Datasets:
Delete loading script
Browse files- conll2012_ontonotesv5.py +0 -816
conll2012_ontonotesv5.py
DELETED
@@ -1,816 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""CoNLL2012 shared task data based on OntoNotes 5.0"""
|
16 |
-
|
17 |
-
import glob
|
18 |
-
import os
|
19 |
-
from collections import defaultdict
|
20 |
-
from typing import DefaultDict, Iterator, List, Optional, Tuple
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{pradhan-etal-2013-towards,
|
27 |
-
title = "Towards Robust Linguistic Analysis using {O}nto{N}otes",
|
28 |
-
author = {Pradhan, Sameer and
|
29 |
-
Moschitti, Alessandro and
|
30 |
-
Xue, Nianwen and
|
31 |
-
Ng, Hwee Tou and
|
32 |
-
Bj{\"o}rkelund, Anders and
|
33 |
-
Uryupina, Olga and
|
34 |
-
Zhang, Yuchen and
|
35 |
-
Zhong, Zhi},
|
36 |
-
booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
|
37 |
-
month = aug,
|
38 |
-
year = "2013",
|
39 |
-
address = "Sofia, Bulgaria",
|
40 |
-
publisher = "Association for Computational Linguistics",
|
41 |
-
url = "https://aclanthology.org/W13-3516",
|
42 |
-
pages = "143--152",
|
43 |
-
}
|
44 |
-
|
45 |
-
Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, \
|
46 |
-
Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, \
|
47 |
-
Mohammed El-Bachouti, Robert Belvin, Ann Houston. \
|
48 |
-
OntoNotes Release 5.0 LDC2013T19. \
|
49 |
-
Web Download. Philadelphia: Linguistic Data Consortium, 2013.
|
50 |
-
"""
|
51 |
-
|
52 |
-
_DESCRIPTION = """\
|
53 |
-
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
|
54 |
-
multilingual corpus manually annotated with syntactic, semantic and discourse information.
|
55 |
-
|
56 |
-
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
|
57 |
-
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
|
58 |
-
|
59 |
-
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
|
60 |
-
|
61 |
-
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
|
62 |
-
|
63 |
-
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
|
64 |
-
"""
|
65 |
-
|
66 |
-
_URL = "https://data.mendeley.com/public-files/datasets/zmycy7t9h9/files/b078e1c4-f7a4-4427-be7f-9389967831ef/file_downloaded"
|
67 |
-
|
68 |
-
|
69 |
-
class Conll2012Ontonotesv5Config(datasets.BuilderConfig):
|
70 |
-
"""BuilderConfig for the CoNLL formatted OntoNotes dataset."""
|
71 |
-
|
72 |
-
def __init__(self, language=None, conll_version=None, **kwargs):
|
73 |
-
"""BuilderConfig for the CoNLL formatted OntoNotes dataset.
|
74 |
-
|
75 |
-
Args:
|
76 |
-
language: string, one of the language {"english", "chinese", "arabic"} .
|
77 |
-
conll_version: string, "v4" or "v12". Note there is only English v12.
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
assert language in ["english", "chinese", "arabic"]
|
81 |
-
assert conll_version in ["v4", "v12"]
|
82 |
-
if conll_version == "v12":
|
83 |
-
assert language == "english"
|
84 |
-
super(Conll2012Ontonotesv5Config, self).__init__(
|
85 |
-
name=f"{language}_{conll_version}",
|
86 |
-
description=f"{conll_version} of CoNLL formatted OntoNotes dataset for {language}.",
|
87 |
-
version=datasets.Version("1.0.0"), # hf dataset script version
|
88 |
-
**kwargs,
|
89 |
-
)
|
90 |
-
self.language = language
|
91 |
-
self.conll_version = conll_version
|
92 |
-
|
93 |
-
|
94 |
-
class Conll2012Ontonotesv5(datasets.GeneratorBasedBuilder):
|
95 |
-
"""The CoNLL formatted OntoNotes dataset."""
