Datasets:

License:
File size: 14,450 Bytes
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e9659
 
 
31f2abc
 
 
4a9895d
 
 
3916f34
 
 
d85d1df
 
 
65a1ba2
 
 
6ffae49
 
 
cdf7b04
 
 
9713763
 
 
2257c61
 
 
ae3ae8f
 
 
2de2eea
 
 
dd45fd8
 
 
c5cda10
 
 
75fb32b
 
 
44e55f7
 
 
9c2c27c
 
 
6069fd2
 
 
808c18f
 
 
c4c7d0e
 
 
4d41ab7
 
 
004b824
 
 
bfcea5a
 
 
62d107e
 
 
0618d19
 
 
882fe78
 
 
9a19803
 
 
cd025d4
 
 
 
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e9659
 
60ebae7
 
5a7386c
 
467af37
 
54489e1
 
6e7f700
 
19a379d
 
3916f34
 
d85d1df
 
65a1ba2
 
88e3057
 
21a38a7
 
a51effb
 
eea7817
 
4f6110d
 
08fb342
 
64019ba
 
db0cc88
 
3c1e8a9
 
07bf7b7
 
1116bd5
 
672ab6e
 
79a4c7d
 
c4c7d0e
 
4d41ab7
 
882fe78
 
9a19803
 
cd025d4
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
license: cc-by-sa-4.0
dataset_info:
  features:
  - name: video_id
    dtype: string
  - name: chunk_idx
    dtype: int64
  - name: chunk_text
    dtype: string
  - name: video_metadata
    dtype: string
  - name: video_language
    dtype: string
  - name: chunk_media
    dtype: string
  splits:
  - name: shard_0
    num_bytes: 2152532
    num_examples: 694
  - name: shard_1
    num_bytes: 2039321
    num_examples: 628
  - name: shard_10
    num_bytes: 1711625
    num_examples: 502
  - name: shard_100
    num_bytes: 1879092
    num_examples: 608
  - name: shard_1000
    num_bytes: 2554377
    num_examples: 631
  - name: shard_10000
    num_bytes: 1436826
    num_examples: 409
  - name: shard_10001
    num_bytes: 2566374
    num_examples: 919
  - name: shard_10002
    num_bytes: 1441850
    num_examples: 416
  - name: shard_10003
    num_bytes: 1479331
    num_examples: 453
  - name: shard_10004
    num_bytes: 2304946
    num_examples: 665
  - name: shard_10005
    num_bytes: 2326767
    num_examples: 765
  - name: shard_10008
    num_bytes: 2405272
    num_examples: 769
  - name: shard_10006
    num_bytes: 2272052
    num_examples: 667
  - name: shard_10007
    num_bytes: 2369366
    num_examples: 632
  - name: shard_10009
    num_bytes: 2081310
    num_examples: 626
  - name: shard_1001
    num_bytes: 2383462
    num_examples: 664
  - name: shard_10010
    num_bytes: 4633710
    num_examples: 1011
  - name: shard_10011
    num_bytes: 2031992
    num_examples: 572
  - name: shard_10016
    num_bytes: 1524141
    num_examples: 440
  - name: shard_10025
    num_bytes: 1763936
    num_examples: 547
  - name: shard_10027
    num_bytes: 2009449
    num_examples: 561
  - name: shard_1004
    num_bytes: 2236232
    num_examples: 679
  - name: shard_10015
    num_bytes: 1936158
    num_examples: 651
  - name: shard_10022
    num_bytes: 1375721
    num_examples: 381
  - name: shard_10020
    num_bytes: 1851431
    num_examples: 572
  - name: shard_10024
    num_bytes: 2066917
    num_examples: 621
  - name: shard_10012
    num_bytes: 2046815
    num_examples: 626
  - name: shard_10013
    num_bytes: 2377377
    num_examples: 691
  - name: shard_10014
    num_bytes: 1775675
    num_examples: 492
  - name: shard_10017
    num_bytes: 3541944
    num_examples: 1225
  - name: shard_1002
    num_bytes: 2343929
    num_examples: 603
  - name: shard_10039
    num_bytes: 2087969
    num_examples: 600
  - name: shard_10033
    num_bytes: 2335915
    num_examples: 676
  - name: shard_10046
    num_bytes: 1849419
    num_examples: 521
  - name: shard_10031
    num_bytes: 1783883
    num_examples: 478
  - name: shard_10036
    num_bytes: 1701763
    num_examples: 490
  - name: shard_1005
    num_bytes: 2555364
    num_examples: 580
  - name: shard_10026
    num_bytes: 1930478
    num_examples: 585
  download_size: 111740994
  dataset_size: 81164721
configs:
- config_name: default
  data_files:
  - split: shard_0
    path: data/shard_0-*
  - split: shard_1
    path: data/shard_1-*
  - split: shard_10
    path: data/shard_10-*
  - split: shard_100
    path: data/shard_100-*
  - split: shard_1000
    path: data/shard_1000-*
  - split: shard_10000
    path: data/shard_10000-*
  - split: shard_10001
    path: data/shard_10001-*
  - split: shard_10002
    path: data/shard_10002-*
  - split: shard_10003
    path: data/shard_10003-*
  - split: shard_10004
    path: data/shard_10004-*
  - split: shard_10005
    path: data/shard_10005-*
  - split: shard_10011
    path: data/shard_10011-*
  - split: shard_10008
    path: data/shard_10008-*
  - split: shard_10010
    path: data/shard_10010-*
  - split: shard_10013
    path: data/shard_10013-*
  - split: shard_10006
    path: data/shard_10006-*
  - split: shard_10012
    path: data/shard_10012-*
  - split: shard_10007
    path: data/shard_10007-*
  - split: shard_10009
    path: data/shard_10009-*
  - split: shard_1001
    path: data/shard_1001-*
  - split: shard_10014
    path: data/shard_10014-*
  - split: shard_10016
    path: data/shard_10016-*
  - split: shard_10015
    path: data/shard_10015-*
  - split: shard_10022
    path: data/shard_10022-*
  - split: shard_10025
    path: data/shard_10025-*
  - split: shard_10020
    path: data/shard_10020-*
  - split: shard_10027
    path: data/shard_10027-*
  - split: shard_10031
    path: data/shard_10031-*
  - split: shard_10024
    path: data/shard_10024-*
  - split: shard_10046
    path: data/shard_10046-*
  - split: shard_1004
    path: data/shard_1004-*
  - split: shard_10039
    path: data/shard_10039-*
  - split: shard_10033
    path: data/shard_10033-*
  - split: shard_10017
    path: data/shard_10017-*
  - split: shard_1002
    path: data/shard_1002-*
  - split: shard_10036
    path: data/shard_10036-*
  - split: shard_1005
    path: data/shard_1005-*
  - split: shard_10026
    path: data/shard_10026-*
---

