pavanyellow commited on
Commit
0932f25
·
verified ·
1 Parent(s): 9c41d14

Update librispeech_asr.py

Browse files
Files changed (1) hide show
  1. librispeech_asr.py +16 -28
librispeech_asr.py CHANGED
@@ -113,59 +113,50 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
113
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
114
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
115
 
 
116
  if self.config.name == "clean":
117
- dev_splits = [
118
  datasets.SplitGenerator(
119
- name=datasets.Split.VALIDATION,
120
  gen_kwargs={
121
  "local_extracted_archive": local_extracted_archive.get("dev"),
122
  "files": dl_manager.iter_archive(archive_path["dev"]),
123
  },
124
- )
125
- ]
126
- test_splits = [
127
  datasets.SplitGenerator(
128
- name=datasets.Split.TEST,
129
  gen_kwargs={
130
  "local_extracted_archive": local_extracted_archive.get("test"),
131
  "files": dl_manager.iter_archive(archive_path["test"]),
132
  },
133
  )
134
- ]
135
- return dev_splits + test_splits
136
-
137
  elif self.config.name == "other":
138
- train_splits = [
139
  datasets.SplitGenerator(
140
  name="train.500",
141
  gen_kwargs={
142
  "local_extracted_archive": local_extracted_archive.get("train.500"),
143
  "files": dl_manager.iter_archive(archive_path["train.500"]),
144
  },
145
- )
146
- ]
147
- dev_splits = [
148
  datasets.SplitGenerator(
149
- name=datasets.Split.VALIDATION,
150
  gen_kwargs={
151
  "local_extracted_archive": local_extracted_archive.get("dev"),
152
  "files": dl_manager.iter_archive(archive_path["dev"]),
153
  },
154
- )
155
- ]
156
- test_splits = [
157
  datasets.SplitGenerator(
158
- name=datasets.Split.TEST,
159
  gen_kwargs={
160
  "local_extracted_archive": local_extracted_archive.get("test"),
161
  "files": dl_manager.iter_archive(archive_path["test"]),
162
  },
163
  )
164
- ]
165
- return train_splits + dev_splits + test_splits
166
-
167
  elif self.config.name == "all":
168
- train_splits = [
169
  datasets.SplitGenerator(
170
  name="train.clean.100",
171
  gen_kwargs={
@@ -187,8 +178,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
187
  "files": dl_manager.iter_archive(archive_path["train.other.500"]),
188
  },
189
  ),
190
- ]
191
- dev_splits = [
192
  datasets.SplitGenerator(
193
  name="validation.clean",
194
  gen_kwargs={
@@ -203,8 +192,6 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
203
  "files": dl_manager.iter_archive(archive_path["dev.other"]),
204
  },
205
  ),
206
- ]
207
- test_splits = [
208
  datasets.SplitGenerator(
209
  name="test.clean",
210
  gen_kwargs={
@@ -219,8 +206,9 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
219
  "files": dl_manager.iter_archive(archive_path["test.other"]),
220
  },
221
  ),
222
- ]
223
- return train_splits + dev_splits + test_splits
 
224
 
225
  def _generate_examples(self, files, local_extracted_archive):
226
  """Generate examples from a LibriSpeech archive_path."""
 
113
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
114
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
115
 
116
+ splits = []
117
  if self.config.name == "clean":
118
+ splits.extend([
119
  datasets.SplitGenerator(
120
+ name="validation", # Changed from datasets.Split.VALIDATION
121
  gen_kwargs={
122
  "local_extracted_archive": local_extracted_archive.get("dev"),
123
  "files": dl_manager.iter_archive(archive_path["dev"]),
124
  },
125
+ ),
 
 
126
  datasets.SplitGenerator(
127
+ name="test", # Changed from datasets.Split.TEST
128
  gen_kwargs={
129
  "local_extracted_archive": local_extracted_archive.get("test"),
130
  "files": dl_manager.iter_archive(archive_path["test"]),
131
  },
132
  )
133
+ ])
 
 
134
  elif self.config.name == "other":
135
+ splits.extend([
136
  datasets.SplitGenerator(
137
  name="train.500",
138
  gen_kwargs={
139
  "local_extracted_archive": local_extracted_archive.get("train.500"),
140
  "files": dl_manager.iter_archive(archive_path["train.500"]),
141
  },
142
+ ),
 
 
143
  datasets.SplitGenerator(
144
+ name="validation",
145
  gen_kwargs={
146
  "local_extracted_archive": local_extracted_archive.get("dev"),
147
  "files": dl_manager.iter_archive(archive_path["dev"]),
148
  },
149
+ ),
 
 
150
  datasets.SplitGenerator(
151
+ name="test",
152
  gen_kwargs={
153
  "local_extracted_archive": local_extracted_archive.get("test"),
154
  "files": dl_manager.iter_archive(archive_path["test"]),
155
  },
156
  )
157
+ ])
 
 
158
  elif self.config.name == "all":
159
+ splits.extend([
160
  datasets.SplitGenerator(
161
  name="train.clean.100",
162
  gen_kwargs={
 
178
  "files": dl_manager.iter_archive(archive_path["train.other.500"]),
179
  },
180
  ),
 
 
181
  datasets.SplitGenerator(
182
  name="validation.clean",
183
  gen_kwargs={
 
192
  "files": dl_manager.iter_archive(archive_path["dev.other"]),
193
  },
194
  ),
 
 
195
  datasets.SplitGenerator(
196
  name="test.clean",
197
  gen_kwargs={
 
206
  "files": dl_manager.iter_archive(archive_path["test.other"]),
207
  },
208
  ),
209
+ ])
210
+
211
+ return splits
212
 
213
  def _generate_examples(self, files, local_extracted_archive):
214
  """Generate examples from a LibriSpeech archive_path."""