or c == curses.KEY_PPAGE: index = max(index - entries_per_page, 0) # Next line elif c == ord("j") or c == curses.KEY_DOWN: index = max(min(index + 1, len(plant_table) - 1), 0) # Previous line elif c == ord("k") or c == curses.KEY_UP: index = max(index - 1, 0) # Sort entries elif c == ord("s"): c = self.screen.getch() if c == -1: # Input comes from pipe/file and is closed raise IOError column = -1 if c < 255 and chr(c) in sort_keys: column = sort_keys.index(chr(c)) elif ord("1") <= c <= ord("4"): column = c - ord("1") if column != -1: if sort_column == column: sort_ascending = not sort_ascending else: sort_column = column sort_ascending = True self.sort_garden_table(plant_table, sort_column, sort_ascending) # Filter entries elif c == ord("/") or c == ord("f"): self.screen.addstr(self.maxy-2, 2, "Filter: " + " " * (len(page_text)-8)) pattern = self.get_user_string(10, self.maxy-2, lambda x: x in string.printable) plant_table = self.filter_garden_table(plant_table_orig, pattern) self.sort_garden_table(plant_table, sort_column, sort_ascending) index = 0 # Clear page before drawing next self.clear_info_pane() self.clear_info_pane() def get_plant_description(self, this_plant): output_text = "" this_species = this_plant.species_list[this_plant.species] this_color = this_plant.color_list[this_plant.color] this_stage = this_plant.stage stage_descriptions = { 0:[ "You're excited about your new seed.", "You wonder what kind of plant your seed will grow into.", "You're ready for a new start with this plant.", "You're tired of waiting for your seed to grow.", "You wish your seed could tell you what it needs.", "You can feel the spirit inside your seed.", "These pretzels are making you thirsty.", "Way to plant, Ann!", "'To see things in the seed, that is genius' - <NAME>", ], 1:[ "The seedling fills you with hope.", "The seedling shakes in the wind.", "You can make out a tiny leaf - or is that a thorn?", "You can feel the seedling looking back at you.", "You blow a kiss to your seedling.", "You think about all the seedlings who came before it.", "You and your seedling make a great team.", "Your seedling grows slowly and quietly.", "You meditate on the paths your plant's life could take.", ], 2:[ "The " + this_species + " makes you feel relaxed.", "You sing a song to your " + this_species + ".", "You quietly sit with your " + this_species + " for a few minutes.", "Your " + this_species + " looks pretty good.", "You play loud techno to your " + this_species + ".", "You play piano to your " + this_species + ".", "You play rap music to your " + this_species + ".", "You whistle a tune to your " + this_species + ".", "You read a poem to your " + this_species + ".", "You tell a secret to your " + this_species + ".", "You play your favorite record for your " + this_species + ".", ], 3:[ "Your " + this_species + " is growing nicely!", "You're proud of the dedication it took to grow your " + this_species + ".", "You take a deep breath with your " + this_species + ".", "You think of all the words that rhyme with " + this_species + ".", "The " + this_species + " looks full of life.", "The " + this_species + " inspires you.", "Your " + this_species + " makes you forget about your problems.", "Your " + this_species + " gives you a reason to keep going.", "Looking at your " + this_species + " helps you focus on what matters.", "You think about how nice this " + this_species + " looks here.", "The buds of your " + this_species + " might bloom soon.", ], 4:[ "The " + this_color + " flowers look nice on your " + this_species +"!", "The " + this_color + " flowers have bloomed and fill you with positivity.", "The " + this_color + " flowers remind you of your childhood.", "The " + this_color + " flowers remind you of spring mornings.", "The " + this_color + " flowers remind you of a forgotten memory.", "The " + this_color + " flowers remind you of your happy place.", "The aroma of the " + this_color + " flowers energize you.", "The " + this_species + " has grown beautiful " + this_color + " flowers.", "The " + this_color + " petals remind you of that favorite shirt you lost.", "The " + this_color + " flowers remind you of your crush.", "You smell the " + this_color + " flowers and are filled with peace.", ], 5:[ "You fondly remember the time you spent caring for your " + this_species + ".", "Seed pods have grown on your " + this_species + ".", "You feel like your " + this_species + " appreciates your care.", "The " + this_species + " fills you with love.", "You're ready for whatever comes after your " + this_species + ".", "You're excited to start growing your next plant.", "You reflect on when your " + this_species + " was just a seedling.", "You grow nostalgic about the early days with your " + this_species + ".", ], 99:[ "You wish you had taken better care of your plant.", "If only you had watered your plant more often..", "Your plant is dead, there's always next time.", "You cry over the withered leaves of your plant.", "Your plant died. Maybe you need a fresh start.", ], } # self.life_stages is tuple containing length of each stage # (seed, seedling, young, mature, flowering) if this_plant.dead: this_stage = 99 this_stage_descriptions = stage_descriptions[this_stage] description_num = random.randint(0,len(this_stage_descriptions) - 1) # If not fully grown if this_stage <= 4: # Growth hint if this_stage >= 1: last_growth_at = this_plant.life_stages[this_stage - 1] else: last_growth_at = 0 ticks_since_last = this_plant.ticks - last_growth_at ticks_between_stage = this_plant.life_stages[this_stage] - last_growth_at if ticks_since_last >= ticks_between_stage * 0.8: output_text += "You notice your plant looks different.\n" output_text += this_stage_descriptions[description_num] + "\n" # if seedling if this_stage == 1: species_options = [this_plant.species_list[this_plant.species], this_plant.species_list[(this_plant.species+3) % len(this_plant.species_list)], this_plant.species_list[(this_plant.species-3) % len(this_plant.species_list)]] random.shuffle(species_options) plant_hint = "It could be a(n) " + species_options[0] + ", " + species_options[1] + ", or " + species_options[2] output_text += plant_hint + ".\n" # if young plant if this_stage == 2: if this_plant.rarity >= 2: rarity_hint = "You feel like your plant is special." output_text += rarity_hint + ".\n" # if mature plant if this_stage == 3: color_options = [this_plant.color_list[this_plant.color], this_plant.color_list[(this_plant.color+3) % len(this_plant.color_list)], this_plant.color_list[(this_plant.color-3) % len(this_plant.color_list)]] random.shuffle(color_options) plant_hint = "You can see the first hints of " + color_options[0] + ", " + color_options[1] + ", or " + color_options[2] output_text += plant_hint + ".\n" return output_text def draw_plant_description(self, this_plant): # If menu is currently showing something other than the description self.clear_info_pane() if self.infotoggle != 1: # get plant description before printing output_string = self.get_plant_description(this_plant) growth_multiplier = 1 + (0.2 * (this_plant.generation-1)) output_string += "Generation: {}\nGrowth rate: {}x".format(self.plant.generation, growth_multiplier) self.draw_info_text(output_string) self.infotoggle = 1 else: # otherwise just set toggle self.infotoggle = 0 def draw_instructions(self): # Draw instructions on screen self.clear_info_pane() if self.infotoggle != 4: instructions_txt = ("welcome to botany. you've been given a seed\n" "that will grow into a beautiful plant. check\n" "in and water your plant every 24h to keep it\n" "growing. 5 days without water = death. your\n" "plant depends on you & your friends to live!\n" "more info is available in the readme :)\n" "https://github.com/jifunks/botany/blob/master/README.md\n" " cheers,\n" " curio\n" ) self.draw_info_text(instructions_txt) self.infotoggle = 4 else: self.infotoggle = 0 def clear_info_pane(self): # Clears bottom part of screen self.screen_lock.acquire() clear_bar = " " * (self.maxx - 3) this_y = 14 while this_y < self.maxy: self.screen.addstr(this_y, 2, clear_bar, curses.A_NORMAL) this_y += 1 self.screen.refresh() self.screen_lock.release() def draw_info_text(self, info_text, y_offset = 0): # print lines of text to info pane at bottom of screen self.screen_lock.acquire() if type(info_text) is str: info_text = info_text.splitlines() for y, line in enumerate(info_text, 2): this_y = y+12 + y_offset if len(line) > self.maxx - 3: line = line[:self.maxx-3] if this_y < self.maxy: self.screen.addstr(this_y, 2, line, curses.A_NORMAL) self.screen.refresh() self.screen_lock.release() def harvest_confirmation(self): self.clear_info_pane() # get plant description before printing max_stage = len(self.plant.stage_list) - 1 harvest_text = "" if not self.plant.dead: if self.plant.stage == max_stage: harvest_text += "Congratulations! You raised your plant to its final stage of growth.\n" harvest_text += "Your next plant will grow at a speed of: {}x\n".format(1 + (0.2 * self.plant.generation)) harvest_text += "If you harvest your plant you'll start over from a seed.\nContinue? (Y/n)" self.draw_info_text(harvest_text) try: user_in = self.screen.getch() # Gets user input except Exception as e: self.__exit__() if user_in == -1: # Input comes from pipe/file and is closed raise IOError if user_in in [ord('Y'), ord('y')]: self.plant.start_over() else: pass self.clear_info_pane() def build_weekly_visitor_output(self, visitors): visitor_block = "" visitor_line = "" for visitor in visitors: this_visitor_string = str(visitor) + "({}) ".format(visitors[str(visitor)]) if len(visitor_line + this_visitor_string) > self.maxx-3: visitor_block += '\n' visitor_line = "" visitor_block += this_visitor_string visitor_line += this_visitor_string return visitor_block def build_latest_visitor_output(self, visitors): visitor_line = "" for visitor in visitors: if len(visitor_line + visitor) > self.maxx-10: visitor_line += "and more" break visitor_line += visitor + ' ' return [visitor_line] def get_weekly_visitors(self): game_dir = os.path.dirname(os.path.realpath(__file__)) garden_db_path = os.path.join(game_dir, 'sqlite/garden_db.sqlite') conn = sqlite3.connect(garden_db_path) c = conn.cursor() c.execute("SELECT * FROM visitors WHERE garden_name = '{}' ORDER BY weekly_visits".format(self.plant.owner)) visitor_data = c.fetchall() conn.close() visitor_block = "" visitor_line = "" if visitor_data: for visitor in visitor_data: visitor_name = visitor[2] weekly_visits = visitor[3] this_visitor_string = "{}({}) ".format(visitor_name, weekly_visits) if len(visitor_line + this_visitor_string) > self.maxx-3: visitor_block += '\n' visitor_line = "" visitor_block += this_visitor_string visitor_line += this_visitor_string else: visitor_block = 'nobody :(' return visitor_block def get_user_string(self, xpos=3, ypos=15, filterfunc=str.isalnum, completer=None): # filter allowed characters using filterfunc, alphanumeric by default user_string = "" user_input = 0 if completer: completer = completer(self) while user_input != 10: user_input = self.screen.getch() if user_input == -1: # Input comes from pipe/file and is closed raise IOError self.screen_lock.acquire() # osx and unix backspace chars... if user_input == 127 or user_input == 263: if len(user_string) > 0: user_string = user_string[:-1] if completer: completer.update_input(user_string) self.screen.addstr(ypos, xpos, " " * (self.maxx-xpos-1)) elif user_input in [ord('\t'), curses.KEY_BTAB] and completer: direction = 1 if user_input == ord('\t') else -1 user_string = completer.complete(direction) self.screen.addstr(ypos, xpos, " " * (self.maxx-xpos-1)) elif user_input < 256 and user_input != 10: if filterfunc(chr(user_input)) or chr(user_input) == '_': user_string += chr(user_input) if completer: completer.update_input(user_string) self.screen.addstr(ypos, xpos, str(user_string)) self.screen.refresh() self.screen_lock.release() return user_string def visit_handler(self): self.clear_info_pane() self.draw_info_text("whose plant would you like to visit?") self.screen.addstr(15, 2, '~') if self.plant.visitors: latest_visitor_string = self.build_latest_visitor_output(self.plant.visitors) self.draw_info_text("since last time, you were visited by: ", 3) self.draw_info_text(latest_visitor_string, 4) self.plant.visitors = [] weekly_visitor_text = self.get_weekly_visitors() self.draw_info_text("this week you've been visited by: ", 6) self.draw_info_text(weekly_visitor_text, 7) guest_garden = self.get_user_string(completer = completer.LoginCompleter) if not guest_garden: self.clear_info_pane() return None if guest_garden.lower() == getpass.getuser().lower(): self.screen.addstr(16, 2, "you're already here!") self.screen.getch() self.clear_info_pane() return None home_folder = os.path.dirname(os.path.expanduser("~")) guest_json = home_folder + "/{}/.botany/{}_plant_data.json".format(guest_garden, guest_garden) guest_plant_description = "" if os.path.isfile(guest_json): with open(guest_json) as f: visitor_data = json.load(f) guest_plant_description = visitor_data['description'] self.visited_plant = self.get_visited_plant(visitor_data) guest_visitor_file = home_folder + "/{}/.botany/visitors.json".format(guest_garden, guest_garden) if os.path.isfile(guest_visitor_file): water_success = self.water_on_visit(guest_visitor_file) if water_success: self.screen.addstr(16, 2, "...you watered ~{}'s {}...".format(str(guest_garden), guest_plant_description)) if self.visited_plant: self.draw_plant_ascii(self.visited_plant) else: self.screen.addstr(16, 2, "{}'s garden is locked, but you can see in...".format(guest_garden)) else: self.screen.addstr(16, 2, "i can't seem to find directions to {}...".format(guest_garden)) try: self.screen.getch() self.clear_info_pane() self.draw_plant_ascii(self.plant) finally: self.visited_plant = None def water_on_visit(self, guest_visitor_file): visitor_data = {} # using -1 here so that old running instances can be watered guest_data = {'user': getpass.getuser(), 'timestamp': int(time.time()) - 1} if os.path.isfile(guest_visitor_file): if not os.access(guest_visitor_file, os.W_OK): return False with open(guest_visitor_file) as f: visitor_data = json.load(f) visitor_data.append(guest_data) with open(guest_visitor_file, mode='w') as f: f.write(json.dumps(visitor_data, indent=2)) return True def get_visited_plant(self, visitor_data): """ Returns a drawable pseudo plant object from json data """ class VisitedPlant: pass plant = VisitedPlant() plant.stage = 0 plant.species = 0 if "is_dead" not in visitor_data: return None plant.dead = visitor_data["is_dead"] if plant.dead: return plant if "stage" in visitor_data: stage = visitor_data["stage"] if stage in self.plant.stage_list: plant.stage = self.plant.stage_list.index(stage) if "species" in visitor_data: species = visitor_data["species"] if species in self.plant.species_list: plant.species = self.plant.species_list.index(species) else: return None elif plant.stage > 1: return None return plant def handle_request(self, request): # Menu options call functions here if request == None: return if request == "harvest": self.harvest_confirmation() if request == "water": self.plant.water() if request == "look": try: self.draw_plant_description(self.plant) except Exception as exception: self.screen.refresh() # traceback.print_exc() if request == "instructions": try: self.draw_instructions() except Exception as exception: self.screen.refresh() # traceback.print_exc() if request == "visit": try: self.visit_handler() except Exception as exception: self.screen.refresh() # traceback.print_exc() if request == "garden": try: self.draw_garden() except Exception as exception: self.screen.refresh() # traceback.print_exc() def __exit__(self): self.exit = True cleanup() def cleanup(): try: curses.curs_set(2) except curses.error: # cursor not supported; just ignore pass curses.endwin() os.system('clear') ```
{ "source": "joyantaDebnath/CERES", "score": 3 }
#### File: src/modules/helper.py ```python def hex_n_bytes_to_int(x): if x == []: return None elif type(x) == list and len(x) > 0: temp = [] for i in x: temp.append(int(i, 16)) q = ''.join(format(x, '02X') for x in bytes(temp)) return int(q, 16) else: return int(x, 16) def array_to_bytes(x): if x == []: return None temp = [] for k in x: temp.append(int(k, 16)) return bytes(temp) def get_ku_padding_count(elem): if elem == []: return 0 temp = int(elem[len(elem) - 1], 16) bin_temp = "{0:08b}".format(temp) padding = len(bin_temp) - len(bin_temp.rstrip('0')) return padding def map_version(x): if type(x) == list and len(x) == 1: # DSL x = x[0] if x is None: return [0, 0] return x def map_bool(x): if type(x) == list and len(x) == 1: # DSL x = x[0] return bool(x) # bool(None) == False def map_ku(x): temp = "" for k in x: if type(k) == bytes: k = k.hex() temp = temp + "{0:08b}".format(int(k, 16)) kus = [] for j in range(0, len(temp)): if j == 0 and temp[j] == '1': kus.append('digitalSignature') elif j == 1 and temp[j] == '1': kus.append('nonRepudiation/contentCommitment') elif j == 2 and temp[j] == '1': kus.append('keyEncipherment') elif j == 3 and temp[j] == '1': kus.append('dataEncipherment') elif j == 4 and temp[j] == '1': kus.append('keyAgreement') elif j == 5 and temp[j] == '1': kus.append('keyCertSign') elif j == 6 and temp[j] == '1': kus.append('cRLSign') elif j == 7 and temp[j] == '1': kus.append('encipherOnly') elif j == 8 and temp[j] == '1': kus.append('decipherOnly') return kus def map_eku(x): if len(x) == 1 and type(x[0]) == tuple: # DSL x = x[0] temp = [] for oid in x: if oid[0] == 3100166514561975041: temp.append('serverAuth') elif oid[0] == 3100166514561975042: temp.append('clientAuth') elif oid[0] == 3100166514561975043: temp.append('codeSigning') elif oid[0] == 3100166514561975044: temp.append('emailProtection') elif oid[0] == 3100166514561986563: temp.append('timeStamping') elif oid[0] == 3100166514561975049: temp.append('OCSPSigning') else: temp.append(oid[0]) return temp def addtotuple(a, b): if b is None and a is not None: return a elif a is None and b is not None: return b elif type(a) == tuple and type(b) == tuple: return a + b elif type(a) == tuple and type(b) != tuple: return a + (b,) elif type(a) != tuple and type(b) == tuple: return (a,) + b else: return (a, b) def Timedecoder(Value): return Value.Year, Value.Month, Value.Day, Value.Hour, Value.Minute, Value.Second ### for dsl_based_parsers cert = [] cur_index = -1 def initialize(certin): global cert, cur_index cert = certin cur_index = 0 def match(p, flag, i): global cert, cur_index if flag: if i < len(cert) and str(cert[i]) == p: i = i + 1 cur_index = i return True, 1, None, i else: return False, 0, None, i else: if i >= len(cert) or str(cert[i]) != p: return True, 0, None, i else: return False, 0, None, i def get_ku_padding_count_dsl(y): elem = y[0] if elem == None: return 0 elif type(elem) == tuple: x = int(elem[len(elem) - 1]) else: x = int(elem) lastkuval = "{0:08b}".format(x) padding = len(lastkuval) - len(lastkuval.rstrip('0')) return padding def splituple(y): x = y[0] if x == None: return x p = list() p = Func_split(x, p) return tuple(p) def Func_split(data, temp): if data[1] == None: temp.append(data[0]) return temp elif type(data[1]) != tuple: temp.append(data) return temp temp.append(data[0]) return Func_split(data[1], temp) def hex_n_bytes_to_int_dsl(y): x = y[0] if x == None: return None elif type(x) == tuple: temp = [] for i in x: temp.append(int(i)) q = ''.join(format(x, '02X') for x in bytes(temp)) return int(q, 16) else: return int(x) def array_to_bytes_dsl(y): x = y[0] if x == None: return None elif (type(x) == tuple): temp = [] for k in x: temp.append(int(k)) return bytes(temp) else: return bytes([int(x)]) def endcheck(y): op = y[0] global cur_index if op == 1: return cur_index < len(cert) elif op == 2: return cur_index == len(cert) elif op == 3: return cur_index <= len(cert) return False def getintvalue(x): if len(x) == 1: if len(x[0]) == 2: return x[0][0] return None def addtotuple_dsl(x): a, b = x[0], x[1] if b is None and a is not None: return a elif a is None and b is not None: return b elif type(a) == tuple and type(b) == tuple: return a + b elif type(a) == tuple and type(b) != tuple: return a + (b,) elif type(a) != tuple and type(b) == tuple: return (a,) + b else: return (a, b) def checkKnownExtId(id): if id == 5578019: return True, 'auth_key_id' elif id == 5577998: return True, 'sub_key_id' elif id == 5577999: return True, 'key_usage' elif id == 5578021: return True, 'ext_key_usage' elif id == 5578001: return True, 'subject_alt_name' elif id == 5578002: return True, 'issuer_alt_name' elif id == 5578003: return True, 'basic_constraints' elif id == 5578016: return True, 'cert_policies' elif id == 5578015: return True, 'crl_dist_points' elif id == 3100166514561974529: return True, 'authority_info_access' else: return False, None ``` #### File: parsers/combinator_based/parser_rsa_signature.py ```python from modules.helper import * from modules.x509_ds import * from parsec import * @generate('') def short_length(): x = yield regex(r'[0-7][0-9A-F]').parsecmap(hex_n_bytes_to_int) return 1, x @generate('') def long_length(): x = yield regex(r'8[1-6]') size = int(x) - 80 fields = yield count(any_byte, size).parsecmap(hex_n_bytes_to_int) if not (fields >= 128): raise ParseError("not proper length in RSA_Signature", "", -1) return 1 + size, fields @generate('') def parameter(): tag = yield any_byte.parsecmap(hex_n_bytes_to_int) s1, size = yield length fields = yield count(any_byte, size).parsecmap(array_to_bytes) s = 1 + s1 + size if not (tag == 5 and size == 0): raise ParseError("not proper parameter in RSA_Signature", "", -1) return s, Parameter([tag, fields]) @generate('') def oid_parser(): yield string('06') s1, size = yield length fields = yield count(any_byte, size).parsecmap(hex_n_bytes_to_int) s = 1 + s1 + size return s, [fields, size] @generate('') def algorithm_identifier(): yield string('30') s1, size = yield length s2, oid = yield oid_parser if size - s2 > 0: s3, param = yield parameter else: s3, param = 0, None s = 1 + s1 + s2 + s3 if (size != s2 + s3): raise ParseError("not proper length in RSA_Signature", "", -1) return s, AlgorithmIdentifier([oid, param]) @generate('') def rsa_signature(): yield string('00') yield string('01') padding = yield regex(r'(FF)*') # at least 8 if (len(padding) / 2) < 8: raise ParseError("not proper padding in RSA_Signature", "", -1) yield string('00') yield string('30') s1, size1 = yield length s2, algo_ident = yield algorithm_identifier yield string('04') s3, size3 = yield length digest = yield count(any_byte, size3).parsecmap(array_to_bytes) s = 1 + 1 + len(padding) / 2 + 1 + 1 + s1 + s2 + 1 + s3 + size3 if size1 != s2 + 1 + s3 + size3: raise ParseError("not proper length in RSA_Signature", "", -1) return s, [algo_ident, digest] def run(inp): x = program.parse(inp) if x[0] != len(inp) / 2: raise ParseError("not proper length in RSA_Signature", "", -1) return x[1] whitespace = regex(r'\s') ignore = many(whitespace) any_byte = regex(r'[0-9A-F][0-9A-F]') length = short_length | long_length program = rsa_signature ``` #### File: dsl_based/grammar/generate-code.py ```python from antlr4 import * from build.dsl_grammarLexer import dsl_grammarLexer from customVisitor import * import sys inputfile = sys.argv[1] outputfile = 'out.py' def main(): lexer = dsl_grammarLexer(FileStream(inputfile)) stream = CommonTokenStream(lexer) parser = dsl_grammarParser(stream) try: visitor = customVisitor(outputfile) tree = parser.start() visitor.visit(tree) except: raise if __name__ == '__main__': main() ```
{ "source": "joyanujoy/athena-buildings", "score": 2 }
#### File: athena-buildings/models/buildings_generator.py ```python from io import StringIO import boto3 import pandas as pd import geopandas as gpd from shapely.geometry import Polygon from models.utils import AthenaWaiter, download_file_from_s3 class BuildingsGenerator(object): def __init__(self, min_x, max_x, min_y, max_y, bucket, folder, query_id=None): """ if query_id is given, we expect postprocessing the output only. """ self.min_x, self.max_x = min_x, max_x self.min_y, self.max_y = min_y, max_y self.bucket = bucket self.folder = folder self.query_id = query_id def get_query_string(self): return "WITH nodes_in_bbox AS( "\ " SELECT id, lat, lon, type, tags FROM planet "\ " WHERE type='node' "\ " AND lon BETWEEN {0} AND {1} "\ " AND lat BETWEEN {2} AND {3} "\ "), "\ "ways AS( "\ " SELECT type, id, tags, nds FROM planet "\ " WHERE type='way' "\ "), "\ "relation_ways AS( "\ " SELECT r.id, r.tags, way.ref, way.role, way_position "\ " FROM planet r "\ " CROSS JOIN UNNEST(r.members) "\ " WITH ORDINALITY AS m (way, way_position) "\ " WHERE r.type='relation' "\ " AND element_at(r.tags, 'type')='multipolygon' "\ " AND way.role='outer' AND way.type='way' "\ ") "\ "SELECT w.id AS way_id, "\ " n.id AS node_id, "\ " r.id AS relation_id, "\ " COALESCE(r.id, w.id) AS building_id, "\ " n.lon, n.lat, "\ " node_position, "\ " COALESCE(r.tags['name'], w.tags['name']) AS name, "\ " COALESCE(r.tags['building'], w.tags['building']) AS amenity "\ "FROM ways w "\ "CROSS JOIN UNNEST(w.nds) "\ "WITH ORDINALITY AS t (nd, node_position) "\ "JOIN nodes_in_bbox n ON n.id = nd.ref "\ "LEFT OUTER JOIN relation_ways r ON w.id=r.ref "\ "WHERE element_at(COALESCE(r.tags, w.tags), 'building') "\ " IS NOT NULL "\ "ORDER BY relation_id, way_position, way_id, node_position "\ .format(self.min_x, self.max_x, self.min_y, self.max_y) def get_query_id(self): client = boto3.client( 'athena', region_name='us-east-1' ) response = client.start_query_execution( QueryString=self.get_query_string(), QueryExecutionContext={ 'Database': 'default' }, ResultConfiguration={ 'OutputLocation': 's3://{0}/{1}'.format( self.bucket, self.folder ) } ) return response['QueryExecutionId'] def get_results_key(self, query_id): return '{0}/{1}.csv'.format(self.folder, query_id) def get_results_df(self, query_id): waiter = AthenaWaiter(max_tries=100) waiter.wait( bucket=self.bucket, key=self.get_results_key(query_id), query_id=query_id ) raw_result = StringIO( download_file_from_s3( self.get_results_key(query_id), self.bucket ) ) return pd.read_csv(raw_result, encoding='utf-8') @staticmethod def create_polygon(way): node_list = list(zip(way.lon, way.lat)) return Polygon(node_list) if len(node_list) >= 3 \ else None def generate(self): all_buildings = gpd.GeoDataFrame() if not self.query_id: self.query_id = self.get_query_id() results = self.get_results_df(self.query_id) ways = results.groupby(by=['building_id', 'way_id']) amenity_types = ['civic', 'college', 'commercial', 'hospital', 'industrial', 'office', 'public', 'retail', 'train_station', 'transportation', 'university'] for _, way in ways: metadata = way.iloc[0] if metadata['amenity'] not in amenity_types: continue polygon = self.create_polygon(way) if polygon: metadata = way.iloc[0] fill_color = '#D4AF37' building_gdf = gpd.GeoDataFrame( [[ metadata['name'], metadata['amenity'], fill_color, polygon ]], columns=[ 'name', 'amenity', 'color', 'geometry' ] ) all_buildings = all_buildings.append(building_gdf) return all_buildings.to_json(ensure_ascii=False) ```
{ "source": "Joyash23/resume-website", "score": 3 }
#### File: resume/accounts/forms.py ```python from django import forms from django.contrib.auth import authenticate from django.contrib.auth.models import User class UserLoginForm(forms.Form): username = forms.CharField() password = forms.CharField(widget=forms.PasswordInput) def clean(self, *args, **kwargs): username = self.cleaned_data.get("username") password = self.cleaned_data.get("password") if username and password: user = authenticate(username=username, password=password) if not user: raise forms.ValidationError("User Does Not Exist.") if not user.check_password(password): raise forms.ValidationError("Password Does not Match.") if not user.is_active: raise forms.ValidationError("User is not Active.") return super(UserLoginForm, self).clean(*args, **kwargs) class UserRegistrationForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput) confirm_password = forms.CharField(widget=forms.PasswordInput) class Meta: model = User fields = ("username", "password", "confirm_password") def clean_confirm_password(self): password = self.cleaned_data.get("password") confirm_password = self.cleaned_data.get("confirm_password") if password != confirm_password: raise forms.ValidationError("Passwords Must Match") return password ```
{ "source": "joybanerjee08/imgaug", "score": 2 }
#### File: imgaug/checks/check_segmentation_maps.py ```python from __future__ import print_function import numpy as np import imgaug as ia from imgaug import augmenters as iaa def main(): quokka = ia.quokka(size=0.5) h, w = quokka.shape[0:2] c = 4 segmap = np.zeros((h, w, c), dtype=np.float32) segmap[70:120, 90:150, 0] = 1.0 segmap[30:70, 50:65, 1] = 1.0 segmap[20:50, 55:85, 2] = 1.0 segmap[120:140, 0:20, 3] = 1.0 segmap = ia.SegmentationMapOnImage(segmap, quokka.shape) print("Affine...") aug = iaa.Affine(translate_px={"x": 20}, mode="constant", cval=128) quokka_aug = aug.augment_image(quokka) segmaps_aug = aug.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("Affine with mode=edge...") aug = iaa.Affine(translate_px={"x": 20}, mode="edge") quokka_aug = aug.augment_image(quokka) segmaps_aug = aug.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("PiecewiseAffine...") aug = iaa.PiecewiseAffine(scale=0.04) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("PerspectiveTransform...") aug = iaa.PerspectiveTransform(scale=0.04) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("ElasticTransformation alpha=3, sig=0.5...") aug = iaa.ElasticTransformation(alpha=3.0, sigma=0.5) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("ElasticTransformation alpha=10, sig=3...") aug = iaa.ElasticTransformation(alpha=10.0, sigma=3.0) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("CopAndPad mode=constant...") aug = iaa.CropAndPad(px=(-10, 10, 15, -15), pad_mode="constant", pad_cval=128) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("CropAndPad mode=edge...") aug = iaa.CropAndPad(px=(-10, 10, 15, -15), pad_mode="edge") aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) print("Scale...") aug = iaa.Scale(0.5, interpolation="nearest") aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow(ia.draw_grid([segmaps_drawn, segmaps_aug_drawn], cols=2)) print("Alpha...") aug = iaa.Alpha(0.7, iaa.Affine(rotate=20)) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) segmaps_aug = aug_det.augment_segmentation_maps([segmap])[0] segmaps_drawn = segmap.draw_on_image(quokka) segmaps_aug_drawn = segmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ segmaps_drawn, segmaps_aug_drawn ]) ) if __name__ == "__main__": main() ```
{ "source": "joybh98/manim", "score": 3 }
#### File: manim/mobject/coordinate_systems.py ```python __all__ = [ "CoordinateSystem", "Axes", "ThreeDAxes", "NumberPlane", "PolarPlane", "ComplexPlane", ] import fractions as fr import numbers from typing import Callable, Dict, Iterable, Optional, Sequence, Tuple, Union import numpy as np from colour import Color from manim.mobject.opengl_compatibility import ConvertToOpenGL from .. import config from ..constants import * from ..mobject.functions import ParametricFunction from ..mobject.geometry import ( Arrow, Circle, DashedLine, Dot, Line, Rectangle, RegularPolygon, ) from ..mobject.number_line import NumberLine from ..mobject.svg.tex_mobject import MathTex from ..mobject.types.vectorized_mobject import ( Mobject, VDict, VectorizedPoint, VGroup, VMobject, ) from ..utils.color import ( BLACK, BLUE, BLUE_D, GREEN, LIGHT_GREY, WHITE, YELLOW, color_gradient, invert_color, ) from ..utils.config_ops import merge_dicts_recursively, update_dict_recursively from ..utils.simple_functions import binary_search from ..utils.space_ops import angle_of_vector class CoordinateSystem: """ Abstract class for Axes and NumberPlane Examples -------- .. manim:: CoordSysExample :save_last_frame: class CoordSysExample(Scene): def construct(self): # the location of the ticks depends on the x_range and y_range. grid = Axes( x_range=[0, 1, 0.05], # step size determines num_decimal_places. y_range=[0, 1, 0.05], x_length=9, y_length=5.5, axis_config={ "numbers_to_include": np.arange(0, 1 + 0.1, 0.1), "number_scale_value": 0.5, }, tips=False, ) # Labels for the x-axis and y-axis. y_label = grid.get_y_axis_label("y", edge=LEFT, direction=LEFT, buff=0.4) x_label = grid.get_x_axis_label("x") grid_labels = VGroup(x_label, y_label) graphs = VGroup() for n in np.arange(1, 20 + 0.5, 0.5): graphs += grid.get_graph(lambda x: x ** n, color=WHITE) graphs += grid.get_graph( lambda x: x ** (1 / n), color=WHITE, use_smoothing=False ) # Extra lines and labels for point (1,1) graphs += grid.get_horizontal_line(grid.c2p(1, 1, 0), color=BLUE) graphs += grid.get_vertical_line(grid.c2p(1, 1, 0), color=BLUE) graphs += Dot(point=grid.c2p(1, 1, 0), color=YELLOW) graphs += Tex("(1,1)").scale(0.75).next_to(grid.c2p(1, 1, 0)) title = Title( # spaces between braces to prevent SyntaxError r"Graphs of $y=x^{ {1}\over{n} }$ and $y=x^n (n=1,2,3,...,20)$", include_underline=False, scale_factor=0.85, ) self.add(title, graphs, grid, grid_labels) """ def __init__( self, x_range=None, y_range=None, x_length=None, y_length=None, dimension=2, ): self.dimension = dimension default_step = 1 if x_range is None: x_range = [ round(-config["frame_x_radius"]), round(config["frame_x_radius"]), default_step, ] elif len(x_range) == 2: x_range = [*x_range, default_step] if y_range is None: y_range = [ round(-config["frame_y_radius"]), round(config["frame_y_radius"]), default_step, ] elif len(y_range) == 2: y_range = [*y_range, default_step] self.x_range = x_range self.y_range = y_range self.x_length = x_length self.y_length = y_length self.num_sampled_graph_points_per_tick = 10 def coords_to_point(self, *coords): raise NotImplementedError() def point_to_coords(self, point): raise NotImplementedError() def c2p(self, *coords): """Abbreviation for coords_to_point""" return self.coords_to_point(*coords) def p2c(self, point): """Abbreviation for point_to_coords""" return self.point_to_coords(point) def get_axes(self): raise NotImplementedError() def get_axis(self, index): return self.get_axes()[index] def get_x_axis(self): return self.get_axis(0) def get_y_axis(self): return self.get_axis(1) def get_z_axis(self): return self.get_axis(2) def get_x_axis_label(self, label_tex, edge=UR, direction=UR, **kwargs): return self.get_axis_label( label_tex, self.get_x_axis(), edge, direction, **kwargs ) def get_y_axis_label( self, label_tex, edge=UR, direction=UP * 0.5 + RIGHT, **kwargs ): return self.get_axis_label( label_tex, self.get_y_axis(), edge, direction, **kwargs ) # move to a util_file, or Mobject()?? @staticmethod def create_label_tex(label_tex) -> "Mobject": """Checks if the label is a ``float``, ``int`` or a ``str`` and creates a :class:`~.MathTex` label accordingly. Parameters ---------- label_tex : The label to be compared against the above types. Returns ------- :class:`~.Mobject` The label. """ if ( isinstance(label_tex, float) or isinstance(label_tex, int) or isinstance(label_tex, str) ): label_tex = MathTex(label_tex) return label_tex def get_axis_label( self, label: Union[float, str, "Mobject"], axis: "Mobject", edge: Sequence[float], direction: Sequence[float], buff: float = SMALL_BUFF, ) -> "Mobject": """Gets the label for an axis. Parameters ---------- label The label. Can be any mobject or `int/float/str` to be used with :class:`~.MathTex` axis The axis to which the label will be added. edge The edge of the axes to which the label will be added. ``RIGHT`` adds to the right side of the axis direction Allows for further positioning of the label. buff The distance of the label from the line. Returns ------- :class:`~.Mobject` The positioned label along the given axis. """ label = self.create_label_tex(label) label.next_to(axis.get_edge_center(edge), direction, buff=buff) label.shift_onto_screen(buff=MED_SMALL_BUFF) return label def get_axis_labels( self, x_label: Union[float, str, "Mobject"] = "x", y_label: Union[float, str, "Mobject"] = "y", ) -> "VGroup": """Defines labels for the x_axis and y_axis of the graph. Parameters ---------- x_label The label for the x_axis y_label The label for the y_axis Returns ------- :class:`~.VGroup` A :class:`~.Vgroup` of the labels for the x_axis and y_axis. See Also -------- :class:`get_x_axis_label` :class:`get_y_axis_label` """ self.axis_labels = VGroup( self.get_x_axis_label(x_label), self.get_y_axis_label(y_label), ) return self.axis_labels def add_coordinates( self, *axes_numbers: Union[ Optional[Iterable[float]], Union[Dict[float, Union[str, float, "Mobject"]]] ], **kwargs, ): """Adds labels to the axes. Parameters ---------- axes_numbers The numbers to be added to the axes. Use ``None`` to represent an axis with default labels. Examples -------- .. code-block:: python ax = ThreeDAxes() x_labels = range(-4, 5) z_labels = range(-4, 4, 2) ax.add_coordinates(x_labels, None, z_labels) # default y labels, custom x & z labels ax.add_coordinates(x_labels) # only x labels .. code-block:: python # specifically control the position and value of the labels using a dict ax = Axes(x_range=[0, 7]) x_pos = [x for x in range(1, 8)] # strings are automatically converted into a `Tex` mobject. x_vals = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] x_dict = dict(zip(x_pos, x_vals)) ax.add_coordinates(x_dict) """ self.coordinate_labels = VGroup() # if nothing is passed to axes_numbers, produce axes with default labelling if not axes_numbers: axes_numbers = [None for _ in range(self.dimension)] for axis, values in zip(self.axes, axes_numbers): if isinstance(values, dict): labels = axis.add_labels(values, **kwargs) else: labels = axis.add_numbers(values, **kwargs) self.coordinate_labels.add(labels) return self def get_line_from_axis_to_point( self, index: int, point: Sequence[float], line_func: Line = DashedLine, color: Color = LIGHT_GREY, stroke_width: float = 2, ) -> Line: """Returns a straight line from a given axis to a point in the scene. Parameters ---------- index Specifies the axis from which to draw the line. `0 = x_axis`, `1 = y_axis` point The point to which the line will be drawn. line_func The function of the :class:`~.Line` mobject used to construct the line. color The color of the line. stroke_width The stroke width of the line. Returns ------- :class:`~.Line` The line from an axis to a point. See Also -------- :class:`get_vertical_line` :class:`get_horizontal_line` """ axis = self.get_axis(index) line = line_func(axis.get_projection(point), point) line.set_stroke(color, stroke_width) return line def get_vertical_line(self, point: Sequence[float], **kwargs) -> Line: """A vertical line from the x-axis to a given point in the scene. Parameters ---------- point The point to which the vertical line will be drawn. kwargs Additional parameters to be passed to :class:`get_line_from_axis_to_point` Returns ------- :class:`Line` A vertical line from the x-axis to the point. """ return self.get_line_from_axis_to_point(0, point, **kwargs) def get_horizontal_line(self, point: Sequence[float], **kwargs) -> Line: """A horizontal line from the y-axis to a given point in the scene. Parameters ---------- point The point to which the horizontal line will be drawn. kwargs Additional parameters to be passed to :class:`get_line_from_axis_to_point` Returns ------- :class:`Line` A horizontal line from the y-axis to the point. """ return self.get_line_from_axis_to_point(1, point, **kwargs) # graphing def get_graph( self, function: Callable[[float], float], x_range: Optional[Sequence[float]] = None, **kwargs, ): """Generates a curve based on a function. Parameters ---------- function The function used to construct the :class:`~.ParametricFunction`. x_range The range of the curve along the axes. ``x_range = [x_min, x_max]``. kwargs Additional parameters to be passed to :class:`~.ParametricFunction`. Returns ------- :class:`~.ParametricFunction` The plotted curve. """ t_range = np.array(self.x_range, dtype=float) if x_range is not None: t_range[: len(x_range)] = x_range if x_range is None or len(x_range) < 3: # if t_range has a defined step size, increase the number of sample points per tick t_range[2] /= self.num_sampled_graph_points_per_tick # For axes, the third coordinate of x_range indicates # tick frequency. But for functions, it indicates a # sample frequency graph = ParametricFunction( lambda t: self.coords_to_point(t, function(t)), t_range=t_range, **kwargs ) graph.underlying_function = function return graph def get_parametric_curve(self, function, **kwargs): dim = self.dimension graph = ParametricFunction( lambda t: self.coords_to_point(*function(t)[:dim]), **kwargs ) graph.underlying_function = function return graph def input_to_graph_point(self, x: float, graph: "ParametricFunction") -> np.ndarray: """Returns the coordinates of the point on the ``graph`` corresponding to the input ``x`` value. Parameters ---------- x The x-value for which the coordinates of corresponding point on the :attr:`graph` are to be found. graph The :class:`~.ParametricFunction` on which the x-value and y-value lie. Returns ------- :class:`np.ndarray` The coordinates of the point on the :attr:`graph` corresponding to the :attr:`x` value. """ if hasattr(graph, "underlying_function"): return graph.function(x) else: alpha = binary_search( function=lambda a: self.point_to_coords(graph.point_from_proportion(a))[ 0 ], target=x, lower_bound=self.x_range[0], upper_bound=self.x_range[1], ) if alpha is not None: return graph.point_from_proportion(alpha) else: return None def i2gp(self, x, graph): """ Alias for :meth:`input_to_graph_point`. """ return self.input_to_graph_point(x, graph) def get_graph_label( self, graph: "ParametricFunction", label: Union[float, str, "Mobject"] = "f(x)", x_val: Optional[float] = None, direction: Sequence[float] = RIGHT, buff: float = MED_SMALL_BUFF, color: Optional[Color] = None, dot: bool = False, dot_config: Optional[dict] = None, ) -> Mobject: """Creates a properly positioned label for the passed graph, styled with parameters and an optional dot. Parameters ---------- graph The curve of the function plotted. label The label for the function's curve. Written with :class:`MathTex` if not specified otherwise. x_val The x_value with which the label should be aligned. direction The cartesian position, relative to the curve that the label will be at --> ``LEFT``, ``RIGHT`` buff The buffer space between the curve and the label. color The color of the label. dot Adds a dot at the given point on the graph. dot_config Additional parameters to be passed to :class:`~.Dot`. Returns ------- :class:`Mobject` The positioned label and :class:`~.Dot`, if applicable. """ if dot_config is None: dot_config = {} label = self.create_label_tex(label) color = color or graph.get_color() label.set_color(color) if x_val is None: # Search from right to left for x in np.linspace(self.x_range[1], self.x_range[0], 100): point = self.input_to_graph_point(x, graph) if point[1] < config["frame_y_radius"]: break else: point = self.input_to_graph_point(x_val, graph) label.next_to(point, direction, buff=buff) label.shift_onto_screen() if dot: label.add(Dot(point=point, **dot_config)) return label # calculus def get_riemann_rectangles( self, graph: "ParametricFunction", x_range: Optional[Sequence[float]] = None, dx: Optional[float] = 0.1, input_sample_type: str = "left", stroke_width: float = 1, stroke_color: Color = BLACK, fill_opacity: float = 1, color: Union[Iterable[Color], Color] = np.array((BLUE, GREEN)), show_signed_area: bool = True, bounded_graph: "ParametricFunction" = None, blend: bool = False, width_scale_factor: float = 1.001, ) -> VGroup: """This method returns the :class:`~.VGroup` of the Riemann Rectangles for a particular curve. Parameters ---------- graph The graph whose area will be approximated by Riemann rectangles. x_range The minimum and maximum x-values of the rectangles. ``x_range = [x_min, x_max]``. dx The change in x-value that separates each rectangle. input_sample_type Can be any of ``"left"``, ``"right"`` or ``"center"``. Refers to where the sample point for the height of each Riemann Rectangle will be inside the segments of the partition. stroke_width The stroke_width of the border of the rectangles. stroke_color The color of the border of the rectangle. fill_opacity The opacity of the rectangles. color The colors of the rectangles. Creates a balanced gradient if multiple colors are passed. show_signed_area Indicates negative area when the curve dips below the x-axis by inverting its color. blend Sets the :attr:`stroke_color` to :attr:`fill_color`, blending the rectangles without clear separation. bounded_graph If a secondary graph is specified, encloses the area between the two curves. width_scale_factor The factor by which the width of the rectangles is scaled. Returns ------- :class:`~.VGroup` A :class:`~.VGroup` containing the Riemann Rectangles. """ # setting up x_range, overwrite user's third input if x_range is None: if bounded_graph is None: x_range = [graph.t_min, graph.t_max] else: x_min = max(graph.t_min, bounded_graph.t_min) x_max = min(graph.t_max, bounded_graph.t_max) x_range = [x_min, x_max] x_range = [*x_range[:2], dx] rectangles = VGroup() x_range = np.arange(*x_range) # allows passing a string to color the graph if type(color) is str: colors = [color] * len(x_range) else: colors = color_gradient(color, len(x_range)) for x, color in zip(x_range, colors): if input_sample_type == "left": sample_input = x elif input_sample_type == "right": sample_input = x + dx elif input_sample_type == "center": sample_input = x + 0.5 * dx else: raise ValueError("Invalid input sample type") graph_point = self.input_to_graph_point(sample_input, graph) if bounded_graph is None: y_point = self.origin_shift(self.y_range) else: y_point = bounded_graph.underlying_function(x) points = VGroup( *list( map( VectorizedPoint, [ self.coords_to_point(x, y_point), self.coords_to_point(x + width_scale_factor * dx, y_point), graph_point, ], ) ) ) rect = Rectangle().replace(points, stretch=True) rectangles.add(rect) # checks if the rectangle is under the x-axis if self.p2c(graph_point)[1] < y_point and show_signed_area: color = invert_color(color) # blends rectangles smoothly if blend: stroke_color = color rect.set_style( fill_color=color, fill_opacity=fill_opacity, stroke_color=stroke_color, stroke_width=stroke_width, ) return rectangles def get_area( self, graph: "ParametricFunction", x_range: Optional[Sequence[float]] = None, color: Union[Color, Iterable[Color]] = [BLUE, GREEN], opacity: float = 0.3, dx_scaling: float = 1, bounded: "ParametricFunction" = None, ): """Returns a :class:`~.VGroup` of Riemann rectangles sufficiently small enough to visually approximate the area under the graph passed. Parameters ---------- graph The graph/curve for which the area needs to be gotten. x_range The range of the minimum and maximum x-values of the area. ``x_range = [x_min, x_max]``. color The color of the area. Creates a gradient if a list of colors is provided. opacity The opacity of the area. bounded If a secondary :attr:`graph` is specified, encloses the area between the two curves. dx_scaling The factor by which the :attr:`dx` value is scaled. Returns ------- :class:`~.VGroup` The :class:`~.VGroup` containing the Riemann Rectangles. """ dx = self.x_range[2] / 500 return self.get_riemann_rectangles( graph, x_range=x_range, dx=dx * dx_scaling, bounded_graph=bounded, blend=True, color=color, show_signed_area=False, ).set_opacity(opacity=opacity) def angle_of_tangent( self, x: float, graph: "ParametricFunction", dx: float = 1e-8 ) -> float: """Returns the angle to the x-axis of the tangent to the plotted curve at a particular x-value. Parameters ---------- x The x-value at which the tangent must touch the curve. graph The :class:`~.ParametricFunction` for which to calculate the tangent. dx The small change in `x` with which a small change in `y` will be compared in order to obtain the tangent. Returns ------- :class:`float` The angle of the tangent with the x axis. """ p0 = self.input_to_graph_point(x, graph) p1 = self.input_to_graph_point(x + dx, graph) return angle_of_vector(p1 - p0) def slope_of_tangent( self, x: float, graph: "ParametricFunction", **kwargs ) -> float: """Returns the slope of the tangent to the plotted curve at a particular x-value. Parameters ---------- x The x-value at which the tangent must touch the curve. graph The :class:`~.ParametricFunction` for which to calculate the tangent. Returns ------- :class:`float` The slope of the tangent with the x axis. """ return np.tan(self.angle_of_tangent(x, graph, **kwargs)) def get_derivative_graph( self, graph: "ParametricFunction", color: Color = GREEN, **kwargs ) -> ParametricFunction: """Returns the curve of the derivative of the passed graph. Parameters ---------- graph The graph for which the derivative will be found. color The color of the derivative curve. **kwargs Any valid keyword argument of :class:`~.ParametricFunction` Returns ------- :class:`~.ParametricFunction` The curve of the derivative. """ def deriv(x): return self.slope_of_tangent(x, graph) return self.get_graph(deriv, color=color, **kwargs) def get_secant_slope_group( self, x: float, graph: ParametricFunction, dx: Optional[float] = None, dx_line_color: Color = YELLOW, dy_line_color: Optional[Color] = None, dx_label: Optional[Union[float, str]] = None, dy_label: Optional[Union[float, str]] = None, include_secant_line: bool = True, secant_line_color: Color = GREEN, secant_line_length: float = 10, ) -> VGroup: """Creates two lines representing `dx` and `df`, the labels for `dx` and `df`, and the secant to the curve at a particular x-value. Parameters ---------- x The x-value at which the secant intersects the graph for the first time. graph The curve for which the secant will be found. dx The change in `x` after which the secant exits. dx_line_color The color of the line that indicates the change in `x`. dy_line_color The color of the line that indicates the change in `y`. Defaults to the color of :attr:`graph`. dx_label The label for the `dx` line. dy_label The label for the `dy` line. include_secant_line Whether or not to include the secant line in the graph, or just have the df and dx lines and labels. secant_line_color The color of the secant line. secant_line_length The length of the secant line. Returns ------- :class:`~.VGroup` A group containing the elements: `dx_line`, `df_line`, and if applicable also :attr:`dx_label`, :attr:`df_label`, `secant_line`. """ group = VGroup() dx = dx or float(self.x_range[1] - self.x_range[0]) / 10 dx_line_color = dx_line_color dy_line_color = dy_line_color or graph.get_color() p1 = self.input_to_graph_point(x, graph) p2 = self.input_to_graph_point(x + dx, graph) interim_point = p2[0] * RIGHT + p1[1] * UP group.dx_line = Line(p1, interim_point, color=dx_line_color) group.df_line = Line(interim_point, p2, color=dy_line_color) group.add(group.dx_line, group.df_line) labels = VGroup() if dx_label is not None: group.dx_label = self.create_label_tex(dx_label) labels.add(group.dx_label) group.add(group.dx_label) if dy_label is not None: group.df_label = self.create_label_tex(dy_label) labels.add(group.df_label) group.add(group.df_label) if len(labels) > 0: max_width = 0.8 * group.dx_line.width max_height = 0.8 * group.df_line.height if labels.width > max_width: labels.width = max_width if labels.height > max_height: labels.height = max_height if dx_label is not None: group.dx_label.next_to( group.dx_line, np.sign(dx) * DOWN, buff=group.dx_label.height / 2 ) group.dx_label.set_color(group.dx_line.get_color()) if dy_label is not None: group.df_label.next_to( group.df_line, np.sign(dx) * RIGHT, buff=group.df_label.height / 2 ) group.df_label.set_color(group.df_line.get_color()) if include_secant_line: secant_line_color = secant_line_color group.secant_line = Line(p1, p2, color=secant_line_color) group.secant_line.scale_in_place( secant_line_length / group.secant_line.get_length() ) group.add(group.secant_line) return group def get_vertical_lines_to_graph( self, graph: ParametricFunction, x_range: Optional[Sequence[float]] = None, num_lines: int = 20, **kwargs, ) -> VGroup: """Obtains multiple lines from the x-axis to the curve. Parameters ---------- graph The graph on which the line should extend to. x_range A list containing the lower and and upper bounds of the lines -> ``x_range = [x_min, x_max]``. num_lines The number of evenly spaced lines. Returns ------- :class:`~.VGroup` The :class:`~.VGroup` of the evenly spaced lines. """ x_range = x_range if x_range is not None else self.x_range return VGroup( *[ self.get_vertical_line(self.i2gp(x, graph), **kwargs) for x in np.linspace(x_range[0], x_range[1], num_lines) ] ) def get_T_label( self, x_val: float, graph: "ParametricFunction", label: Optional[Union[float, str, "Mobject"]] = None, label_color: Color = WHITE, triangle_size: float = MED_SMALL_BUFF, triangle_color: Color = WHITE, line_func: "Line" = Line, line_color: Color = YELLOW, ) -> VGroup: """Creates a labelled triangle marker with a vertical line from the x-axis to a curve at a given x-value. Parameters ---------- x_val The position along the curve at which the label, line and triangle will be constructed. graph The :class:`~.ParametricFunction` for which to construct the label. label The label of the vertical line and triangle. label_color The color of the label. triangle_size The size of the triangle. triangle_color The color of the triangle. line_func The function used to construct the vertical line. line_color The color of the vertical line. Examples ------- .. manim:: T_labelExample :save_last_frame: class T_labelExample(Scene): def construct(self): # defines the axes and linear function axes = Axes(x_range=[-1, 10], y_range=[-1, 10], x_length=9, y_length=6) func = axes.get_graph(lambda x: x, color=BLUE) # creates the T_label t_label = axes.get_T_label(x_val=4, graph=func, label=Tex("x-value")) self.add(axes, func, t_label) Returns ------- :class:`~.VGroup` A :class:`~.VGroup` of the label, triangle and vertical line mobjects. """ T_label_group = VGroup() triangle = RegularPolygon(n=3, start_angle=np.pi / 2, stroke_width=0).set_fill( color=triangle_color, opacity=1 ) triangle.height = triangle_size triangle.move_to(self.coords_to_point(x_val, 0), UP) if label is not None: t_label = self.create_label_tex(label).set_color(label_color) t_label.next_to(triangle, DOWN) T_label_group.add(t_label) v_line = self.get_vertical_line( self.i2gp(x_val, graph), color=line_color, line_func=line_func ) T_label_group.add(triangle, v_line) return T_label_group class Axes(VGroup, CoordinateSystem, metaclass=ConvertToOpenGL): """Creates a set of axes. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the x-axis. y_range The :code:`[y_min, y_max, y_step]` values of the y-axis. x_length The length of the x-axis. y_length The length of the y-axis. axis_config Arguments to be passed to :class:`~.NumberLine` that influences both axes. x_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the x-axis. y_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the y-axis. tips Whether or not to include the tips on both axes. kwargs : Any Additional arguments to be passed to :class:`CoordinateSystem` and :class:`~.VGroup`. """ def __init__( self, x_range: Optional[Sequence[float]] = None, y_range: Optional[Sequence[float]] = None, x_length: Optional[float] = round(config.frame_width) - 2, y_length: Optional[float] = round(config.frame_height) - 2, axis_config: Optional[dict] = None, x_axis_config: Optional[dict] = None, y_axis_config: Optional[dict] = None, tips: bool = True, **kwargs, ): VGroup.__init__(self, **kwargs) CoordinateSystem.__init__(self, x_range, y_range, x_length, y_length) self.axis_config = { "include_tip": tips, "numbers_to_exclude": [0], "exclude_origin_tick": True, } self.x_axis_config = {} self.y_axis_config = {"rotation": 90 * DEGREES, "label_direction": LEFT} self.update_default_configs( (self.axis_config, self.x_axis_config, self.y_axis_config), (axis_config, x_axis_config, y_axis_config), ) self.x_axis_config = merge_dicts_recursively( self.axis_config, self.x_axis_config ) self.y_axis_config = merge_dicts_recursively( self.axis_config, self.y_axis_config ) self.x_axis = self.create_axis(self.x_range, self.x_axis_config, self.x_length) self.y_axis = self.create_axis(self.y_range, self.y_axis_config, self.y_length) # Add as a separate group in case various other # mobjects are added to self, as for example in # NumberPlane below self.axes = VGroup(self.x_axis, self.y_axis) self.add(*self.axes) # finds the middle-point on each axis lines_center_point = [((axis.x_max + axis.x_min) / 2) for axis in self.axes] self.shift(-self.coords_to_point(*lines_center_point)) @staticmethod def update_default_configs(default_configs, passed_configs): for default_config, passed_config in zip(default_configs, passed_configs): if passed_config is not None: update_dict_recursively(default_config, passed_config) def create_axis( self, range_terms: Sequence[float], axis_config: dict, length: float, ) -> NumberLine: """Creates an axis and dynamically adjusts its position depending on where 0 is located on the line. Parameters ---------- range_terms The range of the the axis : `(x_min, x_max, x_step)`. axis_config Additional parameters that are passed to :class:`NumberLine`. length The length of the axis. Returns ------- :class:`NumberLine` Returns a number line with the provided x and y axis range. """ axis_config["length"] = length axis = NumberLine(range_terms, **axis_config) # without the call to origin_shift, graph does not exist when min > 0 or max < 0 # shifts the axis so that 0 is centered axis.shift(-axis.number_to_point(self.origin_shift(range_terms))) return axis def coords_to_point(self, *coords: Sequence[float]) -> np.ndarray: """Transforms the vector formed from ``coords`` formed by the :class:`Axes` into the corresponding vector with respect to the default basis. Returns ------- np.ndarray A point that results from a change of basis from the coordinate system defined by the :class:`Axes` to that of ``manim``'s default coordinate system """ origin = self.x_axis.number_to_point(self.origin_shift(self.x_range)) result = np.array(origin) for axis, coord in zip(self.get_axes(), coords): result += axis.number_to_point(coord) - origin return result def point_to_coords(self, point: float) -> Tuple: """Transforms the coordinates of the point which are with respect to ``manim``'s default basis into the coordinates of that point with respect to the basis defined by :class:`Axes`. Parameters ---------- point The point whose coordinates will be found. Returns ------- Tuple Coordinates of the point with respect to :class:`Axes`'s basis """ return tuple([axis.point_to_number(point) for axis in self.get_axes()]) def get_axes(self) -> VGroup: """Gets the axes. Returns ------- :class:`~.VGroup` A pair of axes. """ return self.axes def get_line_graph( self, x_values: Iterable[float], y_values: Iterable[float], z_values: Optional[Iterable[float]] = None, line_color: Color = YELLOW, add_vertex_dots: bool = True, vertex_dot_radius: float = DEFAULT_DOT_RADIUS, vertex_dot_style: Optional[dict] = None, **kwargs, ) -> VDict: """Draws a line graph. The graph connects the vertices formed from zipping ``x_values``, ``y_values`` and ``z_values``. Also adds :class:`Dots <.Dot>` at the vertices if ``add_vertex_dots`` is set to ``True``. Parameters ---------- x_values Iterable of values along the x-axis. y_values Iterable of values along the y-axis. z_values Iterable of values (zeros if z_values is None) along the z-axis. line_color Color for the line graph. add_vertex_dots Whether or not to add :class:`~.Dot` at each vertex. vertex_dot_radius Radius for the :class:`~.Dot` at each vertex. vertex_dot_style Style arguments to be passed into :class:`~.Dot` at each vertex. kwargs Additional arguments to be passed into :class:`~.VMobject`. Examples -------- .. manim:: LineGraphExample :save_last_frame: class LineGraphExample(Scene): def construct(self): plane = NumberPlane( x_range = (0, 7), y_range = (0, 5), x_length = 7, axis_config={"include_numbers": True}, ) plane.center() line_graph = plane.get_line_graph( x_values = [0, 1.5, 2, 2.8, 4, 6.25], y_values = [1, 3, 2.25, 4, 2.5, 1.75], line_color=GOLD_E, vertex_dot_style=dict(stroke_width=3, fill_color=PURPLE), stroke_width = 4, ) self.add(plane, line_graph) """ x_values, y_values = map(np.array, (x_values, y_values)) if z_values is None: z_values = np.zeros(x_values.shape) line_graph = VDict() graph = VGroup(color=line_color, **kwargs) vertices = [ self.coords_to_point(x, y, z) for x, y, z in zip(x_values, y_values, z_values) ] graph.set_points_as_corners(vertices) graph.z_index = -1 line_graph["line_graph"] = graph if add_vertex_dots: vertex_dot_style = vertex_dot_style or {} vertex_dots = VGroup( *[ Dot(point=vertex, radius=vertex_dot_radius, **vertex_dot_style) for vertex in vertices ] ) line_graph["vertex_dots"] = vertex_dots return line_graph @staticmethod def origin_shift(axis_range: Sequence[float]) -> float: """Determines how to shift graph mobjects to compensate when 0 is not on the axis. Parameters ---------- axis_range The range of the axis : ``(x_min, x_max, x_step)``. """ if axis_range[0] > 0: return axis_range[0] if axis_range[1] < 0: return axis_range[1] else: return 0 class ThreeDAxes(Axes): """A 3-dimensional set of axes. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the x-axis. y_range The :code:`[y_min, y_max, y_step]` values of the y-axis. z_range The :code:`[z_min, z_max, z_step]` values of the z-axis. x_length The length of the x-axis. y_length The length of the y-axis. z_length The length of the z-axis. z_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the z-axis. z_normal The direction of the normal. num_axis_pieces The number of pieces used to construct the axes. light_source The direction of the light source. depth Currently non-functional. gloss Currently non-functional. kwargs : Any Additional arguments to be passed to :class:`Axes`. """ def __init__( self, x_range: Optional[Sequence[float]] = (-6, 6, 1), y_range: Optional[Sequence[float]] = (-5, 5, 1), z_range: Optional[Sequence[float]] = (-4, 4, 1), x_length: Optional[float] = config.frame_height + 2.5, y_length: Optional[float] = config.frame_height + 2.5, z_length: Optional[float] = config.frame_height - 1.5, z_axis_config: Optional[dict] = None, z_normal: Sequence[float] = DOWN, num_axis_pieces: int = 20, light_source: Sequence[float] = 9 * DOWN + 7 * LEFT + 10 * OUT, # opengl stuff (?) depth=None, gloss=0.5, **kwargs, ): Axes.__init__( self, x_range=x_range, x_length=x_length, y_range=y_range, y_length=y_length, **kwargs, ) self.z_range = z_range self.z_length = z_length self.z_axis_config = {} self.update_default_configs((self.z_axis_config,), (z_axis_config,)) self.z_axis_config = merge_dicts_recursively( self.axis_config, self.z_axis_config ) self.z_normal = z_normal self.num_axis_pieces = num_axis_pieces self.light_source = light_source self.dimension = 3 z_axis = self.create_axis(self.z_range, self.z_axis_config, self.z_length) z_axis.rotate_about_zero(-PI / 2, UP) z_axis.rotate_about_zero(angle_of_vector(self.z_normal)) z_axis.shift(self.x_axis.number_to_point(self.origin_shift(x_range))) self.axes.add(z_axis) self.add(z_axis) self.z_axis = z_axis if not config.renderer == "opengl": self.add_3d_pieces() self.set_axis_shading() def add_3d_pieces(self): for axis in self.axes: axis.pieces = VGroup(*axis.get_pieces(self.num_axis_pieces)) axis.add(axis.pieces) axis.set_stroke(width=0, family=False) axis.set_shade_in_3d(True) def set_axis_shading(self): def make_func(axis): vect = self.light_source return lambda: ( axis.get_edge_center(-vect), axis.get_edge_center(vect), ) for axis in self: for submob in axis.family_members_with_points(): submob.get_gradient_start_and_end_points = make_func(axis) submob.get_unit_normal = lambda a: np.ones(3) submob.set_sheen(0.2) class NumberPlane(Axes): """Creates a cartesian plane with background lines. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the plane in the horizontal direction. y_range The :code:`[y_min, y_max, y_step]` values of the plane in the vertical direction. x_length The width of the plane. y_length The height of the plane. background_line_style Arguments that influence the construction of the background lines of the plane. faded_line_style Similar to :attr:`background_line_style`, affects the construction of the scene's background lines. faded_line_ratio Determines the number of boxes within the background lines: :code:`2` = 4 boxes, :code:`3` = 9 boxes. make_smooth_after_applying_functions Currently non-functional. kwargs : Any Additional arguments to be passed to :class:`Axes`. .. note:: If :attr:`x_length` or :attr:`y_length` are not defined, the plane automatically adjusts its lengths based on the :attr:`x_range` and :attr:`y_range` values to set the unit_size to 1. Examples -------- .. manim:: NumberPlaneExample :save_last_frame: class NumberPlaneExample(Scene): def construct(self): number_plane = NumberPlane( x_range=[-10, 10, 1], y_range=[-10, 10, 1], background_line_style={ "stroke_color": TEAL, "stroke_width": 4, "stroke_opacity": 0.6 } ) self.add(number_plane) """ def __init__( self, x_range: Optional[Sequence[float]] = ( -config["frame_x_radius"], config["frame_x_radius"], 1, ), y_range: Optional[Sequence[float]] = ( -config["frame_y_radius"], config["frame_y_radius"], 1, ), x_length: Optional[float] = None, y_length: Optional[float] = None, background_line_style: Optional[dict] = None, faded_line_style: Optional[dict] = None, faded_line_ratio: int = 1, make_smooth_after_applying_functions=True, **kwargs, ): # configs self.axis_config = { "stroke_color": WHITE, "stroke_width": 2, "include_ticks": False, "include_tip": False, "line_to_number_buff": SMALL_BUFF, "label_direction": DR, "number_scale_value": 0.5, } self.y_axis_config = {"label_direction": DR} self.background_line_style = { "stroke_color": BLUE_D, "stroke_width": 2, "stroke_opacity": 1, } self.update_default_configs( (self.axis_config, self.y_axis_config, self.background_line_style), ( kwargs.pop("axis_config", None), kwargs.pop("y_axis_config", None), background_line_style, ), ) # Defaults to a faded version of line_config self.faded_line_style = faded_line_style self.faded_line_ratio = faded_line_ratio self.make_smooth_after_applying_functions = make_smooth_after_applying_functions # init super().__init__( x_range=x_range, y_range=y_range, x_length=x_length, y_length=y_length, axis_config=self.axis_config, y_axis_config=self.y_axis_config, **kwargs, ) # dynamically adjusts x_length and y_length so that the unit_size is one by default if x_length is None: x_length = self.x_range[1] - self.x_range[0] if y_length is None: y_length = self.y_range[1] - self.y_range[0] self.init_background_lines() def init_background_lines(self): """Will init all the lines of NumberPlanes (faded or not)""" if self.faded_line_style is None: style = dict(self.background_line_style) # For anything numerical, like stroke_width # and stroke_opacity, chop it in half for key in style: if isinstance(style[key], numbers.Number): style[key] *= 0.5 self.faded_line_style = style self.background_lines, self.faded_lines = self.get_lines() self.background_lines.set_style( **self.background_line_style, ) self.faded_lines.set_style( **self.faded_line_style, ) self.add_to_back( self.faded_lines, self.background_lines, ) def get_lines(self) -> Tuple[VGroup, VGroup]: """Generate all the lines, faded and not faded. Two sets of lines are generated: one parallel to the X-axis, and parallel to the Y-axis. Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non faded lines) and second (i.e the faded lines) sets of lines, respectively. """ x_axis = self.get_x_axis() y_axis = self.get_y_axis() x_lines1, x_lines2 = self.get_lines_parallel_to_axis( x_axis, y_axis, self.x_axis.x_step, self.faded_line_ratio, ) y_lines1, y_lines2 = self.get_lines_parallel_to_axis( y_axis, x_axis, self.y_axis.x_step, self.faded_line_ratio, ) # TODO this was added so that we can run tests on NumberPlane # In the future these attributes will be tacked onto self.background_lines self.x_lines = x_lines1 self.y_lines = y_lines1 lines1 = VGroup(*x_lines1, *y_lines1) lines2 = VGroup(*x_lines2, *y_lines2) return lines1, lines2 def get_lines_parallel_to_axis( self, axis_parallel_to: NumberLine, axis_perpendicular_to: NumberLine, freq: float, ratio_faded_lines: int, ) -> Tuple[VGroup, VGroup]: """Generate a set of lines parallel to an axis. Parameters ---------- axis_parallel_to The axis with which the lines will be parallel. axis_perpendicular_to The axis with which the lines will be perpendicular. ratio_faded_lines The ratio between the space between faded lines and the space between non-faded lines. freq Frequency of non-faded lines (number of non-faded lines per graph unit). Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non-faded lines parallel to `axis_parallel_to`) and second (i.e the faded lines parallel to `axis_parallel_to`) sets of lines, respectively. """ line = Line(axis_parallel_to.get_start(), axis_parallel_to.get_end()) if ratio_faded_lines == 0: # don't show faded lines ratio_faded_lines = 1 # i.e. set ratio to 1 step = (1 / ratio_faded_lines) * freq lines1 = VGroup() lines2 = VGroup() unit_vector_axis_perp_to = axis_perpendicular_to.get_unit_vector() # min/max used in case range does not include 0. i.e. if (2,6): # the range becomes (0,4), not (0,6), to produce the correct number of lines ranges = ( np.arange( 0, min( axis_perpendicular_to.x_max - axis_perpendicular_to.x_min, axis_perpendicular_to.x_max, ), step, ), np.arange( 0, max( axis_perpendicular_to.x_min - axis_perpendicular_to.x_max, axis_perpendicular_to.x_min, ), -step, ), ) for inputs in ranges: for k, x in enumerate(inputs): new_line = line.copy() new_line.shift(unit_vector_axis_perp_to * x) if k % ratio_faded_lines == 0: lines1.add(new_line) else: lines2.add(new_line) return lines1, lines2 def get_center_point(self) -> np.ndarray: """Gets the origin of :class:`NumberPlane`. Returns ------- np.ndarray The center point. """ return self.coords_to_point(0, 0) def get_x_unit_size(self): return self.get_x_axis().get_unit_size() def get_y_unit_size(self): return self.get_x_axis().get_unit_size() def get_axes(self) -> VGroup: # Method Already defined at Axes.get_axes so we could remove this a later PR. """Gets the pair of axes. Returns ------- :class:`~.VGroup` Axes """ return self.axes def get_vector(self, coords, **kwargs): kwargs["buff"] = 0 return Arrow( self.coords_to_point(0, 0), self.coords_to_point(*coords), **kwargs ) def prepare_for_nonlinear_transform(self, num_inserted_curves=50): for mob in self.family_members_with_points(): num_curves = mob.get_num_curves() if num_inserted_curves > num_curves: mob.insert_n_curves(num_inserted_curves - num_curves) return self class PolarPlane(Axes): r"""Creates a polar plane with background lines. Parameters ---------- azimuth_step The number of divisions in the azimuth (also known as the `angular coordinate` or `polar angle`). If ``None`` is specified then it will use the default specified by ``azimuth_units``: - ``"PI radians"`` or ``"TAU radians"``: 20 - ``"degrees"``: 36 - ``"gradians"``: 40 - ``None``: 1 A non-integer value will result in a partial division at the end of the circle. size The diameter of the plane. radius_step The distance between faded radius lines. radius_max The maximum value of the radius. azimuth_units Specifies a default labelling system for the azimuth. Choices are: - ``"PI radians"``: Fractional labels in the interval :math:`\left[0, 2\pi\right]` with :math:`\pi` as a constant. - ``"TAU radians"``: Fractional labels in the interval :math:`\left[0, \tau\right]` (where :math:`\tau = 2\pi`) with :math:`\tau` as a constant. - ``"degrees"``: Decimal labels in the interval :math:`\left[0, 360\right]` with a degree (:math:`^{\circ}`) symbol. - ``"gradians"``: Decimal labels in the interval :math:`\left[0, 400\right]` with a superscript "g" (:math:`^{g}`). - ``None``: Decimal labels in the interval :math:`\left[0, 1\right]`. azimuth_compact_fraction If the ``azimuth_units`` choice has fractional labels, choose whether to combine the constant in a compact form :math:`\tfrac{xu}{y}` as opposed to :math:`\tfrac{x}{y}u`, where :math:`u` is the constant. azimuth_offset The angle offset of the azimuth, expressed in radians. azimuth_direction The direction of the azimuth. - ``"CW"``: Clockwise. - ``"CCW"``: Anti-clockwise. azimuth_label_buff The buffer for the azimuth labels. azimuth_label_scale The scale of the azimuth labels. radius_config The axis config for the radius. Examples -------- .. manim:: PolarPlaneExample :ref_classes: PolarPlane :save_last_frame: class PolarPlaneExample(Scene): def construct(self): polarplane_pi = PolarPlane( azimuth_units="PI radians", size=6, azimuth_label_scale=0.7, radius_config={"number_scale_value": 0.7}, ).add_coordinates() self.add(polarplane_pi) """ def __init__( self, radius_max: float = config["frame_y_radius"], size: Optional[float] = None, radius_step: float = 1, azimuth_step: Optional[float] = None, azimuth_units: Optional[str] = "PI radians", azimuth_compact_fraction: bool = True, azimuth_offset: float = 0, azimuth_direction: str = "CCW", azimuth_label_buff: float = SMALL_BUFF, azimuth_label_scale: float = 0.5, radius_config: Optional[dict] = None, background_line_style: Optional[dict] = None, faded_line_style: Optional[dict] = None, faded_line_ratio: int = 1, make_smooth_after_applying_functions: bool = True, **kwargs, ): # error catching if azimuth_units in ["PI radians", "TAU radians", "degrees", "gradians", None]: self.azimuth_units = azimuth_units else: raise ValueError( "Invalid azimuth units. Expected one of: PI radians, TAU radians, degrees, gradians or None." ) if azimuth_direction in ["CW", "CCW"]: self.azimuth_direction = azimuth_direction else: raise ValueError("Invalid azimuth units. Expected one of: CW, CCW.") # configs self.radius_config = { "stroke_color": WHITE, "stroke_width": 2, "include_ticks": False, "include_tip": False, "line_to_number_buff": SMALL_BUFF, "label_direction": DL, "number_scale_value": 0.5, } self.background_line_style = { "stroke_color": BLUE_D, "stroke_width": 2, "stroke_opacity": 1, } self.azimuth_step = ( ( { "PI radians": 20, "TAU radians": 20, "degrees": 36, "gradians": 40, None: 1, }[azimuth_units] ) if azimuth_step is None else azimuth_step ) self.update_default_configs( (self.radius_config, self.background_line_style), (radius_config, background_line_style), ) # Defaults to a faded version of line_config self.faded_line_style = faded_line_style self.faded_line_ratio = faded_line_ratio self.make_smooth_after_applying_functions = make_smooth_after_applying_functions self.azimuth_offset = azimuth_offset self.azimuth_label_buff = azimuth_label_buff self.azimuth_label_scale = azimuth_label_scale self.azimuth_compact_fraction = azimuth_compact_fraction # init super().__init__( x_range=np.array((-radius_max, radius_max, radius_step)), y_range=np.array((-radius_max, radius_max, radius_step)), x_length=size, y_length=size, axis_config=self.radius_config, **kwargs, ) # dynamically adjusts size so that the unit_size is one by default if size is None: size = 0 self.init_background_lines() def init_background_lines(self): """Will init all the lines of NumberPlanes (faded or not)""" if self.faded_line_style is None: style = dict(self.background_line_style) # For anything numerical, like stroke_width # and stroke_opacity, chop it in half for key in style: if isinstance(style[key], numbers.Number): style[key] *= 0.5 self.faded_line_style = style self.background_lines, self.faded_lines = self.get_lines() self.background_lines.set_style( **self.background_line_style, ) self.faded_lines.set_style( **self.faded_line_style, ) self.add_to_back( self.faded_lines, self.background_lines, ) def get_lines(self) -> Tuple[VGroup, VGroup]: """Generate all the lines and circles, faded and not faded. Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non faded lines and circles) and second (i.e the faded lines and circles) sets of lines and circles, respectively. """ center = self.get_center_point() ratio_faded_lines = self.faded_line_ratio offset = self.azimuth_offset if ratio_faded_lines == 0: # don't show faded lines ratio_faded_lines = 1 # i.e. set ratio to 1 rstep = (1 / ratio_faded_lines) * self.x_axis.x_step astep = (1 / ratio_faded_lines) * (TAU * (1 / self.azimuth_step)) rlines1 = VGroup() rlines2 = VGroup() alines1 = VGroup() alines2 = VGroup() rinput = np.arange(0, self.x_axis.x_max + rstep, rstep) ainput = np.arange(0, TAU, astep) unit_vector = self.x_axis.get_unit_vector()[0] for k, x in enumerate(rinput): new_line = Circle(radius=x * unit_vector) if k % ratio_faded_lines == 0: alines1.add(new_line) else: alines2.add(new_line) line = Line(center, self.get_x_axis().get_end()) for k, x in enumerate(ainput): new_line = line.copy() new_line.rotate(x + offset, about_point=center) if k % ratio_faded_lines == 0: rlines1.add(new_line) else: rlines2.add(new_line) lines1 = VGroup(*rlines1, *alines1) lines2 = VGroup(*rlines2, *alines2) return lines1, lines2 def get_center_point(self): return self.coords_to_point(0, 0) def get_x_unit_size(self): return self.get_x_axis().get_unit_size() def get_y_unit_size(self): return self.get_x_axis().get_unit_size() def get_axes(self) -> VGroup: """Gets the axes. Returns ------- :class:`~.VGroup` A pair of axes. """ return self.axes def get_vector(self, coords, **kwargs): kwargs["buff"] = 0 return Arrow( self.coords_to_point(0, 0), self.coords_to_point(*coords), **kwargs ) def prepare_for_nonlinear_transform(self, num_inserted_curves=50): for mob in self.family_members_with_points(): num_curves = mob.get_num_curves() if num_inserted_curves > num_curves: mob.insert_n_curves(num_inserted_curves - num_curves) return self def polar_to_point(self, radius: float, azimuth: float) -> np.ndarray: r"""Gets a point from polar coordinates. Parameters ---------- radius The coordinate radius (:math:`r`). azimuth The coordinate azimuth (:math:`\theta`). Returns ------- numpy.ndarray The point. Examples -------- .. manim:: PolarToPointExample :ref_classes: PolarPlane Vector :save_last_frame: class PolarToPointExample(Scene): def construct(self): polarplane_pi = PolarPlane(azimuth_units="PI radians", size=6) polartopoint_vector = Vector(polarplane_pi.polar_to_point(3, PI/4)) self.add(polarplane_pi) self.add(polartopoint_vector) """ return self.coords_to_point(radius * np.cos(azimuth), radius * np.sin(azimuth)) def pr2pt(self, radius: float, azimuth: float) -> np.ndarray: """Abbreviation for :meth:`polar_to_point`""" return self.polar_to_point(radius, azimuth) def point_to_polar(self, point: np.ndarray) -> Tuple[float, float]: r"""Gets polar coordinates from a point. Parameters ---------- point The point. Returns ------- Tuple[:class:`float`, :class:`float`] The coordinate radius (:math:`r`) and the coordinate azimuth (:math:`\theta`). """ x, y = self.point_to_coords(point) return np.sqrt(x ** 2 + y ** 2), np.arctan2(y, x) def pt2pr(self, point: np.ndarray) -> Tuple[float, float]: """Abbreviation for :meth:`point_to_polar`""" return self.point_to_polar(point) def get_coordinate_labels( self, r_values: Optional[Iterable[float]] = None, a_values: Optional[Iterable[float]] = None, **kwargs, ) -> VDict: """Gets labels for the coordinates Parameters ---------- r_values Iterable of values along the radius, by default None. a_values Iterable of values along the azimuth, by default None. Returns ------- VDict Labels for the radius and azimuth values. """ if r_values is None: r_values = [r for r in self.get_x_axis().get_tick_range() if r >= 0] if a_values is None: a_values = np.arange(0, 1, 1 / self.azimuth_step) r_mobs = self.get_x_axis().add_numbers(r_values) if self.azimuth_direction == "CCW": d = 1 elif self.azimuth_direction == "CW": d = -1 else: raise ValueError("Invalid azimuth direction. Expected one of: CW, CCW") a_points = [ { "label": i, "point": np.array( [ self.get_right()[0] * np.cos(d * (i * TAU) + self.azimuth_offset), self.get_right()[0] * np.sin(d * (i * TAU) + self.azimuth_offset), 0, ] ), } for i in a_values ] if self.azimuth_units == "PI radians" or self.azimuth_units == "TAU radians": a_tex = [ self.get_radian_label(i["label"]) .scale(self.azimuth_label_scale) .next_to( i["point"], direction=i["point"], aligned_edge=i["point"], buff=self.azimuth_label_buff, ) for i in a_points ] elif self.azimuth_units == "degrees": a_tex = [ MathTex(f'{360 * i["label"]:g}' + r"^{\circ}") .scale(self.azimuth_label_scale) .next_to( i["point"], direction=i["point"], aligned_edge=i["point"], buff=self.azimuth_label_buff, ) for i in a_points ] elif self.azimuth_units == "gradians": a_tex = [ MathTex(f'{400 * i["label"]:g}' + r"^{g}") .scale(self.azimuth_label_scale) .next_to( i["point"], direction=i["point"], aligned_edge=i["point"], buff=self.azimuth_label_buff, ) for i in a_points ] elif self.azimuth_units is None: a_tex = [ MathTex(f'{i["label"]:g}') .scale(self.azimuth_label_scale) .next_to( i["point"], direction=i["point"], aligned_edge=i["point"], buff=self.azimuth_label_buff, ) for i in a_points ] a_mobs = VGroup(*a_tex) self.coordinate_labels = VGroup(r_mobs, a_mobs) return self.coordinate_labels def add_coordinates( self, r_values: Optional[Iterable[float]] = None, a_values: Optional[Iterable[float]] = None, ): """Adds the coordinates. Parameters ---------- r_values Iterable of values along the radius, by default None. a_values Iterable of values along the azimuth, by default None. """ self.add(self.get_coordinate_labels(r_values, a_values)) return self def get_radian_label(self, number, stacked=True): constant_label = {"PI radians": r"\pi", "TAU radians": r"\tau"}[ self.azimuth_units ] division = number * {"PI radians": 2, "TAU radians": 1}[self.azimuth_units] frac = fr.Fraction(division).limit_denominator(max_denominator=100) if frac.numerator == 0 & frac.denominator == 0: return MathTex(r"0") elif frac.numerator == 1 and frac.denominator == 1: return MathTex(constant_label) elif frac.numerator == 1: if self.azimuth_compact_fraction: return MathTex( r"\tfrac{" + constant_label + r"}{" + str(frac.denominator) + "}" ) else: return MathTex( r"\tfrac{1}{" + str(frac.denominator) + "}" + constant_label ) elif frac.denominator == 1: return MathTex(str(frac.numerator) + constant_label) else: if self.azimuth_compact_fraction: return MathTex( r"\tfrac{" + str(frac.numerator) + constant_label + r"}{" + str(frac.denominator) + r"}" ) else: return MathTex( r"\tfrac{" + str(frac.numerator) + r"}{" + str(frac.denominator) + r"}" + constant_label ) class ComplexPlane(NumberPlane): """ Examples -------- .. manim:: ComplexPlaneExample :save_last_frame: :ref_classes: Dot MathTex class ComplexPlaneExample(Scene): def construct(self): plane = ComplexPlane().add_coordinates() self.add(plane) d1 = Dot(plane.n2p(2 + 1j), color=YELLOW) d2 = Dot(plane.n2p(-3 - 2j), color=YELLOW) label1 = MathTex("2+i").next_to(d1, UR, 0.1) label2 = MathTex("-3-2i").next_to(d2, UR, 0.1) self.add( d1, label1, d2, label2, ) """ def __init__(self, color=BLUE, **kwargs): super().__init__( color=color, **kwargs, ) def number_to_point(self, number): number = complex(number) return self.coords_to_point(number.real, number.imag) def n2p(self, number): return self.number_to_point(number) def point_to_number(self, point): x, y = self.point_to_coords(point) return complex(x, y) def p2n(self, point): return self.point_to_number(point) def get_default_coordinate_values(self): x_numbers = self.get_x_axis().get_tick_range() y_numbers = self.get_y_axis().get_tick_range() y_numbers = [complex(0, y) for y in y_numbers if y != 0] return [*x_numbers, *y_numbers] def get_coordinate_labels(self, *numbers, **kwargs): if len(numbers) == 0: numbers = self.get_default_coordinate_values() self.coordinate_labels = VGroup() for number in numbers: z = complex(number) if abs(z.imag) > abs(z.real): axis = self.get_y_axis() value = z.imag kwargs["unit"] = "i" else: axis = self.get_x_axis() value = z.real number_mob = axis.get_number_mobject(value, **kwargs) self.coordinate_labels.add(number_mob) return self.coordinate_labels def add_coordinates(self, *numbers): self.add(self.get_coordinate_labels(*numbers)) return self ```
{ "source": "joybhallaa/scrapy", "score": 3 }
