--- language: - en multilinguality: - monolingual task_categories: - text-retrieval source_datasets: - NevIR task_ids: - document-retrieval config_names: - corpus - queries - qrels - top_ranked tags: - text-retrieval - negation dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string splits: - name: corpus num_examples: 1896 # 948 * 2 as each sample has doc1 and doc2 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_examples: 1896 # 948 * 2 as each sample has q1 and q2 - config_name: qrels features: - name: query_id dtype: string - name: doc_id dtype: string - name: score dtype: int splits: - name: train num_examples: 1896 # 948 * 2 as each query matches with one doc - name: validation num_examples: 450 # 225 * 2 - name: test num_examples: 450 # 225 * 2 - config_name: top_ranked features: - name: query_id dtype: string - name: doc_ids dtype: list splits: - name: train num_examples: 1896 # Each query gets both doc1 and doc2 - name: validation num_examples: 238 - name: test num_examples: 238 configs: - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl - config_name: qrels data_files: - split: train path: qrels/train.jsonl - split: validation path: qrels/validation.jsonl - split: test path: qrels/test.jsonl - config_name: top_ranked data_files: - split: train path: top_ranked/train.jsonl - split: validation path: top_ranked/validation.jsonl - split: test path: top_ranked/test.jsonl --- # NevIR-mteb Dataset This is the MTEB-compatible version of the NevIR dataset, structured for information retrieval tasks focused on negation understanding. ## Dataset Structure The dataset is organized into multiple configurations: 1. `corpus`: Contains all documents (doc1 and doc2 from each sample) 2. `queries`: Contains all queries (q1 and q2 from each sample) 3. `qrels`: Contains relevance judgments (q1 matches with doc1, q2 matches with doc2) 4. `top_ranked`: Contains candidate documents for each query (both doc1 and doc2 for every query) ## Usage ```python from datasets import load_dataset # Load the entire dataset dataset = load_dataset("orionweller/NevIR-mteb") # Load specific configurations corpus = load_dataset("orionweller/NevIR-mteb", "corpus") queries = load_dataset("orionweller/NevIR-mteb", "queries") qrels = load_dataset("orionweller/NevIR-mteb", "qrels") top_ranked = load_dataset("orionweller/NevIR-mteb", "top_ranked") ```