# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Librispeech automatic speech recognition dataset.""" import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @inproceedings{panayotov2015librispeech, title={Librispeech: an ASR corpus based on public domain audio books}, author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev}, booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on}, pages={5206--5210}, year={2015}, organization={IEEE} } """ _DESCRIPTION = """\ LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned.87 Note that in order to limit the required storage for preparing this dataset, the audio is stored in the .flac format and is not converted to a float32 array. To convert, the audio file to a float32 array, please make use of the `.map()` function as follows: ```python import soundfile as sf def map_to_array(batch): speech_array, _ = sf.read(batch["file"]) batch["speech"] = speech_array return batch dataset = dataset.map(map_to_array, remove_columns=["file"]) ``` """ _URL = "http://www.openslr.org/12" _DL_URL = "http://www.openslr.org/resources/12/" _DL_URLS = { "clean": { "dev": _DL_URL + "dev-clean.tar.gz", "test": _DL_URL + "test-clean.tar.gz", "train.100": _DL_URL + "train-clean-100.tar.gz", "train.360": _DL_URL + "train-clean-360.tar.gz", }, "other": { "test": _DL_URL + "test-other.tar.gz", "dev": _DL_URL + "dev-other.tar.gz", "train.500": _DL_URL + "train-other-500.tar.gz", }, } class LibrispeechASRConfig(datasets.BuilderConfig): """BuilderConfig for LibriSpeechASR.""" def __init__(self, **kwargs): """ Args: data_dir: `string`, the path to the folder containing the files in the downloaded .tar citation: `string`, citation for the data set url: `string`, url for information about the data set **kwargs: keyword arguments forwarded to super. """ super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs) class LibrispeechASR(datasets.GeneratorBasedBuilder): """Librispeech dataset.""" DEFAULT_WRITER_BATCH_SIZE = 256 BUILDER_CONFIGS = [ LibrispeechASRConfig(name="clean", description="'Clean' speech."), LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "text": datasets.Value("string"), "speaker_id": datasets.Value("int64"), "chapter_id": datasets.Value("int64"), "id": datasets.Value("string"), } ), supervised_keys=("file", "text"), homepage=_URL, citation=_CITATION, task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(_DL_URLS[self.config.name]) if self.config.name == "clean": train_splits = [ datasets.SplitGenerator( name="train.100", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.100"])} ), datasets.SplitGenerator( name="train.360", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.360"])} ), ] elif self.config.name == "other": train_splits = [ datasets.SplitGenerator( name="train.500", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.500"])} ), ] return train_splits + [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"files": dl_manager.iter_archive(archive_path["dev"])} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive_path["test"])} ), ] def _generate_examples(self, files): """Generate examples from a LibriSpeech archive_path.""" key = 0 audio_data = {} transcripts = [] for path, f in files: if path.endswith(".flac"): id_ = path.split("/")[-1][: -len(".flac")] audio_data[id_] = f.read() elif path.endswith(".trans.txt"): for line in f: if line: line = line.decode("utf-8").strip() id_, transcript = line.split(" ", 1) audio_file = f"{id_}.flac" speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]] transcripts.append( { "id": id_, "speaker_id": speaker_id, "chapter_id": chapter_id, "file": audio_file, "text": transcript, } ) if audio_data and len(audio_data) == len(transcripts): for transcript in transcripts: audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]} yield key, {"audio": audio, **transcript} key += 1 audio_data = {} transcripts = []