# import numpy as np # import pyarrow as pa # from dora import Node # from dora import DoraStatus # from ultralytics import YOLO # import cv2 # pa.array([]) # CAMERA_WIDTH = 720 # CAMERA_HEIGHT = 1280 # model = YOLO("/home/peiji/yolov8n.pt") # node = Node() # # class Operator: # # """ # # Infering object from images # # """ # # def on_event( # # self, # # dora_event, # # send_output, # # ) -> DoraStatus: # # if dora_event["type"] == "INPUT": # # frame = ( # # dora_event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) # # ) # # frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) # # results = model(frame, verbose=False) # includes NMS # # boxes = np.array(results[0].boxes.xyxy.cpu()) # # conf = np.array(results[0].boxes.conf.cpu()) # # label = np.array(results[0].boxes.cls.cpu()) # # # concatenate them together # # arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) # # send_output("bbox", pa.array(arrays.ravel()), dora_event["metadata"]) # # return DoraStatus.CONTINUE # for event in node: # print("djieoajdsaosijoi") # event_type = event["type"] # if event_type == "INPUT": # event_id = event["id"] # if event_id == "image": # print("[object detection] received image input") # image = event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) # frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) # results = model(frame) # includes NMS # # Process results # boxes = np.array(results[0].boxes.xywh.cpu()) # conf = np.array(results[0].boxes.conf.cpu()) # label = np.array(results[0].boxes.cls.cpu()) # # concatenate them together # arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) # node.send_output("bbox", pa.array(arrays.ravel()), event["metadata"]) # else: # print("[object detection] ignoring unexpected input:", event_id) # elif event_type == "STOP": # print("[object detection] received stop") # elif event_type == "ERROR": # print("[object detection] error: ", event["error"]) # else: # print("[object detection] received unexpected event:", event_type) #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import cv2 import numpy as np from ultralytics import YOLO from dora import Node import pyarrow as pa node = Node() model = YOLO("/home/peiji/yolov8n.pt") IMAGE_WIDTH = int(os.getenv("IMAGE_WIDTH", 1280)) IMAGE_HEIGHT = int(os.getenv("IMAGE_HEIGHT", 720)) for event in node: event_type = event["type"] if event_type == "INPUT": event_id = event["id"] if event_id == "image": print("[object detection] received image input") image = event["value"].to_numpy().reshape((IMAGE_HEIGHT, IMAGE_WIDTH, 3)) frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) frame = frame[:, :, ::-1] # OpenCV image (BGR to RGB) results = model(frame) # includes NMS # Process results boxes = np.array(results[0].boxes.xywh.cpu()) conf = np.array(results[0].boxes.conf.cpu()) label = np.array(results[0].boxes.cls.cpu()) # concatenate them together arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) node.send_output("bbox", pa.array(arrays.ravel()), event["metadata"]) else: print("[object detection] ignoring unexpected input:", event_id) elif event_type == "STOP": print("[object detection] received stop") elif event_type == "ERROR": print("[object detection] error: ", event["error"]) else: print("[object detection] received unexpected event:", event_type)