file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
KallPap/FRL-SHAC-Extension/dflex/tests/test_beam.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Beam: sim_duration = 3.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 1.0 def __init__(self, device='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() builder.add_soft_grid(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=2, dim_z=2, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=10.0, k_mu=1000.0, k_lambda=1000.0, k_damp=5.0, fix_left=True, fix_right=True) self.model = builder.finalize(device) # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.particle_radius = 0.05 self.model.ground = False self.target = torch.tensor((-0.5)).to(device) self.material = torch.tensor((100.0, 50.0, 5.0), requires_grad=True, device=device) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/beam.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # clamp material params to reasonable range mat_min = torch.tensor((1.e+1, 1.e+1, 5.0), device=self.model.adapter) mat_max = torch.tensor((1.e+5, 1.e+5, 5.0), device=self.model.adapter) mat_val = torch.max(torch.min(mat_max, self.material), mat_min) # broadcast stiffness params to all tets self.model.tet_materials = mat_val.expand((self.model.tet_count, 3)).contiguous() # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_q, 0) # minimize y loss = loss - torch.norm(com_loss[1] - self.target) return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [ self.material, ] def closure(): if optimizer: optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(self.material) print(self.material.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for param in params: param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.5, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- beam = Beam(device='cpu') #beam.run() #beam.train('lbfgs') beam.train('gd')
6,623
Python
28.704036
141
0.495697
KallPap/FRL-SHAC-Extension/dflex/tests/test_rigid_bounce.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class RigidBounce: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = True name = "rigid_bounce" def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render builder.add_articulation() # add sphere link = builder.add_link(-1, df.transform((0.0, 0.0, 0.0), df.quat_identity()), (0,0,0), df.JOINT_FREE) shape = builder.add_shape_sphere( link, (0.0, 0.0, 0.0), df.quat_identity(), radius=0.1, ke=1.e+4, kd=10.0, kf=1.e+2, mu=0.25) builder.joint_q[1] = 1.0 #v_s = df.get_body_twist((0.0, 0.0, 0.0), (1.0, -1.0, 0.0), builder.joint_q[0:3]) w_m = (0.0, 0.0, 3.0) # angular velocity (expressed in world space) v_m = (0.0, 0.0, 0.0) # linear velocity at center of mass (expressed in world space) p_m = builder.joint_q[0:3] # position of the center of mass (expressed in world space) # set body0 twist builder.joint_qd[0:6] = df.get_body_twist(w_m, v_m, p_m) # get decomposed velocities print(df.get_body_angular_velocity(builder.joint_qd[0:6])) print(df.get_body_linear_velocity(builder.joint_qd[0:6], p_m)) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) # initial velocity #self.model.joint_qd[3] = 0.5 #self.model.joint_qd[4] = -0.5 #self.model.joint_qd[2] = 1.0 self.model.joint_qd.requires_grad_() self.target = torch.tensor((1.0, 1.0, 0.0), dtype=torch.float32, device=adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): for i in range(0, self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") #loss = loss + torch.dot(self.state.joint_qd[3:6], self.state.joint_qd[3:6])*self.balance_penalty*discount pos = self.state.joint_q[0:3] loss = torch.norm(pos-self.target) return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.model.joint_qd n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.model.joint_qd.grad.tolist() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.model.joint_qd] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.model.joint_qd, "outputs/" + self.name + ".pt") def load(self): self.model.joint_qd = torch.load("outputs/" + self.name + ".pt") #--------- robot = RigidBounce(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.check_grad = True #df.config.no_grad = True robot.run() #df.config.verify_fp = True #robot.load() #robot.train(mode='lbfgs') #robot.verify(eps=1.e-3)
8,881
Python
27.196825
118
0.516158
KallPap/FRL-SHAC-Extension/dflex/tests/test_rigid_slide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np from pxr import Usd, UsdGeom, Gf class RigidSlide: sim_duration = 3.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.1 discount_scale = 1.0 discount_factor = 0.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) # load mesh usd = Usd.Stage.Open("assets/suzanne.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Suzanne/Suzanne")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() builder = df.sim.ModelBuilder() mesh = df.sim.Mesh(points, indices) articulation = builder.add_articulation() rigid = builder.add_link( parent=-1, X_pj=df.transform((0.0, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 0.0), type=df.JOINT_FREE) ke = 1.e+4 kd = 1.e+3 kf = 1.e+3 mu = 0.5 # shape = builder.add_shape_mesh( # rigid, # mesh=mesh, # scale=(0.2, 0.2, 0.2), # density=1000.0, # ke=1.e+4, # kd=1000.0, # kf=1000.0, # mu=0.75) radius = 0.1 #shape = builder.add_shape_sphere(rigid, pos=(0.0, 0.0, 0.0), ke=ke, kd=kd, kf=kf, mu=mu, radius=radius) #shape = builder.add_shape_capsule(rigid, pos=(0.0, 0.0, 0.0), radius=radius, half_width=0.5) shape = builder.add_shape_box(rigid, pos=(0.0, 0.0, 0.0), hx=radius, hy=radius, hz=radius, ke=ke, kd=kd, kf=kf, mu=mu) builder.joint_q[1] = radius self.model = builder.finalize(adapter) self.model.joint_qd.requires_grad = True self.vel = torch.tensor((1.0, 0.0, 0.0), dtype=torch.float32, device=adapter, requires_grad=True) self.target = torch.tensor((3.0, 0.2, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/rigid_slide.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #--------------- # run simulation # construct contacts once at startup self.model.joint_qd = torch.cat((torch.tensor((0.0, 0.0, 0.0), dtype=torch.float32, device=self.model.adapter), self.vel)) self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #com = self.state.joint_q[0:3] com = self.state.body_X_sm[0, 0:3] loss = loss + torch.norm(com - self.target) return loss def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.vel] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- rigid = RigidSlide(adapter='cpu') #rigid.run() rigid.train('adam')
7,018
Python
28.124481
141
0.526503
KallPap/FRL-SHAC-Extension/dflex/tests/test_snu_mlp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class MultiLayerPerceptron(nn.Module): def __init__(self, n_in, n_out, n_hd, adapter, inference=False): super(MultiLayerPerceptron,self).__init__() self.n_in = n_in self.n_out = n_out self.n_hd = n_hd #self.ll = nn.Linear(n_in, n_out) self.fc1 = nn.Linear(n_in, n_hd).to(adapter) self.fc2 = nn.Linear(n_hd, n_hd).to(adapter) self.fc3 = nn.Linear(n_hd, n_out).to(adapter) self.bn1 = nn.LayerNorm(n_in, elementwise_affine=False).to(adapter) self.bn2 = nn.LayerNorm(n_hd, elementwise_affine=False).to(adapter) self.bn3 = nn.LayerNorm(n_out, elementwise_affine=False).to(adapter) def forward(self, x: torch.Tensor): x = F.leaky_relu(self.bn2(self.fc1(x))) x = F.leaky_relu(self.bn2(self.fc2(x))) x = torch.tanh(self.bn3(self.fc3(x))-2.0) return x class HumanoidSNU: train_iters = 100000000 train_rate = 0.001 train_size = 128 train_batch_size = 4 train_batch_iters = 128 train_batch_count = int(train_size/train_batch_size) train_data = None ground = True name = "humanoid_snu_lower" regularization = 1.e-3 inference = False initial_y = 1.0 def __init__(self, depth=1, mode='numpy', render=True, sim_duration=1.0, adapter='cpu', inference=False): self.sim_duration = sim_duration # seconds self.sim_substeps = 16 self.sim_dt = (1.0 / 60.0) / self.sim_substeps self.sim_steps = int(self.sim_duration / self.sim_dt) self.sim_time = 0.0 torch.manual_seed(41) np.random.seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL" } self.ground = False if self.name == "humanoid_snu_lower": self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.ground = True self.initial_y = 1.0 if self.name == "humanoid_snu": self.filter = {} self.ground = True self.skeletons = [] self.inference = inference # if (self.inference): # self.train_batch_size = 1 for i in range(self.train_batch_size): skeleton = test_util.Skeleton("assets/snu/arm.xml", "assets/snu/muscle284.xml", builder, self.filter) # set initial position 1m off the ground builder.joint_q[skeleton.coord_start + 0] = i*1.5 builder.joint_q[skeleton.coord_start + 1] = self.initial_y # offset on z-axis #builder.joint_q[skeleton.coord_start + 2] = 10.0 # initial velcoity #builder.joint_qd[skeleton.dof_start + 5] = 3.0 self.skeletons.append(skeleton) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) #self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.network = MultiLayerPerceptron(3, len(self.skeletons[0].muscles), 128, adapter) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 # generate training data targets = [] for i in range(self.train_size): # generate a random point in -1, 1 away from the head t = np.random.rand(2)*2.0 - 1.0 t[1] += 0.5 targets.append((t[0], t[1] + 0.5, 1.0)) self.train_data = torch.tensor(targets, dtype=torch.float32, device=self.adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target(torch.tensor((0.75, 0.4, 0.5), dtype=torch.float32, device=self.adapter), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = x if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name, self.render_time) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # apply actions #self.model.muscle_activation = self.activations[0]*self.muscle_strength # compute activations for each target in the batch targets = self.train_data[0:self.train_batch_size] activations = torch.flatten(self.network(targets)) self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # one time collision self.model.collide(self.state) for i in range(self.sim_steps): # apply random actions per-frame #self.model.muscle_activation = (activations*0.5 + 0.5 + torch.rand_like(activations,dtype=torch.float32, device=self.model.adapter))*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) #if self.inference: #x = math.cos(self.sim_time*0.5)*0.5 #y = math.sin(self.sim_time*0.5)*0.5 # t = self.sim_time*0.5 # x = math.sin(t)*0.5 # y = math.sin(t)*math.cos(t)*0.5 # self.set_target(torch.tensor((x, y + 0.5, 1.0), dtype=torch.float32, device=self.adapter), "target") # activations = self.network(self.target) # self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(len(s.muscles)):#.self.model.muscle_count): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) for i in range(self.train_batch_size): skel = self.skeletons[i] head_pos = self.state.body_X_sc[skel.node_map["Head"]][0:3] head_forward = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], up_dir) target_dir = self.train_data[i] - head_pos loss_forward = torch.dot(head_forward, target_dir)*self.target_penalty loss_up = torch.dot(head_up, up_dir)*self.target_penalty*0.5 loss_penalty = torch.dot(activations, activations)*self.action_penalty loss = loss - loss_forward - loss_up + loss_penalty #self.writer.add_scalar("loss_forward", loss_forward.item(), self.step_count) #self.writer.add_scalar("loss_up", loss_up.item(), self.step_count) #self.writer.add_scalar("loss_penalty", loss_penalty.item(), self.step_count) return loss def run(self): df.config.no_grad = True self.inference = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): self.writer = SummaryWriter() self.writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.best_loss = math.inf optimizer = None scheduler = None params = self.network.parameters()#[self.activations] def closure(): batch = int(self.step_count/self.train_batch_iters)%self.train_batch_count print("Batch: " + str(batch) + " Iter: " + str(self.step_count%self.train_batch_iters)) if (optimizer): optimizer.zero_grad() # compute loss on all examples with df.ScopedTimer("forward"):#, detailed=True): l = self.loss() # compute gradient with df.ScopedTimer("backward"):#, detailed=True): l.backward() # batch stats self.writer.add_scalar("loss_batch", l.item(), self.step_count) self.writer.flush() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: self.stage.Save() except: print("USD save error") # save network if (l < self.best_loss): self.save() self.best_loss = l return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): last_LR = 1e-5 init_LR = 1e-3 decay_LR_steps = 2000 gamma = math.exp(math.log(last_LR/init_LR)/decay_LR_steps) optimizer = torch.optim.Adam(params, lr=self.train_rate, weight_decay=1e-5) #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = gamma) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) if optimizer: optimizer.step(closure) if scheduler: scheduler.step() # final save try: self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self, suffix=""): self.network = torch.load("outputs/" + self.name + suffix + ".pt") if self.inference: self.network.eval() else: self.network.train() #--------- #env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda') #env.train(mode='adam') env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda', inference=True) #env.load() env.run()
17,357
Python
32.445087
235
0.526358
KallPap/FRL-SHAC-Extension/dflex/tests/test_allegro.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "allegro" regularization = 1.e-3 env_count = 1 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # allegro for i in range(self.env_count): test_util.urdf_load( builder, #"assets/franka_description/robots/franka_panda.urdf", "assets/allegro_hand_description/allegro_hand_description_right.urdf", df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi*0.5)), floating=False, limit_ke=0.0,#1.e+3, limit_kd=0.0)#1.e+2) # set fingers to mid-range of their limits for i in range(len(builder.joint_q_start)): if (builder.joint_type[i] == df.JOINT_REVOLUTE): dof = builder.joint_q_start[i] mid = (builder.joint_limit_lower[dof] + builder.joint_limit_upper[dof])*0.5 builder.joint_q[dof] = mid builder.joint_target[dof] = mid builder.joint_target_kd[i] = 0.02 builder.joint_target_ke[i] = 1.0 solid = False # create FEM block if (solid): builder.add_soft_grid( pos=(-0.05, 0.2, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=10, dim_y=5, dim_z=5, cell_x=0.01, cell_y=0.01, cell_z=0.01, density=1000.0, k_mu=500.0, k_lambda=1000.0, k_damp=1.0) else: builder.add_cloth_grid( pos=(-0.1, 0.2, -0.1), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi*0.5), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=20, cell_x=0.01, cell_y=0.01, mass=0.0125) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.contact_ke = 1.e+3 self.model.contact_kd = 2.0 self.model.contact_kf = 0.1 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 if (solid): self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 else: self.model.tri_ke = 100.0 self.model.tri_ka = 100.0 self.model.tri_kd = 1.0 self.model.tri_kb = 0.0 self.model.edge_ke = 0.01 self.model.edge_kd = 0.001 self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() robot.run() #robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
10,608
Python
27.986339
165
0.488028
KallPap/FRL-SHAC-Extension/dflex/tests/test_adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df
626
Python
25.124999
82
0.785942
KallPap/FRL-SHAC-Extension/dflex/tests/assets/humanoid.xml
