File size: 1,117 Bytes
b98ffbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import numpy as np
import pyarrow as pa
import sys
print(sys.version)
from dora import DoraStatus
from ultralytics import YOLO
CAMERA_WIDTH = 640
CAMERA_HEIGHT = 480
model = YOLO("/home/peiji/yolov8n.pt")
class Operator:
"""
Inferring object from images
"""
def on_event(
self,
dora_event,
send_output,
) -> DoraStatus:
if dora_event["type"] == "INPUT":
frame = (
dora_event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
)
frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB)
results = model(frame, verbose=False) # includes NMS
# Process results
boxes = np.array(results[0].boxes.xyxy.cpu())
conf = np.array(results[0].boxes.conf.cpu())
label = np.array(results[0].boxes.cls.cpu())
# concatenate them together
arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1)
send_output("bbox", pa.array(arrays.ravel()), dora_event["metadata"])
return DoraStatus.CONTINUE
|