|
96 |
-
|
97 |
-
BUILDER_CONFIGS = [
|
98 |
-
Conll2012Ontonotesv5Config(
|
99 |
-
language=lang,
|
100 |
-
conll_version="v4",
|
101 |
-
)
|
102 |
-
for lang in ["english", "chinese", "arabic"]
|
103 |
-
] + [
|
104 |
-
Conll2012Ontonotesv5Config(
|
105 |
-
language="english",
|
106 |
-
conll_version="v12",
|
107 |
-
)
|
108 |
-
]
|
109 |
-
|
110 |
-
def _info(self):
|
111 |
-
lang = self.config.language
|
112 |
-
conll_version = self.config.conll_version
|
113 |
-
if lang == "arabic":
|
114 |
-
pos_tag_feature = datasets.Value("string")
|
115 |
-
else:
|
116 |
-
tag_set = _POS_TAGS[f"{lang}_{conll_version}"]
|
117 |
-
pos_tag_feature = datasets.ClassLabel(num_classes=len(tag_set), names=tag_set)
|
118 |
-
|
119 |
-
return datasets.DatasetInfo(
|
120 |
-
description=_DESCRIPTION,
|
121 |
-
features=datasets.Features(
|
122 |
-
{
|
123 |
-
"document_id": datasets.Value("string"),
|
124 |
-
"sentences": [
|
125 |
-
{
|
126 |
-
"part_id": datasets.Value("int32"),
|
127 |
-
"words": datasets.Sequence(datasets.Value("string")),
|
128 |
-
"pos_tags": datasets.Sequence(pos_tag_feature),
|
129 |
-
"parse_tree": datasets.Value("string"),
|
130 |
-
"predicate_lemmas": datasets.Sequence(datasets.Value("string")),
|
131 |
-
"predicate_framenet_ids": datasets.Sequence(datasets.Value("string")),
|
132 |
-
"word_senses": datasets.Sequence(datasets.Value("float32")),
|
133 |
-
"speaker": datasets.Value("string"),
|
134 |
-
"named_entities": datasets.Sequence(
|
135 |
-
datasets.ClassLabel(num_classes=37, names=_NAMED_ENTITY_TAGS)
|
136 |
-
),
|
137 |
-
"srl_frames": [
|
138 |
-
{
|
139 |
-
"verb": datasets.Value("string"),
|
140 |
-
"frames": datasets.Sequence(datasets.Value("string")),
|
141 |
-
}
|
142 |
-
],
|
143 |
-
"coref_spans": datasets.Sequence(datasets.Sequence(datasets.Value("int32"), length=3)),
|
144 |
-
}
|
145 |
-
],
|
146 |
-
}
|
147 |
-
),
|
148 |
-
homepage="https://conll.cemantix.org/2012/introduction.html",
|
149 |
-
citation=_CITATION,
|
150 |
-
)
|
151 |
-
|
152 |
-
def _split_generators(self, dl_manager):
|
153 |
-
lang = self.config.language
|
154 |
-
conll_version = self.config.conll_version
|
155 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
156 |
-
data_dir = os.path.join(dl_dir, f"conll-2012/{conll_version}/data")
|
157 |
-
|
158 |
-
return [
|
159 |
-
datasets.SplitGenerator(
|
160 |
-
name=datasets.Split.TRAIN,
|
161 |
-
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"train/data/{lang}")},
|
162 |
-
),
|
163 |
-
datasets.SplitGenerator(
|
164 |
-
name=datasets.Split.VALIDATION,
|
165 |
-
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"development/data/{lang}")},
|
166 |
-
),
|
167 |
-
datasets.SplitGenerator(
|
168 |
-
name=datasets.Split.TEST,
|
169 |
-
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"test/data/{lang}")},
|
170 |
-
),
|
171 |
-
]
|
172 |
-
|
173 |
-
def _generate_examples(self, conll_files_directory):
|
174 |
-
conll_files = sorted(glob.glob(os.path.join(conll_files_directory, "**/*gold_conll"), recursive=True))
|
175 |
-