<!-- ====================================================== This file is part of MuJoCo. Copyright 2009-2015 Roboti LLC. Model :: Humanoid Mujoco :: Advanced physics simulation engine Source : www.roboti.us Version : 1.31 Released : 23Apr16 Author :: Vikash Kumar Contacts : [email protected] Last edits : 30Apr'16, 30Nov'15, 26Sept'15 ====================================================== --> <mujoco model='humanoid (v1.31)'> <compiler inertiafromgeom='true' angle='degree'/> <default> <joint limited='true' damping='1' armature='0' /> <geom contype='1' conaffinity='1' condim='1' rgba='0.8 0.6 .4 1' margin="0.001" solref=".02 1" solimp=".8 .8 .01" material="geom"/> <motor ctrlrange='-.4 .4' ctrllimited='true'/> </default> <option timestep='0.002' iterations="50" solver="PGS"> <flag energy="enable"/> </option> <size nkey='5'/> <visual> <map fogstart="3" fogend="5" force="0.1"/> <quality shadowsize="2048"/> </visual> <asset> <texture type="skybox" builtin="gradient" width="100" height="100" rgb1=".4 .6 .8" rgb2="0 0 0"/> <texture name="texgeom" type="cube" builtin="flat" mark="cross" width="127" height="1278" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" random="0.01"/> <texture name="texplane" type="2d" builtin="checker" rgb1=".2 .3 .4" rgb2=".1 0.15 0.2" width="100" height="100"/> <material name='MatPlane' reflectance='0.5' texture="texplane" texrepeat="1 1" texuniform="true"/> <material name='geom' texture="texgeom" texuniform="true"/> </asset> <worldbody> <geom name='floor' pos='0 0 0' size='10 10 0.125' type='plane' material="MatPlane" condim='3'/> <body name='torso' pos='0 0 1.4'> <light mode='trackcom' directional='false' diffuse='.8 .8 .8' specular='0.3 0.3 0.3' pos='0 0 4.0' dir='0 0 -1'/> <joint name='root' type='free' pos='0 0 0' limited='false' damping='0' armature='0' stiffness='0'/> <geom name='torso1' type='capsule' fromto='0 -.07 0 0 .07 0' size='0.07' /> <geom name='head' type='sphere' pos='0 0 .19' size='.09'/> <geom name='uwaist' type='capsule' fromto='-.01 -.06 -.12 -.01 .06 -.12' size='0.06'/> <body name='lwaist' pos='-.01 0 -0.260' quat='1.000 0 -0.002 0' > <geom name='lwaist' type='capsule' fromto='0 -.06 0 0 .06 0' size='0.06' /> <joint name='abdomen_z' type='hinge' pos='0 0 0.065' axis='0 0 1' range='-45 45' damping='5' stiffness='20' armature='0.02' /> <joint name='abdomen_y' type='hinge' pos='0 0 0.065' axis='0 1 0' range='-75 30' damping='5' stiffness='10' armature='0.02' /> <body name='pelvis' pos='0 0 -0.165' quat='1.000 0 -0.002 0' > <joint name='abdomen_x' type='hinge' pos='0 0 0.1' axis='1 0 0' range='-35 35' damping='5' stiffness='10' armature='0.02' /> <geom name='butt' type='capsule' fromto='-.02 -.07 0 -.02 .07 0' size='0.09' /> <body name='right_thigh' pos='0 -0.1 -0.04' > <joint name='right_hip_x' type='hinge' pos='0 0 0' axis='1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_z' type='hinge' pos='0 0 0' axis='0 0 1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='right_thigh1' type='capsule' fromto='0 0 0 0 0.01 -.34' size='0.06' /> <body name='right_shin' pos='0 0.01 -0.403' > <joint name='right_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='right_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='right_foot' pos='0 0 -.39' > <joint name='right_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='right_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='right_foot_cap1' type='capsule' fromto='-.07 -0.02 0 0.14 -0.04 0' size='0.027' /> <geom name='right_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 0.02 0' size='0.027' /> </body> </body> </body> <body name='left_thigh' pos='0 0.1 -0.04' > <joint name='left_hip_x' type='hinge' pos='0 0 0' axis='-1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_z' type='hinge' pos='0 0 0' axis='0 0 -1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='left_thigh1' type='capsule' fromto='0 0 0 0 -0.01 -.34' size='0.06' /> <body name='left_shin' pos='0 -0.01 -0.403' > <joint name='left_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='left_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='left_foot' pos='0 0 -.39' > <joint name='left_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='left_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='left_foot_cap1' type='capsule' fromto='-.07 0.02 0 0.14 0.04 0' size='0.027' /> <geom name='left_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 -0.02 0' size='0.027' /> </body> </body> </body> </body> </body> <body name='right_upper_arm' pos='0 -0.17 0.06' > <joint name='right_shoulder1' type='hinge' pos='0 0 0' axis='2 1 1' range='-85 60' stiffness='1' armature='0.0068' /> <joint name='right_shoulder2' type='hinge' pos='0 0 0' axis='0 -1 1' range='-85 60' stiffness='1' armature='0.0051' /> <geom name='right_uarm1' type='capsule' fromto='0 0 0 .16 -.16 -.16' size='0.04 0.16' /> <body name='right_lower_arm' pos='.18 -.18 -.18' > <joint name='right_elbow' type='hinge' pos='0 0 0' axis='0 -1 1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='right_larm' type='capsule' fromto='0.01 0.01 0.01 .17 .17 .17' size='0.031' /> <geom name='right_hand' type='sphere' pos='.18 .18 .18' size='0.04'/> </body> </body> <body name='left_upper_arm' pos='0 0.17 0.06' > <joint name='left_shoulder1' type='hinge' pos='0 0 0' axis='2 -1 1' range='-60 85' stiffness='1' armature='0.0068' /> <joint name='left_shoulder2' type='hinge' pos='0 0 0' axis='0 1 1' range='-60 85' stiffness='1' armature='0.0051' /> <geom name='left_uarm1' type='capsule' fromto='0 0 0 .16 .16 -.16' size='0.04 0.16' /> <body name='left_lower_arm' pos='.18 .18 -.18' > <joint name='left_elbow' type='hinge' pos='0 0 0' axis='0 -1 -1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='left_larm' type='capsule' fromto='0.01 -0.01 0.01 .17 -.17 .17' size='0.031' /> <geom name='left_hand' type='sphere' pos='.18 -.18 .18' size='0.04'/> </body> </body> </body> </worldbody> <tendon> <fixed name='left_hipknee'> <joint joint='left_hip_y' coef='-1'/> <joint joint='left_knee' coef='1'/> </fixed> <fixed name='right_hipknee'> <joint joint='right_hip_y' coef='-1'/> <joint joint='right_knee' coef='1'/> </fixed> </tendon> <keyframe> <key qpos='-0.0233227 0.00247283 0.0784829 0.728141 0.00223397 -0.685422 -0.00181805 -0.000580139 -0.245119 0.0329713 -0.0461148 0.0354257 0.252234 -0.0347763 -0.4663 -0.0313013 0.0285638 0.0147285 0.264063 -0.0346441 -0.559198 0.021724 -0.0333332 -0.718563 0.872778 0.000260393 0.733088 0.872748' /> <key qpos='0.0168601 -0.00192002 0.127167 0.762693 0.00191588 0.646754 -0.00210291 -0.000199049 0.0573113 -4.05731e-005 0.0134177 -0.00468944 0.0985945 -0.282695 -0.0469067 0.00874203 0.0263262 -0.00295056 0.0984851 -0.282098 -0.044293 0.00475795 0.127371 -0.42895 0.882402 -0.0980573 0.428506 0.88193' /> <key qpos='0.000471586 0.0317577 0.210587 0.758805 -0.583984 0.254155 0.136322 -0.0811633 0.0870309 -0.0935227 0.0904958 -0.0278004 -0.00978614 -0.359193 0.139761 -0.240168 0.060149 0.237062 -0.00622109 -0.252598 -0.00376874 -0.160597 0.25253 -0.278634 0.834376 -0.990444 -0.169065 0.652876' /> <key qpos='-0.0602175 0.048078 0.194579 -0.377418 -0.119412 -0.675073 -0.622553 0.139093 0.0710746 -0.0506027 0.0863461 0.196165 -0.0276685 -0.521954 -0.267784 0.179051 0.0371897 0.0560134 -0.032595 -0.0480022 0.0357436 0.108502 0.963806 0.157805 0.873092 -1.01145 -0.796409 0.24736' /> </keyframe> <actuator> <motor name='abdomen_y' gear='200' joint='abdomen_y' /> <motor name='abdomen_z' gear='200' joint='abdomen_z' /> <motor name='abdomen_x' gear='200' joint='abdomen_x' /> <motor name='right_hip_x' gear='200' joint='right_hip_x' /> <motor name='right_hip_z' gear='200' joint='right_hip_z' /> <motor name='right_hip_y' gear='600' joint='right_hip_y' /> <motor name='right_knee' gear='400' joint='right_knee' /> <motor name='right_ankle_x' gear='100' joint='right_ankle_x' /> <motor name='right_ankle_y' gear='100' joint='right_ankle_y' /> <motor name='left_hip_x' gear='200' joint='left_hip_x' /> <motor name='left_hip_z' gear='200' joint='left_hip_z' /> <motor name='left_hip_y' gear='600' joint='left_hip_y' /> <motor name='left_knee' gear='400' joint='left_knee' /> <motor name='left_ankle_x' gear='100' joint='left_ankle_x' /> <motor name='left_ankle_y' gear='100' joint='left_ankle_y' /> <motor name='right_shoulder1' gear='100' joint='right_shoulder1' /> <motor name='right_shoulder2' gear='100' joint='right_shoulder2' /> <motor name='right_elbow' gear='200' joint='right_elbow' /> <motor name='left_shoulder1' gear='100' joint='left_shoulder1' /> <motor name='left_shoulder2' gear='100' joint='left_shoulder2' /> <motor name='left_elbow' gear='200' joint='left_elbow' /> </actuator> </mujoco>
