Datasets:

Languages:
Japanese
Size:
n<1K
Tags:
legal
Not-For-All-Audiences
License:
File size: 4,990 Bytes
9e724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e65f9
9e724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Japanese Expressions Dataset from Human Rights Infringement on Internet"""


import json

import datasets as ds


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@dataset{hisada_shohei_2023_7960519,
  author       = {HISADA, Shohei},
  title        = {{Japanese Expressions Dataset from Human Rights 
                   Infringement on Internet}},
  month        = jun,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {0.2},
  doi          = {10.5281/zenodo.7960519},
  url          = {https://doi.org/10.5281/zenodo.7960519}
}
"""

# You can copy an official description
_DESCRIPTION = """\
Japanese Expressions Dataset from Human Rights Infringement on Internet
"""

_HOMEPAGE = "https://zenodo.org/record/7960519"

_LICENSE = "CC-BY-4.0"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "v0.2": "https://zenodo.org/record/7960519/files/Expressions_Infringement_human_rights_v02.jsonl"
}

_FEATURE_MAP = {
    "1: Text in Dispute": "text",
    "2: Context Utilized in Adjudication": "context",
    "3-1a: The types of Allegedly Infringed Right 1": "right_type_1",
    "3-1b: Judgement on the Infringement Allegation 1": "judgement_1",
    "3-2a: The types of Allegedly Infringed Right 1": "right_type_2",
    "3-2b: Judgement on the Infringement Allegation 2": "judgement_2",
    "5-3: Bibliography": "bibliography",
    "5-1: Case Number": "case_number",
    "5-2: Case Name": "case_name",
    "5-4: Article Number": "article_number",
    "5-5: Online Platform": "platform",
}


class JEDHRIDataset(ds.GeneratorBasedBuilder):
    """Japanese Expressions Dataset from Human Rights Infringement on Internet."""

    VERSION = ds.Version("0.2.0")

    BUILDER_CONFIGS = [
        ds.BuilderConfig(
            name="v0.2",
            version=VERSION,
        ),
    ]

    DEFAULT_CONFIG_NAME = "v0.2"

    def _info(self):
        features = ds.Features(
            {
                "text": ds.Value("string"),
                "context": ds.Value("string"),
                "platform": ds.Value("string"),
                "right_type_1": ds.Value("string"),
                "judgement_1": ds.Value("bool"),
                "right_type_2": ds.Value("string"),
                "judgement_2": ds.Value("bool"),
                "bibliography": ds.Sequence(ds.Value("string")),
                "case_number": ds.Value("string"),
                "case_name": ds.Value("string"),
                "article_number": ds.Value("string"),
            }
        )
        return ds.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        url = _URLS[self.config.name]

        if type(url) is not str:
            raise ValueError("url must be a string")

        data_dir = dl_manager.download(url)

        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        # read json for each line
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                # rename keys
                data = {v: data[k] for k, v in _FEATURE_MAP.items()}

                for key in ["right_type_1", "right_type_2"]:
                    if data[key] == "":
                        data[key] = None

                for key in ["judgement_1", "judgement_2"]:
                    if data[key] == "":
                        data[key] = None
                    elif data[key] == "0":
                        data[key] = False
                    elif data[key] == "1":
                        data[key] = True

                data["bibliography"] = [
                    x for x in str(data["bibliography"]).split("\n") if x != ""
                ]

                yield id_, data