for idx, conll_file in enumerate(conll_files):
|
176 |
-
sentences = []
|
177 |
-
for sent in Ontonotes().sentence_iterator(conll_file):
|
178 |
-
document_id = sent.document_id
|
179 |
-
sentences.append(
|
180 |
-
{
|
181 |
-
"part_id": sent.sentence_id, # should be part id, according to https://conll.cemantix.org/2012/data.html
|
182 |
-
"words": sent.words,
|
183 |
-
"pos_tags": sent.pos_tags,
|
184 |
-
"parse_tree": sent.parse_tree,
|
185 |
-
"predicate_lemmas": sent.predicate_lemmas,
|
186 |
-
"predicate_framenet_ids": sent.predicate_framenet_ids,
|
187 |
-
"word_senses": sent.word_senses,
|
188 |
-
"speaker": sent.speakers[0],
|
189 |
-
"named_entities": sent.named_entities,
|
190 |
-
"srl_frames": [{"verb": f[0], "frames": f[1]} for f in sent.srl_frames],
|
191 |
-
"coref_spans": [(c[0], *c[1]) for c in sent.coref_spans],
|
192 |
-
}
|
193 |
-
)
|
194 |
-
yield idx, {"document_id": document_id, "sentences": sentences}
|
195 |
-
|
196 |
-
|
197 |
-
# --------------------------------------------------------------------------------------------------------
|
198 |
-
# Tag set
|
199 |
-
_NAMED_ENTITY_TAGS = [
|
200 |
-
"O", # out of named entity
|
201 |
-
"B-PERSON",
|
202 |
-
"I-PERSON",
|
203 |
-
"B-NORP",
|
204 |
-
"I-NORP",
|
205 |
-
"B-FAC", # FACILITY
|
206 |
-
"I-FAC",
|
207 |
-
"B-ORG", # ORGANIZATION
|
208 |
-
"I-ORG",
|
209 |
-
"B-GPE",
|
210 |
-
"I-GPE",
|
211 |
-
"B-LOC",
|
212 |
-
"I-LOC",
|
213 |
-
"B-PRODUCT",
|
214 |
-
"I-PRODUCT",
|
215 |
-
"B-DATE",
|
216 |
-
"I-DATE",
|
217 |
-
"B-TIME",
|
218 |
-
"I-TIME",
|
219 |
-
"B-PERCENT",
|
220 |
-
"I-PERCENT",
|
221 |
-
"B-MONEY",
|
222 |
-
"I-MONEY",
|
223 |
-
"B-QUANTITY",
|
224 |
-
"I-QUANTITY",
|
225 |
-
"B-ORDINAL",
|
226 |
-
"I-ORDINAL",
|
227 |
-
"B-CARDINAL",
|
228 |
-
"I-CARDINAL",
|
229 |
-
"B-EVENT",
|
230 |
-
"I-EVENT",
|
231 |
-
"B-WORK_OF_ART",
|
232 |
-
"I-WORK_OF_ART",
|
233 |
-
"B-LAW",
|
234 |
-
"I-LAW",
|
235 |
-
"B-LANGUAGE",
|
236 |
-
"I-LANGUAGE",
|
237 |
-
]
|
238 |
-
|
239 |
-
_POS_TAGS = {
|
240 |
-
"english_v4": [
|
241 |
-
"XX", # missing
|
242 |
-
"``",
|
243 |
-
"$",
|
244 |
-
"''",
|
245 |
-
",",
|
246 |
-
"-LRB-", # (
|
247 |
-
"-RRB-", # )
|
248 |
-
".",
|
249 |
-
":",
|
250 |
-
"ADD",
|
251 |
-
"AFX",
|
252 |
-
"CC",
|
253 |
-
"CD",
|
254 |
-
"DT",
|
255 |
-
"EX",
|
256 |
-
"FW",
|
257 |
-
"HYPH",
|
258 |
-
"IN",
|
259 |
-
"JJ",
|
260 |
-
"JJR",
|
261 |
-
"JJS",
|
262 |
-
"LS",
|
263 |
-
"MD",
|
264 |
-
"NFP",
|
265 |
-
"NN",
|
266 |
-
"NNP",
|
267 |
-
"NNPS",
|
268 |
-
"NNS",
|
269 |
-
"PDT",
|
270 |
-
"POS",
|
271 |
-
"PRP",
|
272 |
-
"PRP$",
|
273 |
-
"RB",
|
274 |
-
"RBR",
|
275 |
-
"RBS",
|
276 |
-
"RP",
|
277 |
-
"SYM",
|
278 |
-
"TO",
|
279 |
-
"UH",
|
280 |
-
"VB",
|
281 |
-
"VBD",
|
282 |
-
"VBG",
|
283 |
-
"VBN",
|
284 |
-
"VBP",
|
285 |
-
"VBZ",
|
286 |
-
"WDT",
|
287 |
-
"WP",
|
288 |
-
"WP$",
|
289 |
-
"WRB",
|
290 |
-
], # 49
|
291 |
-
"english_v12": [
|
292 |
-
"XX", # misssing
|
293 |
-
"``",
|
294 |
-
"$",
|
295 |
-
"''",
|
296 |
-
"*",
|
297 |
-
",",
|
298 |
-
"-LRB-", # (
|
299 |
-
"-RRB-", # )