#### File: http/request/__init__.py ```python from w3lib.url import safe_url_string from scrapy.http.headers import Headers from scrapy.utils.python import to_bytes from scrapy.utils.trackref import object_ref from scrapy.utils.url import escape_ajax from scrapy.http.common import obsolete_setter from scrapy.utils.curl import curl_to_request_kwargs class Request(object_ref): def __init__(self, url, callback=None, method='GET', headers=None, body=None, cookies=None, meta=None, encoding='utf-8', priority=0, dont_filter=False, errback=None, flags=None, cb_kwargs=None): self._encoding = encoding # this one has to be set first self.method = str(method).upper() self._set_url(url) self._set_body(body) assert isinstance(priority, int), "Request priority not an integer: %r" % priority self.priority = priority if callback is not None and not callable(callback): raise TypeError('callback must be a callable, got %s' % type(callback).__name__) if errback is not None and not callable(errback): raise TypeError('errback must be a callable, got %s' % type(errback).__name__) self.callback = callback self.errback = errback self.cookies = cookies or {} self.headers = Headers(headers or {}, encoding=encoding) self.dont_filter = dont_filter self._meta = dict(meta) if meta else None self._cb_kwargs = dict(cb_kwargs) if cb_kwargs else None self.flags = [] if flags is None else list(flags) @property def cb_kwargs(self): if self._cb_kwargs is None: self._cb_kwargs = {} return self._cb_kwargs @property def meta(self): if self._meta is None: self._meta = {} return self._meta def _get_url(self): return self._url def _set_url(self, url): if not isinstance(url, str): raise TypeError('Request url must be str or unicode, got %s:' % type(url).__name__) s = safe_url_string(url, self.encoding) self._url = escape_ajax(s) if ('://' not in self._url) and (not self._url.startswith('data:')): raise ValueError('Missing scheme in request url: %s' % self._url) url = property(_get_url, obsolete_setter(_set_url, 'url')) def _get_body(self): return self._body def _set_body(self, body): if body is None: self._body = b'' else: self._body = to_bytes(body, self.encoding) body = property(_get_body, obsolete_setter(_set_body, 'body')) @property def encoding(self): return self._encoding def __str__(self): return "<%s %s>" % (self.method, self.url) __repr__ = __str__ def copy(self): """Return a copy of this Request""" return self.replace() def replace(self, *args, **kwargs): """Create a new Request with the same attributes except for those given new values. """ for x in ['url', 'method', 'headers', 'body', 'cookies', 'meta', 'flags', 'encoding', 'priority', 'dont_filter', 'callback', 'errback', 'cb_kwargs']: kwargs.setdefault(x, getattr(self, x)) cls = kwargs.pop('cls', self.__class__) return cls(*args, **kwargs) @classmethod def from_curl(cls, curl_command, ignore_unknown_options=True, **kwargs): """Create a Request object from a string containing a `cURL <https://curl.haxx.se/>`_ command. It populates the HTTP method, the URL, the headers, the cookies and the body. It accepts the same arguments as the :class:`Request` class, taking preference and overriding the values of the same arguments contained in the cURL command. Unrecognized options are ignored by default. To raise an error when finding unknown options call this method by passing ``ignore_unknown_options=False``. .. caution:: Using :meth:`from_curl` from :class:`~scrapy.http.Request` subclasses, such as :class:`~scrapy.http.JSONRequest`, or :class:`~scrapy.http.XmlRpcRequest`, as well as having :ref:`downloader middlewares <topics-downloader-middleware>` and :ref:`spider middlewares <topics-spider-middleware>` enabled, such as :class:`~scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware`, :class:`~scrapy.downloadermiddlewares.useragent.UserAgentMiddleware`, or :class:`~scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware`, may modify the :class:`~scrapy.http.Request` object. To translate a cURL command into a Scrapy request, you may use `curl2scrapy <https://michael-shub.github.io/curl2scrapy/>`_. """ request_kwargs = curl_to_request_kwargs(curl_command, ignore_unknown_options) request_kwargs.update(kwargs) return cls(**request_kwargs) ```
{ "source": "JoyBoyMaLin/no-fish", "score": 2 }
#### File: fish/app/models.py ```python from django import forms from django.utils import timezone from django.db import models from django.utils.html import format_html from django.utils.translation import ugettext_lazy as _ class Category(models.Model): class Meta: verbose_name = _('category') verbose_name_plural = _('categories') title = models.CharField(_('title'), max_length=255) cover = models.ImageField(_('cover'), upload_to='static/uploads/images/photos/', null=False, blank=False) enabled = models.BooleanField(_('enabled'), default=True) views = models.BigIntegerField(default=0) created = models.DateField(_('created'), default=timezone.now) def cover_data(self): return format_html( '<img src="{}" width="100px"/>', self.cover.url, ) cover_data.short_description = _('cover') def __str__(self): return self.title class Photo(models.Model): class Meta: verbose_name = _('photo') verbose_name_plural = _('photos') title = models.CharField(_('title'), max_length=255) cover = models.ImageField(_('cover'), upload_to='static/uploads/images/photos/', null=False, blank=False) enabled = models.BooleanField(_('enabled'), default=True) category = models.ManyToManyField(Category) def __str__(self): return self.title class Slider(models.Model): class Meta: verbose_name = _('slider') verbose_name_plural = _('sliders') title = models.CharField(_('title'), max_length=255) image = models.ImageField(_('image'), upload_to='static/uploads/images/photos/', null=False, blank=False) url = models.URLField(_('url'), null=False) enabled = models.BooleanField(_('enabled'), default=True) def __str__(self): return self.title class Detail(models.Model): class Meta: verbose_name = _('detail') verbose_name_plural = _('details') photo = models.ForeignKey(Photo, default=None, on_delete=models.CASCADE) image = models.ImageField(_('image'), upload_to='static/uploads/images/photos/', null=True, blank=True) def __str__(self): return self.photo.title ```
{ "source": "joyccino/GrabnGo", "score": 3 }
#### File: joyccino/GrabnGo/main.py ```python import cv2 import numpy as np import time import face_recognition import os import os.path #file transfer from ftplib import FTP def crop(): # from cropData import cropData customer_name = input('Hello customer, Please enter your name.') # Directory directory = customer_name # Parent Directory path parent_dir = "/home/moon/Desktop/chosenones/1/customers/" # Path path = os.path.join(parent_dir, directory) os.mkdir(path) print("Directory '% s' created" % directory) print("done, a directory has been generated for "+customer_name) print('Your webcam is getting ready...') # cropData() webcam = cv2.VideoCapture(0) if not webcam.isOpened(): print("Could not open webcam") exit() sample_num = 0 captured_num = 0 start_time=time.time() counter = 0 grabngo = 'customer' # loop through frames while webcam.isOpened(): # read frame from webcam status, frame = webcam.read() sample_num = sample_num + 1 if not status: break # display output cv2.imshow("captured frames", frame) # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(frame) face_encodings = face_recognition.face_encodings(frame, face_locations) # Label the results for (top, right, bottom, left), name in zip(face_locations, grabngo): if not name: continue # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) crop_img = frame[top:bottom, left:right] captured_num = captured_num + 1 cv2.imwrite('/home/moon/Desktop/chosenones/1/customers/'+customer_name+"/"+str(captured_num)+'.jpg', crop_img) # press "Q" to stop if cv2.waitKey(1) & 0xFF == ord('q'): break end_time=time.time() elapsed = end_time - start_time if elapsed > 5: break # release resources webcam.release() cv2.destroyAllWindows() prepath = '/home/moon/Desktop/chosenones/1/customers/' path = prepath+customer_name num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) if num_files < 10: print('Your data size is less than 10... please inform your staff.') else: print('welcome, '+customer_name+'. you are ready to go.') print('for file transfer') ```
{ "source": "Joyce1114/National-Park-Crawler", "score": 3 }
#### File: quotesbot/spiders/toscrape-xpath.py ```python import scrapy import urlparse from quotesbot.items import ParkItem class ToScrapeSpiderXPath(scrapy.Spider): name = 'toscrape-xpath' start_urls = [ 'https://www.nps.gov/findapark/index.htm', ] def parse(self, response): parks = [] for item in response.xpath('.//select[@data-nonselectedtext="Park Name"]//option'): park = ParkItem() park["name"] = item.xpath('./text()').extract_first() park["code"] = item.xpath('./@value').extract_first() parks.append(park) for park in parks: start = "https://www.nps.gov/" end = "/index.htm" url = start + str(park.get("code"))[3:7] + end request = scrapy.Request(url, callback=self.parse_history) request.meta["park"] = park yield request # Get the specific park website callback def parse_history(self, response): base_url = "https://www.nps.gov" park = response.meta["park"] park["history"] = response.xpath('.//p/text()').extract_first() hours_url = urlparse.urljoin(base_url, response.xpath('.//li/a[contains(@href, "hours")]/@href').extract_first()) hours_request = scrapy.Request(hours_url, callback=self.parse_hours, meta={"park": park}) yield hours_request def parse_hours(self, response): park = response.meta["park"] park["hours"] = response.xpath(".//p/span/text()[contains(., 'a.m.') or contains(., 'am') " "or contains(., 'A.M.') or contains(., 'AM')]").extract_first() fees_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "fees")]/@href').extract_first()) fees_request = scrapy.Request(fees_url, callback=self.parse_fees, meta={"park": park}) yield fees_request # TODO def parse_fees(self, response): park = response.meta["park"] park["fees"] = response.xpath(".//table//text()[contains(., ' fee ') or contains(., ' charge ')" "or contains(., ' fees ') or contains(., ' passes ')]").extract_first() services_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "services")]/@href') .extract_first()) services_request = scrapy.Request(services_url, callback=self.parse_services, meta={"park": park}) yield services_request # TODO Where is this?? def parse_services(self, response): park = response.meta["park"] park["goodsandservices"] = response.xpath(".//p/span/text()").extract() things2do_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "things2do")]/@href') .extract_first()) things2do_request = scrapy.Request(things2do_url, callback=self.parse_things2do, meta={"park": park}) yield things2do_request # TODO Currently use the figure to locate def parse_things2do(self, response): park = response.meta["park"] park["things2do"] = response.xpath(".//div[figure/@class = '-left']//strong/text()").extract() news_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "news")]/@href').extract_first()) news_request = scrapy.Request(news_url, callback=self.parse_news, meta={"park": park}) #yield news_request yield { 'name': park.get('name'), 'things': park.get('things2do') } # TODO Currently use table to locate def parse_news(self, response): park = response.meta["park"] park["news"] = response.xpath(".//table//p//text()").extract() nature_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "nature")]/@href').extract_first()) nature_request = scrapy.Request(nature_url, callback=self.parse_nature, meta={"park": park}) yield nature_request # TODO Currently use table to locate def parse_nature(self, response): park = response.meta["park"] park["nature"] = response.xpath(".//table//p//text()").extract() info_url = urlparse.urljoin(response.url, response.xpath('.//li/a[contains(@href, "basicinfo")]/@href').extract_first()) info_request = scrapy.Request(info_url, callback=self.parse_info, meta={"park": park}) yield info_request # TODO def parse_info(self, response): park = response.meta["park"] park["weather"] = response.xpath(".//p[text()[contains(., ' season ') or contains(., ' weather ') " "or contains(., ' temperature ')]]").extract_first() yield { "name": park.get('name'), "history": park.get('history'), "hours": park.get('hours'), "fees": park.get('fees'), "goodsandservices": park.get('goodsandservices'), "things2do": park.get('things2do'), "news": park.get('news'), "nature": park.get('nature'), "weather": park.get('weather') } ```
{ "source": "Joyce72/free-python-games", "score": 3 }
#### File: free-python-games/docs/demo.py ```python import docutils.frontend import docutils.parsers.rst import docutils.utils import pyautogui import pynput.keyboard as kb import queue import subprocess as sp import threading import time slide = 0 slides = [ ''' # Give the Gift of Python ## <NAME> # 1. Python trainer for Fortune 100 companies. # 2. Married to Chemistry teacher, father of two. # 3. 100s of hours of 4-12th grade instruction. '''.splitlines(), ''' ## Setup # 1. Install Python: https://www.python.org/ # 2. Run IDLE: $ python -m idlelib.idle # 3. Use built-in Turtle module! '''.splitlines(), [ '', '## Open the Turtle Window', '', 'from turtle import *', 0.5, 'reset()', 0.5, ], [ '', '## Basic Commands', '', 'forward(100)', 1, 'right(90)', 1, 'fd(100)', 1, 'rt(90)', 1, 'backward(-100)', 1, 'left(-90)', 1, 'forward(100)', 1, 'right(90)', 1, 'undo()', 1, 'undo()', 1, ], [ '', '## Loops', '', 'reset()', 0.5, 'for each in range(5):', 0.5, 'bk(100)', 0.5, 'lt(144)', 0.5, '', 3, ], [ '', '## Functions and Shapes', '', 'def square():', 0.5, 'begin_fill()', 0.5, 'for each in range(4):', 0.5, 'forward(100)', 0.5, 'right(90)', 0.5, -1, 'end_fill()', 0.5, '', 'reset()', 0.5, 'square()', 3, ], [ '', '## Dots', '', 'reset()', 0.5, 'help(dot)', 1, 'dot(100)', 1, ], [ '', '## Colors' '', 'reset()', 0.5, 'from itertools import *', 0.5, "colors = cycle(['red', 'green', 'blue', 'purple'])", 0.5, 'def present():', 0.5, 'for i in range(4):', 0.5, 'color(next(colors))', 0.5, 'square()', 0.5, 'left(90)', 0.5, '', 'present()', 5, ], [ '', '## Locations', '', 'reset()', 0.5, 'def line(a, b, x, y):', 0.5, 'up()', 0.5, 'goto(a, b)', 0.5, 'down()', 0.5, 'goto(x, y)', 0.5, '', "color('red')", 0.5, 'width(20)', 0.5, 'line(-100, -100, 0, 200)', 1, 'line(0, 200, 100, -100)', 1, 'line(100, -100, -100, -100)', 1, ], [ '', '## Mouse Inputs', '', 'width(10)', 0.5, "color('green')", 0.5, 'def tap(x, y):', 0.5, 'goto(x, y)', 0.5, 'dot(20)', 0.5, '', 'onscreenclick(tap)', 0.5, ], [ '', '## Keyboard Events', '', 'reset()', 0.5, 'width(10)', 0.5, "onkey(lambda: fd(30), 'Up')", 0.5, "onkey(lambda: bk(30), 'Down')", 0.5, "onkey(lambda: lt(30), 'Left')", 0.5, "onkey(lambda: rt(30), 'Right')", 0.5, 'listen()', 0.5, ], [ '', '## Animation', '', 'hideturtle()', 0.5, 'tracer(False)', 0.5, 'running = True', 0.5, 'def draw():', 0.5, 'clear()', 0.5, 'present()', 0.5, 'update()', 0.5, 'left(1)', 0.5, 'if running:', 0.5, 'ontimer(draw, 100)', '', 'reset()', 0.5, 'draw()', 0.5, ], ''' ## Free Python Games # 1. Search: Free Python Games # 2. $ python -m pip install freegames # 3. http://www.grantjenks.com/docs/freegames/ '''.splitlines(), ] def worker(): global slide while True: key = inputs.get() if key == kb.Key.esc: print('Typing slide', slide) parts = slides[slide] for part in parts: if part == '': pyautogui.press('enter') time.sleep(0.25) elif part == -1: pyautogui.press('backspace') elif isinstance(part, str): pyautogui.typewrite(part, interval=0.1) pyautogui.press('enter') else: time.sleep(part) slide += 1 def ticker(): def on_press(key): inputs.put(key) with kb.Listener(on_press=on_press) as listener: listener.join() def commander(): global slide while True: value = input() if value == 'q': exit() try: slide = int(value) except ValueError: pass def main(): global inputs idle = sp.Popen(['python', '-m', 'idlelib.idle']) inputs = queue.Queue() work = threading.Thread(target=worker) work.start() tick = threading.Thread(target=ticker) tick.start() cmdr = threading.Thread(target=commander) cmdr.start() cmdr.join() tick.join() work.join() idle.wait() if __name__ == '__main__': main() ```
{ "source": "JoyceBabu/SublimeLinter", "score": 2 }
#### File: SublimeLinter/lint/backend.py ```python import sublime from concurrent.futures import ThreadPoolExecutor, wait, FIRST_EXCEPTION from contextlib import contextmanager from itertools import chain, count from functools import partial import hashlib import json import logging import multiprocessing import os import time import threading from . import style, util, linter as linter_module logger = logging.getLogger(__name__) WILDCARD_SYNTAX = '*' MAX_CONCURRENT_TASKS = multiprocessing.cpu_count() or 1 task_count = count(start=1) counter_lock = threading.Lock() process_limit = threading.BoundedSemaphore(MAX_CONCURRENT_TASKS) def lint_view(linters, view, view_has_changed, next): """Lint the given view. This is the top level lint dispatcher. It is called asynchronously. """ lint_tasks = get_lint_tasks(linters, view, view_has_changed) run_concurrently( partial(run_tasks, tasks, next=partial(next, linter)) for linter, tasks in lint_tasks ) def run_tasks(tasks, next): results = run_concurrently(tasks) if results is None: return # ABORT errors = list(chain.from_iterable(results)) # flatten and consume # We don't want to guarantee that our consumers/views are thread aware. # So we merge here into Sublime's shared worker thread. Sublime guarantees # here to execute all scheduled tasks ordered and sequentially. sublime.set_timeout_async(lambda: next(errors)) def get_lint_tasks(linters, view, view_has_changed): total_tasks = 0 for (linter, regions) in get_lint_regions(linters, view): tasks = _make_tasks(linter, regions, view, view_has_changed) total_tasks += len(tasks) yield linter, tasks if total_tasks > 4: logger.warning( "'{}' puts in total {}(!) tasks on the queue." .format(short_canonical_filename(view), total_tasks) ) def _make_tasks(linter_, regions, view, view_has_changed): independent_linters = create_n_independent_linters(linter_, len(regions)) tasks = [] for linter, region in zip(independent_linters, regions): code = view.substr(region) offsets = view.rowcol(region.begin()) + (region.begin(),) # Due to a limitation in python 3.3, we cannot 'name' a thread when # using the ThreadPoolExecutor. (This feature has been introduced # in python 3.6.) So, we do this manually. task_name = make_good_task_name(linter, view) task = partial(execute_lint_task, linter, code, offsets, view_has_changed) executor = partial(modify_thread_name, task_name, task) tasks.append(executor) if len(tasks) > 3: logger.warning( "'{}' puts {} {} tasks on the queue." .format(short_canonical_filename(view), len(tasks), linter_.name) ) return tasks def create_n_independent_linters(linter, n): return ( [linter] if n == 1 else [clone_linter(linter) for _ in range(n)] ) def clone_linter(linter): # type: (linter_module.Linter) -> linter_module.Linter return linter.__class__(linter.view, linter.settings.clone()) def short_canonical_filename(view): return ( os.path.basename(view.file_name()) if view.file_name() else '<untitled {}>'.format(view.buffer_id()) ) def make_good_task_name(linter, view): with counter_lock: task_number = next(task_count) canonical_filename = short_canonical_filename(view) return 'LintTask|{}|{}|{}|{}'.format( task_number, linter.name, canonical_filename, view.id()) def modify_thread_name(name, sink): original_name = threading.current_thread().name # We 'name' our threads, for logging purposes. threading.current_thread().name = name try: return sink() finally: threading.current_thread().name = original_name @contextmanager def reduced_concurrency(): start_time = time.time() with process_limit: end_time = time.time() waittime = end_time - start_time if waittime > 0.1: logger.warning('Waited in queue for {:.2f}s'.format(waittime)) yield @reduced_concurrency() def execute_lint_task(linter, code, offsets, view_has_changed): try: errors = linter.lint(code, view_has_changed) or [] finalize_errors(linter, errors, offsets) return errors except linter_module.TransientError: raise # Raise here to abort in `await_futures` below except linter_module.PermanentError: return [] # Empty list here to clear old errors except Exception: linter.notify_failure() # Log while multi-threaded to get a nicer log message logger.exception('Unhandled exception:\n', extra={'demote': True}) return [] # Empty list here to clear old errors def error_json_serializer(o): """Return a JSON serializable representation of error properties.""" if isinstance(o, sublime.Region): return (o.a, o.b) return o def finalize_errors(linter, errors, offsets): linter_name = linter.name view = linter.view line_offset, col_offset, pt_offset = offsets for error in errors: # see if this error belongs to the main file belongs_to_main_file = True if 'filename' in error: if (os.path.normcase(error['filename']) != os.path.normcase(view.file_name() or '') and error['filename'] != "<untitled {}>".format(view.buffer_id())): belongs_to_main_file = False line, start, end = error['line'], error['start'], error['end'] if belongs_to_main_file: # offsets are for the main file only if line == 0: start += col_offset end += col_offset line += line_offset try: region = error['region'] except KeyError: line_start = view.text_point(line, 0) region = sublime.Region(line_start + start, line_start + end) if len(region) == 0: region.b = region.b + 1 else: if belongs_to_main_file: # offsets are for the main file only region = sublime.Region(region.a + pt_offset, region.b + pt_offset) error.update({ 'line': line, 'start': start, 'end': end, 'linter': linter_name, 'region': region }) uid = hashlib.sha256( json.dumps(error, sort_keys=True, default=error_json_serializer).encode('utf-8')).hexdigest() error.update({ 'uid': uid, 'priority': style.get_value('priority', error, 0) }) def get_lint_regions(linters, view): syntax = util.get_syntax(view) for linter in linters: settings = linter.get_view_settings() selector = settings.get('selector', None) if selector is not None: # Inspecting just the first char is faster if view.score_selector(0, selector): yield linter, [sublime.Region(0, view.size())] else: yield linter, [ region for region in view.find_by_selector(selector) ] continue # Fallback using deprecated `cls.syntax` and `cls.selectors` if ( syntax not in linter.selectors and WILDCARD_SYNTAX not in linter.selectors ): yield linter, [sublime.Region(0, view.size())] else: yield linter, [ region for selector in get_selectors(linter, syntax) for region in view.find_by_selector(selector) ] def get_selectors(linter, wanted_syntax): for syntax in [wanted_syntax, WILDCARD_SYNTAX]: try: yield linter.selectors[syntax] except KeyError: pass def run_concurrently(tasks, max_workers=MAX_CONCURRENT_TASKS): with ThreadPoolExecutor(max_workers=max_workers) as executor: work = [executor.submit(task) for task in tasks] return await_futures(work) def await_futures(fs): done, not_done = wait(fs, return_when=FIRST_EXCEPTION) try: return [future.result() for future in done] except Exception: for future in not_done: future.cancel() return None ```
{ "source": "joycebyang/covidx", "score": 3 }
#### File: covidx/pretrain/models.py ```python from collections import OrderedDict import efficientnet_pytorch import torch import torch.nn as nn import torchvision class DenseNetModel(nn.Module): def __init__(self, arch, num_classes): super(DenseNetModel, self).__init__() model_func = getattr(torchvision.models, arch) self.model = model_func(pretrained=True) # check if classifier is Linear or Sequential Layer if isinstance(self.model.classifier, nn.Linear): in_features = self.model.classifier.in_features hidden_features = self.model.classifier.out_features else: for x in self.model.classifier: if isinstance(x, nn.Linear): in_features = x.in_features hidden_features = x.out_features break # build a new, untrained feed-forward network as a classifier, using ReLU activations and dropout self.model.classifier = nn.Sequential( nn.Linear(in_features=in_features, out_features=hidden_features), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(in_features=hidden_features, out_features=num_classes), nn.Sigmoid() ) def forward(self, x): return self.model(x) class ResNetModel(nn.Module): def __init__(self, arch, num_classes): super(ResNetModel, self).__init__() model_func = getattr(torchvision.models, arch) self.model = model_func(pretrained=True) # check if classifier is Linear or Sequential Layer if isinstance(self.model.fc, nn.Linear): in_features = self.model.fc.in_features hidden_features = self.model.fc.out_features else: for x in self.model.fc: if isinstance(x, nn.Linear): in_features = x.in_features hidden_features = x.out_features break # build a new, untrained feed-forward network as a classifier, using ReLU activations and dropout self.model.fc = nn.Sequential( nn.Linear(in_features=in_features, out_features=hidden_features), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(in_features=hidden_features, out_features=num_classes), nn.Sigmoid() ) def forward(self, x): return self.model(x) class EfficientNetModel(nn.Module): def __init__(self, arch, num_classes): super(EfficientNetModel, self).__init__() self.model = efficientnet_pytorch.EfficientNet.from_pretrained(arch) if isinstance(self.model._fc, nn.Linear): in_features = self.model._fc.in_features hidden_features = self.model._fc.out_features else: for x in self.model._fc: if isinstance(x, nn.Linear): in_features = x.in_features hidden_features = x.out_features break self.model._fc = nn.Sequential( nn.Linear(in_features=in_features, out_features=hidden_features), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(in_features=hidden_features, out_features=num_classes), nn.Sigmoid() ) def forward(self, x): return self.model(x) def load_from_checkpoint(self, ckp_path, device=torch.device('cpu')): model_checkpoint = torch.load(ckp_path, map_location=device) state_dict = model_checkpoint['state_dict'] new_state_dict = OrderedDict() for k in state_dict: short_key = k.replace('module.efficientnet.', '') new_state_dict[short_key] = state_dict[k] old_state_dict = self.model.state_dict() for k in new_state_dict: if k not in old_state_dict: print('Unexpected key %s in state_dict' % k) for k in old_state_dict: if k not in new_state_dict: print('Missing key %s in state_dict' % k) self.model.load_state_dict(new_state_dict, strict=False) def DenseNet121(num_classes=14): return DenseNetModel('densenet121', num_classes) def DenseNet169(num_classes=14): return DenseNetModel('densenet169', num_classes) def DenseNet201(num_classes=14): return DenseNetModel("densenet201", num_classes) def ResNet34(num_classes=14): return ResNetModel("resnet34", num_classes) def ResNet50(num_classes=14): return ResNetModel('resnet50', num_classes) def ResNet101(num_classes=14): return ResNetModel("resnet101", num_classes) def EfficientNet4(num_classes=14): return EfficientNetModel("efficientnet-b4", num_classes) def EfficientNet5(num_classes=14): return EfficientNetModel('efficientnet-b5', num_classes) def EfficientNet6(num_classes=14): return EfficientNetModel('efficientnet-b6', num_classes) ```
{ "source": "joyce-fang/deep-reinforcement-learning", "score": 3 }
#### File: deep-reinforcement-learning/p1_navigation/model.py ```python import torch import torch.nn as nn import torch.nn.functional as F class QNetwork(nn.Module): def __init__(self, state_size, action_size, seed, fc1_units=64, fc2_units=64): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) def forward(self, state): """Build a network that maps state -> action values.""" x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return self.fc3(x) class QNetworkPixels(nn.Module): def __init__(self, state_size, action_size, seed): super(QNetworkPixels, self).__init__() self.seed = torch.manual_seed(seed) self.conv1 = nn.Conv3d(3, 16, kernel_size=(1, 8, 8), stride=(1, 4, 4)) self.conv2 = nn.Conv3d(16, 32, kernel_size=(4, 4, 4), stride=(1, 2, 2)) conv2_output_size = self._get_conv_output_size(state_size) fc = [conv2_output_size, 256] self.fc1 = nn.Linear(fc[0], fc[1]) self.fc2 = nn.Linear(fc[1], action_size) def forward(self, state): x = self._cnn(state) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def _get_conv_output_size(self, shape): x = torch.rand(shape) x = self._cnn(x) n_size = x.data.view(1, -1).size(1) return n_size def _cnn(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = x.view(x.size(0), -1) return x ```
{ "source": "joyceho/abbr-norm", "score": 3 }
#### File: joyceho/abbr-norm/format_nursing_abbr.py ```python import json import itertools import argparse import collections import re def _abbr_filter(abbr): if len(abbr) < 2: return False return True def _clean_abbr(abbrList): # append the or to make life a bit easier abbr = (" or ".join(abbrList)).strip() if abbr is None or abbr == "": return None # split based on comma or ; tmpAbbr = re.split(",|;", abbr) # then resplit based on or tmpAbbr = list(map(lambda x: x.split(" or "), tmpAbbr)) # flatten the list tmpAbbr = itertools.chain(*tmpAbbr) # clean the list to remove spaces tmpAbbr = list(map(lambda x: x.strip(), tmpAbbr)) # clean the list with some filtering tmpAbbr = list(filter(_abbr_filter, tmpAbbr)) return tmpAbbr def _clean_qual_name(fullList): full = "".join(fullList) # clean up the parenthsis full = re.sub(r'\([^)]*\)', '', full) # full = re.sub(r'\ from Latin.+', '', full, flags=re.IGNORECASE) # full = re.sub(r'\ from the Latin.+', '', full, flags=re.IGNORECASE) # full = re.sub(r'\ from Middle English.+', '', full, flags=re.IGNORECASE) return full def parse_json(abbrDict): finalAbbr = collections.defaultdict(list) # setup the dictionary with the final abbreviations for nl in abbrDict: abbrList = _clean_abbr(nl['abbr']) if abbrList is None: continue qualName = _clean_qual_name(nl['full']) if " or " in qualName: continue for ab in abbrList: finalAbbr[ab.strip()].append(qualName) return finalAbbr def deleteMultiKeys(abbrDict): finalAbbr = {} for k, v in abbrDict.items(): # map the values to lowercase set syn = set(map(lambda x: x.lower(), v)) if len(syn) == 1: finalAbbr[k] = v[0].lower() return finalAbbr def main(): parser = argparse.ArgumentParser() parser.add_argument("outputFile", help="filename for updated abbreviations") parser.add_argument("-i", help="input json files to parse", nargs='+', required=True) args = parser.parse_args() jsonAbbrFiles = args.i finalAbbrDict = {} for jsonFile in jsonAbbrFiles: print("Loading and cleaning file:" + jsonFile) # open the json abbreviation file jsonAbbr = parse_json(json.load(open(jsonFile, 'r'))) jsonClenedAbbr = deleteMultiKeys(jsonAbbr) finalAbbrDict.update(jsonClenedAbbr) with open(args.outputFile, 'w') as outfile: json.dump(finalAbbrDict, outfile, indent=2) if __name__ == "__main__": main() ```
{ "source": "joyceho/afib", "score": 3 }
#### File: afib/afib/baserisk.py ```python from abc import ABCMeta, abstractmethod class BaseRisk(object): __metaclass__ = ABCMeta features = None @abstractmethod def score(self, row): """ Given a pandas row or dictionary representation, calculate the risk score Parameters ---------- row : pandas row representation Returns ---------- float: the score """ pass ``` #### File: afib/risk_scores/npoaf.py ```python import numpy as np from afib import BaseRisk NPOAF_PTS = [2,3,1,3,3,1] def npoaf(age, mvd, lad): """Calculates alternative POAF score (New-onset POAF score). Args: age: age of the person in years. mvd: has mitral valve disease, takes inputs 'None', 'Mild', 'Moderate' or 'Severe' (first letter capitalized). lad: t/f has left atrial dilatation. Returns: the new-onset POAF score. Raises: TypeError: if inputs are incorrect type. """ arr = np.array([65 <= age <= 74, 75 <= age, int(float(mvd == "Mild")), int(float(mvd == "Moderate")), int(float(mvd == "Severe")), lad], dtype=int) return arr.dot(NPOAF_PTS) class NPoafC(BaseRisk): def score(self, row): return npoaf(row["age"], row["mvd"], row["lad"]) ``` #### File: risk_scores/tests/test_poaf.py ```python import numpy.testing as npt from afib.risk_scores import poaf, PoafC def test_poaf(): tmp = poaf(59, False, 15, False, False, (30/100), False) npt.assert_equal(tmp, 0) tmp = poaf(60, False, 15, False, False, (30/100), False) npt.assert_equal(tmp, 1) tmp = poaf(70, False, 15, False, False, (30/100), False) npt.assert_equal(tmp, 2) tmp = poaf(80, False, 15, False, False, (30/100), False) npt.assert_equal(tmp, 3) tmp = poaf(80, True, 15, False, False, (30/100), False) npt.assert_equal(tmp, 4) tmp = poaf(80, True, 14, False, False, (30/100), False) npt.assert_equal(tmp, 5) tmp = poaf(80, True, 14, True, False, (30/100), False) npt.assert_equal(tmp, 6) tmp = poaf(80, True, 14, True, True, (30/100), False) npt.assert_equal(tmp, 7) tmp = poaf(80, True, 14, True, True, (29/100), False) npt.assert_equal(tmp, 8) tmp = poaf(80, True, 14, True, True, (29/100), True) npt.assert_equal(tmp, 9) def test_PoafC(): model = PoafC() tmp = model.score({"age": 59, "copd": False, "egfr": 15, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 0, decimal=3) tmp = model.score({"age": 60, "copd": False, "egfr": 15, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 1, decimal=3) tmp = model.score({"age": 70, "copd": False, "egfr": 15, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 2, decimal=3) tmp = model.score({"age": 80, "copd": False, "egfr": 15, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 3, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 15, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 4, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 14, "emrgncy": False, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 5, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 14, "emrgncy": True, "pibp": False, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 6, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 14, "emrgncy": True, "pibp": True, "lvef": (30/100), "vs": False}) npt.assert_almost_equal(tmp, 7, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 14, "emrgncy": True, "pibp": True, "lvef": (29/100), "vs": False}) npt.assert_almost_equal(tmp, 8, decimal=3) tmp = model.score({"age": 80, "copd": True, "egfr": 14, "emrgncy": True, "pibp": True, "lvef": (29/100), "vs": True}) npt.assert_almost_equal(tmp, 9, decimal=3) test_PoafC() ```
{ "source": "joyceho/cvdm", "score": 3 }
#### File: cvdm/score/advance.py ```python import numpy as np from cvdm.score import cox_surv, BaseRisk from cvdm.score import clean_diab_dur, clean_pp, clean_hba1c, clean_acr, clean_nonhdl # coefficients for survival BETA = np.array([ 0.06187, # age at diagnosis of diabetes -0.4736, # risk for females 0.08263, # duration of diabetes 0.00665, # pulse pressure (mmHg) 0.38248, # retinopathy 0.60160, # atrial fibrillation 0.09945, # unit increase in hba1c (%) 0.19341, # log of albumin/creatine ratio (mg/g) 0.12619, # non-hdl cholestrol (mmol/l) 0.24219 # treated hypertension ]) S_0 = 0.951044 CONST = 6.52910152 def advance(diab_age, female, diab_dur, pp, retin, afib, hba1c, acr, non_hdl, htn_treat): # add ability to ensure specific values are not negative xFeat = np.array([diab_age, female, clean_diab_dur(diab_dur), clean_pp(pp), retin, afib, clean_hba1c(hba1c), np.log(clean_acr(acr)), clean_nonhdl(non_hdl), htn_treat]) s = cox_surv(xFeat, BETA, S_0, CONST) return s class Advance(BaseRisk): features = ["diab_age", "female", "diab_dur", "pp", "retinopathy", "afib", "hba1c", "albumin_creat", "nonhdl_mmol", "htn_treat"] # set them to be the same feat_key = features def score(self, row): return advance(row["diab_age"], row["female"], row["diab_dur"], row["pp"], row["retinopathy"], row["afib"], row["hba1c"], row["albumin_creat"], row["nonhdl_mmol"], row["htn_treat"]) def get_features(self, row): """ Get the features associated with this score """ feat_dict = super().get_features(row) # log transform albumin creat feat_dict["albumin_creat"] = np.log(feat_dict["albumin_creat"]) return feat_dict ``` #### File: cvdm/score/hkdr.py ```python import numpy as np from cvdm.score import cox_surv, BaseRisk from cvdm.score import clean_age, clean_diab_dur, clean_egfr, clean_acr from cvdm.score import clean_bmi, clean_hba1c, clean_nonhdl, clean_hb # coefficients for survival HKDR_CHD = { "coef": np.array([ 0.0267, # age in years -0.3536, # if female 0.4373, # current smoker 0.0403, # duration of diabetes -0.4808, # log_10 of efgr (ml/min/1.73 m^2) 0.1232, # log_10 of (1+spot ACR) (mg/mmol) 0.2644 # non-hdl cholestrol (mmol/L) ]), "sm": 0.9616, "const": 0.7082, "shrink": 0.9440 } HKDR_HF = { "coef": np.array([ 0.0709, # age in years 0.0627, # bmi 0.1363, # hba1c (%) 0.9915, # log_10 of (1+spot ACR) (mg/mmol -0.3606, # blood HB (g/dl) 0.8161 # chd during followup ]), "male_sm": 0.9888, "female_sm": 0.9809, "const": 2.3961, "shrink": 0.9744 } HKDR_STROKE = { "coef": np.array([ 0.0634, # age in years 0.0897, # hba1c (%) 0.5314, # log_10 ACR 0.5636 # hist_chd ]), "const": 4.5674, "sm": 0.9707 } def hkdr_chd(age, female, cur_smoker, diab_dur, egfr, acr, nonhdl_mmol): """ Calculate the risk for coronary heart disease using the coefficients from the HKDR CHD Cohort Parameters ---------- age : numeric Age of subject isFemale : boolean or int Subject is female (True or False) curSmoke: boolean or int Previous history of CVD (True or False) diabDur : numeric Nubmer of years of diabetes egfr : numeric Estimated Glomerular Filteration Rate acr : numeric Urinary albumin : creatinine ratio in mg/mmol nonHDL : numeric Non-HDL cholesterol (mmol/L) """ xFeat = np.array([clean_age(age), female, cur_smoker, clean_diab_dur(diab_dur), np.log10(clean_egfr(egfr)), np.log10(1+clean_acr(acr)), clean_nonhdl(nonhdl_mmol, meas="mmol")]) return cox_surv(xFeat, HKDR_CHD["coef"], HKDR_CHD["sm"], HKDR_CHD["const"], HKDR_CHD["shrink"]) class HkdrCHD(BaseRisk): features = ["female", "index_age", "diab_dur", "cur_smoke", "nonhdl_mmol"] feat_key = features + ["egfr", "albumin_creat_mgmmol"] def score(self, row): return hkdr_chd(row["index_age"], row["female"], row["cur_smoke"], row["diab_dur"], row["egfr"], row["albumin_creat_mgmmol"], row["nonhdl_mmol"]) def get_features(self, row): feat_dict = super().get_features(row) feat_dict["egfr_log"] = np.log10(row["egfr"]) feat_dict["acr_log"] = np.log10(1+row["albumin_creat_mgmmol"]) return feat_dict def hkdr_hf(female, age, bmi, hba1c, acr, hb, chdHist): """ Calculate the risk for heart failure using the coefficients from the HKDR Cohort Parameters ---------- age : numeric Age of subject bmi : numeric BMI of the subject (in kg/m^2) hba1c: numeric HBA1C (%) acr : numeric Urinary albumin : creatinine ratio in mg/mmol hb : numeric Blood Hemoglobin (g/dl) chdHist : boolean or int Subject had CHD (true or False) """ baseSurv = HKDR_HF["male_sm"] if female: baseSurv = HKDR_HF["female_sm"] xFeat = np.array([clean_age(age), clean_bmi(bmi), clean_hba1c(hba1c), np.log10(1+clean_acr(acr)), clean_hb(hb), chdHist]) return cox_surv(xFeat, HKDR_HF["coef"], baseSurv, HKDR_HF["const"], HKDR_HF["shrink"]) class HkdrHF(BaseRisk): features = ["female", "index_age", "bmi", "hba1c", "hb", "chd"] feat_key = features + ["albumin_creat_mgmmol"] def score(self, row): return hkdr_hf(row["female"], row["index_age"], row["bmi"], row["hba1c"], row["albumin_creat_mgmmol"], row["hb"], row["chd"]) def get_features(self, row): feat_dict = super().get_features(row) feat_dict["acr_log"] = np.log10(1+row["albumin_creat_mgmmol"]) return feat_dict def hkdr_stroke(age, hba1c, acr, chd): xFeat = np.array([clean_age(age), clean_hba1c(hba1c), np.log10(clean_acr(acr)), chd]) return cox_surv(xFeat, HKDR_STROKE["coef"], HKDR_STROKE["sm"], HKDR_STROKE["const"]) class HkdrStroke(BaseRisk): features = ["index_age", "hba1c", "chd"] feat_key = features + ["albumin_creat_mgmmol"] def score(self, row): return hkdr_stroke(row["index_age"], row["hba1c"], row["albumin_creat_mgmmol"], row["chd"]) def get_features(self, row): feat_dict = super().get_features(row) feat_dict["acr_log"] = np.log10(1+row["albumin_creat_mgmmol"]) return feat_dict ``` #### File: cvdm/score/recode.py ```python import argparse import json import numpy as np import tqdm from cvdm.score import cox_surv, BaseRisk from cvdm.score import clean_age, clean_bp, clean_hba1c from cvdm.score import clean_tot_chol, clean_hdl, clean_acr ## Coefficients for CHF Recode CHD_INFO ={ "coef": np.array([ 0.05268, # age (year) 0.25290, # female -0.04969, # black ethnicity 0.29050, # smoking 0.00121, # SBP 1.00700, # history of cvd 0.63890, # blood pressure lowering drugs -0.11750, # statins 0.73650, # anticoagulants 0.20920, # hba1c % -0.00136, # total cholesterol -0.01758, # hdl cholesterol 0.82104, # serum creatine mg/dl 0.00041 # urine albumin:creatine ratio ]), "s0": 0.96, # lambda in the equation "const": 5.15 # the mean to subtract by } MI_INFO ={ "coef": np.array([ 0.04363, # age (year) -0.20660, # female -0.11630, # black ethnicity 0.23580, # smoking -0.00514, # SBP 0.96180, # history of cvd -0.12480, # blood pressure lowering drugs 0.04699, # statins 0.54400, # anticoagulants 0.21350, # hba1c % 0.00019, # total cholesterol -0.01358, # hdl cholesterol 0.08027, # serum creatine mg/dl 0.00042 # urine albumin:creatine ratio ]), "s0": 0.96, # lambda in the equation "const": 5.15 # the mean to subtract by } STROKE_INFO ={ "coef": np.array([ 0.02896, # age (year) -0.00326, # female 0.27160, # black ethnicity 0.16650, # smoking 0.01659, # SBP 0.41380, # history of cvd 0.15980, # blood pressure lowering drugs -0.18870, # statins -0.13870, # anticoagulants 0.33650, # hba1c % 0.00171, # total cholesterol -0.00639, # hdl cholesterol 0.59550, # serum creatine mg/dl 0.00030 # urine albumin:creatine ratio ]), "s0": 0.96, # lambda in the equation "const": 5.15 # the mean to subtract by } def recode(age, female, ethnicity, smoking, sbp, cvdHist, bpld, statin, anticoag, hba1c, tchol, hdl, creat, acr, target="CHF"): coefInfo = CHD_INFO if target == "MI": coefInfo = MI_INFO if target == "STROKE": coefInfo = STROKE_INFO """ Calculate the survival value """ xFeat = np.array([clean_age(age), female, ethnicity, smoking, clean_bp(sbp), cvdHist, bpld, statin, anticoag, clean_hba1c(hba1c), clean_tot_chol(tchol), clean_hdl(hdl), creat, clean_acr(acr)]) return cox_surv(xFeat, coefInfo["coef"], coefInfo["s0"], coefInfo["const"]) class Recode(BaseRisk): target = None features = ["index_age", "female", "AC", "cur_smoke", "sbp", "cvd_hist", "bpld", "statin", "anticoagulant", "hba1c", "chol_tot", "chol_hdl", "creat", "albumin_creat"] feat_key = features def __init__(self, target="CHF"): self.target = target def score(self, row): return recode(row["index_age"], row["female"], row["AC"], row["cur_smoke"], row["sbp"], row["cvd_hist"], row["bpld"], row["statin"], row["anticoagulant"], row["hba1c"], row["chol_tot"], row["chol_hdl"], row["creat"], row["albumin_creat"], target=self.target) ``` #### File: cvdm/score/score.py ```python import numpy as np from cvdm.score import BaseRisk, clean_chol, clean_bp # coefficients for survival LOW_RISK_MEN = {'CHD': {"alpha": -22.1, "p": 4.71}, 'Non-CHD': {"alpha": -26.7, "p": 5.64}} LOW_RISK_WOMEN = {'CHD': {"alpha": -29.8, "p": 6.36}, 'Non-CHD': {"alpha": -31.0, "p": 6.62}} HIGH_RISK_MEN = {'CHD': {"alpha": -21.0, "p": 4.62}, 'Non-CHD': {"alpha": -25.7, "p": 5.47}} HIGH_RISK_WOMEN = {'CHD': {"alpha": -28.7, "p": 6.23}, 'Non-CHD': {"alpha": -30.0, "p": 6.42}} # coefficients for measurements COEFF = {'CHD': [0.71, 0.24, 0.018], 'Non-CHD': [0.63, 0.02, 0.022]} def _so(age, alpha, p): """ s0(age) = exp{-exp(alpha)*(age)^p} """ return np.exp(-(np.exp(alpha))*(age)**p) def _baseline_s0(age, coef): """ Calculate the baseline survival probability for age and age+10 using the formula: s_0(age) = exp{-exp(alpha)*(age-20)^p} s_0(age+10) = exp{-exp(alpha)*(age-10)^p} """ return {"s_now": _so(age-20, coef["alpha"], coef["p"]), "s_10": _so(age-10, coef["alpha"], coef["p"])} def _w(chol, sbp, smoking, coef): X = np.array([bool(smoking), chol-6, sbp-120]) return X.dot(coef) def _survival(baseline_s0, w): return {k: v**np.exp(w) for k, v in baseline_s0.items()} def _risk_10(survival): s10_age = survival["s_10"] / survival["s_now"] return 1 - s10_age def _calculate_score(coef_gender, age, chol, sbp, smoking): # sum up the two risks cvdRisk = 0 # calculate the two cases, CHD vs non-CHD for k, v in coef_gender.items(): s0 = _baseline_s0(age, v) w = _w(chol, sbp, smoking, COEFF[k]) s = _survival(s0, w) cvdRisk += _risk_10(s) return cvdRisk class Score(BaseRisk): low_risk = None features = ["index_age", "female", "cur_smoke", "sbp", "chol_tot_mmol"] feat_key = features def __init__(self, low_risk=True): self.low_risk = low_risk def score(self, row): return score(row["female"], row["index_age"], row["chol_tot_mmol"], row["sbp"], row["cur_smoke"], self.low_risk) def score(female, age, chol_mmol, sbp, smoking, low_risk): sc = None beta = HIGH_RISK_MEN if female and low_risk: beta = LOW_RISK_WOMEN elif female: beta = HIGH_RISK_WOMEN elif low_risk: beta = LOW_RISK_MEN sc = _calculate_score(beta, max(20, age), clean_chol(chol_mmol), clean_bp(sbp), smoking) return max(0, min(sc, 1)) ``` #### File: cvdm/score/survModel.py ```python import numpy as np def cox_surv(xFeat, beta, s0, b0=0, shrinkage=1): # 1 - x**exp(sum(xb)) xBeta = xFeat.dot(beta) return 1 - s0**np.exp(shrinkage*(xBeta - b0)) def weibull_atf_surv(xFeat, beta, mu, sigma, t): a = xFeat.dot(beta) + mu b = (t / a) ** sigma return 1 - np.exp(-b) def weibull_hazard(xFeat, beta, lmbda, t, rho): # exp(lambda + beta * xFeat) * t^rho return np.exp(lmbda + xFeat.dot(beta)) * t ** rho def weibull_surv(xFeat, beta, lmbda, t1, t2, rho): return 1 - np.exp(weibull_hazard(xFeat, beta, lmbda, t1, rho) - weibull_hazard(xFeat, beta, lmbda, t2, rho)) ``` #### File: score/tests/test_aric.py ```python import numpy.testing as npt from cvdm.score import aric, Aric def test_aric(): tmp = aric(53, False, False, 190, 50, 140, False, False) npt.assert_almost_equal(tmp, 0.03169, decimal=5) tmp = aric(53, False, True, 190, 50, 140, False, False) npt.assert_almost_equal(tmp, 0.04571, decimal=5) tmp = aric(60, True, True, 220, 40, 140, True, False) npt.assert_almost_equal(tmp, 0.38077, decimal=5) def test_aric_json(): ar = Aric() tmp = ar.score({"male": False, "index_age": 53, "Cauc": False, "chol_tot": 190, "chol_hdl": 50, "sbp": 140, "htn_treat": False, "cur_smoke": False}) npt.assert_almost_equal(tmp, 0.03169, decimal=5) ``` #### File: score/tests/test_frs.py ```python import numpy.testing as npt from cvdm.score import frs_primary, frs_simple, FrsPrimary, FrsSimple def test_frs_primary(): tmp = frs_primary(True, 61, 180, 47, 124, False, True, False) npt.assert_almost_equal(tmp, 0.1048, decimal=4) tmp = frs_primary(False, 53, 161, 55, 125, True, False, True) npt.assert_almost_equal(tmp, 0.1562, decimal=4) def test_frs_primary_json(): frs = FrsPrimary() tmp = frs.score({"female": True, "index_age": 61, "chol_tot": 180, "chol_hdl": 47, "sbp": 124, "htn_treat": False, "dm": False, "cur_smoke": True}) npt.assert_almost_equal(tmp, 0.1048, decimal=4) tmp = frs.score({"female": False, "index_age": 53, "chol_tot": 161, "chol_hdl": 55, "sbp": 125, "htn_treat": True, "dm": True, "cur_smoke": False}) npt.assert_almost_equal(tmp, 0.1562, decimal=4) def test_frs_simple(): score = frs_simple(True, 35, 24.3, 122, False, True, False) npt.assert_almost_equal(score, 0.029352227213368165, decimal=5) def test_frs_simple_json(): frs = FrsSimple() tmp = frs.score({"female": True, "index_age": 35, "height": 72.0, "weight": 190.0, "bmi": 24.3, "sbp": 122, "htn_treat": False, "dm": False, "cur_smoke": True}) npt.assert_almost_equal(tmp, 0.029352227213368165, decimal=5) ``` #### File: score/tests/test_hkdr.py ```python import numpy.testing as npt from cvdm.score import hkdr_chd, HkdrCHD from cvdm.score import hkdr_hf, HkdrHF def test_hkdr_chd(): tmp = hkdr_chd(59, True, False, 5, 105, 2.3, 3.87) npt.assert_almost_equal(tmp, 0.082, decimal=3) def test_hkdr_chd_json(): chd = HkdrCHD() tmp = chd.score({"index_age": 59, "female": True, "cur_smoke": False, "diab_dur": 5, "egfr": 105, "albumin_creat_mgmmol": 2.3, "nonhdl_mmol": 3.87}) npt.assert_almost_equal(tmp, 0.082, decimal=3) def test_hkdr_hf(): tmp = hkdr_hf(False, 59, 32, 8, 2.5, 13.8, True) npt.assert_almost_equal(tmp, 0.038, decimal=3) tmp = hkdr_hf(True, 59, 32, 8, 2.5, 13.8, True) npt.assert_almost_equal(tmp, 0.064, decimal=3) tmp = hkdr_hf(False, 59, 24.3, 8, 2.5, 13.8, True) npt.assert_almost_equal(tmp, 0.024, decimal=3) def test_hkdr_hf_json(): hf = HkdrHF() tmp = hf.score({"index_age": 59, "female": False, "albumin_creat_mgmmol":2.5, "bmi": 24.3, "hba1c": 8, "hb": 13.8, "chd": True}) npt.assert_almost_equal(tmp, 0.024, decimal=3) ``` #### File: score/tests/test_qdiabetes.py ```python import numpy.testing as npt from cvdm.score import qdiabetes, QDiabetes def test_qdiabetes(): tmp = qdiabetes(64, False, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, False, False, False, tYear=5) npt.assert_almost_equal(tmp, 0.015, decimal=3) tmp = qdiabetes(64, False, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, False, False, False, tYear=1) npt.assert_almost_equal(tmp, 0.003, decimal=3) tmp = qdiabetes(64, False, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, False, False, False, tYear=3) npt.assert_almost_equal(tmp, 0.008, decimal=3) tmp = qdiabetes(64, False, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, True, True, False, tYear=1) npt.assert_almost_equal(tmp, 0.014, decimal=3) tmp = qdiabetes(64, False, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, True, True, True, False, tYear=1) npt.assert_almost_equal(tmp, 0.016, decimal=3) tmp = qdiabetes(64, False, 27.34, 2, False, False, 64, 4.3, 120, False, False, False, True, True, True, False, tYear=1) npt.assert_almost_equal(tmp, 0.0225, decimal=4) tmp = qdiabetes(64, False, 27.34, 8, False, False, 64, 4.3, 120, False, False, True, False, True, True, False, tYear=1) npt.assert_almost_equal(tmp, 0.032, decimal=3) tmp = qdiabetes(64, False, 27.34, 8, False, True, 64, 4.3, 120, False, False, True, False, True, True, False, tYear=1) npt.assert_almost_equal(tmp, 0.031, decimal=3) tmp = qdiabetes(64, True, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, True, False, True, tYear=1) npt.assert_almost_equal(tmp, 0.016, decimal=3) tmp = qdiabetes(64, True, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, True, False, True, tYear=2) npt.assert_almost_equal(tmp, 0.032, decimal=3) tmp = qdiabetes(64, True, 27.34, 0.5, False, False, 64, 4.3, 120, False, False, False, False, True, False, True, tYear=5) npt.assert_almost_equal(tmp, 0.084, decimal=3) tmp = qdiabetes(64, True, 27.34, 4, False, False, 64, 4.3, 120, False, False, False, True, True, False, True, tYear=1) npt.assert_almost_equal(tmp, 0.024, decimal=3) tmp = qdiabetes(64, True, 27.34, 0.5, True, False, 64, 4.3, 120, False, False, False, False, True, False, True, tYear=1) npt.assert_almost_equal(tmp, 0.011, decimal=3) tmp = qdiabetes(64, True, 27.34, 0.5, False, True, 64, 4.3, 120, False, False, False, False, True, False, True, tYear=1) npt.assert_almost_equal(tmp, 0.012, decimal=3) tmp = qdiabetes(64, True, 27.34, 5, False, True, 64, 4.3, 120, False, True, False, False, True, False, True, tYear=1) npt.assert_almost_equal(tmp, 0.025, decimal=3) def test_qdiabetes_json(): model = QDiabetes(1) tmp = model.score({"index_age": 64, "male": True, "bmi": 27.34, "diab_dur": 5, "AC": False, "EAsian": True, "hba1c_mmol": 64, "tchdl": 4.3, "sbp": 120, "heavy_smoke": False, "moderate_smoke": True, "light_smoke": False, "prev_smoke": False, "afib": True, "cvd_hist": False, "renal": True }) npt.assert_almost_equal(tmp, 0.025, decimal=3) ``` #### File: cvdm/score/ukpds.py ```python import numpy as np from cvdm.score import BaseRisk from cvdm.score import clean_age, clean_hba1c, clean_bp, clean_tchdl # coefficients for survival BETA = np.array([ 1.059, # age at diagnosis of diabetes 0.525, # risk for females 0.390, # Afro-Carribean ethnicity 1.350, # smoking 1.183, # HBA1c 1.088, # 10mmHg increase in systolic blood pressure 3.845 # unit increase in log of lipid ratio ]) Q_0 = 0.0112 # intercept D = 1.078 # risk ratio for each year increase in duration of diagnosed diabetes def ukpds(ageDiab, age, female, ac, smoking, hba1c, sbp, tchdl, tYear=10): """ Calculate the number of years to forecast the risk. """ xFeat = np.array([clean_age(age)-55, female, ac, bool(smoking), clean_hba1c(hba1c)-6.72, (clean_bp(sbp) - 135.7)/10, np.log(clean_tchdl(tchdl))-1.59]) q = Q_0 * np.prod(np.power(BETA, xFeat)) uscore = 1 - np.exp(-q * D**(age-ageDiab)* (1-D**tYear)/ (1 - D)) return max(uscore, 0.0) class Ukpds(BaseRisk): tYear = None features = ["diab_age", "index_age", "female", "AC", "cur_smoke", "hba1c", "sbp"] feat_key = features + ["tchdl"] def __init__(self, tYear=10): self.tYear = tYear def score(self, row): return ukpds(row["diab_age"], row["index_age"], row["female"], row["AC"], row["cur_smoke"], row["hba1c"], row["sbp"], row["tchdl"], tYear=self.tYear) def get_features(self, row): feat_dict = super().get_features(row) feat_dict["tchdl_log"] = np.log(row["tchdl"]) return feat_dict ```
{ "source": "JoyceIsCodingWow/Snail.png", "score": 3 }
#### File: Snail.png/cogs/misc_commands.py ```python import discord from discord.ext import commands from discord.ext.commands import Bot import math class misc_commands(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def help(self, ctx): author = ctx.message.author embedVar = discord.Embed(title="Misc commands", description="Gives you a list of the misc commands.", color=16714423) embedVar.set_author(name="Snail.png", icon_url="https://cdn.discordapp.com/avatars/756682052736385184/638737b828dcdd243c1207536547f68b.webp?size=1024") embedVar.add_field(name="s!invite", value="Gives you the bots invite link. `s!invite`", inline=False) embedVar.add_field(name="s!server", value="Gives you the invite for the bots support server. `s!server`", inline=False) embedVar.add_field(name='s!suggest', value="Lets you suggest a feature for the bot. `s!suggest {suggestion}`") embedVar.add_field(name="s!userinfo", value="Gives you a users information. `s!userinfo {User}`", inline=False) embedVar.add_field(name="s!pfp", value="Gives you a users profile picture. `s!pfp {User}`", inline=False) embedVar.add_field(name='s!vote', value=' Gives you the link to upvote snail on discord.ly.', inline=False) embedVar.add_field(name="Moderator Commands", value="Gives you a list of all moderation comamnds.", inline=False) embedVar.add_field(name="s!ban", value="Bans a member. `s!ban {User} {reason}`", inline=False) embedVar.add_field(name='s!kick', value='Kicks a member. `s!kick {User} {reason}`', inline=False) embedVar.add_field(name='s!purge', value='Purges the given amount of messages. `s!purge {Amount}`', inline=False) embedVar.add_field(name='s!lockdown', value='locks down a channel. `s!lockdown`, `s!unlockdown`', inline=False) embedVar.add_field(name='s!setup', value='Lets you setup certain bot features. `s!setup`', inline=False) embedVar.add_field(name='Voice commands', value='Gives you a list of all voice related commands (currently doesnt do much)', inline=False) embedVar.add_field(name='s!join', value='Joins a voice channel. `s!join`, `s!leave`', inline=False) await author.send(embed=embedVar) await ctx.send('Sent you a DM!') @commands.command() async def invite(self, ctx): response = ('<https://discord.com/oauth2/authorize?client_id=756682052736385184&scope=bot&permissions=8>') await ctx.send(response) @commands.command(aliases=['support']) async def server(self, ctx): await ctx.send(f"https://discord.gg/C6AnGyr") @commands.command(aliases=['whois', 'profile']) async def userinfo(self, ctx, member: discord.Member): if member == None: member = ctx.message.author account_created = member.created_at.strftime("%b %d, %Y") account_join = member.joined_at.strftime("%b %d, %Y") color = member.color avatar = member.avatar_url member_name = member.name member_discrim = member.discriminator member_mention = member.mention userid = member.id hashtag = ('#') embedVar = discord.Embed(description=member_mention, color=color) embedVar.set_author(name=member_name + hashtag + member_discrim, icon_url=avatar) embedVar.set_thumbnail(url=avatar) embedVar.add_field(name='User ID', value=userid, inline=False) embedVar.add_field(name='Account Created At', value=account_created, inline=False) embedVar.add_field(name='Joined Server At', value=account_join, inline=False) await ctx.send(embed=embedVar) @commands.command(aliases=['picture', 'profilepicture']) async def pfp(self, ctx, member: discord.Member): avatar = member.avatar_url member_name = member.name color = member.color member_discrim = member.discriminator embedVar = discord.Embed(description=f"{member_name}#{member_discrim}'s Profile picture", color=color) embedVar.set_image(url=avatar) await ctx.send(embed=embedVar) @commands.command(aliases=['upvote']) async def vote(self, ctx): await ctx.send(f"You can upvote snail at https://discordbotlist.com/bots/snailpng. Voting currently doesnt do anything, but if you would like to suggest something you can suggest it with `s!suggest`") def setup(bot): bot.add_cog(misc_commands(bot)) ``` #### File: Snail.png/cogs/mod_events.py ```python import discord from discord.ext import commands from discord.ext.commands import Bot from datetime import datetime import sqlite3 now = datetime.now() class mod_events(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_member_join(self, member): if memeber.guild.id != 724360414829215766: return channel = self.bot.get_channel(766835252651884544) channel.send(f"hiiiiiii {member.mention}") @commands.Cog.listener() async def on_message(self, message): if message.guild != None: return if message.author == self.bot.user: return user = message.author.name user_discrim = message.author.discriminator user_avatar = message.author.avatar_url channel = self.bot.get_channel(767970704393371698) content = message.content sent_at = message.created_at.strftime("%b %d, %Y") embedVar = discord.Embed() embedVar.set_author(name=user + ('#') +user_discrim, icon_url=user_avatar) embedVar.add_field(name=sent_at, value=content) await channel.send(embed=embedVar) @commands.Cog.listener() async def on_message_edit(self, before, after): message = after if message.author == self.bot.user: return if message.guild.id == None: return db = sqlite3.connect('snail.sqlite') cursor = db.cursor() cursor.execute(f"SELECT messagelog_channel FROM snail WHERE guild_id = {message.guild.id}") result = cursor.fetchone() if result is None: return else: time = now.strftime("%m/%d/%y, %H:%M") embedSex = discord.Embed(title='Message link', description=f"{message.author.mention} Edited a message in {message.channel.mention}", url=f"https://discordapp.com/channels/{message.guild.id}/{message.channel.id}/{message.id}", color=0xFF0000) embedSex.set_footer(text=f"Author ID: {message.author.id} โ”‚ Edited At {time}") embedSex.set_author(name=message.author, icon_url=message.author.avatar_url) embedSex.add_field(name='Message before:', value=before.content, inline=False) embedSex.add_field(name='Message after:', value=after.content, inline=False) channel = self.bot.get_channel(id=int(result[0])) await channel.send(embed=embedSex) @commands.Cog.listener() async def on_message_delete(self, message): if message.guild.id == None: return if message.author == self.bot.user: return db = sqlite3.connect('snail.sqlite') cursor = db.cursor() cursor.execute(f"SELECT messagelog_channel FROM snail WHERE guild_id = {message.guild.id}") result = cursor.fetchone() if result is None: return else: content = message.content time = now.strftime("%m/%d/%y, %H:%M") embedHi = discord.Embed( description=f"{message.author.mention} deleted a message in {message.channel.mention}", color=0xFF0000) embedHi.set_author(name=message.author, icon_url=message.author.avatar_url) embedHi.set_footer(text=f"author ID: {message.author.id} โ”‚ message ID: {message.id} โ”‚") embedHi.add_field(name=f"Message deleted at {time}", value=content, inline=False) channel = self.bot.get_channel(id=int(result[0])) await channel.send(embed=embedHi) @commands.Cog.listener() async def on_guild_join(self, guild): channel = self.bot.get_channel(764986104281169940) await channel.send(f"<@453271030543155210> snail has joined **{guild.name}**") def setup(bot): bot.add_cog(mod_events(bot)) ```
{ "source": "joycejosie/sql_creation_cleanup", "score": 4 }
#### File: joycejosie/sql_creation_cleanup/CREATE.py ```python import sqlite3 from emp import Employee connection = sqlite3.connect (':memory:') cursor = connection.cursor() cursor.execute("""CREATE TABLE employees ( first text, last text, pay integer )""") def insert_emp(emp): with connection: cursor.execute("INSERT INTO employees VALUES (:first, :last, :pay)", {'first':emp.first, 'last': emp.last, 'pay': emp.pay}) def get_emps_by_name(lastname): cursor.execute("SELECT * FROM employees WHERE last = :last", {'last': lastname}) return cursor.fetchall() def update_pay(emp, pay): with connection: cursor.execute("""UPDATE employees SET pay = :pay WHERE first = :first AND last = :last""", {'first': emp.first, 'last': emp.last, 'pay': emp.pay}) def remove_emp(emp): with connection: cursor.execute("DELETE from employees WHERE first = :first AND last = :last", {'first': emp.first, 'last': emp.last}) emp_1 = Employee('Joyce', 'Lafontant', 48080) emp_2 = Employee('Carl', 'Morcy', 35477) emp_3 = Employee('Moussa', 'Fomba', 98743) emp_4 = Employee('Urji', 'Haji', 80000) emp_5 = Employee('Brodrick', 'Stanley', 73736) emp_6 = Employee('Jamie', 'Edward', 191929) emp_7 = Employee('John', 'Doe', 9000) emp_8 = Employee('Jane', 'Doe', 80000) insert_emp(emp_1) insert_emp(emp_2) # insert_emp(emp_3) # insert_emp(emp_4) # insert_emp(emp_5) # insert_emp(emp_6) # insert_emp(emp_7) # insert_emp(emp_8) show = get_emps_by_name('Lafontant') print(show) update_pay(emp_1, 95000) show = get_emps_by_name('Lafontant') print(show) # show3 = remove_emp(emp_1) # print(show3) connection.close() ```
{ "source": "JoycelynLongdon/Mres_Research_Project", "score": 2 }
#### File: src/landcover_classification/rf_landcover_classification.py ```python from __future__ import print_function, division # Import GDAL, NumPy, and matplotlib from osgeo import gdal, gdal_array import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') ## Sklearn Libraries from sklearn import metrics from sklearn.utils import shuffle from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer from sklearn.metrics import f1_score, confusion_matrix, roc_curve, auc, classification_report, recall_score, precision_recall_curve from sklearn.metrics import accuracy_score from pprint import pprint # ### Preparing The Dataset # In[2]: # Read in our satellite and label image satellite_img = gdal.Open('/gws/nopw/j04/ai4er/users/jl2182/data/Mres_Data/classification_training_data/final_filled_l8_training_data.tif', gdal.GA_ReadOnly) training_img = gdal.Open('/gws/nopw/j04/ai4er/users/jl2182/data/Mres_Data/classification_training_data/third_remerge_landcover_training_data.tif', gdal.GA_ReadOnly) # In[3]: img = np.zeros((satellite_img.RasterYSize, satellite_img.RasterXSize, satellite_img.RasterCount), gdal_array.GDALTypeCodeToNumericTypeCode(satellite_img.GetRasterBand(1).DataType)) for b in range(img.shape[2]): img[:, :, b] = satellite_img.GetRasterBand(b + 1).ReadAsArray() lbls = training_img.GetRasterBand(1).ReadAsArray().astype(np.uint8) # Display them plt.subplot(121) plt.imshow(img[:, :, 6], cmap=plt.cm.tab20b) plt.title('NIR') plt.subplot(122) plt.imshow(lbls, cmap=plt.cm.terrain) plt.title('Training Data') plt.show() # In[4]: lbls.shape # In[5]: img.shape # In[6]: unique, counts = np.unique(lbls, return_counts=True) list(zip(unique, counts)) # Creating the X feature matrix array and the y labels matrix to be fed into the Random Forest # In[7]: # Find how many non-zero entries we have -- i.e. how many training data samples? n_samples = (lbls >0).sum() print('We have {n} samples'.format(n=n_samples)) # What are our classification labels? labels = np.unique(lbls[lbls >0]) print('The training data include {n} classes: {classes}'.format(n=labels.size, classes=labels)) # We will need a "X" matrix containing our features, and a "y" array containing our labels # These will have n_samples rows # In other languages we would need to allocate these and them loop to fill them, but NumPy can be faster #this is a quick numpy trick for flattening X = img[lbls >0 ] # include 8th band, which is Fmask, for now y = lbls[lbls >0] print('Our X matrix is sized: {sz}'.format(sz=X.shape)) print('Our y array is sized: {sz}'.format(sz=y.shape)) # In[8]: unique, counts = np.unique(y, return_counts=True) list(zip(unique, counts)) # ## Stratifying Data # k-fold # In[ ]: #stratified k-cross validation to balance the classes skf = StratifiedKFold(n_splits=10) skf.get_n_splits(X, y) # In[ ]: StratifiedKFold(n_splits=10, random_state=None, shuffle=False) for train_index, test_index in skf.split(X, y): print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # shuffle split # In[9]: from sklearn.model_selection import StratifiedShuffleSplit sss = StratifiedShuffleSplit(n_splits=10, test_size=0.3, random_state=0) StratifiedShuffleSplit(n_splits=10, random_state=0) for train_index, test_index in sss.split(X, y): print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # In[10]: urban = np.count_nonzero(y_test ==1) urban # In[ ]: # ### Training The Random Forest # In[11]: # Initialize our model with 500 trees rf = RandomForestClassifier(n_estimators=500, oob_score=True) # In[12]: # Fit our model to training data train = rf.fit(X_train, y_train) # ### Training Performance # In[13]: print('Our OOB prediction of accuracy is: {oob}%'.format(oob=rf.oob_score_ * 100)) # In[14]: import pandas as pd # Setup a dataframe -- just like R df = pd.DataFrame() df['truth'] = y_train df['predict'] = rf.predict(X_train) # Cross-tabulate predictions print(pd.crosstab(df['truth'], df['predict'], margins=True)) # ### Validation Performance # In[15]: val = rf.predict(X_test) # In[19]: target_names = ['Cropland', 'Shrubland', 'Forest', 'Urban', 'Water','Clouds'] # In[20]: print(classification_report(y_test, val, target_names=target_names)) # In[18]: disp = metrics.plot_confusion_matrix(rf, X_test, y_test) disp.figure_.suptitle("Confusion Matrix") print(f"Confusion matrix:\n{disp.confusion_matrix}") plt.show() # ### Band Importance # In[19]: bands = [1, 2, 3, 4, 5, 6,7,8,9,10] for b, imp in zip(bands, rf.feature_importances_): print('Band {b} importance: {imp}'.format(b=b, imp=imp)) # #### Scientific comment on band importance # The SWIR bands seem to be the most important features. The SWIR range of the EM spectrum allows the user to see certain absorption features very clearly due to certain materials only displaying absorption features in that range, which allows you to determine vegetation health as well as delineate between soil and decaying canopy. # In[ ]: #current parameters in use # Look at parameters used by our current forest print('Parameters currently in use:\n') pprint(rf.get_params()) # ## Applying to Study Region # In[135]: # Read in our satellite and label image new_img_path = gdal.Open('/gws/nopw/j04/ai4er/users/jl2182/data/Mres_Data/Counterfactual_Test_Data/Filled/Counterfactual_2020_Filled.tif', gdal.GA_ReadOnly) # In[136]: new_img = np.zeros((new_img_path.RasterYSize, new_img_path.RasterXSize, new_img_path.RasterCount), gdal_array.GDALTypeCodeToNumericTypeCode(new_img_path.GetRasterBand(1).DataType)) for b in range(new_img.shape[2]): new_img[:, :, b] = new_img_path.GetRasterBand(b + 1).ReadAsArray() # In[137]: new_shape = (new_img.shape[0] * new_img.shape[1], new_img.shape[2]) new_shape img_as_array = new_img[:, :, :7].reshape(new_shape) print('Reshaped from {o} to {n}'.format(o=new_img.shape, n=img_as_array.shape)) # In[138]: class_prediction = rf.predict(img_as_array) # In[139]: # Reshape our classification map class_prediction_reshaped = class_prediction.reshape(new_img[:, :, 0].shape) # In[140]: class_prediction_reshaped.max() # In[141]: #save as numpy array ahead of analysis np.save('/gws/nopw/j04/ai4er/users/jl2182/data/Figures/Counterfactual_Classified_Landcover/Counterfactual_2020_Classified.npy',class_prediction_reshaped) # In[142]: # Visualize # First setup a 5-4-3 composite def color_stretch(image, index, minmax=(0, 10000)): colors = image[:, :, index].astype(np.float64) max_val = minmax[1] min_val = minmax[0] # Enforce maximum and minimum values colors[colors[:, :, :] > max_val] = max_val colors[colors[:, :, :] < min_val] = min_val for b in range(colors.shape[2]): colors[:, :, b] = colors[:, :, b] * 1 / (max_val - min_val) return colors img543 = color_stretch(new_img, [5, 4, 3], (0, 7000)) # See https://github.com/matplotlib/matplotlib/issues/844/ n = class_prediction.max() # Next setup a colormap for our map colors = dict(( (1, (111, 97, 6,255)), # Cropland (brown) (2, (135, 198, 42,255)), # Shrubland (light green) (3, (15, 91, 3,255)), # Forest (dark green) (4, (255, 26, 0,255)), # Urban (red) (5, (0, 0, 255,255)), # Water (blue) (6, (0, 0, 0,0)) #No Data/Clouds )) # Put 0 - 255 as float 0 - 1 for k in colors: v = colors[k] _v = [_v / 255.0 for _v in v] colors[k] = _v index_colors = [colors[key] if key in colors else (255, 255, 255, 0) for key in range(1, n + 1)] cmap = plt.matplotlib.colors.ListedColormap(index_colors, 'Classification', n) # Now show the classmap next to the image plt.figure(figsize = (20,25)) plt.subplot(121) plt.imshow(img543) plt.figure(figsize = (20,25)) plt.subplot(122) #plt.legend(handles=cmap, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0. ) plt.imshow(class_prediction_reshaped, cmap=cmap, interpolation='none') plt.savefig( '/gws/nopw/j04/ai4er/users/jl2182/data/Figures/Counterfactual_Classified_Landcover/Counterfactual_2020_Classified.tif') plt.savefig( '/gws/nopw/j04/ai4er/users/jl2182/data/Figures/Counterfactual_Classified_Landcover/Counterfactual_2020_Classified.png') #plt.show() # In[ ]: #img = np.ma.masked_values(img_as_array, 0) # In[ ]: #class_pred = np.ones(img_as_array.shape) #for i in range(img_as_array.shape[0]): #for j in range(img_as_array.shape[1]): #if img_as_array[i,j] == 0.: #class_pred = 0 #if img_as_array[i,j] != 0: #class_pred = rf.predict(img_as_array) # In[ ]: #cp = np.where(img_as_array ==0,0,rf.predict(img_as_array).reshape(new_img[:, :, 0].shape)) # In[ ]: # In[ ]: ```
{ "source": "joycenerd/3D_Augmentation", "score": 2 }
