File size: 5,303 Bytes
a809d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""IISc-MILE Tamil ASR Corpus contains transcribed speech corpus for training ASR systems for Tamil language. It contains ~150 hours of read speech data collected from 531 speakers in a noise-free recording environment with high quality USB microphones. """


import json
import os

import datasets

_CITATION = """\
@misc{mile_1,
  doi = {10.48550/ARXIV.2207.13331},
  url = {https://arxiv.org/abs/2207.13331},
  author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
  title = {Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada},
  publisher = {arXiv},
  year = {2022},
}

@misc{mile_2,
  doi = {10.48550/ARXIV.2207.13333},
  url = {https://arxiv.org/abs/2207.13333},
  author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
  title = {Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada},
  publisher = {arXiv},
  year = {2022},
}
"""

_DESCRIPTION = """\
IISc-MILE Tamil ASR Corpus contains transcribed speech corpus for training ASR systems for Tamil language. It contains ~150 hours of read speech data collected from 531 speakers in a noise-free recording environment with high quality USB microphones. 
"""

_HOMEPAGE = "https://www.openslr.org/127/"

_LICENSE = "Attribution 2.0 Generic (CC BY 2.0)"


_METADATA_URLS = {
    "train": "data/train.jsonl",
    "test": "data/test.jsonl"
}
_URLS = {
    "train": "data/train.tar.gz",
    "test": "data/test.tar.gz",
    
}

class MileDataset(datasets.GeneratorBasedBuilder):
    """IISc-MILE Tamil ASR Corpus contains transcribed speech corpus for training ASR systems for Tamil language."""

    VERSION = datasets.Version("1.1.0")
    def _info(self):
        features = datasets.Features(
            {
                "audio": datasets.Audio(sampling_rate=16_000),
                "file_name": datasets.Value("string"),
                "sentence": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("sentence", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        metadata_paths = dl_manager.download(_METADATA_URLS)
        train_archive = dl_manager.download(_URLS["train"])
        test_archive = dl_manager.download(_URLS["test"])
        local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
        local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
        test_archive = dl_manager.download(_URLS["test"])
        train_dir = "train"
        test_dir = "test"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_path": metadata_paths["train"],
                    "local_extracted_archive": local_extracted_train_archive,
                    "path_to_clips": train_dir + "/mp3",
                    "audio_files": dl_manager.iter_archive(train_archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "metadata_path": metadata_paths["test"],
                    "local_extracted_archive": local_extracted_test_archive,
                    "path_to_clips": test_dir + "/mp3",
                    "audio_files": dl_manager.iter_archive(test_archive),
                },
            ),
            
        ]
        
    def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
        """Yields examples as (key, example) tuples."""
        examples = {}
        with open(metadata_path, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                examples[data["file_name"]] = data
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    result = examples[path]
                    path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                    result["audio"] = {"path": path, "bytes": f.read()}
                    result["file_name"] = path
                    yield id_, result
                    id_ += 1
            elif inside_clips_dir:
                break