|
300 |
-
".",
|
301 |
-
":",
|
302 |
-
"ADD",
|
303 |
-
"AFX",
|
304 |
-
"CC",
|
305 |
-
"CD",
|
306 |
-
"DT",
|
307 |
-
"EX",
|
308 |
-
"FW",
|
309 |
-
"HYPH",
|
310 |
-
"IN",
|
311 |
-
"JJ",
|
312 |
-
"JJR",
|
313 |
-
"JJS",
|
314 |
-
"LS",
|
315 |
-
"MD",
|
316 |
-
"NFP",
|
317 |
-
"NN",
|
318 |
-
"NNP",
|
319 |
-
"NNPS",
|
320 |
-
"NNS",
|
321 |
-
"PDT",
|
322 |
-
"POS",
|
323 |
-
"PRP",
|
324 |
-
"PRP$",
|
325 |
-
"RB",
|
326 |
-
"RBR",
|
327 |
-
"RBS",
|
328 |
-
"RP",
|
329 |
-
"SYM",
|
330 |
-
"TO",
|
331 |
-
"UH",
|
332 |
-
"VB",
|
333 |
-
"VBD",
|
334 |
-
"VBG",
|
335 |
-
"VBN",
|
336 |
-
"VBP",
|
337 |
-
"VBZ",
|
338 |
-
"VERB",
|
339 |
-
"WDT",
|
340 |
-
"WP",
|
341 |
-
"WP$",
|
342 |
-
"WRB",
|
343 |
-
], # 51
|
344 |
-
"chinese_v4": [
|
345 |
-
"X", # missing
|
346 |
-
"AD",
|
347 |
-
"AS",
|
348 |
-
"BA",
|
349 |
-
"CC",
|
350 |
-
"CD",
|
351 |
-
"CS",
|
352 |
-
"DEC",
|
353 |
-
"DEG",
|
354 |
-
"DER",
|
355 |
-
"DEV",
|
356 |
-
"DT",
|
357 |
-
"ETC",
|
358 |
-
"FW",
|
359 |
-
"IJ",
|
360 |
-
"INF",
|
361 |
-
"JJ",
|
362 |
-
"LB",
|
363 |
-
"LC",
|
364 |
-
"M",
|
365 |
-
"MSP",
|
366 |
-
"NN",
|
367 |
-
"NR",
|
368 |
-
"NT",
|
369 |
-
"OD",
|
370 |
-
"ON",
|
371 |
-
"P",
|
372 |
-
"PN",
|
373 |
-
"PU",
|
374 |
-
"SB",
|
375 |
-
"SP",
|
376 |
-
"URL",
|
377 |
-
"VA",
|
378 |
-
"VC",
|
379 |
-
"VE",
|
380 |
-
"VV",
|
381 |
-
], # 36
|
382 |
-
}
|
383 |
-
|
384 |
-
# --------------------------------------------------------------------------------------------------------
|
385 |
-
# The CoNLL(2012) file reader
|
386 |
-
# Modified the original code to get rid of extra package dependency.
|
387 |
-
# Original code: https://github.com/allenai/allennlp-models/blob/main/allennlp_models/common/ontonotes.py
|
388 |
-
|
389 |
-
|
390 |
-
class OntonotesSentence:
|
391 |
-
"""
|
392 |
-
A class representing the annotations available for a single CONLL formatted sentence.
|
393 |
-
# Parameters
|
394 |
-
document_id : `str`
|
395 |
-
This is a variation on the document filename
|
396 |
-
sentence_id : `int`
|
397 |
-
The integer ID of the sentence within a document.
|
398 |
-
words : `List[str]`
|
399 |
-
This is the tokens as segmented/tokenized in the bank.
|
400 |
-
pos_tags : `List[str]`
|
401 |
-
This is the Penn-Treebank-style part of speech. When parse information is missing,
|
402 |
-
all parts of speech except the one for which there is some sense or proposition
|
403 |
-
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
|
404 |
-
parse_tree : `nltk.Tree`
|
405 |
-
An nltk Tree representing the parse. It includes POS tags as pre-terminal nodes.
|
406 |
-
When the parse information is missing, the parse will be `None`.
|
407 |
-
predicate_lemmas : `List[Optional[str]]`
|
408 |
-
The predicate lemma of the words for which we have semantic role
|
409 |
-
information or word sense information. All other indices are `None`.
|
410 |
-
predicate_framenet_ids : `List[Optional[int]]`
|
411 |
-
The PropBank frameset ID of the lemmas in `predicate_lemmas`, or `None`.
|
412 |
-
word_senses : `List[Optional[float]]`
|
413 |
-
The word senses for the words in the sentence, or `None`. These are floats
|
414 |
-
because the word sense can have values after the decimal, like `1.1`.
|
415 |
-
speakers : `List[Optional[str]]`
|
416 |
-
The speaker information for the words in the sentence, if present, or `None`
|
417 |
-
This is the speaker or author name where available. Mostly in Broadcast Conversation
|
418 |
-
and Web Log data. When not available the rows are marked with an "-".
|
419 |
-
named_entities : `List[str]`
|
420 |
-
The BIO tags for named entities in the sentence.
|
421 |
-
srl_frames : `List[Tuple[str, List[str]]]`
|
422 |
-
A dictionary keyed by the verb in the sentence for the given
|
423 |
-
Propbank frame labels, in a BIO format.
|
424 |
-
coref_spans : `Set[TypedSpan]`
|
425 |
-
The spans for entity mentions involved in coreference resolution within the sentence.
|
426 |
-
Each element is a tuple composed of (cluster_id, (start_index, end_index)). Indices
|
427 |
-
are `inclusive`.
