Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 1,219 Bytes
d1796e7
 
 
 
 
bdddc98
d1796e7
 
bdddc98
d1796e7
 
 
 
bdddc98
d1796e7
 
 
bdddc98
 
d1796e7
 
bdddc98
d1796e7
 
bdddc98
 
17c9add
bfc28ea
17c9add
bfc28ea
 
 
 
 
 
 
 
17c9add
 
bfc28ea
 
17c9add
bfc28ea
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
configs:
- config_name: corpus
  data_files:
  - split: corpus
    path:
    - corpus.csv
- config_name: queries
  data_files:
  - split: queries
    path:
    - queries.csv
- config_name: mapping
  data_files:
  - split: relevant
    path:
    - relevant.csv
  - split: irrelevant
    path:
    - irrelevant.csv
  - split: seemingly_relevant
    path:
    - seemingly_relevant.csv
license: cc-by-sa-4.0
---
# RAGE - Retrieval Augmented Generation Evaluation

## TL;DR
RAGE is a tool for evaluating how well Large Language Models (LLMs) cite relevant sources in Retrieval Augmented Generation (RAG) tasks.

## More Details
For more information, please refer to our GitHub page:  
[https://github.com/othr-nlp/rage_toolkit](https://github.com/othr-nlp/rage_toolkit)

## References
This dataset is based on the BeIR version of the Natural Questions dataset.

- **BeIR**:  
  - [Paper: https://doi.org/10.48550/arXiv.2104.08663](https://doi.org/10.48550/arXiv.2104.08663)

- **Natural Questions**:  
  - [Website: https://ai.google.com/research/NaturalQuestions](https://ai.google.com/research/NaturalQuestions)  
  - [Paper: https://doi.org/10.1162/tacl_a_00276](https://doi.org/10.1162/tacl_a_00276)