11,517
XML
68.385542
314
0.528784
KallPap/FRL-SHAC-Extension/dflex/tests/assets/ant.xml
<mujoco model="ant"> <compiler angle="degree" coordinate="local" inertiafromgeom="true"/> <option integrator="RK4" timestep="0.01"/> <custom> <numeric data="0.0 0.0 0.55 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 1.0" name="init_qpos"/> </custom> <default> <joint armature="0.001" damping="1" limited="true"/> <geom conaffinity="0" condim="3" density="5.0" friction="1.5 0.1 0.1" margin="0.01" rgba="0.97 0.38 0.06 1"/> </default> <worldbody> <body name="torso" pos="0 0 0.75"> <geom name="torso_geom" pos="0 0 0" size="0.25" type="sphere"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="aux_1_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="aux_2_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="aux_3_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="aux_4_geom" size="0.08" type="capsule" rgba=".999 .2 .02 1"/> <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0" type="free"/> <body name="front_left_leg" pos="0.2 0.2 0"> <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 0.2 0" name="front_left_foot"> <joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 0.4 0.0" name="left_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> <body name="front_right_leg" pos="-0.2 0.2 0"> <joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 0.2 0" name="front_right_foot"> <joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 0.4 0.0" name="right_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="left_back_leg" pos="-0.2 -0.2 0"> <joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="back_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 -0.2 0" name="left_back_foot"> <joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 -0.4 0.0" name="third_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="right_back_leg" pos="0.2 -0.2 0"> <joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="rightback_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 -0.2 0" name="right_back_foot"> <joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 -0.4 0.0" name="fourth_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> </body> </worldbody> <actuator> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_3" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_3" gear="150"/> </actuator> </mujoco>
4,043
XML
61.215384
125
0.550829
KallPap/FRL-SHAC-Extension/dflex/docs/index.rst
Welcome to dFlex's documentation! ================================== dFlex is a differentiable multiphysics engine for PyTorch. It is written entirely in Python and supports reverse mode differentiation w.r.t. to any simulation inputs. It includes a USD-based visualization module (:class:`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly. Prerequisites ------------- * Python 3.6 * PyTorch 1.4.0 or higher * Pixar USD lib (for visualization) Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable. .. toctree:: :maxdepth: 3 :caption: Contents: modules/model modules/sim modules/render Quick Start ----------------- First ensure that the package is installed in your local Python environment (use the -e option if you will be doing development): .. code-block:: pip install -e dflex Then, to use the engine you can import the simulation module as follows: .. code-block:: import dflex To build physical models there is a helper class available in :class:`dflex.model.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles: .. code-block:: builder = dflex.model.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # add ground plane builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0) Once you have built your model you must convert it to a finalized PyTorch simulation data structure using :func:`dflex.model.ModelBuilder.finalize()`: .. code-block:: model = builder.finalize('cpu') The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state. Time Stepping ------------- To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the :class:`dflex.sim.SemiImplicitIntegrator` class as follows: .. code-block:: sim_dt = 1.0/60.0 sim_steps = 100 integrator = dflex.sim.SemiImplicitIntegrator() for i in range(0, sim_steps): state = integrator.forward(model, state, sim_dt) Rendering --------- To visualize the scene dFlex supports a USD-based update via. the :class:`dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model. .. code-block:: import dflex.render stage = Usd.Stage.CreateNew("test.usda") renderer = dflex.render.UsdRenderer(model, stage) renderer.draw_points = True renderer.draw_springs = True renderer.draw_shapes = True Each frame the renderer should be updated with the current model state and the current elapsed simulation time: .. code-block:: renderer.update(state, sim_time) Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
3,311
reStructuredText
27.8
228
0.700393
KallPap/FRL-SHAC-Extension/dflex/docs/conf.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../dflex')) # -- Project information ----------------------------------------------------- project = 'dFlex' copyright = '2020, NVIDIA' author = 'NVIDIA' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', # 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'autodocsumm' ] # put type hints inside the description instead of the signature (easier to read) autodoc_typehints = 'description' # document class *and* __init__ methods autoclass_content = 'both' # todo_include_todos = True intersphinx_mapping = { 'python': ("https://docs.python.org/3", None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'PyTorch': ('http://pytorch.org/docs/master/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme = "sphinx_rtd_theme" # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = []
2,515
Python
32.105263
81
0.659245
KallPap/FRL-SHAC-Extension/dflex/docs/modules/sim.rst
dflex.sim =========== .. currentmodule:: dflex.sim .. toctree:: :maxdepth: 2 .. automodule:: dflex.sim :members: :undoc-members: :show-inheritance:
171
reStructuredText
12.230768
28
0.567251
KallPap/FRL-SHAC-Extension/dflex/docs/modules/model.rst
dflex.model =========== .. currentmodule:: dflex.model .. toctree:: :maxdepth: 2 model.modelbuilder model.model model.state
151
reStructuredText
10.692307
30
0.569536
KallPap/FRL-SHAC-Extension/dflex/docs/modules/model.model.rst
dflex.model.Model ======================== .. autoclasssumm:: dflex.model.Model .. autoclass:: dflex.model.Model :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
KallPap/FRL-SHAC-Extension/dflex/docs/modules/render.rst
dflex.render ============ .. currentmodule:: dflex.render .. toctree:: :maxdepth: 2 .. automodule:: dflex.render :members: :undoc-members: :show-inheritance:
178
reStructuredText
11.785713
31
0.595506
KallPap/FRL-SHAC-Extension/dflex/docs/modules/model.state.rst
dflex.model.State ======================== .. autoclasssumm:: dflex.model.State .. autoclass:: dflex.model.State :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
KallPap/FRL-SHAC-Extension/dflex/docs/modules/model.modelbuilder.rst
dflex.model.ModelBuilder ======================== .. autoclasssumm:: dflex.model.ModelBuilder .. autoclass:: dflex.model.ModelBuilder :members: :undoc-members: :show-inheritance:
194
reStructuredText
16.727271
43
0.628866