|
428 |
-
"""
|
429 |
-
|
430 |
-
def __init__(
|
431 |
-
self,
|
432 |
-
document_id: str,
|
433 |
-
sentence_id: int,
|
434 |
-
words: List[str],
|
435 |
-
pos_tags: List[str],
|
436 |
-
parse_tree: Optional[str],
|
437 |
-
predicate_lemmas: List[Optional[str]],
|
438 |
-
predicate_framenet_ids: List[Optional[str]],
|
439 |
-
word_senses: List[Optional[float]],
|
440 |
-
speakers: List[Optional[str]],
|
441 |
-
named_entities: List[str],
|
442 |
-
srl_frames: List[Tuple[str, List[str]]],
|
443 |
-
coref_spans,
|
444 |
-
) -> None:
|
445 |
-
|
446 |
-
self.document_id = document_id
|
447 |
-
self.sentence_id = sentence_id
|
448 |
-
self.words = words
|
449 |
-
self.pos_tags = pos_tags
|
450 |
-
self.parse_tree = parse_tree
|
451 |
-
self.predicate_lemmas = predicate_lemmas
|
452 |
-
self.predicate_framenet_ids = predicate_framenet_ids
|
453 |
-
self.word_senses = word_senses
|
454 |
-
self.speakers = speakers
|
455 |
-
self.named_entities = named_entities
|
456 |
-
self.srl_frames = srl_frames
|
457 |
-
self.coref_spans = coref_spans
|
458 |
-
|
459 |
-
|
460 |
-
class Ontonotes:
|
461 |
-
"""
|
462 |
-
This `DatasetReader` is designed to read in the English OntoNotes v5.0 data
|
463 |
-
in the format used by the CoNLL 2011/2012 shared tasks. In order to use this
|
464 |
-
Reader, you must follow the instructions provided [here (v12 release):]
|
465 |
-
(https://cemantix.org/data/ontonotes.html), which will allow you to download
|
466 |
-
the CoNLL style annotations for the OntoNotes v5.0 release -- LDC2013T19.tgz
|
467 |
-
obtained from LDC.
|
468 |
-
Once you have run the scripts on the extracted data, you will have a folder
|
469 |
-
structured as follows:
|
470 |
-
```
|
471 |
-
conll-formatted-ontonotes-5.0/
|
472 |
-
── data
|
473 |
-
├── development
|
474 |
-
└── data
|
475 |
-
└── english
|
476 |
-
└── annotations
|
477 |
-
├── bc
|
478 |
-
├── bn
|
479 |
-
├── mz
|
480 |
-
├── nw
|
481 |
-
├── pt
|
482 |
-
├── tc
|
483 |
-
└── wb
|
484 |
-
├── test
|
485 |
-
└── data
|
486 |
-
└── english
|
487 |
-
└── annotations
|
488 |
-
├── bc
|
489 |
-
├── bn
|
490 |
-
├── mz
|
491 |
-
├── nw
|
492 |
-
├── pt
|
493 |
-
├── tc
|
494 |
-
└── wb
|
495 |
-
└── train
|
496 |
-
└── data
|
497 |
-
└── english
|
498 |
-
└── annotations
|
499 |
-
├── bc
|
500 |
-
├── bn
|
501 |
-
├── mz
|
502 |
-
├── nw
|
503 |
-
├── pt
|
504 |
-
├── tc
|
505 |
-
└── wb
|
506 |
-
```
|
507 |
-
The file path provided to this class can then be any of the train, test or development
|
508 |
-
directories(or the top level data directory, if you are not utilizing the splits).
|
509 |
-
The data has the following format, ordered by column.
|
510 |
-
1. Document ID : `str`
|
511 |
-
This is a variation on the document filename
|
512 |
-
2. Part number : `int`
|
513 |
-
Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
|
514 |
-
3. Word number : `int`
|
515 |
-
This is the word index of the word in that sentence.
|
516 |
-
4. Word : `str`
|
517 |
-
This is the token as segmented/tokenized in the Treebank. Initially the `*_skel` file
|
518 |
-
contain the placeholder [WORD] which gets replaced by the actual token from the
|
519 |
-
Treebank which is part of the OntoNotes release.
|
520 |
-
5. POS Tag : `str`
|
521 |
-
This is the Penn Treebank style part of speech. When parse information is missing,
|
522 |
-
all part of speeches except the one for which there is some sense or proposition
|
523 |
-
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
|
524 |
-
6. Parse bit : `str`
|
525 |
-
This is the bracketed structure broken before the first open parenthesis in the parse,
|
526 |
-
and the word/part-of-speech leaf replaced with a `*`. When the parse information is
|
527 |
-
missing, the first word of a sentence is tagged as `(TOP*` and the last word is tagged
|
528 |
-
as `*)` and all intermediate words are tagged with a `*`.
|
529 |
-
7. Predicate lemma : `str`
|
530 |
-
The predicate lemma is mentioned for the rows for which we have semantic role
|
531 |
-
information or word sense information. All other rows are marked with a "-".
|
532 |
-
8. Predicate Frameset ID : `int`
|
533 |
-
The PropBank frameset ID of the predicate in Column 7.
|
534 |
-
9. Word sense : `float`
|
535 |
-
This is the word sense of the word in Column 3.
|
536 |
-
10. Speaker/Author : `str`
|
537 |
-
This is the speaker or author name where available. Mostly in Broadcast Conversation
|
538 |
-
and Web Log data. When not available the rows are marked with an "-".
|
539 |
-
11. Named Entities : `str`
|
540 |
-
These columns identifies the spans representing various named entities. For documents
|
541 |
-
which do not have named entity annotation, each line is represented with an `*`.