#### File: 3D_Augmentation/data_utils/utils.py ```python import os import numpy as np import open3d as o3d from z_order import * multizorder_ranges = {5000: 500, 1024: 300, 64: 20, 32: 10} def read_pcd(path): # Load data based on different extension extension = os.path.splitext(path)[-1] if extension == ".pcd": pcd = o3d.io.read_point_cloud(path) pcd = np.array(pcd.points) elif extension == ".txt": pcd = np.loadtxt(path) # pcd = [] # with open(path, "r") as pcd_file: # for line in pcd_file: # content = line.strip().split(",") # pcd.append(list(map(float, content))) # pcd = np.array(pcd) # pcd = pcd[:, :3] elif extension == ".npy": pcd = np.load(path) elif extension == ".npz": pcd = np.load(path) pcd = pcd["points"] else: assert False, extension + " is not supported now !" return pcd.astype(np.float32) def write_pcd(point, output_path): # Convert numpy array to pcd format pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(point) # Output pcd file o3d.io.write_point_cloud(output_path, pcd) def pcd_normalize(pcd): centroids = np.mean(pcd, axis=0) pcd = pcd - centroids max_dist = np.max(np.sqrt(np.sum(pcd**2, axis=1))) pcd = pcd / max_dist return pcd def resample_pcd(points, num_points=1024): # Drop or duplicate points so that pcd has exactly n points idx = np.random.permutation(points.shape[0]) if idx.shape[0] < num_points: idx = np.concatenate([idx, np.random.randint(points.shape[0], size = num_points - points.shape[0])]) return points[idx[:num_points]] def random_sample(points, num_points=1024): points = np.random.permutation(points) points = points[:num_points, :] return points def farthest_point_sample(points, num_points=1024): """ Input: points: a point set, in the format of NxM, where N is the number of points, and M is the point dimension num_points: required number of sampled points """ def compute_dist(centroid, points): return np.sum((centroid - points) ** 2, axis=1) farthest_pts = np.zeros((num_points, points.shape[1])) farthest_pts[0] = points[np.random.randint(len(points))] # Random choose one point as starting point distances = compute_dist(farthest_pts[0], points) for idx in range(1, num_points): farthest_pts[idx] = points[np.argmax(distances)] distances = np.minimum(distances, compute_dist(farthest_pts[idx], points)) return farthest_pts.astype(np.float32) def get_zorder_sequence(points): z_values = get_z_values(points) points_zorder = points[np.argsort(z_values)] return points_zorder def get_z_values(points): # Get z values of points points_round = round_to_int_32(points) # convert to int z_values = get_z_order(points_round[:, 0], points_round[:, 1], points_round[:, 2]) return z_values def keep_zorder(points, num_points=1024): # Random a start index of z-order sequence sample_idx = np.random.randint(len(points) - num_points) points = points[sample_idx:sample_idx+num_points] return points def keep_multizorder(points, num_points=1024): remain = num_points keep = np.array([], dtype=int) multizorder_range = multizorder_ranges[num_points] while len(keep) < num_points: keep_range = remain if remain <= multizorder_range else np.random.randint(multizorder_range, remain) keep_idx = np.random.randint(len(points) - keep_range) keep = np.append(keep, np.arange(keep_idx, keep_idx+keep_range, dtype=int), axis=0) keep = np.array(list(set(keep)), dtype=int) remain = num_points - len(keep) points = points[keep] return points def discard_zorder(points, num_in_points=5000, num_out_points=8192): num_discard_points = num_out_points - num_in_points idx = np.random.randint(num_in_points) points = np.concatenate((points[:idx], points[idx+num_discard_points:]), axis=0) return points def discard_multizorder(points, num_in_points=5000, num_out_points=8192): num_discard_points = num_out_points - num_in_points multizorder_range = multizorder_ranges[num_in_points] remain = num_discard_points discard = np.array([]) while len(discard) < num_discard_points: discard_range = remain if remain <= multizorder_range else np.random.randint(multizorder_range, remain) discard_idx = np.random.randint(num_out_points - discard_range) discard = np.append(discard, np.arange(discard_idx, discard_idx + discard_range), axis=0) discard = np.array(list(set(discard))) remain = num_discard_points - len(discard) keep = np.arange(0, num_out_points) points= points[np.array(list(set(keep) - set(discard)))] return points def discard_fps_multizorder(points, num_in_points=1024, num_out_points=10000): def compute_dist(centroid, points): return np.sum((centroid - points) ** 2, axis=1) # Discard multizorder sample setting num_discard_points = num_out_points - num_in_points multizorder_range = multizorder_ranges[num_in_points] remain = num_discard_points discard = np.array([]) # Farthest point sample setting fps_points = points[:-num_in_points] fps = np.zeros((fps_points.shape)) fps[0] = points[np.random.randint(len(fps_points))] distances = compute_dist(fps[0], fps_points) # Discard multizorder sample based on farthest point sample for idx in range(1, len(fps_points)): # Get farthest point sample fps[idx] = fps_points[np.argmax(distances)] fps_idx = np.argmax(distances) distances = np.minimum(distances, compute_dist(fps[idx], fps_points)) # Discard multizorder sample discard_range = remain if remain <= multizorder_range else np.random.randint(multizorder_range, num_in_points) if remain > num_in_points else np.random.randint(multizorder_range, remain) discard_idx = fps_idx discard = np.append(discard, np.arange(discard_idx, discard_idx + discard_range), axis=0) discard = np.array(list(set(discard))) remain = num_discard_points - len(discard) # Return discard multizorder sampled points if there are enough discard points if len(discard) >= num_discard_points: keep = np.arange(0, num_out_points) points= points[np.array(list(set(keep) - set(discard)))] return points ``` #### File: PointNet/data_utils/z_order.py ```python import numpy as np def round_to_int_32(data): """ Takes a Numpy array of float values between -1 and 1, and rounds them to significant 32-bit integer values, to be used in the morton code computation :param data: multidimensional numpy array :return: same as data but in 32-bit int format """ # first we rescale points to 0-512 data = 256*(data + 1) # now convert to int data = np.round(2 ** 21 - data).astype(dtype=np.int32) return data def split_by_3(x): """ Method to separate bits of a 32-bit integer by 3 positions apart, using the magic bits https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/ :param x: 32-bit integer :return: x with bits separated """ # we only look at 21 bits, since we want to generate # a 64-bit code eventually (3 x 21 bits = 63 bits, which # is the maximum we can fit in a 64-bit code) x &= 0x1fffff # only take first 21 bits # shift left 32 bits, OR with self, and 00011111000000000000000000000000000000001111111111111111 x = (x | (x << 32)) & 0x1f00000000ffff # shift left 16 bits, OR with self, and 00011111000000000000000011111111000000000000000011111111 x = (x | (x << 16)) & 0x1f0000ff0000ff # shift left 8 bits, OR with self, and 0001000000001111000000001111000000001111000000001111000000000000 x = (x | (x << 8)) & 0x100f00f00f00f00f # shift left 4 bits, OR with self, and 0001000011000011000011000011000011000011000011000011000100000000 x = (x | (x << 4)) & 0x10c30c30c30c30c3 # shift left 2 bits, OR with self, and 0001001001001001001001001001001001001001001001001001001001001001 x = (x | (x << 2)) & 0x1249249249249249 return x def get_z_order(x, y, z): """ Given 3 arrays of corresponding x, y, z coordinates, compute the morton (or z) code for each point and return an index array We compute the Morton order as follows: 1- Split all coordinates by 3 (add 2 zeros between bits) 2- Shift bits left by 1 for y and 2 for z 3- Interleave x, shifted y, and shifted z The mordon order is the final interleaved bit sequence :param x: x coordinates :param y: y coordinates :param z: z coordinates :return: index array with morton code """ res = 0 res |= split_by_3(x) | split_by_3(y) << 1 | split_by_3(z) << 2 return res ``` #### File: 3D_Augmentation/PointNet/show_results_PN.py ```python import os import argparse import numpy as np import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("--sparsify_mode", type=str, default="PN", help="Sparsify mode") parser.add_argument("--trans_feat", action="store_true", default=False, help='Whether to use transform feature') parser.add_argument("--root_dir", type=str, default="/eva_data/psa/code/outputs/PointNet/classification", help="The result directory of PointNet.") parser.add_argument("--output_dir", type=str, default="/eva_data/psa/code/outputs/PointNet/classification/chart", help="The output directory of PointNet loss / accuracy charts.") args = parser.parse_args() def show_results(result, category): plt.figure(figsize=(10, 6)) plt.title("PointNet: " + args.sparsify_mode.replace(",", ", ") + "\n" + category) for label, data in result.items(): if category == "loss": plt.plot(np.arange(0, len(data)/100), data[::100], label=label) else: plt.plot(np.arange(0, len(data)), data, label=label + ": max_acc=%.2f" % (np.max(data) * 100)) if category == "loss": plt.xlabel("per 100 iterations") else: plt.xlabel("epoch") plt.ylabel(category) plt.legend() os.makedirs(os.path.join(args.output_dir, args.sparsify_mode.replace(",", "_")), exist_ok=True) plt.savefig(os.path.join(args.output_dir, args.sparsify_mode.replace(",", "_"), category.replace(" ", "_") + ".png")) plt.close() if __name__ == "__main__": train_save, test_save = {}, {} mode_dirs = os.listdir(args.root_dir) sparsify_modes = args.sparsify_mode.split(",") for sparsify_mode in sparsify_modes: for mode_dir in mode_dirs: if sparsify_mode in mode_dir.split("_")[0]: if (not args.trans_feat) or ((args.trans_feat) and ("transfeat" in mode_dir)): train_save[mode_dir] = np.load(os.path.join(args.root_dir, mode_dir, "train_save.npy"), allow_pickle=True) test_save[mode_dir] = np.load(os.path.join(args.root_dir, mode_dir, "test_save.npy"), allow_pickle=True) for key_train, key_test in zip(train_save.keys(), test_save.keys()): train_save[key_train] = train_save[key_train].item() test_save[key_test] = test_save[key_test].item() train_instance_acc = {} train_loss = {} test_instance_acc = {} test_class_acc = {} for key_train, key_test in zip(train_save.keys(), test_save.keys()): train_instance_acc[key_train] = train_save[key_train]["instance_acc"] train_loss[key_train] = train_save[key_train]["loss"] test_instance_acc[key_test] = test_save[key_test]["instance_acc"] test_class_acc[key_test] = test_save[key_test]["class_acc"] show_results(train_instance_acc, "training instance accuracy") show_results(train_loss, "loss") show_results(test_instance_acc, "testing instance accuracy") show_results(test_class_acc, "testing class accuracy") # category = "training instance accuracy" # plt.figure(figsize=(10, 6)) # plt.title("PointNet: " + args.sparsify_mode.replace(",", "_") + "\n" + category) # for label, data in train_instance_acc.items(): # plt.plot(np.arange(0, len(data)), data, label=label) # plt.xlabel("epoch") # plt.ylabel(category) # plt.legend(loc=4) # os.makedirs(os.path.join(args.output_dir, args.sparsify_mode.replace(",", "_"))) # plt.savefig(os.path.join(args.output_dir, args.sparsify_mode.replace(",", "_"), category.replace(" ", "_") + ".png")) # plt.close() # plt.figure() # plt.title("PointNet " + mode + " - " + category) # for result in [train_save, test_save]: # for transfeat_key in result.keys(): # content = result[transfeat_key] # for content_key in content.keys(): # data = content[content_key] # train_instance_acc = np.load(os.path.join(args.result_dir, "train_instance_accuracy.npy")) # train_loss = np.load(os.path.join(args.result_dir, "train_loss.npy")) # test_instance_acc = np.load(os.path.join(args.result_dir, "test_instance_accuracy.npy")) # test_class_acc = np.load(os.path.join(args.result_dir, "test_class_accuracy.npy")) # show_results("loss", train_loss, "pretrained_fixed", "training loss", "train_loss.png") # show_results("accuracy", train_instance_acc, "pretrained_fixed", "training instance accuracy", "train_instance_accuracy.png") # show_results("accuracy", test_instance_acc, "pretrained_fixed", "testing instance accuracy", "test_instance_accuracy.png") # show_results("accuracy", test_class_acc, "pretrained_fixed", "testing class accuracy", "test_class_accuracy.png") ``` #### File: 3D_Augmentation/PointNet/train_cls.py ```python from data_utils.ModelNetDataLoader import ModelNetDataLoader import os import argparse import logging import importlib import sys import torch import numpy as np import provider from tqdm import tqdm # Add ./models into system path ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(ROOT_DIR, "models")) # Official parser = argparse.ArgumentParser("PointNet") parser.add_argument("--batch_size", type=int, default=256, help="Batch size in training [default: 24]") parser.add_argument("--model", default="pointnet_cls", help="Model name [default: pointnet_cls]") parser.add_argument("--epoch", default=200, type=int, help="Number of epoch in training [default: 200]") parser.add_argument("--learning_rate", default=0.001, type=float, help="Learning rate in training [default: 0.001]") parser.add_argument("--gpu", type=str, default="0", help="Specify gpu device [default: 0]") parser.add_argument("--num_point", type=int, default=1024, help="Point Number [default: 1024]") parser.add_argument("--optimizer", type=str, default="Adam", help="Optimizer for training [default: Adam]") parser.add_argument("--output_dir", type=str, default="/home/zchin/augmentation_output/PointNet/...", help="Experiment root") parser.add_argument("--decay_rate", type=float, default=1e-4, help="Decay rate [default: 1e-4]") # MSN_PointNet parser.add_argument("--sparsify_mode", type=str, default="random", choices=["PN", "random", "fps", "zorder", "multizorder"], help="Sparsify mode") parser.add_argument("--dataset_mode", type=str, default="ModelNet40", choices=["ModelNet40", "ModelNet10", "ShapeNet", "ShapeNet_all"], help="Dataset mode. PLZ choose in [ModelNet40, ModelNet10, ShapeNet, ShapeNet_all]") parser.add_argument("--zorder_mode", type=str, default="keep", choices=["keep", "discard"], help="Zorder sampled mode. PLZ choose in [keep, discard]") parser.add_argument("--trans_feat", action="store_true", default=False, help='Whether to use transform feature') parser.add_argument('--data-txt',type=str,help="training data txt file") parser.add_argument('--augment_data_dir',type=str,help='directory that store augmented pcd file') parser.add_argument('--ratio',type=float,default=0.7,help='real data ratio') args = parser.parse_args() # HYPER PARAMETER os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # GPU devices num_classes = {"ModelNet40": 40, "ModelNet10": 10, "ShapeNet": 8, "ShapeNet_all": 57} num_class = num_classes[args.dataset_mode] # Number of class (default for ModelNet40) train_save = { "instance_acc": [], "loss": [] } # Save training accuracy and loss test_save = { "instance_acc": [], "class_acc": [] } # Save testing instance accuracy and class accuracy def create_output_dir(): # Create output directry according to sparsify mode, normalize, trans_feat trans_feat_dir = "_transfeat" if args.trans_feat else "" mode_dir = args.sparsify_mode + trans_feat_dir if args.sparsify_mode == "zorder" or args.sparsify_mode == "multizorder": mode_dir = args.zorder_mode + "_" + mode_dir if args.output_dir == "/work/eva0856121/Augmentation/code/outputs/PointNet": # output_dir = os.path.join(args.output_dir, args.dataset_mode + "_cls", mode_dir) output_dir = os.path.join(args.output_dir, "aug_" + args.dataset_mode + "_cls", mode_dir + "_MN40_VI_inter_rotate90AugOurs") else: output_dir = args.output_dir os.makedirs(output_dir, exist_ok=True) return output_dir def set_logger(log_dir): # Setup LOG file format global logger logger = logging.getLogger(args.model) logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") file_handler = logging.FileHandler(os.path.join(log_dir, args.model + ".txt")) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) def log_string(message): # Write message into log.txt logger.info(message) print(message) def backup_python_file(backup_dir): os.system("cp ./train_cls.py {}".format(backup_dir)) os.system("cp ./models/{}.py {}".format(args.model, backup_dir)) os.system("cp ./models/pointnet_util.py {}".format(backup_dir)) def create_dataloader(): print("Load " + args.dataset_mode + " as dataset ...") # Create training dataloader TRAIN_DATASET = ModelNetDataLoader(npoint=args.num_point, split="train", sparsify_mode=args.sparsify_mode, dataset_mode=args.dataset_mode, zorder_mode=args.zorder_mode,data_txt=args.data_txt,augment_data_dir=args.augment_data_dir,ratio=args.ratio) trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True) # Create testing dataloader TEST_DATASET = ModelNetDataLoader(npoint=args.num_point, split="test", sparsify_mode=args.sparsify_mode, dataset_mode=args.dataset_mode, zorder_mode=args.zorder_mode) testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4) return trainDataLoader, testDataLoader def create_network(): # Create network (classifier) and criterion MODEL = importlib.import_module(args.model) # Load model from args.model (e.g. pointnet_cls.py) classifier = MODEL.get_model(num_class).cuda() criterion = MODEL.get_loss(trans_feat_switch=args.trans_feat).cuda() # Try load pretrained weights try: checkpoint = torch.load(os.path.join(checkpoints_dir, "best_model.pth")) start_epoch = checkpoint["epoch"] classifier.load_state_dict(checkpoint["model_state_dict"]) log_string("Use pretrain model") except: log_string("No existing model, starting training from scratch...") start_epoch = 0 # Fix encoder initial weight # for child in classifier.feat.children(): # for param in child.parameters(): # param.requires_grad = False # Setup optimizer if args.optimizer == 'Adam': optimizer = torch.optim.Adam( classifier.parameters(), lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.decay_rate ) else: optimizer = torch.optim.SGD(classifier.parameters(), lr=0.01, momentum=0.9) # Setup scheduler for optimizer scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.7) return classifier, criterion, optimizer, scheduler, start_epoch def train(classifier, trainDataLoader, optimizer, scheduler, criterion): # TRAIN MODE mean_correct = [] scheduler.step() for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9): # Get points and target from trainDataLoader points, target = data points = points.data.numpy() # Do something like augmentation points = provider.random_point_dropout(points) points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3]) points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3]) points = torch.Tensor(points) target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() optimizer.zero_grad() # Start training classifier = classifier.train() pred, trans_feat = classifier(points) loss = criterion(pred, target.long(), trans_feat) train_save["loss"].append(loss.item()) # Save training loss pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.long().data).cpu().sum() mean_correct.append(correct.item() / float(points.size()[0])) loss.backward() optimizer.step() train_instance_acc = np.mean(mean_correct) train_save["instance_acc"].append(train_instance_acc) # Save training instance accuracy return train_instance_acc def test(model, testDataLoader): mean_correct = [] class_acc = np.zeros((num_class, 3)) # print(model.feat.conv1.weight[0][0]) for batch_id, data in tqdm(enumerate(testDataLoader), total=len(testDataLoader)): # Get points and target from testDataLoader points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() # Evaluate by PointNet model classifier = model.eval() pred, _ = classifier(points) pred_choice = pred.data.max(1)[1] # prediction results for cat in np.unique(target.cpu()): classacc = pred_choice[target == cat].eq(target[target == cat].long().data).cpu().sum() class_acc[cat, 0] += classacc.item() / float(points[target == cat].size()[0]) # Compute accuracy of certain class class_acc[cat, 1] += 1 # Compute number of certain class correct = pred_choice.eq(target.long().data).cpu().sum() # Total number of correct results mean_correct.append(correct.item() / float(points.size()[0])) # Mean instance accuracy within one batch size class_acc[:, 2] = class_acc[:, 0] / class_acc[:, 1] # The class accuracy of each class class_acc = np.mean(class_acc[:, 2]) # Mean class accuracy (all objects) instance_acc = np.mean(mean_correct) # Mean instance accuracy (all objects) # Save testing accuracy (instance and class) test_save["instance_acc"].append(instance_acc) test_save["class_acc"].append(class_acc) return instance_acc, class_acc if __name__ == "__main__": # Create output direcotry output_dir = create_output_dir() backup_dir = os.path.join(output_dir, "backup") checkpoints_dir = os.path.join(output_dir, "checkpoints") log_dir = os.path.join(output_dir, "logs") os.makedirs(backup_dir, exist_ok=True) os.makedirs(checkpoints_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True) # Backup important .py file backup_python_file(backup_dir) # Setup LOG file format set_logger(log_dir) log_string("Argument parameter: {}".format(args)) # Create training and testing dataloader trainDataLoader, testDataLoader = create_dataloader() # Create network (classifier), optimizer, scheduler # classifier, criterion, optimizer, scheduler, start_epoch = create_network() # # Setup parameters for training and testing # global_epoch = 0 # best_instance_acc = 0.0 # best_class_acc = 0.0 # # Start training # logger.info("Start training...") # for epoch in range(start_epoch, args.epoch): # log_string("Epoch %d (%d/%s):" % (global_epoch+1, epoch+1, args.epoch)) # # TRAIN MODE # train_instance_acc = train(classifier, trainDataLoader, optimizer, scheduler, criterion) # log_string("Train Instance Accuracy: %f" % (train_instance_acc)) # # TEST MODE # with torch.no_grad(): # instance_acc, class_acc = test(classifier.eval(), testDataLoader) # if instance_acc >= best_instance_acc: # best_instance_acc = instance_acc # best_epoch = epoch + 1 # if class_acc >= best_class_acc: # best_class_acc = class_acc # log_string("Test Instance Accuracy: %f, Class Accuracy: %f" % (instance_acc, class_acc)) # log_string("Best Instance Accuracy: %f, Class Accuracy: %f" % (best_instance_acc, best_class_acc)) # # Save best training details # if instance_acc >= best_instance_acc: # logger.info("Save model...") # save_path = os.path.join(checkpoints_dir, "best_model.pth") # log_string("Saving at %s" % (save_path)) # state = { # "epoch": best_epoch, # "instance_acc": instance_acc, # "class_acc": class_acc, # "model_state_dict": classifier.state_dict(), # "optimizer_state_dict": optimizer.state_dict(), # } # torch.save(state, save_path) # global_epoch += 1 # # Save weights and [training, testing] results # # if epoch % 5 == 0: # # torch.save(state, os.path.join(checkpoints_dir, "model_%d.pth" %(epoch))) # np.save(os.path.join(output_dir, "train_save.npy"), train_save) # np.save(os.path.join(output_dir, "test_save.npy"), test_save) # logger.info("End of training...") ``` #### File: 3D_Augmentation/scene-representation-networks/llff2srn.py ```python import os import struct import collections import imageio import numpy as np from shutil import copyfile root = "/work/eva0856121/datasets/NeRF/nerf_llff_data/" dis = "/work/eva0856121/datasets/srn_data/llff_train/" intrinsic = { "fern" : [3260.5263328805895, 2016.0, 1512.0, 0.019750463822896944], "flower" : [3575.0586059510074, 2016.0, 1512.0, 0.025134574603909228], "fortress" : [3371.3189700388566, 2016.0, 1512.0, 0.007315123920083764], "horns" :[3368.8237176028883, 2016.0, 1512.0, 0.012300143763124053], "leaves" : [3428.4755177313386, 2016.0, 1512.0, 0.03738835450733112], "orchids" : [3124.62276683125, 2016.0, 1512.0, 0.03324880811508114], "room" : [3070.63827088164, 2016.0, 1512.0, 0.009615941992791891], "trex" : [3329.8699571672205, 2016.0, 1512.0, 0.01265264013010501] } ''' intrinsic = { "Truck": [1.15882652e+03, 9.60000000e+02, 5.40000000e+02, -2.91480825e-02] } ''' BaseImage = collections.namedtuple( "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]) def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) class Image(BaseImage): def qvec2rotmat(self): return qvec2rotmat(self.qvec) def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"): """Read and unpack the next bytes from a binary file. :param fid: :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc. :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. :param endian_character: Any of {@, =, <, >, !} :return: Tuple of read and unpacked values. """ data = fid.read(num_bytes) return struct.unpack(endian_character + format_char_sequence, data) def read_images_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for image_index in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, format_char_sequence="ddq"*num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images scenes = os.listdir(root) # scenes = ["Truck"] for scene in scenes: print("Now we are create ", scene) # Create intrinsic file with open(os.path.join(dis, scene, "intrinsics.txt"), "w") as fp: for element in intrinsic[scene]: print(element, end=" ", file=fp) print("", file=fp) print("0. 0. 0.", file=fp) print("1.", file=fp) img_path = os.path.join(root, scene, "images") images = sorted(os.listdir(img_path)) img = imageio.imread(os.path.join(img_path, images[0]))[:, :, :3] print("{} {}".format(img.shape[1], img.shape[0]), file=fp) # Create poses dir pose_dir = os.path.join(dis, scene, "pose") os.makedirs(pose_dir, exist_ok=True) imagesfile = os.path.join(root, scene, 'sparse/0/images.bin') imdata = read_images_binary(imagesfile) w2c_mats = [] bottom = np.array([0,0,0,1.]).reshape([1,4]) names = [imdata[k].name for k in imdata] print(names) print( 'Images #', len(names)) perm = np.argsort(names) for k in imdata: im = imdata[k] R = im.qvec2rotmat() t = im.tvec.reshape([3,1]) m = np.concatenate([np.concatenate([R, t], 1), bottom], 0) m = m.reshape(-1) with open(os.path.join(pose_dir, names[k-1].replace(".jpg", ".txt").replace(".JPG", ".txt").replace(".png", ".txt").replace(".PNG", ".txt")), "w") as fp: for element in m: print(element, end=" ", file=fp) ``` #### File: 3D_Augmentation/scene-representation-networks/train_weight_pred.py ```python import configargparse import os, time, datetime import torch import numpy as np import dataio from torch.utils.data import DataLoader from srns import * import util from tqdm import tqdm p = configargparse.ArgumentParser() p.add('-c', '--config_filepath', required=False, is_config_file=True, help='Path to config file.') # Note: in contrast to training, no multi-resolution! p.add_argument('--img_sidelength', type=int, default=128, required=False, help='Sidelength of test images.') p.add_argument('--data_root', required=True, help='Path to directory with training data.') p.add_argument('--logging_root', type=str, default='./logs', required=False, help='Path to directory where checkpoints & tensorboard events will be saved.') p.add_argument('--batch_size', type=int, default=32, help='Batch size.') p.add_argument('--preload', action='store_true', default=False, help='Whether to preload data to RAM.') p.add_argument('--max_num_instances', type=int, default=-1, help='If \'data_root\' has more instances, only the first max_num_instances are used') p.add_argument('--specific_observation_idcs', type=str, default=None, help='Only pick a subset of specific observations for each instance.') p.add_argument('--has_params', action='store_true', default=False, help='Whether each object instance already comes with its own parameter vector.') p.add_argument('--save_out_first_n',type=int, default=250, help='Only saves images of first n object instances.') p.add_argument('--checkpoint_path', default=None, help='Path to trained model.') # Model options p.add_argument('--tracing_steps', type=int, default=10, help='Number of steps of intersection tester.') p.add_argument('--fit_single_srn', action='store_true', required=False, help='Only fit a single SRN for a single scene (not a class of SRNs) --> no hypernetwork') p.add_argument('--use_unet_renderer', action='store_true', help='Whether to use a DeepVoxels-style unet as rendering network or a per-pixel 1x1 convnet') p.add_argument('--embedding_size', type=int, default=256, help='Dimensionality of latent embedding.') p.add_argument("--num_basis", type=int, required=True, help="Number of basis objs are used") p.add_argument("--gpu", type=str, required=True, help="Choose GPU number") opt = p.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu device = torch.device('cuda') util.cond_mkdir(opt.logging_root) # Save command-line parameters to log directory. with open(os.path.join(opt.logging_root, "params.txt"), "w") as out_file: out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()])) def back_up(): backup_dir = os.path.join(opt.logging_root, 'backup') util.cond_mkdir(backup_dir) os.system("cp train_weight_pred.py %s/" %(backup_dir)) os.system("cp srns.py %s/" %(backup_dir)) os.system("cp dataio.py %s/" %(backup_dir)) def create_dataloader(): if opt.specific_observation_idcs is not None: specific_observation_idcs = list(map(int, opt.specific_observation_idcs.split(','))) else: specific_observation_idcs = None dataset = dataio.SceneClassDataset(root_dir=opt.data_root, max_num_instances=opt.max_num_instances, specific_observation_idcs=None, max_observations_per_instance=10, samples_per_instance=1, img_sidelength=opt.img_sidelength,) dataloader = DataLoader(dataset, batch_size=16, shuffle=True, drop_last=True, num_workers=6) test_dataset = dataio.SceneClassDataset(root_dir="/work/eva0856121/datasets/srn_data/cars_test/", max_num_instances=-1, specific_observation_idcs=specific_observation_idcs, max_observations_per_instance=-1, samples_per_instance=1, img_sidelength=opt.img_sidelength,) test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False, drop_last=False, num_workers=6) return dataset, dataloader, test_dataset, test_dataloader def create_network(USE_EMBED): model = SRNsModel(latent_dim=opt.embedding_size, has_params=opt.has_params, use_unet_renderer=opt.use_unet_renderer, tracing_steps=opt.tracing_steps).cuda() weightPred = AnalogyPred(num_basis= opt.num_basis, USE_EMBED=USE_EMBED, mode="regression").cuda() optimizer = torch.optim.Adam(list(weightPred.parameters()) , lr=1e-3) assert (opt.checkpoint_path is not None), "Have to pass checkpoint!" print("Loading SRN model from %s" % opt.checkpoint_path) util.custom_load(model, path=opt.checkpoint_path, discriminator=None, overwrite_embeddings=False) for child in model.children(): for param in child.parameters(): param.requires_grad = False return model, weightPred, optimizer def train_weightPred(model, weightPred, dataset, dataloader, test_dataset, test_dataloader, optimizer, USE_EMBED): fixed_data = dataloader.collate_fn([dataset[0]]) fixed_input = fixed_data[0][0] if USE_EMBED: basis_dict = util.read_pickle("./pretrained_model/srn_new/features/cars_train_embedding_all.pkl") else: basis_dict = util.read_pickle("./pretrained_model/srn_new/features/cars_train_feature_all.pkl") selected_id = [i for i in range(200)] basis_feat = [basis_dict[k].squeeze() for k in selected_id] basis_feat = torch.stack(basis_feat).cuda() # 10 x 512 training features print("The shape of basis: ", basis_feat.shape) print('Begin to train weight prediction branch...') for epoch in range(50): weightPred.train() model.eval() psnrs, ssims = list(), list() for batch_id, data in enumerate(dataloader): model_input, ground_truth = data model_input = model_input[0] ground_truth = ground_truth[0] if USE_EMBED: feat_sim = weightPred(model.pre_phi(model.resnet(model_input["input_img"].cuda()).squeeze()), basis_feat) pred_output = model(input = model_input, weighted_ebd = torch.matmul(feat_sim, basis_feat.squeeze())) else: feat_sim = weightPred(model.resnet(model_input["input_img"].cuda()).squeeze(), basis_feat) pred_output = model(input = model_input, weighted_ebd = model.pre_phi(torch.matmul(feat_sim, basis_feat.squeeze()))) optimizer.zero_grad() dist_loss = model.get_image_loss(pred_output, ground_truth) reg_loss = model.get_regularization_loss(pred_output, ground_truth) latent_loss = model.get_latent_loss() weighted_dist_loss = 200 * dist_loss weighted_reg_loss = 1 * reg_loss weighted_latent_loss = 0.001 * latent_loss total_loss = weighted_dist_loss + weighted_reg_loss + weighted_latent_loss total_loss.backward() optimizer.step() psnr, ssim = model.get_psnr(pred_output, ground_truth) psnrs.extend(psnr) ssims.extend(ssim) print("Training epoch %d. Running mean PSNR %0.6f SSIM %0.6f" % (epoch, np.mean(psnrs), np.mean(ssims))) with open(os.path.join(opt.logging_root, "results.txt"), "a") as out_file: out_file.write("Epoch %d. Training Running mean PSNR %0.6f SSIM %0.6f\n" % (epoch, np.mean(psnrs), np.mean(ssims))) if epoch % 5 == 0: util.save_model(model_dir, weightPred, 'analogy', epoch) util.save_opt(model_dir, optimizer, 'opt', epoch) output_imgs = model.get_output_img(pred_output).cpu().detach().numpy() comparisons = model.get_comparisons(model_input, pred_output, ground_truth) for idx in range(1): img_only_path = os.path.join(train_img_dir, "output", "%03d" % epoch) comp_path = os.path.join(train_img_dir, "compare", "%03d" % epoch) util.cond_mkdir(img_only_path) util.cond_mkdir(comp_path) pred = util.convert_image(output_imgs[idx].squeeze()) comp = util.convert_image(comparisons[idx].squeeze()) util.write_img(pred, os.path.join(img_only_path, "%03d_%06d.png" % (batch_id, idx))) util.write_img(comp, os.path.join(comp_path, "%03d_%06d.png" % (batch_id, idx))) if epoch % 5 == 0: weightPred.eval() model.eval() with torch.no_grad(): print('Testing') psnrs, ssims = list(), list() for batch_id, data in enumerate(test_dataloader): model_input, ground_truth = data model_input = model_input[0] ground_truth = ground_truth[0] if USE_EMBED: feat_sim = weightPred(model.pre_phi(model.resnet(model_input["input_img"].cuda()).squeeze()), basis_feat) pred_output = model(input = model_input, weighted_ebd = torch.matmul(feat_sim, basis_feat.squeeze())) else: feat_sim = weightPred(model.resnet(model_input["input_img"].cuda()).squeeze(), basis_feat) pred_output = model(input = model_input, weighted_ebd = model.pre_phi(torch.matmul(feat_sim, basis_feat.squeeze()))) psnr, ssim = model.get_psnr(pred_output, ground_truth) psnrs.extend(psnr) ssims.extend(ssim) print("Testing epoch %d. Running mean PSNR %0.6f SSIM %0.6f" % (epoch, np.mean(psnrs), np.mean(ssims))) with open(os.path.join(opt.logging_root, "results.txt"), "a") as out_file: out_file.write("Epoch %d. Testing Running mean PSNR %0.6f SSIM %0.6f\n" % (epoch, np.mean(psnrs), np.mean(ssims))) output_imgs = model.get_output_img(pred_output).cpu().detach().numpy() comparisons = model.get_comparisons(model_input, pred_output, ground_truth) for idx in range(len(output_imgs)): img_only_path = os.path.join(test_img_dir, "output", "%03d" % epoch) comp_path = os.path.join(test_img_dir, "compare", "%03d" % epoch) util.cond_mkdir(img_only_path) util.cond_mkdir(comp_path) pred = util.convert_image(output_imgs[idx].squeeze()) comp = util.convert_image(comparisons[idx].squeeze()) util.write_img(pred, os.path.join(img_only_path, "%03d_%06d.png" % (batch_id, idx))) util.write_img(comp, os.path.join(comp_path, "%03d_%06d.png" % (batch_id, idx))) if __name__ == '__main__': back_up() USE_EMBED = True # Create recording place model_dir = os.path.join(opt.logging_root, 'model') util.cond_mkdir(model_dir) train_img_dir = os.path.join(opt.logging_root, 'train_image') util.cond_mkdir(train_img_dir) test_img_dir = os.path.join(opt.logging_root, 'test_image') util.cond_mkdir(test_img_dir) # Get model, dataset ready dataset, dataloader, test_dataset, test_dataloader= create_dataloader() print(len(dataset)) print(len(test_dataset)) model, weightPred, optimizer = create_network(USE_EMBED) train_weightPred(model, weightPred, dataset, dataloader, test_dataset, test_dataloader, optimizer, USE_EMBED) ```
{ "source": "joycenerd/AICUP_MangoClassification", "score": 3 }
#### File: joycenerd/AICUP_MangoClassification/dataset.py ```python from torch.utils.data import Dataset,DataLoader from pathlib import Path import numpy as np from options import opt from PIL import Image from torchvision import transforms import torch import collections import numbers import random import torch.nn as nn # from dataset_utils import * label_dict={ 'A':0, 'B':1, 'C':2 } class MangoDataset(Dataset): def __init__(self,root_dir,transform=None): self.root_dir=Path(root_dir) self.x=[] self.y=[] self.transform=transform self.num_classes=opt.num_classes if root_dir.name=='C1-P1_Train': labels=np.genfromtxt(Path(opt.data_root).joinpath('train.csv'),dtype=np.str,delimiter=',',skip_header=1) else: labels=np.genfromtxt(Path(opt.data_root).joinpath('dev.csv'),dtype=np.str,delimiter=',',skip_header=1) for label in labels: self.x.append(label[0]) self.y.append(label_dict[label[1]]) def __len__(self): return len(self.x) def __getitem__(self, index): image_path=Path(self.root_dir).joinpath(self.x[index]) image=Image.open(image_path).convert('RGB') image=image.copy() if self.transform: image=self.transform(image) return image,self.y[index] def Dataloader(dataset,batch_size,shuffle,num_workers): data_loader=DataLoader(dataset=dataset,batch_size=batch_size,shuffle=shuffle,num_workers=num_workers) return data_loader def _random_colour_space(x): output = x.convert("HSV") return output class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return hshift, vshift def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1,0,hshift,0,1,vshift), resample=Image.BICUBIC, fill=1) def make_dataset(_dir): colour_transform = transforms.Lambda(lambda x: _random_colour_space(x)) transform = [ transforms.RandomAffine(degrees=30,shear=50, resample=False, fillcolor=0), transforms.RandomGrayscale(p=0.5), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomPerspective(distortion_scale=0.5, p=0.5, interpolation=3, fill=0), transforms.RandomVerticalFlip(p=0.5), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), transforms.Grayscale(num_output_channels=3), RandomShift(3), transforms.RandomApply([colour_transform]), ] data_transform_train=transforms.Compose([ transforms.RandomResizedCrop(opt.img_size), transforms.RandomApply(transform,p=0.5), transforms.RandomApply([transforms.RandomRotation((-90,90), resample=False, expand=False, center=None)],p=0.5), transforms.ToTensor(), transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225]) ]) data_transform_dev=transforms.Compose([ transforms.Resize((opt.img_size,opt.img_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225]) ]) if(_dir=='C1-P1_Train'): data_set=MangoDataset(Path(opt.data_root).joinpath(_dir),data_transform_train) elif(_dir=='C1-P1_Dev'): data_set=MangoDataset(Path(opt.data_root).joinpath(_dir),data_transform_dev) return data_set ```
{ "source": "joycenerd/Computer_Vision_2021", "score": 3 }
#### File: Computer_Vision_2021/HW2/hybrid_image.py ```python from PIL import Image import glob import numpy as np import matplotlib.pyplot as plt import os DATA_PATH="./hw2_data/task1,2_hybrid_pyramid/" def fourier_transform(feature): F=np.fft.fft2(feature) F=np.fft.fftshift(F) return F def gauss_low_pass(height,width,D0): H=np.zeros((height,width)) center_point=(height/2,width/2) for v in range(height): for u in range(width): D=np.sqrt((v-center_point[0])**2+(u-center_point[1])**2) H[v][u]=np.exp(-D**2/(2*D0**2)) return H def inv_fourier_transform(F): f=np.fft.ifftshift(F) f=np.fft.ifft2(f) return f if __name__=='__main__': if not os.path.exists("./results"): os.mkdir("./results") num_list=["0","1","2","3","4","5","6","7"] for num in num_list: image_pair=[] plt.figure(figsize=(10,4)) for image_path in glob.glob(DATA_PATH+num+"*"): image_pair.append(image_path) image1=Image.open(image_pair[0]) image1=np.array(image1) height1,width1,channel=image1.shape output_image_1=np.zeros((height1,width1,channel)) for c in range(channel): feature=image1[:,:,c] # fourier transform F=fourier_transform(feature) # H(u,v) -> low pass filter H=gauss_low_pass(height1,width1,8) # F(u,v)*H(u,v) low_pass_image=F*H # Compute the inverse Fourier transformation f=inv_fourier_transform(low_pass_image) # Obtain the real part real_image=np.abs(f) output_image_1[:,:,c]=real_image output_image_1=Image.fromarray(np.uint8(output_image_1)).convert("RGB") plt.subplot(1,3,1) plt.imshow(output_image_1) image2=Image.open(image_pair[1]) image2=np.array(image2) height2,width2,channel=image2.shape output_image_2=np.zeros((height2,width2,channel)) for c in range(channel): feature=image2[:,:,c] # fourier transform F=fourier_transform(feature) # H(u,v) -> high pass filter H=gauss_low_pass(height2,width2,8) H=1-H high_pass_image=F*H # compute the inverse fourier transform f=inv_fourier_transform(high_pass_image) # obtain the real part real_image=np.abs(f) output_image_2[:,:,c]=real_image output_image_2=Image.fromarray(np.uint8(output_image_2)).convert("RGB") plt.subplot(1,3,2) plt.imshow(output_image_2) # merge two image height=height1 if height1>=height2 else height2 width=width1 if width1>=width2 else width2 output_image_1=output_image_1.resize((width,height)) output_image_2=output_image_2.resize((width,height)) blend_image=Image.blend(output_image_1,output_image_2,0.5) plt.subplot(1,3,3) plt.imshow(blend_image) plt.savefig("./results/"+num+".jpg") plt.show() print(f'{num} completed') ``` #### File: HW5/model/model_utils.py ```python from .resnest.restnest import get_model from options import opt from efficientnet_pytorch import EfficientNet import torch def get_net(model): if model == 'resnest50': model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True) return model elif model == 'resnest101': model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest101', pretrained=True) return model elif model == 'resnest200': model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest200', pretrained=True) return model elif model == 'efficientnet-b7': model = EfficientNet.from_pretrained( 'efficientnet-b7', num_classes=opt.num_classes) return model elif model == 'efficientnet-b5': model = EfficientNet.from_pretrained( 'efficientnet-b5', num_classes=opt.num_classes) return model elif model == 'efficientnet-b4': model = EfficientNet.from_pretrained( 'efficientnet-b4', num_classes=opt.num_classes) return model elif model == 'efficientnet-b3': model = EfficientNet.from_pretrained( 'efficientnet-b3', num_classes=opt.num_classes) return model ``` #### File: Computer_Vision_2021/HW5/test.py ```python import torchvision.models as models import torch.nn as nn from torchvision import transforms import os from pathlib import Path from PIL import Image import torch from torch.autograd import Variable from options import opt import numpy as np from dataset import make_dataset,Dataloader from model.model_utils import get_net ROOTDIR="/home/zchin/NCTU-CV_2021/HW5" label_dict = { 0 : 'A', 1 : 'B', 2 : 'C' } def test(): classes = opt.num_classes model_path = opt.weight_path #model= torch.load(str(model_path)) #model = model.cuda(opt.cuda_devices) model=get_net(opt.model) model_dict=torch.load(model_path,map_location="cpu") model.load_state_dict(model_dict) model=model.cuda(opt.cuda_devices) model.eval() # print(f"Cuda num: {opt.cuda_devices}") test_set=make_dataset("test") test_loader=eval_loader = Dataloader( dataset=test_set, batch_size=opt.dev_batch_size, shuffle=True, num_workers=opt.num_workers) test_loss = 0.0 test_corrects = 0 criterion = nn.CrossEntropyLoss() for i, (inputs, labels) in enumerate(test_loader): inputs = Variable(inputs.cuda(opt.cuda_devices)) labels = Variable(labels.cuda(opt.cuda_devices)) outputs = model(inputs) _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) test_loss += loss.item()*inputs.size(0) test_corrects += torch.sum(preds == labels.data) test_loss = test_loss/len(test_set) test_acc = float(test_corrects)/len(test_set) print(f"Test Loss: {test_loss}") print(f"Test Accuracy: {test_acc}") if __name__=='__main__': test() ```
{ "source": "joycenerd/Deep_Learning_Practice_labs", "score": 3 }
#### File: Deep_Learning_Practice_labs/lab2/dataloader.py ```python import numpy as np def read_bci_data(): """ Read the BCI data :return train and test data """ S4b_train = np.load('./Data/S4b_train.npz') X11b_train = np.load('./Data/X11b_train.npz') S4b_test = np.load('./Data/S4b_test.npz') X11b_test = np.load('./Data/X11b_test.npz') train_data = np.concatenate((S4b_train['signal'], X11b_train['signal']), axis=0) train_label = np.concatenate((S4b_train['label'], X11b_train['label']), axis=0) test_data = np.concatenate((S4b_test['signal'], X11b_test['signal']), axis=0) test_label = np.concatenate((S4b_test['label'], X11b_test['label']), axis=0) train_label = train_label - 1 test_label = test_label - 1 train_data = np.transpose(np.expand_dims(train_data, axis=1), (0, 1, 3, 2)) test_data = np.transpose(np.expand_dims(test_data, axis=1), (0, 1, 3, 2)) mask = np.where(np.isnan(train_data)) train_data[mask] = np.nanmean(train_data) mask = np.where(np.isnan(test_data)) test_data[mask] = np.nanmean(test_data) # print(train_data.shape, train_label.shape, test_data.shape, test_label.shape) return train_data, train_label, test_data, test_label ``` #### File: Deep_Learning_Practice_labs/lab2/demo.py ```python from model import EEGNet, DeepConvNet from dataloader import read_bci_data from dataset import EEGDataset from torch.utils.data import DataLoader import torch.nn as nn import torch def demo(checkpoints, X_test, y_test): """ In the convenience of demonstrating the best results :param checkpoints: checkpoint path dict :param X_test: testing data (signal) :param y_test: testing label """ device = "cuda" # prepare data test_set = EEGDataset(X_test, y_test) test_loader = DataLoader(test_set, batch_size=256, shuffle=True, num_workers=4) test_size = len(test_set) for act in checkpoints: model_path = checkpoints[act] # model net = load_model(model_path) net.to(device) net.eval() loss_func = nn.CrossEntropyLoss() test_loss = 0.0 test_acc = 0.0 for idx, (inputs, targets) in enumerate(test_loader): inputs = inputs.to(device, dtype=torch.float) targets = targets.to(device, dtype=torch.long) outputs = net(inputs) test_loss += loss_func(outputs, targets).item() _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == targets).sum().item() test_loss /= test_size test_acc /= test_size print(f"{act} test_loss: {test_loss:.4}\ttest_acc: {test_acc:.4}") print("===========================================================\n") def load_model(model_path): """ load the model from checkpoint :param model_path: checkpoint path :return model for testing """ checkpoint = torch.load(model_path) model_name = checkpoint['model_name'] act = checkpoint['act'] if model_name == "EEGNet": net = EEGNet(act) elif model_name == "DeepConvNet": net = DeepConvNet(act) net.load_state_dict(checkpoint['model_state_dict']) return net if __name__ == '__main__': # read data X_train, y_train, X_test, y_test = read_bci_data() # EEGNet results EEGNet_checkpoints = { 'ELU': './checkpoints/EEGNet/EEGNet_elu_5e-3_amsgrad_0.8407.pt', 'ReLU': './checkpoints/EEGNet/EEGNet_relu_1e-3_0.8731.pt', 'LeakyReLU': './checkpoints/EEGNet/EEGNet_leaky_relu_1e-2_init_amsgrad_0.8787.pt' } print("EEGNet results") demo(EEGNet_checkpoints, X_test, y_test) # DeepConvNet results DeepConvNet_checkpoints = { 'ELU': './checkpoints/DeepConvNet/DeepConvNet_elu_1e-3_amsgrad_0.7454.pt', 'ReLU': './checkpoints/DeepConvNet/DeepConvNet_relu_1e-2_0.7102.pt', 'LeakyReLU': './checkpoints/DeepConvNet/DeepConvNet_leaky_relu_1e-2_init_amsgrad_0.7352.pt' } print("DeepConvNet results") demo(DeepConvNet_checkpoints, X_test, y_test) ``` #### File: Deep_Learning_Practice_labs/lab3/train.py ```python from resnet import resnet18, resnet50, pretrained_resnet, initialize_weights, funct from dataloader import RetinopathyLoader from torch.utils.tensorboard import SummaryWriter from torch.optim.lr_scheduler import StepLR from torch.utils.data import DataLoader from torchsummary import summary from tqdm import tqdm import torch.nn as nn import torch import argparse import logging import copy import os parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="resnet18", help="which model: [resnet18, resnet50]") parser.add_argument("--pretrain", type=bool, default=False, help="whether to use pretrained weights") parser.add_argument("--act", type=str, default='relu', help="which activation function to use: [relu, leaky_relu,selu]") parser.add_argument("--device", type=str, default="cuda:1", help="use which device for training") parser.add_argument("--batch-size", type=int, default=32, help="batch size for training") parser.add_argument("--lr", type=float, default=1e-3, help="learning rata") parser.add_argument("--epochs", type=int, default=10, help="num of epochs for training") parser.add_argument("--model-path", type=str, default="./checkpoints/resnet50/relu_0.001_0.7335.pt") parser.add_argument("--load", type=bool, default=True, help="if load the weight param from checkpoint before training") parser.add_argument("--img-size", type=int, default=256, help="Size to resize the image") args = parser.parse_args() def train(): _model = args.model pretrain = args.pretrain act = args.act device = args.device batch_size = args.batch_size lr = args.lr epochs = args.epochs load = args.load model_path = args.model_path img_size = args.img_size if pretrain: save_name = f"{act}_{lr}" else: save_name = f"{act}_{lr}" writer = SummaryWriter(f"runs/{_model}/{save_name}") logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO, handlers=[logging.FileHandler(f'./record/{save_name}.log', 'w', 'utf-8')]) # data preprocessing train_set = RetinopathyLoader("./Data/data", "train", img_size) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=4) test_set = RetinopathyLoader("./Data/data", "test", img_size) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=4) train_size = len(train_set) test_size = len(test_set) # initialize model if load: model = load_model(model_path) elif pretrain: model = pretrained_resnet(_model) else: if _model == "resnet18": model = resnet18(3, 5, act=act) elif _model == "resnet50": model = resnet50(3, 5, act=act) model.apply(initialize_weights) model = model.to(device) # initialize loss function loss_func = nn.CrossEntropyLoss() # initialize optimizer optimizer = torch.optim.SGD(model.parameters(), lr, momentum=0.9, weight_decay=5e-4) # initialize scheduler scheduler = StepLR(optimizer, step_size=2, gamma=0.5) best_train_acc = 0.0 best_acc = 0.0 best_model_params = copy.deepcopy(model.state_dict()) for epoch in range(1, epochs + 1): print(f"Epoch {epoch}/{epochs}") print("-" * len(f"Epoch {epoch}/{epochs}")) logging.info(f"Epoch {epoch}/{epochs}") train_loss = 0.0 train_acc = 0.0 # training model.train() for idx, (inputs, targets) in enumerate(tqdm(train_loader)): inputs = inputs.to(device, dtype=torch.float) targets = targets.to(device, dtype=torch.long) # forward pass outputs = model(inputs) loss = loss_func(outputs, targets) train_loss += loss.item() * inputs.shape[0] _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == targets).sum().item() # update the parameters optimizer.zero_grad() loss.backward() optimizer.step() train_loss /= train_size train_acc /= train_size print(f"train_loss: {train_loss:.4f}\ttrain_acc: {train_acc:.4f}") logging.info(f"train_loss: {train_loss:.4f}\ttrain_acc: {train_acc:.4f}") # evaluation eval_loss, eval_acc = eval(model, test_loader, test_size, loss_func) logging.info(f"eval_loss: {eval_loss:.4f}\teval_acc: {eval_acc:.4f}") if epoch >= 4: scheduler.step() # log the result # log the result writer.add_scalar("train_loss", train_loss, epoch) writer.add_scalar("train_acc", train_acc, epoch) writer.add_scalar("eval_loss", eval_loss, epoch) writer.add_scalar("eval_acc", eval_acc, epoch) writer.flush() # save model parameters if accuracy is higher if eval_acc > best_acc: best_model_params = copy.deepcopy(model.state_dict()) best_acc = eval_acc best_train_acc = train_acc # save the best model print(f"best_acc: {best_acc:.4f}\tbest_train_acc: {best_train_acc:.4f}") logging.info(f"best_acc: {best_acc:.4f}\tbest_train_acc: {best_train_acc:.4f}") save_model(_model, best_model_params, pretrain, act, save_name, best_acc) writer.close() def eval(model, test_loader, test_size, loss_func): """ model evaluation Args: model: model for evaluation test_loader: testing data loader test_size: size of the testing data loss_func: loss function we are using Returns: evaluation loss and accuracy """ device = args.device model.eval() eval_loss = 0.0 eval_acc = 0.0 for idx, (inputs, targets) in enumerate(tqdm(test_loader)): inputs = inputs.to(device, dtype=torch.float) targets = targets.to(device, dtype=torch.long) outputs = model(inputs) eval_loss += loss_func(outputs, targets).item() * inputs.shape[0] _, predicted = torch.max(outputs.data, 1) eval_acc += (predicted == targets).sum().item() eval_loss /= test_size eval_acc /= test_size print(f"eval_loss: {eval_loss:.4f}\teval_acc: {eval_acc:.4f}") return eval_loss, eval_acc def test(): """ Test the saving model """ model_path = args.model_path device = args.device batch_size = args.batch_size img_size = args.img_size # prepare data test_set = RetinopathyLoader("./Data/data", "test", img_size) test_loader = DataLoader(test_set, batch_size=batch_size, num_workers=4) test_size = len(test_set) # load the model model = load_model(model_path) model.to(device) model.eval() loss_func = nn.CrossEntropyLoss() test_loss = 0.0 test_acc = 0.0 for idx, (inputs, targets) in enumerate(tqdm(test_loader)): inputs = inputs.to(device, dtype=torch.float) targets = targets.to(device, dtype=torch.long) outputs = model(inputs) test_loss += loss_func(outputs, targets).item() * inputs.shape[0] _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == targets).sum().item() test_loss /= test_size test_acc /= test_size print(f"test_loss: {test_loss:.4}\ttest_acc: {test_acc:.4}") def save_model(_model, model_params, pretrain, act, save_name, best_acc): """ Save the model as checkpoint Args: _model: (str) model name model_params: (state_dict) model parameters pretrain: (bool) whether this is a pretrained model act: (str) activation function use in the model save_name: (str) saving name of this checkpoint file best_acc: (float) best evaluation accuracy """ save_obj = { 'model_state_dict': model_params, 'model_name': _model, 'pretrained': pretrain, 'act': act } torch.save(save_obj, f"./checkpoints/{_model}/{save_name}_{best_acc:.4f}.pt") def load_model(model_path): """ Load the model from checkpoint file Args: model_path: (str) checkpoint file path Returns: model with saving params """ checkpoint = torch.load(model_path) _model = checkpoint['model_name'] pretrain = checkpoint['pretrained'] act = checkpoint['act'] if pretrain: model = pretrained_resnet(_model) else: if _model == "resnet18": model = resnet18(3, 5, act=act) elif _model == "resnet50": model = resnet50(3, 5, act=act) model.load_state_dict(checkpoint['model_state_dict']) return model if __name__ == "__main__": print(args) input("Press ENTER if no problem...") if not os.path.isdir("./checkpoints/resnet18"): os.makedirs("./checkpoints/resnet18") if not os.path.isdir("./checkpoints/resnet50"): os.makedirs("./checkpoints/resnet50") # train() test() ``` #### File: Deep_Learning_Practice_labs/lab5/evaluator.py ```python import torch import torch.nn as nn import torchvision.models as models '''=============================================================== 1. Title: DLP spring 2021 Lab7 classifier 2. Purpose: For computing the classification accruacy. 3. Details: The model is based on ResNet18 with only chaning the last linear layer. The model is trained on iclevr dataset with 1 to 5 objects and the resolution is the upsampled 64x64 images from 32x32 images. It will capture the top k highest accuracy indexes on generated images and compare them with ground truth labels. 4. How to use You should call eval(images, labels) and to get total accuracy. images shape: (batch_size, 3, 64, 64) labels shape: (batch_size, 24) where labels are one-hot vectors e.g. [[1,1,0,...,0],[0,1,1,0,...],...] ===============================================================''' class evaluation_model(): def __init__(self,device): #modify the path to your own path checkpoint = torch.load('./checkpoints/classifier_weight.pth') self.resnet18 = models.resnet18(pretrained=False) self.resnet18.fc = nn.Sequential( nn.Linear(512,24), nn.Sigmoid() ) self.resnet18.load_state_dict(checkpoint['model']) self.resnet18 = self.resnet18.to(device) self.resnet18.eval() self.classnum = 24 def compute_acc(self, out, onehot_labels): batch_size = out.size(0) acc = 0 total = 0 for i in range(batch_size): k = int(onehot_labels[i].sum().item()) total += k outv, outi = out[i].topk(k) lv, li = onehot_labels[i].topk(k) for j in outi: if j in li: acc += 1 return acc / total def eval(self, images, labels): with torch.no_grad(): #your image shape should be (batch, 3, 64, 64) out = self.resnet18(images) acc = self.compute_acc(out.cpu(), labels.cpu()) return acc ```
{ "source": "joycenerd/genrep_aug", "score": 2 }
#### File: genrep_aug/GenRep/main_autoencoder.py ```python from __future__ import print_function import argparse import os import random import itertools import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim import torchvision.utils as vutils from torch.nn.functional import cosine_similarity from tensorboardX import SummaryWriter import oyaml as yaml # from utils import zdataset, customnet, pbar, util, masking # from utils import customnet, pbar, util, masking from utils import pbar, util, masking import customenet_biggan as customnet # import zdataset_biggan from networks import biggan_networks import numpy as np import json import sys sys.path.append('resources/PerceptualSimilarity') # TODO: just use lpips import import models import pdb; def train(opt): print("Random Seed: ", opt.seed) random.seed(opt.seed) torch.manual_seed(opt.seed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") # tensorboard writer = SummaryWriter(logdir='training/runs/%s' % os.path.basename(opt.outf)) device = torch.device("cuda:0" if opt.cuda else "cpu") batch_size = int(opt.batchSize) # load the generator netG = biggan_networks.load_biggan(opt.netG).to(device).eval() #for biggan, it's model_name, e.g. 'biggan-deep-256' util.set_requires_grad(False, netG) # print(netG) # # find output shape ## Ali: to find output shape, we use biggan_networks.truncated_noise_sample_() instead of zdataset_biggan.z_sample_for_model() # z = zdataset_biggan.z_sample_for_model(netG, size=1).to(device) # # Prepare an input for netG truncation = 1.0 zbs = 1 z = biggan_networks.truncated_noise_sample_(truncation=truncation, batch_size=zbs).to(device) cls_vector = biggan_networks.one_hot_from_int_(77, batch_size=zbs).to(device) out_shape = netG(z, cls_vector, truncation).shape in_shape = z.shape nz = in_shape[1] # print(out_shape) # determine encoder input dim assert(not (opt.masked and opt.vae_like)), "specify 1 of masked or vae_like" has_masked_input = opt.masked or opt.vae_like input_dim = 4 if has_masked_input else 3 modify_input = customnet.modify_layers # adds the to_z layer # load the encoder depth = int(opt.netE_type.split('-')[-1]) nz = nz * 2 if opt.vae_like else nz netE = customnet.CustomResNet(size=depth, halfsize=out_shape[-1]<=150, num_classes=nz, modify_sequence=modify_input, channels_in=input_dim) netE.to(device) # print(netE) # import pdb; # pdb.set_trace() last_layer_z = torch.nn.Linear(2048, 128).to(device) last_layer_y = torch.nn.Linear(2048, opt.num_imagenet_classes).to(device) # losses + optimizers mse_loss = nn.MSELoss() l1_loss = nn.L1Loss() perceptual_loss = models.PerceptualLoss(model='net-lin', net='vgg', use_gpu=opt.cuda) # optimizerE = optim.Adam(netE.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) start_ep = 0 ## also loss_y and optim for z and y: ce_loss = nn.CrossEntropyLoss() # optimizer_z = optim.Adam(last_layer_z.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) # optimizer_y = optim.Adam(last_layer_y.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerE = optim.Adam(list(netE.parameters()) + list(last_layer_z.parameters()) + list(last_layer_y.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) # z datasets min_bs = min(16, batch_size) train_loader = training_loader(truncation, batch_size, opt.seed) test_zs = biggan_networks.truncated_noise_sample_(truncation=truncation, batch_size=min_bs, seed=opt.seed).to(device) class_name_list = ['robin', 'standard_poodle', 'African_hunting_dog', 'gibbon', 'ambulance', 'boathouse', 'cinema', 'Dutch_oven', 'lampshade', 'laptop', 'mixing_bowl', 'pedestal', 'rotisserie', 'slide_rule', 'tripod', 'chocolate_sauce'] test_class_vectors = biggan_networks.one_hot_from_names_(class_name_list[0:min_bs], batch_size=min_bs).to(device) # with open('./imagenet100_class_index.json', 'rb') as fid: # imagenet100_dict = json.load(fid) test_idx = [15, 267, 275, 368, 407, 449, 498, 544, 619, 620, 659, 708, 766, 798, 872, 960] test_idx = test_idx[0:min_bs] # load data from checkpoint # come back assert(not (opt.netE and opt.finetune)), "specify 1 of netE or finetune" if opt.finetune: checkpoint = torch.load(opt.finetune) sd = checkpoint['state_dict'] # skip weights with dim mismatch, e.g. if you finetune from # an RGB encoder if sd['conv1.weight'].shape[1] != input_dim: # skip first conv if needed print("skipping initial conv") sd = {k: v for k, v in sd.items() if k != 'conv1.weight'} if sd['fc.bias'].shape[0] != nz: # skip fc if needed print("skipping fc layers") sd = {k: v for k, v in sd.items() if 'fc' not in k} netE.load_state_dict(sd, strict=False) if opt.netE: checkpoint = torch.load(opt.netE) netE.load_state_dict(checkpoint['state_dict']) last_layer_z.load_state_dict(checkpoint['state_dict_last_z']) last_layer_y.load_state_dict(checkpoint['state_dict_last_y']) optimizerE.load_state_dict(checkpoint['optimizer']) start_ep = checkpoint['epoch'] + 1 epoch_batches = 1600 // batch_size for epoch, epoch_loader in enumerate(pbar( epoch_grouper(train_loader, epoch_batches), total=(opt.niter-start_ep)), start_ep): # stopping condition if epoch > opt.niter: break # run a train epoch of epoch_batches batches for step, (z_batch,) in enumerate(pbar( epoch_loader, total=epoch_batches), 1): z_batch = z_batch.to(device) netE.zero_grad() last_layer_z.zero_grad() last_layer_y.zero_grad() # fake_im = netG(z_batch).detach() idx = np.random.choice(opt.num_imagenet_classes, z_batch.shape[0]).tolist() class_vector = biggan_networks.one_hot_from_int_(idx, batch_size=z_batch.shape[0]).to(device) fake_im = netG(z_batch, class_vector, truncation).detach() if has_masked_input: ## come back hints_fake, mask_fake = masking.mask_upsample(fake_im) encoded = netE(torch.cat([hints_fake, mask_fake], dim=1)).view(z_batch.shape) if opt.masked: regenerated = netG(encoded, class_vector, truncation) elif opt.vae_like: sample = torch.randn_like(encoded[:, nz//2:, :, :]) encoded_mean = encoded[:, nz//2:, :, :] encoded_sigma = torch.exp(encoded[:, :nz//2, :, :]) reparam = encoded_mean + encoded_sigma * sample regenerated = netG(reparam, class_vector, truncation) encoded = encoded_mean # just use mean in z loss else: # standard RGB encoding encoded = netE(fake_im) z_pred = last_layer_z(encoded) y_pred = last_layer_y(encoded) regenerated = netG(z_pred, class_vector, truncation) # compute loss loss_y = ce_loss(y_pred, torch.tensor(idx, dtype=torch.int64).to(device)) loss_z = cor_square_error_loss(z_pred, z_batch) loss_mse = mse_loss(regenerated, fake_im) loss_perceptual = perceptual_loss.forward( regenerated, fake_im).mean() loss = (opt.lambda_z * loss_y + opt.lambda_z * loss_z + opt.lambda_mse * loss_mse + opt.lambda_lpips * loss_perceptual) loss = (opt.lambda_z * loss_y + opt.lambda_z * loss_z + opt.lambda_mse * loss_mse + opt.lambda_lpips * loss_perceptual) # optimize loss.backward() optimizerE.step() # optimizer_z.step() # optimizer_y.step() # send losses to tensorboard if step % 20 == 0: total_batches = epoch * epoch_batches + step writer.add_scalar('loss/train_y', loss_y, total_batches) writer.add_scalar('loss/train_z', loss_z, total_batches) writer.add_scalar('loss/train_mse', loss_mse, total_batches) writer.add_scalar('loss/train_lpips', loss_perceptual, total_batches) writer.add_scalar('loss/train_total', loss, total_batches) # import pdb; # pdb.set_trace() # run the fixed test zs for visualization netE.eval() last_layer_z.eval() last_layer_y.eval() with torch.no_grad(): fake_im = netG(test_zs, test_class_vectors, truncation) if has_masked_input: ## come back hints_fake, mask_fake = masking.mask_upsample(fake_im) encoded = netE(torch.cat([hints_fake, mask_fake], dim=1)).view(test_zs.shape) if opt.masked: regenerated = netG(encoded, test_class_vectors, truncation) elif opt.vae_like: sample = torch.randn_like(encoded[:, nz//2:, :, :]) encoded_mean = encoded[:, nz//2:, :, :] encoded_sigma = torch.exp(encoded[:, :nz//2, :, :]) reparam = encoded_mean + encoded_sigma * sample regenerated = netG(reparam, test_class_vectors, truncation) encoded = encoded_mean # just use mean in z loss else: encoded = netE(fake_im) pred_z = last_layer_z(encoded) pred_y = last_layer_y(encoded) regenerated = netG(pred_z, test_class_vectors, truncation) # compute loss loss_y = ce_loss(y_pred, torch.tensor(test_idx, dtype=torch.int64).to(device)) loss_z = cor_square_error_loss(pred_z, test_zs) loss_mse = mse_loss(regenerated, fake_im) loss_perceptual = perceptual_loss.forward( regenerated, fake_im).mean() loss = (opt.lambda_z * loss_y + opt.lambda_z * loss_z + opt.lambda_mse * loss_mse + opt.lambda_lpips * loss_perceptual) loss = (opt.lambda_z * loss_y + opt.lambda_z * loss_z) # send to tensorboard writer.add_scalar('loss/test_y', loss_y, epoch) writer.add_scalar('loss/test_z', loss_z, epoch) writer.add_scalar('loss/test_mse', loss_mse, epoch) writer.add_scalar('loss/test_lpips', loss_perceptual, epoch) writer.add_scalar('loss/test_total', loss, epoch) if has_masked_input: grid = vutils.make_grid( torch.cat((fake_im, hints_fake, regenerated)), nrow=8, normalize=True, scale_each=(-1, 1)) else: grid = vutils.make_grid( torch.cat((fake_im, regenerated)), nrow=8, normalize=True, scale_each=(-1, 1)) writer.add_image('Image', grid, epoch) netE.train() # do checkpointing if epoch % 1000 == 0 or epoch == opt.niter: sd = { 'state_dict': netE.state_dict(), 'state_dict_last_z': last_layer_z.state_dict(), 'state_dict_last_y': last_layer_y.state_dict(), 'optimizer': optimizerE.state_dict(), 'epoch': epoch } torch.save(sd, '%s/netE_epoch_%d.pth' % (opt.outf, epoch)) def cor_square_error_loss(x, y, eps=1e-8): # Analogous to MSE, but in terms of Pearson's correlation return (1.0 - cosine_similarity(x, y, eps=eps)).mean() def training_loader(truncation, batch_size, global_seed=0): ''' Returns an infinite generator that runs through randomized z batches, forever. ''' g_epoch = 1 while True: z_data = biggan_networks.truncated_noise_dataset(truncation=truncation, batch_size=10000, seed=g_epoch + global_seed) dataloader = torch.utils.data.DataLoader( z_data, shuffle=False, batch_size=batch_size, num_workers=10, pin_memory=True) for batch in dataloader: yield batch g_epoch += 1 def epoch_grouper(loader, epoch_size, num_epochs=None): ''' To use with the infinite training loader: groups the training data batches into epochs of the given size. ''' it = iter(loader) epoch = 0 while True: chunk_it = itertools.islice(it, epoch_size) try: first_el = next(chunk_it) except StopIteration: return yield itertools.chain((first_el,), chunk_it) epoch += 1 if num_epochs is not None and epoch >= num_epochs: return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--num_imagenet_classes', type=int, default=1000, help='e.g., 100 or 1000') parser.add_argument('--netE_type', type=str, default='resnet-50', help='type of encoder architecture') parser.add_argument('--batchSize', type=int, default=8, help='input batch size') parser.add_argument('--niter', type=int, default=2000, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--netG', default='', help="generator to load") parser.add_argument('--netE', default='', help="path to netE (to continue training)") parser.add_argument('--outf', default='./resnet50_zy_pix', help='folder to output model checkpoints') parser.add_argument('--seed', default=0, type=int, help='manual seed') parser.add_argument('--lambda_z', default=1.0, type=float, help='loss weighting') parser.add_argument('--lambda_mse', default=1.0, type=float, help='loss weighting') parser.add_argument('--lambda_lpips', default=1.0, type=float, help='loss weighting') parser.add_argument('--finetune', type=str, default='', help="finetune from these weights") parser.add_argument('--masked', action='store_true', help="train with masking") parser.add_argument('--vae_like', action='store_true', help='train with masking, predict mean and sigma') opt = parser.parse_args() opt.outf = '{}_{}'.format(opt.outf, opt.num_imagenet_classes) print(opt) assert opt.netE_type == 'resnet-50' opt.outf = opt.outf.format(**vars(opt)) os.makedirs(opt.outf, exist_ok=True) # save options with open(os.path.join(opt.outf, 'optE.yml'), 'w') as f: yaml.dump(vars(opt), f, default_flow_style=False) train(opt) ``` #### File: GenRep/online_learning/main_supcon_xavi_online.py ```python from __future__ import print_function import os import sys import numpy as np import argparse import time import math import tensorboard_logger as tb_logger import torch import torch.backends.cudnn as cudnn from torchvision import transforms, datasets from util import TwoCropTransform, AverageMeter, GansetDataset, OnlineGansetDataset from util import adjust_learning_rate, warmup_learning_rate from util import set_optimizer, save_model from networks.resnet_big import SupConResNet from losses import SupConLoss import ipdb try: import apex from apex import amp, optimizers except ImportError: pass def parse_option(): parser = argparse.ArgumentParser('argument for training') parser.add_argument('--print_freq', type=int, default=10, help='print frequency') parser.add_argument('--save_freq', type=int, default=20, help='save frequency') parser.add_argument('--batch_size', type=int, default=256, help='batch_size') parser.add_argument('--num_workers', type=int, default=16, help='num of workers to use') parser.add_argument('--epochs', type=int, default=200, help='number of training epochs') # optimization parser.add_argument('--learning_rate', type=float, default=0.03, help='learning rate') parser.add_argument('--lr_decay_epochs', type=str, default='120,160', help='where to decay lr, can be a list') parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') # model dataset parser.add_argument('--model', type=str, default='resnet50') parser.add_argument('--dataset', type=str, default='biggan', choices=['biggan', 'cifar10', 'cifar100', 'imagenet100', 'imagenet100K', 'imagenet'], help='dataset') # method parser.add_argument('--method', type=str, default='SimCLR', choices=['SupCon', 'SimCLR'], help='choose method') parser.add_argument('--ganrndwalk', action='store_true', help='augment by walking in the gan latent space') parser.add_argument('--online', action='store_true', help='whether we are generating the samples online') parser.add_argument('--walktype', type=str, help='how should we random walk on latent space', choices=['gaussian', 'uniform']) parser.add_argument('--zstd', type=float, default=1.0, help='augment std away from z') parser.add_argument('--uniformb', type=float, default=1.0, help='augment std away from z') # temperature parser.add_argument('--temp', type=float, default=0.1, help='temperature for loss function') # other setting parser.add_argument('--cosine', action='store_true', help='using cosine annealing') parser.add_argument('--syncBN', action='store_true', help='using synchronized batch normalization') parser.add_argument('--warm', action='store_true', help='warm-up for large batch training') parser.add_argument('--trial', type=str, default='0', help='id for recording multiple runs') # specifying folders parser.add_argument('-d', '--data_folder', type=str, default='/data/scratch-oc40/jahanian/ganclr_results/ImageNet100', help='the data folder') parser.add_argument('-s', '--cache_folder', type=str, default='/data/scratch-oc40/jahanian/ganclr_results/', help='the saving folder') opt = parser.parse_args() # set the path according to the environment opt.data_folder = opt.data_folder opt.model_path = os.path.join(opt.cache_folder, 'SupCon/{}_models'.format(opt.dataset)) opt.tb_path = os.path.join(opt.cache_folder, 'SupCon/{}_tensorboard'.format(opt.dataset)) iterations = opt.lr_decay_epochs.split(',') opt.lr_decay_epochs = list([]) for it in iterations: opt.lr_decay_epochs.append(int(it)) if opt.ganrndwalk: if opt.walktype == 'gaussian': walk_type = 'zstd_{}'.format(opt.zstd) elif opt.walktype == 'uniform': walk_type = 'uniform_{}'.format(opt.zstd) opt.model_name = '{}_{}_ganrndwalkonline_{}_{}_lr_{}_decay_{}_bsz_{}_temp_{}_trial_{}'.\ format(opt.method, opt.dataset, walk_type, opt.model, opt.learning_rate, opt.weight_decay, opt.batch_size, opt.temp, opt.trial) else: opt.model_name = '{}_{}_{}_lr_{}_decay_{}_bsz_{}_temp_{}_trial_{}'.\ format(opt.method, opt.dataset, opt.model, opt.learning_rate, opt.weight_decay, opt.batch_size, opt.temp, opt.trial) if opt.cosine: opt.model_name = '{}_cosine'.format(opt.model_name) # warm-up for large-batch training, if opt.batch_size > 256: opt.warm = True if opt.warm: opt.model_name = '{}_warm'.format(opt.model_name) opt.warmup_from = 0.01 opt.warm_epochs = 10 if opt.cosine: eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3) opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * ( 1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2 else: opt.warmup_to = opt.learning_rate opt.tb_folder = os.path.join(opt.tb_path, opt.model_name) if not os.path.isdir(opt.tb_folder): os.makedirs(opt.tb_folder) opt.save_folder = os.path.join(opt.model_path, opt.model_name) if not os.path.isdir(opt.save_folder): os.makedirs(opt.save_folder) if opt.dataset == 'biggan' or opt.dataset == 'imagenet100' or opt.dataset == 'imagenet100K' or opt.dataset == 'imagenet': # or 256 as you like opt.img_size = 128 elif opt.dataset == 'cifar10' or opt.dataset == 'cifar100': opt.img_size = 32 return opt def set_loader(opt): # construct data loader if opt.dataset == 'cifar10': mean = (0.4914, 0.4822, 0.4465) std = (0.2023, 0.1994, 0.2010) elif opt.dataset == 'cifar100': mean = (0.5071, 0.4867, 0.4408) std = (0.2675, 0.2565, 0.2761) elif opt.dataset == 'biggan' or opt.dataset == 'imagenet100' or opt.dataset == 'imagenet100K' or opt.dataset == 'imagenet': mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) else: raise ValueError('dataset not supported: {}'.format(opt.dataset)) normalize = transforms.Normalize(mean=mean, std=std) train_transform = transforms.Compose([ transforms.RandomResizedCrop(size=opt.img_size, scale=(0.2, 1.)), transforms.RandomHorizontalFlip(), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.ToTensor(), normalize, ]) train_dataset = OnlineGansetDataset(root_dir=os.path.join(opt.data_folder, 'train'), neighbor_std=opt.zstd, transform=train_transform, walktype='gaussian', device_id=1) train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None), num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler) return train_loader def set_model(opt): model = SupConResNet(name=opt.model, img_size=opt.img_size) criterion = SupConLoss(temperature=opt.temp) # enable synchronized Batch Normalization if opt.syncBN: model = apex.parallel.convert_syncbn_model(model) if torch.cuda.is_available(): if torch.cuda.device_count() > 1: model.encoder = torch.nn.DataParallel(model.encoder) model = model.cuda() criterion = criterion.cuda() cudnn.benchmark = True return model, criterion def train(train_loader, model, criterion, optimizer, epoch, opt, logger=None): """one epoch training""" model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() end = time.time() # for idx, (images, labels) in enumerate(train_loader): # data_time.update(time.time() - end) for idx, data_w in enumerate(train_loader): z, dz, one_hot_index, labels = data_w data_time.update(time.time() - end) images_z, im_orig_z = train_loader.dataset.gen_images_transform(z, one_hot_index) images_dz, im_orig_dz = train_loader.dataset.gen_images_transform(dz, one_hot_index) images = torch.cat([images_z.unsqueeze(1), images_dz.unsqueeze(1)], dim=1) images = images.view(-1, 3, opt.img_size, opt.img_size).cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) bsz = labels.shape[0] if idx % 1000 == 0: images_cat = [np.concatenate([np.array(im1), np.array(im2)], 1) for im1, im2 in zip(im_orig_z, im_orig_dz)] logger.log_images('im_anchor', images_cat[:2], step=epoch) # warm-up learning rate warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer) # compute loss features = model(images) features = features.view(bsz, 2, -1) if opt.method == 'SupCon': loss = criterion(features, labels) elif opt.method == 'SimCLR': loss = criterion(features) else: raise ValueError('contrastive method not supported: {}'. format(opt.method)) # update metric losses.update(loss.item(), bsz) # SGD optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # print info if (idx + 1) % opt.print_freq == 0: print('Train: [{0}][{1}/{2}]\t' 'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'DT {data_time.val:.3f} ({data_time.avg:.3f})\t' 'loss {loss.val:.3f} ({loss.avg:.3f})'.format( epoch, idx + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) sys.stdout.flush() return losses.avg def main(): opt = parse_option() # build data loader train_loader = set_loader(opt) # build model and criterion model, criterion = set_model(opt) # build optimizer optimizer = set_optimizer(opt, model) # tensorboard logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2) # training routine for epoch in range(1, opt.epochs + 1): adjust_learning_rate(opt, optimizer, epoch) # train for one epoch time1 = time.time() loss = train(train_loader, model, criterion, optimizer, epoch, opt, logger) time2 = time.time() print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1)) # tensorboard logger logger.log_value('loss', loss, epoch) logger.