KallPap/FRL-SHAC-Extension/utils/common.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys # if there's overlap between args_list and commandline input, use commandline input def solve_argv_conflict(args_list): arguments_to_be_removed = [] arguments_size = [] for argv in sys.argv[1:]: if argv.startswith('-'): size_count = 1 for i, args in enumerate(args_list): if args == argv: arguments_to_be_removed.append(args) for more_args in args_list[i+1:]: if not more_args.startswith('-'): size_count += 1 else: break arguments_size.append(size_count) break for args, size in zip(arguments_to_be_removed, arguments_size): args_index = args_list.index(args) for _ in range(size): args_list.pop(args_index) def print_error(*message): print('\033[91m', 'ERROR ', *message, '\033[0m') raise RuntimeError def print_ok(*message): print('\033[92m', *message, '\033[0m') def print_warning(*message): print('\033[93m', *message, '\033[0m') def print_info(*message): print('\033[96m', *message, '\033[0m') from datetime import datetime def get_time_stamp(): now = datetime.now() year = now.strftime('%Y') month = now.strftime('%m') day = now.strftime('%d') hour = now.strftime('%H') minute = now.strftime('%M') second = now.strftime('%S') return '{}-{}-{}-{}-{}-{}'.format(month, day, year, hour, minute, second) import argparse def parse_model_args(model_args_path): fp = open(model_args_path, 'r') model_args = eval(fp.read()) model_args = argparse.Namespace(**model_args) return model_args import torch import numpy as np import random import os def seeding(seed=0, torch_deterministic=False): print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed
2,965
Python
31.23913
91
0.629005
KallPap/FRL-SHAC-Extension/utils/torch_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands # torch quat/vector utils def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False): return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([x, y, z, w], dim=-1).view(shape) return quat @torch.jit.script def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def quat_apply(a, b): shape = b.shape a = a.reshape(-1, 4) b = b.reshape(-1, 3) xyz = a[:, :3] t = xyz.cross(b, dim=-1) * 2 return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c @torch.jit.script def quat_axis(q, axis=0): # type: (Tensor, int) -> Tensor basis_vec = torch.zeros(q.shape[0], 3, device=q.device) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec) @torch.jit.script def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape) @torch.jit.script def quat_unit(a): return normalize(a) @torch.jit.script def quat_from_angle_axis(angle, axis): theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return quat_unit(torch.cat([xyz, w], dim=-1)) @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def tf_inverse(q, t): q_inv = quat_conjugate(q) return q_inv, -quat_apply(q_inv, t) @torch.jit.script def tf_apply(q, t, v): return quat_apply(q, v) + t @torch.jit.script def tf_vector(q, v): return quat_apply(q, v) @torch.jit.script def tf_combine(q1, t1, q2, t2): return quat_mul(q1, q2), quat_apply(q1, t2) + t1 @torch.jit.script def get_basis_vector(q, v): return quat_rotate(q, v) def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN) def grad_norm(params): grad_norm = 0. for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad ** 2) return torch.sqrt(grad_norm) def print_leaf_nodes(grad_fn, id_set): if grad_fn is None: return if hasattr(grad_fn, 'variable'): mem_id = id(grad_fn.variable) if not(mem_id in id_set): print('is leaf:', grad_fn.variable.is_leaf) print(grad_fn.variable) id_set.add(mem_id) # print(grad_fn) for i in range(len(grad_fn.next_functions)): print_leaf_nodes(grad_fn.next_functions[i][0], id_set) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions return kl.mean()
6,536
Python
27.176724
114
0.568696
KallPap/FRL-SHAC-Extension/utils/average_meter.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import numpy as np class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy()
1,368
Python
34.102563
82
0.65424
KallPap/FRL-SHAC-Extension/utils/load_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import torch import random import xml.etree.ElementTree as ET import dflex as df def set_np_formatting(): np.set_printoptions(edgeitems=30, infstr='inf', linewidth=4000, nanstr='nan', precision=2, suppress=False, threshold=10000, formatter=None) def set_seed(seed, torch_deterministic=False): if seed == -1 and torch_deterministic: seed = 42 elif seed == -1: seed = np.random.randint(0, 10000) print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+4, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=1.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # Mujoco file format parser def parse_mjcf( filename, builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=1e4, contact_kd=1e4, contact_kf=1e3, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0, armature=0.01, radians=False, load_stiffness=False, load_armature=False): file = ET.parse(filename) root = file.getroot() type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_bool(node, key, default): if key in node.attrib: if node.attrib[key] == "true": return True else: return False else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent, last_joint_pos): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") # last_joint_pos = np.zeros(3) #----------------- # add body for each joint, we assume the joints attached to one body have the same joint_pos for i, joint in enumerate(body.findall("joint")): joint_name = joint.attrib["name"] joint_type = type_map[joint.attrib.get("type", 'hinge')] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_limited = parse_bool(joint, "limited", True) if joint_limited: if radians: joint_range = parse_vec(joint, "range", (np.deg2rad(-170.), np.deg2rad(170.))) else: joint_range = np.deg2rad(parse_vec(joint, "range", (-170.0, 170.0))) else: joint_range = np.array([-1.e+6, 1.e+6]) if load_stiffness: joint_stiffness = parse_float(joint, 'stiffness', stiffness) else: joint_stiffness = stiffness joint_damping = parse_float(joint, 'damping', damping) if load_armature: joint_armature = parse_float(joint, "armature", armature) else: joint_armature = armature joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) #----------------- # add body link = builder.add_link( parent, X_pj=df.transform(body_pos + joint_pos - last_joint_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=joint_range[0], limit_upper=joint_range[1], limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) # assume that each joint is one body in simulation parent = link body_pos = [0.0, 0.0, 0.0] last_joint_pos = joint_pos #----------------- # add shapes to the last joint in the body for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos - last_joint_pos, # position relative to the parent frame rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) if ("axisangle" in geom.attrib): axis_angle = parse_vec(geom, "axisangle", (0.0, 1.0, 0.0, 0.0)) geom_rot = df.quat_from_axis_angle(axis_angle[0:3], axis_angle[3]) if ("quat" in geom.attrib): q = parse_vec(geom, "quat", df.quat_identity()) geom_rot = q geom_rot = df.quat_multiply(geom_rot, df.quat_from_axis_angle((0.0, 1.0, 0.0), -math.pi*0.5)) builder.add_shape_capsule( link, pos=geom_pos - last_joint_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link, last_joint_pos) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1, np.zeros(3)) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] self.muscle_strength = 0.0 class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter={}, visualize_shapes=True, stiffness=5.0, damping=2.0, contact_ke=5000.0, contact_kd=2000.0, contact_kf=1000.0, contact_mu=0.5, limit_ke=1000.0, limit_kd=10.0, armature = 0.05): self.armature = armature self.stiffness = stiffness self.damping = damping self.contact_ke = contact_ke self.contact_kd = contact_kd self.contact_kf = contact_kf self.limit_ke = limit_ke self.limit_kd = limit_kd self.contact_mu = contact_mu self.visualize_shapes = visualize_shapes self.parse_skeleton(skeleton_file, builder, filter) if muscle_file != None: self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = float(body.attrib["mass"]) x=body_size[0] y=body_size[1] z=body_size[2] density = body_mass / (x*y*z) max_body_mass = 15.0 mass_scale = body_mass / max_body_mass body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = -1.e+3 joint_upper = 1.e+3 if (joint_type == type_map["Revolute"]): if ("lower" in joint.attrib): joint_lower = np.fromstring(joint.attrib["lower"], sep=" ")[0] if ("upper" in joint.attrib): joint_upper = np.fromstring(joint.attrib["upper"], sep=" ")[0] # print(joint_type, joint_lower, joint_upper) if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, limit_lower=joint_lower, limit_upper=joint_upper, limit_ke=self.limit_ke * mass_scale, limit_kd=self.limit_kd * mass_scale, damping=self.damping, stiffness=self.stiffness * math.sqrt(mass_scale), armature=self.armature) # armature=self.armature * math.sqrt(mass_scale)) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=x*0.5, hy=y*0.5, hz=z*0.5, density=density, ke=self.contact_ke, kd=self.contact_kd, kf=self.contact_kf, mu=self.contact_mu) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name m.muscle_strength = unit_f0 incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
