Datasets:
Update librispeech_asr.py
Browse files- librispeech_asr.py +16 -28
librispeech_asr.py
CHANGED
@@ -113,59 +113,50 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
|
113 |
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
114 |
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
115 |
|
|
|
116 |
if self.config.name == "clean":
|
117 |
-
|
118 |
datasets.SplitGenerator(
|
119 |
-
name=datasets.Split.VALIDATION
|
120 |
gen_kwargs={
|
121 |
"local_extracted_archive": local_extracted_archive.get("dev"),
|
122 |
"files": dl_manager.iter_archive(archive_path["dev"]),
|
123 |
},
|
124 |
-
)
|
125 |
-
]
|
126 |
-
test_splits = [
|
127 |
datasets.SplitGenerator(
|
128 |
-
name=datasets.Split.TEST
|
129 |
gen_kwargs={
|
130 |
"local_extracted_archive": local_extracted_archive.get("test"),
|
131 |
"files": dl_manager.iter_archive(archive_path["test"]),
|
132 |
},
|
133 |
)
|
134 |
-
]
|
135 |
-
return dev_splits + test_splits
|
136 |
-
|
137 |
elif self.config.name == "other":
|
138 |
-
|
139 |
datasets.SplitGenerator(
|
140 |
name="train.500",
|
141 |
gen_kwargs={
|
142 |
"local_extracted_archive": local_extracted_archive.get("train.500"),
|
143 |
"files": dl_manager.iter_archive(archive_path["train.500"]),
|
144 |
},
|
145 |
-
)
|
146 |
-
]
|
147 |
-
dev_splits = [
|
148 |
datasets.SplitGenerator(
|
149 |
-
name=
|
150 |
gen_kwargs={
|
151 |
"local_extracted_archive": local_extracted_archive.get("dev"),
|
152 |
"files": dl_manager.iter_archive(archive_path["dev"]),
|
153 |
},
|
154 |
-
)
|
155 |
-
]
|
156 |
-
test_splits = [
|
157 |
datasets.SplitGenerator(
|
158 |
-
name=
|
159 |
gen_kwargs={
|
160 |
"local_extracted_archive": local_extracted_archive.get("test"),
|
161 |
"files": dl_manager.iter_archive(archive_path["test"]),
|
162 |
},
|
163 |
)
|
164 |
-
]
|
165 |
-
return train_splits + dev_splits + test_splits
|
166 |
-
|
167 |
elif self.config.name == "all":
|
168 |
-
|
169 |
datasets.SplitGenerator(
|
170 |
name="train.clean.100",
|
171 |
gen_kwargs={
|
@@ -187,8 +178,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
|
187 |
"files": dl_manager.iter_archive(archive_path["train.other.500"]),
|
188 |
},
|
189 |
),
|
190 |
-
]
|
191 |
-
dev_splits = [
|
192 |
datasets.SplitGenerator(
|
193 |
name="validation.clean",
|
194 |
gen_kwargs={
|
@@ -203,8 +192,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
|
203 |
"files": dl_manager.iter_archive(archive_path["dev.other"]),
|
204 |
},
|
205 |
),
|
206 |
-
]
|
207 |
-
test_splits = [
|
208 |
datasets.SplitGenerator(
|
209 |
name="test.clean",
|
210 |
gen_kwargs={
|
@@ -219,8 +206,9 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
|
219 |
"files": dl_manager.iter_archive(archive_path["test.other"]),
|
220 |
},
|
221 |
),
|
222 |
-
]
|
223 |
-
|
|
|
224 |
|
225 |
def _generate_examples(self, files, local_extracted_archive):
|
226 |
"""Generate examples from a LibriSpeech archive_path."""
|
|
|
113 |
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
114 |
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
115 |
|
116 |
+
splits = []
|
117 |
if self.config.name == "clean":
|
118 |
+
splits.extend([
|
119 |
datasets.SplitGenerator(
|
120 |
+
name="validation", # Changed from datasets.Split.VALIDATION
|
121 |
gen_kwargs={
|
122 |
"local_extracted_archive": local_extracted_archive.get("dev"),
|
123 |
"files": dl_manager.iter_archive(archive_path["dev"]),
|
124 |
},
|
125 |
+
),
|
|
|
|
|
126 |
datasets.SplitGenerator(
|
127 |
+
name="test", # Changed from datasets.Split.TEST
|
128 |
gen_kwargs={
|
129 |
"local_extracted_archive": local_extracted_archive.get("test"),
|
130 |
"files": dl_manager.iter_archive(archive_path["test"]),
|
131 |
},
|
132 |
)
|
133 |
+
])
|
|
|
|
|
134 |
elif self.config.name == "other":
|
135 |
+
splits.extend([
|
136 |
datasets.SplitGenerator(
|
137 |
name="train.500",
|
138 |
gen_kwargs={
|
139 |
"local_extracted_archive": local_extracted_archive.get("train.500"),
|
140 |
"files": dl_manager.iter_archive(archive_path["train.500"]),
|
141 |
},
|
142 |
+
),
|
|
|
|
|
143 |
datasets.SplitGenerator(
|
144 |
+
name="validation",
|
145 |
gen_kwargs={
|
146 |
"local_extracted_archive": local_extracted_archive.get("dev"),
|
147 |
"files": dl_manager.iter_archive(archive_path["dev"]),
|
148 |
},
|
149 |
+
),
|
|
|
|
|
150 |
datasets.SplitGenerator(
|
151 |
+
name="test",
|
152 |
gen_kwargs={
|
153 |
"local_extracted_archive": local_extracted_archive.get("test"),
|
154 |
"files": dl_manager.iter_archive(archive_path["test"]),
|
155 |
},
|
156 |
)
|
157 |
+
])
|
|
|
|
|
158 |
elif self.config.name == "all":
|
159 |
+
splits.extend([
|
160 |
datasets.SplitGenerator(
|
161 |
name="train.clean.100",
|
162 |
gen_kwargs={
|
|
|
178 |
"files": dl_manager.iter_archive(archive_path["train.other.500"]),
|
179 |
},
|
180 |
),
|
|
|
|
|
181 |
datasets.SplitGenerator(
|
182 |
name="validation.clean",
|
183 |
gen_kwargs={
|
|
|
192 |
"files": dl_manager.iter_archive(archive_path["dev.other"]),
|
193 |
},
|
194 |
),
|
|
|
|
|
195 |
datasets.SplitGenerator(
|
196 |
name="test.clean",
|
197 |
gen_kwargs={
|
|
|
206 |
"files": dl_manager.iter_archive(archive_path["test.other"]),
|
207 |
},
|
208 |
),
|
209 |
+
])
|
210 |
+
|
211 |
+
return splits
|
212 |
|
213 |
def _generate_examples(self, files, local_extracted_archive):
|
214 |
"""Generate examples from a LibriSpeech archive_path."""
|