![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)

# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.

## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```

- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and  text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English <text> corresponds roughly to 20 seconds of video). 
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. 

- Data Components:
  - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. 
  - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. 
  - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.

- Dataset Size:
  - **About 15,000,000 images.**
  - **About 30,000,000 audio snippets.**

## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes timestamps and alignment between modalities.

## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and contextual keywords, provide linguistic alignment.

## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns.

------

## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the snippets of these videos here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. 
[Todo: Put in AS-IS WHERE-AS usage disclaimer]


## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.

## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias. 


## Ethical Considerations
The dataset was built under the principles of fair use and CC BY-SA licensing. Its creation strives to align with the spirit of the  EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.

------

## Policy for Managing Video Deletion Requests

Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.

- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.

- **2. Deletion Request Process:**
  - Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en). 
  - Then verifying that it has been removed from YouTube and providing this feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
  - Requests must demonstrate that the video is no longer publicly available on YouTube.
  - We will remove the confirmed videos in the next release of this dataset.

- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
The rights and wishes of content owners, including their ability to remove their videos from public availability.
The community's need for robust datasets for training and research.
The spirit of the CC-BY license, which permits redistribution and use with proper attribution.

- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.

- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.

- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.

- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.

------
## Related Materials:

  - If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [https://huggingface.co/datasets/PleIAs/YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
  - Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [https://huggingface.co/datasets/HuggingFaceFV/finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)

## Acknowledgement and Thanks

This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of the EUHPC grant EUHPC_E03_068 for the Leonardo supercomputers resources in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank EuroHPC and Cineca, as well as Huggingface and the open source community for their support.

## About the Contributors:

- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io  
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.  
- [**Ontocord**](https://www.ontocord.ai/ ) is a technology company focused on legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.  
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives.  We believe everyone deserves to harness the power of personal intelligence. 
- And many others ...
  
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```