File size: 7,098 Bytes
b98ffbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use chrono::{DateTime, Utc};
use dora_node_api::{
    self,
    arrow::{
        array::{
            make_array, Array, ListArray, StringArray, TimestampMillisecondArray, UInt64Array,
        },
        buffer::{OffsetBuffer, ScalarBuffer},
        datatypes::{DataType, Field, Schema},
        record_batch::RecordBatch,
    },
    DoraNode, Event, Metadata,
};
use dora_tracing::telemetry::deserialize_to_hashmap;
use eyre::{Context, ContextCompat};
use parquet::{arrow::AsyncArrowWriter, basic::BrotliLevel, file::properties::WriterProperties};
use std::{collections::HashMap, path::PathBuf, sync::Arc};
use tokio::sync::mpsc;

#[tokio::main]
async fn main() -> eyre::Result<()> {
    let (node, mut events) = DoraNode::init_from_env()?;
    let dataflow_id = node.dataflow_id();
    let mut writers = HashMap::new();

    while let Some(event) = events.recv() {
        match event {
            Event::Input { id, data, metadata } => {
                match writers.get(&id) {
                    None => {
                        let field_uhlc = Field::new("timestamp_uhlc", DataType::UInt64, false);
                        let field_utc_epoch = Field::new(
                            "timestamp_utc",
                            DataType::Timestamp(
                                dora_node_api::arrow::datatypes::TimeUnit::Millisecond,
                                None,
                            ),
                            false,
                        );
                        let field_trace_id = Field::new("trace_id", DataType::Utf8, true);
                        let field_span_id = Field::new("span_id", DataType::Utf8, true);
                        let field_values =
                            Arc::new(Field::new("item", data.data_type().clone(), true));
                        let field_data = Field::new(id.clone(), DataType::List(field_values), true);

                        let schema = Arc::new(Schema::new(vec![
                            field_trace_id,
                            field_span_id,
                            field_uhlc,
                            field_utc_epoch,
                            field_data,
                        ]));
                        let dataflow_dir = PathBuf::from("out").join(dataflow_id.to_string());
                        if !dataflow_dir.exists() {
                            std::fs::create_dir_all(&dataflow_dir)
                                .context("could not create dataflow_dir")?;
                        }
                        let file =
                            tokio::fs::File::create(dataflow_dir.join(format!("{id}.parquet")))
                                .await
                                .context("Couldn't create write file")?;
                        let mut writer = AsyncArrowWriter::try_new(
                            file,
                            schema.clone(),
                            Some(
                                WriterProperties::builder()
                                    .set_compression(parquet::basic::Compression::BROTLI(
                                        BrotliLevel::default(),
                                    ))
                                    .build(),
                            ),
                        )
                        .context("Could not create parquet writer")?;
                        let (tx, mut rx) = mpsc::channel(10);

                        // Per Input thread
                        let join_handle = tokio::spawn(async move {
                            while let Some((data, metadata)) = rx.recv().await {
                                if let Err(e) =
                                    write_event(&mut writer, data, &metadata, schema.clone()).await
                                {
                                    println!("Error writing event data into parquet file: {:?}", e)
                                };
                            }
                            writer.close().await
                        });
                        tx.send((data.into(), metadata))
                            .await
                            .context("Could not send event data into writer loop")?;
                        writers.insert(id, (tx, join_handle));
                    }
                    Some((tx, _)) => {
                        tx.send((data.into(), metadata))
                            .await
                            .context("Could not send event data into writer loop")?;
                    }
                };
            }
            Event::InputClosed { id } => match writers.remove(&id) {
                None => {}
                Some(tx) => drop(tx),
            },
            _ => {}
        }
    }

    for (id, (tx, join_handle)) in writers {
        drop(tx);
        join_handle
            .await
            .context("Writer thread failed")?
            .context(format!(
                "Could not close the Parquet writer for {id} parquet writer"
            ))?;
    }

    Ok(())
}

/// Write a row of data into the writer
async fn write_event(
    writer: &mut AsyncArrowWriter<tokio::fs::File>,
    data: Arc<dyn Array>,
    metadata: &Metadata,
    schema: Arc<Schema>,
) -> eyre::Result<()> {
    let offsets = OffsetBuffer::new(ScalarBuffer::from(vec![0, data.len() as i32]));
    let field = Arc::new(Field::new("item", data.data_type().clone(), true));
    let list = ListArray::new(field, offsets, data.clone(), None);

    let timestamp = metadata.timestamp();
    let timestamp_uhlc = UInt64Array::from(vec![timestamp.get_time().0]);
    let timestamp_uhlc = make_array(timestamp_uhlc.into());
    let system_time = timestamp.get_time().to_system_time();

    let dt: DateTime<Utc> = system_time.into();
    let timestamp_utc = TimestampMillisecondArray::from(vec![dt.timestamp_millis()]);
    let timestamp_utc = make_array(timestamp_utc.into());

    let string_otel_context = metadata.parameters.open_telemetry_context.to_string();
    let otel_context = deserialize_to_hashmap(&string_otel_context);
    let traceparent = otel_context.get("traceparent");
    let trace_id = match traceparent {
        None => "",
        Some(trace) => trace.split('-').nth(1).context("Trace is malformatted")?,
    };
    let span_id = match traceparent {
        None => "",
        Some(trace) => trace.split('-').nth(2).context("Trace is malformatted")?,
    };
    let trace_id_array = StringArray::from(vec![trace_id]);
    let trace_id_array = make_array(trace_id_array.into());
    let span_id_array = StringArray::from(vec![span_id]);
    let span_id_array = make_array(span_id_array.into());

    let record = RecordBatch::try_new(
        schema,
        vec![
            trace_id_array,
            span_id_array,
            timestamp_uhlc,
            timestamp_utc,
            make_array(list.into()),
        ],
    )
    .context("Could not create record batch with the given data")?;
    writer
        .write(&record)
        .await
        .context("Could not write recordbatch to file")?;

    Ok(())
}