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch) if epoch % opt.save_freq == 0: save_file = os.path.join( opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch)) save_model(model, optimizer, opt, epoch, save_file) # save the last model save_file = os.path.join( opt.save_folder, 'last.pth') save_model(model, optimizer, opt, opt.epochs, save_file) if __name__ == '__main__': main() ``` #### File: GenRep/utils/generate_dataset_biggan.py ```python import torch from pytorch_pretrained_biggan import ( BigGAN, truncated_noise_sample, one_hot_from_int ) import PIL.Image import numpy as np import os import argparse from tqdm import tqdm import json def convert_to_images(obj): """ Convert an output tensor from BigGAN in a list of images. """ # need to fix import, see: https://github.com/huggingface/pytorch-pretrained-BigGAN/pull/14/commits/68a7446951f0b9400ebc7baf466ccc48cdf1b14c if not isinstance(obj, np.ndarray): obj = obj.detach().numpy() obj = obj.transpose((0, 2, 3, 1)) obj = np.clip(((obj + 1) / 2.0) * 256, 0, 255) img = [] for i, out in enumerate(obj): out_array = np.asarray(np.uint8(out), dtype=np.uint8) img.append(PIL.Image.fromarray(out_array)) return img def sample(opt): output_path = (os.path.join(opt.out_dir, 'biggan%dtr%d-%s_100classes' % (opt.size, int(opt.truncation), opt.imformat))) partition = opt.partition # start_seed, nimg = constants.get_seed_nimg(partition) start_seed = opt.start_seed nimg = opt.num_imgs model_name = 'biggan-deep-%s' % opt.size truncation = opt.truncation imformat = opt.imformat batch_size = opt.batch_size with open('./imagenet_class_index.json', 'rb') as fid: imagenet_class_index_dict = json.load(fid) list100 = os.listdir('/data/scratch-oc40/jahanian/ganclr_results/ImageNet100/train') model = BigGAN.from_pretrained(model_name).cuda() imagenet_class_index_keys = imagenet_class_index_dict.keys() for key in imagenet_class_index_keys: if imagenet_class_index_dict[key][0] not in list100: continue class_dir_name = os.path.join(output_path, partition, imagenet_class_index_dict[key][0]) os.makedirs(class_dir_name, exist_ok=True) idx = int(key) print('Generating images for class {}'.format(idx)) class_vector = one_hot_from_int(idx, batch_size=nimg) seed = start_seed + idx noise_vector = truncated_noise_sample(truncation=truncation, batch_size=nimg, seed=seed) class_vector = torch.from_numpy(class_vector).cuda() noise_vector = torch.from_numpy(noise_vector).cuda() for batch_start in range(0, nimg, batch_size): s = slice(batch_start, min(nimg, batch_start + batch_size)) with torch.no_grad(): output = model(noise_vector[s], class_vector[s], truncation) output = output.cpu() ims = convert_to_images(output) for i, im in enumerate(ims): im.save(os.path.join(class_dir_name, 'seed%04d_sample%05d.%s' % (seed, batch_start+i, imformat))) if __name__ == '__main__': parser = argparse.ArgumentParser("Sample from biggan") parser.add_argument('--out_dir', default='/data/scratch-oc40/jahanian/ganclr_results/', type=str) parser.add_argument('--partition', default='train', type=str) parser.add_argument('--truncation', default=1.0, type=float) parser.add_argument('--size', default=256, type=int) parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--imformat', default='png', type=str) parser.add_argument('--num_imgs', default=1300, type=int, help='num imgs per class') parser.add_argument('--start_seed', default=0, type=int) opt = parser.parse_args() sample(opt) ``` #### File: GenRep/utils/generate_dataset_biggan_steer.py ```python import torch import tqdm from pytorch_pretrained_biggan import ( BigGAN, truncated_noise_sample, one_hot_from_int ) import PIL.Image import numpy as np import os import argparse from tqdm import tqdm import json import pickle from scipy.stats import truncnorm import random import pixel_transformations import oyaml as yaml def convert_to_images(obj): """ Convert an output tensor from BigGAN in a list of images. """ # need to fix import, see: https://github.com/huggingface/pytorch-pretrained-BigGAN/pull/14/commits/68a7446951f0b9400ebc7baf466ccc48cdf1b14c if not isinstance(obj, np.ndarray): obj = obj.detach().numpy() obj = obj.transpose((0, 2, 3, 1)) obj = np.clip(((obj + 1) / 2.0) * 256, 0, 255) img = [] for i, out in enumerate(obj): out_array = np.asarray(np.uint8(out), dtype=np.uint8) img.append(PIL.Image.fromarray(out_array)) return img def sample(opt): model_name = opt.model_name output_path = opt.output_path partition = opt.partition # start_seed, nimg = constants.get_seed_nimg(partition) start_seed = opt.start_seed nimg = opt.num_imgs model_name = 'biggan-deep-%s' % opt.size truncation = opt.truncation imformat = opt.imformat batch_size = opt.batch_size # with open('./imagenet_class_index.json', 'rb') as fid: with open('../data/imagenet25_labels.json', 'rb') as fid: imagenet_class_index_dict = json.load(fid) imagenet_class_index_keys = list(imagenet_class_index_dict.keys()) print('Loading the model ...') model = BigGAN.from_pretrained(model_name) if torch.cuda.device_count() > 1: print('Using 2 gpus for G') model = torch.nn.DataParallel(model,device_ids=[0,1]) model.to('cuda') # load pretrained walk walk_composed_final_path = ('./walk_weights_biggan_deep/w_composed_final.pth') walk_composed_final = torch.load(walk_composed_final_path) walk_color = walk_composed_final['walk_color'].to('cuda') walk_rot3d = walk_composed_final['walk_rot3d'].to('cuda') walk_rot2d = walk_composed_final['walk_rot2d'].to('cuda') walk_zoom = walk_composed_final['walk_zoom'].to('cuda') walk_shiftx = walk_composed_final['walk_shiftx'].to('cuda') walk_shifty = walk_composed_final['walk_shifty'].to('cuda') # transforms rot3d_transform = pixel_transformations.Rot3dTransform() rot2d_transform = pixel_transformations.Rot2dTransform() zxy_transform = pixel_transformations.ZoomShiftXYTransform() color_transform = pixel_transformations.ColorTransform() random.shuffle(imagenet_class_index_keys) for key in tqdm(imagenet_class_index_keys): class_dir_name = os.path.join(output_path, partition, imagenet_class_index_dict[key][0]) if os.path.isdir(class_dir_name): continue os.makedirs(class_dir_name, exist_ok=True) idx = int(key) z_dict = dict() print('Generating images for class {}'.format(idx)) class_vectors = one_hot_from_int(idx, batch_size=nimg) class_vectors = torch.from_numpy(class_vectors).to('cuda') seed = start_seed + idx noise_vectors = truncated_noise_sample(truncation=truncation, batch_size=nimg, seed=seed) noise_vectors = torch.from_numpy(noise_vectors).to('cuda') for batch_start in range(0, nimg, batch_size): s = slice(batch_start, min(nimg, batch_start + batch_size)) ys = class_vectors[s] zs = noise_vectors[s] tbs = zs.shape[0] # get anchors with torch.no_grad(): out_anchors = model(zs, ys, truncation) out_anchors = out_anchors.cpu() ims_anchors = convert_to_images(out_anchors) # get neighbors for ii in range(opt.num_neighbors): # alphas for transforms # 3D _, alphas_rot3d_graph = rot3d_transform.get_alphas(tbs) alphas_rot3d_graph = torch.tensor(alphas_rot3d_graph, device='cuda', dtype=torch.float32) # 2D _, alphas_rot2d_graph = rot2d_transform.get_alphas(tbs) alphas_rot2d_graph = torch.tensor(alphas_rot2d_graph, device='cuda', dtype=torch.float32) # Zoom, shiftx, shifty alphas_zxy = zxy_transform.get_alphas(tbs) alphas_zoom_graph = torch.tensor(alphas_zxy[1], device='cuda', dtype=torch.float32) alphas_shiftx_graph = torch.tensor(alphas_zxy[3], device='cuda', dtype=torch.float32) alphas_shifty_graph = torch.tensor(alphas_zxy[5], device='cuda', dtype=torch.float32) # Color _, alphas_color_graph = color_transform.get_alphas(tbs) alphas_color_graph = torch.tensor(alphas_color_graph, device='cuda', dtype=torch.float32) # generate neighbors z_new = zs + 5*alphas_rot3d_graph * walk_rot3d + alphas_rot2d_graph * walk_rot2d + \ alphas_zoom_graph * walk_zoom + alphas_shiftx_graph * walk_shiftx + alphas_shifty_graph * walk_shifty for c in range(color_transform.num_channels): z_new = z_new + alphas_color_graph[:,c].unsqueeze(1) * walk_color[:,:,c] with torch.no_grad(): out_neighbors = model(z_new, ys, truncation) out_neighbors = out_neighbors.cpu() ims_neighbors = convert_to_images(out_neighbors) # save anchor and its neighbors # save anchors for b in range(tbs): if ii == 0: im = ims_anchors[b] im_name = 'seed%04d_sample%05d_anchor.%s' % (seed, batch_start+b, imformat) im.save(os.path.join(class_dir_name, im_name)) z_dict[im_name] = [zs[b].cpu().numpy(), idx] im = ims_neighbors[b] im_name = 'seed%04d_sample%05d_neighbor_%d.%s' % (seed, batch_start+b, ii, imformat) im.save(os.path.join(class_dir_name, im_name)) z_dict[im_name] = [z_new[b].detach().cpu().numpy(), idx] with open(os.path.join(class_dir_name, 'z_dataset.pkl'), 'wb') as fid: pickle.dump(z_dict,fid) pix_transforms_alphas_dict = {'rot3d_alpha_max': rot3d_transform.alpha_max, 'rot2d_alpha_max': rot2d_transform.alpha_max, 'zoom_alpha_max': zxy_transform.alpha_max_zoom, 'shiftxy_alpha_max': zxy_transform.alpha_max_shift, 'color_alpha_max': color_transform.alpha_max} return pix_transforms_alphas_dict if __name__ == '__main__': parser = argparse.ArgumentParser("Sample from biggan") parser.add_argument('--out_dir', default='/eva_data/zchin/steer_img', type=str) parser.add_argument('--partition', default='train', type=str) parser.add_argument('--truncation', default=1.0, type=float) parser.add_argument('--size', default=256, type=int) parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--imformat', default='png', type=str) parser.add_argument('--num_imgs', default=1300, type=int, help='num imgs per class') parser.add_argument('--start_seed', default=0, type=int) parser.add_argument('--num_neighbors', default=20, type=int, help='num samples per anchor') parser.add_argument('--desc', default='steer_pth_imagenet100', type=str, help='this will be the tag of this specfic dataset, added to the end of the dataset name') opt = parser.parse_args() print(opt) model_name = 'biggan-deep-%s' % opt.size output_path = (os.path.join(opt.out_dir, '{}_tr{}_{}_N{}'.format(model_name, opt.truncation, opt.desc, opt.num_neighbors))) parser.add_argument('--model_name', default=model_name) parser.add_argument('--output_path', default=output_path) opt = parser.parse_args() print(opt) pix_transforms_alphas_dict = sample(opt) with open(os.path.join(opt.output_path, opt.partition, 'steer_alphas_config.yml'), 'w') as fid: yaml.dump(pix_transforms_alphas_dict, fid, default_flow_style=False) ``` #### File: GenRep/utils/vis_html.py ```python from os import listdir import pdb from os.path import isfile, join, basename, isfile import numpy as np import random def make_html(home_dir): random.seed(0) std_list = ['0.1', '0.2', '0.5', '1.0'] try: index_html_path = join(home_dir, "index.html") print('Saving index file in', index_html_path) fid = open(index_html_path, 'w', encoding = 'utf-8') fid.write('<table style="text-align:center;">') header_str = '<tr><td>anchore filename</td><td>anchore</td>' for i in range(len(std_list)): header_str += '<td>std_'+std_list[i]+'</td>' header_str += '</tr>' fid.write(header_str) dir_list = sorted(listdir(home_dir)) #random.shuffle(dir_list) # for ii in range(len(dir_list)): for ii in range(100): print(ii) images_dir = join(home_dir, dir_list[ii]) if isfile(images_dir): continue file_names = sorted([f for f in listdir(images_dir) if join(images_dir, f).endswith('_anchor.png')]) file_names = file_names[:3] for i in range(len(file_names)): fid.write('<tr>') anchor_file_name = join('.', basename(images_dir), file_names[i]) fid.write('<td>' + anchor_file_name + '</td>') fid.write('<td><a href="' + anchor_file_name + '"><img src="' + anchor_file_name + '"/></a></td>') for j in range(len(std_list)): std_file_name = anchor_file_name.replace('anchor', std_list[j]) fid.write('<td><a href="' + std_file_name + '"><img src="' + std_file_name + '"/></a></td>') fid.write('</tr>') fid.write('</table>') finally: fid.close() make_html('/data/vision/torralba/scratch/xavierpuig/ganclr_results/gan_samples/biggan256tr1-png_steer_rndball_100/train') make_html('/data/vision/torralba/scratch/xavierpuig/ganclr_results/gan_samples/biggan256tr1-png_steer_rndgaussian_100/train') # make_html('./utils/val') ```
{ "source": "joycenerd/image-super-resolution", "score": 2 }
#### File: SRFBN_CVPR19/scripts/Prepare_TrainData_HR_LR.py ```python from glob import glob from flags import * import os from scipy import misc import numpy as np import datetime import imageio from multiprocessing.dummy import Pool as ThreadPool import argparse parser = argparse.ArgumentParser() parser.add_argument('--save-dir', type=str, default='/eva_data/zchin/srfbn_data', help='save directory of images after pre-processing') parser.add_argument('--dataroot', type=str, default='/eva_data/zchin/vrdl_hw4_data', help='raw hr training images') parser.add_argument('--mode', type=str, default='train', help='all_train, train or val') args = parser.parse_args() starttime = datetime.datetime.now() if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) save_HR_path = os.path.join(args.save_dir, args.mode, 'HR_x3') save_LR_path = os.path.join(args.save_dir, args.mode, 'LR_x3') os.makedirs(save_HR_path, exist_ok=True) os.makedirs(save_LR_path, exist_ok=True) train_HR_dir = os.path.join(args.dataroot, args.mode) file_list = sorted(glob(os.path.join(train_HR_dir, '*.png'))) # print(file_list) HR_size = [100, 0.8, 0.7, 0.6, 0.5] def save_HR_LR(img, size, path, idx): HR_img = misc.imresize(img, size, interp='bicubic') HR_img = modcrop(HR_img, 3) rot180_img = misc.imrotate(HR_img, 180) x4_img = misc.imresize(HR_img, 1 / 3, interp='bicubic') x4_rot180_img = misc.imresize(rot180_img, 1 / 3, interp='bicubic') img_path = path.split('/')[-1].split('.')[0] + '_rot0_' + 'ds' + str(idx) + '.png' rot180img_path = path.split('/')[-1].split('.')[0] + '_rot180_' + 'ds' + str(idx) + '.png' x4_img_path = path.split('/')[-1].split('.')[0] + '_rot0_' + 'ds' + str(idx) + '.png' x4_rot180img_path = path.split('/')[-1].split('.')[0] + '_rot180_' + 'ds' + str(idx) + '.png' misc.imsave(save_HR_path + '/' + img_path, HR_img) misc.imsave(save_HR_path + '/' + rot180img_path, rot180_img) misc.imsave(save_LR_path + '/' + x4_img_path, x4_img) misc.imsave(save_LR_path + '/' + x4_rot180img_path, x4_rot180_img) def modcrop(image, scale=3): if len(image.shape) == 3: h, w, _ = image.shape h = h - np.mod(h, scale) w = w - np.mod(w, scale) image = image[0:h, 0:w, :] else: h, w = image.shape h = h - np.mod(h, scale) w = w - np.mod(w, scale) image = image[0:h, 0:w] return image def main(path): print('Processing-----{}/0800'.format(path.split('/')[-1].split('.')[0])) img = imageio.imread(path) idx = 0 for size in HR_size: save_HR_LR(img, size, path, idx) idx += 1 items = file_list pool = ThreadPool() pool.map(main, items) pool.close() pool.join() endtime = datetime.datetime.now() print((endtime - starttime).seconds) ```
{ "source": "joycenerd/Machine_Learning_2021", "score": 3 }
#### File: Machine_Learning_2021/HW5/gaussian_process.py ```python import numpy as np import matplotlib.pyplot as plt import scipy.optimize INPUT_SIZE = 34 DATA_PATH = "./data/" BETA = 5 RESULT_PATH = "./results/" def get_kernel(x, x_prime, theta): # rational quadratic kernel: sigma^2*(1+(x-x_prime)^2/(2*alpha*length_scale^2))^(-alpha) sigma, alpha, length_scale = theta x = x.reshape(-1, 1) x_prime = x_prime.reshape(1, -1) divisor = 1+(x-x_prime)*(x-x_prime) dividend = 2*alpha*length_scale**2 kernel = sigma**2*np.power(divisor/dividend, -alpha) return kernel def predict(test_x, train_x, train_y, theta): kernel = get_kernel(train_x, train_x, theta) # k(x,x) C = kernel + 1/BETA*np.eye(INPUT_SIZE) k_x_xstar = get_kernel(train_x, test_x, theta) # k(x,x*) k_xstar_xstar = get_kernel(test_x, test_x, theta) # k(x*,x*) # predictive distribution # predictive_mean=k(x,x*)^T*C^(-1)*y pred_mean = [email protected](C)@train_y pred_mean = pred_mean.reshape(-1) # predictive_variance=k(x*,x*)-k(x,x*)^T*C^(-1)*k(x,x*) pred_var = [email protected](C)@k_x_xstar pred_var = np.sqrt(np.diag(pred_var)) return pred_mean, pred_var def get_log_likelihood(theta, *args): train_x, train_y = args kernel = get_kernel(train_x, train_x, theta) C = kernel + 1/BETA*np.eye(INPUT_SIZE) # log(p(y|X)) = min( 0.5 * (y.T*C^(-1)*y + log(det(C)) + N*log(2*pi))) log_likelihood = [email protected](C)@train_y+np.sum( np.log(np.diagonal(np.linalg.cholesky(kernel))))+INPUT_SIZE*np.log(2*np.pi) log_likelihood /= 2.0 return log_likelihood if __name__ == "__main__": train_x = np.zeros(INPUT_SIZE) train_y = np.zeros(INPUT_SIZE) data = open(DATA_PATH+"input.data") for i, coordinate in enumerate(data): train_x[i], train_y[i] = coordinate.strip("\n").split() test_x = np.linspace(-60, 60, 500) theta = np.ones(3) pred_mean, pred_var = predict(test_x, train_x, train_y, theta) # plot the result plt.figure(figsize=(10, 10)) plt.scatter(train_x, train_y) plt.plot(test_x, pred_mean) plt.fill_between(test_x, pred_mean+2*pred_var, pred_mean-2*pred_var, alpha=0.3) plt.title( f"Initial Gaussian Process sigma={theta[0]}, alpha={theta[1]}, length scale={theta[2]}") plt.savefig(RESULT_PATH+"initial_gaussian_process.jpg") plt.show() # Optimize the kernel parameters x0 = np.ones(3) opt_param = scipy.optimize.minimize( get_log_likelihood, args=(train_x, train_y), x0=x0, method='CG').x pred_mean, pred_var = predict(test_x, train_x, train_y, opt_param) # plot the result plt.figure(figsize=(10, 10)) plt.scatter(train_x, train_y) plt.plot(test_x, pred_mean) plt.fill_between(test_x, pred_mean+2*pred_var, pred_mean-2*pred_var, alpha=0.3) plt.title( f"Optimize Gaussian Process sigma={opt_param[0]}, opt_param={theta[1]}, length scale={opt_param[2]}") plt.savefig(RESULT_PATH+"optimize_gaussian_process.jpg") plt.show() ``` #### File: Machine_Learning_2021/HW6/kernel_K_means.py ```python from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from PIL import Image import numpy as np from glob import glob import argparse import time import os parser = argparse.ArgumentParser() parser.add_argument("--clusters", type=int, default=4, help="Number of clusters") parser.add_argument("--gamma-s", type=float, default=2.5, help="hyperparameter gamma_s in the kernel") parser.add_argument("--gamma-c", type=float, default=2.5, help="hyperparameter gamma_c in the kernel") parser.add_argument("--iterations", type=int, default=50, help="Maximum iteration for K-means") parser.add_argument("--init-mode", type=str, default="k-means++", help="initialize cluster mode") parser.add_argument("--kernel-type", type=str, default="tanh", help="kernel function type") parser.add_argument("--kappa", type=float, default=0.25, help="kappa value for hyperbolic tangent kernal") parser.add_argument("--c", type=float, default=0.3, help="constant value for hyperbolic tangent kernel") args = parser.parse_args() print("".join(f"{k}={v}\n" for k, v in vars(args).items())) DATA_PATH = "./data/" SAVE_PATH = "./results/" def get_kernel(img, h, w): img = img.reshape(h * w, 3) img = img / 255.0 coor = [] for i in range(w): for j in range(h): coor.append([i, j]) coor = np.array(coor, dtype=float) coor = coor / 100.0 if args.kernel_type == "rbf": pix_dist = cdist(img, img, "sqeuclidean") spatial_dist = cdist(coor, coor, "sqeuclidean") # e^-gamma_s*spatial_dist x e^-gamma_c*color_dist g_s = args.gamma_s g_c = args.gamma_c gram_matrix = np.multiply(np.exp(-g_s * spatial_dist), np.exp(-g_c * pix_dist)) elif args.kernel_type == "tanh": kappa = args.kappa c = args.c # tanh(kappa*xi*xj+c) pix_dist = np.tanh(kappa * img @ img.T + c) spatial_dist = np.tanh(kappa * coor @ coor.T + c) gram_matrix = np.multiply(pix_dist, spatial_dist) return gram_matrix def init_cluster(h, w, img): if args.init_mode == "random": cluster = np.random.randint(args.clusters, size=h * w) elif args.init_mode == "nearest_neighbor": coor = [] for i in range(w): for j in range(h): coor.append([i, j]) coor = np.array(coor, dtype=float) coor = coor / 100.0 center = np.random.choice(h * w, size=args.clusters) center_idx = coor[center] dist = cdist(center_idx, coor, metric="sqeuclidean") cluster = np.argmin(dist, axis=0) elif args.init_mode == "k-means++": # 1. Choose one center uniformly at random among the data points. # 2. For each data point x not chosen yet, compute D(x), the distance between x and the nearest center that has already been chosen. # 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to D(x)2. # 4. Repeat Steps 2 and 3 until k centers have been chosen. img = img.reshape(-1, 3) img = img / 255.0 first_mean = np.random.choice(h * w, size=1) center = np.full(args.clusters, first_mean, dtype=int) center_val = img[center] for i in range(1, args.clusters): dist = cdist(center_val, img, metric="sqeuclidean") min_dist = np.min(dist, axis=0) center[i] = np.random.choice(h * w, size=1, p=min_dist ** 2 / np.sum(min_dist ** 2)) center_val = img[center] dist = cdist(center_val, img, metric="sqeuclidean") cluster = np.argmin(dist, axis=0) return cluster def run(h, w, gram_matrix, img): K = args.clusters all_alpha = [] # initialize the clusters alpha = init_cluster(h, w, img) all_alpha.append(alpha.reshape(h, w)) # Kernel K-means for iter in range(1, args.iterations + 1): first_term = np.diag(gram_matrix).reshape(-1, 1) # 2/|C_k|*sum_n(alpha_kn*k(xj,xn)) C = np.zeros(K, dtype=float) for i in range(K): C[i] = np.count_nonzero(alpha == i) if C[i] == 0: C[i] = 1 second_term = np.zeros((h * w, K), dtype=float) for k in range(K): second_term[:, k] = np.sum(gram_matrix[:, alpha == k], axis=1) second_term *= -2.0 / C # 1/|C_k|^2 alpha_kp*alpha_kq*k(xp,xq) third_term = np.zeros(K, dtype=float) for k in range(K): third_term[k] = np.sum(gram_matrix[alpha == k, :][:, alpha == k]) third_term = third_term / (C ** 2) new_alpha = np.argmin(first_term + second_term + third_term, axis=1) all_alpha.append(new_alpha) if np.array_equal(alpha, new_alpha): print(f"Converge in {iter}th iterations!") break alpha = new_alpha # print(f"Iteration #{iter} complete...") return all_alpha def plot_result(all_alpha, img_name): save_dir = SAVE_PATH + img_name if not os.path.isdir(save_dir): os.mkdir(save_dir) color = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0]], dtype=float) imgs = [] for i in range(len(all_alpha)): out_img = color[all_alpha[i]] out_img = out_img.reshape((h, w, 3)) plt.imsave(f"{save_dir}/{img_name}_{i}.png", out_img) imgs.append(Image.fromarray(np.uint8(out_img * 255))) video_path = SAVE_PATH + "video/" + img_name + ".gif" imgs[0].save(video_path, format="GIF", append_images=imgs[1:], loop=0, save_all=True, duration=300) if __name__ == "__main__": start_time = time.time() for img_path in glob(DATA_PATH + "*"): print(f"Start processing {img_path}") img = Image.open(img_path) img_path = os.path.normpath(img_path) path_list = img_path.split(os.sep) img_name = path_list[-1][:-4] img = np.array(img) h, w, _ = img.shape gram_matrix = get_kernel(img, h, w) print("Get gram matrix complete...") all_alpha = run(h, w, gram_matrix, img) img_name += f"_k{args.clusters}_{args.init_mode}_{args.kernel_type}" plot_result(all_alpha, img_name) print("Plotting complete...") print(f"--- {time.time()-start_time} seconds ---") ``` #### File: Machine_Learning_2021/HW6/spectral_clustering.py ```python from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from numpy.linalg import eig from PIL import Image import numpy as np import argparse import glob import time import os parser = argparse.ArgumentParser() parser.add_argument("--kernel-type", type=str, default="rbf", help="kernel function type") parser.add_argument("--gamma-s", type=float, default=2.5, help="hyperparameter gamma_s in the rbf kernel") parser.add_argument("--gamma-c", type=float, default=2.5, help="hyperparameter gamma_c in the rbf kernel") parser.add_argument("--sigma", type=float, default=0.1, help="Sigma value for Laplace rbf kernel") parser.add_argument("--cut", type=str, default="normalized", help="ratio or normalized cut") parser.add_argument("--K", type=int, default=2, help="number of clusters") parser.add_argument("--init-mode", type=str, default="k-means++", help="initialize cluster mode") parser.add_argument("--iterations", type=str, default=50, help="Maximum iterations for K-means to run") args = parser.parse_args() print("".join(f"{k}={v}\n" for k, v in vars(args).items())) DATA_PATH = "./data/" SAVE_PATH = "./results/" def get_kernel(img, h, w): img = img.reshape(h * w, 3) img = img / 255.0 coor = [] for i in range(w): for j in range(h): coor.append([i, j]) coor = np.array(coor, dtype=float) coor = coor / 100.0 if args.kernel_type == "rbf": pix_dist = cdist(img, img, "sqeuclidean") spatial_dist = cdist(coor, coor, "sqeuclidean") # e^-gamma_s*spatial_dist x e^-gamma_c*color_dist g_s = args.gamma_s g_c = args.gamma_c gram_matrix = np.multiply( np.exp(-g_s * spatial_dist), np.exp(-g_c * pix_dist)) elif args.kernel_type == "Laplace_rbf": sigma = args.sigma pix_dist = cdist(img, img, metric="minkowski", p=1) spatial_dist = cdist(coor, coor, metric="minkowski", p=1) gram_matrix = np.multiply( np.exp(-1 / sigma * spatial_dist), np.exp(-1/sigma * pix_dist)) return gram_matrix def get_img_name(img_path): img_path = os.path.normpath(img_path) path_list = img_path.split(os.sep) img_name = path_list[-1][:-4] return img_name def get_graph_Laplacian(W): cut_type = args.cut d = np.sum(W, axis=1) D = np.diag(d) # degree matrix D=[dii] if cut_type == "ratio": L = D - W elif cut_type == "normalized": L = np.sqrt(D) @ (D - W) @ np.sqrt(D) return L def eigen_decomposition(img_name, L): cut = args.cut K = args.K kernel_type = args.kernel_type eigval_f = DATA_PATH + f"eigval_{img_name}_{cut}_{kernel_type}.npy" eigvec_f = DATA_PATH + f"eigvec_{img_name}_{cut}_{kernel_type}.npy" if os.path.exists(eigval_f): eigval = np.load(eigval_f) eigvec = np.load(eigvec_f) else: eigval, eigvec = eig(L) np.save(eigval_f, eigval) np.save(eigvec_f, eigvec) order = np.argsort(eigval) sorted_eigvec = eigvec[:, order] U = sorted_eigvec[:, 1: K + 1] T = U.copy() if cut == "normalized": for i, u in enumerate(U): T[i, :] = u / np.sqrt(np.sum(u ** 2)) return T def init_cluster(data, img): K = args.K mode = args.init_mode if mode == "random": rand_idx = np.random.choice(data.shape[0], size=K) mean = data[rand_idx] dist = cdist(mean, data, metric="sqeuclidean") cluster = np.argmin(dist, axis=0) elif mode == "k-means++": # 1. Choose one center uniformly at random among the data points. # 2. For each data point x not chosen yet, compute D(x), the distance between x and the nearest center that has already been chosen. # 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to D(x)2. # 4. Repeat Steps 2 and 3 until k centers have been chosen. img = img.reshape(-1, 3) img = img / 255.0 first_mean = np.random.choice(h * w, size=1) center = np.full(K, first_mean, dtype=int) center_val = img[center] for i in range(1, K): dist = cdist(center_val, img, metric="sqeuclidean") min_dist = np.min(dist, axis=0) center[i] = np.random.choice( h * w, size=1, p=min_dist ** 2 / np.sum(min_dist ** 2)) center_val = img[center] dist = cdist(center_val, img, metric="sqeuclidean") cluster = np.argmin(dist, axis=0) return cluster def run(data, h, w, img): iterations = args.iterations K = args.K all_alpha = [] alpha = init_cluster(data, img) all_alpha.append(alpha.reshape(h, w)) for iter in range(iterations): cnt = np.zeros(K, dtype=float) for i in range(K): cnt[i] = np.count_nonzero(alpha == i) if cnt[i] == 0: cnt[i] = 1 mean = np.zeros((K, K), dtype=float) for i in range(K): mean[i] = np.sum(data[alpha == i, :], axis=0) mean[i] = mean[i]/cnt[i] dist = cdist(mean, data, metric="sqeuclidean") new_alpha = np.argmin(dist, axis=0) all_alpha.append(new_alpha.reshape(h, w)) if np.array_equal(alpha, new_alpha): print(f"Converge in {iter+1}th iterations!") break alpha = new_alpha all_alpha = np.array(all_alpha) return all_alpha def plot_result(all_alpha, img_name, data): K = args.K mode = args.init_mode kernel_type = args.kernel_type cut = args.cut img_name += f"_{cut}_k{K}_{kernel_type}_{mode}" # export video .gif save_dir = SAVE_PATH + img_name if not os.path.isdir(save_dir): os.mkdir(save_dir) color = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0]], dtype=float) imgs = [] for i in range(len(all_alpha)): out_img = color[all_alpha[i]] out_img = out_img.reshape((h, w, 3)) plt.imsave(f"{save_dir}/{img_name}_{i}.png", out_img) imgs.append(Image.fromarray(np.uint8(out_img * 255))) video_path = SAVE_PATH + "spectral_video/" + img_name + ".gif" imgs[0].save(video_path, format="GIF", append_images=imgs[1:], loop=0, save_all=True, duration=300) # plot eigenspace alpha = all_alpha[-1] alpha = np.array(alpha) alpha = alpha.reshape(-1) if K == 2: plt.figure(figsize=(10, 10)) plt.scatter(data[alpha == 0, 0], data[alpha == 0, 1], c='yellow') plt.scatter(data[alpha == 1, 0], data[alpha == 1, 1], c='blue') plt.title(f"Eigendspace {cut} K={K} {kernel_type} {mode}") eigen_path = SAVE_PATH+"eigenspace/"+img_name+".png" plt.savefig(eigen_path) plt.show() if __name__ == "__main__": start_time = time.time() for img_path in glob.glob(DATA_PATH + "*.png"): img_name = get_img_name(img_path) img = Image.open(img_path, "r") img = np.array(img) h, w, _ = img.shape W = get_kernel(img, h, w) L = get_graph_Laplacian(W) T = eigen_decomposition(img_name, L) all_alpha = run(T, h, w, img) plot_result(all_alpha, img_name, T) print(f"--- {time.time()-start_time} seconds ---") ``` #### File: Machine_Learning_2021/HW7/kernel_eigenface.py ```python from scipy.spatial.distance import cdist from numpy.linalg import eig, norm, pinv import matplotlib.pyplot as plt from PIL import Image import numpy as np import argparse import ntpath import glob import os parser = argparse.ArgumentParser() parser.add_argument("--option", type=str, default="PCA", help="Choose which task to do: [PCA, LDA]") parser.add_argument("--img-size", type=int, default=50, help="image resize shape") parser.add_argument("--kernel-type", type=str, default="linear", help="kernel type for PCA/LDA: [linear, polynomial, rbf]") parser.add_argument("--gamma", type=float, default=1, help="gamma value for polynomial or rbf kernel") parser.add_argument("--coeff", type=int, default=2, help="coeff value for polynomial kernel") parser.add_argument("--degree", type=int, default=20, help="degree value for polynomial kernel") args = parser.parse_args() DATA_PATH = "./Yale_Face_Database/" SAVE_PATH = "./results/" def read_data(data_path): img_size = args.img_size data = [] filepath = [] label = [] for file in glob.glob(data_path+"*"): # file path (135,) filepath.append(file) # data (135,10000) image = Image.open(file) image = image.resize((img_size, img_size), Image.ANTIALIAS) image = np.array(image) data.append(image.ravel()) # label (135,) _, tail = ntpath.split(file) label.append(int(tail[7:9])) return np.array(data), filepath, np.array(label) def get_eig(data, method, kernel_type="none"): # get eigenvalue and eigenvector by np.linalg.eig() eigval, eigvec = eig(data) # sort by decreasing order of eigenvalues idx = eigval.argsort()[::-1] eigval = eigval[idx] eigvec = eigvec[:, idx] return eigval, eigvec def get_kernel(X): kernel_type = args.kernel_type gamma = args.gamma coeff = args.coeff degree = args.degree if kernel_type == "linear": kernel = [email protected] elif kernel_type == "polynomial": kernel = np.power(gamma*([email protected])+coeff, degree) elif kernel_type == "rbf": kernel = np.exp(-gamma*cdist(X, X, metric="sqeuclidean")) return kernel def pca(x, kernel_type=None, kernel=None): if kernel_type == None: x_bar = np.mean(x, axis=0) cov = (x-x_bar)@(x-x_bar).T eigval, eigvec = get_eig(cov, "pca") # project data eigvec = (x-x_bar).T@eigvec else: x_bar = 0 # cetralize the kernel n = kernel.shape[0] one = np.ones((n, n), dtype=float) one *= 1.0/n kernel = kernel - one @ kernel - kernel @ one + one @ kernel @ one eigval, eigvec = get_eig(kernel, "pca", kernel_type) for i in range(eigvec.shape[1]): eigvec[:, i] *= 1/norm(eigvec[:, i], 1) # get the top 25 eigenvectors W = eigvec[:, :25].real return x_bar, W def draw_eigenface(W, name): img_size = args.img_size # save eigenface in 5x5 grid for i in range(5): for j in range(5): idx = i * 5 + j plt.subplot(5, 5, idx + 1) plt.imshow(W[:, idx].reshape((img_size, img_size)), cmap='gray') plt.axis('off') plt.savefig(SAVE_PATH+name+".jpg") def lda(X, label, kernel_type="none", dims=25): (n, d) = X.shape label = np.asarray(label) c = np.unique(label) mu = np.mean(X, axis=0) S_w = np.zeros((d, d), dtype=np.float64) S_b = np.zeros((d, d), dtype=np.float64) # Sw=(xi-mj)*(xi-mj)^T # Sb=nj*(mj-m)*(mj-m)^T for i in c: X_i = X[np.where(label == i)[0], :] mu_i = np.mean(X_i, axis=0) S_w += (X_i - mu_i).T @ (X_i - mu_i) S_b += X_i.shape[0] * ((mu_i - mu).T @ (mu_i - mu)) # get eigenvalues and eigenvectors S = pinv(S_w) @ S_b eigen_val, eigen_vec = get_eig(S, "lda", kernel_type) for i in range(eigen_vec.shape[1]): eigen_vec[:, i] = eigen_vec[:, i] / norm(eigen_vec[:, i]) W = eigen_vec[:, :25].real return W def reconstruct(data, W, method, m=None): img_size = args.img_size if method == "pca": reconstruction = (data-m)@[email protected]+m elif method == "lda": reconstruction = <EMAIL> idx = 1 for i in range(2): for j in range(5): plt.subplot(2, 5, idx) plt.imshow(reconstruction[idx-1, :].reshape( (img_size, img_size)), cmap='gray') plt.axis('off') idx += 1 plt.savefig(SAVE_PATH+method+"_reconstruction"+".jpg") def face_recognition(train_data, train_label, test_data, test_label): num_of_train = train_label.shape[0] num_of_test = test_label.shape[0] dist_mat = np.zeros((num_of_test, num_of_train), dtype=float) # calculate distance for i in range(num_of_test): dist = np.zeros(num_of_train, dtype=float) for j in range(num_of_train): dist[j] = np.sum((test_data[i, :]-train_data[j, :])**2) dist = np.argsort(dist) dist_mat[i, :] = label[dist] # KNN K = [1, 3, 5, 7, 9, 11] best_acc = 0.0 for k in K: correct = 0.0 for i in range(num_of_test): dist = dist_mat[i, :] dist = dist[:k] val, cnt = np.unique(dist, return_counts=True) most_cnt = np.argmax(cnt) pred = val[most_cnt] if pred == test_label[i]: correct += 1 acc = correct/num_of_test print(f"Face recognition accuracy when K={k}: {acc:.4}") if acc > best_acc: best_acc = acc best_K = k print(f"Best K: {best_K}\tBest accuracy: {best_acc:.4}") def project(train_data, test_data, W, m=0): # data dimensionality reductionn option = args.option if option == "PCA": train_proj = (train_data-m)@W test_proj = (test_data-m)@W elif option == "LDA": train_proj = train_data@W test_proj = test_data@W return train_proj, test_proj if __name__ == "__main__": option = args.option kernel_type = args.kernel_type # read training and testing data train_data, train_filepath, train_label = read_data(DATA_PATH+"Training/") test_data, test_filepath, test_label = read_data(DATA_PATH+"Testing/") data = np.vstack((train_data, test_data)) # (165,10000) filepath = np.hstack((train_filepath, test_filepath)) # (165,) label = np.hstack((train_label, test_label)) # (165,) num_of_data = label.shape[0] print(f"Num of data: {num_of_data}") if option == "PCA": rand_idx = np.random.randint(num_of_data, size=10) samples = data[rand_idx, :] # (10,10000) x_bar, W = pca(data) draw_eigenface(W, "eigenface") print("eigenface completed...") reconstruct(samples, W, "pca", x_bar) print("reconstruction completed...") train_proj, test_proj = project(train_data, test_data, W, x_bar) face_recognition(train_proj, train_label, test_proj, test_label) print("pca face recognition completed...\n") # python kernel_eigenface.py --option PCA --kernel-type polynomial --gamma 5 --coeff 1 --degree 2 # python kernel_eigenface.py --option PCA --kernel-type rbf --gamma 1e-7 kernel = get_kernel(data) _, W = pca(data, kernel_type, kernel) train_kernel = kernel[:train_label.shape[0], :] test_kernel = kernel[train_label.shape[0]:, :] train_proj, test_proj = project(train_kernel, test_kernel, W) face_recognition(train_proj, train_label, test_proj, test_label) print( f"kernel pca with {kernel_type} kernel face recognition completed...") if option == "LDA": rand_idx = np.random.randint(num_of_data, size=10) samples = data[rand_idx, :] # (10,10000) W = lda(data, label) draw_eigenface(W, "fisherface") print("fisherface completed...") reconstruct(samples, W, "lda") print("reconstruction completed...") train_proj, test_proj = project(train_data, test_data, W) face_recognition(train_proj, train_label, test_proj, test_label) print("lda face recognition completed...\n") # python kernel_eigenface.py --option LDA --kernel-type polynomial --gamma 1 --coeff 2 --degree 20 # python kernel_eigenface.py --option PCA --kernel-type rbf --gamma 1e-4 kernel = get_kernel(data.T) W = lda(kernel, kernel_type) train_kernel = kernel[:train_label.shape[0], :] test_kernel = kernel[train_label.shape[0]:, :] train_proj, test_proj = project(train_kernel, test_kernel, W) face_recognition(train_proj, train_label, test_proj, test_label) print( f"kernel lda with {kernel_type} kernel face recognition completed...") ```
{ "source": "joycenerd/ML_2020", "score": 2 }
#### File: ML_2020/project_1/opt.py ```python import argparse def parse_args(): parser=argparse.ArgumentParser() parser.add_argument('--cuda_devices', type=int, default=0, help='gpu device number') return parser.parse_args() ```
{ "source": "joycenerd/MPO_Reimplementation", "score": 3 }
#### File: MPO_Reimplementation/my_mpo/actor.py ```python import torch.nn.functional as F import torch.nn as nn import torch from torch.distributions import MultivariateNormal from torch.distributions import Categorical class Actor(nn.Module): """ Policy network :param env: OpenAI gym environment """ def __init__(self, env): super(Actor, self).__init__() self.env = env self.ds = env.observation_space.shape[0] self.da = env.action_space.shape[0] self.lin1 = nn.Linear(self.ds, 256) self.lin2 = nn.Linear(256, 256) self.mean_layer = nn.Linear(256, self.da) self.cholesky_layer = nn.Linear(256, (self.da * (self.da + 1)) // 2) def forward(self, state): """ forwards input through the network :param state: (B, ds) :return: mean vector (B, da) and cholesky factorization of covariance matrix (B, da, da) """ device = state.device B = state.size(0) ds = self.ds da = self.da action_low = torch.from_numpy(self.env.action_space.low)[None, ...].to(device) # (1, da) action_high = torch.from_numpy(self.env.action_space.high)[None, ...].to(device) # (1, da) x = F.relu(self.lin1(state)) x = F.relu(self.lin2(x)) mean = torch.sigmoid(self.mean_layer(x)) # (B, da) mean = action_low + (action_high - action_low) * mean cholesky_vector = self.cholesky_layer(x) # (B, (da*(da+1))//2) cholesky_diag_index = torch.arange(da, dtype=torch.long) + 1 cholesky_diag_index = (cholesky_diag_index * (cholesky_diag_index + 1)) // 2 - 1 cholesky_vector[:, cholesky_diag_index] = F.softplus(cholesky_vector[:, cholesky_diag_index]) tril_indices = torch.tril_indices(row=da, col=da, offset=0) cholesky = torch.zeros(size=(B, da, da), dtype=torch.float32).to(device) cholesky[:, tril_indices[0], tril_indices[1]] = cholesky_vector return mean, cholesky def action(self, state): """ :param state: (ds,) :return: an action """ with torch.no_grad(): mean, cholesky = self.forward(state[None, ...]) action_distribution = MultivariateNormal(mean, scale_tril=cholesky) action = action_distribution.sample() return action[0] ```
{ "source": "joycenerd/Reinforcement_Learning_2021", "score": 2 }
#### File: MPO/mpo/mpo.py ```python import os from time import sleep import numpy as np from scipy.optimize import minimize from tqdm import tqdm import gym import torch import torch.nn as nn from torch.nn.utils import clip_grad_norm_ from torch.distributions import MultivariateNormal, Categorical from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler from tensorboardX import SummaryWriter from mpo.actor import ActorContinuous, ActorDiscrete from mpo.critic import CriticContinuous, CriticDiscrete from mpo.replaybuffer import ReplayBuffer import matplotlib.pyplot as plt from matplotlib import animation def bt(m): return m.transpose(dim0=-2, dim1=-1) def btr(m): return m.diagonal(dim1=-2, dim2=-1).sum(-1) def gaussian_kl(ฮผi, ฮผ, Ai, A): """ decoupled KL between two multivariate gaussian distribution C_ฮผ = KL(f(x|ฮผi,ฮฃi)||f(x|ฮผ,ฮฃi)) C_ฮฃ = KL(f(x|ฮผi,ฮฃi)||f(x|ฮผi,ฮฃ)) :param ฮผi: (B, n) :param ฮผ: (B, n) :param Ai: (B, n, n) :param A: (B, n, n) :return: C_ฮผ, C_ฮฃ: scalar mean and covariance terms of the KL :return: mean of determinanats of ฮฃi, ฮฃ ref : https://stanford.edu/~jduchi/projects/general_notes.pdf page.13 """ n = A.size(-1) ฮผi = ฮผi.unsqueeze(-1) # (B, n, 1) ฮผ = ฮผ.unsqueeze(-1) # (B, n, 1) ฮฃi = Ai @ bt(Ai) # (B, n, n) ฮฃ = A @ bt(A) # (B, n, n) ฮฃi_det = ฮฃi.det() # (B,) ฮฃ_det = ฮฃ.det() # (B,) # determinant can be minus due to numerical calculation error # https://github.com/daisatojp/mpo/issues/11 ฮฃi_det = torch.clamp_min(ฮฃi_det, 1e-6) ฮฃ_det = torch.clamp_min(ฮฃ_det, 1e-6) ฮฃi_inv = ฮฃi.inverse() # (B, n, n) ฮฃ_inv = ฮฃ.inverse() # (B, n, n) inner_ฮผ = ((ฮผ - ฮผi).transpose(-2, -1) @ ฮฃi_inv @ (ฮผ - ฮผi)).squeeze() # (B,) inner_ฮฃ = torch.log(ฮฃ_det / ฮฃi_det) - n + btr(ฮฃ_inv @ ฮฃi) # (B,) C_ฮผ = 0.5 * torch.mean(inner_ฮผ) C_ฮฃ = 0.5 * torch.mean(inner_ฮฃ) return C_ฮผ, C_ฮฃ, torch.mean(ฮฃi_det), torch.mean(ฮฃ_det) def categorical_kl(p1, p2): """ calculates KL between two Categorical distributions :param p1: (B, D) :param p2: (B, D) """ p1 = torch.clamp_min(p1, 0.0001) # actually no need to clamp p2 = torch.clamp_min(p2, 0.0001) # avoid zero division return torch.mean((p1 * torch.log(p1 / p2)).sum(dim=-1)) def save_frames_as_gif(frames, path='./', filename='gym_animation.gif'): #Mess with this to change frame size plt.figure(figsize=(frames[0].shape[1] / 72.0, frames[0].shape[0] / 72.0), dpi=72) patch = plt.imshow(frames[0]) plt.axis('off') def animate(i): patch.set_data(frames[i]) anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=50) anim.save(path + filename, writer='imagemagick', fps=60) class MPO(object): """ Maximum A Posteriori Policy Optimization (MPO) :param device: :param env: gym environment :param dual_constraint: (float) hard constraint of the dual formulation in the E-step correspond to [2] p.4 ฮต :param kl_mean_constraint: (float) hard constraint of the mean in the M-step correspond to [2] p.6 ฮต_ฮผ for continuous action space :param kl_var_constraint: (float) hard constraint of the covariance in the M-step correspond to [2] p.6 ฮต_ฮฃ for continuous action space :param kl_constraint: (float) hard constraint in the M-step correspond to [2] p.6 ฮต_ฯ€ for discrete action space :param discount_factor: (float) discount factor used in Policy Evaluation :param alpha_scale: (float) scaling factor of the lagrangian multiplier in the M-step :param sample_episode_num: the number of sampled episodes :param sample_episode_maxstep: maximum sample steps of an episode :param sample_action_num: :param batch_size: (int) size of the sampled mini-batch :param episode_rerun_num: :param mstep_iteration_num: (int) the number of iterations of the M-step :param evaluate_episode_maxstep: maximum evaluate steps of an episode [1] https://arxiv.org/pdf/1806.06920.pdf [2] https://arxiv.org/pdf/1812.02256.pdf """ def __init__(self, device, env, log_dir, dual_constraint=0.1, kl_mean_constraint=0.01, kl_var_constraint=0.0001, kl_constraint=0.01, discount_factor=0.99, alpha_mean_scale=1.0, alpha_var_scale=100.0, alpha_scale=10.0, alpha_mean_max=0.1, alpha_var_max=10.0, alpha_max=1.0, sample_episode_num=30, sample_episode_maxstep=200, sample_action_num=64, batch_size=256, episode_rerun_num=3, mstep_iteration_num=5, evaluate_period=10, evaluate_episode_num=100, evaluate_episode_maxstep=200): self.device = device self.env = env self.log_dir = log_dir if self.env.action_space.dtype == np.float32: self.continuous_action_space = True else: # discrete action space self.continuous_action_space = False # the number of dimensions of state space self.ds = env.observation_space.shape[0] # the number of dimensions of action space if self.continuous_action_space: self.da = env.action_space.shape[0] else: # discrete action space self.da = env.action_space.n self.ฮต_dual = dual_constraint self.ฮต_kl_ฮผ = kl_mean_constraint self.ฮต_kl_ฮฃ = kl_var_constraint self.ฮต_kl = kl_constraint self.ฮณ = discount_factor self.ฮฑ_ฮผ_scale = alpha_mean_scale self.ฮฑ_ฮฃ_scale = alpha_var_scale self.ฮฑ_scale = alpha_scale self.ฮฑ_ฮผ_max = alpha_mean_max self.ฮฑ_ฮฃ_max = alpha_var_max self.ฮฑ_max = alpha_max self.sample_episode_num = sample_episode_num self.sample_episode_maxstep = sample_episode_maxstep self.sample_action_num = sample_action_num self.batch_size = batch_size self.episode_rerun_num = episode_rerun_num self.mstep_iteration_num = mstep_iteration_num self.evaluate_period = evaluate_period self.evaluate_episode_num = evaluate_episode_num self.evaluate_episode_maxstep = evaluate_episode_maxstep if not self.continuous_action_space: self.A_eye = torch.eye(self.da).to(self.device) if self.continuous_action_space: self.actor = ActorContinuous(env).to(self.device) self.critic = CriticContinuous(env).to(self.device) self.target_actor = ActorContinuous(env).to(self.device) self.target_critic = CriticContinuous(env).to(self.device) else: # discrete action space self.actor = ActorDiscrete(env).to(self.device) self.critic = CriticDiscrete(env).to(self.device) self.target_actor = ActorDiscrete(env).to(self.device) self.target_critic = CriticDiscrete(env).to(self.device) for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_(param.data) target_param.requires_grad = False for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_(param.data) target_param.requires_grad = False self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=5e-4) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=1e-3) self.norm_loss_q = nn.MSELoss() self.ฮท = np.random.rand() self.ฮฑ_ฮผ = 0.0 # lagrangian multiplier for continuous action space in the M-step self.ฮฑ_ฮฃ = 0.0 # lagrangian multiplier for continuous action space in the M-step self.ฮฑ = 0.0 # lagrangian multiplier for discrete action space in the M-step self.replaybuffer = ReplayBuffer() self.max_return_eval = -np.inf self.iteration = 1 self.render = False def train(self, iteration_num=1000, log_dir='log', model_save_period=10, render=False): """ :param iteration_num: :param log_dir: :param model_save_period: :param render: """ self.render = render log_dir = self.log_dir # model_save_dir = os.path.join(log_dir, 'model') model_save_dir = "checkpoints" if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) writer = SummaryWriter(os.path.join("runs", log_dir)) for it in range(self.iteration, iteration_num + 1): self.__sample_trajectory(self.sample_episode_num) buff_sz = len(self.replaybuffer) mean_reward = self.replaybuffer.mean_reward() mean_return = self.replaybuffer.mean_return() mean_loss_q = [] mean_loss_p = [] mean_loss_l = [] mean_est_q = [] max_kl_ฮผ = [] max_kl_ฮฃ = [] max_kl = [] mean_ฮฃ_det = [] for r in range(self.episode_rerun_num): for indices in tqdm( BatchSampler( SubsetRandomSampler(range(buff_sz)), self.batch_size, drop_last=True), desc='training {}/{}'.format(r + 1, self.episode_rerun_num)): K = len(indices) # the sample number of states N = self.sample_action_num # the sample number of actions per state ds = self.ds # the number of state space dimensions da = self.da # the number of action space dimensions state_batch, action_batch, next_state_batch, reward_batch = zip( *[self.replaybuffer[index] for index in indices]) state_batch = torch.from_numpy(np.stack(state_batch)).type(torch.float32).to(self.device) # (K, ds) action_batch = torch.from_numpy(np.stack(action_batch)).type(torch.float32).to( self.device) # (K, da) or (K,) next_state_batch = torch.from_numpy(np.stack(next_state_batch)).type(torch.float32).to( self.device) # (K, ds) reward_batch = torch.from_numpy(np.stack(reward_batch)).type(torch.float32).to(self.device) # (K,) # Policy Evaluation # [2] 3 Policy Evaluation (Step 1) loss_q, q = self.__update_critic_td( state_batch=state_batch, action_batch=action_batch, next_state_batch=next_state_batch, reward_batch=reward_batch, sample_num=self.sample_action_num ) mean_loss_q.append(loss_q.item()) mean_est_q.append(q.abs().mean().item()) # E-Step of Policy Improvement # [2] 4.1 Finding action weights (Step 2) with torch.no_grad(): if self.continuous_action_space: # sample N actions per state b_ฮผ, b_A = self.target_actor.forward(state_batch) # (K,) b = MultivariateNormal(b_ฮผ, scale_tril=b_A) # (K,) sampled_actions = b.sample((N,)) # (N, K, da) expanded_states = state_batch[None, ...].expand(N, -1, -1) # (N, K, ds) target_q = self.target_critic.forward( expanded_states.reshape(-1, ds), # (N * K, ds) sampled_actions.reshape(-1, da) # (N * K, da) ).reshape(N, K) # (N, K) target_q_np = target_q.cpu().transpose(0, 1).numpy() # (K, N) else: # discrete action spaces # sample da actions per state # Because of discrete action space, we can cover the all actions per state. actions = torch.arange(da)[..., None].expand(da, K).to(self.device) # (da, K) b_p = self.target_actor.forward(state_batch) # (K, da) b = Categorical(probs=b_p) # (K,) b_prob = b.expand((da, K)).log_prob(actions).exp() # (da, K) expanded_actions = self.A_eye[None, ...].expand(K, -1, -1) # (K, da, da) expanded_states = state_batch.reshape(K, 1, ds).expand((K, da, ds)) # (K, da, ds) target_q = ( self.target_critic.forward( expanded_states.reshape(-1, ds), # (K * da, ds) expanded_actions.reshape(-1, da) # (K * da, da) ).reshape(K, da) # (K, da) ).transpose(0, 1) # (da, K) b_prob_np = b_prob.cpu().transpose(0, 1).numpy() # (K, da) target_q_np = target_q.cpu().transpose(0, 1).numpy() # (K, da) # https://arxiv.org/pdf/1812.02256.pdf # [2] 4.1 Finding action weights (Step 2) # Using an exponential transformation of the Q-values if self.continuous_action_space: def dual(ฮท): """ dual function of the non-parametric variational Q = target_q_np (K, N) g(ฮท) = ฮท*ฮต + ฮท*mean(log(mean(exp(Q(s, a)/ฮท), along=a)), along=s) For numerical stabilization, this can be modified to Qj = max(Q(s, a), along=a) g(ฮท) = ฮท*ฮต + mean(Qj, along=j) + ฮท*mean(log(mean(exp((Q(s, a)-Qj)/ฮท), along=a)), along=s) """ max_q = np.max(target_q_np, 1) return ฮท * self.ฮต_dual + np.mean(max_q) \ + ฮท * np.mean(np.log(np.mean(np.exp((target_q_np - max_q[:, None]) / ฮท), axis=1))) else: # discrete action space def dual(ฮท): """ dual function of the non-parametric variational g(ฮท) = ฮท*ฮต + ฮท*mean(log(sum(ฯ€(a|s)*exp(Q(s, a)/ฮท)))) We have to multiply ฯ€ by exp because this is expectation. This equation is correspond to last equation of the [2] p.15 For numerical stabilization, this can be modified to Qj = max(Q(s, a), along=a) g(ฮท) = ฮท*ฮต + mean(Qj, along=j) + ฮท*mean(log(sum(ฯ€(a|s)*(exp(Q(s, a)-Qj)/ฮท)))) """ max_q = np.max(target_q_np, 1) return ฮท * self.ฮต_dual + np.mean(max_q) \ + ฮท * np.mean(np.log(np.sum( b_prob_np * np.exp((target_q_np - max_q[:, None]) / ฮท), axis=1))) bounds = [(1e-6, None)] res = minimize(dual, np.array([self.ฮท]), method='SLSQP', bounds=bounds) self.ฮท = res.x[0] qij = torch.softmax(target_q / self.ฮท, dim=0) # (N, K) or (da, K) # M-Step of Policy Improvement # [2] 4.2 Fitting an improved policy (Step 3) for _ in range(self.mstep_iteration_num): if self.continuous_action_space: ฮผ, A = self.actor.forward(state_batch) # First term of last eq of [2] p.5 # see also [2] 4.2.1 Fitting an improved Gaussian policy ฯ€1 = MultivariateNormal(loc=ฮผ, scale_tril=b_A) # (K,) ฯ€2 = MultivariateNormal(loc=b_ฮผ, scale_tril=A) # (K,) loss_p = torch.mean( qij * ( ฯ€1.expand((N, K)).log_prob(sampled_actions) # (N, K) + ฯ€2.expand((N, K)).log_prob(sampled_actions) # (N, K) ) ) mean_loss_p.append((-loss_p).item()) kl_ฮผ, kl_ฮฃ, ฮฃi_det, ฮฃ_det = gaussian_kl( ฮผi=b_ฮผ, ฮผ=ฮผ, Ai=b_A, A=A) max_kl_ฮผ.append(kl_ฮผ.item()) max_kl_ฮฃ.append(kl_ฮฃ.item()) mean_ฮฃ_det.append(ฮฃ_det.item()) if np.isnan(kl_ฮผ.item()): # This should not happen raise RuntimeError('kl_ฮผ is nan') if np.isnan(kl_ฮฃ.item()): # This should not happen raise RuntimeError('kl_ฮฃ is nan') # Update lagrange multipliers by gradient descent # this equation is derived from last eq of [2] p.5, # just differentiate with respect to ฮฑ # and update ฮฑ so that the equation is to be minimized. self.ฮฑ_ฮผ -= self.ฮฑ_ฮผ_scale * (self.ฮต_kl_ฮผ - kl_ฮผ).detach().item() self.ฮฑ_ฮฃ -= self.ฮฑ_ฮฃ_scale * (self.ฮต_kl_ฮฃ - kl_ฮฃ).detach().item() self.ฮฑ_ฮผ = np.clip(0.0, self.ฮฑ_ฮผ, self.ฮฑ_ฮผ_max) self.ฮฑ_ฮฃ = np.clip(0.0, self.ฮฑ_ฮฃ, self.ฮฑ_ฮฃ_max) self.actor_optimizer.zero_grad() # last eq of [2] p.5 loss_l = -( loss_p + self.ฮฑ_ฮผ * (self.ฮต_kl_ฮผ - kl_ฮผ) + self.ฮฑ_ฮฃ * (self.ฮต_kl_ฮฃ - kl_ฮฃ) ) mean_loss_l.append(loss_l.item()) loss_l.backward() clip_grad_norm_(self.actor.parameters(), 0.1) self.actor_optimizer.step() else: # discrete action space ฯ€_p = self.actor.forward(state_batch) # (K, da) # First term of last eq of [2] p.5 ฯ€ = Categorical(probs=ฯ€_p) # (K,) loss_p = torch.mean( qij * ฯ€.expand((da, K)).log_prob(actions) ) mean_loss_p.append((-loss_p).item()) kl = categorical_kl(p1=ฯ€_p, p2=b_p) max_kl.append(kl.item()) if np.isnan(kl.item()): # This should not happen raise RuntimeError('kl is nan') # Update lagrange multipliers by gradient descent # this equation is derived from last eq of [2] p.5, # just differentiate with respect to ฮฑ # and update ฮฑ so that the equation is to be minimized. self.ฮฑ -= self.ฮฑ_scale * (self.ฮต_kl - kl).detach().item() self.ฮฑ = np.clip(self.ฮฑ, 0.0, self.ฮฑ_max) self.actor_optimizer.zero_grad() # last eq of [2] p.5 loss_l = -(loss_p + self.ฮฑ * (self.ฮต_kl - kl)) mean_loss_l.append(loss_l.item()) loss_l.backward() clip_grad_norm_(self.actor.parameters(), 0.1) self.actor_optimizer.step() self.__update_param() return_eval = None if it % self.evaluate_period == 0: self.actor.eval() return_eval = self.__evaluate() self.actor.train() self.max_return_eval = max(self.max_return_eval, return_eval) mean_loss_q = np.mean(mean_loss_q) mean_loss_p = np.mean(mean_loss_p) mean_loss_l = np.mean(mean_loss_l) mean_est_q = np.mean(mean_est_q) if self.continuous_action_space: max_kl_ฮผ = np.max(max_kl_ฮผ) max_kl_ฮฃ = np.max(max_kl_ฮฃ) mean_ฮฃ_det = np.mean(mean_ฮฃ_det) else: # discrete action space max_kl = np.max(max_kl) print('iteration :', it) if it % self.evaluate_period == 0: print(' max_return_eval :', self.max_return_eval) print(' return_eval :', return_eval) print(' mean return :', mean_return) print(' mean reward :', mean_reward) print(' mean loss_q :', mean_loss_q) print(' mean loss_p :', mean_loss_p) print(' mean loss_l :', mean_loss_l) print(' mean est_q :', mean_est_q) print(' ฮท :', self.ฮท) if self.continuous_action_space: print(' max_kl_ฮผ :', max_kl_ฮผ) print(' max_kl_ฮฃ :', max_kl_ฮฃ) print(' mean_ฮฃ_det :', mean_ฮฃ_det) print(' ฮฑ_ฮผ :', self.ฮฑ_ฮผ) print(' ฮฑ_ฮฃ :', self.ฮฑ_ฮฃ) else: # discrete action space print(' max_kl :', max_kl) print(' ฮฑ :', self.ฮฑ) if it%100==0: self.save_model(os.path.join(model_save_dir, f'{self.log_dir}_{it}ep_{mean_reward:.4}rewards.pt')) # if it % model_save_period == 0: # self.save_model(os.path.join(model_save_dir, 'model_{}.pt'.format(it))) if it % self.evaluate_period == 0: writer.add_scalar('max_return_eval', self.max_return_eval, it) writer.add_scalar('return_eval', return_eval, it) writer.add_scalar('return', mean_return, it) writer.add_scalar('reward', mean_reward, it) writer.add_scalar('loss_q', mean_loss_q, it) writer.add_scalar('loss_p', mean_loss_p, it) writer.add_scalar('loss_l', mean_loss_l, it) writer.add_scalar('mean_q', mean_est_q, it) writer.add_scalar('ฮท', self.ฮท, it) if self.continuous_action_space: writer.add_scalar('max_kl_ฮผ', max_kl_ฮผ, it) writer.add_scalar('max_kl_ฮฃ', max_kl_ฮฃ, it) writer.add_scalar('mean_ฮฃ_det', mean_ฮฃ_det, it) writer.add_scalar('ฮฑ_ฮผ', self.ฮฑ_ฮผ, it) writer.add_scalar('ฮฑ_ฮฃ', self.ฮฑ_ฮฃ, it) else: writer.add_scalar('ฮท_kl', max_kl, it) writer.add_scalar('ฮฑ', self.ฮฑ, it) writer.flush() # end training if writer is not None: writer.close() def test(self): """ :return: average return over 100 consecutive episodes """ with torch.no_grad(): total_rewards = [] for e in tqdm(range(10), desc='testing'): total_reward = 0.0 state = self.env.reset() frames=[] for s in range(self.evaluate_episode_maxstep): frames.append(self.env.render(mode="rgb_array")) action = self.actor.action( torch.from_numpy(state).type(torch.float32).to(self.device) ).cpu().numpy() state, reward, done, _ = self.env.step(action) total_reward += reward if done: break total_rewards.append(total_reward) save_frames_as_gif(frames,"./",f"{self.log_dir}.gif") return np.mean(total_rewards) def load_model(self, path=None): """ loads a model from a given path :param path: (str) file path (.pt file) """ load_path = path if path is not None else self.save_path checkpoint = torch.load(load_path) self.iteration = checkpoint['iteration'] self.critic.load_state_dict(checkpoint['critic_state_dict']) self.target_critic.load_state_dict(checkpoint['target_critic_state_dict']) self.actor.load_state_dict(checkpoint['actor_state_dict']) self.target_actor.load_state_dict(checkpoint['target_actor_state_dict']) self.critic_optimizer.load_state_dict(checkpoint['critic_optim_state_dict']) self.actor_optimizer.load_state_dict(checkpoint['actor_optim_state_dict']) self.critic.train() self.target_critic.train() self.actor.train() self.target_actor.train() def save_model(self, path=None): """ saves a model to a given path :param path: (str) file path (.pt file) """ data = { 'iteration': self.iteration, 'actor_state_dict': self.actor.state_dict(), 'target_actor_state_dict': self.target_actor.state_dict(), 'critic_state_dict': self.critic.state_dict(), 'target_critic_state_dict': self.target_critic.state_dict(), 'actor_optim_state_dict': self.actor_optimizer.state_dict(), 'critic_optim_state_dict': self.critic_optimizer.state_dict() } torch.save(data, path) def __sample_trajectory_worker(self, i): buff = [] state = self.env.reset() for steps in range(self.sample_episode_maxstep): action = self.target_actor.action( torch.from_numpy(state).type(torch.float32).to(self.device) ).cpu().numpy() next_state, reward, done, _ = self.env.step(action) buff.append((state, action, next_state, reward)) if self.render and i == 0: self.env.render() sleep(0.01) if done: break else: state = next_state return buff def __sample_trajectory(self, sample_episode_num): self.replaybuffer.clear() episodes = [self.__sample_trajectory_worker(i) for i in tqdm(range(sample_episode_num), desc='sample_trajectory')] self.replaybuffer.store_episodes(episodes) def __evaluate(self): """ :return: average return over 100 consecutive episodes """ with torch.no_grad(): total_rewards = [] for e in tqdm(range(self.evaluate_episode_num), desc='evaluating'): total_reward = 0.0 state = self.env.reset() for s in range(self.evaluate_episode_maxstep): action = self.actor.action( torch.from_numpy(state).type(torch.float32).to(self.device) ).cpu().numpy() state, reward, done, _ = self.env.step(action) total_reward += reward if done: break total_rewards.append(total_reward) return np.mean(total_rewards) def __update_critic_td(self, state_batch, action_batch, next_state_batch, reward_batch, sample_num=64): """ :param state_batch: (B, ds) :param action_batch: (B, da) or (B,) :param next_state_batch: (B, ds) :param reward_batch: (B,) :param sample_num: :return: """ B = state_batch.size(0) ds = self.ds da = self.da with torch.no_grad(): r = reward_batch # (B,) if self.continuous_action_space: ฯ€_ฮผ, ฯ€_A = self.target_actor.forward(next_state_batch) # (B,) ฯ€ = MultivariateNormal(ฯ€_ฮผ, scale_tril=ฯ€_A) # (B,) sampled_next_actions = ฯ€.sample((sample_num,)).transpose(0, 1) # (B, sample_num, da) expanded_next_states = next_state_batch[:, None, :].expand(-1, sample_num, -1) # (B, sample_num, ds) expected_next_q = self.target_critic.forward( expanded_next_states.reshape(-1, ds), # (B * sample_num, ds) sampled_next_actions.reshape(-1, da) # (B * sample_num, da) ).reshape(B, sample_num).mean(dim=1) # (B,) else: # discrete action space ฯ€_p = self.target_actor.forward(next_state_batch) # (B, da) ฯ€ = Categorical(probs=ฯ€_p) # (B,) ฯ€_prob = ฯ€.expand((da, B)).log_prob( torch.arange(da)[..., None].expand(-1, B).to(self.device) # (da, B) ).exp().transpose(0, 1) # (B, da) sampled_next_actions = self.A_eye[None, ...].expand(B, -1, -1) # (B, da, da) expanded_next_states = next_state_batch[:, None, :].expand(-1, da, -1) # (B, da, ds) expected_next_q = ( self.target_critic.forward( expanded_next_states.reshape(-1, ds), # (B * da, ds) sampled_next_actions.reshape(-1, da) # (B * da, da) ).reshape(B, da) * ฯ€_prob # (B, da) ).sum(dim=-1) # (B,) y = r + self.ฮณ * expected_next_q self.critic_optimizer.zero_grad() if self.continuous_action_space: t = self.critic( state_batch, action_batch ).squeeze() else: # discrete action space t = self.critic( state_batch, self.A_eye[action_batch.long()] ).squeeze(-1) # (B,) loss = self.norm_loss_q(y, t) loss.backward() self.critic_optimizer.step() return loss, y def __update_param(self): """ Sets target parameters to trained parameter """ # Update policy parameters for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_(param.data) # Update critic parameters for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_(param.data) ```
{ "source": "joycenerd/rsna-pneumonia-detection", "score": 2 }
#### File: rsna-pneumonia-detection/CheXNet-with-localization/inference.py ```python import numpy as np from os import listdir import skimage.transform import torch from torch.utils.data import Dataset, DataLoader from torch.nn import functional as F import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms from torch.autograd import Variable import torch.optim as optim from torch.autograd import Function from torchvision import models from torchvision import utils import cv2 import sys import os import pickle from collections import defaultdict from collections import OrderedDict import skimage from skimage.io import * from skimage.transform import * import scipy import scipy.ndimage as ndimage import scipy.ndimage.filters as filters from scipy.ndimage import binary_dilation import matplotlib.patches as patches import argparse import glob import imageio import tqdm os.environ['CUDA_VISIBLE_DEVICES'] = "0" test_X = [] parser=argparse.ArgumentParser() parser.add_argument('--dataroot',type=str,default='/eva_data/zchin/rsna_data_all/images/test',help='test image save dir') parser.add_argument('--weights',type=str,default='/eva_data/zchin/rsna_outputs/CheXNet/DenseNet121_aug2_pretrain_noWeight_2_0.8875203559299248.pkl',help='trained model weights') args=parser.parse_args() def get_file_names(dataroot): imgs=[] for img_path in glob.glob(dataroot+'/*'): imgs.append(img_path) return imgs # imgs = judger.get_file_names() # f = judger.get_output_file_object() imgs=get_file_names(args.dataroot) for img in tqdm.tqdm(imgs): # img = scipy.misc.imread(img) img=imageio.imread(img) if img.shape != (1024,1024): img = img[:,:,0] img_resized = skimage.transform.resize(img,(256,256)) test_X.append((np.array(img_resized)).reshape(256,256,1)) test_X = np.array(test_X) print(test_X.shape) # model archi # construct model class DenseNet121(nn.Module): """Model modified. The architecture of our model is the same as standard DenseNet121 except the classifier layer which has an additional sigmoid function. """ def __init__(self, out_size): super(DenseNet121, self).__init__() self.densenet121 = torchvision.models.densenet121(pretrained=True) num_ftrs = self.densenet121.classifier.in_features self.densenet121.classifier = nn.Sequential( nn.Linear(num_ftrs, out_size), nn.Sigmoid() ) def forward(self, x): x = self.densenet121(x) return x model = DenseNet121(2).cuda() model = torch.nn.DataParallel(model) model.load_state_dict(torch.load(args.weights)) print("model loaded") # build test dataset class ChestXrayDataSet_plot(Dataset): def __init__(self, input_X = test_X, transform=None): self.X = np.uint8(test_X*255) self.transform = transform def __getitem__(self, index): """ Args: index: the index of item Returns: image """ current_X = np.tile(self.X[index],3) image = self.transform(current_X) return image def __len__(self): return len(self.X) test_dataset = ChestXrayDataSet_plot(input_X = test_X,transform=transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ])) thresholds = np.load("thresholds.npy") print(thresholds) thres=thresholds[6] # ======= Grad CAM Function ========= class PropagationBase(object): def __init__(self, model, cuda=False): self.model = model self.model.eval() if cuda: self.model.cuda() self.cuda = cuda self.all_fmaps = OrderedDict() self.all_grads = OrderedDict() self._set_hook_func() self.image = None def _set_hook_func(self): raise NotImplementedError def _encode_one_hot(self, idx): one_hot = torch.FloatTensor(1, self.preds.size()[-1]).zero_() one_hot[0][idx] = 1.0 return one_hot.cuda() if self.cuda else one_hot def forward(self, image): self.image = image self.preds = self.model.forward(self.image) # self.probs = F.softmax(self.preds)[0] # self.prob, self.idx = self.preds[0].data.sort(0, True) return self.preds.cpu().data.numpy() def backward(self, idx): self.model.zero_grad() one_hot = self._encode_one_hot(idx) self.preds.backward(gradient=one_hot, retain_graph=True) class GradCAM(PropagationBase): def _set_hook_func(self): def func_f(module, input, output): self.all_fmaps[id(module)] = output.data.cpu() def func_b(module, grad_in, grad_out): self.all_grads[id(module)] = grad_out[0].cpu() for module in self.model.named_modules(): module[1].register_forward_hook(func_f) module[1].register_backward_hook(func_b) def _find(self, outputs, target_layer): for key, value in outputs.items(): for module in self.model.named_modules(): if id(module[1]) == key: if module[0] == target_layer: return value raise ValueError('Invalid layer name: {}'.format(target_layer)) def _normalize(self, grads): l2_norm = torch.sqrt(torch.mean(torch.pow(grads, 2))) + 1e-5 return grads / l2_norm.item() def _compute_grad_weights(self, grads): grads = self._normalize(grads) self.map_size = grads.size()[2:] return nn.AvgPool2d(self.map_size)(grads) def generate(self, target_layer): fmaps = self._find(self.all_fmaps, target_layer) grads = self._find(self.all_grads, target_layer) weights = self._compute_grad_weights(grads) gcam = torch.FloatTensor(self.map_size).zero_() for fmap, weight in zip(fmaps[0], weights[0]): gcam += fmap * weight.data gcam = F.relu(Variable(gcam)) gcam = gcam.data.cpu().numpy() gcam -= gcam.min() gcam /= gcam.max() gcam = cv2.resize(gcam, (self.image.size(3), self.image.size(2))) return gcam def save(self, filename, gcam, raw_image): gcam = cv2.applyColorMap(np.uint8(gcam * 255.0), cv2.COLORMAP_JET) gcam = gcam.astype(np.float) + raw_image.astype(np.float) gcam = gcam / gcam.max() * 255.0 cv2.imwrite(filename, np.uint8(gcam)) # ======== Create heatmap =========== heatmap_output = [] image_id = [] output_class = [] gcam = GradCAM(model=model, cuda=True) for index in tqdm.tqdm(range(len(test_dataset))): input_img = Variable((test_dataset[index]).unsqueeze(0).cuda(), requires_grad=True) probs = gcam.forward(input_img) probs=probs[0] if probs[0]>probs[1]: heatmap_output.append(np.full((224,224),np.nan)) image_id.append(index) output_class.append(0) continue # activate_classes = np.where((probs > thresholds)[0]==True)[0] # for activate_class in activate_classes: gcam.backward(idx=1) output = gcam.generate(target_layer="module.densenet121.features.denseblock4.denselayer16.conv2") #### this output is heatmap #### if np.sum(np.isnan(output)) > 0: print("fxxx nan") heatmap_output.append(output) image_id.append(index) # output_class.append(activate_class) output_class.append(1) print("heatmap output done") # ======= Plot bounding box ========= img_width, img_height = 224, 224 img_width_exp, img_height_exp = 1024, 1024 crop_del = 16 rescale_factor = 4 # class_index = ['Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax'] class_index=['normal','pneumonia'] default_box = np.array([[403.4, 433.4, 197.9, 206.7], [458.0, 337.9, 252.2, 306.4]]) # npy_list = os.listdir(sys.argv[1]) # with open('test.txt', 'r') as f: # fname_list = f.readlines() # fname_list = [s.strip('\n') for s in fname_list] prediction_dict = {} for i in range(len(imgs)): prediction_dict[i] = [] for img_id, k, npy in zip(image_id, output_class, heatmap_output): data = npy img_fname = imgs[img_id] # output default_box prediction_sent = '%s %.1f %.1f %.1f %.1f' % (class_index[k], default_box[k][0], default_box[k][1], default_box[k][2], default_box[k][3]) prediction_dict[img_id].append(prediction_sent) if np.isnan(data).any() or k==0: continue w_k, h_k = (default_box[k][2:] * (256 / 1024)).astype(np.int) # Find local maxima neighborhood_size = 100 threshold = .1 data_max = filters.maximum_filter(data, neighborhood_size) maxima = (data == data_max) data_min = filters.minimum_filter(data, neighborhood_size) diff = ((data_max - data_min) > threshold) maxima[diff == 0] = 0 for _ in range(5): maxima = binary_dilation(maxima) labeled, num_objects = ndimage.label(maxima) slices = ndimage.find_objects(labeled) xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1))) for pt in xy: if data[int(pt[0]), int(pt[1])] > np.max(data)*.9: upper = int(max(pt[0]-(h_k/2), 0.)) left = int(max(pt[1]-(w_k/2), 0.)) right = int(min(left+w_k, img_width)) lower = int(min(upper+h_k, img_height)) if lower == img_height and not k in [1]: # avoid bbox touching bottom continue elif k in [5]: # avoid predicting low acc classes continue else: prediction_sent = '%s %.1f %.1f %.1f %.1f' % (class_index[k], (left+crop_del)*rescale_factor, \ (upper+crop_del)*rescale_factor, \ (right-left)*rescale_factor, \ (lower-upper)*rescale_factor) prediction_dict[img_id].append(prediction_sent) f=open('output.txt','w') for i in range(len(prediction_dict)): fname = imgs[i] prediction = prediction_dict[i] box_num = len(prediction) if box_num <= 10: print(fname, box_num) # f.write(('%s %d\n' % (fname, box_num)).encode()) f.write('%s %d\n' % (fname, box_num)) for p in prediction: print(p) # f.write((p+"\n").encode()) f.write(p+"\n") else: print(fname, 10) # f.write(('%s %d\n' % (fname, 10)).encode()) f.write('%s %d\n' % (fname, 10)) for p in prediction[:10]: print(p) # f.write((p+"\n").encode()) f.write(p+"\n") f.close() # score, err = judger.judge() # if err is not None: # in case we failed to judge your submission # print (err) ``` #### File: efficientnet/utils/loss.py ```python import torch import torch.nn as nn import matplotlib.pyplot as plt class NLL_OHEM(torch.nn.NLLLoss): """ Online hard example mining. Needs input from nn.LogSotmax() """ def __init__(self, ratio,device,total_ep): super(NLL_OHEM, self).__init__(None, True) self.ratio = ratio self.device=device self.total_ep=total_ep def forward(self, x, y, epoch,sched_ratio=True): num_inst = x.size(0) if sched_ratio: self.step_ratio_sched(epoch) else: self.ratio=1 # print(self.ratio) num_hns = int(self.ratio * num_inst) if num_hns>0: x_ = x.clone() inst_losses = torch.autograd.Variable(torch.zeros(num_inst).to(self.device)) for idx, label in enumerate(y.data): inst_losses[idx] = -x_.data[idx, label] _, idxs = inst_losses.topk(num_hns) x_hn = x.index_select(0, idxs) y_hn = y.index_select(0, idxs) loss=torch.nn.functional.nll_loss(x_hn, y_hn,reduction='mean') else: loss=torch.nn.functional.nll_loss(x,y,reduction='mean') return loss def cyclic_ratio_sched(self,epoch): half=int(self.total_ep/2) max_range=int(half*0.2) if epoch<half: if epoch<max_range: self.ratio=1.0 else: self.ratio=(half-epoch)/float(half-max_range) else: if epoch<(half+max_range): self.ratio=0.5 else: self.ratio=0.5*(self.total_ep-epoch)/float(half-max_range) def step_ratio_sched(self,epoch): if epoch<40: self.ratio=1 elif epoch>=40 and epoch<60: self.ratio=0.9 elif epoch>=60 and epoch<90: self.ratio=0.8 elif epoch>=90 and epoch<130: self.ratio=0.7 elif epoch>=130 and epoch<170: self.ratio=0.6 elif epoch>=170: self.ratio=0.5 if __name__=='__main__': ratio_list=[] epoch_list=[] for epoch in range(0,200): if epoch<40: ratio=1 elif epoch>=40 and epoch<60: ratio=0.9 elif epoch>=60 and epoch<90: ratio=0.8 elif epoch>=90 and epoch<130: ratio=0.7 elif epoch>=130 and epoch<170: ratio=0.6 elif epoch>=170: ratio=0.5 ratio_list.append(ratio) epoch_list.append(epoch) plt.rcParams["font.family"] = "serif" CB91_Blue = '#2CBDFE' CB91_Green = '#47DBCD' CB91_Pink = '#F3A0F2' CB91_Purple = '#9D2EC5' CB91_Violet = '#661D98' CB91_Amber = '#F5B14C' color_list = [CB91_Blue, CB91_Pink, CB91_Green, CB91_Amber, CB91_Purple, CB91_Violet] plt.rcParams['axes.prop_cycle'] = plt.cycler(color=color_list) plt.plot(epoch_list,ratio_list) plt.xlabel('epoch') plt.ylabel('hard mining ratio (k)') plt.savefig('ohem_step_ratio.png') ```
{ "source": "joycenerd/Vehicle-ReID", "score": 3 }
#### File: Vehicle-ReID/preprocess/extract_vehicle.py ```python from path import args import sys sys.path.insert(0,str(args.root_path)) from options import opt from pathlib import Path import os import cv2 # [frame, ID, left, top, width, height, 1, -1, -1, -1] def sort_gt_id(gt_path): sorted_gt=[] gt_file = open(str(gt_path), 'r') lines = gt_file.readlines() for line in lines: line = line.strip() frame_id, vehicle_id, left, top, width, height, _, _, _, _ = line.split(',') if vehicle_id in car_list: sorted_gt.append([False, frame_id, vehicle_id, int(left), int(top), int(width), int(height)]) else: sorted_gt.append([True, frame_id, vehicle_id, int(left), int(top), int(width), int(height)]) car_list.append(vehicle_id) return sorted_gt def extract_im(sorted_gt, mode, cam_id): for gt in sorted_gt: is_query, frame_id, vehicle_id, left, top, width, height = gt if mode == 'train': image_name = cam_id + '_' + str(int(frame_id)-1).zfill(4) + '.jpg' if Path(frames_path).joinpath('train_frame').joinpath(image_name).exists(): image_path = str(Path(frames_path).joinpath('train_frame').joinpath(image_name)) else: continue elif mode == 'valid': image_name = cam_id + '_' + str(int(frame_id)-1).zfill(4) + '.jpg' if Path(frames_path).joinpath('valid_frame').joinpath(image_name).exists(): image_path = str(Path(frames_path).joinpath('valid_frame').joinpath(image_name)) else: continue img = cv2.imread(image_path) crop_img = img[top:top+height, left:left+width] crop_img_name = vehicle_id.zfill(5) + '_' + cam_id + '_' + frame_id.zfill(4) + '.jpg' if is_query == True: crop_img_path = Path(opt.data_root).joinpath('reid_data/query_data').joinpath(crop_img_name) elif mode == 'train': crop_img_path = Path(opt.data_root).joinpath('reid_data/train_data').joinpath(crop_img_name) elif mode == 'valid': crop_img_path = Path(opt.data_root).joinpath('reid_data/gallery_data').joinpath(crop_img_name) cv2.imwrite(str(crop_img_path), crop_img) def get_frame(frames_dir): frame_dir_path = Path(frames_path).joinpath(frames_dir) print(frames_dir + ' start') if frames_dir == 'train_frame': for i in range(len(train_S_dirname)): S_dir = Path(gt_root_path).joinpath('train').joinpath(train_S_dirname[i]) for cam_id in train_S[i]: gt_path = Path(S_dir).joinpath(cam_id).joinpath('gt/gt.txt') sorted_gt = sort_gt_id(gt_path) extract_im(sorted_gt, 'train', cam_id) print(cam_id + ' complete') elif frames_dir == 'valid_frame': for i in range(len(valid_S_dirname)): S_dir = Path(gt_root_path).joinpath('validation').joinpath(valid_S_dirname[i]) for cam_id in valid_S[i]: gt_path = Path(S_dir).joinpath(cam_id).joinpath('gt/gt.txt') sorted_gt = sort_gt_id(gt_path) extract_im(sorted_gt, 'valid', cam_id) print(cam_id + ' complete') print(frames_dir + ' complete\n') if __name__ == '__main__': S01 = ['c001', 'c002', 'c003', 'c004', 'c005'] S02 = ['c006', 'c007', 'c008', 'c009'] S03 = ['c010', 'c011', 'c012', 'c013', 'c014', 'c015'] S04 = ['c016', 'c017', 'c018', 'c019', 'c020', 'c021', 'c022', 'c023', 'c024', 'c025', 'c026', 'c027', 'c028', 'c029', 'c030', 'c031', 'c032', 'c033', 'c034', 'c035', 'c036', 'c037', 'c038', 'c039', 'c040'] S05 = ['c010', 'c016', 'c017', 'c018', 'c019', 'c020', 'c021', 'c022', 'c023', 'c024', 'c025', 'c026', 'c027', 'c028', 'c029', 'c033', 'c034', 'c035', 'c036'] S06 = ['c041', 'c042', 'c043', 'c044', 'c045', 'c046'] train_S = [S01, S03, S04, S05] valid_S = [S02] train_S_dirname = ['S01', 'S03', 'S04', 'S05'] valid_S_dirname = ['S02'] frames_path = Path(opt.data_root).joinpath('frames') gt_root_path = opt.raw_data_path car_list = [] get_frame('train_frame') get_frame('valid_frame') ``` #### File: Vehicle-ReID/solver/optim.py ```python from options import opt from pathlib import Path import torch def make_optimizer(model, center_criterion): params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = opt.base_lr weight_decay = opt.weight_decay if "bias" in key: lr = opt.base_lr * opt.bias_lr_factor weight_decay = opt.weight_decay_bias params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] if opt.optim_name == 'SGD': optimizer = getattr(torch.optim, opt.optim_name)(params, momentum=opt.momentum) else: optimizer = getattr(torch.optim, opt.optim_name)(params) optimizer_center = torch.optim.SGD(center_criterion.parameters(), lr=opt.center_lr) return optimizer, optimizer_center """def optimizer_with_center(model, center_criterion): normal_lr = opt.base_lr center_lr = opt.center_lr weight_decay = opt.weight_decay optimizer = torch.optim.Adam(model.parameters(), lr=normal_lr, weight_decay=weight_decay, amsgrad=True) optimizer_center = torch.optim.SGD(center_criterion.parameters(), lr=center_lr) return optimizer, optimizer_center""" ``` #### File: joycenerd/Vehicle-ReID/train_reid.py ```python from options import opt from datasets.dataset import make_reid_dataset from pathlib import Path import torch from modeling import make_model import numpy as np import torch.nn as nn from losses import make_loss from tqdm import tqdm from torch.autograd import Variable from utils.train_reid_utils import accuracy, calc_mAP import os import copy from solver import make_optimizer, WarmupMultiStepLR from visual import visualization from utils.metrics import R1_mAP_eval os.environ['CUDA_LAUNCH_BLOCKING'] = "1" def train(): trainloader,queryloader,galleryloader, num_classes = make_reid_dataset(opt.reid_data_root) print(f'image height: {opt.image_height}\t image width: {opt.image_width}') model = make_model(num_classes) model = model.cuda(opt.cuda_devices) loss_func, center_criterion = make_loss(num_classes) # optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-04, betas=(0.9, 0.999), amsgrad=True) optimizer, optimizer_center = make_optimizer(model, center_criterion) scheduler = WarmupMultiStepLR(optimizer, opt.milestones, opt.gamma, opt.warmup_factor, opt.warmup_epochs, opt.warmup_method) best_mAP = 0.0 evaluator = R1_mAP_eval(num_classes, max_rank=50, feat_norm=opt.feat_norm,reranking=opt.reranking) loss_list = [] acc_list = [] mAP_list = [] for epoch in range(opt.num_epochs): print(f'Epoch: {epoch+1}/{opt.num_epochs}') print('-'*len(f'Epoch: {epoch+1}/{opt.num_epochs}')) total_xentropy_loss = 0.0 total_triplet_loss = 0.0 total_center_loss = 0.0 training_loss = 0.0 training_corrects = 0 train_set_size = 0 evaluator.reset() model = model.train() for idx, (images, pids, cam_ids, frameids) in enumerate(tqdm(trainloader)): images = images.cuda(opt.cuda_devices) pids = pids.cuda(opt.cuda_devices) optimizer.zero_grad() optimizer_center.zero_grad() outputs, features = model(images, pids) if opt.dataloader_sampler == 'softmax_triplet': xentropy_loss, triplet_loss, loss = loss_func(outputs, features, pids) elif opt.dataloader_sampler == 'softmax_triplet_center': xentropy_loss, triplet_loss, center_loss, loss = loss_func(outputs, features, pids) loss.backward() optimizer.step() if 'center' in opt.metric_loss_type: for param in center_criterion.parameters(): param.grad.data *= (1. / opt.center_loss_weight) optimizer_center.step() total_xentropy_loss += xentropy_loss.item() * images.size(0) total_triplet_loss += triplet_loss.item() * images.size(0) if 'center' in opt.metric_loss_type: total_center_loss += center_loss.item() * images.size(0) training_loss += loss.item() * images.size(0) training_corrects += accuracy(outputs, pids)[0] * images.size(0) / 100.0 train_set_size += images.size(0) avg_xentropy_loss = total_xentropy_loss / train_set_size avg_triplet_loss = total_triplet_loss / train_set_size if 'center' in opt.metric_loss_type: avg_center_loss = total_center_loss / train_set_size avg_training_loss = training_loss / train_set_size avg_training_acc = float(training_corrects) / train_set_size if 'center' in opt.metric_loss_type: print(f'xentropy_loss: {avg_xentropy_loss:.4f}\ttriplet_loss: {avg_triplet_loss:.4f}\tcenter_loss: {avg_center_loss:.4f}') else: print(f'xentropy_loss: {avg_xentropy_loss:.4f}\ttriplet_loss: {avg_triplet_loss:.4f}') print(f'training_loss: {avg_training_loss:.4f}\ttrain_accuracy: {avg_training_acc:.4f}') model.eval() # mAP = calc_mAP(queryloader,galleryloader,model) for idx, (images, pids, cam_ids,frameids) in enumerate(tqdm(queryloader)): with torch.no_grad(): images = images.cuda(opt.cuda_devices) feature = model(images) evaluator.update((feature, pids, cam_ids)) for idx, (images, pids, cam_ids,frameids) in enumerate(tqdm(galleryloader)): with torch.no_grad(): images = images.cuda(opt.cuda_devices) feature = model(images) evaluator.update((feature, pids, cam_ids)) cmc, mAP, _, _, _, _, _ = evaluator.compute() print(f'mAP: {mAP}\n') scheduler.step() loss_list.append(avg_training_loss) acc_list.append(avg_training_acc) mAP_list.append(mAP) if mAP > best_mAP: best_mAP = mAP best_xentropy_loss = avg_xentropy_loss best_triplet_loss = avg_triplet_loss if 'center' in opt.metric_loss_type: best_center_loss = avg_center_loss best_training_loss = avg_training_loss best_training_acc = avg_training_acc best_model_params = copy.deepcopy(model.state_dict()) if (epoch+1)%20 == 0: model.load_state_dict(best_model_params) weight_path = Path(opt.checkpoint_dir).joinpath(f'model-{epoch+1}epoch-{best_mAP:.03f}-mAP.pth') torch.save(model,str(weight_path)) torch.save({'state_dict': model.state_dict()}, str(weight_path)+'.tar') visualization(loss_list, acc_list, mAP_list, epoch+1) record = open("record.txt",'w') if 'center' in opt.metric_loss_type: print(f'best_xentropy_loss: {best_xentropy_loss:.4f}\tbest_triplet_loss: {best_triplet_loss:.4f}\tbest_center_loss: {best_center_loss:.4f}') record.write(f'best_xentropy_loss: {best_xentropy_loss:.4f}\tbest_triplet_loss: {best_triplet_loss:.4f}\tbest_center_loss: {best_center_loss:.4f}\n') else: print(f'best_xentropy_loss: {best_xentropy_loss:.4f}\tbest_triplet_loss: {best_triplet_loss:.4f}') record.write(f'best_xentropy_loss: {best_xentropy_loss:.4f}\tbest_triplet_loss: {best_triplet_loss:.4f}\n') print(f'best_training_loss: {best_training_loss:.4f}\tbest_accuracy: {best_training_acc:.4f}') record.write(f'best_training_loss: {best_training_loss:.4f}\tbest_accuracy: {best_training_acc:.4f}\n') print(f'best_mAP: {best_mAP}') record.write(f'best_mAP: {best_mAP}') record.close() model.load_state_dict(best_model_params) weight_path = Path(opt.checkpoint_dir).joinpath(f'model-{best_mAP:.03f}-best_mAP.pth') torch.save(model, str(weight_path)) torch.save({'state_dict': model.state_dict()}, str(weight_path)+'.tar') visualization(loss_list, acc_list, mAP_list, epoch+1) if __name__ == '__main__': train() ```
{ "source": "Joyce-NL/gep-python-coding-challenge", "score": 2 }