22,759
Python
30.523546
130
0.482622
KallPap/FRL-SHAC-Extension/utils/dataset.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np class CriticDataset: def __init__(self, batch_size, obs, target_values, shuffle = False, drop_last = False): self.obs = obs.view(-1, obs.shape[-1]) self.target_values = target_values.view(-1) self.batch_size = batch_size if shuffle: self.shuffle() if drop_last: self.length = self.obs.shape[0] // self.batch_size else: self.length = ((self.obs.shape[0] - 1) // self.batch_size) + 1 def shuffle(self): index = np.random.permutation(self.obs.shape[0]) self.obs = self.obs[index, :] self.target_values = self.target_values[index] def __len__(self): return self.length def __getitem__(self, index): start_idx = index * self.batch_size end_idx = min((index + 1) * self.batch_size, self.obs.shape[0]) return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx]}
1,420
Python
37.405404
110
0.645775
KallPap/FRL-SHAC-Extension/utils/time_report.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import time from utils.common import * class Timer: def __init__(self, name): self.name = name self.start_time = None self.time_total = 0. def on(self): assert self.start_time is None, "Timer {} is already turned on!".format(self.name) self.start_time = time.time() def off(self): assert self.start_time is not None, "Timer {} not started yet!".format(self.name) self.time_total += time.time() - self.start_time self.start_time = None def report(self): print_info('Time report [{}]: {:.2f} seconds'.format(self.name, self.time_total)) def clear(self): self.start_time = None self.time_total = 0. class TimeReport: def __init__(self): self.timers = {} def add_timer(self, name): assert name not in self.timers, "Timer {} already exists!".format(name) self.timers[name] = Timer(name = name) def start_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].on() def end_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].off() def report(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() else: print_info("------------Time Report------------") for timer_name in self.timers.keys(): self.timers[timer_name].report() print_info("-----------------------------------") def clear_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].clear() else: for timer_name in self.timers.keys(): self.timers[timer_name].clear() def pop_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() del self.timers[name] else: self.report() self.timers = {}
2,688
Python
34.853333
90
0.58631
KallPap/FRL-SHAC-Extension/utils/running_mean_std.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Tuple import torch class RunningMeanStd(object): def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = (), device = 'cuda:0'): """ Calulates the running mean and std of a data stream https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm :param epsilon: helps with arithmetic issues :param shape: the shape of the data stream's output """ self.mean = torch.zeros(shape, dtype = torch.float32, device = device) self.var = torch.ones(shape, dtype = torch.float32, device = device) self.count = epsilon def to(self, device): rms = RunningMeanStd(device = device) rms.mean = self.mean.to(device).clone() rms.var = self.var.to(device).clone() rms.count = self.count return rms @torch.no_grad() def update(self, arr: torch.tensor) -> None: batch_mean = torch.mean(arr, dim = 0) batch_var = torch.var(arr, dim = 0, unbiased = False) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean: torch.tensor, batch_var: torch.tensor, batch_count: int) -> None: delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + torch.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count def normalize(self, arr:torch.tensor, un_norm = False) -> torch.tensor: if not un_norm: result = (arr - self.mean) / torch.sqrt(self.var + 1e-5) else: result = arr * torch.sqrt(self.var + 1e-5) + self.mean return result
2,462
Python
40.745762
111
0.638099
greydoubt/nvidia_omniverse_stuff/example_2.py
import omni.ext import omni.ui as ui # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.example.spawn_prims] MyExtension startup") self._window = ui.Window("Spawn Primitives", width=300, height=300) with self._window.frame: with ui.VStack(): def on_click(): print("clicked!") ui.Button("Spawn Cube", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.example.spawn_prims] MyExtension shutdown")
978
Python
39.791665
119
0.668712
greydoubt/nvidia_omniverse_stuff/example_1.py
import omni.ext import omni.ui as ui # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.example.spawn_prims] MyExtension startup") self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): def on_click(): print("clicked!") ui.Button("Click Me", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.example.spawn_prims] MyExtension shutdown")
970
Python
37.839998
119
0.664948
greydoubt/nvidia_omniverse_stuff/example_3.py
import omni.ext import omni.ui as ui # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.example.spawn_prims] MyExtension startup") self._window = ui.Window("Spawn Primitives", width=300, height=300) with self._window.frame: with ui.VStack(): def on_click(): print("clicked!") ui.Button("Spawn Cube", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.example.spawn_prims] MyExtension shutdown") import omni.kit.commands omni.kit.commands.execute('CreateMeshPrimWithDefaultXform', prim_type='Cube')
1,087
Python
36.51724
119
0.679853
greydoubt/nvidia_omniverse_stuff/README.md
# nvidia_omniverse_stuff
24
Markdown
23.999976
24
0.833333
greydoubt/nvidia_omniverse_stuff/example_0.py
# template Extension code: import omni.ext import omni.ui as ui # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[myname.example.spawn_prims] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MynameExampleSpawnPrimsExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[myname.example.spawn_prims] myname example spawn_prims startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Add", clicked_fn=on_click) ui.Button("Reset", clicked_fn=on_reset) def on_shutdown(self): print("[myname.example.spawn_prims] myname example spawn_prims shutdown")
1,652
Python
34.934782
119
0.616828
NVlabs/DiffRL/diffrl_conda.yml
name: shac channels: - pytorch - defaults dependencies: - python=3.8.13=h12debd9_0 - pytorch=1.11.0=py3.8_cuda11.3_cudnn8.2.0_0 - torchvision=0.12.0=py38_cu113 - pip: - pyyaml==6.0 - tensorboard==2.8.0 - tensorboardx==2.5 - urdfpy==0.0.22 - usd-core==22.3
288
YAML
18.266665
46
0.611111
NVlabs/DiffRL/README.md
