gbaydin commited on
Commit
abfe003
·
verified ·
1 Parent(s): 4587d81

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md CHANGED
@@ -75,6 +75,45 @@ Each sample obtained by iterating through the WebDataset corresponds to one sola
75
  * `aia_1600.npy`: (numpy.ndarray) Image data for AIA 1600 Å. Shape: (512, 512). Dtype: float32.
76
  * `hmi_m.npy`: (numpy.ndarray) Line-of-sight magnetogram data from HMI. Shape: (512, 512). Dtype: float32.
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ## Data Generation and Processing
79
 
80
  The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.
 
75
  * `aia_1600.npy`: (numpy.ndarray) Image data for AIA 1600 Å. Shape: (512, 512). Dtype: float32.
76
  * `hmi_m.npy`: (numpy.ndarray) Line-of-sight magnetogram data from HMI. Shape: (512, 512). Dtype: float32.
77
 
78
+ ## Usage Example
79
+
80
+ ```python
81
+ from datasets import load_dataset
82
+ from datetime import datetime
83
+ import numpy as np
84
+ import matplotlib.pyplot as plt
85
+
86
+ dataset = load_dataset("oxai4science/sdoml-lite", streaming=True)
87
+ ```
88
+ ```python
89
+ channels = ['hmi_m', 'aia_0131', 'aia_0171', 'aia_0193', 'aia_0211', 'aia_1600']
90
+
91
+ def process(data):
92
+ timestamp = datetime.strptime(data['__key__'], "%Y/%m/%d/%H%M")
93
+ d = []
94
+ for c in map(lambda x: x+'.npy', channels):
95
+ d.append(np.array(data[c]) if c in data else np.zeros((512, 512)))
96
+ return timestamp, np.stack(d, axis=0)
97
+
98
+ def plot(timestamp, data):
99
+ import matplotlib.pyplot as plt
100
+ _, axs = plt.subplots(2, 3, figsize=(15, 10))
101
+ axs = axs.flatten()
102
+ for i, c in enumerate(channels):
103
+ axs[i].imshow(data[i], cmap='gray')
104
+ axs[i].set_title(c)
105
+ axs[i].axis('off')
106
+ plt.tight_layout()
107
+ plt.suptitle(timestamp)
108
+ plt.subplots_adjust(top=0.94)
109
+ plt.show()
110
+ ```
111
+ ```python
112
+ sample = next(iter(dataset['train']))
113
+ timestamp, data = process(sample)
114
+ plot(timestamp, data)
115
+ ```
116
+
117
  ## Data Generation and Processing
118
 
119
  The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.