#### File: Joyce-NL/gep-python-coding-challenge/setup.py ```python from __future__ import absolute_import from __future__ import print_function from glob import glob from os.path import basename from os.path import splitext from setuptools import find_packages from setuptools import setup def read(): with open("README.md", "r") as f: return f.read() setup( name='gep_python_coding_challenge', version='0.0.5', license='MIT', description='This package contains the beginner level assignments of the GEP Python Coding Challenge.', long_description=read(), long_description_content_type="text/markdown", author='JcS', author_email='<EMAIL>', url='https://github.com/Joyce-NL/gep-python-coding-challenge', py_modules=['Problem01', 'Problem02', 'Problem41'], package_dir={'': 'src'}, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Other/Nonlisted Topic', ], keywords=[ 'Euler', 'Project Euler' ], python_requires='>=3.0', install_requires=[], extras_require={}, ) ``` #### File: src/tests/test_Problem41.py ```python import unittest from Problem41 import find_largest_pandigital_prime, is_prime_number class TestProblem41(unittest.TestCase): def test_main_function(self): self.assertEqual(find_largest_pandigital_prime(1, 9), 7652413, 'the result of the function does not match the expected result.') self.assertEqual(find_largest_pandigital_prime(1, 3), "NA", 'the result of the function does not match the expected result.') self.assertEqual(find_largest_pandigital_prime(5, 6), "NA", 'the result of the funtion does not match the expected result.') self.assertEqual(find_largest_pandigital_prime(8, 9), "NA", 'the result of the function does not match the expeced result.') self.assertEqual(find_largest_pandigital_prime(5, 7), 7652413, 'the result of the function does not match the expected result.') def test_input_type(self): with self.assertRaises(TypeError): find_largest_pandigital_prime(5j, 5) find_largest_pandigital_prime(1, 2j) find_largest_pandigital_prime("yes", 5) find_largest_pandigital_prime(1, "no") def test_input_value(self): with self.assertRaises(ValueError): find_largest_pandigital_prime(-1, 2) find_largest_pandigital_prime(1, 0) find_largest_pandigital_prime(8, 2) find_largest_pandigital_prime(1, 10) find_largest_pandigital_prime(0, 7) def test_is_prime_number_function(self): self.assertEqual(is_prime_number(1), False,'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(2), True, 'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(3), True, 'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(4), False, 'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(7919), True, 'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(123456), False, 'the result of the function does not match the expected result.') self.assertEqual(is_prime_number(7652413), True, 'the result of the function does not match the expected result.') if __name__ == '__main__': unittest.main() ```
{ "source": "joyceren/Advanced-Lane-Finder", "score": 3 }
#### File: joyceren/Advanced-Lane-Finder/calibrate_camera.py ```python import cv2 import numpy as np def calibrateCamera(): # chessboard size nx = 9 ny = 6 # objpoints and imgpoints for all images objpoints = [] imgpoints = [] # preparing objpoints, formatted (0, 0, 0), (1, 0, 0), (2, 0, 0), etc... objp = np.zeros((nx * ny, 3), np.float32) objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1, 2) # stepping through calibration images for i in range(1, 20): img = cv2.imread("camera_cal/calibration" + str(i) + '.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # finding chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) # if corner was found, add obj and img points if ret == True: imgpoints.append(corners) objpoints.append(objp) # get camera calibration variables ret, cameraMatrix, distortionCoefficents, rotationVector, translationVector = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) return cameraMatrix, distortionCoefficents cameraMatrix, distortionCoefficents = calibrateCamera() def undistort_image(img): return cv2.undistort(img, cameraMatrix, distortionCoefficents, None, cameraMatrix) ```
{ "source": "joyceren/lane-finder", "score": 2 }
#### File: joyceren/lane-finder/find_lanes.py ```python from moviepy.editor import VideoFileClip import numpy as np from helper_functions import grayscale, gaussian_blur, canny, \ region_of_interest, hough_lines, weighted_img def find_lanes_in_image(img): grey_img = grayscale(img) blurred_img = gaussian_blur(grey_img, 9) img_edges = canny(blurred_img, 30, 100) # defining mask vertices vertices = np.array([ [ (200/960*img.shape[1], 500/540*img.shape[0]), (420/960*img.shape[1], 340/540*img.shape[0]), (550/960*img.shape[1], 340/540*img.shape[0]), (800/960*img.shape[1], 500/540*img.shape[0]), ] ], dtype=np.int32) masked_img = region_of_interest(img_edges, vertices) # defining hough_lines variables rho = 2 theta = np.pi / 360 threshold = 50 min_line_length = 50 max_line_gap = img.shape[0]/3 img_lines = hough_lines(masked_img, rho, theta, threshold, min_line_length,max_line_gap) lines_overlay_img = weighted_img(img_lines, img) # plt.imshow(lines_overlay_img) # plt.show() return lines_overlay_img def find_lanes_in_video(video_address, output_address): clip = VideoFileClip(video_address) processed_clip = clip.fl_image(find_lanes_in_image) processed_clip.write_videofile(output_address, audio=False) ```
{ "source": "Joycetyty/leetcode", "score": 4 }
#### File: Joycetyty/leetcode/runningSum.py ```python from typing import List def runningSum(self, nums: List[int]) -> List[int]: for i in range(1, len(nums)): nums[i] += nums[i - 1] return nums if __name__ == "__main__": nums = [1,2,3,4] result = runningSum(self, nums) print(result) ```
{ "source": "Joyce-yanqiongzhang/proj2_storytelling", "score": 3 }
#### File: proj2_storytelling/preprocessing/eliminate_empty_stories.py ```python import logging import sys import argparse class ParserWithUsage(argparse.ArgumentParser): """ A custom parser that writes error messages followed by command line usage documentation.""" def error(self, message): sys.stderr.write('error: %s\n' % message) self.print_help() sys.exit(2) def create_arguments(): parser = ParserWithUsage() parser.description = "Removes stories that have no keywords" parser.add_argument("--input_keywords", help="Input file containing keywords", required=True) parser.add_argument("--input_storylines", help="Input file containing story lines", required=True) parser.add_argument("--input_stories", help="Input file containing stories", required=True) parser.add_argument("--output", help="Output directory (will create clean files here)", required=True) return parser.parse_args() def get_file_name(file_path: str) -> str: """ Returns the name of a file from a file path. :param file_path: file path :return: name of file """ from pathlib import Path p = Path(file_path) return str(p.name) def main(): logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', level=logging.INFO, datefmt='%m/%d/%Y %H:%M:%S') args = create_arguments() args_input_keywords = args.input_keywords args_input_storylines = args.input_storylines args_input_stories = args.input_stories args_output_dir = args.output logging.info("STARTED") logging.info("Identifying empty keyword sets") lines_to_skip_keywords = get_lines_with_empty_keywords(args_input_keywords) lines_to_skip_train = get_lines_with_empty_keywords(args_input_storylines) lines_to_skip = lines_to_skip_keywords.union(lines_to_skip_train) logging.info("Writing new files") write_lines_to_keep(args_input_keywords, args_output_dir + "/" + get_file_name(args_input_keywords), lines_to_skip) write_lines_to_keep(args_input_storylines, args_output_dir + "/" + get_file_name(args_input_storylines), lines_to_skip) write_lines_to_keep(args_input_stories, args_output_dir + "/" + get_file_name(args_input_stories), lines_to_skip) logging.info("DONE") def write_lines_to_keep(file_path: str, output_path: str, lines_to_skip: set) -> None: """ Copies only lines from the input file that are not listed in the set of lines to skip. :param file_path: where to read the input from :param output_path: where to write the output :param lines_to_skip: which lines to skip :return: nothing """ with open(output_path, "w") as file_out: with open(file_path, "r") as file_input: line_number = -1 for line in file_input: line_number += 1 if line_number not in lines_to_skip: file_out.write(line) def get_lines_with_empty_keywords(file_path: str) -> set: """ Identifies lines in the file that are empty. :param file_path: path to keywords file :return: set of lines that are empty """ empty_keywords = set() with open(file_path, "r") as file_obj: line_number = -1 for line in file_obj: line = line.rstrip() line_number += 1 if len(line) == 0: empty_keywords.add(line_number) return empty_keywords if __name__ == "__main__": main() ``` #### File: proj2_storytelling/python_src/keywords_incorp.py ```python import argparse from itertools import combinations import numpy as np import re import sys def read_w2v(w2v_path, word2index, n_dims=300, unk_token="unk"): """takes tokens from files and returns word vectors :param w2v_path: path to pretrained embedding file :param word2index: Counter of tokens from processed files :param n_dims: embedding dimensions :param unk_token: this is the unk token for glove <KEY>. Ideally we make this less hardcode-y :return numpy array of word vectors """ print('Getting Word Vectors...', file=sys.stderr) vocab = set() # hacky thing to deal with making sure to incorporate unk tokens in the form they are in for a given embedding type if unk_token not in word2index: word2index[unk_token] = 0 # hardcoded, this would be better if it was a method of a class word_vectors = np.zeros((len(word2index), n_dims)) # length of vocab x embedding dimensions with open(w2v_path) as file: lc = 0 for line in file: lc += 1 line = line.strip() if line: row = line.split() token = row[0] if token in word2index or token == unk_token: vocab.add(token) try: vec_data = [float(x) for x in row[1:]] word_vectors[word2index[token]] = np.asarray(vec_data) if lc == 1: if len(vec_data) != n_dims: raise RuntimeError("wrong number of dimensions") except: print('Error on line {}'.format(lc), file=sys.stderr) # puts data for a given embedding at an index based on the word2index dict # end up with a matrix of the entire vocab tokens_without_embeddings = set(word2index) - vocab print('Word Vectors ready!', file=sys.stderr) print('{} tokens from text ({:.2f}%) have no embeddings'.format( len(tokens_without_embeddings), len(tokens_without_embeddings)*100/len(word2index)), file=sys.stderr) print('Tokens without embeddings: {}'.format(tokens_without_embeddings), file=sys.stderr) print('Setting those tokens to unk embedding', file=sys.stderr) for token in tokens_without_embeddings: word_vectors[word2index[token]] = word_vectors[word2index[unk_token]] return word_vectors def get_tokens(files): """take a list of filepaths, returns word2idx dict""" print('Getting tokens ... ...', file=sys.stderr) all_tokens = set() for path in files: with open(path, 'r') as infile: all_tokens.update(set(infile.read().strip().split())) word2index = dict(map(reversed, enumerate(list(all_tokens)))) return word2index def cos_sim(v1, v2): return v1.dot(v2) / (np.sqrt(v1.dot(v1)) * np.sqrt(v2.dot(v2))) def cos_sim_array(vec, vec_array): """ take dot product of 2 vectors. which reduces dimensionality and gives me an array of results. IMPORTANT that vec_array is first arg as a result :param vec: a vector :param vec_array: an array of vectors :return: cosine_sim_array of the cosine similarity between the vector and each vector in the array """ dot_prod_array = np.dot(vec_array, vec) len_vec_array, len_x_d = (vec_array**2).sum(axis=1) ** .5, (vec ** 2).sum() ** .5 cosine_sim_array = np.divide(dot_prod_array, len_vec_array*len_x_d) return cosine_sim_array def remove_chars(text: str, remove='#') -> str: """take a string and optional chars to remove and returns string without them""" return re.sub(r'[{}]'.format(remove), '', text) def make_vec_array(word_list: list, word_vectors, word2index: dict, drop_set={'#', '<EOL>', '<EOT>', '<\s>'}): """take a list of strings, an array of word vectors, return a numpy array of word vectors""" vecs = [np.array(word_vectors[word2index.get(word, 0)]) for word in word_list if word not in drop_set] return np.array(vecs) def calc_similarity(storyline_path, story_path, word2index, word_vectors): """calculates cosine similarity between keywords in storyline and between keywords in storyline and corresponding sentence in story. Averaged over all """ keyword_relatedness = 0 keyword_incorporation_rate = 0 storylines, stories = [], [] with open(storyline_path, 'r') as infile: for line in infile: processed_line = remove_chars(line).strip().split()[:-1] # remove the <EOL> at the end storylines.append(processed_line) with open(story_path, 'r') as infile: for line in infile: processed_line = remove_chars(line).strip().split() stories.append(processed_line) num_storylines = len(storylines) assert(num_storylines == len(stories)), "Mismatch between number of storylines and number of stories" # loop through stories and storylines and calc similarities for i in range(num_storylines): storyline_word_array = make_vec_array(storylines[i], word_vectors, word2index) # all storyline vectors story_word_array = make_vec_array(stories[i], word_vectors, word2index) # all story word vectors # calculate the similarities between the storyline words # this is the cumulative cosine similarity between each word and all the other words then averaged num_words_in_storyline = len(storyline_word_array) storyline_idx_combinations = list(combinations(range(num_words_in_storyline), 2)) this_storyline_relatedness = 0 for kw1, kw2 in storyline_idx_combinations: this_storyline_relatedness += cos_sim(storyline_word_array[kw1], storyline_word_array[kw2]) #print("KW Relatedness", this_storyline_relatedness/len(storyline_idx_combinations)) # to debug individual lines keyword_relatedness += this_storyline_relatedness/len(storyline_idx_combinations) # since end up with 2x comparisons as words # calculate the similarities between the word and the sentence # this is the maximum cosine sim between each keyword and any other word in the sentence, summed over keywords then averaged this_incorporation_rate = 0 for kw_vec in storyline_word_array: cosine_max = np.nanmax(cos_sim_array(kw_vec, story_word_array)) this_incorporation_rate += cosine_max #print("KW Incorporation", this_incorporation_rate/num_words_in_storyline) # to debug individual lines keyword_incorporation_rate += this_incorporation_rate/num_words_in_storyline # report average over all in set keyword_relatedness /= num_storylines keyword_incorporation_rate /= num_storylines print('Metrics for {} samples'.format(num_storylines)) print('dynamic relatedness : {:.2f}'.format(keyword_relatedness)) print('dynamic keyword_incorporation_rate : {:.2f}'.format(keyword_incorporation_rate)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('storyline_file', type=str, help='location of file with storylines') parser.add_argument('story_file', type=str, help='location of story file') parser.add_argument('wordvec_file', type=str, help='path to wordvec file' ) args = parser.parse_args() word2idx = get_tokens([args.storyline_file, args.story_file]) # takes list of arbitrarily many files word_vectors = read_w2v(args.wordvec_file, word2idx) calc_similarity(args.storyline_file, args.story_file, word2idx, word_vectors) ``` #### File: proj2_storytelling/python_src/preprocess.py ```python import sys import json import nltk from tokenize_it import wtokenizer from util import tokenize, get_noun class ROCstory: def load_data(self, infile): dataSet = [] with open(infile) as inf: inf.readline() for line in inf: elems = line.strip().split('\t') try: assert len(elems) == 7 or len(elems) == 8 or len(elems) == 5 except: print('wrong format!!', len(elems), elems) if len(elems) == 7: dataSet.append(elems[2:]) elif len(elems) == 8: dataSet.append(elems[1:5] + [elems[4+int(elems[-1])]]) elif len(elems) == 5: dataSet.append(elems) assert len(dataSet[-1]) == 5 print ('Finished loading data!!!') return dataSet def get_alternative_endings(self, infile, outfile): body, trueEnd, falseEnd = [], [], [] with open(infile) as inf, open(outfile+'.body', 'w') as boutf, open(outfile+'.true', 'w') as toutf, open(outfile+'.false', 'w') as foutf: inf.readline() for line in inf: elems = line.strip().split('\t') try: assert len(elems) == 8 except: print('wrong format!!', len(elems), elems) body.append('\t'.join(elems[1:5])) trueEnd.append(elems[4+int(elems[-1])]) falseEnd.append(elems[7-int(elems[-1])]) print ('Finished loading data!!!') assert len(body) == len(trueEnd) assert len(trueEnd) == len(falseEnd) for bd, te, fe in zip(body, trueEnd, falseEnd): boutf.write(wtokenizer(bd)+'\n') toutf.write(wtokenizer(te)+'\n') foutf.write(wtokenizer(fe)+'\n') def gen_pair(self, dataSet, mode='vanilla', look_back=1): pairs = [] keywords = [] for line in dataSet: if mode.startswith('pad'): line.insert(0, '<BOST>') line.append('<EOST>') # The vanilla version if mode.endswith('vanilla'): pair = (' '.join(line[:-1]).lower(), line[-1].lower()) pairs.append(pair) kws = [get_noun(tokenize(sent)) for sent in line] keywords.append(kws) # all possible context + ending elif mode.endswith('ending'): for i in range(len(line)-1): pair = (' '.join(line[i:-1]).lower(), line[-1].lower()) pairs.append(pair) # all pair elif mode.endswith('all'): for j in range(1, len(line)): for i in range(j): pair = (' '.join(line[i:j]).lower(), line[j].lower()) pairs.append(pair) # n-gram elif mode.endswith('lookback'): # hack for generating test data #for j in range(len(line)-1, len(line)): for j in range(1, len(line)): i = max(j-look_back, 0) pair = (' '.join(line[i:j]).lower(), line[j].lower()) pairs.append(pair) else: raise NotImplementedError print ('generate %d pairs!' % len(pairs)) return pairs, keywords def generate_data(self, infile, outfile, mode='vanilla', look_back=1): dataSet = self.load_data(infile) pairs, keywords = self.gen_pair(dataSet, mode, look_back) with open(outfile+'.tok', 'w') as outf, open(outfile+'.key', 'w') as kof: for pair in pairs: tpair = map(wtokenizer, pair) outf.write('\t'.join(tpair) + '\n') for kws in keywords: kof.write(' '.join(kws) + '\n') class VStory(ROCstory): def load_data(self, infile): dataSet = [] with open(infile) as inf: fobj = json.load(inf) #for i in fobj: story = fobj['annotations'] temp_data = [] for line in story: assert len(line) == 1, len(line) item_dict = line[0] order = item_dict['worker_arranged_photo_order'] text = item_dict['text'] assert int(order) == len(temp_data) temp_data.append(text) if len(temp_data) == 5: dataSet.append(temp_data) temp_data = [] return dataSet if __name__ == '__main__': infile, outfile, trmode = sys.argv[1:4] lb = None if len(sys.argv) > 4: lb = int(sys.argv[4]) # generate training data rocstory_proc = ROCstory() #rocstory_proc.generate_data(infile, outfile, trmode, lb) rocstory_proc.get_alternative_endings(infile, outfile) #vstory = VStory() #vstory.generate_data(infile, outfile, trmode, lb) ``` #### File: storytelling/storytelling/generate_story_from_img.py ```python from numpy.core.fromnumeric import argmax from . import predict img_paths = ['/home/serena/Desktop/proj2_storytelling/storytelling/statics/uploaded_imgs/1609853089.6942558user1.png', '/home/serena/Desktop/proj2_storytelling/storytelling/statics/uploaded_imgs/1609853095.5605984user2.png', '/home/serena/Desktop/proj2_storytelling/storytelling/statics/uploaded_imgs/1609853100.6583555user3.png'] # get attributes of the users' faces class User_face: def __init__(self, user_number, gender, age1, age2, attributes): self.user_number = user_number self.gender = gender self.age1 = age1 self.age2 = age2 self.attributes = attributes self.score = [] class Character: def __init__(self, index, name, gender, gender_weight, age1, age2, age_weight, attributes, attribute_weight): self.index = index self.name = name self.gender = gender self.gender_weight = gender_weight self.age1 = age1 self.age2 = age2 self.age_weight = age_weight self.attributes = attributes self.attribute_weight = attribute_weight prince = Character(0, 'prince', 'Male', 50, 5, 25, 25, ['Attractive', 'Young', 'Oval_Face'], 15) princess = Character(1, 'princess', 'Female', 50, 5, 25, 25, ['Attractive', 'Young', 'Oval_Face'], 15) wizard = Character(2, 'wizard', 'Male', 10, 30, 80, 50, ['Chubby', 'Eeyeglasses', 'Bags_Under_Eyes', 'Mustache', 'Heavy_Makeup', 'Goatee'], 25) rabbit = Character(3, 'Rabbit', 'Female', 10, 0, 10, 50, ['Chubby', 'Young', 'Pale_Skin', 'Wearing_Lipstick'], 30) character_set = [prince, princess, wizard, rabbit] def calculate_score(user_face): def calculate_single(user_face, character): single_score = 0 if user_face.gender == character.gender: single_score += character.gender_weight if user_face.age1 in range(character.age1, character.age2+1) or user_face.age2 in range(character.age1, character.age2+1): single_score += character.age_weight for attr in user_face.attributes: if attr in character.attributes: single_score += character.attribute_weight return single_score user_score = [] for cha in character_set: user_score.append(calculate_single(user_face, cha)) return user_score def character_mapping(img_paths): user_face_set = [] for i, img_path in enumerate(img_paths): gender, age1, age2, attributes = predict.get_attributes(img_path) user_face_set.append(User_face(i+1, gender, int(age1), int(age2), attributes)) user_scores = [] for user in user_face_set: user_score = calculate_score(user) user.score = user_score print("user " + str(user.user_number) + " got the scores for prince, princess, wizard, rabbit :", user_score) user_scores.append(user_score) print(user_scores) user_characters = [] for user_score in user_scores: selected_index = user_score.index(max(user_score)) selected = character_set[selected_index] user_score_co = user_score.copy() while selected.name in user_characters: user_score_co[selected_index] = -1 selected_index = user_score_co.index(max(user_score_co)) selected = character_set[selected_index] user_characters.append(selected.name) print(user_characters) return user_characters, user_face_set ```
{ "source": "JoyChen1998/Network_PacketCapture", "score": 2 }
#### File: JoyChen1998/Network_PacketCapture/Sniffer.py ```python import socket import time import psutil from struct import * from multiprocessing import Pool __AUTHOR__ = 'JoyChan' __REPO__ = "https://github.com/JoyChen1998/Network_PacketCapture" # ---* CONFIG *--- INTERVAL = 1 # for default speed to get a packet HAVE_SAVED = False # control file save HAVE_FILTER_PROTOCOL = False # control filter rules for protocol HAVE_FILTER_IP = False # control filter rules for ip __VERSION__ = '1.3.5' # ---* CONFIG *--- ackn = [] protocol_filter_list = [] source_ip_filter_list = [] destination_ip_filter_list = [] allows_protocol = ['TCP', 'ICMP', 'UDP'] # for transfer protocol number to protocol name class Sniffer: def __init__(self): ''' do basically set ''' global protocol_filter_list global source_ip_filter_list global destination_ip_filter_list self.s = None self.filter_proto = protocol_filter_list self.filter_in_ip = source_ip_filter_list self.filter_out_ip = destination_ip_filter_list self.cnt = 1 # for count packet self.cnt_merge = 1 # for merge count self.ack = [] self.Packet_MAC = { 'Source MAC': None, 'Destination MAC': None } self.Packet_IP = { 'Version': None, 'IP Header Length': None, 'Differ Service': None, 'All Length': None, 'Identification': None, 'DF': None, 'MF': None, 'Offset': None, 'TTL': None, 'Protocol': None, 'Source Address': None, 'Destination Address': None } self.Packet_UDP = { 'Source_port': None, 'Dest_port': None, 'Length': None, 'Checksum': None, 'Data_seg': None, 'Data_length': None } self.Packet_TCP = { 'Source_port': None, 'Dest_port': None, 'Sequence': None, 'Acknowledgement': None, 'TCP Header Length': None, 'Data_seg': None, 'Data_length': None } self.Packet_ICMP = { 'Type': None, 'Code': None, 'Checksum': None, 'Data_seg': None, 'Data_length': None } @staticmethod def get_netcard(): netcard_info = [] info = psutil.net_if_addrs() for k, v in info.items(): for item in v: if item[0] == 2 and not item[1] == '127.0.0.1': netcard_info.append((k, item[1])) return netcard_info @staticmethod def eth_addr(a): b = "%.2x-%.2x-%.2x-%.2x-%.2x-%.2x" % (a[0], a[1], a[2], a[3], a[4], a[5]) return b @staticmethod def convert_hex_to_ascii(data): tmp = "" try: tmp = data.decode().encode("utf-8").decode("utf-8") except: for j in range(0, len(data)): tmp += chr(int("%.2x" % data[j], 16)) return tmp def record_http_msg(self, data, acknowledge): for index in range(0, len(self.ack)): if str(acknowledge) == str(self.ack[index]): ackn[index] += data if len(self.ack) > 0: with open('HTTP_record.txt', 'w') as f: f.write('** http record started **\n') for index_i in ackn: f.write('new http packet data\n') f.write(index_i + '\n') f.write('*'*40 + '\n') f.write('\n** http record ended **\n') f.close() @staticmethod def get_flag(e): f = bin(int(e[0], 16))[2:] o = '0' * (4 - len(f)) + f return o[1:3] @staticmethod def get_offset(e): f = bin(int(e[0], 16))[2:] o = '0' * (4 - len(f)) + f return int(o[3] + e[1:], 16) @staticmethod def change_digit_to_word(protocol): protocols = { '0': 'IP', '1': 'ICMP', '6': 'TCP', '17': 'UDP' } return protocols[str(protocol)] def soc_establish_conn(self): ''' To create a socket :return: nil ''' ''' (You can skip it) I just want to say something about the `socket.AF_INET` & `socket.AF_PACKET`. When I use `socket.AF_INET`,I only can get one protocol just like `TCP`, `UDP`, or `ICMP`... So, should I neet to use Multiprocessing Pool ?? I have been thinking for a long time about multi-process parallelism ... But, When I saw the anotation about `AF_PACKET` I got a clear idea. Why not unpack the MAC-Packet? Well, You can see the word about AF_PACKET => `When using socket.AF_PACKET to create a socket, it will be able to capture all Ethernet frames received or sent by the unit.` So, the final version change to use AF_PACKET, I don't need to care about multi-process! ''' try: # self.s = socket.socket(socket.AF_INET, socket.SOCK_RAW, self.param) self.s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0003)) # set a packet socket conn except: print('Socket could not be created') exit(-1) print('Socket established success!') self.unpack_eth_packet() def unpack_eth_packet(self): # for i in range(1, 20): while True: packet = self.s.recvfrom(65565) packet = packet[0] # parse ethernet header eth_length = 14 eth_header = packet[: eth_length] eth = unpack('!6s6sH', eth_header) eth_protocol = socket.ntohs(eth[2]) # Convert a 16-bit integer from network to host byte order. source_eth_addr = self.eth_addr(packet[6:12]) dest_eth_addr = self.eth_addr(packet[0:6]) self.Packet_MAC['Source MAC'] = source_eth_addr self.Packet_MAC['Destination MAC'] = dest_eth_addr if eth_protocol == 8: self.unpack_ip_packet(packet, eth_length) # add a interval time.sleep(INTERVAL) def unpack_ip_packet(self, packet, eth_len): ''' this function is to unpack the ip packet :param eth_len: the header include ` MAC frame header` :param packet: the packet that needed to packet :return: nil & just return ''' # Parse IP header # take first 20 characters for the ip header self.cnt += 1 ip_header = packet[eth_len: eth_len + 20] # ip packet unpack iph = unpack('!BBHH2sBBH4s4s', ip_header) version_ihl = iph[0] differ_service = iph[1] version = version_ihl >> 4 ihl = version_ihl & 0xF iph_lenth = ihl * 4 all_lenth = iph[2] id = iph[3] flag_N_offset = iph[4].hex() flags = self.get_flag(flag_N_offset) MF = flags[1] DF = flags[0] offst = self.get_offset(flag_N_offset) ttl = iph[5] protocol = iph[6] self.Packet_IP['Version'] = version self.Packet_IP['Differ Service'] = differ_service self.Packet_IP['IP Header Length'] = ihl self.Packet_IP['All Length'] = all_lenth self.Packet_IP['Identification'] = id self.Packet_IP['MF'] = MF self.Packet_IP['DF'] = DF self.Packet_IP['Offset'] = offst self.Packet_IP['TTL'] = ttl self.Packet_IP['Protocol'] = self.change_digit_to_word(protocol) self.Packet_IP['Source Address'] = socket.inet_ntoa(iph[8]) self.Packet_IP['Destination Address'] = socket.inet_ntoa(iph[9]) # filter for ip in/out if len(self.filter_in_ip) > 0 and self.Packet_IP['Source Address'] not in self.filter_in_ip: return if len(self.filter_out_ip) > 0 and self.Packet_IP['Destination Address'] not in self.filter_out_ip: return new_length = iph_lenth + eth_len # upgrade packet parser start length if HAVE_SAVED and DF == '0': if MF == '1': with open('merge.'+str(self.cnt_merge)+'.txt', 'a') as f: f.write('packet_cnt=' + str(self.cnt) + '\noffset=' + str(offst) + '\ndata=' + str(packet[new_length + 20:]) + '\n') f.close() elif MF == '0': with open('merge.'+str(self.cnt_merge)+'.txt', 'a') as f: f.write('packet_cnt=' + str(self.cnt) + '\noffset=' + str(offst) + '\ndata=' + str(packet[new_length + 20:]) + '\n') f.close() self.cnt_merge += 1 # classify different kinds of packet if HAVE_FILTER_PROTOCOL: if protocol == 6 and protocol in protocol_filter_list: self.unpack_tcp_packet(new_length, packet) elif protocol == 17 and protocol in protocol_filter_list: self.unpack_udp_packet(new_length, packet) elif protocol == 1 and protocol in protocol_filter_list: self.unpack_icmp_packet(new_length, packet) else: return else: if protocol == 6: self.unpack_tcp_packet(new_length, packet) elif protocol == 17: self.unpack_udp_packet(new_length, packet) elif protocol == 1: self.unpack_icmp_packet(new_length, packet) else: print('This Packe\'s Protocol is not in [ TCP , ICMP , UDP ]') print() def unpack_tcp_packet(self, iph_lenth, packet): ''' this function is to unpack the tcp packet :param iph_lenth: the header include ` MAC frame header & ip header` :param packet: the packet that needed to packet :return: nil ''' tcp_header = packet[iph_lenth:iph_lenth + 20] tcph = unpack('!HHLLBBHHH', tcp_header) source_port = tcph[0] dest_port = tcph[1] sequence = tcph[2] acknowledgement = tcph[3] doff_reserved = tcph[4] tcph_length = doff_reserved >> 4 h_size = iph_lenth + tcph_length * 4 data_size = len(packet) - h_size # TCP Packet's data segment data = self.convert_hex_to_ascii(packet[h_size:]) if "HTTP" in data: self.ack.append(acknowledgement) ackn.append('') if acknowledgement in self.ack: self.record_http_msg(data, acknowledgement) self.Packet_TCP['Source_port'] = source_port self.Packet_TCP['Dest_port'] = dest_port self.Packet_TCP['Sequence'] = sequence self.Packet_TCP['Acknowledgement'] = acknowledgement self.Packet_TCP['TCP Header Length'] = tcph_length self.Packet_TCP['Data_seg'] = data self.Packet_TCP['Data_length'] = data_size if HAVE_SAVED: with open('tcp_packet.txt', 'a') as f: f.write('----- packet - index: ' + str(self.cnt) + ' -----\n') for key, value in self.Packet_MAC.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_IP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_TCP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n***************************\n\n') print('----- packet - index: ', str(self.cnt), ' -----') for key, value in self.Packet_MAC.items(): print(key, ':', value) print() for key, value in self.Packet_IP.items(): print(key, ':', value) print() for key, value in self.Packet_TCP.items(): print(key, ':', value) print() print('*' * 35) print() def unpack_udp_packet(self, iph_lenth, packet): ''' this function is to unpack the udp packet :param iph_lenth: the header include ` MAC frame header & ip header` :param packet: the packet that needed to packet :return: nil ''' udph_length = 8 udp_header = packet[iph_lenth:iph_lenth + 8] udph = unpack('!HHHH', udp_header) source_port = udph[0] dest_port = udph[1] length = udph[2] checksum = udph[3] h_size = iph_lenth + udph_length data_size = len(packet) - h_size data = self.convert_hex_to_ascii(packet[h_size:]) self.Packet_UDP['Source_port'] = source_port self.Packet_UDP['Dest_port'] = dest_port self.Packet_UDP['Length'] = length self.Packet_UDP['Checksum'] = checksum self.Packet_UDP['Data_seg'] = data self.Packet_UDP['Data_length'] = data_size if HAVE_SAVED: with open('udp_packet.txt', 'a') as f: f.write('----- packet - index: ' + str(self.cnt) + ' -----\n') for key, value in self.Packet_MAC.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_IP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_UDP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n***************************\n\n') print('----- packet - index: ', str(self.cnt), ' -----') for key, value in self.Packet_MAC.items(): print(key, ':', value) print() for key, value in self.Packet_IP.items(): print(key, ':', value) print() for key, value in self.Packet_UDP.items(): print(key, ':', value) print() print('*' * 35) print() def unpack_icmp_packet(self, iph_lenth, packet): ''' this function is to unpack the icmp packet :param iph_lenth: the header include ` MAC frame header & ip header` :param packet: the packet that needed to packet :return: nil ''' icmph_length = 4 icmp_header = packet[iph_lenth:iph_lenth + 4] icmph = unpack('!BBH', icmp_header) icmp_type = icmph[0] code = icmph[1] checksum = icmph[2] h_size = iph_lenth + icmph_length data_size = len(packet) - h_size data = self.convert_hex_to_ascii(packet[h_size:]) self.Packet_ICMP['Type'] = icmp_type self.Packet_ICMP['Code'] = code self.Packet_ICMP['Checksum'] = checksum self.Packet_ICMP['Data_seg'] = data self.Packet_ICMP['Data_length'] = data_size if HAVE_SAVED: with open('icmp_packet.txt', 'a') as f: f.write('----- packet - index: ' + str(self.cnt) + ' -----\n') for key, value in self.Packet_MAC.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_IP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n') for key, value in self.Packet_ICMP.items(): f.write(key + ':' + str(value) + '\n') f.write('\n***************************\n\n') print('----- packet - index: ', str(self.cnt), ' -----') for key, value in self.Packet_MAC.items(): print(key, ':', value) print() for key, value in self.Packet_IP.items(): print(key, ':', value) print() for key, value in self.Packet_ICMP.items(): print(key, ':', value) print() print('*' * 35) print() if __name__ == '__main__': # pool = Pool() snif = Sniffer() print(snif.get_netcard()) if HAVE_FILTER_PROTOCOL: str_filter = input('Please input protocol filter\n') protocol_filter_list = str_filter.strip().split(' ') print(protocol_filter_list) for i in range(0, len(protocol_filter_list)): if protocol_filter_list[i] in allows_protocol: if protocol_filter_list[i] == 'TCP': protocol_filter_list[i] = 6 elif protocol_filter_list[i] == 'ICMP': protocol_filter_list[i] = 1 elif protocol_filter_list[i] == 'UDP': protocol_filter_list[i] = 17 else: print('Maybe your input has something wrong...') protocol_filter_list = [] # print(protocol_filter_list) if HAVE_FILTER_IP: str_filter_in_ip = input('Please input source-ip filter\n') source_ip_filter_list = str_filter_in_ip str_filter_out_ip = input('Please input destination-ip filter\n') destination_ip_filter_list = str_filter_out_ip try: # pool.map(snif.soc_establish_conn, params) # udp will cause suspended snif.soc_establish_conn() except KeyboardInterrupt: print('HALTED!') ```
{ "source": "joychugh/learning-kafka", "score": 3 }
#### File: joychugh/learning-kafka/twitter.py ```python __author__ = 'jchugh' from simple_oauth.oauth_request import Request class TwitterStream(object): """ A class representing twitter client to get streaming tweets """ def __init__(self, oauth, json_parser): """ Initialize the twitter streaming client with the Oauth instance :param Oauth: Oauth instance configured for twitter. :type Oauth: Oauth :return: `TwitterStream` instance """ self.__oauth = oauth self.__json_parser = json_parser self.__response_stream = None def get_tweets(self, request): """ Get the tweets from the given request :param request: the streaming request :type request: Request :return: `Tweets` instance :rtype: Tweets """ self.__oauth.make_request(request) self.__response_stream = self.__oauth.get_response_content_iterator() return Tweets(self.__response_stream, self.__json_parser) class Tweets(object): def __init__(self, data_stream, json_parser): """ Initialize the `Tweets` class :param data_stream: raw data stream iterator from Twitter :type data_stream: iterator :param json_parser: json parser to parse the json data :type json_parser: `Json` :return: `Tweets` object :rtype: Tweets """ self.__data_stream = data_stream self.__json_parser = json_parser def __iter__(self): return self def next(self): """ Returns decoded json as a dict :return: the tweet as dict :rtype: dict """ raw_text = next(self.__data_stream) if len(raw_text) > 0: try: message = self.__json_parser.loads(raw_text) if 'text' in message and 'user' in message: return message except ValueError as ve: return None else: return None ```
{ "source": "joyc/watchlist", "score": 2 }
#### File: joyc/watchlist/test_watchlist.py ```python import unittest from watchlist import app, db from watchlist.models import Movie, User from watchlist.commands import forge, initdb class WatchlistTestCase(unittest.TestCase): def setUp(self): # ๆ›ดๆ–ฐ้…็ฝฎ app.config.update( TESTING=True, SQLALCHEMY_DATABASE_URI='sqlite:///:memory:' ) # ๅˆ›ๅปบๆ•ฐๆฎๅบ“ๅ’Œ่กจ db.create_all() # ๅˆ›ๅปบๆต‹่ฏ•ๆ•ฐๆฎ๏ผŒไธ€ไธช็”จๆˆท๏ผŒไธ€ไธช็”ตๅฝฑๆก็›ฎ user = User(name='Test', username='test') user.set_password('<PASSWORD>') movie = Movie(title='Test Movie Title', year='2019') # ไฝฟ็”จ add_all() ๆ–นๆณ•ไธ€ๆฌกๆทปๅŠ ๅคšไธชๆจกๅž‹็ฑปๅฎžไพ‹๏ผŒไผ ๅ…ฅๅˆ—่กจ db.session.add_all([user, movie]) db.session.commit() self.client = app.test_client() # ๅˆ›ๅปบๆต‹่ฏ•ๅฎขๆˆท็ซฏ self.runner = app.test_cli_runner() # ๅˆ›ๅปบๆต‹่ฏ•ๅ‘ฝไปค่ฟ่กŒๅ™จ def tearDown(self): db.session.remove() # ๆธ…้™คๆ•ฐๆฎๅบ“ไผš่ฏ db.drop_all() # ๅˆ ้™คๆ•ฐๆฎๅบ“่กจ def login(self): self.client.post('/login', data=dict( username='test', password='<PASSWORD>' ), follow_redirects=True) # ๆต‹่ฏ•็จ‹ๅบๅฎžไพ‹ๆ˜ฏๅฆๅญ˜ๅœจ def test_app_exist(self): self.assertIsNotNone(app) # ๆต‹่ฏ•็จ‹ๅบๆ˜ฏๅฆๅค„ไบŽๆต‹่ฏ•ๆจกๅผ def test_app_is_testing(self): self.assertTrue(app.config['TESTING']) # ๆต‹่ฏ• 404 ้กต้ข def test_404_page(self): response = self.client.get('/nothing') # ไผ ๅ…ฅ็›ฎๆ ‡ URL data = response.get_data(as_text=True) self.assertIn('Page Not Found - 404', data) self.assertIn('Go Back', data) self.assertEqual(response.status_code, 404) # ๅˆคๆ–ญๅ“ๅบ”็Šถๆ€็  # ๆต‹่ฏ•ไธป้กต def test_index_page(self): response = self.client.get('/') data = response.get_data(as_text=True) self.assertIn('Test\'s Watchlist', data) self.assertIn('Test Movie Title', data) self.assertEqual(response.status_code, 200) def test_login_protect(self): response = self.client.get('/') data = response.get_data(as_text=True) self.assertNotIn('Logout', data) self.assertNotIn('Settings', data) self.assertNotIn('<form method="post">', data) self.assertNotIn('Delete', data) self.assertNotIn('Edit', data) def test_login(self): response = self.client.post('/login', data=dict( username='test', password='<PASSWORD>' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Login success.', data) self.assertIn('Logout', data) self.assertIn('Settings', data) self.assertIn('Delete', data) self.assertIn('Edit', data) self.assertIn('<form method="post">', data) response = self.client.post('/login', data=dict( username='test', password='<PASSWORD>' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Login success.', data) self.assertIn('Invalid username or password.', data) response = self.client.post('/login', data=dict( username='wrong', password='<PASSWORD>' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Login success.', data) self.assertIn('Invalid username or password.', data) response = self.client.post('/login', data=dict( username='', password='<PASSWORD>' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Login success.', data) self.assertIn('Invalid input.', data) response = self.client.post('/login', data=dict( username='test', password='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Login success.', data) self.assertIn('Invalid input.', data) def test_logout(self): self.login() response = self.client.get('/logout', follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Goodbye.', data) self.assertNotIn('Logout', data) self.assertNotIn('Settings', data) self.assertNotIn('Delete', data) self.assertNotIn('Edit', data) self.assertNotIn('<form method="post">', data) def test_settings(self): self.login() response = self.client.get('/settings') data = response.get_data(as_text=True) self.assertIn('Settings', data) self.assertIn('Your Name', data) response = self.client.post('/settings', data=dict( name='', ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Settings updated.', data) self.assertIn('Invalid input.', data) response = self.client.post('/settings', data=dict( name='Grey Li', ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Settings updated.', data) self.assertIn('Grey Li', data) def test_create_item(self): self.login() response = self.client.post('/', data=dict( title='New Movie', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Item created.', data) self.assertIn('New Movie', data) response = self.client.post('/', data=dict( title='', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item created.', data) self.assertIn('Invalid input.', data) response = self.client.post('/', data=dict( title='New Movie', year='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item created.', data) self.assertIn('Invalid input.', data) def test_update_item(self): self.login() response = self.client.get('/movie/edit/1') data = response.get_data(as_text=True) self.assertIn('Edit item', data) self.assertIn('Test Movie Title', data) self.assertIn('2019', data) response = self.client.post('/movie/edit/1', data=dict( title='New Movie Edited', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Item updated.', data) self.assertIn('New Movie Edited', data) response = self.client.post('/movie/edit/1', data=dict( title='', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item updated.', data) self.assertIn('Invalid input.', data) response = self.client.post('/movie/edit/1', data=dict( title='New Movie Edited Again', year='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item updated.', data) self.assertNotIn('New Movie Edited Again', data) self.assertIn('Invalid input.', data) def test_delete_item(self): self.login() response = self.client.post('/movie/delete/1', follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Item deleted.', data) self.assertNotIn('Test Movie Title', data) # ๆต‹่ฏ•่™šๆ‹Ÿๆ•ฐๆฎ def test_forge_command(self): result = self.runner.invoke(forge) self.assertIn('Done.', result.output) self.assertNotEqual(Movie.query.count(), 0) # ๆต‹่ฏ•ๅˆๅง‹ๅŒ–ๆ•ฐๆฎๅบ“ def test_initdb_command(self): result = self.runner.invoke(initdb) self.assertIn('Initialized database.', result.output) # ๆต‹่ฏ•็”Ÿๆˆ็ฎก็†ๅ‘˜่ดฆๆˆท def test_admin_command(self): db.drop_all() db.create_all() result = self.runner.invoke(args=['admin', '--username', 'grey', '--password', '<PASSWORD>']) self.assertIn('Creating user...', result.output) self.assertIn('Done.', result.output) self.assertEqual(User.query.count(), 1) self.assertEqual(User.query.first().username, 'grey') self.assertTrue(User.query.first().validate_password('<PASSWORD>')) # ๆต‹่ฏ•ๆ›ดๆ–ฐ็ฎก็†ๅ‘˜่ดฆๆˆท def test_admin_command_update(self): # ไฝฟ็”จ args ๅ‚ๆ•ฐ็ป™ๅ‡บๅฎŒๆ•ด็š„ๅ‘ฝไปคๅ‚ๆ•ฐๅˆ—่กจ result = self.runner.invoke(args=['admin', '--username', 'peter', '--password', '<PASSWORD>']) self.assertIn('Updating user...', result.output) self.assertIn('Done.', result.output) self.assertEqual(User.query.count(), 1) self.assertEqual(User.query.first().username, 'peter') self.assertTrue(User.query.first().validate_password('<PASSWORD>')) if __name__ == '__main__': unittest.main() ```
{ "source": "joydeba/autocount", "score": 2 }
#### File: joydeba/autocount/datasetIMG.py ```python import torch from torchvision import transforms from torch.utils.data import Dataset import glob import os from PIL import Image import numpy as np from xml.dom import minidom import cv2 import math class DataLoaderInstanceSegmentation(Dataset): def __init__(self, folder_path="ethz_1_all", train = True): super(DataLoaderInstanceSegmentation, self).__init__() if train: folder_path="ethz_1_all" else: folder_path="images_testing" self.train = train self.img_files = glob.glob(os.path.join(folder_path,"images","*.jpg")) self.ins_mask_files = [] self.filenames = [] self.to_tensor = transforms.ToTensor() for img_path in self.img_files: self.ins_mask_files.append(os.path.join(folder_path,'croped_masks',os.path.basename(img_path))) self.filenames.append(os.path.basename(img_path)) def __len__(self): return len(self.img_files) def __getitem__(self, index): img_path = self.img_files[index] ins_mask_path = self.ins_mask_files[index] filename = self.filenames[index] data = self.to_tensor(Image.open(img_path).convert('RGB')) label_ins = self.to_tensor(Image.open(ins_mask_path).convert('RGB')) if self.train: return data, label_ins else: return data, filename ```
{ "source": "joydeba/BackportingPR", "score": 3 }
#### File: joydeba/BackportingPR/ModelNet.py ```python import tensorflow as tf ''' Model class of ReBack. Initialize variables of parameters from the command line inputs ''' class ReBack(object): def __init__(self, max_msg_length, max_meta_length, max_code_length, max_code_line, max_code_hunk, vocab_size_text, vocab_size_meta, vocab_size_code, embedding_size_text, filter_sizes, num_filters, l2_reg_lambda, num_classes, hidden_units): self.max_msg_length = max_msg_length self.max_meta_length = max_meta_length self.max_code_length = max_code_length self.max_code_line = max_code_line self.max_code_hunk = max_code_hunk self.vocab_size_text = vocab_size_text self.vocab_size_meta = vocab_size_meta self.vocab_size_code = vocab_size_code self.embedding_size_text = embedding_size_text self.filter_sizes = filter_sizes self.num_filters = num_filters self.l2_reg_lambda = l2_reg_lambda self.num_classes = num_classes self.hidden_units = hidden_units def _create_place_holder(self): # Placeholders for discussion and code inputs self.input_msg = tf.placeholder(tf.int32, [None, self.max_msg_length], name='input_msg') self.input_meta = tf.placeholder(tf.int32, [None, self.max_meta_length], name='input_meta') self.input_addedcode = tf.placeholder(tf.int32, [None, self.max_code_hunk, self.max_code_line, self.max_code_length], name='input_addedcode') self.input_removedcode = tf.placeholder(tf.int32, [None, self.max_code_hunk, self.max_code_line, self.max_code_length], name='input_removedcode') # Target classes of the ReBack self.input_y = tf.placeholder(tf.float32, [None, self.num_classes], name="input_y") # Parameters regarding loss functions. No regularization is used here. self.l2_loss = tf.constant(0.0) self.num_filters_total = self.num_filters * len(self.filter_sizes) # Dropout placeholder. self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') ''' This part creats the embeding message and code layer ''' # Embedding vector for each word from discussion and commit code def _create_embedding_msg_layer(self): with tf.device('/cpu:0'), tf.name_scope("embedding_msg"): self.W_msg = tf.Variable( tf.random_uniform([self.vocab_size_text, self.embedding_size_text], -1.0, 1.0), name="W_msg") def _create_embedding_meta_layer(self): with tf.device('/cpu:0'), tf.name_scope("embedding_meta"): self.W_meta = tf.Variable( tf.random_uniform([self.vocab_size_meta, self.embedding_size_text], -1.0, 1.0), name="W_meta") def _create_embedding_code_layer(self): with tf.device('/cpu:0'), tf.name_scope("embedding_code"): self.W_code = tf.Variable( tf.random_uniform([self.vocab_size_code, self.embedding_size_text], -1.0, 1.0), name="W_code") ''' Mapping between embedding vector - discussion, meta, commit code ''' def _create_embedding_chars_layer(self, W, input): embedded_chars = tf.nn.embedding_lookup(W, input) return tf.expand_dims(embedded_chars, -1) # Discussion embedding layer def _create_embedding_chars_msg_layer(self): self.embedded_chars_expanded_msg = self._create_embedding_chars_layer(W=self.W_msg, input=self.input_msg) # meta embeding layer def _create_embedding_chars_meta_layer(self): self.embedded_chars_expanded_meta = self._create_embedding_chars_layer(W=self.W_meta, input=self.input_meta) # Commit code embedding layer def _create_embedding_chars_code_layer(self): self.embedded_chars_expanded_addedcode = self._create_embedding_chars_layer(W=self.W_code, input=self.input_addedcode) self.embedded_chars_expanded_removedcode = self._create_embedding_chars_layer(W=self.W_code, input=self.input_removedcode) # Pooling for metrics def pool_outputs_2d(self, embedded_chars_expanded, W, b, max_length, filter_size): conv = tf.nn.conv2d( embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Applying nonlinearity by using elu h = tf.nn.elu(tf.nn.bias_add(conv, b), name="elu") # Maxpooling on outputs pooled = tf.nn.max_pool( h, ksize=[1, max_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") return pooled def h_pool_2d(self, num_filters_total, pooled_outputs): h_pool_ = tf.reshape(tf.concat(pooled_outputs, 3), [-1, num_filters_total]) return h_pool_ # Weight embedding layer for discussion and meta. Then pooling for discussion and meta def _create_weight_conv_msg_layer(self): self.w_filter_text, self.b_filter_text = [], [] for i, filter_size in enumerate(self.filter_sizes): with tf.device("/cpu:" + str(filter_size)): with tf.name_scope("weight-conv-maxpool-text-%s" % filter_size): filter_shape_text = [filter_size, self.embedding_size_text, 1, self.num_filters] # Convolution layer w = tf.Variable(tf.truncated_normal(filter_shape_text, stddev=0.1), name="W_filter_text") b = tf.Variable(tf.constant(0.1, shape=[self.num_filters]), name="b") self.w_filter_text.append(w) self.b_filter_text.append(b) def _create_weight_conv_meta_layer(self): self.w_filter_text, self.b_filter_text = [], [] for i, filter_size in enumerate(self.filter_sizes): with tf.device("/cpu:" + str(filter_size)): with tf.name_scope("weight-conv-maxpool-text-%s" % filter_size): filter_shape_text = [filter_size, self.embedding_size_text, 1, self.num_filters] # Convolution layer w = tf.Variable(tf.truncated_normal(filter_shape_text, stddev=0.1), name="W_filter_text") b = tf.Variable(tf.constant(0.1, shape=[self.num_filters]), name="b") self.w_filter_text.append(w) self.b_filter_text.append(b) def _create_conv_maxpool_2d_layer(self, filter_sizes, embedded_chars_expanded, W, b, max_msg_length): pooled_outputs_text = [] for i, filter_size in enumerate(filter_sizes): with tf.device("/cpu:" + str(filter_size)): pooled_outputs_text.append(self.pool_outputs_2d(embedded_chars_expanded=embedded_chars_expanded, W=W[i], b=b[i], max_length=max_msg_length, filter_size=filter_size)) return pooled_outputs_text def _create_conv_maxpool_msg_layer(self): pooled_outputs_discussion = self._create_conv_maxpool_2d_layer(filter_sizes=self.filter_sizes, embedded_chars_expanded=self.embedded_chars_expanded_msg, W=self.w_filter_text, b=self.b_filter_text, max_msg_length=self.max_msg_length) self.pooled_outputs_discussion = self.h_pool_2d(num_filters_total=len(self.filter_sizes) * self.num_filters, pooled_outputs=pooled_outputs_discussion) def _create_conv_maxpool_meta_layer(self): pooled_outputs_meta = self._create_conv_maxpool_2d_layer(filter_sizes=self.filter_sizes, embedded_chars_expanded=self.embedded_chars_expanded_meta, W=self.w_filter_text, b=self.b_filter_text, max_msg_length=self.max_meta_length) self.pooled_outputs_meta = self.h_pool_2d(num_filters_total=len(self.filter_sizes) * self.num_filters, pooled_outputs=pooled_outputs_meta) ''' Weight embedding layer for lines in commit code ''' def _create_embedding_code_line(self, embedded_chars_expanded): return tf.reduce_mean(embedded_chars_expanded, 3) def _create_embedding_addedcode_line(self): self.embedded_chars_expanded_addedcode_line = self._create_embedding_code_line( embedded_chars_expanded=self.embedded_chars_expanded_addedcode) def _create_embedding_removedcode_line(self): self.embedded_chars_expanded_removedcode_line = self._create_embedding_code_line( embedded_chars_expanded=self.embedded_chars_expanded_removedcode) ''' Weight embedding layer for hunks in commit code ''' def _create_weight_conv_code_layer(self): self.w_filter_code, self.b_filter_code = list(), list() for i, filter_size in enumerate(self.filter_sizes): with tf.device("/cpu:" + str(filter_size)): with tf.name_scope("weight-conv-maxpool-lines-%s" % filter_size): filter_shape_lines_code = [1, filter_size, self.embedding_size_text, 1, self.num_filters] # Convolution layer w = tf.Variable(tf.truncated_normal(filter_shape_lines_code, stddev=0.1), name="W_filter_lines_%s" % filter_size) b = tf.Variable(tf.constant(0.1, shape=[self.num_filters]), name="b_filter_lines_%s" % filter_size) self.w_filter_code.append(w) self.b_filter_code.append(b) return self.w_filter_code, self.b_filter_code ''' Weight embedding layer for hunks in commit code ''' def pool_outputs_3d(self, embedded_chars_expanded, W, b, max_length, filter_size): conv = tf.nn.conv3d( embedded_chars_expanded, W, strides=[1, 1, 1, 1, 1], padding="VALID", name="conv") # Applying nonlinearity by using elu h = tf.nn.elu(tf.nn.bias_add(conv, b), name="elu") pooled = tf.nn.max_pool3d( h, ksize=[1, 1, max_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1, 1], padding='VALID', name="pool") return pooled def h_pool_3d(self, num_filters_total, pooled_outputs, height): pooled_outputs = tf.concat(pooled_outputs, 4) h_pool_ = tf.reshape(pooled_outputs, [-1, height, num_filters_total]) return h_pool_ def _create_conv_maxpool_3d_layer(self, filter_sizes, embedded_chars, W, b, max_length): pool_outputs_linescode = [] for i, filter_size in enumerate(filter_sizes): with tf.device("/cpu:" + str(filter_size)): # convolution and maxpool for discussion pool_outputs_linescode.append( self.pool_outputs_3d(embedded_chars_expanded=embedded_chars, W=W[i], b=b[i], filter_size=filter_size, max_length=max_length)) return pool_outputs_linescode ''' Embedding vectors for hunks in commit code ''' def _create_conv_maxpool_hunk_addedcode_layer(self): pooled_outputs_hunk_addedcode = self._create_conv_maxpool_3d_layer(filter_sizes=self.filter_sizes, embedded_chars=self.embedded_chars_expanded_addedcode_line, W=self.w_filter_code, b=self.b_filter_code, max_length=self.max_code_line) self.pooled_outputs_hunk_addedcode = self.h_pool_3d( num_filters_total=len(self.filter_sizes) * self.num_filters, pooled_outputs=pooled_outputs_hunk_addedcode, height=self.max_code_hunk) def _create_conv_maxpool_hunk_removedcode_layer(self): pooled_outputs_hunk_removedcode = self._create_conv_maxpool_3d_layer(filter_sizes=self.filter_sizes, embedded_chars=self.embedded_chars_expanded_removedcode_line, W=self.w_filter_code, b=self.b_filter_code, max_length=self.max_code_line) self.pooled_outputs_hunk_removedcode = self.h_pool_3d( num_filters_total=len(self.filter_sizes) * self.num_filters, pooled_outputs=pooled_outputs_hunk_removedcode, height=self.max_code_hunk) ''' Embedding vectors for added code and removed code ''' def _create_embedding_addedcode(self): self.embedding_addedcode_layer = tf.contrib.layers.flatten(self.pooled_outputs_hunk_addedcode) def _create_embedding_removedcode(self): self.embedding_removedcode_layer = tf.contrib.layers.flatten(self.pooled_outputs_hunk_removedcode) ''' Fusion layer for discussion, meta and commit code ''' def _create_fusion_layer(self): self.fusion_layer = tf.concat( [self.pooled_outputs_discussion, self.pooled_outputs_meta, self.embedding_addedcode_layer, self.embedding_removedcode_layer], 1) def _create_fusion_discussion_meta_diffcode_layer(self): self.diff_code = self.embedding_addedcode_layer - self.embedding_removedcode_layer self.fusion_layer = tf.concat( [self.pooled_outputs_discussion, self.pooled_outputs_meta, self.diff_code], 1) ''' Fusion layer for discussion ''' def _create_fusion_discussion_layer(self): self.fusion_layer = self.pooled_outputs_discussion ''' Fusion layer for meta ''' def _create_fusion_meta_layer(self): self.fusion_layer = self.pooled_outputs_meta ''' Fusion layer for code ''' def _create_fusion_code_layer(self): self.fusion_layer = tf.concat( [self.embedding_addedcode_layer, self.embedding_removedcode_layer], 1) def _create_fusion_diffcode_layer(self): self.diff_code = self.embedding_addedcode_layer - self.embedding_removedcode_layer self.fusion_layer = self.diff_code # Added drop_out def _adding_dropout_fusion_layer(self): self.fusion_layer_dropout = tf.nn.dropout(self.fusion_layer, self.dropout_keep_prob) # Making weight to connect fusion layer then hidden layer then output layer def _create_weight_fusion_hidden_layer(self): with tf.name_scope("weight_fusion_hidden"): self.W_hidden = tf.get_variable( "W_hidden", shape=[self.fusion_layer_dropout.get_shape()[1], self.hidden_units], initializer=tf.contrib.layers.xavier_initializer()) self.b_hidden = tf.Variable(tf.constant(0.1, shape=[self.hidden_units]), name="b_hidden") self.A_hidden = tf.nn.elu(tf.nn.xw_plus_b(self.fusion_layer_dropout, self.W_hidden, self.b_hidden)) self.A_hidden_dropout = tf.nn.dropout(self.A_hidden, self.dropout_keep_prob) self.W_fusion = tf.get_variable( "W_fusion", shape=[self.A_hidden_dropout.get_shape()[1], self.num_classes], initializer=tf.contrib.layers.xavier_initializer()) self.b_fusion = tf.Variable(tf.constant(0.1, shape=[self.num_classes]), name="b") self.l2_loss += tf.nn.l2_loss(self.W_fusion) self.l2_loss += tf.nn.l2_loss(self.b_fusion) def _create_output_fusion_hidden_layer(self): with tf.name_scope("output"): self.scores = tf.nn.xw_plus_b(self.A_hidden_dropout, self.W_fusion, self.b_fusion, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # Making weight to connect fusion layer then output layer def _create_weight_fusion_layer(self): with tf.name_scope("weight_fusion"): self.W_fusion = tf.get_variable( "W_fusion", shape=[self.fusion_layer_dropout.get_shape()[1], self.num_classes], initializer=tf.contrib.layers.xavier_initializer()) self.b_fusion = tf.Variable(tf.constant(0.1, shape=[self.num_classes]), name="b") self.l2_loss += tf.nn.l2_loss(self.W_fusion) self.l2_loss += tf.nn.l2_loss(self.b_fusion) # Creating output layer (Score and Prediction) def _create_output_layer(self): with tf.name_scope("output"): self.scores = tf.nn.xw_plus_b(self.fusion_layer_dropout, self.W_fusion, self.b_fusion, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") def _create_loss_function(self): with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + self.l2_reg_lambda * self.l2_loss # Measure definitions def _measure_accuracy(self): with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") def _measure_precision(self): with tf.name_scope("precision"): self.precision = tf.metrics.precision(tf.argmax(self.input_y, 1), self.predictions, name ="precision") def _measure_recall(self): with tf.name_scope("recall"): self.recall = tf.metrics.recall(tf.argmax(self.input_y, 1), self.predictions, name ="recall") def _measure_f1(self): with tf.name_scope("f1_score"): self.f1_score = tf.contrib.metrics.f1_score(tf.argmax(self.input_y, 1), self.predictions, name ="f1_score") def _measure_auc(self): with tf.name_scope("auc"): self.auc = tf.metrics.auc(tf.argmax(self.input_y, 1), self.predictions, name ="auc") # Biulding the Net def build_graph(self, model): if model == "all": self._create_place_holder() self._create_embedding_msg_layer() self._create_embedding_chars_msg_layer() self._create_weight_conv_msg_layer() self._create_conv_maxpool_msg_layer() self._create_embedding_meta_layer() self._create_embedding_chars_meta_layer() self._create_weight_conv_meta_layer() self._create_conv_maxpool_meta_layer() self._create_embedding_code_layer() self._create_embedding_chars_code_layer() self._create_embedding_addedcode_line() self._create_embedding_removedcode_line() self._create_weight_conv_code_layer() self._create_conv_maxpool_hunk_addedcode_layer() self._create_embedding_addedcode() self._create_conv_maxpool_hunk_removedcode_layer() self._create_embedding_removedcode() self._create_fusion_discussion_meta_diffcode_layer() self._adding_dropout_fusion_layer() self._create_weight_fusion_hidden_layer() self._create_output_fusion_hidden_layer() self._create_loss_function() self._measure_accuracy() self._measure_precision() self._measure_recall() self._measure_f1() self._measure_auc() elif model == "discussion": self._create_place_holder() self._create_embedding_msg_layer() self._create_embedding_chars_msg_layer() self._create_weight_conv_msg_layer() self._create_conv_maxpool_msg_layer() self._create_fusion_discussion_layer() self._adding_dropout_fusion_layer() self._create_weight_fusion_layer() self._create_output_layer() self._create_loss_function() self._measure_accuracy() self._measure_precision() self._measure_recall() self._measure_f1() self._measure_auc() elif model == "meta": self._create_place_holder() self._create_embedding_meta_layer() self._create_embedding_chars_meta_layer() self._create_weight_conv_meta_layer() self._create_conv_maxpool_meta_layer() self._create_fusion_meta_layer() self._adding_dropout_fusion_layer() self._create_weight_fusion_layer() self._create_output_layer() self._create_loss_function() self._measure_accuracy() self._measure_precision() self._measure_recall() self._measure_f1() self._measure_auc() elif model == "prcodechange": self._create_place_holder() self._create_embedding_code_layer() self._create_embedding_chars_code_layer() self._create_embedding_addedcode_line() self._create_embedding_removedcode_line() self._create_weight_conv_code_layer() self._create_conv_maxpool_hunk_addedcode_layer() self._create_embedding_addedcode() self._create_conv_maxpool_hunk_removedcode_layer() self._create_embedding_removedcode() self._create_fusion_diffcode_layer() self._adding_dropout_fusion_layer() self._create_weight_fusion_hidden_layer() self._create_output_fusion_hidden_layer() self._create_loss_function() self._measure_accuracy() self._measure_precision() self._measure_recall() self._measure_f1() self._measure_auc() ``` #### File: joydeba/BackportingPR/predict.py ```python from Utils import load_dict_file, mini_batches, write_file from padding import padding_pred_commit import os import tensorflow as tf import numpy as np from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score , roc_auc_score def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x_sum = np.sum(np.exp(x), axis=1) return np.exp(x) / e_x_sum[:, None] def predict_model(commits, params): path_dict = os.path.abspath(os.path.join(os.path.curdir, params.model)) dict_msg = load_dict_file(path_file=path_dict + '/dict_msg.txt') dict_meta = load_dict_file(path_file=path_dict + '/dict_meta.txt') dict_code = load_dict_file(path_file=path_dict + '/dict_code.txt') pad_msg, pad_meta, pad_added_code, pad_removed_code, labels = padding_pred_commit(commits=commits, params=params, dict_msg=dict_msg, dict_meta = dict_meta, dict_code=dict_code) checkpoint_dir = path_dict checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=params.allow_soft_placement, log_device_placement=params.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Loading saved meta graph and restoring variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # predictions = graph.get_operation_by_name("output/predictions").outputs[0] # input_y = graph.get_operation_by_name("input_y").outputs[0] # m_recall = tf.metrics.recall(tf.argmax(input_y, 1), predictions, name ="recall") # m_f1_score = tf.contrib.metrics.f1_score(tf.argmax(input_y, 1), predictions, name ="f1_score") # m_auc = tf.metrics.auc(tf.argmax(input_y, 1), predictions, name ="auc") # m_precision = tf.metrics.precision(tf.argmax(input_y, 1), predictions, name ="precision") # Geting placeholders from graph by name input_msg = graph.get_operation_by_name("input_msg").outputs[0] input_meta = graph.get_operation_by_name("input_meta").outputs[0] input_addedcode = graph.get_operation_by_name("input_addedcode").outputs[0] input_removedcode = graph.get_operation_by_name("input_removedcode").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Evaluating temsor scores = graph.get_operation_by_name("output/scores").outputs[0] # Batches for one epoch batches = mini_batches(X_msg=pad_msg, X_meta =pad_meta, X_added_code=pad_added_code, X_removed_code=pad_removed_code, Y=labels, mini_batch_size=params.batch_size) commits_scores = list() # accuracy_list = list() # precision_list = list() # recall_list = list() # f1_score_list = list() # auc_list = list() # init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) # sess.run(init) for batch in batches: batch_input_msg, batch_input_meta, batch_input_added_code, batch_input_removed_code, batch_input_labels = batch # correct_predictions = tf.equal(predictions, tf.argmax(batch_input_labels, 1)) # m_accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") # batch_scores, accuracy, precision, recall, f1_score, auc = sess.run([scores, m_accuracy, m_precision, m_recall, m_f1_score, m_auc], # {input_msg: batch_input_msg, input_meta: batch_input_meta, input_addedcode: batch_input_added_code, # input_removedcode: batch_input_removed_code, input_y:batch_input_labels, dropout_keep_prob: 1.0}) batch_scores = sess.run(scores, {input_msg: batch_input_msg, input_meta: batch_input_meta, input_addedcode: batch_input_added_code, input_removedcode: batch_input_removed_code, dropout_keep_prob: 1.0}) batch_scores = np.ravel(softmax(batch_scores)[:, [1]]) commits_scores = np.concatenate([commits_scores, batch_scores]) # accuracy_list = np.concatenate([accuracy_list, [accuracy]]) # precision_list = np.concatenate([precision_list, [precision[0]]]) # recall_list = np.concatenate([recall_list, [recall[0]]]) # f1_score_list = np.concatenate([f1_score_list, [f1_score[0]]]) # auc_list = np.concatenate([auc_list, [auc[0]]]) # print("acc {:g}, preci {}, reca {}, f1 {}, auc {}".format(np.mean(accuracy_list), np.mean(precision_list), np.mean(recall_list), np.mean(f1_score_list), np.mean(auc_list))) write_file(path_file=os.path.abspath(os.path.join(os.path.curdir)) + '/prediction.txt', data=commits_scores) y_test = labels.dot(1 << np.arange(labels.shape[-1] - 1, -1, -1)).tolist() predicted = [1 if value > 0.5 else 2 for value in commits_scores.tolist()] precision, recall, fscore, support = score(y_test, predicted) accuracy = accuracy_score(y_test, predicted) auc_score = roc_auc_score(y_test, predicted) print('Accuracy: {}'.format(accuracy)) print('precision: {}'.format(precision)) print('recall: {}'.format(recall)) print('fscore: {}'.format(fscore)) print('AUC: {}'.format(auc_score)) ``` #### File: joydeba/BackportingPR/reformating.py ```python def reformat_file(commits, num_file): for c in commits: if len(c['code']) > num_file: code_files = c['code'] c.update({'code': [code_files[0]]}) return commits def update_hunk(hunk, num_hunk, num_loc, num_leng): new_hunk = dict() for key in hunk: if key <= num_hunk: loc_values = hunk[key][:num_loc] length_values = list() for v in loc_values: split_v = v.split(',')[:num_leng] length_values.append(','.join(split_v)) new_hunk[key] = length_values return new_hunk def reformat_hunk(commits, num_hunk, num_loc, num_leng): for c in commits: hunk = c['code'][0] new_added_hunk = update_hunk(hunk=hunk['added'], num_hunk=num_hunk, num_loc=num_loc, num_leng=num_leng) new_removed_hunk = update_hunk(hunk=hunk['removed'], num_hunk=num_hunk, num_loc=num_loc, num_leng=num_leng) hunk.update({'added': new_added_hunk}) hunk.update({'removed': new_removed_hunk}) return commits ``` #### File: joydeba/BackportingPR/Utils.py ```python import numpy as np import math import os from extracting import commit_id, commit_port, commit_msg, commit_date, commit_code, commit_meta from reformating import reformat_file, reformat_hunk def load_file(path_file): lines = list(open(path_file, "r").readlines()) lines = [l.strip() for l in lines] return lines def commits_index(commits): commits_index = [i for i, c in enumerate(commits) if c.startswith("commits:")] return commits_index def commit_info(commit): id = commit_id(commit) port = commit_port(commit) date = commit_date(commit) meta = commit_meta(commit) msg = commit_msg(commit) code = commit_code(commit) return id, port, date, meta, msg, code def extract_commit(path_file): commits = load_file(path_file=path_file) indexes = commits_index(commits=commits) dicts = list() for i in xrange(0, len(indexes)): dict = {} if i == len(indexes) - 1: id, port, date, meta, msg, code = commit_info(commits[indexes[i]:]) else: id, port, date, meta, msg, code = commit_info(commits[indexes[i]:indexes[i + 1]]) dict["id"] = id dict["port"] = port dict["date"] = date dict["meta"] = meta dict["msg"] = msg dict["code"] = code dicts.append(dict) return dicts def reformat_meta(commits): # Def for future return commits def reformat_discussion(commits): # Def for future return commits def reformat_commit_code(commits, num_file, num_hunk, num_loc, num_leng): commits = reformat_file(commits=commits, num_file=num_file) commits = reformat_hunk(commits=commits, num_hunk=num_hunk, num_loc=num_loc, num_leng=num_leng) return commits def random_mini_batch(X_msg, X_meta, X_added_code, X_removed_code, Y, mini_batch_size=64, seed=0): m = X_msg.shape[0] # Number of training samples mini_batches = [] np.random.seed(seed) # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X_msg = X_msg[permutation, :] shuffled_X_meta = X_meta[permutation, :] shuffled_X_added = X_added_code[permutation, :, :, :] shuffled_X_removed = X_removed_code[permutation, :, :, :] if len(Y.shape) == 1: shuffled_Y = Y[permutation] else: shuffled_Y = Y[permutation, :] # Step 2: Partition. Minus the end case. num_complete_minibatches = math.floor( m / float(mini_batch_size)) # Mini_batch_size in your partitionning num_complete_minibatches = int(num_complete_minibatches) for k in range(0, num_complete_minibatches): mini_batch_X_msg = shuffled_X_msg[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch_X_meta = shuffled_X_meta[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch_X_added = shuffled_X_added[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :, :] mini_batch_X_removed = shuffled_X_removed[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :, :] if len(Y.shape) == 1: mini_batch_Y = Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size] else: mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch = (mini_batch_X_msg, mini_batch_X_meta, mini_batch_X_added, mini_batch_X_removed, mini_batch_Y) mini_batches.append(mini_batch) # End case if m % mini_batch_size != 0: mini_batch_X_msg = shuffled_X_msg[num_complete_minibatches * mini_batch_size: m, :] mini_batch_X_meta = shuffled_X_meta[num_complete_minibatches * mini_batch_size: m, :] mini_batch_X_added = shuffled_X_added[num_complete_minibatches * mini_batch_size: m, :, :, :] mini_batch_X_removed = shuffled_X_removed[num_complete_minibatches * mini_batch_size: m, :, :, :] if len(Y.shape) == 1: mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m] else: mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m, :] mini_batch = (mini_batch_X_msg, mini_batch_X_meta, mini_batch_X_added, mini_batch_X_removed, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def write_dict_file(path_file, dictionary): split_path = path_file.split("/") path_ = split_path[:len(split_path) - 1] path_ = "/".join(path_) if not os.path.exists(path_): os.makedirs(path_) with open(path_file, 'w') as out_file: for key in dictionary.keys(): out_file.write(str(key) + '\t' + str(dictionary[key])) out_file.write("\n") out_file.close() def mini_batches(X_msg, X_meta, X_added_code, X_removed_code, Y, mini_batch_size=64, seed=0): m = X_msg.shape[0] # Training examples mini_batches = [] np.random.seed(seed) # Step 1: No shuffle (X, Y) shuffled_X_msg = X_msg shuffled_X_meta = X_meta shuffled_X_added = X_added_code shuffled_X_removed = X_removed_code shuffled_Y = Y # Step 2: Partition (X, Y) without the end case. num_complete_minibatches = math.floor( m / float(mini_batch_size)) # number of mini batches of size mini_batch_size in your partitionning num_complete_minibatches = int(num_complete_minibatches) for k in range(0, num_complete_minibatches): mini_batch_X_msg = shuffled_X_msg[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch_X_meta = shuffled_X_meta[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch_X_added = shuffled_X_added[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :, :] mini_batch_X_removed = shuffled_X_removed[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :, :] mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :] mini_batch = (mini_batch_X_msg, mini_batch_X_meta, mini_batch_X_added, mini_batch_X_removed, mini_batch_Y) mini_batches.append(mini_batch) # End case if m % mini_batch_size != 0: mini_batch_X_msg = shuffled_X_msg[num_complete_minibatches * mini_batch_size: m, :] mini_batch_X_meta = shuffled_X_meta[num_complete_minibatches * mini_batch_size: m, :] mini_batch_X_added = shuffled_X_added[num_complete_minibatches * mini_batch_size: m, :, :, :] mini_batch_X_removed = shuffled_X_removed[num_complete_minibatches * mini_batch_size: m, :, :, :] mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size: m, :] mini_batch = (mini_batch_X_msg, mini_batch_X_meta, mini_batch_X_added, mini_batch_X_removed, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def load_dict_file(path_file): lines = list(open(path_file, "r").readlines()) dictionary = dict() for line in lines: key, value = line.split('\t')[0], line.split('\t')[1] dictionary[key] = value return dictionary def write_file(path_file, data): split_path = path_file.split("/") path_ = split_path[:len(split_path) - 1] path_ = "/".join(path_) if not os.path.exists(path_): os.makedirs(path_) with open(path_file, 'w') as out_file: for line in data: # write line to output file out_file.write(str(line)) out_file.write("\n") out_file.close() ```
{ "source": "joydeep1701/GSTBull", "score": 2 }