# SHAC This repository contains the implementation for the paper [Accelerated Policy Learning with Parallel Differentiable Simulation](https://short-horizon-actor-critic.github.io/) (ICLR 2022). In this paper, we present a GPU-based differentiable simulation and propose a policy learning method named SHAC leveraging the developed differentiable simulation. We provide a comprehensive benchmark set for policy learning with differentiable simulation. The benchmark set contains six robotic control problems for now as shown in the figure below. <p align="center"> <img src="figures/envs.png" alt="envs" width="800" /> </p> ## Installation - `git clone https://github.com/NVlabs/DiffRL.git --recursive` - The code has been tested on - Operating System: Ubuntu 16.04, 18.04, 20.04, 21.10, 22.04 - Python Version: 3.7, 3.8 - GPU: TITAN X, RTX 1080, RTX 2080, RTX 3080, RTX 3090, RTX 3090 Ti #### Prerequisites - In the project folder, create a virtual environment in Anaconda: ``` conda env create -f diffrl_conda.yml conda activate shac ``` - dflex ``` cd dflex pip install -e . ``` - rl_games, forked from [rl-games](https://github.com/Denys88/rl_games) (used for PPO and SAC training): ```` cd externals/rl_games pip install -e . ```` - Install an older version of protobuf required for TensorboardX: ```` pip install protobuf==3.20.0 ```` #### Test Examples A test example can be found in the `examples` folder. ``` python test_env.py --env AntEnv ``` If the console outputs `Finish Successfully` in the last line, the code installation succeeds. ## Training Running the following commands in `examples` folder allows to train Ant with SHAC. ``` python train_shac.py --cfg ./cfg/shac/ant.yaml --logdir ./logs/Ant/shac ``` We also provide a one-line script in the `examples/train_script.sh` folder to replicate the results reported in the paper for both our method and for baseline method. The results might slightly differ from the paper due to the randomness of the cuda and different Operating System/GPU/Python versions. The plot reported in paper is produced with TITAN X on Ubuntu 16.04. #### SHAC (Our Method) For example, running the following commands in `examples` folder allows to train Ant and SNU Humanoid (Humanoid MTU in the paper) environments with SHAC respectively for 5 individual seeds. ``` python train_script.py --env Ant --algo shac --num-seeds 5 ``` ``` python train_script.py --env SNUHumanoid --algo shac --num-seeds 5 ``` #### Baseline Algorithms For example, running the following commands in `examples` folder allows to train Ant environment with PPO implemented in RL_games for 5 individual seeds, ``` python train_script.py --env Ant --algo ppo --num-seeds 5 ``` ## Testing To test the trained policy, you can input the policy checkpoint into the training script and use a `--play` flag to indicate it is for testing. For example, the following command allows to test a trained policy (assume the policy is located in `logs/Ant/shac/policy.pt`) ``` python train_shac.py --cfg ./cfg/shac/ant.yaml --checkpoint ./logs/Ant/shac/policy.pt --play [--render] ``` The `--render` flag indicates whether to export the video of the task execution. If does, the exported video is encoded in `.usd` format, and stored in the `examples/output` folder. To visualize the exported `.usd` file, refer to [USD at NVIDIA](https://developer.nvidia.com/usd). ## Citation If you find our paper or code is useful, please consider citing: ```kvk @inproceedings{xu2021accelerated, title={Accelerated Policy Learning with Parallel Differentiable Simulation}, author={Xu, Jie and Makoviychuk, Viktor and Narang, Yashraj and Ramos, Fabio and Matusik, Wojciech and Garg, Animesh and Macklin, Miles}, booktitle={International Conference on Learning Representations}, year={2021} } ```
3,885
Markdown
34.327272
370
0.73668
NVlabs/DiffRL/examples/train_script.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import argparse configs = {'Ant': 'ant.yaml', 'CartPole': 'cartpole_swing_up.yaml', 'Hopper': 'hopper.yaml', 'Cheetah': 'cheetah.yaml', 'Humanoid': 'humanoid.yaml', 'SNUHumanoid': 'snu_humanoid.yaml'} parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='Ant', choices=['Ant', 'CartPole', 'Hopper', 'Cheetah', 'Humanoid', 'SNUHumanoid']) parser.add_argument('--algo', type=str, default='shac', choices=['shac', 'ppo', 'sac', 'bptt']) parser.add_argument('--num-seeds', type=int, default=5) parser.add_argument('--save-dir', type=str, default='./logs/') args = parser.parse_args() ''' generate seeds ''' seeds = [] for i in range(args.num_seeds): seeds.append(i * 10) ''' generate commands ''' commands = [] for i in range(len(seeds)): seed = seeds[i] save_dir = os.path.join(args.save_dir, args.env, args.algo, str(seed)) config_path = os.path.join('./cfg', args.algo, configs[args.env]) if args.algo == 'shac': script_name = 'train_shac.py' elif args.algo == 'ppo' or args.algo == 'sac': script_name = 'train_rl.py' elif args.algo == 'bptt': script_name = 'train_bptt.py' else: raise NotImplementedError cmd = 'python {} '\ '--cfg {} '\ '--seed {} '\ '--logdir {} '\ '--no-time-stamp'\ .format(script_name, config_path, seed, save_dir) commands.append(cmd) for command in commands: os.system(command)
1,898
Python
34.830188
184
0.653319
NVlabs/DiffRL/examples/train_bptt.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # gradient-based policy optimization by actor critic method import sys, os project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) import argparse import envs import algorithms.bptt as bptt import os import sys import yaml import torch import numpy as np import copy from utils.common import * def parse_arguments(description="Testing Args", custom_parameters=[]): parser = argparse.ArgumentParser() for argument in custom_parameters: if ("name" in argument) and ("type" in argument or "action" in argument): help_str = "" if "help" in argument: help_str = argument["help"] if "type" in argument: if "default" in argument: parser.add_argument(argument["name"], type=argument["type"], default=argument["default"], help=help_str) else: print("ERROR: default must be specified if using type") elif "action" in argument: parser.add_argument(argument["name"], action=argument["action"], help=help_str) else: print() print("ERROR: command line argument name, type/action must be defined, argument not added to parser") print("supported keys: name, type, default, action, help") print() args = parser.parse_args() if args.test: args.play = args.test args.train = False elif args.play: args.train = False else: args.train = True return args def get_args(): # TODO: delve into the arguments custom_parameters = [ {"name": "--test", "action": "store_true", "default": False, "help": "Run trained policy, no training"}, {"name": "--cfg", "type": str, "default": "./cfg/ac/ant.yaml", "help": "Configuration file for training/playing"}, {"name": "--play", "action": "store_true", "default": False, "help": "Run trained policy, the same as test"}, {"name": "--checkpoint", "type": str, "default": "Base", "help": "Path to the saved weights"}, {"name": "--logdir", "type": str, "default": "logs/tmp/ac/"}, {"name": "--save-interval", "type": int, "default": 0}, {"name": "--no-time-stamp", "action": "store_true", "default": False, "help": "whether not add time stamp at the log path"}, {"name": "--device", "type": str, "default": "cuda:0"}, {"name": "--seed", "type": int, "default": 0, "help": "Random seed"}, {"name": "--render", "action": "store_true", "default": False, "help": "whether generate rendering file."}] # parse arguments args = parse_arguments( description="BPTT", custom_parameters=custom_parameters) return args if __name__ == '__main__': args = get_args() with open(args.cfg, 'r') as f: cfg_train = yaml.load(f, Loader=yaml.SafeLoader) if args.play or args.test: cfg_train["params"]["config"]["num_actors"] = cfg_train["params"]["config"].get("player", {}).get("num_actors", 1) if not args.no_time_stamp: args.logdir = os.path.join(args.logdir, get_time_stamp()) args.device = torch.device(args.device) vargs = vars(args) cfg_train["params"]["general"] = {} for key in vargs.keys(): cfg_train["params"]["general"][key] = vargs[key] traj_optimizer = bptt.BPTT(cfg_train) if args.train: traj_optimizer.train() else: traj_optimizer.play(cfg_train)
4,024
Python
34.307017
124
0.601392
