# import numpy as np | |
# import pyarrow as pa | |
# from dora import Node | |
# from dora import DoraStatus | |
# from ultralytics import YOLO | |
# import cv2 | |
# pa.array([]) | |
# CAMERA_WIDTH = 720 | |
# CAMERA_HEIGHT = 1280 | |
# model = YOLO("/home/peiji/yolov8n.pt") | |
# node = Node() | |
# # class Operator: | |
# # """ | |
# # Infering object from images | |
# # """ | |
# # def on_event( | |
# # self, | |
# # dora_event, | |
# # send_output, | |
# # ) -> DoraStatus: | |
# # if dora_event["type"] == "INPUT": | |
# # frame = ( | |
# # dora_event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) | |
# # ) | |
# # frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) | |
# # results = model(frame, verbose=False) # includes NMS | |
# # boxes = np.array(results[0].boxes.xyxy.cpu()) | |
# # conf = np.array(results[0].boxes.conf.cpu()) | |
# # label = np.array(results[0].boxes.cls.cpu()) | |
# # # concatenate them together | |
# # arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) | |
# # send_output("bbox", pa.array(arrays.ravel()), dora_event["metadata"]) | |
# # return DoraStatus.CONTINUE | |
# for event in node: | |
# print("djieoajdsaosijoi") | |
# event_type = event["type"] | |
# if event_type == "INPUT": | |
# event_id = event["id"] | |
# if event_id == "image": | |
# print("[object detection] received image input") | |
# image = event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) | |
# frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) | |
# results = model(frame) # includes NMS | |
# # Process results | |
# boxes = np.array(results[0].boxes.xywh.cpu()) | |
# conf = np.array(results[0].boxes.conf.cpu()) | |
# label = np.array(results[0].boxes.cls.cpu()) | |
# # concatenate them together | |
# arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) | |
# node.send_output("bbox", pa.array(arrays.ravel()), event["metadata"]) | |
# else: | |
# print("[object detection] ignoring unexpected input:", event_id) | |
# elif event_type == "STOP": | |
# print("[object detection] received stop") | |
# elif event_type == "ERROR": | |
# print("[object detection] error: ", event["error"]) | |
# else: | |
# print("[object detection] received unexpected event:", event_type) | |
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import os | |
import cv2 | |
import numpy as np | |
from ultralytics import YOLO | |
from dora import Node | |
import pyarrow as pa | |
node = Node() | |
model = YOLO("/home/peiji/yolov8n.pt") | |
IMAGE_WIDTH = int(os.getenv("IMAGE_WIDTH", 1280)) | |
IMAGE_HEIGHT = int(os.getenv("IMAGE_HEIGHT", 720)) | |
for event in node: | |
event_type = event["type"] | |
if event_type == "INPUT": | |
event_id = event["id"] | |
if event_id == "image": | |
print("[object detection] received image input") | |
image = event["value"].to_numpy().reshape((IMAGE_HEIGHT, IMAGE_WIDTH, 3)) | |
frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) | |
results = model(frame) # includes NMS | |
# Process results | |
boxes = np.array(results[0].boxes.xywh.cpu()) | |
conf = np.array(results[0].boxes.conf.cpu()) | |
label = np.array(results[0].boxes.cls.cpu()) | |
# concatenate them together | |
arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) | |
node.send_output("bbox", pa.array(arrays.ravel()), event["metadata"]) | |
else: | |
print("[object detection] ignoring unexpected input:", event_id) | |
elif event_type == "STOP": | |
print("[object detection] received stop") | |
elif event_type == "ERROR": | |
print("[object detection] error: ", event["error"]) | |
else: | |
print("[object detection] received unexpected event:", event_type) | |