#### File: joydeep1701/GSTBull/app.py ```python from flask import Flask, flash, redirect, render_template, request, session, url_for, Response, make_response from flask_session import Session from tempfile import gettempdir import json from helper import * from sql import * import authenticator import ledgers import vouchers import gstr import download import drive import data app = Flask(__name__) app.config["SESSION_FILE_DIR"] = "./session/" app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) db = SQL("sqlite:///watchdog.db") @app.route('/statecodes') def dumpstatecodes(): return json.dumps(state_codes) @app.route('/ledger/add', methods=['GET','POST']) @login_required def addledger(): if request.method == "GET": return render_template('add_ledger.html') else: ledgers.create(request.form, session['company_id']) return render_template('add_ledger.html') @app.route('/ledger/search/<s>') @login_required def searchledger(s): return json.dumps(ledgers.search(s, session['company_id'])) @app.route('/ledger/data/<ledger_id>') @login_required def getledgerdata(ledger_id): return json.dumps(ledgers.getLedgerById(ledger_id, session['company_id'])[0]) @app.route('/ledger/edit/<name>', methods=['GET','POST']) @login_required def editledger(name): if request.method == "GET": return render_template('add_ledger.html', data=ledgers.search(s, session['company_id'])[0]) else: ledgers.create(request.form, session['company_id']) return render_template('add_ledger.html') @app.route('/sales/add', methods=['GET','POST']) @login_required def addsales(): if request.method == 'POST': vouchers.createSalesVoucher((request.form), session['company_id']) #return str(dict(request.form)) return render_template('add_voucher.html',voucher_type='Sales', taxrates=vouchers.getTaxrates()) @app.route('/sales/view') @login_required def viewsales(): return render_template('search_voucher.html',view_type='sales') @app.route('/sales/search/bymonth/<year>/<month>') @login_required def searchsalesbymonth(month,year): return json.dumps(vouchers.getSalesVoucherByMonth(month, year, session['company_id'])) @app.route('/sales/search/byinv/',methods=['GET','POST']) @login_required def getsalesvoucherdata(): return json.dumps( vouchers.getSalesVoucherByInvNo(request.form.get('inv_no'), session['company_id']) ) @app.route('/sales/delete/<id>') @login_required def deletesales(id): vouchers.deleteSalesVoucher(id, session['company_id']) return json.dumps({'status':'ok'}) @app.route('/purchase/add', methods=['GET','POST']) @login_required def addpurchase(): if request.method == 'POST': vouchers.createPurchaseVoucher((request.form), session['company_id']) #return str(dict(request.form)) return render_template('add_voucher.html',voucher_type='Purchase', taxrates=vouchers.getTaxrates()) @app.route('/purchase/view') @login_required def viewpurchase(): return render_template('search_voucher.html',view_type='purchase') @app.route('/purchase/search/bymonth/<year>/<month>') @login_required def searchpurchasebymonth(month,year): return json.dumps(vouchers.getPurchaseVoucherByMonth(month, year, session['company_id'])) @app.route('/purchase/search/byinv/',methods=['GET','POST']) @login_required def getpurchasevoucherdata(): return json.dumps( vouchers.getPurchaseVoucherByInvNo(request.form.get('inv_no'), session['company_id']) ) @app.route('/purchase/delete/<id>') @login_required def deletepurchase(id): vouchers.deletePurchaseVoucher(id, session['company_id']) return json.dumps({'status':'ok'}) @app.route('/') @login_required def index(): return render_template('dashboard.html') @app.route('/login', methods=['GET','POST']) def login(): session.clear() if request.method == 'GET': return render_template('validate.html', authList=authenticator.authenticationList()) else: if authenticator.setSessionData(request, session): return redirect(url_for('index')) return redirect(url_for('login')) @app.route('/register', methods=['GET','POST']) def register(): if request.method == 'POST': authenticator.createCompany(request.form) return 'Success' return render_template('register.html') @app.route('/gstr/') @login_required def gstr_main(): return render_template('gstr.html') @app.route('/gstr1/<y>/<m>') @login_required def gstr3b(m,y): form_1 = gstr.GSTR1(m, y, session['company_id']) data = form_1.getData() #return json.dumps(data) return render_template('gstr1.html',data=data,year=y,month=m) @app.route('/gstr3b/<y>/<m>') @login_required def gstr1(m,y): form_3b = gstr.GSTR3b(m,y,session['company_id']) data = form_3b.getData() #return json.dumps(data) return render_template('gstr3b.html',data=data,year=y,month=m) @app.route('/download/gstr1/<y>/<m>') @login_required def downloadGSTR1(m,y): filename = session["company_name"].strip() gstr1 = download.GSTR1(m,y,session['company_id']) b2b = gstr1.downloadB2b() # We need to modify the response, so the first thing we # need to do is create a response out of the CSV string response = make_response(b2b) # This is the key: Set the right header for the response # to be downloaded, instead of just printed on the browser response.headers["Content-Disposition"] = "attachment;filename="+filename+" "+m+"_b2b"+".csv" return response @app.route('/backup/',methods=["GET","POST"]) def backup_gdrive(): backup = drive.GoogleDrive() if request.method == "GET": url = backup.OauthURL() return render_template('backup.html',url=url) else: backup.upload(request.form.get('key')) return "Success" @app.route('/chart/<type>/<dur>') @login_required def chart_data(type,dur): chartdata = data.ChartData(session["company_id"]) if dur == "monthlytotal": return json.dumps(chartdata.getMonthlyTotalData(type)) if dur == "dailytotal": return json.dumps(chartdata.getDailyTotalData(type)) if dur == "partytotal": return json.dumps(chartdata.getPartyTotalData(type)) if __name__ == '__main__': app.run(host='0.0.0.0', port=5001) ``` #### File: joydeep1701/GSTBull/drive.py ```python import pprint import httplib2 import apiclient.discovery import apiclient.http import oauth2client.client import time # Check https://developers.google.com/drive/scopes for all available scopes. OAUTH2_SCOPE = 'https://www.googleapis.com/auth/drive' # Location of the client secrets. CLIENT_SECRETS = '../client_secret.json' # Path to the file to upload. FILENAME = 'watchdog.db' # Metadata about the file. MIMETYPE = 'text/plain' TITLE = "GSTBull watchdog at {}-{}".format(time.localtime().tm_mday,time.localtime().tm_mon) DESCRIPTION = 'Backup of watchdog.db' # OAuth 2.0 scope that will be authorized. class GoogleDrive(object): def __init__(self): # Perform OAuth2.0 authorization flow. self.flow = oauth2client.client.flow_from_clientsecrets(CLIENT_SECRETS, OAUTH2_SCOPE) self.flow.redirect_uri = oauth2client.client.OOB_CALLBACK_URN self.authorize_url = self.flow.step1_get_authorize_url() def OauthURL(self): return self.authorize_url def upload(self,code): code = code.strip() credentials = self.flow.step2_exchange(code) # Create an authorized Drive API client. http = httplib2.Http() credentials.authorize(http) drive_service = apiclient.discovery.build('drive', 'v2', http=http) # Insert a file. Files are comprised of contents and metadata. # MediaFileUpload abstracts uploading file contents from a file on disk. media_body = apiclient.http.MediaFileUpload( FILENAME, mimetype=MIMETYPE, resumable=True ) # The body contains the metadata for the file. body = { 'title': TITLE, 'description': DESCRIPTION, } # Perform the request and print the result. new_file = drive_service.files().insert(body=body, media_body=media_body).execute() pprint.pprint(new_file) if __name__ == "__main__": GD = GoogleDrive() print(GD.OauthURL()) GD.upload(input()) ``` #### File: joydeep1701/GSTBull/gstr.py ```python from flask import redirect, render_template, request, url_for, flash from sql import * import ledgers import vouchers db = SQL("sqlite:///watchdog.db") def encode(value): if value is None: return 0.00 if isinstance(value, dict): for key in value.keys(): value[key] = encode(value[key]) return value class GSTR1(): def __init__(self, month, year, company_id): self.company_id = company_id self.month = month self.year = year self.sales_view = str(company_id) + '_sales_view' self.sales_master = str(company_id) + '_master_sales' self.sales_secondary = str(company_id) + '_secondary_sales' self.ledger_table = str(company_id) + '_ledgers' def table_b2b(self): data = {} summary_count = db.execute("""SELECT count(inv_no) AS no_records, sum(invoice_value) AS invoice_value, sum(invoice_taxable_value) AS taxable_value FROM (SELECT inv_no,invoice_value,invoice_taxable_value FROM :table WHERE un_reg='False' AND month=:month AND year=:year GROUP BY inv_no) """, table=self.sales_view, month=self.month, year=self.year) summary_tax_os = db.execute("""SELECT sum(rate*rate_amount) AS igst FROM :table WHERE un_reg='False' AND pos != :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) summary_tax_hs = db.execute("""SELECT sum(rate*rate_amount/2) AS cgst, sum(rate*rate_amount/2) AS sgst FROM :table WHERE un_reg='False' AND pos = :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) reciever_wise = db.execute("""SELECT name,gstin,sum(invoice_taxable_value) as taxable_value, sum(invoice_tax) as tax,pos,count(inv_no) AS no_records FROM (SELECT name,gstin,inv_no,invoice_taxable_value, invoice_tax,pos FROM :table INNER JOIN (SELECT id AS l_id, name, gstin FROM :ledgers) ON l_id=ledger_id WHERE un_reg='False' AND month=:month AND year=:year GROUP BY master_id) GROUP BY gstin""",table=self.sales_view, ledgers=self.ledger_table, month=self.month, year=self.year) #print(summary_count) data['summary'] = summary_count[0] data['summary']['igst'] = summary_tax_os[0]['igst'] data['summary']['sgst'] = summary_tax_hs[0]['sgst'] data['summary']['cgst'] = summary_tax_hs[0]['cgst'] data['reciever_wise'] = reciever_wise #print(data) return encode(data) def table_b2cs(self): data = {} summary_count = db.execute("""SELECT count(inv_no) AS no_records, sum(invoice_value) AS invoice_value, sum(invoice_taxable_value) AS taxable_value FROM (SELECT inv_no,invoice_value,invoice_taxable_value FROM :table WHERE un_reg='True' AND month=:month AND year=:year GROUP BY inv_no) """, table=self.sales_view, month=self.month, year=self.year) summary_tax_os = db.execute("""SELECT sum(rate*rate_amount) AS igst FROM :table WHERE un_reg='True' AND pos != :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) summary_tax_hs = db.execute("""SELECT sum(rate*rate_amount/2) AS cgst, sum(rate*rate_amount/2) AS sgst FROM :table WHERE un_reg='True' AND pos = :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) details = db.execute("""SELECT rate, sum(rate_amount) AS taxable_value, sum(rate_amount*rate) AS tax, pos FROM :table WHERE un_reg='True' AND month=:month AND year=:year GROUP BY pos,rate""", table=self.sales_view, month=self.month, year=self.year) data['summary'] = summary_count[0] data['summary']['igst'] = summary_tax_os[0]['igst'] data['summary']['sgst'] = summary_tax_hs[0]['sgst'] data['summary']['cgst'] = summary_tax_hs[0]['cgst'] data['details'] = details return encode(data) def table_8(self): data = {} summary = db.execute("""SELECT count(rate_amount) AS no_records, sum(rate_amount) AS taxable_value FROM :table WHERE rate='0.00' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year) hs_reg = db.execute("""SELECT sum(rate_amount) AS taxable_value FROM :table WHERE rate='0.00' AND pos=:hs AND un_reg='False' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) os_reg = db.execute("""SELECT sum(rate_amount) AS taxable_value FROM :table WHERE rate='0.00' AND pos!=:hs AND un_reg='False' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) hs_unreg = db.execute("""SELECT sum(rate_amount) AS taxable_value FROM :table WHERE rate='0.00' AND pos=:hs AND un_reg='True' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) os_unreg = db.execute("""SELECT sum(rate_amount) AS taxable_value FROM :table WHERE rate='0.00' AND pos!=:hs AND un_reg='True' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) data['summary'] = summary[0] data['details'] = {} data['details']['nil_rated'] = {'hs_reg':hs_reg[0]['taxable_value'], 'os_reg':os_reg[0]['taxable_value'], 'hs_unreg':hs_unreg[0]['taxable_value'], 'os_unreg':os_unreg[0]['taxable_value'], } return encode(data) def getData(self): data = {'b2b':self.table_b2b(), 'b2cs':self.table_b2cs(), 'table_8':self.table_8()} return data class GSTR3b(): def __init__(self, month, year, company_id): self.company_id = company_id self.month = month self.year = year self.sales_view = str(company_id) + '_sales_view' self.sales_master = str(company_id) + '_master_sales' self.sales_secondary = str(company_id) + '_secondary_sales' self.purchase_view = str(company_id) + '_purchase_view' self.purchase_master = str(company_id) + '_master_purchase' self.purchase_secondary = str(company_id) + '_secondary_purchase' self.ledger_table = str(company_id) + '_ledgers' def table3_1(self): data = {} rowa_hs = db.execute("""SELECT sum(rate_amount) AS taxable_value, sum(rate_amount*rate/2) AS cgst, sum(rate_amount*rate/2) AS sgst FROM :table WHERE sez='False' AND rate !='0.0' AND pos = :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) rowa_os = db.execute("""SELECT sum(rate_amount) AS taxable_value, sum(rate_amount*rate) AS igst FROM :table WHERE sez='False' AND rate !='0.0' AND pos != :hs AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year, hs=19) #print(rowa_hs,rowa_os) data['row_a'] = {'taxable_value': encode(rowa_os[0]['taxable_value']) + encode(rowa_hs[0]['taxable_value']) , 'igst':rowa_os[0]['igst'], 'cgst':rowa_hs[0]['cgst'] , 'sgst':rowa_hs[0]['sgst'] , } rowb = db.execute("""SELECT sum(rate_amount) AS taxable_value, sum(rate_amount*rate) AS igst FROM :table WHERE sez='True' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year) data['row_b'] = { 'taxable_value': rowb[0]['taxable_value'] , 'igst': rowb[0]['igst']} rowc = db.execute("""SELECT sum(rate_amount) AS taxable_value FROM :table WHERE sez='False' AND rate='0.0' AND month=:month AND year=:year""", table=self.sales_view, month=self.month, year=self.year) data['row_c'] = {'taxable_value': rowc[0]['taxable_value']} return encode(data) def table3_2(self): data = {} row_ur = db.execute("""SELECT pos, sum(rate_amount) AS taxable_value, sum(rate_amount*rate) AS igst FROM :table WHERE pos != :hs AND un_reg='True' AND comp='False' AND sez='False' AND rate !='0.0' AND month=:month AND year=:year GROUP BY pos """, table=self.sales_view, month=self.month, year=self.year, hs=19) data['row_ur'] = row_ur row_cmp = db.execute("""SELECT pos, sum(rate_amount) AS taxable_value, sum(rate_amount*rate) AS igst FROM :table WHERE pos != :hs AND un_reg='False' AND comp='True' AND sez='False' AND rate !='0.0' AND month=:month AND year=:year GROUP BY pos """, table=self.sales_view, month=self.month, year=self.year, hs=19) data['row_cmp'] = row_cmp return encode(data) def table4(self): data = {} row_5_os = db.execute("""SELECT sum(rate_amount*rate) AS igst FROM :table WHERE sez='False' AND comp='False' AND rate != '0.00' AND pos != :hs AND month=:month AND year=:year""", table=self.purchase_view, month=self.month, year=self.year, hs=19) row_5_hs = db.execute("""SELECT sum(rate_amount*rate/2) AS cgst, sum(rate_amount*rate/2) AS sgst FROM :table WHERE sez='False' AND comp='False' AND rate != '0.00' AND pos = :hs AND month=:month AND year=:year""", table=self.purchase_view, month=self.month, year=self.year, hs=19) data.update(row_5_os[0]) data.update(row_5_hs[0]) return encode(data) def table5(self): data = {} row_hs = db.execute("""SELECT sum(rate_amount) AS intra_state_value FROM :table WHERE sez='False' AND pos=:hs AND (rate = '0.00' OR comp='True' ) AND month=:month AND year=:year""", table=self.purchase_view, month=self.month, year=self.year, hs=19) row_os = db.execute("""SELECT sum(rate_amount) AS inter_state_value FROM :table WHERE sez='False' AND pos!=:hs AND (rate = '0.00' OR comp='True' ) AND month=:month AND year=:year""", table=self.purchase_view, month=self.month, year=self.year, hs=19) data.update(row_os[0]) data.update(row_hs[0]) return encode(data) def getData(self): data = {'table3_1':self.table3_1(), 'table3_2':self.table3_2(), 'table4' :self.table4(), 'table5' :self.table5(),} return encode(data) ``` #### File: joydeep1701/GSTBull/sql.py ```python import sqlalchemy class SQL(object): """TODO""" def __init__(self, url): """TODO""" try: self.engine = sqlalchemy.create_engine(url) except Exception as e: raise RuntimeError(e) def execute(self, text, *multiparams, **params): """TODO""" try: # http://docs.sqlalchemy.org/en/latest/core/sqlelement.html#sqlalchemy.sql.expression.text # https://groups.google.com/forum/#!topic/sqlalchemy/FfLwKT1yQlg # http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine.execute # http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html#how-do-i-render-sql-expressions-as-strings-possibly-with-bound-parameters-inlined statement = sqlalchemy.text(text).bindparams(*multiparams, **params) result = self.engine.execute(str(statement.compile(compile_kwargs={"literal_binds": True}))) # SELECT if result.returns_rows: rows = result.fetchall() return [dict(row) for row in rows] # INSERT elif result.lastrowid is not None: return result.lastrowid # DELETE, UPDATE else: return result.rowcount except sqlalchemy.exc.IntegrityError: return None except Exception as e: raise RuntimeError(e) ```
{ "source": "joydeepmitra/Machine-Learning", "score": 2 }
#### File: lab2/python/grepc.py ```python import apache_beam as beam import re def my_grep(line, term): if re.match( r'^' + re.escape(term), line): yield line PROJECT='cloud-training-demos' BUCKET='cloud-training-demos' def run(): argv = [ '--project={0}'.format(PROJECT), '--job_name=examplejob2', '--save_main_session', '--staging_location=gs://{0}/staging/'.format(BUCKET), '--temp_location=gs://{0}/staging/'.format(BUCKET), '--runner=DataflowRunner' ] p = beam.Pipeline(argv=argv) input = 'gs://{0}/javahelp/*.java'.format(BUCKET) output_prefix = 'gs://{0}/javahelp/output'.format(BUCKET) searchTerm = 'import' # find all lines that contain the searchTerm (p | 'GetJava' >> beam.io.ReadFromText(input) | 'Grep' >> beam.FlatMap(lambda line: my_grep(line, searchTerm) ) | 'write' >> beam.io.WriteToText(output_prefix) ) p.run() if __name__ == '__main__': run() ``` #### File: streaming/publish/send_sensor_data.py ```python import time import gzip import logging import argparse import datetime from google.cloud import pubsub TIME_FORMAT = '%Y-%m-%d %H:%M:%S' TOPIC = 'sandiego' INPUT = 'sensor_obs2008.csv.gz' def publish(publisher, topic, events): numobs = len(events) if numobs > 0: logging.info('Publishing {} events from {}'.format(numobs, get_timestamp(events[0]))) for event_data in events: publisher.publish(topic,event_data.encode()) def get_timestamp(line): # look at first field of row timestamp = line.split(',')[0] return datetime.datetime.strptime(timestamp, TIME_FORMAT) def simulate(topic, ifp, firstObsTime, programStart, speedFactor): # sleep computation def compute_sleep_secs(obs_time): time_elapsed = (datetime.datetime.utcnow() - programStart).seconds sim_time_elapsed = (obs_time - firstObsTime).seconds / speedFactor to_sleep_secs = sim_time_elapsed - time_elapsed return to_sleep_secs topublish = list() for line in ifp: event_data = line # entire line of input CSV is the message obs_time = get_timestamp(line) # from first column # how much time should we sleep? if compute_sleep_secs(obs_time) > 1: # notify the accumulated topublish publish(publisher, topic, topublish) # notify accumulated messages topublish = list() # empty out list # recompute sleep, since notification takes a while to_sleep_secs = compute_sleep_secs(obs_time) if to_sleep_secs > 0: logging.info('Sleeping {} seconds'.format(to_sleep_secs)) time.sleep(to_sleep_secs) topublish.append(event_data) # left-over records; notify again publish(publisher, topic, topublish) def peek_timestamp(ifp): # peek ahead to next line, get timestamp and go back pos = ifp.tell() line = ifp.readline() ifp.seek(pos) return get_timestamp(line) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Send sensor data to Cloud Pub/Sub in small groups, simulating real-time behavior') parser.add_argument('--speedFactor', help='Example: 60 implies 1 hour of data sent to Cloud Pub/Sub in 1 minute', required=True, type=float) parser.add_argument('--project', help='Example: --project $DEVSHELL_PROJECT_ID', required=True) args = parser.parse_args() # create Pub/Sub notification topic logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) publisher = pubsub.PublisherClient() event_type = publisher.topic_path(args.project,TOPIC) try: publisher.get_topic(event_type) logging.info('Reusing pub/sub topic {}'.format(TOPIC)) except: publisher.create_topic(event_type) logging.info('Creating pub/sub topic {}'.format(TOPIC)) # notify about each line in the input file programStartTime = datetime.datetime.utcnow() with gzip.open(INPUT, 'rb') as ifp: header = ifp.readline() # skip header firstObsTime = peek_timestamp(ifp) logging.info('Sending sensor data from {}'.format(firstObsTime)) simulate(event_type, ifp, firstObsTime, programStartTime, args.speedFactor) ```
{ "source": "joydeepnandi/Algo", "score": 4 }
#### File: graph/Young Common Ancestor/YoungCommonAncestor.py ```python class AncestralTree: def __init__(self, name): self.name = name self.ancestor = None # O(d) time | O(1) space - where d is the depth (height) of the ancestral tree def getYoungestCommonAncestor(topAncestor, descendantOne, descendantTwo): depthOne = getDescendantDepth(descendantOne, topAncestor) depthTwo = getDescendantDepth(descendantTwo, topAncestor) if depthOne > depthTwo: return backtrackAncestralTree(descendantOne, descendantTwo, depthOne - depthTwo) else: return backtrackAncestralTree(descendantTwo, descendantOne, depthTwo - depthOne) def getDescendantDepth(descendant, topAncestor): depth = 0 while descendant != topAncestor: depth += 1 descendant = descendant.ancestor return depth def backtrackAncestralTree(lowerDescendant, higherDescendant, diff): while diff > 0: lowerDescendant = lowerDescendant.ancestor diff -= 1 while lowerDescendant != higherDescendant: lowerDescendant = lowerDescendant.ancestor higherDescendant = higherDescendant.ancestor return lowerDescendant ``` #### File: Greedy/Tandem Bicycle/TandemBicycle.py ```python def tandemBicycle(redShirtSpeeds, blueShirtSpeeds, fastest): redShirtSpeeds.sort() blueShirtSpeeds.sort() if not fastest: reverseArrayInPlace(redShirtSpeeds) totalSpeed = 0 for idx in range(len(redShirtSpeeds)): rider1 = redShirtSpeeds[idx] rider2 = blueShirtSpeeds[len(blueShirtSpeeds) - idx - 1] totalSpeed += max(rider1, rider2) return totalSpeed def reverseArrayInPlace(array): start = 0 end = len(array) - 1 while start < end: array[start], array[end] = array[end], array[start] start += 1 end -= 1 ''' My solution def tandemBicycle(redShirtSpeeds, blueShirtSpeeds, fastest): # Write your code here. redShirtSpeeds.sort() blueShirtSpeeds.sort() if not fastest: rev(redShirtSpeeds) res=0 for i in range(len(redShirtSpeeds)): r1=redShirtSpeeds[i] r2=blueShirtSpeeds[len(blueShirtSpeeds)-1-i] res+=max(r1,r2) return res def rev(arr): r=len(arr)-1 while l<r: arr[l],arr[r]=arr[r],arr[l] l+=1 r-=1 ''' ``` #### File: LinkedList/Node Swap/solution.py ```python class LinkedList: def __init__(self, value): self.value = value self.next = None # O(n) time | O(n) space - where n is the number of nodes in the Linked List def nodeSwap(head): if head is None or head.next is None: return head nextNode = head.next head.next = nodeSwap(head.next.next) nextNode.next = head return nextNode ``` #### File: LinkedList/Reverse LinkedList/Solution.py ```python class LinkedList: def __init__(self, value): self.value = value self.next = None # O(n) time | O(1) space - where n is the number of nodes in the Linked List def reverseLinkedList(head): previousNode, currentNode = None, head while currentNode is not None: nextNode = currentNode.next currentNode.next = previousNode previousNode = currentNode currentNode = nextNode return previousNode ``` #### File: Recursion/Generate Div Tags/GenerateDivTags.py ```python def generateDivTags(numberOfTags): matchedDivTags = [] generateDivTagsFromPrefix(numberOfTags, numberOfTags, "", matchedDivTags) return matchedDivTags def generateDivTagsFromPrefix(openingTagsNeeded, closingTagsNeeded, prefix, result): if openingTagsNeeded > 0: newPrefix = prefix + "<div>" generateDivTagsFromPrefix(openingTagsNeeded - 1, closingTagsNeeded, newPrefix, result) if openingTagsNeeded < closingTagsNeeded: newPrefix = prefix + "</div>" generateDivTagsFromPrefix(openingTagsNeeded, closingTagsNeeded - 1, newPrefix, result) if closingTagsNeeded == 0: result.append(prefix) ``` #### File: Recursion/Lowest Common Manager/LowestCommonManager.py ```python def getLowestCommonManager(topManager, reportOne, reportTwo): return getOrgInfo(topManager, reportOne, reportTwo).lowestCommonManager def getOrgInfo(manager, reportOne, reportTwo): numImportantReports = 0 for directReport in manager.directReports: orgInfo = getOrgInfo(directReport, reportOne, reportTwo) if orgInfo.lowestCommonManager is not None: return orgInfo numImportantReports += orgInfo.numImportantReports if manager == reportOne or manager == reportTwo: numImportantReports += 1 lowestCommonManager = manager if numImportantReports == 2 else None return OrgInfo(lowestCommonManager, numImportantReports) class OrgInfo: def __init__(self, lowestCommonManager, numImportantReports): self.lowestCommonManager = lowestCommonManager self.numImportantReports = numImportantReports # This is the input class. class OrgChart: def __init__(self, name): self.name = name self.directReports = [] ``` #### File: Recursion/Number of Binary Tree Topologies/NumberOfBinaryTreeTopology3.py ```python def numberOfBinaryTreeTopologies(n): cache = [1] for m in range(1, n + 1): numberOfTrees = 0 for leftTreeSize in range(m): rightTreeSize = m - 1 - leftTreeSize numberOfLeftTrees = cache[leftTreeSize] numberOfRightTrees = cache[rightTreeSize] numberOfTrees += numberOfLeftTrees * numberOfRightTrees cache.append(numberOfTrees) return cache[n] ``` #### File: Recursion/Staircase Traversal/StaircaseTraversal1.py ```python def staircaseTraversal(height, maxSteps): return numberOfWaysToTop(height, maxSteps) def numberOfWaysToTop(height, maxSteps): if height <= 1: return 1 numberOfWays = 0 for step in range(1, min(maxSteps, height) + 1): numberOfWays += numberOfWaysToTop(height - step, maxSteps) return numberOfWays ```
{ "source": "joydenfew/514-SDN-assignment-", "score": 3 }
#### File: onfsdn/faucet/conf.py ```python class Conf(object): defaults = {} def update(self, dictionary): # TODO: it would be good to warn on keys that are set but arent in # defaults self.__dict__.update(dictionary) def _set_default(self, key, value): if key not in self.__dict__ or self.__dict__[key] is None: self.__dict__[key] = value def _to_conf(self): result = {} for k in self.defaults.iterkeys(): if k != 'name': result[k] = self.__dict__[str(k)] return result ``` #### File: onfsdn/faucet/port.py ```python from conf import Conf class Port(Conf): name = None number = None enabled = None permanent_learn = None unicast_flood = None mirror = None mirror_destination = None native_vlan = None tagged_vlans = [] acl_in = None stack = {} defaults = { 'number': None, 'name': None, 'description': None, 'enabled': True, 'permanent_learn': False, 'unicast_flood': True, 'mirror': None, 'mirror_destination': False, 'native_vlan': None, 'tagged_vlans': None, 'acl_in': None, 'stack': None, } def __init__(self, _id, conf=None): if conf is None: conf = {} self._id = _id self.update(conf) self.set_defaults() self.dyn_phys_up = False def set_defaults(self): for key, value in self.defaults.iteritems(): self._set_default(key, value) self._set_default('number', self._id) self._set_default('name', str(self._id)) self._set_default('description', self.name) self._set_default('tagged_vlans', []) @property def phys_up(self): return self.dyn_phys_up @phys_up.setter def phys_up(self, status): self.dyn_phys_up = status def running(self): return self.enabled and self.phys_up def to_conf(self): result = self._to_conf() if 'stack' in result and result['stack'] is not None: result['stack'] = { 'dp': str(self.stack['dp']), 'port': str(self.stack['port']) } return result def __eq__(self, other): return hash(self) == hash(other) def __hash__(self): items = [(k,v) for k, v in self.__dict__.iteritems() if 'dyn' not in k] return hash(frozenset(map(str, items))) def __ne__(self, other): return not self.__eq__(other) def __str__(self): return self.name def __repr__(self): return "Port %s" % self.number ``` #### File: onfsdn/faucet/valve_route.py ```python import time import ipaddr from ryu.lib.packet import arp, icmp, icmpv6, ipv4, ipv6 from ryu.ofproto import ether from ryu.ofproto import inet import valve_of import valve_packet class NextHop(object): """Describes a directly connected (at layer 2) nexthop.""" def __init__(self, eth_src, now): self.eth_src = eth_src self.cache_time = now self.last_retry_time = None self.resolve_retries = 0 class ValveRouteManager(object): """Base class to implement RIB/FIB.""" def __init__(self, logger, faucet_mac, arp_neighbor_timeout, max_hosts_per_resolve_cycle, max_host_fib_retry_count, max_resolve_backoff_time, fib_table, eth_src_table, eth_dst_table, route_priority, valve_in_match, valve_flowdel, valve_flowmod, valve_flowcontroller, use_group_table): self.logger = logger self.faucet_mac = faucet_mac self.arp_neighbor_timeout = arp_neighbor_timeout self.max_hosts_per_resolve_cycle = max_hosts_per_resolve_cycle self.max_host_fib_retry_count = max_host_fib_retry_count self.max_resolve_backoff_time = max_resolve_backoff_time self.fib_table = fib_table self.eth_src_table = eth_src_table self.eth_dst_table = eth_dst_table self.route_priority = route_priority self.valve_in_match = valve_in_match self.valve_flowdel = valve_flowdel self.valve_flowmod = valve_flowmod self.valve_flowcontroller = valve_flowcontroller self.use_group_table = use_group_table self.ip_gw_to_group_id = {} def _vlan_vid(self, vlan, in_port): vid = None if vlan.port_is_tagged(in_port): vid = vlan.vid return vid def _eth_type(self): """Return EtherType for FIB entries.""" pass def _vlan_routes(self, vlan): pass def _vlan_nexthop_cache(self, vlan): pass def _vlan_nexthop_cache_entry(self, vlan, ip_gw): nexthop_cache = self._vlan_nexthop_cache(vlan) if ip_gw in nexthop_cache: return nexthop_cache[ip_gw] return None def _neighbor_resolver_pkt(self, vid, faucet_vip, ip_gw): pass def _neighbor_resolver(self, ip_gw, faucet_vip, vlan, ports): ofmsgs = [] if ports: port_num = ports[0].number vid = self._vlan_vid(vlan, port_num) resolver_pkt = self._neighbor_resolver_pkt( vid, faucet_vip, ip_gw) for port in ports: ofmsgs.append(valve_of.packetout( port.number, resolver_pkt.data)) return ofmsgs def _nexthop_actions(self, eth_dst): return [ valve_of.set_eth_src(self.faucet_mac), valve_of.set_eth_dst(eth_dst), valve_of.dec_ip_ttl()] def _add_resolved_route(self, vlan, ip_gw, ip_dst, eth_dst, is_updated): ofmsgs = [] in_match = self.valve_in_match( self.fib_table, vlan=vlan, eth_type=self._eth_type(), nw_dst=ip_dst) prefixlen = ipaddr.IPNetwork(ip_dst).prefixlen priority = self.route_priority + prefixlen if is_updated: self.logger.info( 'Updating next hop for route %s via %s (%s)', ip_dst, ip_gw, eth_dst) ofmsgs.extend(self.valve_flowdel( self.fib_table, in_match, priority=priority)) else: self.logger.info( 'Adding new route %s via %s (%s)', ip_dst, ip_gw, eth_dst) if self.use_group_table: inst = [valve_of.apply_actions([valve_of.group_act( group_id=self.ip_gw_to_group_id[ip_gw])])] else: inst = [valve_of.apply_actions(self._nexthop_actions(eth_dst)), valve_of.goto_table(self.eth_dst_table)] ofmsgs.append(self.valve_flowmod( self.fib_table, in_match, priority=priority, inst=inst)) return ofmsgs def _group_id_from_ip_gw(self, resolved_ip_gw): return (hash(str(resolved_ip_gw)) + valve_of.ROUTE_GROUP_OFFSET) & ((1<<32) -1) def _update_nexthop_cache(self, vlan, eth_src, ip_gw): now = time.time() nexthop = NextHop(eth_src, now) nexthop_cache = self._vlan_nexthop_cache(vlan) nexthop_cache[ip_gw] = nexthop def _nexthop_group_buckets(self, vlan, in_port, eth_src): actions = self._nexthop_actions(eth_src) if not vlan.port_is_tagged(in_port): actions.append(valve_of.pop_vlan()) actions.append(valve_of.output_port(in_port)) buckets = [valve_of.bucket(actions=actions)] return buckets def _update_nexthop_group(self, is_updated, resolved_ip_gw, vlan, in_port, eth_src): group_mod_method = None group_id = None ofmsgs = [] if is_updated: group_mod_method = valve_of.groupmod group_id = self.ip_gw_to_group_id[resolved_ip_gw] else: group_mod_method = valve_of.groupadd group_id = self._group_id_from_ip_gw(resolved_ip_gw) self.ip_gw_to_group_id[resolved_ip_gw] = group_id buckets = self._nexthop_group_buckets(vlan, in_port, eth_src) ofmsgs = [group_mod_method(group_id=group_id, buckets=buckets)] return ofmsgs def _update_nexthop(self, vlan, in_port, eth_src, resolved_ip_gw): is_updated = False routes = self._vlan_routes(vlan) cached_eth_dst = self._cached_nexthop_eth_dst(vlan, resolved_ip_gw) ofmsgs = [] if (cached_eth_dst is not None and cached_eth_dst != eth_src): is_updated = True if self.use_group_table: ofmsgs.extend( self._update_nexthop_group( is_updated, resolved_ip_gw, vlan, in_port, eth_src)) for ip_dst, ip_gw in routes.iteritems(): if ip_gw == resolved_ip_gw: ofmsgs.extend(self._add_resolved_route( vlan, ip_gw, ip_dst, eth_src, is_updated)) self._update_nexthop_cache(vlan, eth_src, resolved_ip_gw) return ofmsgs def _vlan_ip_gws(self, vlan): """Return IP gateways in VLAN. Args: vlan (vlan): VLAN containing this RIB/FIB. Returns: list: tuple, gateway, controller IP in same subnet. """ routes = self._vlan_routes(vlan) ip_gws = [] for ip_gw in set(routes.values()): for faucet_vip in vlan.faucet_vips: if ip_gw in faucet_vip: ip_gws.append((ip_gw, faucet_vip)) return ip_gws def _add_unresolved_nexthops(self, vlan, ip_gws): """Populates any missing nexthop cache entries. Args: vlan (vlan): VLAN containing this RIB/FIB. ip_gws (list): tuple, IP gateway and controller IP in same subnet. """ for ip_gw, _ in ip_gws: if self._vlan_nexthop_cache_entry(vlan, ip_gw) is None: self._update_nexthop_cache(vlan, None, ip_gw) def _retry_backoff(self, now, resolve_retries, last_retry_time): backoff_seconds = min( 2**resolve_retries, self.max_resolve_backoff_time) if now - last_retry_time > backoff_seconds: return True return False def _vlan_unresolved_nexthops(self, vlan, ip_gws, now): """Return unresolved or expired IP gateways, never tried/oldest first. Args: vlan (vlan): VLAN containing this RIB/FIB. ip_gws (list): tuple, IP gateway and controller IP in same subnet. now (float): seconds since epoch. Returns: list: tuple, gateway, controller IP in same subnet, last retry time. """ ip_gws_never_tried = [] ip_gws_with_retry_time = [] for ip_gw, faucet_vip in ip_gws: if self._nexthop_fresh(vlan, ip_gw, now): continue nexthop_cache_entry = self._vlan_nexthop_cache_entry(vlan, ip_gw) last_retry_time = nexthop_cache_entry.last_retry_time ip_gw_with_retry_time = (ip_gw, faucet_vip, last_retry_time) if last_retry_time is None: ip_gws_never_tried.append(ip_gw_with_retry_time) else: if self._retry_backoff( now, nexthop_cache_entry.resolve_retries, last_retry_time): ip_gws_with_retry_time.append(ip_gw_with_retry_time) ip_gws_with_retry_time_sorted = list( sorted(ip_gws_with_retry_time, key=lambda x: x[-1])) return ip_gws_never_tried + ip_gws_with_retry_time_sorted def _is_host_fib_route(self, vlan, host_ip): """Return True if IP destination is a host FIB route. Args: vlan (vlan): VLAN containing this RIB/FIB. ip_gw (ipaddr.IPAddress): potential host FIB route. Returns: True if a host FIB route (and not used as a gateway). """ routes = self._vlan_routes(vlan) for ip_dst, ip_gw in routes.iteritems(): if ip_gw == host_ip: if ip_dst.prefixlen < ip_dst.max_prefixlen: return False return True def resolve_gateways(self, vlan, now): """Re/resolve all gateways. Args: vlan (vlan): VLAN containing this RIB/FIB. now (float): seconds since epoch. Returns: list: OpenFlow messages. """ untagged_ports = vlan.untagged_flood_ports(False) tagged_ports = vlan.tagged_flood_ports(False) ip_gws = self._vlan_ip_gws(vlan) self._add_unresolved_nexthops(vlan, ip_gws) all_unresolved_nexthops = self._vlan_unresolved_nexthops( vlan, ip_gws, now) cycle_unresolved_nexthops = all_unresolved_nexthops[ :self.max_hosts_per_resolve_cycle] deferred_unresolved_nexthops = (len(all_unresolved_nexthops) - len(cycle_unresolved_nexthops)) if deferred_unresolved_nexthops: self.logger.info('deferring resolution of %u nexthops', deferred_unresolved_nexthops) ofmsgs = [] for ip_gw, faucet_vip, last_retry_time in cycle_unresolved_nexthops: nexthop_cache_entry = self._vlan_nexthop_cache_entry(vlan, ip_gw) if (self._is_host_fib_route(vlan, ip_gw) and nexthop_cache_entry.resolve_retries >= self.max_host_fib_retry_count): self.logger.info( 'expiring dead host FIB route %s (age %us)', ip_gw, now - nexthop_cache_entry.cache_time) ofmsgs.extend(self._del_host_fib_route(vlan, ip_gw)) else: nexthop_cache_entry.last_retry_time = now nexthop_cache_entry.resolve_retries += 1 if last_retry_time is None: self.logger.info('resolving %s', ip_gw) else: self.logger.info( 'resolving %s retry %u (last attempt was %us ago)', ip_gw, nexthop_cache_entry.resolve_retries, now - last_retry_time) for ports in untagged_ports, tagged_ports: ofmsgs.extend(self._neighbor_resolver( ip_gw, faucet_vip, vlan, ports)) return ofmsgs def _cached_nexthop_eth_dst(self, vlan, ip_gw): nexthop_cache_entry = self._vlan_nexthop_cache_entry(vlan, ip_gw) if (nexthop_cache_entry is not None and nexthop_cache_entry.eth_src is not None): return nexthop_cache_entry.eth_src return None def add_route(self, vlan, ip_gw, ip_dst): """Add a route to the RIB. Args: vlan (vlan): VLAN containing this RIB. ip_gw (ipaddr.IPAddress): IP address of nexthop. ip_dst (ipaddr.IPNetwork): destination IP network. Returns: list: OpenFlow messages. """ ofmsgs = [] routes = self._vlan_routes(vlan) routes[ip_dst] = ip_gw cached_eth_dst = self._cached_nexthop_eth_dst(vlan, ip_gw) if cached_eth_dst is not None: ofmsgs.extend(self._add_resolved_route( vlan=vlan, ip_gw=ip_gw, ip_dst=ip_dst, eth_dst=cached_eth_dst, is_updated=False)) return ofmsgs def _add_host_fib_route(self, vlan, host_ip): """Add a host FIB route. Args: vlan (vlan): VLAN containing this RIB. host_ip (ipaddr.IPAddress): IP address of host. Returns: list: OpenFlow messages. """ host_route = ipaddr.IPNetwork(host_ip.exploded) return self.add_route(vlan, host_ip, host_route) def _del_host_fib_route(self, vlan, host_ip): """Delete a host FIB route. Args: vlan (vlan): VLAN containing this RIB. host_ip (ipaddr.IPAddress): IP address of host. Returns: list: OpenFlow messages. """ host_route = ipaddr.IPNetwork(host_ip.exploded) return self.del_route(vlan, host_route) def _ip_pkt(self, pkt): """Return an IP packet from an Ethernet packet. Args: pkt: ryu.lib.packet from host. Returns: IP ryu.lib.packet parsed from pkt. """ pass def _nexthop_fresh(self, vlan, ip_gw, now): nexthop_cache_entry = self._vlan_nexthop_cache_entry(vlan, ip_gw) if nexthop_cache_entry is not None: if nexthop_cache_entry.eth_src is not None: cache_time = nexthop_cache_entry.cache_time cache_age = now - cache_time if cache_age < self.arp_neighbor_timeout: return True return False def add_host_fib_route_from_pkt(self, pkt_meta): """Add a host FIB route given packet from host. Args: pkt_meta (PacketMeta): received packet. Returns: list: OpenFlow messages. """ ip_pkt = self._ip_pkt(pkt_meta.pkt) ofmsgs = [] if ip_pkt: src_ip = ipaddr.IPAddress(ip_pkt.src) if src_ip and pkt_meta.vlan.ip_in_vip_subnet(src_ip): now = time.time() nexthop_fresh = self._nexthop_fresh(pkt_meta.vlan, src_ip, now) self._update_nexthop_cache( pkt_meta.vlan, pkt_meta.eth_src, src_ip) if not nexthop_fresh: ofmsgs.extend( self._add_host_fib_route(pkt_meta.vlan, src_ip)) return ofmsgs def del_route(self, vlan, ip_dst): """Delete a route from the RIB. Only one route with this exact destination is supported. Args: vlan (vlan): VLAN containing this RIB. ip_dst (ipaddr.IPNetwork): destination IP network. Returns: list: OpenFlow messages. """ ofmsgs = [] routes = self._vlan_routes(vlan) if ip_dst in routes: del routes[ip_dst] route_match = self.valve_in_match( self.fib_table, vlan=vlan, eth_type=self._eth_type(), nw_dst=ip_dst) ofmsgs.extend(self.valve_flowdel( self.fib_table, route_match)) return ofmsgs def control_plane_handler(self, pkt_meta): pass class ValveIPv4RouteManager(ValveRouteManager): """Implement IPv4 RIB/FIB.""" def _eth_type(self): return ether.ETH_TYPE_IP def _vlan_routes(self, vlan): return vlan.ipv4_routes def _vlan_nexthop_cache(self, vlan): return vlan.arp_cache def _neighbor_resolver_pkt(self, vid, faucet_vip, ip_gw): return valve_packet.arp_request( self.faucet_mac, vid, faucet_vip.ip, ip_gw) def _ip_pkt(self, pkt): return pkt.get_protocol(ipv4.ipv4) def add_faucet_vip(self, vlan, faucet_vip): ofmsgs = [] faucet_vip_net = ipaddr.IPNetwork(faucet_vip.exploded) faucet_vip_host = ipaddr.IPNetwork(faucet_vip.ip) max_prefixlen = faucet_vip_host.prefixlen priority = self.route_priority + max_prefixlen ofmsgs.append(self.valve_flowmod( self.eth_src_table, self.valve_in_match( self.eth_src_table, eth_type=ether.ETH_TYPE_ARP, nw_dst=faucet_vip_host, vlan=vlan), priority=priority, inst=[valve_of.apply_actions([valve_of.output_controller()]), valve_of.goto_table(self.eth_dst_table)])) # Initialize IPv4 FIB ofmsgs.append(self.valve_flowmod( self.eth_src_table, self.valve_in_match( self.eth_src_table, eth_type=self._eth_type(), eth_dst=self.faucet_mac, vlan=vlan), priority=self.route_priority, inst=[valve_of.goto_table(self.fib_table)])) ofmsgs.append(self.valve_flowcontroller( self.fib_table, self.valve_in_match( self.fib_table, vlan=vlan, eth_type=self._eth_type(), nw_proto=inet.IPPROTO_ICMP, nw_src=faucet_vip_net, nw_dst=faucet_vip_host), priority=priority)) return ofmsgs def _control_plane_arp_handler(self, pkt_meta, arp_pkt): src_ip = ipaddr.IPv4Address(arp_pkt.src_ip) dst_ip = ipaddr.IPv4Address(arp_pkt.dst_ip) vlan = pkt_meta.vlan opcode = arp_pkt.opcode ofmsgs = [] if vlan.from_connected_to_vip(src_ip, dst_ip): in_port = pkt_meta.port.number eth_src = pkt_meta.eth_src if opcode == arp.ARP_REQUEST: ofmsgs.extend( self._add_host_fib_route(vlan, src_ip)) vid = self._vlan_vid(vlan, in_port) arp_reply = valve_packet.arp_reply( self.faucet_mac, eth_src, vid, dst_ip, src_ip) ofmsgs.append( valve_of.packetout(in_port, arp_reply.data)) self.logger.info( 'Responded to ARP request for %s from %s (%s)', dst_ip, src_ip, eth_src) elif (opcode == arp.ARP_REPLY and pkt_meta.eth_dst == self.faucet_mac): ofmsgs.extend( self._update_nexthop(vlan, in_port, eth_src, src_ip)) self.logger.info( 'ARP response %s (%s)', src_ip, eth_src) return ofmsgs def _control_plane_icmp_handler(self, pkt_meta, ipv4_pkt, icmp_pkt): src_ip = ipaddr.IPv4Address(ipv4_pkt.src) dst_ip = ipaddr.IPv4Address(ipv4_pkt.dst) vlan = pkt_meta.vlan icmpv4_type = icmp_pkt.type ofmsgs = [] if vlan.from_connected_to_vip(src_ip, dst_ip): if (icmpv4_type == icmp.ICMP_ECHO_REQUEST and pkt_meta.eth_dst == self.faucet_mac): in_port = pkt_meta.port.number vid = self._vlan_vid(vlan, in_port) echo_reply = valve_packet.echo_reply( self.faucet_mac, pkt_meta.eth_src, vid, dst_ip, src_ip, icmp_pkt.data) ofmsgs.append( valve_of.packetout(in_port, echo_reply.data)) return ofmsgs def control_plane_handler(self, pkt_meta): arp_pkt = pkt_meta.pkt.get_protocol(arp.arp) if arp_pkt is not None: return self._control_plane_arp_handler(pkt_meta, arp_pkt) ipv4_pkt = pkt_meta.pkt.get_protocol(ipv4.ipv4) if ipv4_pkt is not None: icmp_pkt = pkt_meta.pkt.get_protocol(icmp.icmp) if icmp_pkt is not None: return self._control_plane_icmp_handler( pkt_meta, ipv4_pkt, icmp_pkt) return [] class ValveIPv6RouteManager(ValveRouteManager): """Implement IPv6 FIB.""" def _eth_type(self): return ether.ETH_TYPE_IPV6 def _vlan_routes(self, vlan): return vlan.ipv6_routes def _vlan_nexthop_cache(self, vlan): return vlan.nd_cache def _neighbor_resolver_pkt(self, vid, faucet_vip, ip_gw): return valve_packet.nd_request( self.faucet_mac, vid, faucet_vip.ip, ip_gw) def _ip_pkt(self, pkt): return pkt.get_protocol(ipv6.ipv6) def add_faucet_vip(self, vlan, faucet_vip): ofmsgs = [] faucet_vip_host = ipaddr.IPNetwork(faucet_vip.ip) max_prefixlen = faucet_vip_host.prefixlen priority = self.route_priority + max_prefixlen ofmsgs.append(self.valve_flowmod( self.eth_src_table, self.valve_in_match( self.eth_src_table, eth_type=self._eth_type(), vlan=vlan, nw_proto=inet.IPPROTO_ICMPV6, ipv6_nd_target=faucet_vip_host, icmpv6_type=icmpv6.ND_NEIGHBOR_SOLICIT), priority=priority, inst=[valve_of.apply_actions([valve_of.output_controller()]), valve_of.goto_table(self.eth_dst_table)])) ofmsgs.append(self.valve_flowmod( self.eth_src_table, self.valve_in_match( self.eth_src_table, eth_type=self._eth_type(), eth_dst=self.faucet_mac, vlan=vlan, nw_proto=inet.IPPROTO_ICMPV6, icmpv6_type=icmpv6.ND_NEIGHBOR_ADVERT), priority=priority, inst=[valve_of.apply_actions([valve_of.output_controller()]), valve_of.goto_table(self.eth_dst_table)])) # Initialize IPv6 FIB ofmsgs.append(self.valve_flowmod( self.eth_src_table, self.valve_in_match( self.eth_src_table, eth_type=self._eth_type(), eth_dst=self.faucet_mac, vlan=vlan), priority=self.route_priority, inst=[valve_of.goto_table(self.fib_table)])) ofmsgs.append(self.valve_flowcontroller( self.fib_table, self.valve_in_match( self.fib_table, eth_type=self._eth_type(), vlan=vlan, nw_proto=inet.IPPROTO_ICMPV6, nw_dst=faucet_vip_host, icmpv6_type=icmpv6.ICMPV6_ECHO_REQUEST), priority=priority)) return ofmsgs def _control_plane_icmpv6_handler(self, pkt_meta, ipv6_pkt, icmpv6_pkt): vlan = pkt_meta.vlan src_ip = ipaddr.IPv6Address(ipv6_pkt.src) dst_ip = ipaddr.IPv6Address(ipv6_pkt.dst) icmpv6_type = icmpv6_pkt.type_ ofmsgs = [] if vlan.ip_in_vip_subnet(src_ip): in_port = pkt_meta.port.number vid = self._vlan_vid(vlan, in_port) eth_src = pkt_meta.eth_src if icmpv6_type == icmpv6.ND_NEIGHBOR_SOLICIT: solicited_ip = icmpv6_pkt.data.dst if vlan.is_faucet_vip(ipaddr.IPAddress(solicited_ip)): ofmsgs.extend( self._add_host_fib_route(vlan, src_ip)) nd_reply = valve_packet.nd_reply( self.faucet_mac, eth_src, vid, solicited_ip, src_ip, ipv6_pkt.hop_limit) ofmsgs.append( valve_of.packetout(in_port, nd_reply.data)) self.logger.info( 'Responded to ND solicit for %s to %s (%s)', solicited_ip, src_ip, eth_src) elif icmpv6_type == icmpv6.ND_NEIGHBOR_ADVERT: ofmsgs.extend(self._update_nexthop( vlan, in_port, eth_src, src_ip)) self.logger.info( 'ND advert %s (%s)', src_ip, eth_src) elif vlan.from_connected_to_vip(src_ip, dst_ip): if (icmpv6_type == icmpv6.ICMPV6_ECHO_REQUEST and pkt_meta.eth_dst == self.faucet_mac): icmpv6_echo_reply = valve_packet.icmpv6_echo_reply( self.faucet_mac, eth_src, vid, dst_ip, src_ip, ipv6_pkt.hop_limit, icmpv6_pkt.data.id, icmpv6_pkt.data.seq, icmpv6_pkt.data.data) ofmsgs.append( valve_of.packetout(in_port, icmpv6_echo_reply.data)) return ofmsgs def control_plane_handler(self, pkt_meta): pkt = pkt_meta.pkt ipv6_pkt = pkt.get_protocol(ipv6.ipv6) if ipv6_pkt is not None: icmpv6_pkt = pkt.get_protocol(icmpv6.icmpv6) if icmpv6_pkt is not None: return self._control_plane_icmpv6_handler( pkt_meta, ipv6_pkt, icmpv6_pkt) return [] ``` #### File: 514-SDN-assignment-/tests/faucet_mininet_test_base.py ```python import json import os import re import shutil import tempfile import time import unittest import yaml import ipaddr import requests from mininet.node import Controller from mininet.node import Host from mininet.node import OVSSwitch from mininet.topo import Topo from ryu.ofproto import ofproto_v1_3 as ofp import faucet_mininet_test_util class FAUCET(Controller): """Start a FAUCET controller.""" def __init__(self, name, ports_sock, cdir=faucet_mininet_test_util.FAUCET_DIR, command='ryu-manager ryu.app.ofctl_rest faucet.py', cargs='--ofp-tcp-listen-port=%s --verbose --use-stderr', **kwargs): name = 'faucet-%u' % os.getpid() self.ofctl_port, _ = faucet_mininet_test_util.find_free_port( ports_sock) cargs = '--wsapi-port=%u %s' % (self.ofctl_port, cargs) Controller.__init__( self, name, cdir=cdir, command=command, cargs=cargs, **kwargs) class Gauge(Controller): """Start a Gauge controller.""" def __init__(self, name, cdir=faucet_mininet_test_util.FAUCET_DIR, command='ryu-manager gauge.py', cargs='--ofp-tcp-listen-port=%s --verbose --use-stderr', **kwargs): name = 'gauge-%u' % os.getpid() Controller.__init__( self, name, cdir=cdir, command=command, cargs=cargs, **kwargs) class FaucetAPI(Controller): '''Start a controller to run the Faucet API tests.''' def __init__(self, name, command='ryu-manager {0}/faucet.py test_api.py'.format( faucet_mininet_test_util.FAUCET_DIR), cargs='--ofp-tcp-listen-port=%s --verbose --use-stderr', **kwargs): name = 'faucet-api-%u' % os.getpid() Controller.__init__( self, name, command=command, cargs=cargs, **kwargs) class FaucetSwitch(OVSSwitch): """Switch that will be used by all tests (kernel based OVS).""" def __init__(self, name, **params): OVSSwitch.__init__( self, name=name, datapath='kernel', **params) class VLANHost(Host): """Implementation of a Mininet host on a tagged VLAN.""" def config(self, vlan=100, **params): """Configure VLANHost according to (optional) parameters: vlan: VLAN ID for default interface""" super_config = super(VLANHost, self).config(**params) intf = self.defaultIntf() vlan_intf_name = '%s.%d' % (intf, vlan) self.cmd('ip -4 addr flush dev %s' % intf) self.cmd('ip -6 addr flush dev %s' % intf) self.cmd('vconfig add %s %d' % (intf, vlan)) self.cmd('ip link set dev %s up' % vlan_intf_name) self.cmd('ip -4 addr add %s dev %s' % (params['ip'], vlan_intf_name)) intf.name = vlan_intf_name self.nameToIntf[vlan_intf_name] = intf return super_config class FaucetSwitchTopo(Topo): """FAUCET switch topology that contains a software switch.""" def _get_sid_prefix(self, ports_served): """Return a unique switch/host prefix for a test.""" # Linux tools require short interface names. return '%2.2x' % ports_served def _add_tagged_host(self, sid_prefix, tagged_vid, host_n): """Add a single tagged test host.""" host_name = 't%s%1.1u' % (sid_prefix, host_n + 1) return self.addHost( name=host_name, cls=VLANHost, vlan=tagged_vid) def _add_untagged_host(self, sid_prefix, host_n): """Add a single untagged test host.""" host_name = 'u%s%1.1u' % (sid_prefix, host_n + 1) return self.addHost(name=host_name) def _add_faucet_switch(self, sid_prefix, port, dpid): """Add a FAUCET switch.""" switch_name = 's%s' % sid_prefix return self.addSwitch( name=switch_name, cls=FaucetSwitch, listenPort=port, dpid=faucet_mininet_test_util.mininet_dpid(dpid)) def build(self, ports_sock, dpid=0, n_tagged=0, tagged_vid=100, n_untagged=0): port, ports_served = faucet_mininet_test_util.find_free_port(ports_sock) sid_prefix = self._get_sid_prefix(ports_served) for host_n in range(n_tagged): self._add_tagged_host(sid_prefix, tagged_vid, host_n) for host_n in range(n_untagged): self._add_untagged_host(sid_prefix, host_n) switch = self._add_faucet_switch(sid_prefix, port, dpid) for host in self.hosts(): self.addLink(host, switch) class FaucetHwSwitchTopo(FaucetSwitchTopo): """FAUCET switch topology that contains a hardware switch.""" def build(self, ports_sock, dpid=0, n_tagged=0, tagged_vid=100, n_untagged=0): port, ports_served = faucet_mininet_test_util.find_free_port(ports_sock) sid_prefix = self._get_sid_prefix(ports_served) for host_n in range(n_tagged): self._add_tagged_host(sid_prefix, tagged_vid, host_n) for host_n in range(n_untagged): self._add_untagged_host(sid_prefix, host_n) dpid = str(int(dpid) + 1) print 'remap switch will use DPID %s (%x)' % (dpid, int(dpid)) switch = self._add_faucet_switch(sid_prefix, port, dpid) for host in self.hosts(): self.addLink(host, switch) class FaucetTestBase(unittest.TestCase): """Base class for all FAUCET unit tests.""" ONE_GOOD_PING = '1 packets transmitted, 1 received, 0% packet loss' FAUCET_VIPV4 = ipaddr.IPv4Network('10.0.0.254/24') FAUCET_VIPV4_2 = ipaddr.IPv4Network('172.16.0.254/24') FAUCET_VIPV6 = ipaddr.IPv6Network('fc00::1:254/64') FAUCET_VIPV6_2 = ipaddr.IPv6Network('fc01::1:254/64') OFCTL = 'ovs-ofctl -OOpenFlow13' BOGUS_MAC = '01:02:03:04:05:06' FAUCET_MAC = '0e:00:00:00:00:01' LADVD = 'timeout 30s ladvd -e lo -f' CONFIG = '' CONFIG_GLOBAL = '' config = None dpid = None hardware = 'Open vSwitch' hw_switch = False gauge_of_port = None net = None of_port = None port_map = {'port_1': 1, 'port_2': 2, 'port_3': 3, 'port_4': 4} switch_map = {} tmpdir = None def __init__(self, name, config, root_tmpdir, ports_sock): super(FaucetTestBase, self).__init__(name) self.config = config self.root_tmpdir = root_tmpdir self.ports_sock = ports_sock def tmpdir_name(self): test_name = '-'.join(self.id().split('.')[1:]) return tempfile.mkdtemp( prefix='%s-' % test_name, dir=self.root_tmpdir) def tearDown(self): """Clean up after a test.""" # must not be any controller exception. self.assertEquals( 0, os.path.getsize(os.environ['FAUCET_EXCEPTION_LOG'])) controller_names = [] for controller in self.net.controllers: controller_names.append(controller.name) if self.net is not None: self.net.stop() test_class_name = self.id().split('.')[1] if (not test_class_name.startswith('FaucetGroup') and not test_class_name.startswith('FaucetSingleGroup')): for dp_name, debug_log in self.get_ofchannel_logs(): self.assertFalse(re.search('OFPErrorMsg', open(debug_log).read()), msg='debug log has OFPErrorMsgs') # Associate controller log with test results, if we are keeping # the temporary directory, or effectively delete it if not. # mininet doesn't have a way to change its log name for the controller. for controller_name in controller_names: shutil.move('/tmp/%s.log' % controller_name, self.tmpdir) def pre_start_net(self): """Hook called after Mininet initializtion, before Mininet started.""" return def get_config_header(self, config_global, debug_log, dpid, hardware): """Build v2 FAUCET config header.""" return """ version: 2 %s dps: faucet-1: ofchannel_log: %s dp_id: 0x%x hardware: "%s" """ % (config_global, debug_log, int(dpid), hardware) def get_gauge_config(self, faucet_config_file, monitor_stats_file, monitor_state_file, monitor_flow_table_file): """Build Gauge config.""" return """ version: 2 faucet_configs: - %s watchers: port_stats: dps: ['faucet-1'] type: 'port_stats' interval: 5 db: 'stats_file' port_state: dps: ['faucet-1'] type: 'port_state' interval: 5 db: 'state_file' flow_table: dps: ['faucet-1'] type: 'flow_table' interval: 5 db: 'flow_file' dbs: stats_file: type: 'text' file: %s state_file: type: 'text' file: %s flow_file: type: 'text' file: %s """ % (faucet_config_file, monitor_stats_file, monitor_state_file, monitor_flow_table_file) def get_controller(self): """Return the first (only) controller.""" return self.net.controllers[0] def ofctl_rest_url(self): """Return control URL for Ryu ofctl module.""" return 'http://127.0.0.1:%u' % self.get_controller().ofctl_port def get_all_groups_desc_from_dpid(self, dpid, timeout=2): int_dpid = faucet_mininet_test_util.str_int_dpid(dpid) for _ in range(timeout): try: ofctl_result = json.loads(requests.get( '%s/stats/groupdesc/%s' % (self.ofctl_rest_url(), int_dpid)).text) flow_dump = ofctl_result[int_dpid] return [json.dumps(flow) for flow in flow_dump] except (ValueError, requests.exceptions.ConnectionError): # Didn't get valid JSON, try again time.sleep(1) continue return [] def get_group_id_for_matching_flow(self, exp_flow, timeout=10): for _ in range(timeout): flow_dump = self.get_all_flows_from_dpid(self.dpid, timeout) for flow in flow_dump: if re.search(exp_flow, flow): flow = json.loads(flow) group_id = int(re.findall(r'\d+', str(flow['actions']))[0]) return group_id time.sleep(1) self.assertTrue(False, "Can't find group_id for matching flow %s" % exp_flow) def wait_matching_in_group_table(self, exp_flow, group_id, timeout=10): exp_group = '%s.+"group_id": %d' % (exp_flow, group_id) for _ in range(timeout): group_dump = self.get_all_groups_desc_from_dpid(self.dpid, 1) for group_desc in group_dump: if re.search(exp_group, group_desc): return True time.sleep(1) return False def get_all_flows_from_dpid(self, dpid, timeout=10): """Return all flows from DPID.""" for _ in range(timeout): try: ofctl_result = json.loads(requests.get( '%s/stats/flow/%s' % (self.ofctl_rest_url(), dpid)).text) except (ValueError, requests.exceptions.ConnectionError): # Didn't get valid JSON, try again time.sleep(1) continue flow_dump = ofctl_result[dpid] return [json.dumps(flow) for flow in flow_dump] return [] def get_matching_flow_on_dpid(self, dpid, exp_flow, timeout=10): """Return flow matching an RE from DPID.""" for _ in range(timeout): flow_dump = self.get_all_flows_from_dpid(dpid) for flow in flow_dump: if re.search(exp_flow, flow): return json.loads(flow) time.sleep(1) return {} def get_matching_flow(self, exp_flow, timeout=10): """Return flow matching an RE from default DPID.""" return self.get_matching_flow_on_dpid(self.dpid, exp_flow, timeout) def matching_flow_present_on_dpid(self, dpid, exp_flow, timeout=10): """Return True if matching flow is present on a DPID.""" if self.get_matching_flow_on_dpid(dpid, exp_flow, timeout): return True return False def matching_flow_present(self, exp_flow, timeout=10): """Return True if matching flow is present on default DPID.""" return self.matching_flow_present_on_dpid(self.dpid, exp_flow, timeout) def wait_until_matching_flow(self, exp_flow, timeout=10): """Wait (require) for flow to be present on default DPID.""" self.assertTrue(self.matching_flow_present(exp_flow, timeout), msg=exp_flow) def host_learned(self, host, timeout=10): """Return True if a host has been learned on default DPID.""" return self.matching_flow_present( '"table_id": 3,.+"dl_src": "%s"' % host.MAC(), timeout) def host_ipv4(self, host): """Return first IPv4/netmask for host's default interface.""" host_ip_cmd = ( r'ip -o -f inet addr show %s|grep -m 1 -Eo "[0-9\\.]+\/[0-9]+"') return host.cmd(host_ip_cmd % host.defaultIntf()).strip() def host_ipv6(self, host): """Return first IPv6/netmask for host's default interface.""" host_ip_cmd = ( r'ip -o -f inet6 addr show %s|grep -m 1 -Eo "[0-9a-f\:]+\/[0-9]+"') return host.cmd(host_ip_cmd % host.defaultIntf()).strip() def require_host_learned(self, host, retries=3): """Require a host be learned on default DPID.""" host_ip_net = self.host_ipv4(host) ping_cmd = 'ping' if not host_ip_net: host_ip_net = self.host_ipv6(host) broadcast = (ipaddr.IPNetwork(host_ip_net).broadcast) if broadcast.version == 6: ping_cmd = 'ping6' for _ in range(retries): if self.host_learned(host, timeout=1): return # stimulate host learning with a broadcast ping host.cmd('%s -i 0.2 -c 1 -b %s' % (ping_cmd, broadcast)) self.fail('host %s could not be learned' % host) def get_ofchannel_logs(self): config = yaml.load(open(os.environ['FAUCET_CONFIG'])) ofchannel_logs = [] for dp_name, dp_config in config['dps'].iteritems(): if 'ofchannel_log' in dp_config: debug_log = dp_config['ofchannel_log'] ofchannel_logs.append((dp_name, debug_log)) return ofchannel_logs def wait_debug_log(self): """Require all switches to have exchanged flows with controller.""" ofchannel_logs = self.get_ofchannel_logs() for dp_name, debug_log in ofchannel_logs: debug_log_present = False for _ in range(20): if (os.path.exists(debug_log) and os.path.getsize(debug_log) > 0): debug_log_present = True break time.sleep(1) if not debug_log_present: self.fail( 'no controller debug log for switch %s' % dp_name) def hup_faucet(self): """Send a HUP signal to the controller.""" controller = self.get_controller() tcp_pattern = '%s/tcp' % controller.port fuser_out = controller.cmd('fuser %s -k -1' % tcp_pattern) self.assertTrue(re.search(r'%s:\s+\d+' % tcp_pattern, fuser_out)) def force_faucet_reload(self, new_config): """Force FAUCET to reload by adding new line to config file.""" open(os.environ['FAUCET_CONFIG'], 'a').write(new_config) self.hup_faucet() def curl_portmod(self, int_dpid, port_no, config, mask): """Use curl to send a portmod command via the ofctl module.""" curl_format = ' '.join(( 'curl -X POST -d' '\'{"dpid": %s, "port_no": %u, "config": %u, "mask": %u}\'', '%s/stats/portdesc/modify')) return curl_format % ( int_dpid, port_no, config, mask, self.ofctl_rest_url()) def flap_all_switch_ports(self, flap_time=1): """Flap all ports on switch.""" for port_no in self.port_map.itervalues(): os.system(self.curl_portmod( self.dpid, port_no, ofp.OFPPC_PORT_DOWN, ofp.OFPPC_PORT_DOWN)) time.sleep(flap_time) os.system(self.curl_portmod( self.dpid, port_no, 0, ofp.OFPPC_PORT_DOWN)) def add_host_ipv6_address(self, host, ip_v6): """Add an IPv6 address to a Mininet host.""" self.assertEquals( '', host.cmd('ip -6 addr add %s dev %s' % (ip_v6, host.intf()))) def add_host_ipv6_route(self, host, ip_dst, ip_gw): """Add an IPv6 route to a Mininet host.""" host.cmd('ip -6 route del %s' % ip_dst.masked()) self.assertEquals( '', host.cmd('ip -6 route add %s via %s' % (ip_dst.masked(), ip_gw))) def add_host_ipv4_route(self, host, ip_dst, ip_gw): """Add an IPv4 route to a Mininet host.""" host.cmd('ip -4 route del %s' % ip_dst.masked()) self.assertEquals( '', host.cmd('ip -4 route add %s via %s' % (ip_dst.masked(), ip_gw))) def one_ipv4_ping(self, host, dst, retries=3): """Ping an IPv4 destination from a host.""" self.require_host_learned(host) for _ in range(retries): ping_result = host.cmd('ping -c1 %s' % dst) if re.search(self.ONE_GOOD_PING, ping_result): return self.assertTrue(re.search(self.ONE_GOOD_PING, ping_result)) def one_ipv4_controller_ping(self, host): """Ping the controller from a host with IPv4.""" self.one_ipv4_ping(host, self.FAUCET_VIPV4.ip) self.verify_ipv4_host_learned_mac( host, self.FAUCET_VIPV4.ip, self.FAUCET_MAC) def one_ipv6_ping(self, host, dst, retries=3): """Ping an IPv6 destination from a host.""" self.require_host_learned(host) # TODO: retry our one ping. We should not have to retry. for _ in range(retries): ping_result = host.cmd('ping6 -c1 %s' % dst) if re.search(self.ONE_GOOD_PING, ping_result): return self.assertTrue(re.search(self.ONE_GOOD_PING, ping_result)) def one_ipv6_controller_ping(self, host): """Ping the controller from a host with IPv6.""" self.one_ipv6_ping(host, self.FAUCET_VIPV6.ip) self.verify_ipv6_host_learned_mac( host, self.FAUCET_VIPV6.ip, self.FAUCET_MAC) def wait_for_tcp_listen(self, host, port, timeout=10): """Wait for a host to start listening on a port.""" for _ in range(timeout): fuser_out = host.cmd('fuser -n tcp %u' % port) if re.search(r'.*%u/tcp.*' % port, fuser_out): return time.sleep(1) self.fail('%s never listened on port %u (%s)' % (host, port, fuser_out)) def serve_hello_on_tcp_port(self, host, port): """Serve 'hello' on a TCP port on a host.""" host.cmd('timeout 10s echo hello | nc -l %s %u &' % (host.IP(), port)) self.wait_for_tcp_listen(host, port) def verify_tp_dst_blocked(self, port, first_host, second_host): """Verify that a TCP port on a host is blocked from another host.""" self.serve_hello_on_tcp_port(second_host, port) self.assertEquals( '', first_host.cmd('timeout 10s nc %s %u' % (second_host.IP(), port))) self.wait_until_matching_flow( r'"packet_count": [1-9]+.+"tp_dst": %u' % port) def verify_tp_dst_notblocked(self, port, first_host, second_host): """Verify that a TCP port on a host is NOT blocked from another host.""" self.serve_hello_on_tcp_port(second_host, port) self.assertEquals( 'hello\r\n', first_host.cmd('nc -w 5 %s %u' % (second_host.IP(), port))) self.wait_until_matching_flow( r'"packet_count": [1-9]+.+"tp_dst": %u' % port) def swap_host_macs(self, first_host, second_host): """Swap the MAC addresses of two Mininet hosts.""" first_host_mac = first_host.MAC() second_host_mac = second_host.MAC() first_host.setMAC(second_host_mac) second_host.setMAC(first_host_mac) def start_exabgp(self, exabgp_conf, listen_address='127.0.0.1', port=179): """Start exabgp process on controller host.""" self.stop_exabgp(port) exabgp_conf_file = os.path.join(self.tmpdir, 'exabgp.conf') exabgp_log = os.path.join(self.tmpdir, 'exabgp.log') exabgp_err = os.path.join(self.tmpdir, 'exabgp.err') exabgp_env = ' '.join(( 'exabgp.tcp.bind="%s"' % listen_address, 'exabgp.tcp.port=%u' % port, 'exabgp.log.all=true', 'exabgp.log.routes=true', 'exabgp.log.rib=true', 'exabgp.log.packets=true', 'exabgp.log.parser=true', )) open(exabgp_conf_file, 'w').write(exabgp_conf) controller = self.get_controller() controller.cmd( 'env %s timeout -s9 180s ' 'stdbuf -o0 -e0 exabgp %s -d 2> %s > %s &' % ( exabgp_env, exabgp_conf_file, exabgp_err, exabgp_log)) self.wait_for_tcp_listen(controller, port) return exabgp_log def wait_bgp_up(self, exabgp_log): """Wait for BGP to come up.""" for _ in range(60): exabgp_log_content = open(exabgp_log).read() if exabgp_log_content.find('OPENCONFIRM') > -1: return time.sleep(1) self.fail('exabgp did not peer with FAUCET') def stop_exabgp(self, port=179): """Stop exabgp process on controller host.""" controller = self.get_controller() controller.cmd('fuser %s/tcp -k -9' % port) def exabgp_updates(self, exabgp_log): """Verify that exabgp process has received BGP updates.""" controller = self.get_controller() # exabgp should have received our BGP updates for _ in range(60): updates = controller.cmd( r'grep UPDATE %s |grep -Eo "\S+ next-hop \S+"' % exabgp_log) if updates: return updates time.sleep(1) self.fail('exabgp did not receive BGP updates') def wait_exabgp_sent_updates(self, exabgp_log): """Verify that exabgp process has sent BGP updates.""" for _ in range(60): exabgp_log_content = open(exabgp_log).read() if re.search(r'>> [1-9]+[0-9]* UPDATE', exabgp_log_content): return time.sleep(1) self.fail('exabgp did not send BGP updates') def ping_all_when_learned(self, retries=3): """Verify all hosts can ping each other once FAUCET has learned all.""" # Cause hosts to send traffic that FAUCET can use to learn them. for _ in range(retries): loss = self.net.pingAll() # we should have learned all hosts now, so should have no loss. for host in self.net.hosts: self.require_host_learned(host) if loss == 0: return self.assertEquals(0, loss) def wait_for_route_as_flow(self, nexthop, prefix, timeout=10, with_group_table=False): """Verify a route has been added as a flow.""" if prefix.version == 6: exp_prefix = '/'.join( (str(prefix.masked().ip), str(prefix.netmask))) nw_dst_match = '"ipv6_dst": "%s"' % exp_prefix else: exp_prefix = prefix.masked().with_netmask nw_dst_match = '"nw_dst": "%s"' % exp_prefix if with_group_table: group_id = self.get_group_id_for_matching_flow(nw_dst_match) self.wait_matching_in_group_table('SET_FIELD: {eth_dst:%s}' % nexthop, group_id, timeout) else: self.wait_until_matching_flow( 'SET_FIELD: {eth_dst:%s}.+%s' % (nexthop, nw_dst_match), timeout) def host_ipv4_alias(self, host, alias_ip): """Add an IPv4 alias address to a host.""" del_cmd = 'ip addr del %s/%s dev %s' % ( alias_ip.ip, alias_ip.prefixlen, host.intf()) add_cmd = 'ip addr add %s/%s dev %s label %s:1' % ( alias_ip.ip, alias_ip.prefixlen, host.intf(), host.intf()) host.cmd(del_cmd) self.assertEquals('', host.cmd(add_cmd)) def verify_ipv4_host_learned_mac(self, host, ip, mac): learned_mac = host.cmd( "arp -n %s | grep %s | awk '{ print $3 }'" % (ip, ip)) self.assertEqual(learned_mac.strip(), mac, msg='MAC learned on host mismatch') def verify_ipv4_host_learned_host(self, host, learned_host): learned_ip = ipaddr.IPNetwork(self.host_ipv4(learned_host)) self.verify_ipv4_host_learned_mac(host, learned_ip.ip, learned_host.MAC()) def verify_ipv6_host_learned_mac(self, host, ip6, mac): learned_mac = host.cmd( "ip -6 neighbor show %s | awk '{ print $5 }'" % ip6) self.assertEqual(learned_mac.strip(), mac, msg='MAC learned on host mismatch') def verify_ipv6_host_learned_host(self, host, learned_host): learned_ip6 = ipaddr.IPNetwork(self.host_ipv6(learned_host)) self.verify_ipv6_host_learned_mac(host, learned_ip6.ip, learned_host.MAC()) def verify_ipv4_routing(self, first_host, first_host_routed_ip, second_host, second_host_routed_ip, with_group_table=False): """Verify one host can IPV4 route to another via FAUCET.""" self.host_ipv4_alias(first_host, first_host_routed_ip) self.host_ipv4_alias(second_host, second_host_routed_ip) self.add_host_ipv4_route( first_host, second_host_routed_ip, self.FAUCET_VIPV4.ip) self.add_host_ipv4_route( second_host, first_host_routed_ip, self.FAUCET_VIPV4.ip) self.net.ping(hosts=(first_host, second_host)) self.wait_for_route_as_flow( first_host.MAC(), first_host_routed_ip, with_group_table=with_group_table) self.wait_for_route_as_flow( second_host.MAC(), second_host_routed_ip, with_group_table=with_group_table) self.one_ipv4_ping(first_host, second_host_routed_ip.ip) self.one_ipv4_ping(second_host, first_host_routed_ip.ip) self.verify_ipv4_host_learned_host(first_host, second_host) self.verify_ipv4_host_learned_host(second_host, first_host) def verify_ipv4_routing_mesh(self, with_group_table=False): """Verify hosts can route to each other via FAUCET.""" host_pair = self.net.hosts[:2] first_host, second_host = host_pair first_host_routed_ip = ipaddr.IPv4Network('10.0.1.1/24') second_host_routed_ip = ipaddr.IPv4Network('10.0.2.1/24') second_host_routed_ip2 = ipaddr.IPv4Network('10.0.3.1/24') self.verify_ipv4_routing( first_host, first_host_routed_ip, second_host, second_host_routed_ip, with_group_table=with_group_table) self.verify_ipv4_routing( first_host, first_host_routed_ip, second_host, second_host_routed_ip2, with_group_table=with_group_table) self.swap_host_macs(first_host, second_host) self.verify_ipv4_routing( first_host, first_host_routed_ip, second_host, second_host_routed_ip, with_group_table=with_group_table) self.verify_ipv4_routing( first_host, first_host_routed_ip, second_host, second_host_routed_ip2, with_group_table=with_group_table) def setup_ipv6_hosts_addresses(self, first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip): """Configure host IPv6 addresses for testing.""" for host in first_host, second_host: host.cmd('ip -6 addr flush dev %s' % host.intf()) self.add_host_ipv6_address(first_host, first_host_ip) self.add_host_ipv6_address(second_host, second_host_ip) self.add_host_ipv6_address(first_host, first_host_routed_ip) self.add_host_ipv6_address(second_host, second_host_routed_ip) for host in first_host, second_host: self.require_host_learned(host) def verify_ipv6_routing(self, first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip, with_group_table=False): """Verify one host can IPV6 route to another via FAUCET.""" self.one_ipv6_ping(first_host, second_host_ip.ip) self.one_ipv6_ping(second_host, first_host_ip.ip) self.add_host_ipv6_route( first_host, second_host_routed_ip, self.FAUCET_VIPV6.ip) self.add_host_ipv6_route( second_host, first_host_routed_ip, self.FAUCET_VIPV6.ip) self.wait_for_route_as_flow( first_host.MAC(), first_host_routed_ip, with_group_table=with_group_table) self.wait_for_route_as_flow( second_host.MAC(), second_host_routed_ip, with_group_table=with_group_table) self.one_ipv6_controller_ping(first_host) self.one_ipv6_controller_ping(second_host) self.one_ipv6_ping(first_host, second_host_routed_ip.ip) self.one_ipv6_ping(second_host, first_host_routed_ip.ip) self.verify_ipv6_host_learned_mac( first_host, second_host_ip.ip, second_host.MAC()) self.verify_ipv6_host_learned_mac( second_host, first_host_ip.ip, first_host.MAC()) def verify_ipv6_routing_pair(self, first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip, with_group_table=False): """Verify hosts can route IPv6 to each other via FAUCET.""" self.setup_ipv6_hosts_addresses( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip) self.verify_ipv6_routing( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip, with_group_table=with_group_table) def verify_ipv6_routing_mesh(self, with_group_table=False): """Verify IPv6 routing between hosts and multiple subnets.""" host_pair = self.net.hosts[:2] first_host, second_host = host_pair first_host_ip = ipaddr.IPv6Network('fc00::1:1/112') second_host_ip = ipaddr.IPv6Network('fc00::1:2/112') first_host_routed_ip = ipaddr.IPv6Network('fc00::10:1/112') second_host_routed_ip = ipaddr.IPv6Network('fc00::20:1/112') second_host_routed_ip2 = ipaddr.IPv6Network('fc00::30:1/112') self.verify_ipv6_routing_pair( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip, with_group_table=with_group_table) self.verify_ipv6_routing_pair( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip2, with_group_table=with_group_table) self.swap_host_macs(first_host, second_host) self.verify_ipv6_routing_pair( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip, with_group_table=with_group_table) self.verify_ipv6_routing_pair( first_host, first_host_ip, first_host_routed_ip, second_host, second_host_ip, second_host_routed_ip2, with_group_table=with_group_table) def verify_invalid_bgp_route(self, pattern): """Check if we see the pattern in Faucet's Log""" controller = self.get_controller() count = controller.cmd( 'grep -c "%s" %s' % (pattern, os.environ['FAUCET_LOG'])) self.assertGreater(count, 0) ``` #### File: 514-SDN-assignment-/tests/faucet_mininet_test_util.py ```python import os import socket FAUCET_DIR = os.getenv('FAUCET_DIR', '../src/ryu_faucet/org/onfsdn/faucet') RESERVED_FOR_TESTS_PORTS = (179, 5001, 5002, 6633, 6653, 9179) def mininet_dpid(int_dpid): """Return stringified hex version, of int DPID for mininet.""" return str('%x' % int(int_dpid)) def str_int_dpid(str_dpid): """Return stringified int version, of int or hex DPID from YAML.""" str_dpid = str(str_dpid) if str_dpid.startswith('0x'): return str(int(str_dpid, 16)) else: return str(int(str_dpid)) def find_free_port(ports_socket): """Retrieve a free TCP port from test server.""" sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ports_socket) buf = '' while not buf.find('\n') > -1: buf = buf + sock.recv(1024) return [int(x) for x in buf.strip().split()] def serve_ports(ports_socket): """Implement a TCP server to dispense free TCP ports.""" sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.bind(ports_socket) sock.listen(1) ports_served = set() while True: connection, _ = sock.accept() while True: free_socket = socket.socket() free_socket.bind(('', 0)) free_port = free_socket.getsockname()[1] free_socket.close() if free_port < 1024: continue if free_port in RESERVED_FOR_TESTS_PORTS: continue if free_port in ports_served: continue break ports_served.add(free_port) connection.sendall('%u %u\n' % (free_port, len(ports_served))) connection.close() ```
{ "source": "joye1503/cocrawler", "score": 4 }