|
542 |
-
12. Predicate Arguments : `str`
|
543 |
-
There is one column each of predicate argument structure information for the predicate
|
544 |
-
mentioned in Column 7. If there are no predicates tagged in a sentence this is a
|
545 |
-
single column with all rows marked with an `*`.
|
546 |
-
-1. Co-reference : `str`
|
547 |
-
Co-reference chain information encoded in a parenthesis structure. For documents that do
|
548 |
-
not have co-reference annotations, each line is represented with a "-".
|
549 |
-
"""
|
550 |
-
|
551 |
-
def dataset_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
|
552 |
-
"""
|
553 |
-
An iterator over the entire dataset, yielding all sentences processed.
|
554 |
-
"""
|
555 |
-
for conll_file in self.dataset_path_iterator(file_path):
|
556 |
-
yield from self.sentence_iterator(conll_file)
|
557 |
-
|
558 |
-
@staticmethod
|
559 |
-
def dataset_path_iterator(file_path: str) -> Iterator[str]:
|
560 |
-
"""
|
561 |
-
An iterator returning file_paths in a directory
|
562 |
-
containing CONLL-formatted files.
|
563 |
-
"""
|
564 |
-
for root, _, files in list(os.walk(file_path)):
|
565 |
-
for data_file in sorted(files):
|
566 |
-
# These are a relic of the dataset pre-processing. Every
|
567 |
-
# file will be duplicated - one file called filename.gold_skel
|
568 |
-
# and one generated from the preprocessing called filename.gold_conll.
|
569 |
-
if not data_file.endswith("gold_conll"):
|
570 |
-
continue
|
571 |
-
|
572 |
-
yield os.path.join(root, data_file)
|
573 |
-
|
574 |
-
def dataset_document_iterator(self, file_path: str) -> Iterator[List[OntonotesSentence]]:
|
575 |
-
"""
|
576 |
-
An iterator over CONLL formatted files which yields documents, regardless
|
577 |
-
of the number of document annotations in a particular file. This is useful
|
578 |
-
for conll data which has been preprocessed, such as the preprocessing which
|
579 |
-
takes place for the 2012 CONLL Coreference Resolution task.
|
580 |
-
"""
|
581 |
-
with open(file_path, "r", encoding="utf8") as open_file:
|
582 |
-
conll_rows = []
|
583 |
-
document: List[OntonotesSentence] = []
|
584 |
-
for line in open_file:
|
585 |
-
line = line.strip()
|
586 |
-
if line != "" and not line.startswith("#"):
|
587 |
-
# Non-empty line. Collect the annotation.
|
588 |
-
conll_rows.append(line)
|
589 |
-
else:
|
590 |
-
if conll_rows:
|
591 |
-
document.append(self._conll_rows_to_sentence(conll_rows))
|
592 |
-
conll_rows = []
|
593 |
-
if line.startswith("#end document"):
|
594 |
-
yield document
|
595 |
-
document = []
|
596 |
-
if document:
|
597 |
-
# Collect any stragglers or files which might not
|
598 |
-
# have the '#end document' format for the end of the file.
|
599 |
-
yield document
|
600 |
-
|
601 |
-
def sentence_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
|
602 |
-
"""
|
603 |
-
An iterator over the sentences in an individual CONLL formatted file.
|
604 |
-
"""
|
605 |
-
for document in self.dataset_document_iterator(file_path):
|
606 |
-
for sentence in document:
|
607 |
-
yield sentence
|
608 |
-
|
609 |
-
def _conll_rows_to_sentence(self, conll_rows: List[str]) -> OntonotesSentence:
|
610 |
-
document_id: str = None
|
611 |
-
sentence_id: int = None
|
612 |
-
# The words in the sentence.
|
613 |
-
sentence: List[str] = []
|
614 |
-
# The pos tags of the words in the sentence.
|
615 |
-
pos_tags: List[str] = []
|
616 |
-
# the pieces of the parse tree.
|
617 |
-
parse_pieces: List[str] = []
|
618 |
-
# The lemmatised form of the words in the sentence which
|
619 |
-
# have SRL or word sense information.
|
620 |
-
predicate_lemmas: List[str] = []
|
621 |
-
# The FrameNet ID of the predicate.
|
622 |
-
predicate_framenet_ids: List[str] = []
|
623 |
-
# The sense of the word, if available.
|
624 |
-
word_senses: List[float] = []
|
625 |
-
# The current speaker, if available.
|
626 |
-
speakers: List[str] = []
|
627 |
-
|
628 |
-
verbal_predicates: List[str] = []
|
629 |
-
span_labels: List[List[str]] = []
|
630 |
-
current_span_labels: List[str] = []
|
631 |
-
|
632 |
-
# Cluster id -> List of (start_index, end_index) spans.
|
633 |
-
clusters: DefaultDict[int, List[Tuple[int, int]]] = defaultdict(list)
