File size: 5,120 Bytes
42f9bb7
 
 
 
 
 
 
 
 
a822dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Huggingface datasets script for Zenodo dataset.
"""

import json
import os

import datasets

_DESCRIPTION = """\
This dataset is for downloading a Zenodo dataset without extra packages.
"""




class NewDataset(datasets.GeneratorBasedBuilder):
    """This dataset downloads a zenodo dataset and returns its path."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
    #     datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
    # ]

    # DEFAULT_CONFIG_NAME = "first_domain"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        # if self.config.name == "first_domain":  # This is the name of the configuration selected in BUILDER_CONFIGS above
        #     features = datasets.Features(
        #         {
        #             "sentence": datasets.Value("string"),
        #             "option1": datasets.Value("string"),
        #             "answer": datasets.Value("string")
        #             # These are the features of your dataset like images, labels ...
        #         }
        #     )
        # else:  # This is an example to show how to have different features for "first_domain" and "second_domain"
        #     features = datasets.Features(
        #         {
        #             "sentence": datasets.Value("string"),
        #             "option2": datasets.Value("string"),
        #             "second_domain_answer": datasets.Value("string")
        #             # These are the features of your dataset like images, labels ...
        #         }
        #     )

        features = datasets.Features(
            {
                "path": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            # homepage=_HOMEPAGE,
            # License for the dataset if available
            # license=_LICENSE,
            # Citation for the dataset
            # citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        zenodo_id = self.config.name.split("/")[0]
        filename = self.config.name.split("/")[1]

        url = f"https://zenodo.org/record/{zenodo_id}/files/{filename}"

        data_dir = dl_manager.download_and_extract([url])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                data_dir=data_dir[0],
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data_dir):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        
        yield "path", data_dir