#### File: cocrawler/cocrawler/topk.py ```python from collections import namedtuple from sortedcollections import ItemSortedDict def getvaluevalue(k, v): return -v.value # minus to invert sort class topK_max: ''' Given a stream of (key,value,ridealong) tuples, remember the k largest values. If a key is added repeatedly, use the largest value. ''' def __init__(self, size): self.size = size self.element = namedtuple('topK_max_element', ['value', 'ridealong']) self.d = ItemSortedDict(getvaluevalue) def add(self, key, value, ridealong): if key in self.d: if value >= self.d[key].value: self.d[key] = self.element(value, ridealong) elif len(self.d) < self.size: self.d[key] = self.element(value, ridealong) elif value > self.d.peekitem()[1].value: self.d.popitem() self.d[key] = self.element(value, ridealong) def readout(self): return [(k, list(v)) for k, v in self.d.items()] # XXX to do: union, update class topK_sum: ''' Space-saving heavy hitters. Given a stream of (key, value) tuples, rememgber the k items with the largest sum of values. http://www.cse.ust.hk/~raywong/comp5331/References/EfficientComputationOfFrequentAndTop-kElementsInDataStreams.pdf ''' def __init__(self, size): self.size = size self.element = namedtuple('topK_max_element', ['value', 'ridealong', 'fake']) self.d = ItemSortedDict(getvaluevalue) def add(self, key, value, ridealong): if key in self.d: self.d[key] = self.element(self.d[key].value + value, ridealong, self.d[key].fake) elif len(self.d) < self.size: self.d[key] = self.element(value, ridealong, 0) elif value >= self.d.peekitem()[1].value: self.d.popitem() self.d[key] = self.element(value, ridealong, 0) else: evicted = self.d.popitem() oldvalue = evicted[1].value newvalue = max(value, oldvalue + 1) fake = max(newvalue - value, 0) self.d[key] = self.element(newvalue, ridealong, fake) def readout(self): ret = [] for i in self.d.items(): if i[1].value > 2 * i[1].fake: ret.append((i[0], [i[1].value, i[1].ridealong])) return ret # XXX to do: union, update class topK_sum_hhh: ''' Hierarchical heavy hitter. Given a stream of (key, (parts,), value) tuples, remember which parts have the largest sum of values. Example: given a list uf url paths within a website, remember the most popular ones ''' class topK_sum_hll: ''' Heavy hitters with hyperloglog. Given a stream of (key, value) pairs, remember the k keys with the largest count of unique values. E.g. webpages in a site with most unique incoming external links ''' ``` #### File: cocrawler/scripts/run_burner_bench.py ```python import sys import logging import functools import asyncio import cocrawler.burner as burner import cocrawler.parse as parse import cocrawler.stats as stats test_threadcount = 2 loop = asyncio.get_event_loop() b = burner.Burner(test_threadcount, loop, 'parser') queue = asyncio.Queue() def parse_all(name, string): links1, _ = parse.find_html_links(string, url=name) links2, embeds2 = parse.find_html_links_and_embeds(string, url=name) all2 = links2.union(embeds2) if len(links1) != len(all2): print('{} had different link counts of {} and {}'.format(name, len(links1), len(all2))) extra1 = links1.difference(all2) extra2 = all2.difference(links1) print(' extra in links: {!r}'.format(extra1)) print(' extra in links and embeds: {!r}'.format(extra2)) return 1, async def work(): while True: w = await queue.get() string = ' ' * 10000 partial = functools.partial(parse_all, w, string) await b.burn(partial) queue.task_done() async def crawl(): workers = [asyncio.Task(work(), loop=loop) for _ in range(test_threadcount)] print('queue count is {}'.format(queue.qsize())) await queue.join() print('join is done') for w in workers: if not w.done(): w.cancel() # Main program: for i in range(10000): queue.put_nowait('foo') print('Queue size is {}, beginning work.'.format(queue.qsize())) try: loop.run_until_complete(crawl()) print('exit run until complete') except KeyboardInterrupt: sys.stderr.flush() print('\nInterrupt. Exiting cleanly.\n') finally: loop.stop() loop.run_forever() loop.close() levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG] logging.basicConfig(level=levels[3]) stats.report() parse.report() ``` #### File: tests/unit/test_accumulator.py ```python from pytest import approx import cocrawler.accumulator as accumulator def test_event_accumulator(): A = accumulator.EventAccumulator() assert A.read() == [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] A.accumulate(1) assert A.read() == [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] A.accumulate(2.0) assert A.read() == [1.5, 1.5, 1.5, 1.5, 1.5, 1.5] [A.accumulate(x) for x in (2.0,)*8] assert A.read() == [1.9, 1.9, 1.9, 1.9, 1.9, 1.9] A.accumulate(2.0) assert A.read() == [2.0, 1.9, 1.9, 1.9, 1.9, 1.9] [A.accumulate(x) for x in (2.0,)*8] assert A.read() == [2.0, 1.9, 1.9, 1.9, 1.9, 1.9] A.accumulate(2.0) assert A.read() == [2.0, 1.9, 1.9, 1.9, 1.9, 1.9] # we don't expect it to change until we have 100 values [A.accumulate(x) for x in (2.0,)*100] assert A.read() == [2.0, approx(1.99), approx(1.99), approx(1.99), approx(1.99), approx(1.99)] A = accumulator.EventAccumulator() [A.accumulate(x) for x in range(0, 110)] assert A.read() == [104.5, 49.5, 49.5, 49.5, 49.5, 49.5] A = accumulator.EventAccumulator() [A.accumulate(x) for x in range(0, 1100)] assert A.read() == [1094.5, 1049.5, 499.5, 499.5, 499.5, 499.5] A = accumulator.EventAccumulator(function='max') A.accumulate(1.0) assert A.read() == [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] A.accumulate(2.0) assert A.read() == [2.0, 2.0, 2.0, 2.0, 2.0, 2.0] A.accumulate(2.0) assert A.read() == [2.0, 2.0, 2.0, 2.0, 2.0, 2.0] [A.accumulate(2.0) for x in range(0, 100)] assert A.read() == [2.0, 2.0, 2.0, 2.0, 2.0, 2.0] [A.accumulate(1.0) for x in range(0, 20)] assert A.read() == [1.0, 2.0, 2.0, 2.0, 2.0, 2.0] def test_event_accumulator_debug(capsys): A = accumulator.EventAccumulator(function='max') A.accumulate(1.0, debug=True) out, err = capsys.readouterr() assert len(out) > 85 # not a very good test! assert len(out) < 200 # not a very good test! assert err == '' ``` #### File: tests/unit/test_parse.py ```python from bs4 import BeautifulSoup import cocrawler.parse as parse from cocrawler.urls import URL test_html = ''' <html> <head><title>Foo</title><link href='link.html'></link></head> <body> <a href = "foo1.html">Anchor 1</a> <a href = foo2.htm>Anchor 2</a> <a href='foo3.html '>Anchor 3</a> <img src=foo.gif /> <a href='torture" <url>'>torture anchor</a> </body> ''' test_html_harder = ''' <html> <head></head> <body> <iframe src="iframe.html"></iframe> <iframe src=""></iframe> <link href="stylesheet.blah" rel="stylesheet"> <link href="" rel="stylesheet"> <link href="http://example.com" rel="prefetch"> <link href="do-not-crash-1"> <link href="do-not-crash-2" rel="one" rel="two"> <link href=""> </body> ''' test_html_no_body = ''' <html> <head><title>Foo</title><link href='link.html'></link></head> <a href="foo1.html">Anchor 4</a> <a href=foo2.htm>Anchor 5</a> <a href="foo3.html ">Anchor 6</a> <img src=foo.gif /> ''' test_html_no_head = ''' <html> <body> <a href="foo1.html">Anchor 7</a> <a href=foo2.htm>Anchor 8</a> <a href="foo3.html ">Anchor 9</a> <img src=foo.gif /> </body> ''' test_html_no_nothing = ''' <a href="foo1.html">Anchor 10</a> <a href=foo2.htm>Anchor 11</a> <a href="foo3.html ">Anchor 12</a> <img src=foo.gif /> ''' def test_do_burner_work_html(): urlj = URL('http://example.com') test_html_bytes = test_html.encode(encoding='utf-8', errors='replace') headers = {} links, embeds, sha1, facets, base = parse.do_burner_work_html(test_html, test_html_bytes, headers, url=urlj) assert len(links) == 4 assert len(embeds) == 2 linkset = set(u.url for u in links) embedset = set(e.url for e in embeds) assert 'http://example.com/foo3.html' in linkset assert 'http://example.com/foo.gif' in embedset assert sha1 == 'sha1:cdcb087d39afd827d5d523e165a6566d65a2e9b3' assert base is None # as a handwave, let's expect these defective pages to also work. test_html_bytes = test_html_no_body.encode(encoding='utf-8', errors='replace') links, embeds, sha1, facets, base = parse.do_burner_work_html(test_html_no_body, test_html_bytes, headers, url=urlj) assert len(links) == 3 assert len(embeds) == 2 test_html_bytes = test_html_no_head.encode(encoding='utf-8', errors='replace') links, embeds, sha1, facets, base = parse.do_burner_work_html(test_html_no_head, test_html_bytes, headers, url=urlj) assert len(links) == 3 assert len(embeds) == 1 test_html_bytes = test_html_no_nothing.encode(encoding='utf-8', errors='replace') links, embeds, sha1, facets, base = parse.do_burner_work_html(test_html_no_nothing, test_html_bytes, headers, url=urlj) assert len(links) == 3 assert len(embeds) == 1 def test_clean_link_objects(): test = [{'href': 'http://example.com'}, {'href': 'data:46532656'}, {'href': 'https://example.com'}] ret = [{'href': 'http://example.com'}, {'href': 'https://example.com'}] assert parse.clean_link_objects(test, ('data:', 'javascript:')) == ret def test_individual_parsers(): links, embeds = parse.find_html_links_re(test_html) assert len(links) == 6 assert len(embeds) == 0 linkset = set(parse.collapse_links(links)) assert 'foo2.htm' in linkset assert 'foo3.html ' in linkset assert 'foo.gif' in linkset assert 'torture"\n<url>' in linkset head, body = parse.split_head_body(test_html) links, embeds = parse.find_body_links_re(body) assert len(links) == 4 assert len(embeds) == 1 linkset = set(parse.collapse_links(links)) embedset = set(parse.collapse_links(embeds)) assert 'foo2.htm' in linkset assert 'foo3.html ' in linkset assert 'torture"\n<url>' in linkset assert 'foo.gif' in embedset links, embeds = parse.find_body_links_anchors_re(body) assert len(links) == 4 assert len(embeds) == 1 linkdict = dict([(l['href'], l['anchor']) for l in links]) # {('foo1.html', 'Anchor 1'), ('foo3.html ', 'Anchor 3'), ('foo2.htm', 'Anchor 2'), ('torture"\n<url>', 'torture\nanchor')} assert linkdict['foo2.htm'] == 'Anchor 2' assert linkdict['foo3.html '] == 'Anchor 3' assert linkdict['torture"\n<url>'] == 'torture\nanchor' assert 'foo.gif' in embeds[0]['src'] head_soup = BeautifulSoup(head, 'lxml') links, embeds = parse.find_head_links_soup(head_soup) embedset = set(parse.collapse_links(embeds)) assert len(links) == 0 assert len(embeds) == 1 assert 'link.html' in embedset head_soup = BeautifulSoup(head, 'lxml') body_soup = BeautifulSoup(body, 'lxml') links, embeds = parse.find_head_links_soup(head_soup) lbody, ebody = parse.find_body_links_soup(body_soup) links += lbody embeds += ebody linkset = set(parse.collapse_links(links)) embedset = set(parse.collapse_links(embeds)) assert len(links) == 4 assert len(embeds) == 2 assert 'foo2.htm' in linkset assert 'foo3.html ' in linkset assert 'torture"\n<url>' in linkset assert 'link.html' in embedset assert 'foo.gif' in embedset head, body = parse.split_head_body(test_html_harder) body_soup = BeautifulSoup(body, 'lxml') lbody, ebody = parse.find_body_links_soup(body_soup) assert len(lbody) == 1 assert len(ebody) == 1 assert 'iframe.html' == lbody[0]['src'] assert 'stylesheet.blah' == ebody[0]['href'] test_css = ''' @import url('foo1.css') url(images/foo2.png) url( images/foo3.png ) ''' def test_css_parser(): links, embeds = parse.find_css_links_re(test_css) assert len(links) == 0 assert len(embeds) == 3 assert 'images/foo3.png' in embeds def test_split_head_body(): ''' Whitebox test of the heuristics in this function ''' head, body = parse.split_head_body('x'*100000) assert head == '' assert len(body) == 100000 head, body = parse.split_head_body('x' + '<HeAd>' + 'x'*100000) assert head == '' assert len(body) == 100007 head, body = parse.split_head_body('x' + '</HeAd>' + 'x'*100000) assert head == 'x' assert len(body) == 100000 head, body = parse.split_head_body('x' + '<BoDy>' + 'x'*100000) assert head == 'x' assert len(body) == 100000 head, body = parse.split_head_body('x' + '<heAd><boDy>' + 'x'*100000) assert head == 'x<heAd>' assert len(body) == 100000 head, body = parse.split_head_body('x' + '<hEad></heAd>' + 'x'*100000) assert head == 'x<hEad>' assert len(body) == 100000 head, body = parse.split_head_body('x' + '<heaD></Head><bOdy>' + 'x'*100000) assert head == 'x<heaD>' assert len(body) == 100006 def test_parse_refresh(): test = ((('0;foo'), (0, 'foo')), ((';'), (None, None)), (('1.1.1.1; bar'), (1, 'bar')), (('2.2, urbaz'), (2, 'urbaz')), (('3; url=barf'), (3, 'barf')), (('3; url="barf"asdf'), (3, 'barf')), (('3; UrL='), (3, ''))) for t in test: assert parse.parse_refresh(t[0]) == t[1] def test_regex_out_comments(): t = 'Hello <!-- foo --> world!' assert parse.regex_out_comments(t) == 'Hello world!' def test_regex_out_some_scripts(): t = '<script>foo</script> bar' assert parse.regex_out_some_scripts(t) == ' bar' def test_regex_out_all_script(): t = '<script>foo</script> bar <script type="baz">barf</script> ' assert parse.regex_out_all_scripts(t) == ' bar ' ``` #### File: tests/unit/test_seeds.py ```python import cocrawler.seeds as seeds def test_special_seed_handling(): specialsh = seeds.special_seed_handling assert specialsh('foo') == 'http://foo' assert specialsh('//foo/') == 'http://foo/' assert specialsh('https://foo') == 'https://foo' #assert specialsh('mailto:foo') == 'mailto:foo' ``` #### File: tests/warc/warc-diff.py ```python import sys import difflib f1 = sys.argv[1] f2 = sys.argv[2] with open(f1, 'r') as fd: contents1 = fd.read() with open(f2, 'r') as fd: contents2 = fd.read() def munge(s): ''' Remove things known to differ in WARC files: uuids WARC-Date: headers WARC-Warcinfo-ID headers ''' out = '' for line in s.split('\n'): if line.startswith('WARC-Date:'): line = 'WARC-Date:' elif line.startswith('WARC-Warcinfo-ID:'): line = 'WARC-Warcinfo-ID:' elif ':uuid:' in line: line, _, _ = line.partition(':uuid:') elif line.startswith('software:'): continue out += line + '\n' return out m1 = munge(contents1) m2 = munge(contents2) if m1 == m2: sys.exit(0) print('{} and {} differ'.format(f1, f2)) for line in difflib.unified_diff(m1.splitlines(), m2.splitlines(), fromfile=f1, tofile=f2): print(line) sys.exit(1) ```
{ "source": "joye1503/colorama", "score": 3 }
#### File: colorama/demos/demo08.py ```python from __future__ import print_function import fixpath from colorama import colorama_text, Fore def main(): """automatically reset stdout""" with colorama_text(): print(Fore.GREEN + 'text is green') print(Fore.RESET + 'text is back to normal') print('text is back to stdout') if __name__ == '__main__': main() ```
{ "source": "joye1503/Distributed-Computing-Scripts", "score": 2 }
#### File: joye1503/Distributed-Computing-Scripts/primenet.py ```python from __future__ import division, print_function import subprocess from random import getrandbits from collections import namedtuple import sys import os.path import re import time import optparse from hashlib import sha256 import json import platform import logging try: import requests except ImportError: print("Installing requests as dependency") subprocess.check_output("pip install requests", shell=True) print("The Requests library has been installed. Please run the program again") sys.exit(0) try: # Python3 from urllib.parse import urlencode from requests.exceptions import ConnectionError, HTTPError except ImportError: # Python2 from urllib import urlencode from urllib2 import URLError as ConnectionError from urllib2 import HTTPError try: from configparser import ConfigParser, Error as ConfigParserError except ImportError: from ConfigParser import ConfigParser, Error as ConfigParserError # ver. < 3.0 if sys.version_info[:2] >= (3, 7): # If is OK to use dict in 3.7+ because insertion order is guaranteed to be preserved # Since it is also faster, it is better to use raw dict() OrderedDict = dict else: try: from collections import OrderedDict except ImportError: # For python2.6 and before which don't have OrderedDict try: from ordereddict import OrderedDict except ImportError: # Tests will not work correctly but it doesn't affect the functionnality OrderedDict = dict s = requests.Session() # session that maintains our cookies # [***] <NAME>'s functions # get assignment def ga(guid): args = primenet_v5_bargs.copy() args["t"] = "ga" # transaction type args["g"] = guid args["c"] = options.cpu args["a"] = "" return args # register assignment def ra(n): '''Note: this function is not used''' args = primenet_v5_bargs.copy() args["t"] = "ra" args["g"] = get_guid(config) args["c"] = options.cpu args["b"] = 2 args["n"] = n args["w"] = options.worktype return args # unreserve assignment def au(k): args = primenet_v5_bargs.copy() args["t"] = "au" args["g"] = get_guid(config) args["k"] = k return args # TODO -- have people set their own program options for commented out portions def program_options(guid): args = primenet_v5_bargs.copy() args["t"] = "po" args["g"] = guid args["c"] = "" # no value updates all cpu threads with given worktype args["w"] = options.worktype if config.has_option("primenet", "first_time") is False \ or hasattr(opts_no_defaults, "worktype") else "" # args["nw"] = 1 # args["Priority"] = 1 args["DaysOfWork"] = options.days_work if config.has_option("primenet", "first_time") is False \ or hasattr(opts_no_defaults, "days_work") else "" # args["DayMemory"] = 8 # args["NightMemory"] = 8 # args["DayStartTime"] = 0 # args["NightStartTime"] = 0 # args["RunOnBattery"] = 1 result = send_request(guid, args) config_updated = False if result is None or int(result["pnErrorResult"]) != 0: parser.error("Error while setting program options on mersenne.org") if "w" in result: config.set("primenet", "worktype", result["w"]) config_updated = True if "DaysOfWork" in result: config.set("primenet", "days_work", result["DaysOfWork"]) config_updated = True if config.has_option("primenet", "first_time") is False: config.set("primenet", "first_time", "false") config_updated = True if "w" in result or "DaysOfWork" in result: merge_config_and_options(config, options) if config_updated: config_write(config) def unreserve_all(guid): if guid is None: debug_print("Cannot unreserve, the registration is not done", file=sys.stderr) w = readonly_list_file(workfile) tasks = greplike(workpattern, w) for task in tasks: assignment = get_progress_assignment(task) args = au(assignment.id) result = send_request(guid, args) if result is None or int(result["pnErrorResult"]) != 0: debug_print("ERROR while releasing assignment on mersenne.org: assignment_id={0}".format( assignment.id), file=sys.stderr) # TODO: Delete task from workfile def return_code(result, aid): '''Check if the return code is not OKAY and do something about it @param result - return from send_request() @param aid - ? ''' rc = int(result["pnErrorResult"]) if rc == primenet_api.ERROR_OK: debug_print( "Result correctly send to server: assignment_id={0}".format(aid)) return True else: # non zero ERROR code debug_print("ERROR while submitting result on mersenne.org: assignment_id={0}".format( aid), file=sys.stderr) if rc is primenet_api.ERROR_UNREGISTERED_CPU: # should register again and retry debug_print( "ERROR UNREGISTERED CPU: Please remove guid line from local.ini, run with and retry", file=sys.stderr) return False elif rc is primenet_api.ERROR_INVALID_PARAMETER: debug_print( "INVALID PARAMETER: this is a bug in the script, please create an issue: https://github.com/tdulcet/Distributed-Computing-Scripts/issues", file=sys.stderr) return False else: # In all other error case, the submission must not be retried return True def get_cpu_signature(): output = "" if platform.system() == "Windows": output = subprocess.check_output('wmic cpu list brief').decode() elif platform.system() == "Darwin": os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin' command = "sysctl -n machdep.cpu.brand_string" output = subprocess.check_output(command).decode().strip() elif platform.system() == "Linux": with open('/proc/cpuinfo', 'r') as f1: all_info = f1.read() for line in all_info.split("\n"): if "model name" in line: output = re.sub(".*model name.*:", "", line, 1).lstrip() break return output def get_cpu_name(signature): '''Note: Not used''' search = re.search( r'\bPHENOM\b|\bAMD\b|\bATOM\b|\bCore 2\b|\bCore(TM)2\b|\bCORE(TM) i7\b|\bPentium(R) M\b|\bCore\b|\bIntel\b|\bUnknown\b|\bK5\b|\bK6\b', signature) return search.group(0) if search else "" cpu_signature = get_cpu_signature() cpu_brand = get_cpu_name(cpu_signature) # END Daniel's Functions primenet_v5_burl = "http://v5.mersenne.org/v5server/?" PRIMENET_TRANSACTION_API_VERSION = 0.95 VERSION = 19 primenet_v5_bargs = OrderedDict( (("px", "GIMPS"), ("v", PRIMENET_TRANSACTION_API_VERSION))) primenet_baseurl = "https://www.mersenne.org/" primenet_login = False class primenet_api: ERROR_OK = 0 ERROR_SERVER_BUSY = 3 ERROR_INVALID_VERSION = 4 ERROR_INVALID_TRANSACTION = 5 # Returned for length, type, or character invalidations. ERROR_INVALID_PARAMETER = 7 ERROR_ACCESS_DENIED = 9 ERROR_DATABASE_CORRUPT = 11 ERROR_DATABASE_FULL_OR_BROKEN = 13 # Account related errors: ERROR_INVALID_USER = 21 # Computer cpu/software info related errors: ERROR_UNREGISTERED_CPU = 30 ERROR_OBSOLETE_CLIENT = 31 ERROR_STALE_CPU_INFO = 32 ERROR_CPU_IDENTITY_MISMATCH = 33 ERROR_CPU_CONFIGURATION_MISMATCH = 34 # Work assignment related errors: ERROR_NO_ASSIGNMENT = 40 ERROR_INVALID_ASSIGNMENT_KEY = 43 ERROR_INVALID_ASSIGNMENT_TYPE = 44 ERROR_INVALID_RESULT_TYPE = 45 ERROR_INVALID_WORK_TYPE = 46 ERROR_WORK_NO_LONGER_NEEDED = 47 PRIMENET_AR_NO_RESULT = 0 # No result, just sending done msg PRIMENET_AR_TF_FACTOR = 1 # Trial factoring, factor found PRIMENET_AR_P1_FACTOR = 2 # P-1, factor found PRIMENET_AR_ECM_FACTOR = 3 # ECM, factor found PRIMENET_AR_TF_NOFACTOR = 4 # Trial Factoring no factor found PRIMENET_AR_P1_NOFACTOR = 5 # P-1 Factoring no factor found PRIMENET_AR_ECM_NOFACTOR = 6 # ECM Factoring no factor found PRIMENET_AR_LL_RESULT = 100 # LL result, not prime PRIMENET_AR_LL_PRIME = 101 # LL result, Mersenne prime PRIMENET_AR_PRP_RESULT = 150 # PRP result, not prime PRIMENET_AR_PRP_PRIME = 151 # PRP result, probably prime # Teal's addition errors = {primenet_api.ERROR_SERVER_BUSY: "Server busy", primenet_api.ERROR_INVALID_VERSION: "Invalid version", primenet_api.ERROR_INVALID_TRANSACTION: "Invalid transaction", primenet_api.ERROR_INVALID_PARAMETER: "Invalid parameter", primenet_api.ERROR_ACCESS_DENIED: "Access denied", primenet_api.ERROR_DATABASE_CORRUPT: "Server database malfunction", primenet_api.ERROR_DATABASE_FULL_OR_BROKEN: "Server database full or broken", primenet_api.ERROR_INVALID_USER: "Invalid user", primenet_api.ERROR_UNREGISTERED_CPU: "CPU not registered", primenet_api.ERROR_OBSOLETE_CLIENT: "Obsolete client, please upgrade", primenet_api.ERROR_STALE_CPU_INFO: "Stale cpu info", primenet_api.ERROR_CPU_IDENTITY_MISMATCH: "CPU identity mismatch", primenet_api.ERROR_CPU_CONFIGURATION_MISMATCH: "CPU configuration mismatch", primenet_api.ERROR_NO_ASSIGNMENT: "No assignment", primenet_api.ERROR_INVALID_ASSIGNMENT_KEY: "Invalid assignment key", primenet_api.ERROR_INVALID_ASSIGNMENT_TYPE: "Invalid assignment type", primenet_api.ERROR_INVALID_RESULT_TYPE: "Invalid result type"} def debug_print(text, file=sys.stdout): if options.debug or file == sys.stderr: caller_name = sys._getframe(1).f_code.co_name if caller_name == '<module>': caller_name = 'main loop' caller_string = caller_name + ": " print(progname + ": " + caller_string + " " + time.strftime("%Y-%m-%d %H:%M") + " \t" + str(text), file=file) file.flush() def greplike(pattern, lines): output = [] for line in lines: s = pattern.search(line) if s: output.append(s.group(0)) return output def num_to_fetch(line, targetsize): num_existing = len(line) num_needed = targetsize - num_existing return max(num_needed, 0) def readonly_list_file(filename, mode="r"): # Used when there is no intention to write the file back, so don't # check or write lockfiles. Also returns a single string, no list. try: with open(filename, mode=mode) as File: contents = File.readlines() return [x.rstrip() for x in contents] except (IOError, OSError): return [] def write_list_file(filename, line, mode="w"): # A "null append" is meaningful, as we can call this to clear the # lockfile. In this case the main file need not be touched. if not ("a" in mode and len(line) == 0): newline = b'\n' if 'b' in mode else '\n' content = newline.join(line) + newline with open(filename, mode) as File: File.write(content) def primenet_fetch(num_to_get): if not options.username: return [] # As of early 2018, here is the full list of assignment-type codes supported by the Primenet server; Mlucas # v18 (and thus this script) supports only the subset of these indicated by an asterisk in the left column. # Supported assignment types may be specified via either their PrimeNet number code or the listed Mnemonic: # Worktype: # Code Mnemonic Description # ---- ----------------- ----------------------- # 0 Whatever makes the most sense # 1 Trial factoring to low limits # 2 Trial factoring # 4 P-1 factoring # 5 ECM for first factor on Mersenne numbers # 6 ECM on Fermat numbers # 8 ECM on mersenne cofactors # *100 SmallestAvail Smallest available first-time tests # *101 DoubleCheck Double-checking # *102 WorldRecord World record primality tests # *104 100Mdigit 100M digit number to LL test (not recommended) # *150 SmallestAvailPRP First time PRP tests (Gerbicz) # *151 DoubleCheckPRP Doublecheck PRP tests (Gerbicz) # *152 WorldRecordPRP World record sized numbers to PRP test (Gerbicz) # *153 100MdigitPRP 100M digit number to PRP test (Gerbicz) # 160 PRP on Mersenne cofactors # 161 PRP double-checks on Mersenne cofactors # Convert mnemonic-form worktypes to corresponding numeric value, check worktype value vs supported ones: option_dict = {"SmallestAvail": "100", "DoubleCheck": "101", "WorldRecord": "102", "100Mdigit": "104", "SmallestAvailPRP": "150", "DoubleCheckPRP": "151", "WorldRecordPRP": "152", "100MdigitPRP": "153"} if options.worktype in option_dict: # this and the above line of code enables us to use words or numbers on the cmdline options.worktype = option_dict[options.worktype] supported = set(['100', '101', '102', '104', '150', '151', '152', '153'] ) if program == "MLucas" else set(['100', '101', '102', '104']) if options.worktype not in supported: debug_print("Unsupported/unrecognized worktype = " + options.worktype + " for " + program) return [] try: # Get assignment (Loarer's way) if options.password: assignment = OrderedDict(( ("cores", "1"), ("num_to_get", num_to_get), ("pref", options.worktype), ("exp_lo", ""), ("exp_hi", ""), ("B1", "Get Assignments") )) openurl = primenet_baseurl + "manual_assignment/?" debug_print("Fetching work via URL = " + openurl + urlencode(assignment)) r = s.post(openurl, data=assignment) return greplike(workpattern, [line.decode('utf-8', 'replace') for line in r.iter_lines()]) # Get assignment using V5 API else: guid = get_guid(config) assignment = ga(guid) # get assignment debug_print("Fetching work via V5 Primenet = " + primenet_v5_burl + urlencode(assignment)) tests = [] for _ in range(num_to_get): r = send_request(guid, assignment) if r is None or int(r["pnErrorResult"]) != 0: debug_print( "ERROR while requesting an assignment on mersenne.org", file=sys.stderr) break if r['w'] not in supported: debug_print("ERROR: Returned assignment from server is not a supported worktype for " + program + ".", file=sys.stderr) return [] # if options.worktype == LL if r['w'] in set(['100', '102', '104']): tests.append("Test="+",".join([r[i] for i in ['k', 'n', 'sf', 'p1']])) # if options.worktype == DC elif r['w'] in set(['101']): tests.append("DoubleCheck="+",".join([r[i] for i in ['k', 'n', 'sf', 'p1']])) # if PRP type testing, first time elif r['w'] in set(['150', '152', '153']): tests.append("PRP="+",".join([r[i] for i in ['k', 'b', 'n', 'c', 'sf', 'saved']])) # if PRP-DC (probable-primality double-check) testing elif r['w'] in set(['151']): tests.append("PRP="+",".join([r[i] for i in ['k', 'b', 'n', 'c', 'sf', 'saved', 'base', 'rt']])) return tests except ConnectionError: debug_print("URL open error at primenet_fetch") return [] def get_assignment(progress): w = readonly_list_file(workfile) tasks = greplike(workpattern, w) (percent, time_left) = None, None if progress is not None and type(progress) == tuple and len(progress) == 2: (percent, time_left) = progress # unpack update_progress output num_cache = int(options.num_cache) + 1 if time_left is not None and time_left <= options.days_work*24*3600: # time_left and percent increase are exclusive (don't want to do += 2) num_cache += 1 debug_print("Time_left is {0} and smaller than limit ({1}), so num_cache is increased by one to {2}".format( time_left, options.days_work*24*3600, num_cache)) num_to_get = num_to_fetch(tasks, num_cache) if num_to_get < 1: debug_print(workfile + " already has " + str(len(tasks)) + " >= " + str(num_cache) + " entries, not getting new work") return 0 debug_print("Fetching " + str(num_to_get) + " assignments") new_tasks = primenet_fetch(num_to_get) num_fetched = len(new_tasks) if num_fetched > 0: debug_print("Fetched {0} assignments:".format(num_fetched)) for new_task in new_tasks: debug_print("{0}".format(new_task)) write_list_file(workfile, new_tasks, "a") if num_fetched < num_to_get: debug_print("Error: Failed to obtain requested number of new assignments, " + str(num_to_get) + " requested, " + str(num_fetched) + " successfully retrieved") return num_fetched resultpattern = re.compile("[Pp]rogram|CUDALucas") def mersenne_find(line, complete=True): # Pre-v19 old-style HRF-formatted result used "Program:..."; starting w/v19 JSON-formatted result uses "program", return resultpattern.search(line) try: from statistics import median_low except ImportError: def median_low(mylist): sorts = sorted(mylist) length = len(sorts) return sorts[(length-1)//2] def parse_stat_file(p): statfile = 'p' + str(p) + '.stat' if os.path.exists(statfile) is False: print("ERROR: stat file does not exist") return 0, None w = readonly_list_file(statfile) # appended line by line, no lock needed found = 0 regex = re.compile("Iter# = (.+?) .*?(\d+\.\d+) (m?sec)/iter") list_usec_per_iter = [] # get the 5 most recent Iter line for line in reversed(w): res = regex.search(line) if res: found += 1 # keep the last iteration to compute the percent of progress if found == 1: iteration = int(res.group(1)) usec_per_iter = float(res.group(2)) unit = res.group(3) if unit == "sec": usec_per_iter *= 1000 list_usec_per_iter.append(usec_per_iter) if found == 5: break if found == 0: return 0, None # iteration is 0, but don't know the estimated speed yet # take the media of the last grepped lines usec_per_iter = median_low(list_usec_per_iter) return iteration, usec_per_iter def parse_v5_resp(r): ans = dict() for line in r.splitlines(): if line == "==END==": break option, _, value = line.partition("=") ans[option] = value return ans def send_request(guid, args): args["g"] = guid # to mimic mprime, it is necessary to add safe='"{}:,' argument to urlencode, in # particular to encode JSON in result submission. But safe is not supported by python2... url_args = urlencode(args) url_args += "&ss=19191919&sh=ABCDABCDABCDABCDABCDABCDABCDABCD" try: r = requests.get(primenet_v5_burl+url_args) result = parse_v5_resp(r.text) rc = int(result["pnErrorResult"]) if rc: if rc in errors: resmsg = errors[rc] else: resmsg = "Unknown error code" debug_print("PrimeNet error " + str(rc) + ": " + resmsg, file=sys.stderr) debug_print(result["pnErrorDetail"], file=sys.stderr) else: if result["pnErrorDetail"] != "SUCCESS": debug_print("PrimeNet success code with additional info:") debug_print(result["pnErrorDetail"]) except HTTPError as e: debug_print("ERROR receiving answer to request: " + str(primenet_v5_burl+url_args), file=sys.stderr) debug_print(e, file=sys.stderr) return None except ConnectionError as e: debug_print("ERROR connecting to server for request: " + str(primenet_v5_burl+url_args), file=sys.stderr) debug_print(e, file=sys.stderr) return None return result def create_new_guid(): guid = hex(getrandbits(128)) if guid[:2] == '0x': guid = guid[2:] # remove the 0x prefix if guid[-1] == 'L': guid = guid[:-1] # remove trailling 'L' in python2 # add missing 0 to the beginning" guid = (32-len(guid))*"0" + guid return guid def register_instance(guid): # register the instance to server, guid is the instance identifier if options.username is None or options.hostname is None: parser.error( "To register the instance, --username and --hostname are required") hardware_id = sha256(options.cpu_model.encode( "utf-8")).hexdigest()[:32] # similar as mprime args = primenet_v5_bargs.copy() args["t"] = "uc" # update compute command args["a"] = platform.system() + ('64' if platform.machine().endswith('64') else '') + ",Mlucas,v" + str(VERSION) if config.has_option("primenet", "sw_version"): args["a"] = config.get("primenet", "sw_version") args["wg"] = "" # only filled on Windows by mprime args["hd"] = hardware_id # 32 hex char (128 bits) args["c"] = options.cpu_model[:64] # CPU model (len between 8 and 64) args["f"] = options.features[:64] # CPU option (like asimd, max len 64) args["L1"] = options.L1 # L1 cache size in KBytes args["L2"] = options.L2 # L2 cache size in KBytes # if smaller or equal to 256, # server refuses to gives LL assignment args["np"] = options.np # number of cores args["hp"] = options.hp # number of hyperthreading cores args["m"] = options.memory # number of megabytes of physical memory args["s"] = options.frequency # CPU frequency args["h"] = 24 # pretend to run 24h/day args["r"] = 0 # pretend to run at 100% args["u"] = options.username # args["cn"] = options.hostname[:20] # truncate to 20 char max if guid is None: guid = create_new_guid() result = send_request(guid, args) if result is None or int(result["pnErrorResult"]) != 0: parser.error("Error while registering on mersenne.org") # Save program options in case they are changed by the PrimeNet server. config.set("primenet", "username", result["u"]) config.set("primenet", "name", result["un"]) config.set("primenet", "hostname", result["cn"]) merge_config_and_options(config, options) config_write(config, guid=guid) program_options(guid) print("GUID {guid} correctly registered with the following features:".format( guid=guid)) print("Username: {0}".format(options.username)) print("Computer name: {0}".format(options.hostname)) print("CPU model: {0}".format(options.cpu_model)) print("CPU features: {0}".format(options.features)) print("CPU L1 Cache size: {0} KIB".format(options.L1)) print("CPU L2 Cache size: {0} KiB".format(options.L2)) print("CPU cores: {0}".format(options.np)) print("CPU threads per core: {0}".format(options.hp)) print("CPU frequency: {0} MHz".format(options.frequency)) print("Total RAM: {0} MiB".format(options.memory)) print(u"If you want to change the value, please edit the โ€œ" + options.localfile + u"โ€ file") print("You can see the result in this page:") print("https://www.mersenne.org/editcpu/?g={guid}".format(guid=guid)) return def config_read(): config = ConfigParser(dict_type=OrderedDict) try: config.read([localfile]) except ConfigParserError as e: debug_print("ERROR reading {0} file:".format( localfile), file=sys.stderr) debug_print(e, file=sys.stderr) if not config.has_section("primenet"): # Create the section to avoid having to test for it later config.add_section("primenet") return config def get_guid(config): try: return config.get("primenet", "guid") except ConfigParserError: return None def config_write(config, guid=None): # generate a new local.ini file if guid is not None: # update the guid if necessary config.set("primenet", "guid", guid) with open(localfile, "w") as configfile: config.write(configfile) def merge_config_and_options(config, options): # getattr and setattr allow access to the options.xxxx values by name # which allow to copy all of them programmatically instead of having # one line per attribute. Only the attr_to_copy list need to be updated # when adding an option you want to copy from argument options to local.ini config. attr_to_copy = ["workfile", "resultsfile", "username", "password", "worktype", "num_cache", "days_work", "hostname", "cpu_model", "features", "frequency", "memory", "L1", "L2", "np", "hp", "gpu"] updated = False for attr in attr_to_copy: # if "attr" has its default value in options, copy it from config attr_val = getattr(options, attr) if not hasattr(opts_no_defaults, attr) \ and config.has_option("primenet", attr): # If no option is given and the option exists in local.ini, take it from local.ini new_val = config.get("primenet", attr) # config file values are always str() # they need to be converted to the expected type from options if attr_val is not None: new_val = type(attr_val)(new_val) setattr(options, attr, new_val) elif attr_val is not None and (not config.has_option("primenet", attr) or config.get("primenet", attr) != str(attr_val)): # If an option is given (even default value) and it is not already # identical in local.ini, update local.ini debug_print(u"update โ€œ" + options.localfile + u"โ€ with {0}={1}".format(attr, attr_val)) config.set("primenet", attr, str(attr_val)) updated = True global localfile global workfile global resultsfile localfile = os.path.join(workdir, options.localfile) workfile = os.path.join(workdir, options.workfile) resultsfile = os.path.join(workdir, options.resultsfile) return updated Assignment = namedtuple('Assignment', "id p is_prp iteration usec_per_iter") def update_progress(): w = readonly_list_file(workfile) tasks = greplike(workpattern, w) if not len(tasks): return # don't update if no worktodo config_updated = False # Treat the first assignment. Only this one is used to save the usec_per_iter # The idea is that the first assignment is having a .stat file with correct values # Most of the time, a later assignment would not have a .stat file to obtain information, # but if it has, it may come from an other computer if the user moved the files, and so # it doesn't have revelant values for speed estimation. # Using usec_per_iter from one p to another is a good estimation if both p are close enougth # if there is big gap, it will be other or under estimated. # Any idea for a better estimation of assignment duration when only p and type (LL or PRP) is known ? assignment = get_progress_assignment(tasks[0]) usec_per_iter = assignment.usec_per_iter if usec_per_iter is not None: config.set("primenet", "usec_per_iter", "{0:.2f}".format(usec_per_iter)) config_updated = True elif config.has_option("primenet", "usec_per_iter"): # If not speed available, get it from the local.ini file usec_per_iter = float(config.get("primenet", "usec_per_iter")) percent, time_left = compute_progress( assignment.p, assignment.iteration, usec_per_iter) debug_print("p:{0} is {1:.2f}% done".format(assignment.p, percent)) if time_left is None: debug_print("Finish cannot be estimated") else: debug_print("Finish estimated in {0:.1f} days (used {1:.1f} msec/iter estimation)".format( time_left/3600/24, usec_per_iter)) send_progress(assignment.id, assignment.is_prp, percent, time_left) # Do the other assignment accumulating the time_lefts cur_time_left = time_left for task in tasks[1:]: assignment = get_progress_assignment(task) percent, time_left = compute_progress( assignment.p, assignment.iteration, usec_per_iter) debug_print("p:{0} is {1:.2f}% done".format(assignment.p, percent)) if time_left is None: debug_print("Finish cannot be estimated") else: cur_time_left += time_left debug_print("Finish estimated in {0:.1f} days (used {1:.1f} msec/iter estimation)".format( cur_time_left/3600/24, usec_per_iter)) send_progress(assignment.id, assignment.is_prp, percent, cur_time_left) if config_updated: config_write(config) return percent, cur_time_left def get_progress_assignment(task): ''' Ex: Test=197ED240A7A41EC575CB408F32DDA661,57600769,74 ''' found = workpattern.search(task) print(task) if not found: debug_print("ERROR: Unable to extract valid PrimeNet assignment ID from entry in " + workfile + ": " + str(task[0]), file=sys.stderr) return assignment_id = found.group(2) # e.g., "197ED240A7A41EC575CB408F32DDA661" is_prp = found.group(1) == "PRP" # e.g., "Test" debug_print("type = {0}, assignment_id = {1}".format( found.group(1), assignment_id)) # e.g., "57600769", "197ED240A7A41EC575CB408F32DDA661" found = task.split(",") idx = 3 if is_prp else 1 if len(found) <= idx: debug_print("Unable to extract valid exponent substring from entry in " + workfile + ": " + str(task)) return None, None # Extract the subfield containing the exponent, whose position depends on the assignment type: p = int(found[idx]) if not options.gpu: iteration, usec_per_iter = parse_stat_file(p) else: iteration, usec_per_iter = parse_stat_file_cuda() return Assignment(assignment_id, p, is_prp, iteration, usec_per_iter) def parse_stat_file_cuda(): # CUDALucas only function # appended line by line, no lock needed if os.path.exists(options.gpu) == False: print("ERROR: GPU file does not exist") return 0, None w = readonly_list_file(options.gpu) found = 0 iter_regex = re.compile(r'\b\d{5,}\b') ms_per_regex = re.compile(r'\b\d+\.\d+\b') list_msec_per_iter = [] # get the 5 most recent Iter line for line in reversed(w): iter_res = re.findall(iter_regex, line) ms_res = re.findall(ms_per_regex, line) # regex matches, but not when cudalucas is continuing # if iter_res and ms_res and "Compatibility" not in line and "Continuing" not in line and "M(" not in line: if iter_res and ms_res: found += 1 # keep the last iteration to compute the percent of progress if found == 1: iteration = int(iter_res[1]) elif int(iter_res[1]) > iteration: break msec_per_iter = float(ms_res[1]) list_msec_per_iter.append(msec_per_iter) if found == 5: break if found == 0: return 0, None # iteration is 0, but don't know the estimated speed yet # take the media of the last grepped lines msec_per_iter = median_low(list_msec_per_iter) return iteration, msec_per_iter def compute_progress(p, iteration, usec_per_iter): percent = 100*float(iteration)/float(p) if usec_per_iter is None: return percent, None iteration_left = p - iteration time_left = int(usec_per_iter * iteration_left / 1000) return percent, time_left def send_progress(assignment_id, is_prp, percent, time_left, retry_count=0): guid = get_guid(config) if guid is None: debug_print("Cannot update, the registration is not done", file=sys.stderr) return if retry_count > 5: return # Assignment Progress fields: # g= the machine's GUID (32 chars, assigned by Primenet on 1st-contact from a given machine, stored in 'guid=' entry of local.ini file of rundir) # args = primenet_v5_bargs.copy() args["t"] = "ap" # update compute command # k= the assignment ID (32 chars, follows '=' in Primenet-geerated workfile entries) args["k"] = assignment_id # p= progress in %-done, 4-char format = xy.z args["p"] = "{0:.1f}".format(percent) # d= when the client is expected to check in again (in seconds ... ) args["d"] = options.timeout if options.timeout else 24*3600 # e= the ETA of completion in seconds, if unknown, just put 1 week args["e"] = time_left if time_left is not None else 7*24*3600 # c= the worker thread of the machine ... always sets = 0 for now, elaborate later if desired args["c"] = options.cpu # stage= LL in this case, although an LL test may be doing TF or P-1 work first so it's possible to be something besides LL if not is_prp: args["stage"] = "LL" retry = False result = send_request(guid, args) if result is None: debug_print("ERROR while updating on mersenne.org", file=sys.stderr) # Try again retry = True else: rc = int(result["pnErrorResult"]) if rc == primenet_api.ERROR_OK: debug_print("Update correctly sent to server") else: if rc == primenet_api.ERROR_STALE_CPU_INFO: debug_print("STALE CPU INFO ERROR: re-send computer update") register_instance(guid) retry = True elif rc == primenet_api.ERROR_UNREGISTERED_CPU: debug_print( "UNREGISTERED CPU ERROR: pick a new GUID and register again") register_instance(None) retry = True elif rc == primenet_api.ERROR_SERVER_BUSY: retry = True else: # TODO: treat more errors correctly in all send_request callers # primenet_api.ERROR_INVALID_ASSIGNMENT_KEY # primenet_api.ERROR_WORK_NO_LONGER_NEEDED # drop the assignment debug_print("ERROR while updating on mersenne.org", file=sys.stderr) if retry: return send_progress(assignment_id, is_prp, percent, time_left, retry_count+1) return def get_cuda_ar_object(sendline): # CUDALucas only function # sendline example: 'M( 108928711 )C, 0x810d83b6917d846c, offset = 106008371, n = 6272K, CUDALucas v2.06, AID: 02E4F2B14BB23E2E4B95FC138FC715A8' ar = {} # args example: ['M( 108928711 )C', '0x810d83b6917d846c', 'offset = 106008371', 'n = 6272K', 'CUDALucas v2.06', 'AID: 02E4F2B14BB23E2E4B95FC138FC715A8'] args = ([x.strip() for x in sendline.split(",")]) ar['aid'] = args[5][5:] ar['worktype'] = 'LL' # CUDAlucas only does LL tests # the else does not matter in Loarer's program ar['status'] = 'P' if int(args[1], 0) == 0 else 'R' ar['exponent'] = re.search(r'\d{5,}', args[0]).group(0) ar['res64'] = args[1][2:] ar['shift-count'] = args[2].strip("offset = ") ar['error-code'] = "00000000" ar['fft-length'] = str(int(args[3].strip("n = ").strip("K")) * 1000) return ar def submit_one_line(sendline): """Submit one line""" if not options.gpu: # MLucas try: ar = json.loads(sendline) is_json = True except json.decoder.JSONDecodeError: is_json = False else: # CUDALucas ar = get_cuda_ar_object(sendline) guid = get_guid(config) if guid is not None and ar is not None and (options.gpu or is_json): # If registered and the ar object was returned successfully, submit using the v5 API # The result will be attributed to the registered computer # If registered and the line is a JSON, submit using the v5 API # The result will be attributed to the registered computer sent = submit_one_line_v5(sendline, guid, ar) else: # The result will be attributed to "Manual testing" sent = submit_one_line_manually(sendline) return sent def announce_prime_to_user(exponent, worktype): for i in range(3): print('\a') time.sleep(.5) if worktype == 'LL': print("New Mersenne Prime!!!! M"+exponent+" is prime!") else: print("New Probable Prime!!!! "+exponent+" is a probable prime!") def get_result_type(ar): """Extract result type from JSON result""" if ar['worktype'] == 'LL': if ar['status'] == 'P': announce_prime_to_user(ar['exponent'], ar['worktype']) return primenet_api.PRIMENET_AR_LL_PRIME else: return primenet_api.PRIMENET_AR_LL_RESULT elif ar['worktype'].startswith('PRP'): if ar['status'] == 'P': announce_prime_to_user(ar['exponent'], ar['worktype']) return primenet_api.PRIMENET_AR_PRP_PRIME else: return primenet_api.PRIMENET_AR_PRP_RESULT else: raise ValueError( "This is a bug in primenet.py, Unsupported worktype {0}".format(ar['worktype'])) def submit_one_line_v5(sendline, guid, ar): """Submit one result line using V5 API, will be attributed to the computed identified by guid""" """Return False if the submission should be retried""" # JSON is required because assignment_id is necessary in that case # and it is not present in old output format. debug_print("Submitting using V5 API\n" + sendline) aid = ar['aid'] result_type = get_result_type(ar) args = primenet_v5_bargs.copy() args["t"] = "ar" # assignment result args["k"] = ar['aid'] if 'aid' in ar else 0 # assignment id args["m"] = sendline # message is the complete JSON string args["r"] = result_type # result type args["d"] = 1 # done: 0 for no closing is used for partial results args["n"] = ar['exponent'] if result_type in (primenet_api.PRIMENET_AR_LL_RESULT, primenet_api.PRIMENET_AR_LL_PRIME): if result_type == primenet_api.PRIMENET_AR_LL_RESULT: args["rd"] = ar['res64'] if 'shift-count' in ar: args['sc'] = ar['shift-count'] if 'error-code' in ar: args["ec"] = ar['error-code'] elif result_type in (primenet_api.PRIMENET_AR_PRP_RESULT, primenet_api.PRIMENET_AR_PRP_PRIME): args.update((("A", 1), ("b", 2), ("c", -1))) if result_type == primenet_api.PRIMENET_AR_PRP_RESULT: args["rd"] = ar['res64'] if 'error-code' in ar: args["ec"] = ar['error-code'] if 'known-factors' in ar: args['nkf'] = len(ar['known-factors']) args["base"] = ar['worktype'][4:] # worktype == PRP-base if 'residue-type' in ar: args["rt"] = ar['residue-type'] if 'shift-count' in ar: args['sc'] = ar['shift-count'] if 'errors' in ar: args['gbz'] = 1 args['fftlen'] = ar['fft-length'] result = send_request(guid, args) if result is None: debug_print("ERROR while submitting result on mersenne.org: assignment_id={0}".format( aid), file=sys.stderr) # if this happens, the submission can be retried # since no answer has been received from the server return False else: return return_code(result, aid) def submit_one_line_manually(sendline): """Submit results using manual testing, will be attributed to "Manual Testing" in mersenne.org""" debug_print("Submitting using manual results\n" + sendline) try: url = primenet_baseurl + "manual_result/default.php" r = s.post(url, data={"data": sendline}) res_str = r.text if "Error" in res_str: ibeg = res_str.find("Error") iend = res_str.find("</div>", ibeg) print("Submission failed: '{0}'".format(res_str[ibeg:iend])) elif "Accepted" in res_str: pass else: print("submit_work: Submission of results line '" + sendline + "' failed for reasons unknown - please try manual resubmission.") except ConnectionError: debug_print("URL open ERROR") return True # EWM: Append entire results_send rather than just sent to avoid resubmitting # bad results (e.g. previously-submitted duplicates) every time the script executes. def submit_work(): results_send = readonly_list_file(sentfile) # Only submit completed work, i.e. the exponent must not exist in worktodo file any more # appended line by line, no lock needed results = readonly_list_file(resultsfile) # EWM: Note that readonly_list_file does not need the file(s) to exist - nonexistent files simply yield 0-length rs-array entries. # remove nonsubmittable lines from list of possibles results = filter(mersenne_find, results) # if a line was previously submitted, discard results_send = [line for line in results if line not in results_send] # Only for new results, to be appended to results_sent sent = [] if len(results_send) == 0: debug_print("No complete results found to send.") return # EWM: Switch to one-result-line-at-a-time submission to support error-message-on-submit handling: for sendline in results_send: # case where password is entered (not needed in v5 API since we have a key) if options.password: is_sent = submit_one_line_manually(sendline) else: is_sent = submit_one_line(sendline) if is_sent: sent.append(sendline) write_list_file(sentfile, sent, "a") ####################################################################################################### # # Start main program here # ####################################################################################################### parser = optparse.OptionParser(version="%prog 1.0", description=u"""This program will automatically get assignments, report assignment results and optionally progress to PrimeNet for both the CUDALucas and Mlucas GIMPS programs. It also saves its configuration to a โ€œlocal.iniโ€ file, so it is only necessary to give most of the arguments the first time it is run. The first time it is run, if a password is NOT provided, it will register the current CUDALucas/Mlucas instance with PrimeNet (see below). Then, it will get assignments, report the results and progress, if registered, to PrimeNet on a โ€œtimeoutโ€ interval, or only once if timeout is 0. """ ) # options not saved to local.ini parser.add_option("-d", "--debug", action="count", dest="debug", default=False, help="Display debugging info") parser.add_option("-w", "--workdir", dest="workdir", default=".", help=u"Working directory with โ€œworktodo.iniโ€ and โ€œresults.txtโ€ from the GIMPS program, and โ€œlocal.iniโ€ from this program, Default: %default (current directory)") parser.add_option("-i", "--workfile", dest="workfile", default="worktodo.ini", help=u"WorkFile filename, Default: โ€œ%defaultโ€") parser.add_option("-r", "--resultsfile", dest="resultsfile", default="results.txt", help=u"ResultsFile filename, Default: โ€œ%defaultโ€") parser.add_option("-l", "--localfile", dest="localfile", default="local.ini", help=u"Local configuration file filename, Default: โ€œ%defaultโ€") # all other options are saved to local.ini parser.add_option("-u", "--username", dest="username", help="GIMPS/PrimeNet User ID. Create a GIMPS/PrimeNet account: https://www.mersenne.org/update/. If you do not want a PrimeNet account, you can use ANONYMOUS.") parser.add_option("-p", "--password", dest="password", help="GIMPS/PrimeNet Password. Only provide if you want to do manual testing and not report the progress (not recommend). This was the default behavior for old versions of this script.") # -t is reserved for timeout, instead use -T for assignment-type preference: parser.add_option("-T", "--worktype", dest="worktype", default="100", help="""Type of work, Default: %default, 100 (smallest available first-time LL), 101 (double-check LL), 102 (world-record-sized first-time LL), 104 (100M digit number to LL test - not recommended), 150 (smallest available first-time PRP), 151 (double-check PRP), 152 (world-record-sized first-time PRP), 153 (100M digit number to PRP test) """ ) # parser.add_option("-g", "--gpu", action="store_true", dest="gpu", default=False, parser.add_option("-g", "--gpu", dest="gpu", help="Get assignments for a GPU (CUDALucas) instead of the CPU (Mlucas). This flag takes as an argument the CUDALucas output filename.") parser.add_option("-c", "--cpu_num", dest="cpu", type="int", default=0, help="CPU core or GPU number to get assignments for, Default: %default") parser.add_option("-n", "--num_cache", dest="num_cache", type="int", default=0, help="Number of assignments to cache, Default: %default") parser.add_option("-L", "--days_work", dest="days_work", type="int", default=3, help="Days of work to queue, Default: %default days. Add one to num_cache when the time left for the current assignment is less then this number of days.") parser.add_option("-t", "--timeout", dest="timeout", type="int", default=60*60*6, help="Seconds to wait between network updates, Default: %default seconds (6 hours). Use 0 for a single update without looping.") parser.add_option("--unreserve_all", action="store_true", dest="unreserve_all", default=False, help="Unreserve all assignments and exit. Requires that the instance is registered with PrimeNet.") group = optparse.OptionGroup(parser, "Registering Options: sent to PrimeNet/GIMPS when registering. The progress will automatically be sent and the program can then be monitored on the GIMPS website CPUs page (https://www.mersenne.org/cpus/), just like with Prime95/MPrime. This also allows for the program to get much smaller Category 0 and 1 exponents, if it meets the other requirements (https://www.mersenne.org/thresholds/).") group.add_option("-H", "--hostname", dest="hostname", default=platform.node()[:20], help="Computer name, Default: %default") # TODO: add detection for most parameter, including automatic change of the hardware group.add_option("--cpu_model", dest="cpu_model", default=cpu_signature, help="Processor (CPU) model, Default: %default") group.add_option("--features", dest="features", default="", help="CPU features, Default: '%default'") group.add_option("--frequency", dest="frequency", type="int", default=1000, help="CPU frequency (MHz), Default: %default MHz") group.add_option("-m", "--memory", dest="memory", type="int", default=0, help="Total memory (RAM) (MiB), Default: %default MiB") group.add_option("--L1", dest="L1", type="int", default=8, help="L1 Cache size (KiB), Default: %default KiB") group.add_option("--L2", dest="L2", type="int", default=512, help="L2 Cache size (KiB), Default: %default KiB") group.add_option("--np", dest="np", type="int", default=1, help="Number of CPU Cores, Default: %default") group.add_option("--hp", dest="hp", type="int", default=0, help="Number of CPU threads per core (0 is unknown), Default: %default") parser.add_option_group(group) #(options, args) = parser.parse_args() #print(options) opts_no_defaults = optparse.Values() __, args = parser.parse_args(values=opts_no_defaults) options = optparse.Values(parser.get_default_values().__dict__) options._update_careful(opts_no_defaults.__dict__) progname = os.path.basename(sys.argv[0]) workdir = os.path.expanduser(options.workdir) localfile = os.path.join(workdir, options.localfile) workfile = os.path.join(workdir, options.workfile) resultsfile = os.path.join(workdir, options.resultsfile) # print(opts_no_defaults) # print(options) # A cumulative backup sentfile = os.path.join(workdir, "results_sent.txt") # Good refs re. Python regexp: https://www.geeksforgeeks.org/pattern-matching-python-regex/, https://www.python-course.eu/re.php # pre-v19 only handled LL-test assignments starting with either DoubleCheck or Test, followed by =, and ending with 3 ,number pairs: # # workpattern = r"(DoubleCheck|Test)=.*(,[0-9]+){3}" # # v19 we add PRP-test support - both first-time and DC of these start with PRP=, the DCs tack on 2 more ,number pairs representing # the PRP base to use and the PRP test-type (the latter is a bit complex to explain here). Sample of the 4 worktypes supported by v19: # # Test=7A30B8B6C0FC79C534A271D9561F7DCC,89459323,76,1 # DoubleCheck=92458E009609BD9E10577F83C2E9639C,50549549,73,1 # PRP=BC914675C81023F252E92CF034BEFF6C,1,2,96364649,-1,76,0 # PRP=51D650F0A3566D6C256B1679C178163E,1,2,81348457,-1,75,0,3,1 # # and the obvious regexp pattern-modification is # # workpattern = r"(DoubleCheck|Test|PRP)=.*(,[0-9]+){3}" # # Here is where we get to the kind of complication the late baseball-philosopher <NAME> captured via his aphorism, # "In theory, theory and practice are the same. In practice, they're different". Namely, while the above regexp pattern # should work on all 4 assignment patterns, since each has a string of at least 3 comma-separated nonnegative ints somewhere # between the 32-hexchar assignment ID and end of the line, said pattern failed on the 3rd of the above 4 assignments, # apparently because when the regexp is done via the 'greplike' below, the (,[0-9]+){3} part of the pattern gets implicitly # tiled to the end of the input line. Assignment # 3 above happens to have a negative number among the final 3, thus the # grep fails. This weird behavior is not reproducible running Python in console mode: # # >>> import re # >>> s1 = "DoubleCheck=92458E009609BD9E10577F83C2E9639C,50549549,73,1" # >>> s2 = "Test=7A30B8B6C0FC79C534A271D9561F7DCC,89459323,76,1" # >>> s3 = "PRP=BC914675C81023F252E92CF034BEFF6C,1,2,96364649,-1,76,0" # >>> s4 = "PRP=51D650F0A3566D6C256B1679C178163E,1,2,81348457,-1,75,0,3,1" # >>> print re.search(r"(DoubleCheck|Test|PRP)=.*(,[0-9]+){3}" , s1) # <_sre.SRE_Match object at 0x1004bd250> # >>> print re.search(r"(DoubleCheck|Test|PRP)=.*(,[0-9]+){3}" , s2) # <_sre.SRE_Match object at 0x1004bd250> # >>> print re.search(r"(DoubleCheck|Test|PRP)=.*(,[0-9]+){3}" , s3) # <_sre.SRE_Match object at 0x1004bd250>. # >> print re.search(r"(DoubleCheck|Test|PRP)=.*(,[0-9]+){3}" , s4) # <_sre.SRE_Match object at 0x1004bd250> # # Anyhow, based on that I modified the grep pattern to work around the weirdness, by appending .* to the pattern, thus # changing things to "look for 3 comma-separated nonnegative ints somewhere in the assignment, followed by anything", # also now to specifically look for a 32-hexchar assignment ID preceding such a triplet, and to allow whitespace around # the =. The latter bit is not needed based on current server assignment format, just a personal aesthetic bias of mine: # workpattern = re.compile( "(DoubleCheck|Test|PRP)\s*=\s*([0-9A-F]{32})(,[0-9]+){3}.*") # mersenne.org limit is about 4 KB; stay on the safe side sendlimit = 3000 # TODO: enforce this limit # If debug is requested # https://stackoverflow.com/questions/10588644/how-can-i-see-the-entire-http-request-thats-being-sent-by-my-python-application if options.debug > 1: try: import http.client as http_client except ImportError: # Python 2 import httplib as http_client http_client.HTTPConnection.debuglevel = options.debug # You must initialize logging, otherwise you'll not see debug output. logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True # load local.ini and update options config = config_read() config_updated = merge_config_and_options(config, options) # check options after merging so that if local.ini file is changed by hand, # values are also checked # TODO: check that input char are ascii or at least supported by the server if not (8 <= len(options.cpu_model) <= 64): parser.error("cpu_model must be between 8 and 64 characters") if options.hostname is not None and len(options.hostname) > 20: parser.error("hostname must be less than 21 characters") if options.features is not None and len(options.features) > 64: parser.error("features must be less than 64 characters") # write back local.ini if necessary if config_updated: debug_print("write " + options.localfile) config_write(config) # if guid already exist, recover it, this way, one can (re)register to change # the CPU model (changing instance name can only be done in the website) guid = get_guid(config) if options.username is None: parser.error("Username must be given") if options.unreserve_all: unreserve_all(guid) sys.exit(0) program = "CUDALucas" if options.gpu else "MLucas" while True: # Carry on with Loarer's style of primenet try: if options.password: login_data = {"user_login": options.username, "user_password": <PASSWORD>} url = primenet_baseurl + "default.php" r = s.post(url, data=login_data) if options.username + "<br>logged in" not in r.text: primenet_login = False debug_print("ERROR: Login failed.") else: primenet_login = True # use the v5 API for registration and program options else: if guid is None: register_instance(guid) if options.timeout <= 0: break # worktype has changed, update worktype preference in program_options() # if config_updated: elif config_updated: program_options(guid) except HTTPError as e: debug_print("ERROR: Login failed.") # branch 1 or branch 2 above was taken if not options.password or (options.password and primenet_login): submit_work() progress = update_progress() got = get_assignment(progress) debug_print("Got: " + str(got)) if got > 0 and not options.password: debug_print( "Redo progress update to update the just obtain assignmment(s)") time.sleep(1) update_progress() if options.timeout <= 0: break try: time.sleep(options.timeout) except KeyboardInterrupt: break sys.exit(0) ```
{ "source": "joye1503/python-zstd", "score": 2 }
#### File: python-zstd/tests/test_compress.py ```python import os from tests.base import BaseTestZSTD, raise_skip class TestZSTD(BaseTestZSTD): def setUp(self): if os.getenv("LEGACY"): self.LEGACY = True if os.getenv("PYZSTD_LEGACY"): self.PYZSTD_LEGACY = True def test_compression_random(self): BaseTestZSTD.helper_compression_random(self) def test_compression_default_level(self): BaseTestZSTD.helper_compression_default_level(self) def test_compression_default_level_zero(self): BaseTestZSTD.helper_compression_default_level_zero(self) def test_compression_default_level_default(self): BaseTestZSTD.helper_compression_default_level_default(self) def test_compression_negative_level(self): BaseTestZSTD.helper_compression_negative_level(self) def test_compression_negative_level_notdefault(self): BaseTestZSTD.helper_compression_negative_level_notdefault(self) def test_compression_wrong_level(self): BaseTestZSTD.helper_compression_wrong_level(self) def test_compression_multi_thread_one(self): BaseTestZSTD.helper_compression_multi_thread_one(self) def test_compression_multi_thread_many(self): BaseTestZSTD.helper_compression_multi_thread_many(self) def test_compression_old_default_level(self): if not self.PYZSTD_LEGACY: return raise_skip("PyZstd was build without legacy functions support") BaseTestZSTD.helper_compression_old_default_level(self) def test_compression_level1(self): BaseTestZSTD.helper_compression_level1(self) def test_compression_level6(self): BaseTestZSTD.helper_compression_level6(self) def test_compression_level20(self): BaseTestZSTD.helper_compression_level20(self) def test_decompression_v036(self): if self.LEGACY and self.PYZSTD_LEGACY: BaseTestZSTD.helper_decompression_v036(self) else: return raise_skip("PyZstd was build without legacy zstd format and functions support") def test_decompression_v046(self): if self.LEGACY and self.PYZSTD_LEGACY: BaseTestZSTD.helper_decompression_v046(self) else: return raise_skip("PyZstd was build without legacy zstd format and functions support") if __name__ == '__main__': unittest.main() ```
{ "source": "JoyeBright/Deep-Learning", "score": 3 }
#### File: JoyeBright/Deep-Learning/MSE.py ```python import numpy as np import Dataset4 from sklearn.metrics import mean_squared_error def relu(x): out = max(0, x) return out def predict_with_network(inputd, weights): node0_input = (inputd * weights['node0']).sum() node0_output = relu(node0_input) node1_input = (inputd * weights['node1']).sum() node1_output = relu(node1_input) hidden_layer_values = np.array([node0_output, node1_output]) output = (hidden_layer_values * weights['output']).sum() return output # Create model_output_0 model_output_0 = [] # Create model_output_1 model_output_1 = [] for row in Dataset4.input_data: model_output_0.append(predict_with_network(row, Dataset4.weights)) model_output_1.append((predict_with_network(row, Dataset4.NewWeights))) # Calculate the Mean Squared Error for model_output_0: mse0 mse0 = mean_squared_error(model_output_0, Dataset4.ActualTargets) # Calculate the Mean Squared Error for model_output_1: mse1 mse1 = mean_squared_error(model_output_1, Dataset4.ActualTargets) print("Mean Squared Error with first series of weights: %f" % mse0) print("Mean Squared Error with new weights: %f" % mse1) ``` #### File: JoyeBright/Deep-Learning/Multi_Layer_NN.py ```python from Dataset2 import weights, input_data import numpy as np def relu(x): out = max(0,x) return out def predict_with_network(inputd): node00_input = (inputd * weights['node00']).sum() node00_output = relu(node00_input) node01_input = (inputd * weights['node01']).sum() node01_output = relu(node01_input) hidden_0_outputs = np.array([node00_output, node01_output]) node10_input = (hidden_0_outputs * weights['node10']).sum() node10_output = relu(node10_input) node11_input = (hidden_0_outputs * weights['node11']).sum() node11_output = relu(node11_input) hidden_1_outputs = np.array([node10_output, node11_output]) model_output = (hidden_1_outputs * weights['output']).sum() # This part of code has been added by me cause i think it would be better if output value came # negative consequently model output return zero instead of minus value model_output = relu(model_output) return model_output output = predict_with_network(input_data) print(output) ```
{ "source": "JoyeBright/nlp981", "score": 3 }
#### File: nlp981/Week3/TF-IDF.py ```python import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer import math pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # Given Corpus with different documents corpus = {1: 'i am student of computer engineering at the university of guilan', 2: 'i am studying natural language processing right now'} # Create a bag of words for each documents BoW = [] # Split each document for row in corpus: BoW.append(corpus[row].split(' ')) Num_document = row # use it for making sets # print(BoW) # print(Num_document) # Remove any duplicate words unique_Words = set(BoW[0]).union(set(BoW[1])) # print(uniqueWord) # Create Document-Word matrix # Sort unique words for better visualization unique_Words = sorted(unique_Words) # dict.fromkeys(x=keys, y=value) Doc1 = dict.fromkeys(unique_Words, 0) # Count word occurrence in Doc for word in BoW[0]: Doc1[word] += 1 Doc2 = dict.fromkeys(unique_Words, 0) for word in BoW[1]: Doc2[word] += 1 # print("Doc1:", Doc1) # print("Doc2:", Doc2) # document_word = pd.DataFrame([Doc1, Doc2]) # print(document_word) # Using stopwords is highly recommended but It depends on your tasks # Compute TF def tf_computation(document, bag_of_words): tf_doc = {} bow_count = len(bag_of_words) # print(bow_count) for w, count in document.items(): tf_doc[w] = float(count / bow_count) return tf_doc tfDoc1 = tf_computation(Doc1, BoW[0]) tfDoc2 = tf_computation(Doc2, BoW[1]) # print(tfDoc1) # print(tfDoc2) # Compute IDF def idf_computation(docs): n = len(docs) idf_dict = dict.fromkeys(docs[0].keys(), 0) for document in docs: for w, val in document.items(): if val > 0: idf_dict[w] += 1 for w, val in idf_dict.items(): idf_dict[w] = math.log(n/float(val)) return idf_dict idf_s = idf_computation([Doc1, Doc2]) # print(idf_s) def tf_idf_computation(tf, idfs): tf_idf = {} for w, val in tf.items(): tf_idf[w] = val * idfs[w] return tf_idf tf_idf_doc1 = tf_idf_computation(tfDoc1, idf_s) tf_idf_doc2 = tf_idf_computation(tfDoc2, idf_s) print(tf_idf_doc1) print(tf_idf_doc2) # Show in a data frame data_frame = pd.DataFrame([tf_idf_doc1, tf_idf_doc2]) print(data_frame.head()) # ................. TF-IDF implementation by Sklearn ................. corpus2 = ['i am student of computer engineering at the university of guilan', 'i am studying natural language processing right now'] vectorizer = TfidfVectorizer() x = vectorizer.fit_transform(corpus2) feature_names = vectorizer.get_feature_names() # print(x.shape) output = x.todense() output_list = output.tolist() output_df = pd.DataFrame(output_list, columns=feature_names) print(output_df.head()) ```
{ "source": "joyel24/Tidal-Media-Downloader", "score": 2 }
#### File: TIDALDL-PY/tidal_dl/__init__.py ```python import os import requests import prettytable import ssl import sys import getopt from aigpy.stringHelper import isNull from aigpy.pathHelper import mkdirs from aigpy.pipHelper import getLastVersion from aigpy.versionHelper import cmpVersion from tidal_dl.tidal import TidalAPI from tidal_dl.settings import Settings, UserSettings from tidal_dl.printf import Printf, VERSION from tidal_dl.download import start from tidal_dl.enum import AudioQuality, VideoQuality from tidal_dl.lang.language import getLang, setLang, initLang ssl._create_default_https_context = ssl._create_unverified_context API = TidalAPI() USER = UserSettings.read() CONF = Settings.read() TOKEN1, TOKEN2 = API.getToken() LANG = initLang(CONF.language) def login(username="", password=""): while True: if isNull(username) or isNull(password): print("---------------" + LANG.CHOICE_LOGIN + "-----------------") username = Printf.enter(LANG.PRINT_USERNAME) password = Printf.enter(LANG.PRINT_PASSWORD) msg, check = API.login(username, password, TOKEN1) if check == False: Printf.err(msg) username = "" password = "" continue api2 = TidalAPI() msg, check = api2.login(username, password, TOKEN2) break USER.username = username USER.password = password USER.userid = API.key.userId USER.countryCode = API.key.countryCode USER.sessionid1 = API.key.sessionId USER.sessionid2 = api2.key.sessionId UserSettings.save(USER) def setAccessToken(): while True: print("-------------AccessToken---------------") token = Printf.enter("accessToken('0' go back):") if token == '0': return msg, check = API.loginByAccessToken(token, USER.userid) if check == False: Printf.err(msg) continue break USER.assesstoken = token UserSettings.save(USER) def checkLogin(): if not isNull(USER.assesstoken): mag, check = API.loginByAccessToken(USER.assesstoken) if check == False: Printf.err(LANG.MSG_INVAILD_ACCESSTOKEN) USER.assesstoken = "" if not isNull(USER.sessionid1) and not API.isValidSessionID(USER.userid, USER.sessionid1): USER.sessionid1 = "" if not isNull(USER.sessionid2) and API.isValidSessionID(USER.userid, USER.sessionid2): USER.sessionid2 = "" if isNull(USER.sessionid1) or isNull(USER.sessionid2): login(USER.username, USER.password) def autoGetAccessToken(): array = API.tryGetAccessToken(USER.userid) if len(array) <= 0: return for item in array: msg, check = API.loginByAccessToken(item, USER.userid) if check == False: continue if item != USER.assesstoken: USER.assesstoken = item UserSettings.save(USER) Printf.info("Auto get accesstoken from tidal cache success!") return def changeSettings(): global LANG Printf.settings(CONF) choice = Printf.enter(LANG.CHANGE_START_SETTINGS) if choice == '0': return while True: choice = Printf.enter(LANG.CHANGE_DOWNLOAD_PATH) if choice == '0': choice = CONF.downloadPath elif not os.path.isdir(choice): if not mkdirs(choice): Printf.err(LANG.MSG_PATH_ERR) continue CONF.downloadPath = choice break while True: choice = Printf.enter(LANG.CHANGE_AUDIO_QUALITY) if choice != '1' and choice != '2' and choice != '3' and choice != '0': Printf.err(LANG.MSG_INPUT_ERR) continue if choice == '0': CONF.audioQuality = AudioQuality.Normal if choice == '1': CONF.audioQuality = AudioQuality.High if choice == '2': CONF.audioQuality = AudioQuality.HiFi if choice == '3': CONF.audioQuality = AudioQuality.Master break while True: choice = Printf.enter(LANG.CHANGE_VIDEO_QUALITY) if choice != '1' and choice != '2' and choice != '3' and choice != '0': Printf.err(LANG.MSG_INPUT_ERR) continue if choice == '0': CONF.videoQuality = VideoQuality.P1080 if choice == '1': CONF.videoQuality = VideoQuality.P720 if choice == '2': CONF.videoQuality = VideoQuality.P480 if choice == '3': CONF.videoQuality = VideoQuality.P360 break CONF.onlyM4a = Printf.enter(LANG.CHANGE_ONLYM4A) == '1' # CONF.addExplicitTag = Printf.enter(LANG.CHANGE_ADD_EXPLICIT_TAG) == '1' # CONF.addHyphen = Printf.enter(LANG.CHANGE_ADD_HYPHEN) == '1' # CONF.addYear = Printf.enter(LANG.CHANGE_ADD_YEAR) == '1' # CONF.useTrackNumber = Printf.enter(LANG.CHANGE_USE_TRACK_NUM) == '1' CONF.checkExist = Printf.enter(LANG.CHANGE_CHECK_EXIST) == '1' # CONF.artistBeforeTitle = Printf.enter(LANG.CHANGE_ARTIST_BEFORE_TITLE) == '1' CONF.includeEP = Printf.enter(LANG.CHANGE_INCLUDE_EP) == '1' # CONF.addAlbumIDBeforeFolder = Printf.enter(LANG.CHANGE_ALBUMID_BEFORE_FOLDER) == '1' CONF.saveCovers = Printf.enter(LANG.CHANGE_SAVE_COVERS) == '1' CONF.showProgress = Printf.enter(LANG.CHANGE_SHOW_PROGRESS) == '1' CONF.language = Printf.enter(LANG.CHANGE_LANGUAGE + "('0'-English,'1'-ไธญๆ–‡,'2'-Turkish,'3'-Italiano,'4'-Czech,'5'-Arabic,'6'-Russian,'7'-Filipino,'8'-Croatian,'9'-Spanish,'10'-Portuguese,'11'-Ukrainian,'12'-Vietnamese,'13'-French,'14'-German):") albumFolderFormat = Printf.enter(LANG.CHANGE_ALBUM_FOLDER_FORMAT) if albumFolderFormat == '0': albumFolderFormat = CONF.albumFolderFormat else: CONF.albumFolderFormat = albumFolderFormat trackFileFormat = Printf.enter(LANG.CHANGE_TRACK_FILE_FORMAT) if trackFileFormat == '0': trackFileFormat = CONF.trackFileFormat else: CONF.trackFileFormat = trackFileFormat LANG = setLang(CONF.language) Settings.save(CONF) def mainCommand(): try: opts, args = getopt.getopt(sys.argv[1:], "ho:l:v:u:p:a:q:r", ["help", "output=","link=","version","username","password","accessToken","quality","resolution"]) link = None for opt, val in opts: if opt in ('-h', '--help'): Printf.usage() return if opt in ('-v', '--version'): Printf.logo() return if opt in ('-l', '--link'): link = val if opt in ('-o', '--output'): CONF.downloadPath = val if opt in ('-u', '--username'): USER.username = val UserSettings.save(USER) if opt in ('-p', '--password'): USER.password = <PASSWORD> UserSettings.save(USER) if opt in ('-a', '--accessToken'): USER.assesstoken = val UserSettings.save(USER) if opt in ('-q', '--quality'): CONF.audioQuality = Settings.getAudioQuality(val) if opt in ('-r', '--resolution'): CONF.videoQuality = Settings.getVideoQuality(val) if link is None: Printf.err("Please enter the link(url/id/path)! Enter 'tidal-dl -h' for help!"); return if not mkdirs(CONF.downloadPath): Printf.err(LANG.MSG_PATH_ERR + CONF.downloadPath) return checkLogin() start(USER, CONF, link) return except getopt.GetoptError: Printf.err("Argv error! Enter 'tidal -h' for help!"); def main(): if len(sys.argv) > 1: mainCommand() return Printf.logo() Printf.settings(CONF) checkLogin() autoGetAccessToken() onlineVer = getLastVersion('tidal-dl') if not isNull(onlineVer): icmp = cmpVersion(onlineVer, VERSION) if icmp > 0: Printf.info(LANG.PRINT_LATEST_VERSION + ' ' + onlineVer) while True: Printf.choices() choice = Printf.enter(LANG.PRINT_ENTER_CHOICE) if choice == "0": return elif choice == "1": login() elif choice == "2": changeSettings() elif choice == "3": setAccessToken() else: start(USER, CONF, choice) if __name__ == "__main__": main() # test example # track 70973230 # video 155608351 # album 58138532 77803199 21993753 79151897 56288918 ```
{ "source": "JoyelManoj/youtube-dl", "score": 2 }