|
634 |
-
# Cluster id -> List of start_indices which are open for this id.
|
635 |
-
coref_stacks: DefaultDict[int, List[int]] = defaultdict(list)
|
636 |
-
|
637 |
-
for index, row in enumerate(conll_rows):
|
638 |
-
conll_components = row.split()
|
639 |
-
|
640 |
-
document_id = conll_components[0]
|
641 |
-
sentence_id = int(conll_components[1])
|
642 |
-
word = conll_components[3]
|
643 |
-
pos_tag = conll_components[4]
|
644 |
-
parse_piece = conll_components[5]
|
645 |
-
|
646 |
-
# Replace brackets in text and pos tags
|
647 |
-
# with a different token for parse trees.
|
648 |
-
if pos_tag != "XX" and word != "XX":
|
649 |
-
if word == "(":
|
650 |
-
parse_word = "-LRB-"
|
651 |
-
elif word == ")":
|
652 |
-
parse_word = "-RRB-"
|
653 |
-
else:
|
654 |
-
parse_word = word
|
655 |
-
if pos_tag == "(":
|
656 |
-
pos_tag = "-LRB-"
|
657 |
-
if pos_tag == ")":
|
658 |
-
pos_tag = "-RRB-"
|
659 |
-
(left_brackets, right_hand_side) = parse_piece.split("*")
|
660 |
-
# only keep ')' if there are nested brackets with nothing in them.
|
661 |
-
right_brackets = right_hand_side.count(")") * ")"
|
662 |
-
parse_piece = f"{left_brackets} ({pos_tag} {parse_word}) {right_brackets}"
|
663 |
-
else:
|
664 |
-
# There are some bad annotations in the CONLL data.
|
665 |
-
# They contain no information, so to make this explicit,
|
666 |
-
# we just set the parse piece to be None which will result
|
667 |
-
# in the overall parse tree being None.
|
668 |
-
parse_piece = None
|
669 |
-
|
670 |
-
lemmatised_word = conll_components[6]
|
671 |
-
framenet_id = conll_components[7]
|
672 |
-
word_sense = conll_components[8]
|
673 |
-
speaker = conll_components[9]
|
674 |
-
|
675 |
-
if not span_labels:
|
676 |
-
# If this is the first word in the sentence, create
|
677 |
-
# empty lists to collect the NER and SRL BIO labels.
|
678 |
-
# We can't do this upfront, because we don't know how many
|
679 |
-
# components we are collecting, as a sentence can have
|
680 |
-
# variable numbers of SRL frames.
|
681 |
-
span_labels = [[] for _ in conll_components[10:-1]]
|
682 |
-
# Create variables representing the current label for each label
|
683 |
-
# sequence we are collecting.
|
684 |
-
current_span_labels = [None for _ in conll_components[10:-1]]
|
685 |
-
|
686 |
-
self._process_span_annotations_for_word(conll_components[10:-1], span_labels, current_span_labels)
|
687 |
-
|
688 |
-
# If any annotation marks this word as a verb predicate,
|
689 |
-
# we need to record its index. This also has the side effect
|
690 |
-
# of ordering the verbal predicates by their location in the
|
691 |
-
# sentence, automatically aligning them with the annotations.
|
692 |
-
word_is_verbal_predicate = any("(V" in x for x in conll_components[11:-1])
|
693 |
-
if word_is_verbal_predicate:
|
694 |
-
verbal_predicates.append(word)
|
695 |
-
|
696 |
-
self._process_coref_span_annotations_for_word(conll_components[-1], index, clusters, coref_stacks)
|
697 |
-
|
698 |
-
sentence.append(word)
|
699 |
-
pos_tags.append(pos_tag)
|
700 |
-
parse_pieces.append(parse_piece)
|
701 |
-
predicate_lemmas.append(lemmatised_word if lemmatised_word != "-" else None)
|
702 |
-
predicate_framenet_ids.append(framenet_id if framenet_id != "-" else None)
|
703 |
-
word_senses.append(float(word_sense) if word_sense != "-" else None)
|
704 |
-
speakers.append(speaker if speaker != "-" else None)
|
705 |
-
|
706 |
-
named_entities = span_labels[0]
|
707 |
-
srl_frames = [(predicate, labels) for predicate, labels in zip(verbal_predicates, span_labels[1:])]
|
708 |
-
|
709 |
-
if all(parse_pieces):
|
710 |
-
parse_tree = "".join(parse_pieces)
|
711 |
-
else:
|
712 |
-
parse_tree = None
|
713 |
-
coref_span_tuples = {(cluster_id, span) for cluster_id, span_list in clusters.items() for span in span_list}
|
714 |
-
return OntonotesSentence(
|
715 |
-
document_id,
|
716 |
-
sentence_id,
|
717 |
-
sentence,
|
718 |
-
pos_tags,
|
719 |
-
parse_tree,
|
720 |
-
predicate_lemmas,
|
721 |
-
predicate_framenet_ids,
|
722 |
-
word_senses,
|
723 |
-
speakers,
|
724 |
-
named_entities,
|
725 |
-
srl_frames,
|
726 |
-
coref_span_tuples,
|
727 |
-
)
|
728 |
-
|
729 |
-
@staticmethod
|
730 |
-
def _process_coref_span_annotations_for_word(
|
731 |
-
label: str,
|
732 |
-
word_index: int,
|
733 |
-
clusters: DefaultDict[int, List[Tuple[int, int]]],
|
734 |
-
coref_stacks: DefaultDict[int, List[int]],
|
735 |
-
) -> None:
|
736 |
-
"""
|
737 |
-
For a given coref label, add it to a currently open span(s), complete a span(s) or
|
738 |
-
ignore it, if it is outside of all spans. This method mutates the clusters and coref_stacks
|
739 |
-
dictionaries.
