File size: 3,310 Bytes
b98ffbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import sys
print("Python Version:", sys.version)
from dora import DoraStatus
import pyarrow as pa
from transformers import AutoProcessor, AutoModelForCausalLM,AutoTokenizer
from PIL import Image
import torch
import gc
CAMERA_WIDTH = 1280
CAMERA_HEIGHT = 720
#修改
# elements = 1555200
# # 一个可能的尺寸计算
# CAMERA_HEIGHT = 720
# CAMERA_WIDTH = elements // (3 * CAMERA_HEIGHT)
# print(CAMERA_WIDTH)
# PROCESSOR = AutoProcessor.from_pretrained("/home/peiji/Bunny-v1_0-2B-zh")
tokenizer = AutoTokenizer.from_pretrained(
'/mnt/c/Bunny-v1_0-2B-zh/',
trust_remote_code=True)
BAD_WORDS_IDS =tokenizer(
["<image>", "<fake_token_around_image>"], add_special_tokens=False
).input_ids
EOS_WORDS_IDS = tokenizer(
"<end_of_utterance>", add_special_tokens=False
).input_ids + [tokenizer.eos_token_id]
# set device
device = 'cuda' # or cpu
torch.set_default_device(device)
# create model
model = AutoModelForCausalLM.from_pretrained(
'/mnt/c/Bunny-v1_0-2B-zh/',
torch_dtype=torch.float16, # float32 for cpu
device_map='auto',
trust_remote_code=True
)
print("load bunny model finish")
def ask_vlm(image, instruction):
global model
prompts = [
"User:",
image,
f"{instruction}.<end_of_utterance>\n",
"Assistant:",
]
inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()}
generated_ids = model.generate(
**inputs,
bad_words_ids=BAD_WORDS_IDS,
max_new_tokens=25,
repetition_penalty=1.2,
)
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
gc.collect()
torch.cuda.empty_cache()
return generated_texts[0].split("\nAssistant: ")[1]
import time
class Operator:
def __init__(self):
self.image = None
self.text = None
def on_event(
self,
dora_event,
send_output,
) -> DoraStatus:
if dora_event["type"] == "INPUT":
if dora_event["id"] == "image":
self.image = (
dora_event["value"]
.to_numpy()
.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
)
elif dora_event["id"] == "text":
self.text = dora_event["value"][0].as_py()
output = ask_vlm(self.image, self.text).lower()
send_output(
"speak",
pa.array([output]),
)
if "yes" in output:
send_output(
"control",
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0]),
)
time.sleep(2)
send_output(
"control",
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]),
)
elif "no" in output:
send_output(
"control",
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0]),
)
time.sleep(2)
send_output(
"control",
pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]),
)
return DoraStatus.CONTINUE
|