#### File: youtube_dl/extractor/openload.py ```python from __future__ import unicode_literals import json import os import random import re import subprocess import tempfile from .common import InfoExtractor from ..compat import ( compat_urlparse, compat_kwargs, ) from ..utils import ( check_executable, determine_ext, encodeArgument, ExtractorError, get_element_by_id, get_exe_version, is_outdated_version, std_headers, ) def cookie_to_dict(cookie): cookie_dict = { 'name': cookie.name, 'value': cookie.value, } if cookie.port_specified: cookie_dict['port'] = cookie.port if cookie.domain_specified: cookie_dict['domain'] = cookie.domain if cookie.path_specified: cookie_dict['path'] = cookie.path if cookie.expires is not None: cookie_dict['expires'] = cookie.expires if cookie.secure is not None: cookie_dict['secure'] = cookie.secure if cookie.discard is not None: cookie_dict['discard'] = cookie.discard try: if (cookie.has_nonstandard_attr('httpOnly') or cookie.has_nonstandard_attr('httponly') or cookie.has_nonstandard_attr('HttpOnly')): cookie_dict['httponly'] = True except TypeError: pass return cookie_dict def cookie_jar_to_list(cookie_jar): return [cookie_to_dict(cookie) for cookie in cookie_jar] class PhantomJSwrapper(object): """PhantomJS wrapper class This class is experimental. """ _TEMPLATE = r''' phantom.onError = function(msg, trace) {{ var msgStack = ['PHANTOM ERROR: ' + msg]; if(trace && trace.length) {{ msgStack.push('TRACE:'); trace.forEach(function(t) {{ msgStack.push(' -> ' + (t.file || t.sourceURL) + ': ' + t.line + (t.function ? ' (in function ' + t.function +')' : '')); }}); }} console.error(msgStack.join('\n')); phantom.exit(1); }}; var page = require('webpage').create(); var fs = require('fs'); var read = {{ mode: 'r', charset: 'utf-8' }}; var write = {{ mode: 'w', charset: 'utf-8' }}; JSON.parse(fs.read("{cookies}", read)).forEach(function(x) {{ phantom.addCookie(x); }}); page.settings.resourceTimeout = {timeout}; page.settings.userAgent = "{ua}"; page.onLoadStarted = function() {{ page.evaluate(function() {{ delete window._phantom; delete window.callPhantom; }}); }}; var saveAndExit = function() {{ fs.write("{html}", page.content, write); fs.write("{cookies}", JSON.stringify(phantom.cookies), write); phantom.exit(); }}; page.onLoadFinished = function(status) {{ if(page.url === "") {{ page.setContent(fs.read("{html}", read), "{url}"); }} else {{ {jscode} }} }}; page.open(""); ''' _TMP_FILE_NAMES = ['script', 'html', 'cookies'] @staticmethod def _version(): return get_exe_version('phantomjs', version_re=r'([0-9.]+)') def __init__(self, extractor, required_version=None, timeout=10000): self._TMP_FILES = {} self.exe = check_executable('phantomjs', ['-v']) if not self.exe: raise ExtractorError('PhantomJS executable not found in PATH, ' 'download it from http://phantomjs.org', expected=True) self.extractor = extractor if required_version: version = self._version() if is_outdated_version(version, required_version): self.extractor._downloader.report_warning( 'Your copy of PhantomJS is outdated, update it to version ' '%s or newer if you encounter any errors.' % required_version) self.options = { 'timeout': timeout, } for name in self._TMP_FILE_NAMES: tmp = tempfile.NamedTemporaryFile(delete=False) tmp.close() self._TMP_FILES[name] = tmp def __del__(self): for name in self._TMP_FILE_NAMES: try: os.remove(self._TMP_FILES[name].name) except (IOError, OSError, KeyError): pass def _save_cookies(self, url): cookies = cookie_jar_to_list(self.extractor._downloader.cookiejar) for cookie in cookies: if 'path' not in cookie: cookie['path'] = '/' if 'domain' not in cookie: cookie['domain'] = compat_urlparse.urlparse(url).netloc with open(self._TMP_FILES['cookies'].name, 'wb') as f: f.write(json.dumps(cookies).encode('utf-8')) def _load_cookies(self): with open(self._TMP_FILES['cookies'].name, 'rb') as f: cookies = json.loads(f.read().decode('utf-8')) for cookie in cookies: if cookie['httponly'] is True: cookie['rest'] = {'httpOnly': None} if 'expiry' in cookie: cookie['expire_time'] = cookie['expiry'] self.extractor._set_cookie(**compat_kwargs(cookie)) def get(self, url, html=None, video_id=None, note=None, note2='Executing JS on webpage', headers={}, jscode='saveAndExit();'): """ Downloads webpage (if needed) and executes JS Params: url: website url html: optional, html code of website video_id: video id note: optional, displayed when downloading webpage note2: optional, displayed when executing JS headers: custom http headers jscode: code to be executed when page is loaded Returns tuple with: * downloaded website (after JS execution) * anything you print with `console.log` (but not inside `page.execute`!) In most cases you don't need to add any `jscode`. It is executed in `page.onLoadFinished`. `saveAndExit();` is mandatory, use it instead of `phantom.exit()` It is possible to wait for some element on the webpage, for example: var check = function() { var elementFound = page.evaluate(function() { return document.querySelector('#b.done') !== null; }); if(elementFound) saveAndExit(); else window.setTimeout(check, 500); } page.evaluate(function(){ document.querySelector('#a').click(); }); check(); """ if 'saveAndExit();' not in jscode: raise ExtractorError('`saveAndExit();` not found in `jscode`') if not html: html = self.extractor._download_webpage(url, video_id, note=note, headers=headers) with open(self._TMP_FILES['html'].name, 'wb') as f: f.write(html.encode('utf-8')) self._save_cookies(url) replaces = self.options replaces['url'] = url user_agent = headers.get('User-Agent') or std_headers['User-Agent'] replaces['ua'] = user_agent.replace('"', '\\"') replaces['jscode'] = jscode for x in self._TMP_FILE_NAMES: replaces[x] = self._TMP_FILES[x].name.replace('\\', '\\\\').replace('"', '\\"') with open(self._TMP_FILES['script'].name, 'wb') as f: f.write(self._TEMPLATE.format(**replaces).encode('utf-8')) if video_id is None: self.extractor.to_screen('%s' % (note2,)) else: self.extractor.to_screen('%s: %s' % (video_id, note2)) p = subprocess.Popen([ self.exe, '--ssl-protocol=any', self._TMP_FILES['script'].name ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() if p.returncode != 0: raise ExtractorError( 'Executing JS failed\n:' + encodeArgument(err)) with open(self._TMP_FILES['html'].name, 'rb') as f: html = f.read().decode('utf-8') self._load_cookies() return (html, encodeArgument(out)) class OpenloadIE(InfoExtractor): _DOMAINS = r'(?:openload\.(?:co|io|link|pw)|oload\.(?:tv|stream|site|xyz|win|download|cloud|cc|icu|fun|club|info|press|pw|live|space|services)|oladblock\.(?:services|xyz|me)|openloed\.co)' _VALID_URL = r'''(?x) https?:// (?P<host> (?:www\.)? %s )/ (?:f|embed)/ (?P<id>[a-zA-Z0-9-_]+) ''' % _DOMAINS _EMBED_WORD = 'embed' _STREAM_WORD = 'f' _REDIR_WORD = 'stream' _URL_IDS = ('streamurl', 'streamuri', 'streamurj') _TESTS = [{ 'url': 'https://openload.co/f/kUEfGclsU9o', 'md5': 'bf1c059b004ebc7a256f89408e65c36e', 'info_dict': { 'id': 'kUEfGclsU9o', 'ext': 'mp4', 'title': 'skyrim_no-audio_1080.mp4', 'thumbnail': r're:^https?://.*\.jpg$', }, }, { 'url': 'https://openload.co/embed/rjC09fkPLYs', 'info_dict': { 'id': 'rjC09fkPLYs', 'ext': 'mp4', 'title': 'movie.mp4', 'thumbnail': r're:^https?://.*\.jpg$', 'subtitles': { 'en': [{ 'ext': 'vtt', }], }, }, 'params': { 'skip_download': True, # test subtitles only }, }, { 'url': 'https://openload.co/embed/kUEfGclsU9o/skyrim_no-audio_1080.mp4', 'only_matching': True, }, { 'url': 'https://openload.io/f/ZAn6oz-VZGE/', 'only_matching': True, }, { 'url': 'https://openload.co/f/_-ztPaZtMhM/', 'only_matching': True, }, { # unavailable via https://openload.co/f/Sxz5sADo82g/, different layout # for title and ext 'url': 'https://openload.co/embed/Sxz5sADo82g/', 'only_matching': True, }, { # unavailable via https://openload.co/embed/e-Ixz9ZR5L0/ but available # via https://openload.co/f/e-Ixz9ZR5L0/ 'url': 'https://openload.co/f/e-Ixz9ZR5L0/', 'only_matching': True, }, { 'url': 'https://oload.tv/embed/KnG-kKZdcfY/', 'only_matching': True, }, { 'url': 'http://www.openload.link/f/KnG-kKZdcfY', 'only_matching': True, }, { 'url': 'https://oload.stream/f/KnG-kKZdcfY', 'only_matching': True, }, { 'url': 'https://oload.xyz/f/WwRBpzW8Wtk', 'only_matching': True, }, { 'url': 'https://oload.win/f/kUEfGclsU9o', 'only_matching': True, }, { 'url': 'https://oload.download/f/kUEfGclsU9o', 'only_matching': True, }, { 'url': 'https://oload.cloud/f/4ZDnBXRWiB8', 'only_matching': True, }, { # Its title has not got its extension but url has it 'url': 'https://oload.download/f/N4Otkw39VCw/Tomb.Raider.2018.HDRip.XviD.AC3-EVO.avi.mp4', 'only_matching': True, }, { 'url': 'https://oload.cc/embed/5NEAbI2BDSk', 'only_matching': True, }, { 'url': 'https://oload.icu/f/-_i4y_F_Hs8', 'only_matching': True, }, { 'url': 'https://oload.fun/f/gb6G1H4sHXY', 'only_matching': True, }, { 'url': 'https://oload.club/f/Nr1L-aZ2dbQ', 'only_matching': True, }, { 'url': 'https://oload.info/f/5NEAbI2BDSk', 'only_matching': True, }, { 'url': 'https://openload.pw/f/WyKgK8s94N0', 'only_matching': True, }, { 'url': 'https://oload.pw/f/WyKgK8s94N0', 'only_matching': True, }, { 'url': 'https://oload.live/f/-Z58UZ-GR4M', 'only_matching': True, }, { 'url': 'https://oload.space/f/IY4eZSst3u8/', 'only_matching': True, }, { 'url': 'https://oload.services/embed/bs1NWj1dCag/', 'only_matching': True, }, { 'url': 'https://oload.press/embed/drTBl1aOTvk/', 'only_matching': True, }, { 'url': 'https://oladblock.services/f/b8NWEgkqNLI/', 'only_matching': True, }, { 'url': 'https://oladblock.xyz/f/b8NWEgkqNLI/', 'only_matching': True, }, { 'url': 'https://oladblock.me/f/b8NWEgkqNLI/', 'only_matching': True, }, { 'url': 'https://openloed.co/f/b8NWEgkqNLI/', 'only_matching': True, }] _USER_AGENT_TPL = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/%s Safari/537.36' _CHROME_VERSIONS = ( '74.0.3729.129', '76.0.3780.3', '76.0.3780.2', '74.0.3729.128', '76.0.3780.1', '76.0.3780.0', '75.0.3770.15', '74.0.3729.127', '74.0.3729.126', '76.0.3779.1', '76.0.3779.0', '75.0.3770.14', '74.0.3729.125', '76.0.3778.1', '76.0.3778.0', '75.0.3770.13', '74.0.3729.124', '74.0.3729.123', '73.0.3683.121', '76.0.3777.1', '76.0.3777.0', '75.0.3770.12', '74.0.3729.122', '76.0.3776.4', '75.0.3770.11', '74.0.3729.121', '76.0.3776.3', '76.0.3776.2', '73.0.3683.120', '74.0.3729.120', '74.0.3729.119', '74.0.3729.118', '76.0.3776.1', '76.0.3776.0', '76.0.3775.5', '75.0.3770.10', '74.0.3729.117', '76.0.3775.4', '76.0.3775.3', '74.0.3729.116', '75.0.3770.9', '76.0.3775.2', '76.0.3775.1', '76.0.3775.0', '75.0.3770.8', '74.0.3729.115', '74.0.3729.114', '76.0.3774.1', '76.0.3774.0', '75.0.3770.7', '74.0.3729.113', '74.0.3729.112', '74.0.3729.111', '76.0.3773.1', '76.0.3773.0', '75.0.3770.6', '74.0.3729.110', '74.0.3729.109', '76.0.3772.1', '76.0.3772.0', '75.0.3770.5', '74.0.3729.108', '74.0.3729.107', '76.0.3771.1', '76.0.3771.0', '75.0.3770.4', '74.0.3729.106', '74.0.3729.105', '75.0.3770.3', '74.0.3729.104', '74.0.3729.103', '74.0.3729.102', '75.0.3770.2', '74.0.3729.101', '75.0.3770.1', '75.0.3770.0', '74.0.3729.100', '75.0.3769.5', '75.0.3769.4', '74.0.3729.99', '75.0.3769.3', '75.0.3769.2', '75.0.3768.6', '74.0.3729.98', '75.0.3769.1', '75.0.3769.0', '74.0.3729.97', '73.0.3683.119', '73.0.3683.118', '74.0.3729.96', '75.0.3768.5', '75.0.3768.4', '75.0.3768.3', '75.0.3768.2', '74.0.3729.95', '74.0.3729.94', '75.0.3768.1', '75.0.3768.0', '74.0.3729.93', '74.0.3729.92', '73.0.3683.117', '74.0.3729.91', '75.0.3766.3', '74.0.3729.90', '75.0.3767.2', '75.0.3767.1', '75.0.3767.0', '74.0.3729.89', '73.0.3683.116', '75.0.3766.2', '74.0.3729.88', '75.0.3766.1', '75.0.3766.0', '74.0.3729.87', '73.0.3683.115', '74.0.3729.86', '75.0.3765.1', '75.0.3765.0', '74.0.3729.85', '73.0.3683.114', '74.0.3729.84', '75.0.3764.1', '75.0.3764.0', '74.0.3729.83', '73.0.3683.113', '75.0.3763.2', '75.0.3761.4', '74.0.3729.82', '75.0.3763.1', '75.0.3763.0', '74.0.3729.81', '73.0.3683.112', '75.0.3762.1', '75.0.3762.0', '74.0.3729.80', '75.0.3761.3', '74.0.3729.79', '73.0.3683.111', '75.0.3761.2', '74.0.3729.78', '74.0.3729.77', '75.0.3761.1', '75.0.3761.0', '73.0.3683.110', '74.0.3729.76', '74.0.3729.75', '75.0.3760.0', '74.0.3729.74', '75.0.3759.8', '75.0.3759.7', '75.0.3759.6', '74.0.3729.73', '75.0.3759.5', '74.0.3729.72', '73.0.3683.109', '75.0.3759.4', '75.0.3759.3', '74.0.3729.71', '75.0.3759.2', '74.0.3729.70', '73.0.3683.108', '74.0.3729.69', '75.0.3759.1', '75.0.3759.0', '74.0.3729.68', '73.0.3683.107', '74.0.3729.67', '75.0.3758.1', '75.0.3758.0', '74.0.3729.66', '73.0.3683.106', '74.0.3729.65', '75.0.3757.1', '75.0.3757.0', '74.0.3729.64', '73.0.3683.105', '74.0.3729.63', '75.0.3756.1', '75.0.3756.0', '74.0.3729.62', '73.0.3683.104', '75.0.3755.3', '75.0.3755.2', '73.0.3683.103', '75.0.3755.1', '75.0.3755.0', '74.0.3729.61', '73.0.3683.102', '74.0.3729.60', '75.0.3754.2', '74.0.3729.59', '75.0.3753.4', '74.0.3729.58', '75.0.3754.1', '75.0.3754.0', '74.0.3729.57', '73.0.3683.101', '75.0.3753.3', '75.0.3752.2', '75.0.3753.2', '74.0.3729.56', '75.0.3753.1', '75.0.3753.0', '74.0.3729.55', '73.0.3683.100', '74.0.3729.54', '75.0.3752.1', '75.0.3752.0', '74.0.3729.53', '73.0.3683.99', '74.0.3729.52', '75.0.3751.1', '75.0.3751.0', '74.0.3729.51', '73.0.3683.98', '74.0.3729.50', '75.0.3750.0', '74.0.3729.49', '74.0.3729.48', '74.0.3729.47', '75.0.3749.3', '74.0.3729.46', '73.0.3683.97', '75.0.3749.2', '74.0.3729.45', '75.0.3749.1', '75.0.3749.0', '74.0.3729.44', '73.0.3683.96', '74.0.3729.43', '74.0.3729.42', '75.0.3748.1', '75.0.3748.0', '74.0.3729.41', '75.0.3747.1', '73.0.3683.95', '75.0.3746.4', '74.0.3729.40', '74.0.3729.39', '75.0.3747.0', '75.0.3746.3', '75.0.3746.2', '74.0.3729.38', '75.0.3746.1', '75.0.3746.0', '74.0.3729.37', '73.0.3683.94', '75.0.3745.5', '75.0.3745.4', '75.0.3745.3', '75.0.3745.2', '74.0.3729.36', '75.0.3745.1', '75.0.3745.0', '75.0.3744.2', '74.0.3729.35', '73.0.3683.93', '74.0.3729.34', '75.0.3744.1', '75.0.3744.0', '74.0.3729.33', '73.0.3683.92', '74.0.3729.32', '74.0.3729.31', '73.0.3683.91', '75.0.3741.2', '75.0.3740.5', '74.0.3729.30', '75.0.3741.1', '75.0.3741.0', '74.0.3729.29', '75.0.3740.4', '73.0.3683.90', '74.0.3729.28', '75.0.3740.3', '73.0.3683.89', '75.0.3740.2', '74.0.3729.27', '75.0.3740.1', '75.0.3740.0', '74.0.3729.26', '73.0.3683.88', '73.0.3683.87', '74.0.3729.25', '75.0.3739.1', '75.0.3739.0', '73.0.3683.86', '74.0.3729.24', '73.0.3683.85', '75.0.3738.4', '75.0.3738.3', '75.0.3738.2', '75.0.3738.1', '75.0.3738.0', '74.0.3729.23', '73.0.3683.84', '74.0.3729.22', '74.0.3729.21', '75.0.3737.1', '75.0.3737.0', '74.0.3729.20', '73.0.3683.83', '74.0.3729.19', '75.0.3736.1', '75.0.3736.0', '74.0.3729.18', '73.0.3683.82', '74.0.3729.17', '75.0.3735.1', '75.0.3735.0', '74.0.3729.16', '73.0.3683.81', '75.0.3734.1', '75.0.3734.0', '74.0.3729.15', '73.0.3683.80', '74.0.3729.14', '75.0.3733.1', '75.0.3733.0', '75.0.3732.1', '74.0.3729.13', '74.0.3729.12', '73.0.3683.79', '74.0.3729.11', '75.0.3732.0', '74.0.3729.10', '73.0.3683.78', '74.0.3729.9', '74.0.3729.8', '74.0.3729.7', '75.0.3731.3', '75.0.3731.2', '75.0.3731.0', '74.0.3729.6', '73.0.3683.77', '73.0.3683.76', '75.0.3730.5', '75.0.3730.4', '73.0.3683.75', '74.0.3729.5', '73.0.3683.74', '75.0.3730.3', '75.0.3730.2', '74.0.3729.4', '73.0.3683.73', '73.0.3683.72', '75.0.3730.1', '75.0.3730.0', '74.0.3729.3', '73.0.3683.71', '74.0.3729.2', '73.0.3683.70', '74.0.3729.1', '74.0.3729.0', '74.0.3726.4', '73.0.3683.69', '74.0.3726.3', '74.0.3728.0', '74.0.3726.2', '73.0.3683.68', '74.0.3726.1', '74.0.3726.0', '74.0.3725.4', '73.0.3683.67', '73.0.3683.66', '74.0.3725.3', '74.0.3725.2', '74.0.3725.1', '74.0.3724.8', '74.0.3725.0', '73.0.3683.65', '74.0.3724.7', '74.0.3724.6', '74.0.3724.5', '74.0.3724.4', '74.0.3724.3', '74.0.3724.2', '74.0.3724.1', '74.0.3724.0', '73.0.3683.64', '74.0.3723.1', '74.0.3723.0', '73.0.3683.63', '74.0.3722.1', '74.0.3722.0', '73.0.3683.62', '74.0.3718.9', '74.0.3702.3', '74.0.3721.3', '74.0.3721.2', '74.0.3721.1', '74.0.3721.0', '74.0.3720.6', '73.0.3683.61', '72.0.3626.122', '73.0.3683.60', '74.0.3720.5', '72.0.3626.121', '74.0.3718.8', '74.0.3720.4', '74.0.3720.3', '74.0.3718.7', '74.0.3720.2', '74.0.3720.1', '74.0.3720.0', '74.0.3718.6', '74.0.3719.5', '73.0.3683.59', '74.0.3718.5', '74.0.3718.4', '74.0.3719.4', '74.0.3719.3', '74.0.3719.2', '74.0.3719.1', '73.0.3683.58', '74.0.3719.0', '73.0.3683.57', '73.0.3683.56', '74.0.3718.3', '73.0.3683.55', '74.0.3718.2', '74.0.3718.1', '74.0.3718.0', '73.0.3683.54', '74.0.3717.2', '73.0.3683.53', '74.0.3717.1', '74.0.3717.0', '73.0.3683.52', '74.0.3716.1', '74.0.3716.0', '73.0.3683.51', '74.0.3715.1', '74.0.3715.0', '73.0.3683.50', '74.0.3711.2', '74.0.3714.2', '74.0.3713.3', '74.0.3714.1', '74.0.3714.0', '73.0.3683.49', '74.0.3713.1', '74.0.3713.0', '72.0.3626.120', '73.0.3683.48', '74.0.3712.2', '74.0.3712.1', '74.0.3712.0', '73.0.3683.47', '72.0.3626.119', '73.0.3683.46', '74.0.3710.2', '72.0.3626.118', '74.0.3711.1', '74.0.3711.0', '73.0.3683.45', '72.0.3626.117', '74.0.3710.1', '74.0.3710.0', '73.0.3683.44', '72.0.3626.116', '74.0.3709.1', '74.0.3709.0', '74.0.3704.9', '73.0.3683.43', '72.0.3626.115', '74.0.3704.8', '74.0.3704.7', '74.0.3708.0', '74.0.3706.7', '74.0.3704.6', '73.0.3683.42', '72.0.3626.114', '74.0.3706.6', '72.0.3626.113', '74.0.3704.5', '74.0.3706.5', '74.0.3706.4', '74.0.3706.3', '74.0.3706.2', '74.0.3706.1', '74.0.3706.0', '73.0.3683.41', '72.0.3626.112', '74.0.3705.1', '74.0.3705.0', '73.0.3683.40', '72.0.3626.111', '73.0.3683.39', '74.0.3704.4', '73.0.3683.38', '74.0.3704.3', '74.0.3704.2', '74.0.3704.1', '74.0.3704.0', '73.0.3683.37', '72.0.3626.110', '72.0.3626.109', '74.0.3703.3', '74.0.3703.2', '73.0.3683.36', '74.0.3703.1', '74.0.3703.0', '73.0.3683.35', '72.0.3626.108', '74.0.3702.2', '74.0.3699.3', '74.0.3702.1', '74.0.3702.0', '73.0.3683.34', '72.0.3626.107', '73.0.3683.33', '74.0.3701.1', '74.0.3701.0', '73.0.3683.32', '73.0.3683.31', '72.0.3626.105', '74.0.3700.1', '74.0.3700.0', '73.0.3683.29', '72.0.3626.103', '74.0.3699.2', '74.0.3699.1', '74.0.3699.0', '73.0.3683.28', '72.0.3626.102', '73.0.3683.27', '73.0.3683.26', '74.0.3698.0', '74.0.3696.2', '72.0.3626.101', '73.0.3683.25', '74.0.3696.1', '74.0.3696.0', '74.0.3694.8', '72.0.3626.100', '74.0.3694.7', '74.0.3694.6', '74.0.3694.5', '74.0.3694.4', '72.0.3626.99', '72.0.3626.98', '74.0.3694.3', '73.0.3683.24', '72.0.3626.97', '72.0.3626.96', '72.0.3626.95', '73.0.3683.23', '72.0.3626.94', '73.0.3683.22', '73.0.3683.21', '72.0.3626.93', '74.0.3694.2', '72.0.3626.92', '74.0.3694.1', '74.0.3694.0', '74.0.3693.6', '73.0.3683.20', '72.0.3626.91', '74.0.3693.5', '74.0.3693.4', '74.0.3693.3', '74.0.3693.2', '73.0.3683.19', '74.0.3693.1', '74.0.3693.0', '73.0.3683.18', '72.0.3626.90', '74.0.3692.1', '74.0.3692.0', '73.0.3683.17', '72.0.3626.89', '74.0.3687.3', '74.0.3691.1', '74.0.3691.0', '73.0.3683.16', '72.0.3626.88', '72.0.3626.87', '73.0.3683.15', '74.0.3690.1', '74.0.3690.0', '73.0.3683.14', '72.0.3626.86', '73.0.3683.13', '73.0.3683.12', '74.0.3689.1', '74.0.3689.0', '73.0.3683.11', '72.0.3626.85', '73.0.3683.10', '72.0.3626.84', '73.0.3683.9', '74.0.3688.1', '74.0.3688.0', '73.0.3683.8', '72.0.3626.83', '74.0.3687.2', '74.0.3687.1', '74.0.3687.0', '73.0.3683.7', '72.0.3626.82', '74.0.3686.4', '72.0.3626.81', '74.0.3686.3', '74.0.3686.2', '74.0.3686.1', '74.0.3686.0', '73.0.3683.6', '72.0.3626.80', '74.0.3685.1', '74.0.3685.0', '73.0.3683.5', '72.0.3626.79', '74.0.3684.1', '74.0.3684.0', '73.0.3683.4', '72.0.3626.78', '72.0.3626.77', '73.0.3683.3', '73.0.3683.2', '72.0.3626.76', '73.0.3683.1', '73.0.3683.0', '72.0.3626.75', '71.0.3578.141', '73.0.3682.1', '73.0.3682.0', '72.0.3626.74', '71.0.3578.140', '73.0.3681.4', '73.0.3681.3', '73.0.3681.2', '73.0.3681.1', '73.0.3681.0', '72.0.3626.73', '71.0.3578.139', '72.0.3626.72', '72.0.3626.71', '73.0.3680.1', '73.0.3680.0', '72.0.3626.70', '71.0.3578.138', '73.0.3678.2', '73.0.3679.1', '73.0.3679.0', '72.0.3626.69', '71.0.3578.137', '73.0.3678.1', '73.0.3678.0', '71.0.3578.136', '73.0.3677.1', '73.0.3677.0', '72.0.3626.68', '72.0.3626.67', '71.0.3578.135', '73.0.3676.1', '73.0.3676.0', '73.0.3674.2', '72.0.3626.66', '71.0.3578.134', '73.0.3674.1', '73.0.3674.0', '72.0.3626.65', '71.0.3578.133', '73.0.3673.2', '73.0.3673.1', '73.0.3673.0', '72.0.3626.64', '71.0.3578.132', '72.0.3626.63', '72.0.3626.62', '72.0.3626.61', '72.0.3626.60', '73.0.3672.1', '73.0.3672.0', '72.0.3626.59', '71.0.3578.131', '73.0.3671.3', '73.0.3671.2', '73.0.3671.1', '73.0.3671.0', '72.0.3626.58', '71.0.3578.130', '73.0.3670.1', '73.0.3670.0', '72.0.3626.57', '71.0.3578.129', '73.0.3669.1', '73.0.3669.0', '72.0.3626.56', '71.0.3578.128', '73.0.3668.2', '73.0.3668.1', '73.0.3668.0', '72.0.3626.55', '71.0.3578.127', '73.0.3667.2', '73.0.3667.1', '73.0.3667.0', '72.0.3626.54', '71.0.3578.126', '73.0.3666.1', '73.0.3666.0', '72.0.3626.53', '71.0.3578.125', '73.0.3665.4', '73.0.3665.3', '72.0.3626.52', '73.0.3665.2', '73.0.3664.4', '73.0.3665.1', '73.0.3665.0', '72.0.3626.51', '71.0.3578.124', '72.0.3626.50', '73.0.3664.3', '73.0.3664.2', '73.0.3664.1', '73.0.3664.0', '73.0.3663.2', '72.0.3626.49', '71.0.3578.123', '73.0.3663.1', '73.0.3663.0', '72.0.3626.48', '71.0.3578.122', '73.0.3662.1', '73.0.3662.0', '72.0.3626.47', '71.0.3578.121', '73.0.3661.1', '72.0.3626.46', '73.0.3661.0', '72.0.3626.45', '71.0.3578.120', '73.0.3660.2', '73.0.3660.1', '73.0.3660.0', '72.0.3626.44', '71.0.3578.119', '73.0.3659.1', '73.0.3659.0', '72.0.3626.43', '71.0.3578.118', '73.0.3658.1', '73.0.3658.0', '72.0.3626.42', '71.0.3578.117', '73.0.3657.1', '73.0.3657.0', '72.0.3626.41', '71.0.3578.116', '73.0.3656.1', '73.0.3656.0', '72.0.3626.40', '71.0.3578.115', '73.0.3655.1', '73.0.3655.0', '72.0.3626.39', '71.0.3578.114', '73.0.3654.1', '73.0.3654.0', '72.0.3626.38', '71.0.3578.113', '73.0.3653.1', '73.0.3653.0', '72.0.3626.37', '71.0.3578.112', '73.0.3652.1', '73.0.3652.0', '72.0.3626.36', '71.0.3578.111', '73.0.3651.1', '73.0.3651.0', '72.0.3626.35', '71.0.3578.110', '73.0.3650.1', '73.0.3650.0', '72.0.3626.34', '71.0.3578.109', '73.0.3649.1', '73.0.3649.0', '72.0.3626.33', '71.0.3578.108', '73.0.3648.2', '73.0.3648.1', '73.0.3648.0', '72.0.3626.32', '71.0.3578.107', '73.0.3647.2', '73.0.3647.1', '73.0.3647.0', '72.0.3626.31', '71.0.3578.106', '73.0.3635.3', '73.0.3646.2', '73.0.3646.1', '73.0.3646.0', '72.0.3626.30', '71.0.3578.105', '72.0.3626.29', '73.0.3645.2', '73.0.3645.1', '73.0.3645.0', '72.0.3626.28', '71.0.3578.104', '72.0.3626.27', '72.0.3626.26', '72.0.3626.25', '72.0.3626.24', '73.0.3644.0', '73.0.3643.2', '72.0.3626.23', '71.0.3578.103', '73.0.3643.1', '73.0.3643.0', '72.0.3626.22', '71.0.3578.102', '73.0.3642.1', '73.0.3642.0', '72.0.3626.21', '71.0.3578.101', '73.0.3641.1', '73.0.3641.0', '72.0.3626.20', '71.0.3578.100', '72.0.3626.19', '73.0.3640.1', '73.0.3640.0', '72.0.3626.18', '73.0.3639.1', '71.0.3578.99', '73.0.3639.0', '72.0.3626.17', '73.0.3638.2', '72.0.3626.16', '73.0.3638.1', '73.0.3638.0', '72.0.3626.15', '71.0.3578.98', '73.0.3635.2', '71.0.3578.97', '73.0.3637.1', '73.0.3637.0', '72.0.3626.14', '71.0.3578.96', '71.0.3578.95', '72.0.3626.13', '71.0.3578.94', '73.0.3636.2', '71.0.3578.93', '73.0.3636.1', '73.0.3636.0', '72.0.3626.12', '71.0.3578.92', '73.0.3635.1', '73.0.3635.0', '72.0.3626.11', '71.0.3578.91', '73.0.3634.2', '73.0.3634.1', '73.0.3634.0', '72.0.3626.10', '71.0.3578.90', '71.0.3578.89', '73.0.3633.2', '73.0.3633.1', '73.0.3633.0', '72.0.3610.4', '72.0.3626.9', '71.0.3578.88', '73.0.3632.5', '73.0.3632.4', '73.0.3632.3', '73.0.3632.2', '73.0.3632.1', '73.0.3632.0', '72.0.3626.8', '71.0.3578.87', '73.0.3631.2', '73.0.3631.1', '73.0.3631.0', '72.0.3626.7', '71.0.3578.86', '72.0.3626.6', '73.0.3630.1', '73.0.3630.0', '72.0.3626.5', '71.0.3578.85', '72.0.3626.4', '73.0.3628.3', '73.0.3628.2', '73.0.3629.1', '73.0.3629.0', '72.0.3626.3', '71.0.3578.84', '73.0.3628.1', '73.0.3628.0', '71.0.3578.83', '73.0.3627.1', '73.0.3627.0', '72.0.3626.2', '71.0.3578.82', '71.0.3578.81', '71.0.3578.80', '72.0.3626.1', '72.0.3626.0', '71.0.3578.79', '70.0.3538.124', '71.0.3578.78', '72.0.3623.4', '72.0.3625.2', '72.0.3625.1', '72.0.3625.0', '71.0.3578.77', '70.0.3538.123', '72.0.3624.4', '72.0.3624.3', '72.0.3624.2', '71.0.3578.76', '72.0.3624.1', '72.0.3624.0', '72.0.3623.3', '71.0.3578.75', '70.0.3538.122', '71.0.3578.74', '72.0.3623.2', '72.0.3610.3', '72.0.3623.1', '72.0.3623.0', '72.0.3622.3', '72.0.3622.2', '71.0.3578.73', '70.0.3538.121', '72.0.3622.1', '72.0.3622.0', '71.0.3578.72', '70.0.3538.120', '72.0.3621.1', '72.0.3621.0', '71.0.3578.71', '70.0.3538.119', '72.0.3620.1', '72.0.3620.0', '71.0.3578.70', '70.0.3538.118', '71.0.3578.69', '72.0.3619.1', '72.0.3619.0', '71.0.3578.68', '70.0.3538.117', '71.0.3578.67', '72.0.3618.1', '72.0.3618.0', '71.0.3578.66', '70.0.3538.116', '72.0.3617.1', '72.0.3617.0', '71.0.3578.65', '70.0.3538.115', '72.0.3602.3', '71.0.3578.64', '72.0.3616.1', '72.0.3616.0', '71.0.3578.63', '70.0.3538.114', '71.0.3578.62', '72.0.3615.1', '72.0.3615.0', '71.0.3578.61', '70.0.3538.113', '72.0.3614.1', '72.0.3614.0', '71.0.3578.60', '70.0.3538.112', '72.0.3613.1', '72.0.3613.0', '71.0.3578.59', '70.0.3538.111', '72.0.3612.2', '72.0.3612.1', '72.0.3612.0', '70.0.3538.110', '71.0.3578.58', '70.0.3538.109', '72.0.3611.2', '72.0.3611.1', '72.0.3611.0', '71.0.3578.57', '70.0.3538.108', '72.0.3610.2', '71.0.3578.56', '71.0.3578.55', '72.0.3610.1', '72.0.3610.0', '71.0.3578.54', '70.0.3538.107', '71.0.3578.53', '72.0.3609.3', '71.0.3578.52', '72.0.3609.2', '71.0.3578.51', '72.0.3608.5', '72.0.3609.1', '72.0.3609.0', '71.0.3578.50', '70.0.3538.106', '72.0.3608.4', '72.0.3608.3', '72.0.3608.2', '71.0.3578.49', '72.0.3608.1', '72.0.3608.0', '70.0.3538.105', '71.0.3578.48', '72.0.3607.1', '72.0.3607.0', '71.0.3578.47', '70.0.3538.104', '72.0.3606.2', '72.0.3606.1', '72.0.3606.0', '71.0.3578.46', '70.0.3538.103', '70.0.3538.102', '72.0.3605.3', '72.0.3605.2', '72.0.3605.1', '72.0.3605.0', '71.0.3578.45', '70.0.3538.101', '71.0.3578.44', '71.0.3578.43', '70.0.3538.100', '70.0.3538.99', '71.0.3578.42', '72.0.3604.1', '72.0.3604.0', '71.0.3578.41', '70.0.3538.98', '71.0.3578.40', '72.0.3603.2', '72.0.3603.1', '72.0.3603.0', '71.0.3578.39', '70.0.3538.97', '72.0.3602.2', '71.0.3578.38', '71.0.3578.37', '72.0.3602.1', '72.0.3602.0', '71.0.3578.36', '70.0.3538.96', '72.0.3601.1', '72.0.3601.0', '71.0.3578.35', '70.0.3538.95', '72.0.3600.1', '72.0.3600.0', '71.0.3578.34', '70.0.3538.94', '72.0.3599.3', '72.0.3599.2', '72.0.3599.1', '72.0.3599.0', '71.0.3578.33', '70.0.3538.93', '72.0.3598.1', '72.0.3598.0', '71.0.3578.32', '70.0.3538.87', '72.0.3597.1', '72.0.3597.0', '72.0.3596.2', '71.0.3578.31', '70.0.3538.86', '71.0.3578.30', '71.0.3578.29', '72.0.3596.1', '72.0.3596.0', '71.0.3578.28', '70.0.3538.85', '72.0.3595.2', '72.0.3591.3', '72.0.3595.1', '72.0.3595.0', '71.0.3578.27', '70.0.3538.84', '72.0.3594.1', '72.0.3594.0', '71.0.3578.26', '70.0.3538.83', '72.0.3593.2', '72.0.3593.1', '72.0.3593.0', '71.0.3578.25', '70.0.3538.82', '72.0.3589.3', '72.0.3592.2', '72.0.3592.1', '72.0.3592.0', '71.0.3578.24', '72.0.3589.2', '70.0.3538.81', '70.0.3538.80', '72.0.3591.2', '72.0.3591.1', '72.0.3591.0', '71.0.3578.23', '70.0.3538.79', '71.0.3578.22', '72.0.3590.1', '72.0.3590.0', '71.0.3578.21', '70.0.3538.78', '70.0.3538.77', '72.0.3589.1', '72.0.3589.0', '71.0.3578.20', '70.0.3538.76', '71.0.3578.19', '70.0.3538.75', '72.0.3588.1', '72.0.3588.0', '71.0.3578.18', '70.0.3538.74', '72.0.3586.2', '72.0.3587.0', '71.0.3578.17', '70.0.3538.73', '72.0.3586.1', '72.0.3586.0', '71.0.3578.16', '70.0.3538.72', '72.0.3585.1', '72.0.3585.0', '71.0.3578.15', '70.0.3538.71', '71.0.3578.14', '72.0.3584.1', '72.0.3584.0', '71.0.3578.13', '70.0.3538.70', '72.0.3583.2', '71.0.3578.12', '72.0.3583.1', '72.0.3583.0', '71.0.3578.11', '70.0.3538.69', '71.0.3578.10', '72.0.3582.0', '72.0.3581.4', '71.0.3578.9', '70.0.3538.67', '72.0.3581.3', '72.0.3581.2', '72.0.3581.1', '72.0.3581.0', '71.0.3578.8', '70.0.3538.66', '72.0.3580.1', '72.0.3580.0', '71.0.3578.7', '70.0.3538.65', '71.0.3578.6', '72.0.3579.1', '72.0.3579.0', '71.0.3578.5', '70.0.3538.64', '71.0.3578.4', '71.0.3578.3', '71.0.3578.2', '71.0.3578.1', '71.0.3578.0', '70.0.3538.63', '69.0.3497.128', '70.0.3538.62', '70.0.3538.61', '70.0.3538.60', '70.0.3538.59', '71.0.3577.1', '71.0.3577.0', '70.0.3538.58', '69.0.3497.127', '71.0.3576.2', '71.0.3576.1', '71.0.3576.0', '70.0.3538.57', '70.0.3538.56', '71.0.3575.2', '70.0.3538.55', '69.0.3497.126', '70.0.3538.54', '71.0.3575.1', '71.0.3575.0', '71.0.3574.1', '71.0.3574.0', '70.0.3538.53', '69.0.3497.125', '70.0.3538.52', '71.0.3573.1', '71.0.3573.0', '70.0.3538.51', '69.0.3497.124', '71.0.3572.1', '71.0.3572.0', '70.0.3538.50', '69.0.3497.123', '71.0.3571.2', '70.0.3538.49', '69.0.3497.122', '71.0.3571.1', '71.0.3571.0', '70.0.3538.48', '69.0.3497.121', '71.0.3570.1', '71.0.3570.0', '70.0.3538.47', '69.0.3497.120', '71.0.3568.2', '71.0.3569.1', '71.0.3569.0', '70.0.3538.46', '69.0.3497.119', '70.0.3538.45', '71.0.3568.1', '71.0.3568.0', '70.0.3538.44', '69.0.3497.118', '70.0.3538.43', '70.0.3538.42', '71.0.3567.1', '71.0.3567.0', '70.0.3538.41', '69.0.3497.117', '71.0.3566.1', '71.0.3566.0', '70.0.3538.40', '69.0.3497.116', '71.0.3565.1', '71.0.3565.0', '70.0.3538.39', '69.0.3497.115', '71.0.3564.1', '71.0.3564.0', '70.0.3538.38', '69.0.3497.114', '71.0.3563.0', '71.0.3562.2', '70.0.3538.37', '69.0.3497.113', '70.0.3538.36', '70.0.3538.35', '71.0.3562.1', '71.0.3562.0', '70.0.3538.34', '69.0.3497.112', '70.0.3538.33', '71.0.3561.1', '71.0.3561.0', '70.0.3538.32', '69.0.3497.111', '71.0.3559.6', '71.0.3560.1', '71.0.3560.0', '71.0.3559.5', '71.0.3559.4', '70.0.3538.31', '69.0.3497.110', '71.0.3559.3', '70.0.3538.30', '69.0.3497.109', '71.0.3559.2', '71.0.3559.1', '71.0.3559.0', '70.0.3538.29', '69.0.3497.108', '71.0.3558.2', '71.0.3558.1', '71.0.3558.0', '70.0.3538.28', '69.0.3497.107', '71.0.3557.2', '71.0.3557.1', '71.0.3557.0', '70.0.3538.27', '69.0.3497.106', '71.0.3554.4', '70.0.3538.26', '71.0.3556.1', '71.0.3556.0', '70.0.3538.25', '71.0.3554.3', '69.0.3497.105', '71.0.3554.2', '70.0.3538.24', '69.0.3497.104', '71.0.3555.2', '70.0.3538.23', '71.0.3555.1', '71.0.3555.0', '70.0.3538.22', '69.0.3497.103', '71.0.3554.1', '71.0.3554.0', '70.0.3538.21', '69.0.3497.102', '71.0.3553.3', '70.0.3538.20', '69.0.3497.101', '71.0.3553.2', '69.0.3497.100', '71.0.3553.1', '71.0.3553.0', '70.0.3538.19', '69.0.3497.99', '69.0.3497.98', '69.0.3497.97', '71.0.3552.6', '71.0.3552.5', '71.0.3552.4', '71.0.3552.3', '71.0.3552.2', '71.0.3552.1', '71.0.3552.0', '70.0.3538.18', '69.0.3497.96', '71.0.3551.3', '71.0.3551.2', '71.0.3551.1', '71.0.3551.0', '70.0.3538.17', '69.0.3497.95', '71.0.3550.3', '71.0.3550.2', '71.0.3550.1', '71.0.3550.0', '70.0.3538.16', '69.0.3497.94', '71.0.3549.1', '71.0.3549.0', '70.0.3538.15', '69.0.3497.93', '69.0.3497.92', '71.0.3548.1', '71.0.3548.0', '70.0.3538.14', '69.0.3497.91', '71.0.3547.1', '71.0.3547.0', '70.0.3538.13', '69.0.3497.90', '71.0.3546.2', '69.0.3497.89', '71.0.3546.1', '71.0.3546.0', '70.0.3538.12', '69.0.3497.88', '71.0.3545.4', '71.0.3545.3', '71.0.3545.2', '71.0.3545.1', '71.0.3545.0', '70.0.3538.11', '69.0.3497.87', '71.0.3544.5', '71.0.3544.4', '71.0.3544.3', '71.0.3544.2', '71.0.3544.1', '71.0.3544.0', '69.0.3497.86', '70.0.3538.10', '69.0.3497.85', '70.0.3538.9', '69.0.3497.84', '71.0.3543.4', '70.0.3538.8', '71.0.3543.3', '71.0.3543.2', '71.0.3543.1', '71.0.3543.0', '70.0.3538.7', '69.0.3497.83', '71.0.3542.2', '71.0.3542.1', '71.0.3542.0', '70.0.3538.6', '69.0.3497.82', '69.0.3497.81', '71.0.3541.1', '71.0.3541.0', '70.0.3538.5', '69.0.3497.80', '71.0.3540.1', '71.0.3540.0', '70.0.3538.4', '69.0.3497.79', '70.0.3538.3', '71.0.3539.1', '71.0.3539.0', '69.0.3497.78', '68.0.3440.134', '69.0.3497.77', '70.0.3538.2', '70.0.3538.1', '70.0.3538.0', '69.0.3497.76', '68.0.3440.133', '69.0.3497.75', '70.0.3537.2', '70.0.3537.1', '70.0.3537.0', '69.0.3497.74', '68.0.3440.132', '70.0.3536.0', '70.0.3535.5', '70.0.3535.4', '70.0.3535.3', '69.0.3497.73', '68.0.3440.131', '70.0.3532.8', '70.0.3532.7', '69.0.3497.72', '69.0.3497.71', '70.0.3535.2', '70.0.3535.1', '70.0.3535.0', '69.0.3497.70', '68.0.3440.130', '69.0.3497.69', '68.0.3440.129', '70.0.3534.4', '70.0.3534.3', '70.0.3534.2', '70.0.3534.1', '70.0.3534.0', '69.0.3497.68', '68.0.3440.128', '70.0.3533.2', '70.0.3533.1', '70.0.3533.0', '69.0.3497.67', '68.0.3440.127', '70.0.3532.6', '70.0.3532.5', '70.0.3532.4', '69.0.3497.66', '68.0.3440.126', '70.0.3532.3', '70.0.3532.2', '70.0.3532.1', '69.0.3497.60', '69.0.3497.65', '69.0.3497.64', '70.0.3532.0', '70.0.3531.0', '70.0.3530.4', '70.0.3530.3', '70.0.3530.2', '69.0.3497.58', '68.0.3440.125', '69.0.3497.57', '69.0.3497.56', '69.0.3497.55', '69.0.3497.54', '70.0.3530.1', '70.0.3530.0', '69.0.3497.53', '68.0.3440.124', '69.0.3497.52', '70.0.3529.3', '70.0.3529.2', '70.0.3529.1', '70.0.3529.0', '69.0.3497.51', '70.0.3528.4', '68.0.3440.123', '70.0.3528.3', '70.0.3528.2', '70.0.3528.1', '70.0.3528.0', '69.0.3497.50', '68.0.3440.122', '70.0.3527.1', '70.0.3527.0', '69.0.3497.49', '68.0.3440.121', '70.0.3526.1', '70.0.3526.0', '68.0.3440.120', '69.0.3497.48', '69.0.3497.47', '68.0.3440.119', '68.0.3440.118', '70.0.3525.5', '70.0.3525.4', '70.0.3525.3', '68.0.3440.117', '69.0.3497.46', '70.0.3525.2', '70.0.3525.1', '70.0.3525.0', '69.0.3497.45', '68.0.3440.116', '70.0.3524.4', '70.0.3524.3', '69.0.3497.44', '70.0.3524.2', '70.0.3524.1', '70.0.3524.0', '70.0.3523.2', '69.0.3497.43', '68.0.3440.115', '70.0.3505.9', '69.0.3497.42', '70.0.3505.8', '70.0.3523.1', '70.0.3523.0', '69.0.3497.41', '68.0.3440.114', '70.0.3505.7', '69.0.3497.40', '70.0.3522.1', '70.0.3522.0', '70.0.3521.2', '69.0.3497.39', '68.0.3440.113', '70.0.3505.6', '70.0.3521.1', '70.0.3521.0', '69.0.3497.38', '68.0.3440.112', '70.0.3520.1', '70.0.3520.0', '69.0.3497.37', '68.0.3440.111', '70.0.3519.3', '70.0.3519.2', '70.0.3519.1', '70.0.3519.0', '69.0.3497.36', '68.0.3440.110', '70.0.3518.1', '70.0.3518.0', '69.0.3497.35', '69.0.3497.34', '68.0.3440.109', '70.0.3517.1', '70.0.3517.0', '69.0.3497.33', '68.0.3440.108', '69.0.3497.32', '70.0.3516.3', '70.0.3516.2', '70.0.3516.1', '70.0.3516.0', '69.0.3497.31', '68.0.3440.107', '70.0.3515.4', '68.0.3440.106', '70.0.3515.3', '70.0.3515.2', '70.0.3515.1', '70.0.3515.0', '69.0.3497.30', '68.0.3440.105', '68.0.3440.104', '70.0.3514.2', '70.0.3514.1', '70.0.3514.0', '69.0.3497.29', '68.0.3440.103', '70.0.3513.1', '70.0.3513.0', '69.0.3497.28', ) @classmethod def _extract_urls(cls, webpage): return re.findall( r'<iframe[^>]+src=["\']((?:https?://)?%s/%s/[a-zA-Z0-9-_]+)' % (cls._DOMAINS, cls._EMBED_WORD), webpage) def _extract_decrypted_page(self, page_url, webpage, video_id, headers): phantom = PhantomJSwrapper(self, required_version='2.0') webpage, _ = phantom.get(page_url, html=webpage, video_id=video_id, headers=headers) return webpage def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) host = mobj.group('host') video_id = mobj.group('id') url_pattern = 'https://%s/%%s/%s/' % (host, video_id) headers = { 'User-Agent': self._USER_AGENT_TPL % random.choice(self._CHROME_VERSIONS), } for path in (self._EMBED_WORD, self._STREAM_WORD): page_url = url_pattern % path last = path == self._STREAM_WORD webpage = self._download_webpage( page_url, video_id, 'Downloading %s webpage' % path, headers=headers, fatal=last) if not webpage: continue if 'File not found' in webpage or 'deleted by the owner' in webpage: if not last: continue raise ExtractorError('File not found', expected=True, video_id=video_id) break webpage = self._extract_decrypted_page(page_url, webpage, video_id, headers) for element_id in self._URL_IDS: decoded_id = get_element_by_id(element_id, webpage) if decoded_id: break if not decoded_id: decoded_id = self._search_regex( (r'>\s*([\w-]+~\d{10,}~\d+\.\d+\.0\.0~[\w-]+)\s*<', r'>\s*([\w~-]+~\d+\.\d+\.\d+\.\d+~[\w~-]+)', r'>\s*([\w-]+~\d{10,}~(?:[a-f\d]+:){2}:~[\w-]+)\s*<', r'>\s*([\w~-]+~[a-f0-9:]+~[\w~-]+)\s*<', r'>\s*([\w~-]+~[a-f0-9:]+~[\w~-]+)'), webpage, 'stream URL') video_url = 'https://%s/%s/%s?mime=true' % (host, self._REDIR_WORD, decoded_id) title = self._og_search_title(webpage, default=None) or self._search_regex( r'<span[^>]+class=["\']title["\'][^>]*>([^<]+)', webpage, 'title', default=None) or self._html_search_meta( 'description', webpage, 'title', fatal=True) entries = self._parse_html5_media_entries(page_url, webpage, video_id) entry = entries[0] if entries else {} subtitles = entry.get('subtitles') return { 'id': video_id, 'title': title, 'thumbnail': entry.get('thumbnail') or self._og_search_thumbnail(webpage, default=None), 'url': video_url, 'ext': determine_ext(title, None) or determine_ext(url, 'mp4'), 'subtitles': subtitles, 'http_headers': headers, } class VerystreamIE(OpenloadIE): IE_NAME = 'verystream' _DOMAINS = r'(?:verystream\.com)' _VALID_URL = r'''(?x) https?:// (?P<host> (?:www\.)? %s )/ (?:stream|e)/ (?P<id>[a-zA-Z0-9-_]+) ''' % _DOMAINS _EMBED_WORD = 'e' _STREAM_WORD = 'stream' _REDIR_WORD = '<PASSWORD>' _URL_IDS = ('videolink', ) _TESTS = [{ 'url': 'https://verystream.com/stream/c1GWQ9ngBBx/', 'md5': 'd3e8c5628ccb9970b65fd65269886795', 'info_dict': { 'id': 'c1GWQ9ngBBx', 'ext': 'mp4', 'title': 'Big Buck Bunny.mp4', 'thumbnail': r're:^https?://.*\.jpg$', }, }, { 'url': 'https://verystream.com/e/c1GWQ9ngBBx/', 'only_matching': True, }] def _extract_decrypted_page(self, page_url, webpage, video_id, headers): return webpage # for Verystream, the webpage is already decrypted ``` #### File: youtube_dl/extractor/packtpub.py ```python from __future__ import unicode_literals import json import re from .common import InfoExtractor from ..compat import ( compat_str, compat_HTTPError, ) from ..utils import ( clean_html, ExtractorError, remove_end, strip_or_none, unified_timestamp, urljoin, ) class PacktPubBaseIE(InfoExtractor): _PACKT_BASE = 'https://www.packtpub.com' _MAPT_REST = '%s/mapt-rest' % _PACKT_BASE class PacktPubIE(PacktPubBaseIE): _VALID_URL = r'https?://(?:(?:www\.)?packtpub\.com/mapt|subscription\.packtpub\.com)/video/[^/]+/(?P<course_id>\d+)/(?P<chapter_id>\d+)/(?P<id>\d+)' _TESTS = [{ 'url': 'https://www.packtpub.com/mapt/video/web-development/9781787122215/20528/20530/Project+Intro', 'md5': '1e74bd6cfd45d7d07666f4684ef58f70', 'info_dict': { 'id': '20530', 'ext': 'mp4', 'title': 'Project Intro', 'thumbnail': r're:(?i)^https?://.*\.jpg', 'timestamp': 1490918400, 'upload_date': '20170331', }, }, { 'url': 'https://subscription.packtpub.com/video/web_development/9781787122215/20528/20530/project-intro', 'only_matching': True, }] _NETRC_MACHINE = 'packtpub' _TOKEN = None def _real_initialize(self): username, password = self._get_login_info() if username is None: return try: self._TOKEN = self._download_json( self._MAPT_REST + '/users/tokens', None, 'Downloading Authorization Token', data=json.dumps({ 'email': username, 'password': password, }).encode())['data']['access'] except ExtractorError as e: if isinstance(e.cause, compat_HTTPError) and e.cause.code in (400, 401, 404): message = self._parse_json(e.cause.read().decode(), None)['message'] raise ExtractorError(message, expected=True) raise def _handle_error(self, response): if response.get('status') != 'success': raise ExtractorError( '% said: %s' % (self.IE_NAME, response['message']), expected=True) def _download_json(self, *args, **kwargs): response = super(PacktPubIE, self)._download_json(*args, **kwargs) self._handle_error(response) return response def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) course_id, chapter_id, video_id = mobj.group( 'course_id', 'chapter_id', 'id') headers = {} if self._TOKEN: headers['Authorization'] = 'Bearer ' + self._TOKEN video = self._download_json( '%s/users/me/products/%s/chapters/%s/sections/%s' % (self._MAPT_REST, course_id, chapter_id, video_id), video_id, 'Downloading JSON video', headers=headers)['data'] content = video.get('content') if not content: self.raise_login_required('This video is locked') video_url = content['file'] metadata = self._download_json( '%s/products/%s/chapters/%s/sections/%s/metadata' % (self._MAPT_REST, course_id, chapter_id, video_id), video_id)['data'] title = metadata['pageTitle'] course_title = metadata.get('title') if course_title: title = remove_end(title, ' - %s' % course_title) timestamp = unified_timestamp(metadata.get('publicationDate')) thumbnail = urljoin(self._PACKT_BASE, metadata.get('filepath')) return { 'id': video_id, 'url': video_url, 'title': title, 'thumbnail': thumbnail, 'timestamp': timestamp, } class PacktPubCourseIE(PacktPubBaseIE): _VALID_URL = r'(?P<url>https?://(?:(?:www\.)?packtpub\.com/mapt|subscription\.packtpub\.com)/video/[^/]+/(?P<id>\d+))' _TESTS = [{ 'url': 'https://www.packtpub.com/mapt/video/web-development/9781787122215', 'info_dict': { 'id': '9781787122215', 'title': 'Learn Nodejs by building 12 projects [Video]', }, 'playlist_count': 90, }, { 'url': 'https://subscription.packtpub.com/video/web_development/9781787122215', 'only_matching': True, }] @classmethod def suitable(cls, url): return False if PacktPubIE.suitable(url) else super( PacktPubCourseIE, cls).suitable(url) def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) url, course_id = mobj.group('url', 'id') course = self._download_json( '%s/products/%s/metadata' % (self._MAPT_REST, course_id), course_id)['data'] entries = [] for chapter_num, chapter in enumerate(course['tableOfContents'], 1): if chapter.get('type') != 'chapter': continue children = chapter.get('children') if not isinstance(children, list): continue chapter_info = { 'chapter': chapter.get('title'), 'chapter_number': chapter_num, 'chapter_id': chapter.get('id'), } for section in children: if section.get('type') != 'section': continue section_url = section.get('seoUrl') if not isinstance(section_url, compat_str): continue entry = { '_type': 'url_transparent', 'url': urljoin(url + '/', section_url), 'title': strip_or_none(section.get('title')), 'description': clean_html(section.get('summary')), 'ie_key': PacktPubIE.ie_key(), } entry.update(chapter_info) entries.append(entry) return self.playlist_result(entries, course_id, course.get('title')) ```
{ "source": "joyent/python-manta", "score": 2 }
#### File: python-manta/test/common.py ```python from __future__ import absolute_import __all__ = ["stor", "MantaTestCase"] import sys import os from posixpath import join as ujoin import unittest import subprocess from subprocess import PIPE import manta #---- exports def stor(*subpaths): MANTA_USER = os.environ['MANTA_USER'] if not subpaths: return '/%s/stor' % MANTA_USER subpath = ujoin(*subpaths) if subpath.startswith("/"): subpath = subpath[1:] return "/%s/stor/%s" % (MANTA_USER, subpath) class MantaTestCase(unittest.TestCase): def __init__(self, *args): self.account = os.environ["MANTA_USER"] self.subuser = os.environ.get("MANTA_SUBUSER", None) self.role = os.environ.get("MANTA_ROLE", None) unittest.TestCase.__init__(self, *args) _client = None def get_client(self): MANTA_URL = os.environ['MANTA_URL'] MANTA_KEY_ID = os.environ['MANTA_KEY_ID'] MANTA_TLS_INSECURE = bool(os.environ.get('MANTA_TLS_INSECURE', False)) if not self._client: signer = manta.CLISigner(key_id=MANTA_KEY_ID) self._client = manta.MantaClient( url=MANTA_URL, account=self.account, subuser=self.subuser, role=self.role, signer=signer, # Uncomment this for verbose client output for test run. #verbose=True, disable_ssl_certificate_validation=MANTA_TLS_INSECURE) return self._client def mantash(self, args): mantash = os.path.realpath(os.path.join( os.path.dirname(__file__), "..", "bin", "mantash")) argv = [sys.executable, mantash] MANTA_INSECURE = bool(os.environ.get('MANTA_INSECURE', False)) if MANTA_INSECURE: argv.append('-k') argv += args p = subprocess.Popen(argv, shell=False, stdout=PIPE, stderr=PIPE, close_fds=True) p.wait() stdout = p.stdout.read() stderr = p.stderr.read() code = p.returncode return code, stdout, stderr ```
{ "source": "joyer7/CDSW-Demos-KOLON", "score": 3 }
#### File: CDSW-Demos-KOLON/Example06-ds-for-telco/predict_churn_pyspark.py ```python from pyspark.sql import SparkSession from pyspark.sql.types import * from pyspark.ml import PipelineModel spark = SparkSession.builder \ .appName("Telco Customer Churn") \ .master("local[*]") \ .getOrCreate() model = PipelineModel.load("file:///home/cdsw/models/spark") # model = PipelineModel.load("hdfs:///user/bmoran/models/telco") features = ["intl_plan", "account_length", "number_vmail_messages", "total_day_calls", "total_day_charge", "total_eve_calls", "total_eve_charge", "total_night_calls", "total_night_charge", "total_intl_calls", "total_intl_charge","number_customer_service_calls"] def predict(args): account=args["feature"].split(",") feature = spark.createDataFrame([account[:1] + list(map(float,account[1:12]))], features) result=model.transform(feature).collect()[0].prediction return {"result" : result} ```
{ "source": "joyfeel/leetcode", "score": 3 }
#### File: leetcode-algorithms/027. Remove Element/solution.py ```python class Solution: def removeElement(self, nums: List[int], val: int) -> int: index = 0 nums_length = range(len(nums)) for i in nums_length: if nums[i] != val: nums[index] = nums[i] index += 1 # nums = nums[0: index] return index ``` #### File: leetcode-algorithms/066. Plus One/solution.py ```python class Solution: def plusOne(self, digits: List[int]) -> List[int]: length = len(digits) for i in reversed(range(length)): if digits[i] == 9: digits[i] = 0 else: digits[i] += 1 return digits digits[0] = 1 digits.append(0) return digits ``` #### File: leetcode-algorithms/709. To Lower Case/solution.py ```python class Solution: def toLowerCase(self, str: str) -> str: return(str.lower()) ```
{ "source": "joyfuI/vlive", "score": 2 }
#### File: joyfuI/vlive/main.py ```python from typing import Optional import traceback import os import sqlite3 import time import re from threading import Thread from flask import render_template, jsonify import requests from framework import path_data, scheduler, app, db, celery from framework.common.plugin import LogicModuleBase, default_route_socketio from .plugin import P from .logic_queue import LogicQueue from .model import ModelScheduler from .api_youtube_dl import APIYoutubeDL logger = P.logger package_name = P.package_name ModelSetting = P.ModelSetting class LogicMain(LogicModuleBase): db_default = { 'db_version': '2', f'{package_name}_interval': '* * * * *', f'{package_name}_auto_start': 'False', 'default_save_path': os.path.join(path_data, 'download', package_name), 'default_filename': '%(title)s.%(id)s.%(ext)s', 'cookiefile_path': '' } def __init__(self, p): super(LogicMain, self).__init__(p, None, scheduler_desc='V LIVE ์ƒˆ๋กœ์šด ์˜์ƒ ๋‹ค์šด๋กœ๋“œ') self.name = package_name # ๋ชจ๋“ˆ๋ช… default_route_socketio(p, self) def plugin_load(self): try: LogicQueue.queue_load() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) def process_menu(self, sub, req): try: arg = { 'package_name': package_name, 'sub': package_name, 'template_name': f'{package_name}_{sub}' } if sub == 'setting': arg.update(ModelSetting.to_dict()) job_id = f'{self.P.package_name}_{self.name}' arg['scheduler'] = str(scheduler.is_include(job_id)) arg['is_running'] = str(scheduler.is_running(job_id)) arg['path_data'] = path_data elif sub == 'recent': arg['url'] = req.args.get('url', '') arg['recent_html'] = LogicMain.get_recent_html() arg['save_path'] = ModelSetting.get('default_save_path') arg['filename'] = ModelSetting.get('default_filename') elif sub == 'scheduler': arg['save_path'] = ModelSetting.get('default_save_path') arg['filename'] = ModelSetting.get('default_filename') return render_template(f'{package_name}_{sub}.html', arg=arg) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) return render_template('sample.html', title=f'{package_name} - {sub}') def process_ajax(self, sub, req): try: logger.debug('AJAX: %s, %s', sub, req.values) ret = {'ret': 'success'} if sub == 'add_download': ret['msg'] = f'{LogicMain.download(req.form)}๊ฐœ๋ฅผ ํ์— ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค.' elif sub == 'list_scheduler': ret['data'] = LogicMain.get_scheduler() elif sub == 'add_scheduler': if LogicMain.add_scheduler(req.form): ret['msg'] = '์Šค์ผ€์ค„์„ ์ €์žฅํ•˜์˜€์Šต๋‹ˆ๋‹ค.' else: ret['ret'] = 'warning' ret['msg'] = 'V LIVE ์ฑ„๋„์„ ๋ถ„์„ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.' elif sub == 'del_scheduler': LogicMain.del_scheduler(req.form['id']) ret['msg'] = '์‚ญ์ œํ•˜์˜€์Šต๋‹ˆ๋‹ค.' return jsonify(ret) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) return jsonify({'ret': 'danger', 'msg': str(e)}) def scheduler_function(self): if app.config['config']['use_celery']: result = LogicMain.task.apply_async() result.get() else: LogicMain.task() def migration(self): try: db_version = ModelSetting.get_int('db_version') connect = sqlite3.connect(os.path.join(path_data, 'db', f'{package_name}.db')) if db_version < 2: cursor = connect.cursor() cursor.execute(f"SELECT * FROM {package_name}_setting WHERE key = 'interval'") interval = cursor.fetchone()[2] cursor.execute(f"UPDATE {package_name}_setting SET value = ? WHERE key = '{package_name}_interval'", (interval,)) cursor.execute(f"DELETE FROM {package_name}_setting WHERE key = 'interval'") cursor.execute(f"SELECT * FROM {package_name}_setting WHERE key = 'auto_start'") auto_start = cursor.fetchone()[2] cursor.execute(f"UPDATE {package_name}_setting SET value = ? WHERE key = '{package_name}_auto_start'", (auto_start,)) cursor.execute(f"DELETE FROM {package_name}_setting WHERE key = 'auto_start'") connect.commit() connect.close() ModelSetting.set('db_version', LogicMain.db_default['db_version']) db.session.flush() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod @celery.task def task(): try: for entity in ModelScheduler.get_list(): if not entity.is_live: continue logger.debug('scheduler download %s', entity.url) video_url = LogicMain.get_first_live_video(entity.url) # ์ฒซ๋ฒˆ์งธ ์˜์ƒ if video_url is None or video_url in LogicMain.download_list: continue download = APIYoutubeDL.download(package_name, entity.key, video_url, filename=entity.filename, save_path=entity.save_path, start=True, cookiefile=ModelSetting.get('cookiefile_path')) entity.update(LogicMain.get_count_video(entity.url)) # ์ž„์‹œ if download['errorCode'] == 0: LogicMain.download_list.add(video_url) Thread(target=LogicMain.download_check_function, args=(video_url, download['index'], entity.key)).start() entity.update() else: logger.debug('scheduler download fail %s', download['errorCode']) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) download_list = set() @staticmethod def download_check_function(url: str, index: int, key: str): time.sleep(10) # 10์ดˆ ๋Œ€๊ธฐ status = APIYoutubeDL.status(package_name, index, key) if status['status'] == 'ERROR': LogicMain.download_list.remove(url) @staticmethod def download(form) -> int: options = { 'save_path': form['save_path'], 'filename': form['filename'], } for i in form.getlist('download[]'): LogicQueue.add_queue(i, options) return len(form.getlist('download[]')) @staticmethod def get_scheduler() -> list: scheduler_list = [] for i in ModelScheduler.get_list(True): i['last_time'] = i['last_time'].strftime('%m-%d %H:%M:%S') i['path'] = os.path.join(i['save_path'], i['filename']) scheduler_list.append(i) return scheduler_list @staticmethod def add_scheduler(form) -> bool: if form['db_id']: data = { 'save_path': form['save_path'], 'filename': form['filename'], 'is_live': True # 'is_live': bool(form['is_live']) if str(form['is_live']).lower() != 'false' else False } ModelScheduler.find(form['db_id']).update(data) else: info_dict = LogicMain.get_channel_info(form['url']) if info_dict is None: return False data = { 'webpage_url': info_dict['webpage_url'], 'title': info_dict['title'], 'count': info_dict['count'], 'save_path': form['save_path'], 'filename': form['filename'], 'is_live': True # 'is_live': bool(form['is_live']) if str(form['is_live']).lower() != 'false' else False } ModelScheduler.create(data) return True @staticmethod def del_scheduler(db_id: int): logger.debug('del_scheduler %s', db_id) ModelScheduler.find(db_id).delete() @staticmethod def get_channel_info(channel_url: str) -> Optional[dict]: channel_id = channel_url.split('/')[-1] url = f'https://www.vlive.tv/globalv-web/vam-web/member/v1.0/channel-{channel_id}/officialProfiles' params = { 'appId': '8c6cc7b45d2568fb668be6e05b6e5a3b', 'fields': 'officialName', 'types': 'STAR', 'gcc': 'KR', 'locale': 'ko_KR' } headers = { 'Referer': 'https://www.vlive.tv/' } try: json = requests.get(url, params=params, headers=headers).json()[0] except (IndexError, KeyError): # ์ž˜๋ชป๋œ channel_id ๋“ฑ์˜ ์ด์œ ๋กœ ์—‰๋šฑํ•œ ๊ฐ’์ด ๋ฐ˜ํ™˜๋˜๋ฉด return None channel_info = { 'webpage_url': f'https://www.vlive.tv/channel/{channel_id}', 'title': json['officialName'], 'count': LogicMain.get_count_video(channel_url), } return channel_info @staticmethod def get_first_live_video(channel_url: str) -> Optional[str]: channel_id = channel_url.split('/')[-1] url = f'https://www.vlive.tv/globalv-web/vam-web/post/v1.0/channel-{channel_id}/starPosts' params = { 'appId': '8c6cc7b45d2568fb668be6e05b6e5a3b', 'fields': 'contentType,officialVideo,title,url', 'gcc': 'KR', 'locale': 'ko_KR', 'pageSize': 5 } headers = { 'Referer': 'https://www.vlive.tv/' } json = requests.get(url, params=params, headers=headers).json() video_url = None for data in json['data']: if data['contentType'] == 'VIDEO': if data['officialVideo']['type'] == 'LIVE': video_url = data['url'] break return video_url @staticmethod def get_count_video(channel_url: str) -> int: html = requests.get(channel_url).text pattern = re.compile(r'"videoCountOfStar":(\d+)') return int(pattern.findall(html)[0]) @staticmethod def get_recent_html() -> str: url = 'https://www.vlive.tv/home/video/more' params = { 'viewType': 'recent', 'pageSize': 20, 'pageNo': 1, } headers = { 'Accept-Language': 'ko-KR,ko;q=0.8,en-US;q=0.5,en;q=0.3' } html = requests.get(url, params=params, headers=headers).text html = re.sub(r'href="(.+?)"', r'href="https://www.vlive.tv\1"', html) html = re.sub(r'onclick="vlive.tv.common.videoGa\(this\);"', r'onclick="link_click(this); return false;"', html) html = re.sub(r'onclick="vlive.tv.common.chGa\(this\);"|onerror="(.+?)"', '', html) return html ``` #### File: joyfuI/vlive/plugin.py ```python import os import traceback from flask import Blueprint from framework import app, path_data from framework.logger import get_logger from framework.util import Util from framework.common.plugin import get_model_setting, Logic, default_route_single_module class P(object): package_name = __name__.split('.')[0] logger = get_logger(package_name) blueprint = Blueprint(package_name, package_name, url_prefix=f'/{package_name}', template_folder=os.path.join(os.path.dirname(__file__), 'templates'), static_folder=os.path.join(os.path.dirname(__file__), 'static')) # ๋ฉ”๋‰ด ์ •์˜ menu = { 'main': [package_name, 'V LIVE'], 'sub': [ ['setting', '์„ค์ •'], ['recent', '์ตœ๊ทผ ๋ฐฉ์†ก'], ['scheduler', '์Šค์ผ€์ค„๋ง'], ['log', '๋กœ๊ทธ'] ], 'category': 'vod' } plugin_info = { 'version': '2.0.1', 'name': package_name, 'category_name': 'vod', 'icon': '', 'developer': 'joyfuI', 'description': 'V LIVE ๋‹ค์šด๋กœ๋“œ', 'home': f'https://github.com/joyfuI/{package_name}', 'more': '', } ModelSetting = get_model_setting(package_name, logger) logic = None module_list = None home_module = 'recent' # ๊ธฐ๋ณธ๋ชจ๋“ˆ def initialize(): try: app.config['SQLALCHEMY_BINDS'][ P.package_name] = f"sqlite:///{os.path.join(path_data, 'db', f'{P.package_name}.db')}" Util.save_from_dict_to_json(P.plugin_info, os.path.join(os.path.dirname(__file__), 'info.json')) # ๋กœ๋“œํ•  ๋ชจ๋“ˆ ์ •์˜ from .main import LogicMain P.module_list = [LogicMain(P)] P.logic = Logic(P) default_route_single_module(P) except Exception as e: P.logger.error('Exception:%s', e) P.logger.error(traceback.format_exc()) logger = P.logger initialize() ```
{ "source": "joyfuI/youtube", "score": 2 }
#### File: joyfuI/youtube/logic.py ```python import os import traceback import time import sqlite3 from threading import Thread from framework import db, scheduler, path_data from framework.logger import get_logger from framework.job import Job from framework.util import Util from .model import ModelSetting, ModelQueue from .logic_normal import LogicNormal package_name = __name__.split('.')[0] logger = get_logger(package_name) class Logic(object): db_default = { 'db_version': '4', 'interval': '360', 'auto_start': 'False', 'default_save_path': os.path.join(path_data, 'download', package_name), 'default_filename': '%(title)s-%(id)s.%(ext)s', 'cookiefile_path': '' } @staticmethod def db_init(): try: for key, value in Logic.db_default.items(): if db.session.query(ModelSetting).filter_by(key=key).count() == 0: db.session.add(ModelSetting(key, value)) db.session.commit() Logic.migration() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def plugin_load(): try: logger.debug('%s plugin_load', package_name) Logic.db_init() # DB ์ดˆ๊ธฐํ™” # archive ํŒŒ์ผ ์ €์žฅ ํด๋” ์ƒ์„ฑ path = os.path.join(path_data, 'db', package_name) if not os.path.isdir(path): os.makedirs(path) if ModelSetting.get_bool('auto_start'): Logic.scheduler_start() # ํŽธ์˜๋ฅผ ์œ„ํ•ด json ํŒŒ์ผ ์ƒ์„ฑ from .plugin import plugin_info Util.save_from_dict_to_json(plugin_info, os.path.join(os.path.dirname(__file__), 'info.json')) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def plugin_unload(): try: logger.debug('%s plugin_unload', package_name) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def scheduler_start(): try: logger.debug('%s scheduler_start', package_name) interval = ModelSetting.get('interval') job = Job(package_name, package_name, interval, Logic.scheduler_function, '์œ ํŠœ๋ธŒ ์ƒˆ๋กœ์šด ์˜์ƒ ๋‹ค์šด๋กœ๋“œ', False) scheduler.add_job_instance(job) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def scheduler_stop(): try: logger.debug('%s scheduler_stop', package_name) scheduler.remove_job(package_name) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def scheduler_function(): try: LogicNormal.scheduler_function() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def one_execute(): try: if scheduler.is_include(package_name): if scheduler.is_running(package_name): ret = 'is_running' else: scheduler.execute_job(package_name) ret = 'scheduler' else: def func(): time.sleep(2) Logic.scheduler_function() Thread(target=func, args=()).start() ret = 'thread' except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) ret = 'fail' return ret @staticmethod def reset_db(): try: db.session.query(ModelQueue).delete() db.session.commit() return True except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) return False @staticmethod def migration(): try: db_version = ModelSetting.get_int('db_version') connect = sqlite3.connect(os.path.join(path_data, 'db', '%s.db' % package_name)) if db_version < 2: cursor = connect.cursor() cursor.execute("SELECT * FROM youtube_setting WHERE key = 'save_path'") save_path = cursor.fetchone()[2] cursor.execute("UPDATE youtube_setting SET value = ? WHERE key = 'default_save_path'", (save_path,)) cursor.execute("DELETE FROM youtube_setting WHERE key = 'save_path'") cursor.execute("ALTER TABLE youtube_scheduler ADD save_path VARCHAR") cursor.execute("UPDATE youtube_scheduler SET save_path = ?", (save_path,)) cursor.execute("ALTER TABLE youtube_queue ADD save_path VARCHAR") cursor.execute("UPDATE youtube_queue SET save_path = ?", (save_path,)) if db_version < 3: cursor = connect.cursor() cursor.execute("ALTER TABLE youtube_scheduler ADD date_after DATE") cursor.execute("UPDATE youtube_scheduler SET date_after = ?", (None,)) cursor.execute("ALTER TABLE youtube_queue ADD date_after DATE") cursor.execute("UPDATE youtube_queue SET date_after = ?", (None,)) if db_version < 4: cursor = connect.cursor() cursor.execute("ALTER TABLE youtube_scheduler ADD subtitle VARCHAR") cursor.execute("UPDATE youtube_scheduler SET subtitle = ?", (None,)) cursor.execute("ALTER TABLE youtube_queue ADD subtitle VARCHAR") cursor.execute("UPDATE youtube_queue SET subtitle = ?", (None,)) cursor.execute("ALTER TABLE youtube_scheduler ADD playlistreverse BOOLEAN") cursor.execute("UPDATE youtube_scheduler SET playlistreverse = ?", (False,)) cursor.execute("ALTER TABLE youtube_queue ADD playlistreverse BOOLEAN") cursor.execute("UPDATE youtube_queue SET playlistreverse = ?", (False,)) connect.commit() connect.close() ModelSetting.set('db_version', Logic.db_default['db_version']) db.session.flush() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) ``` #### File: joyfuI/youtube/logic_queue.py ```python import traceback import time from threading import Thread from framework.logger import get_logger from .model import ModelSetting, ModelQueue from .api_youtube_dl import APIYoutubeDL package_name = __name__.split('.')[0] logger = get_logger(package_name) class LogicQueue(object): _thread = None @staticmethod def queue_load(): Thread(target=LogicQueue.queue_start).start() @staticmethod def queue_start(): try: time.sleep(10) # youtube-dl ํ”Œ๋Ÿฌ๊ทธ์ธ์ด ์–ธ์ œ ๋กœ๋“œ๋ ์ง€ ๋ชจ๋ฅด๋‹ˆ ์ผ๋‹จ 10์ดˆ ๋Œ€๊ธฐ for i in ModelQueue.get_list(): logger.debug('queue add %s', i.url) date_after = i.date_after.strftime('%Y%m%d') if i.date_after else None download = APIYoutubeDL.download(package_name, i.key, i.url, filename=i.filename, save_path=i.save_path, format_code=i.format, preferredcodec='mp3' if i.convert_mp3 else None, dateafter=date_after, playlist='reverse' if i.playlistreverse else None, start=False, cookiefile=ModelSetting.get('cookiefile_path')) if i.subtitle is not None: sub = APIYoutubeDL.sub(package_name, i.key, i.url, filename=i.filename, save_path=i.save_path, all_subs=False, sub_lang=i.subtitle, auto_sub=True, dateafter=date_after, playlist='reverse' if i.playlistreverse else None, start=True, cookiefile=ModelSetting.get('cookiefile_path')) else: sub = {'errorCode': 0} if download['errorCode'] == 0 and sub['errorCode'] == 0: i.set_index(download['index']) else: logger.debug('queue add fail %s %s', download['errorCode'], sub['errorCode']) i.delete() LogicQueue._thread = Thread(target=LogicQueue.thread_function) LogicQueue._thread.daemon = True LogicQueue._thread.start() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def thread_function(): try: while not ModelQueue.is_empty(): entity = ModelQueue.peek() logger.debug('queue download %s', entity.url) start = APIYoutubeDL.start(package_name, entity.index, entity.key) if start['errorCode'] == 0: while True: time.sleep(10) # 10์ดˆ ๋Œ€๊ธฐ status = APIYoutubeDL.status(package_name, entity.index, entity.key) if status['status'] in ('COMPLETED', 'ERROR', 'STOP'): break else: logger.debug('queue download fail %s', start['errorCode']) entity.delete() except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) @staticmethod def add_queue(url, options): try: options['webpage_url'] = url entity = ModelQueue.create(options) date_after = entity.date_after.strftime('%Y%m%d') if entity.date_after else None download = APIYoutubeDL.download(package_name, entity.key, url, filename=entity.filename, save_path=entity.save_path, format_code=entity.format, preferredcodec='mp3' if entity.convert_mp3 else None, dateafter=date_after, playlist='reverse' if entity.playlistreverse else None, start=False, cookiefile=ModelSetting.get('cookiefile_path')) if entity.subtitle is not None: sub = APIYoutubeDL.sub(package_name, entity.key, url, filename=entity.filename, save_path=entity.save_path, all_subs=False, sub_lang=entity.subtitle, auto_sub=True, dateafter=date_after, playlist='reverse' if entity.playlistreverse else None, start=True, cookiefile=ModelSetting.get('cookiefile_path')) else: sub = {'errorCode': 0} if download['errorCode'] == 0 and sub['errorCode'] == 0: entity.set_index(download['index']) else: logger.debug('queue add fail %s %s', download['errorCode'], sub['errorCode']) entity.delete() return None if not LogicQueue._thread.is_alive(): LogicQueue._thread = Thread(target=LogicQueue.thread_function) LogicQueue._thread.daemon = True LogicQueue._thread.start() return entity except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) return None ``` #### File: joyfuI/youtube/plugin.py ```python import os import traceback from datetime import date from flask import Blueprint, request, render_template, redirect, jsonify from flask_login import login_required from framework import scheduler, socketio from framework.logger import get_logger from .logic import Logic from .logic_normal import LogicNormal from .logic_queue import LogicQueue from .model import ModelSetting package_name = __name__.split('.')[0] logger = get_logger(package_name) ######################################################### # ํ”Œ๋Ÿฌ๊ทธ์ธ ๊ณต์šฉ ######################################################### blueprint = Blueprint(package_name, package_name, url_prefix='/%s' % package_name, template_folder=os.path.join(os.path.dirname(__file__), 'templates'), static_folder=os.path.join(os.path.dirname(__file__), 'static')) menu = { 'main': [package_name, '์œ ํŠœ๋ธŒ'], 'sub': [ ['setting', '์„ค์ •'], ['request', '์š”์ฒญ'], ['scheduler', '์Šค์ผ€์ค„๋ง'], ['log', '๋กœ๊ทธ'] ], 'category': 'vod' } plugin_info = { 'version': '2.1.0', 'name': 'youtube', 'category_name': 'vod', 'developer': 'joyfuI', 'description': 'YouTube ๋‹ค์šด๋กœ๋“œ', 'home': 'https://github.com/joyfuI/youtube', 'more': '' } def plugin_load(): Logic.plugin_load() LogicQueue.queue_load() def plugin_unload(): Logic.plugin_unload() ######################################################### # WEB Menu ######################################################### @blueprint.route('/') def home(): return redirect('/%s/request' % package_name) @blueprint.route('/<sub>') @login_required def first_menu(sub): try: arg = { 'package_name': package_name, 'template_name': '%s_%s' % (package_name, sub) } if sub == 'setting': arg.update(ModelSetting.to_dict()) arg['scheduler'] = str(scheduler.is_include(package_name)) arg['is_running'] = str(scheduler.is_running(package_name)) return render_template('%s_%s.html' % (package_name, sub), arg=arg) elif sub == 'request': arg['url'] = request.args.get('url', '') arg['save_path'] = ModelSetting.get('default_save_path') arg['filename'] = ModelSetting.get('default_filename') arg['preset_list'] = LogicNormal.get_preset_list() arg['date_after'] = date.today() return render_template('%s_%s.html' % (package_name, sub), arg=arg) elif sub == 'scheduler': arg['save_path'] = ModelSetting.get('default_save_path') arg['filename'] = ModelSetting.get('default_filename') arg['preset_list'] = LogicNormal.get_preset_list() arg['date_after'] = date.today() return render_template('%s_%s.html' % (package_name, sub), arg=arg) elif sub == 'log': return render_template('log.html', package=package_name) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) return render_template('sample.html', title='%s - %s' % (package_name, sub)) ######################################################### # For UI ######################################################### @blueprint.route('/ajax/<sub>', methods=['POST']) @login_required def ajax(sub): logger.debug('AJAX %s %s', package_name, sub) try: # ๊ณตํ†ต ์š”์ฒญ if sub == 'setting_save': ret = ModelSetting.setting_save(request) return jsonify(ret) elif sub == 'scheduler': go = request.form['scheduler'] logger.debug('scheduler:%s', go) if go == 'true': Logic.scheduler_start() else: Logic.scheduler_stop() return jsonify(go) elif sub == 'one_execute': ret = Logic.one_execute() return jsonify(ret) elif sub == 'reset_db': ret = Logic.reset_db() return jsonify(ret) # UI ์š”์ฒญ elif sub == 'analysis': url = request.form['url'] ret = LogicNormal.analysis(url) return jsonify(ret) elif sub == 'add_download': ret = LogicNormal.download(request.form) return jsonify(ret) elif sub == 'list_scheduler': ret = LogicNormal.get_scheduler() return jsonify(ret) elif sub == 'add_scheduler': ret = LogicNormal.add_scheduler(request.form) return jsonify(ret) elif sub == 'del_scheduler': ret = LogicNormal.del_scheduler(request.form['id']) return jsonify(ret) elif sub == 'del_archive': LogicNormal.del_archive(request.form['id']) return jsonify([]) except Exception as e: logger.error('Exception:%s', e) logger.error(traceback.format_exc()) ######################################################### # socketio ######################################################### def socketio_emit(cmd, data): socketio.emit(cmd, data, namespace='/%s' % package_name, broadcast=True) ```
{ "source": "joyfulflyer/billboard-reader", "score": 3 }
#### File: billboard-reader/grabber/load_songs.py ```python import billboard import os import time from . import database_connection from . import saver Session = database_connection.connect(os.environ['DATABASE']) def scrape_for_year(year): yearString = str(year) firstChart = billboard.ChartData('hot-100', date=yearString + '-01-01', fetch=True) chart = firstChart while yearString in chart.date: print("Saving date" + chart.date) saver.save_chart(chart, Session) time.sleep(10) # robots.txt requests 10 seconds per request try: chart = billboard.ChartData('hot-100', chart.nextDate) except AttributeError: return ``` #### File: billboard-reader/reader/getHot100ByDate.py ```python import billboard from flask import Flask app = Flask(__name__) # chart = billboard.ChartData('hot-100', date='1965-03-25', fetch=True, timeout=30) @app.route("/seeChart/<chosenDate>") def seeChart(chosenDate): newChart = billboard.ChartData('hot-100', date=chosenDate, fetch=True, timeout=30) return str(newChart) # uncomment for flask # if __name__ == "__main__": # app.run() ``` #### File: billboard-reader/reader/getSongsFlaskApp.py ```python from flask import Flask import billboardReader.songDatabase as db import billboardReader.songSearch from billboardReader.songDataSource import DataSource import json app = Flask(__name__) @app.route("/partialSong/<input>") def partialSong(input): data = DataSource().getSongsWithPartialName(input) return str(json.dumps(data)) def start(): app.run() # uncomment for flask if __name__ == "__main__": app.run() ``` #### File: reader/models/song.py ```python from . base import Base from sqlalchemy import Integer, Column, String class Song(Base): __tablename__ = 'songs' id = Column(Integer, primary_key=True) name = Column(String) artist = Column(String) def __repr__(self): return "Song: <id='%r', name='%r', artist='%r'>" % (self.id, self.name, self.artist) ``` #### File: billboard-reader/reader/songDatabase.py ```python import sys import billboard import sqlite3 import datetime import time def connect(): print('connecting to db') sys.stdout.flush() conn = sqlite3.connect('charts.db') return conn def getCursor(conn): sys.stdout.flush() c = conn.cursor() return c def dropTables(conn): c = conn.cursor() print('dropping table') c.execute(''' DROP TABLE IF EXISTS songs''') c.execute(''' DROP TABLE IF EXISTS charts ''') c.execute(''' DROP TABLE IF EXISTS entries ''') sys.stdout.flush() def connectAndCreate(): conn = connect() createTables(conn) return conn def createTables(conn): c = conn.cursor() print("creating table") c.execute(''' CREATE TABLE IF NOT EXISTS entries (id integer primary key, name text, artist text, place integer, peak_position integer, last_position integer, weeks_on_chart integer, chart_id integer, song_id integer) ''') c.execute(''' CREATE TABLE IF NOT EXISTS charts (id integer primary key, type text, date_string text unique) ''') c.execute(''' CREATE TABLE IF NOT EXISTS songs (id integer primary key, name text, artist text)''') conn.commit() sys.stdout.flush() def getInitialChart(): chart = billboard.ChartData('hot-100', fetch=True, timeout=30) return chart def scrapeDataFromChartIntoConnection(chart, conn): while chart.previousDate and "2017" not in chart.date: saveChart(chart, conn) chart = billboard.ChartData('hot-100', chart.previousDate, timeout=45) def saveChart(chart, conn): c = conn.cursor() try: c.execute(''' INSERT INTO charts(type, date_string) VALUES (?, ?) ''', ("hot-100", chart.date)) except sqlite3.IntegrityError: return rowId = c.lastrowid for i, entry in enumerate(chart.entries): c.execute(''' INSERT INTO entries( name, artist, place, peak_position, last_position, weeks_on_chart, chart_id) VALUES (?, ?, ?, ?, ?, ?, ?) ''', (entry.title, entry.artist, entry.rank, entry.peakPos, entry.lastPos, entry.weeks, rowId)) conn.commit() def crawlEntriesForSongs(cursor): songs = [] # gives me the distinct name/artist combos entries = cursor.execute(''' SELECT DISTINCT name, artist FROM entries ''').fetchone() entry = cursor.execute(''' SELECT * FROM entries WHERE name = ? AND artist = ? ''', (entries[0], entries[1])).fetchall() return entry def doesDatabaseContainDate(date, conn): c = conn.cursor() countTuple = c.execute(''' SELECT count(*) from charts WHERE date_string IS ? ''', (date,)).fetchone() count = countTuple[0] return count > 0 def scrapeDataForYear(year, conn, onYearDone): finalDate = getFinalDate(year) lastChart = billboard.ChartData('hot-100', date=finalDate, fetch=True, timeout=30) prevYear = getPreviousYear(year) chart = lastChart while(chart.previousDate and prevYear not in chart.date): saveChart(chart, conn) onYearDone() time.sleep(10) chart = billboard.ChartData('hot-100', chart.previousDate, timeout=45) def getFinalDate(year): now = datetime.date.today() delt = datetime.timedelta(weeks=1) then = now - delt if year == now.year: finalDate = "{}-{:0>2}-{:0>2}".format(then.year, then.month, then.day) else: finalDate = str(year) + '-12-31' return finalDate def getPreviousYear(year): return str(int(year) - 1) def hasData(conn): c = getCursor(conn) c.execute(''' SELECT count(*) FROM songs ''') data = c.fetchall() return len(list(data)) is not 0 def getSavedSongsFromConnection(conn): c = conn.cursor() songs = c.execute('SELECT * FROM songs').fetchall() return songs # Grabs all the songs in the database as a list. # Assumes it's of an ok size to have in memory def getAllSavedSongs(): conn = connect() c = conn.cursor() songs = c.execute('SELECT * FROM songs').fetchall() conn.close() return songs ```
{ "source": "joyfulflyer/billboard-song-converter", "score": 2 }
#### File: joyfulflyer/billboard-song-converter/db_saver.py ```python import asyncio import functools import logging from sqlalchemy import desc, exc from models.chart import Chart from models.entry import Entry from models.song import Song from models.tiered_song import SONG_TYPE_BASIC, Tiered_Song from models.tiered_song_entry import Tiered_Song_Entry from models.tiered_song_link import Tiered_Song_Link logger = logging.getLogger(__name__) def create_song(name, artist, session): new_song = Song(name=name, artist=artist) return _commit_and_return(session, new_song) async def create_song_async(name, artist, session): loop = asyncio.get_running_loop() return await loop.run_in_executor( None, functools.partial(create_song, name, artist, session)) def create_tiered_song(session, name, artist, song_type): new_tiered_song = Tiered_Song(name=name, artist=artist, song_type=song_type) return _commit_and_return(session, new_tiered_song) def create_tiered_song_link(session, entry, tiered_song): new_entry = Tiered_Song_Entry(entry_id=entry.id, tiered_song_id=tiered_song.id) return _commit_and_return(session, new_entry) def create_link_between_tiered_songs(session, from_id, to_id): new_link = Tiered_Song_Link(from_id=from_id, to_id=to_id) return _commit_and_return(session, new_link) def _commit_and_return(session, item): session.add(item) session.commit() return item ``` #### File: joyfulflyer/billboard-song-converter/entry_generators.py ```python import db_retriever from instrument import instrument STEP = 5000 # Applies a step function to the entry func # entry_func returns lists (or generators) of entries # Iterate over this to get lists to iterate over # We're mostly generating a step and an offset but using those to get the lists of entries def _step_generator(session, entry_func, limit, batch_size): step = batch_size if limit < step: step = limit # step is lower of limit and batch size offset = 0 while offset <= limit: entries = entry_func(session=session, step=step, offset=offset) if len(entries) > 0: yield entries else: return offset = offset + step def _calculate_step(limit, batch_size): step = batch_size if limit < step: step = limit return step # Gives list of steps def _step_2(limit, step): offset = 0 while offset <= limit: yield offset offset = offset + step # Returns individual entries. def entries_with_no_tiered_songs_singular(session, limit=float('inf'), batch_size=STEP): step = _calculate_step(limit, batch_size) for offset in _step_2(limit, step): if offset > limit: return entries = _get_entries_with_no_tiered_song_limited_offset( session, step, offset) if len(entries) == 0: return for entry in entries: yield entry def _get_entries_with_no_tiered_song_limited_offset(session, step, offset): return db_retriever.get_entries_with_no_tiered_song(session, limit=step, offset=offset) def entries_without_song_id_steps(session, limit=float('inf')): step = STEP if limit < step: step = limit offset = 0 while offset + step <= limit: entries = db_retriever.get_entries_with_song_id_pagination( session, -1, limit=step, offset=offset) if len(entries) > 0: yield entries else: return offset = offset + step ``` #### File: billboard-song-converter/models/tiered_song_link.py ```python from sqlalchemy import Column, Integer, String, ForeignKey from models.base import Base from models.tiered_song import Tiered_Song class Tiered_Song_Link(Base): __tablename__ = 'tiered_song_links' id = Column(Integer, primary_key=True) from_id = Column(Integer, ForeignKey("%s.id" % (Tiered_Song.__tablename__))) to_id = Column(Integer, ForeignKey("%s.id" % (Tiered_Song.__tablename__))) def __repr__(self): return "Song to entry: <id=%r, from id=%r, to id=%r>" % \ (self.id, self.from_id, self.to_id) ``` #### File: joyfulflyer/billboard-song-converter/Session.py ```python import database_connection from config import Config as config _session_makers = {} def get_session(url=None, timeout=0): if url is None: url = database_connection.create_url_from_parts( username=config.username, password=config.password, host=config.host, dbname=config.db_name) if url not in _session_makers: Session = database_connection.connect(url) if timeout and not database_connection.wait_for_db_connection( Session, timeout): raise Exception('Unavailalble') _session_makers[url] = Session return _session_makers[url] # proxy for more descriptive name def get_session_maker(url=None): return get_session(url) ```
{ "source": "joyfulflyer/billboard-spotify", "score": 3 }
#### File: billboard-spotify/models/song.py ```python from . base import Base from sqlalchemy import Integer, Column, String, ForeignKey class Song(Base): __tablename__ = 'songs' id = Column(Integer, primary_key=True) name = Column(String(256), nullable=False) artist = Column(String(128), nullable=False) spotify_id = Column(Integer, nullable=True) search_term = Column(String(256), nullable=True) search_results = Column(Integer, nullable=True) def __repr__(self): return "Song: <id=%r, name=%r, spotify_id=%r>" % \ (self.id, self.name, self.spotify_id) ``` #### File: joyfulflyer/billboard-spotify/search.py ```python from spotify_auth import auth from urllib import parse import json def search(track_name, artist, type='track'): parsed = parse.quote_plus(query) query = "artist:{}%20track:{}".format(artist, track_name) response = auth.get( 'https://api.spotify.com/v1/search?q={}&type={}'.format(query, type)) response_object = json.loads(response.text) return response_object ```
{ "source": "joyfulflyer/billboard-viewer", "score": 3 }
#### File: reader/elastic/elastic.py ```python import requests import json s = requests.Session() DEFAULT_URL = "http://localhost:9200/" DEFAULT_HOST = "localhost" DEFAULT_PORT = "9200" DEFAULT_SCHEME = "http" SEARCH_PATH = "song/_search/" host = DEFAULT_HOST scheme = DEFAULT_SCHEME port = DEFAULT_PORT def create_url(): return f"{scheme}://{host}:{port}/" def search_for_song(query): data = {"query": {"match": {"name": {"query": query}}}} return s.post(create_url() + SEARCH_PATH, json=data).json() def results_for_song_search(query): response = search_for_song(query) hits = response['hits'] return hits['hits'] ``` #### File: reader/models/chart.py ```python from .base import Base from sqlalchemy import Integer, Column, String class Chart(Base): __tablename__ = 'charts' id = Column(Integer, primary_key=True) chart_type = Column('type', String(128)) date_string = Column(String(128)) next_chart_date = Column(String(128)) def get_year(self): return self.date_string.split('-')[0] def __repr__(self): return "Chart: <id=%r, type=%r, date=%r>" % (self.id, self.chart_type, self.date_string) ```
{ "source": "joyghosh/tiny", "score": 3 }
#### File: src/mapper/mock.py ```python mock_cache = {} def insert(key, value): if(not mock_cache.has_key(key)): mock_cache[key] = value return mock_cache[key] def remove(key): if(mock_cache.has_key(key)): del mock_cache[key] def get(key): return mock_cache[key] ```