|
740 |
-
# Parameters
|
741 |
-
label : `str`
|
742 |
-
The coref label for this word.
|
743 |
-
word_index : `int`
|
744 |
-
The word index into the sentence.
|
745 |
-
clusters : `DefaultDict[int, List[Tuple[int, int]]]`
|
746 |
-
A dictionary mapping cluster ids to lists of inclusive spans into the
|
747 |
-
sentence.
|
748 |
-
coref_stacks : `DefaultDict[int, List[int]]`
|
749 |
-
Stacks for each cluster id to hold the start indices of active spans (spans
|
750 |
-
which we are inside of when processing a given word). Spans with the same id
|
751 |
-
can be nested, which is why we collect these opening spans on a stack, e.g:
|
752 |
-
[Greg, the baker who referred to [himself]_ID1 as 'the bread man']_ID1
|
753 |
-
"""
|
754 |
-
if label != "-":
|
755 |
-
for segment in label.split("|"):
|
756 |
-
# The conll representation of coref spans allows spans to
|
757 |
-
# overlap. If spans end or begin at the same word, they are
|
758 |
-
# separated by a "|".
|
759 |
-
if segment[0] == "(":
|
760 |
-
# The span begins at this word.
|
761 |
-
if segment[-1] == ")":
|
762 |
-
# The span begins and ends at this word (single word span).
|
763 |
-
cluster_id = int(segment[1:-1])
|
764 |
-
clusters[cluster_id].append((word_index, word_index))
|
765 |
-
else:
|
766 |
-
# The span is starting, so we record the index of the word.
|
767 |
-
cluster_id = int(segment[1:])
|
768 |
-
coref_stacks[cluster_id].append(word_index)
|
769 |
-
else:
|
770 |
-
# The span for this id is ending, but didn't start at this word.
|
771 |
-
# Retrieve the start index from the document state and
|
772 |
-
# add the span to the clusters for this id.
|
773 |
-
cluster_id = int(segment[:-1])
|
774 |
-
start = coref_stacks[cluster_id].pop()
|
775 |
-
clusters[cluster_id].append((start, word_index))
|
776 |
-
|
777 |
-
@staticmethod
|
778 |
-
def _process_span_annotations_for_word(
|
779 |
-
annotations: List[str],
|
780 |
-
span_labels: List[List[str]],
|
781 |
-
current_span_labels: List[Optional[str]],
|
782 |
-
) -> None:
|
783 |
-
"""
|
784 |
-
Given a sequence of different label types for a single word and the current
|
785 |
-
span label we are inside, compute the BIO tag for each label and append to a list.
|
786 |
-
# Parameters
|
787 |
-
annotations : `List[str]`
|
788 |
-
A list of labels to compute BIO tags for.
|
789 |
-
span_labels : `List[List[str]]`
|
790 |
-
A list of lists, one for each annotation, to incrementally collect
|
791 |
-
the BIO tags for a sequence.
|
792 |
-
current_span_labels : `List[Optional[str]]`
|
793 |
-
The currently open span per annotation type, or `None` if there is no open span.
|
794 |
-
"""
|
795 |
-
for annotation_index, annotation in enumerate(annotations):
|
796 |
-
# strip all bracketing information to
|
797 |
-
# get the actual propbank label.
|
798 |
-
label = annotation.strip("()*")
|
799 |
-
|
800 |
-
if "(" in annotation:
|
801 |
-
# Entering into a span for a particular semantic role label.
|
802 |
-
# We append the label and set the current span for this annotation.
|
803 |
-
bio_label = "B-" + label
|
804 |
-
span_labels[annotation_index].append(bio_label)
|
805 |
-
current_span_labels[annotation_index] = label
|
806 |
-
elif current_span_labels[annotation_index] is not None:
|
807 |
-
# If there's no '(' token, but the current_span_label is not None,
|
808 |
-
# then we are inside a span.
|
809 |
-
bio_label = "I-" + current_span_labels[annotation_index]
|
810 |
-
span_labels[annotation_index].append(bio_label)
|
811 |
-
else:
|
812 |
-
# We're outside a span.
|
813 |
-
span_labels[annotation_index].append("O")
|
814 |
-
# Exiting a span, so we reset the current span label for this annotation.
|
815 |
-
if ")" in annotation:
|
816 |
-
current_span_labels[annotation_index] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|