NVlabs/DiffRL/examples/combine_batch_logs.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ''' based on https://stackoverflow.com/questions/43068200/how-to-display-the-average-of-multiple-runs-on-tensorboard ''' import os from collections import defaultdict import numpy as np import shutil import tensorflow as tf from tensorboard.backend.event_processing.event_accumulator import EventAccumulator from tensorboardX import SummaryWriter import argparse tag_mapping = {#'rewards0/frame': 'policy_loss/step', 'rewards0/iter': 'policy_loss/iter', 'rewards0/time': 'policy_loss/time', 'rewards0/frame': 'rewards/step', 'rewards0/iter': 'rewards/iter', 'rewards0/time': 'rewards/time', # 'rewards/frame': 'policy_loss/step', 'rewards/iter': 'policy_loss/iter', 'rewards/time': 'policy_loss/time', 'rewards/frame': 'rewards/step', 'rewards/step': 'rewards/step', 'rewards/iter': 'rewards/iter', 'rewards/time': 'rewards/time', 'policy_loss/step': 'policy_loss/step', 'policy_loss/iter': 'policy_loss/iter', 'policy_loss/time': 'policy_loss/time', 'actor_loss/iter': 'actor_loss/iter', 'actor_loss/step': 'actor_loss/step', # 'policy_loss/step': 'rewards/step', 'policy_loss/iter': 'rewards/iter', 'policy_loss/time': 'rewards/time', 'training_loss/step': 'training_loss/step', 'training_loss/iter': 'training_loss/iter', 'training_loss/time': 'training_loss/time', 'best_policy_loss/step': 'best_policy_loss/step', 'episode_lengths/iter': 'episode_lengths/iter', 'episode_lengths/step': 'episode_lengths/step', 'episode_lengths/frame': 'episode_lengths/step', 'value_loss/step': 'value_loss/step', 'value_loss/iter': 'value_loss/iter'} def tabulate_events(dpath): summary_iterators = [] for dname in os.listdir(dpath): for subfolder_name in args.subfolder_names: if os.path.exists(os.path.join(dpath, dname, subfolder_name)): summary_iterators.append(EventAccumulator(os.path.join(dpath, dname, subfolder_name)).Reload()) break tags = summary_iterators[0].Tags()['scalars'] # for it in summary_iterators: # assert it.Tags()['scalars'] == tags out_values = dict() out_steps = dict() for tag in tags: if tag not in tag_mapping.keys(): continue # gathering steps steps_set = set() for summary in summary_iterators: for event in summary.Scalars(tag): steps_set.add(event.step) is_reward = ('reward' in tag) is_loss = ('loss' in tag) steps = list(steps_set) steps.sort() # steps = steps[:500] new_tag_name = tag_mapping[tag] out_values[new_tag_name] = np.zeros((len(steps), len(summary_iterators))) out_steps[new_tag_name] = np.array(steps) for summary_id, summary in enumerate(summary_iterators): events = summary.Scalars(tag) i = 0 for step_id, step in enumerate(steps): while i + 1 < len(events) and events[i + 1].step <= step: i += 1 # if events[i].value > 100000. or events[i].value < -100000.: # import IPython # IPython.embed() out_values[new_tag_name][step_id, summary_id] = events[i].value return out_steps, out_values def write_combined_events(dpath, acc_steps, acc_values, dname='combined'): fpath = os.path.join(dpath, dname) if os.path.exists(fpath): shutil.rmtree(fpath) writer = SummaryWriter(fpath) tags = acc_values.keys() for tag in tags: for i in range(len(acc_values[tag])): mean = np.array(acc_values[tag][i]).mean() writer.add_scalar(tag, mean, acc_steps[tag][i]) writer.flush() parser = argparse.ArgumentParser() parser.add_argument('--batch-folder', type = str, default='path/to/batch/folder') parser.add_argument('--subfolder-names', type = str, nargs = '+', default=['log', 'runs']) # 'runs' for rl args = parser.parse_args() dpath = args.batch_folder acc_steps, acc_values = tabulate_events(dpath) write_combined_events(dpath, acc_steps, acc_values)
4,683
Python
39.730434
160
0.62823
NVlabs/DiffRL/examples/test_env.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys, os project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) import time import torch import random import envs from utils.common import * import argparse def set_seed(seed): torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) parser = argparse.ArgumentParser() parser.add_argument('--env', type = str, default = 'AntEnv') parser.add_argument('--num-envs', type = int, default = 64) parser.add_argument('--render', default = False, action = 'store_true') args = parser.parse_args() seeding() env_fn = getattr(envs, args.env) env = env_fn(num_envs = args.num_envs, \ device = 'cuda:0', \ render = args.render, \ seed = 0, \ stochastic_init = True, \ MM_caching_frequency = 16, \ no_grad = True) obs = env.reset() num_actions = env.num_actions t_start = time.time() reward_episode = 0. for i in range(1000): actions = torch.randn((args.num_envs, num_actions), device = 'cuda:0') obs, reward, done, info = env.step(actions) reward_episode += reward t_end = time.time() print('fps = ', 1000 * args.num_envs / (t_end - t_start)) print('mean reward = ', reward_episode.mean().detach().cpu().item()) print('Finish Successfully')
1,731
Python
25.646153
76
0.677643
NVlabs/DiffRL/examples/train_shac.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # gradient-based policy optimization by actor critic method import sys, os project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) import argparse import envs import algorithms.shac as shac import os import sys import yaml import torch import numpy as np import copy from utils.common import * def parse_arguments(description="Testing Args", custom_parameters=[]): parser = argparse.ArgumentParser() for argument in custom_parameters: if ("name" in argument) and ("type" in argument or "action" in argument): help_str = "" if "help" in argument: help_str = argument["help"] if "type" in argument: if "default" in argument: parser.add_argument(argument["name"], type=argument["type"], default=argument["default"], help=help_str) else: print("ERROR: default must be specified if using type") elif "action" in argument: parser.add_argument(argument["name"], action=argument["action"], help=help_str) else: print() print("ERROR: command line argument name, type/action must be defined, argument not added to parser") print("supported keys: name, type, default, action, help") print() args = parser.parse_args() if args.test: args.play = args.test args.train = False elif args.play: args.train = False else: args.train = True return args def get_args(): # TODO: delve into the arguments custom_parameters = [ {"name": "--test", "action": "store_true", "default": False, "help": "Run trained policy, no training"}, {"name": "--cfg", "type": str, "default": "./cfg/shac/ant.yaml", "help": "Configuration file for training/playing"}, {"name": "--play", "action": "store_true", "default": False, "help": "Run trained policy, the same as test"}, {"name": "--checkpoint", "type": str, "default": "Base", "help": "Path to the saved weights"}, {"name": "--logdir", "type": str, "default": "logs/tmp/shac/"}, {"name": "--save-interval", "type": int, "default": 0}, {"name": "--no-time-stamp", "action": "store_true", "default": False, "help": "whether not add time stamp at the log path"}, {"name": "--device", "type": str, "default": "cuda:0"}, {"name": "--seed", "type": int, "default": 0, "help": "Random seed"}, {"name": "--render", "action": "store_true", "default": False, "help": "whether generate rendering file."}] # parse arguments args = parse_arguments( description="SHAC", custom_parameters=custom_parameters) return args if __name__ == '__main__': args = get_args() with open(args.cfg, 'r') as f: cfg_train = yaml.load(f, Loader=yaml.SafeLoader) if args.play or args.test: cfg_train["params"]["config"]["num_actors"] = cfg_train["params"]["config"].get("player", {}).get("num_actors", 1) if not args.no_time_stamp: args.logdir = os.path.join(args.logdir, get_time_stamp()) args.device = torch.device(args.device) vargs = vars(args) cfg_train["params"]["general"] = {} for key in vargs.keys(): cfg_train["params"]["general"][key] = vargs[key] traj_optimizer = shac.SHAC(cfg_train) if args.train: traj_optimizer.train() else: traj_optimizer.play(cfg_train)
4,024
Python
34.307017
124
0.602386
NVlabs/DiffRL/examples/train_rl.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys, os project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) from rl_games.common import env_configurations, experiment, vecenv from rl_games.common.algo_observer import AlgoObserver from rl_games.torch_runner import Runner from rl_games.algos_torch import torch_ext import argparse import envs import os import sys import yaml import numpy as np import copy import torch from utils.common import * def create_dflex_env(**kwargs): env_fn = getattr(envs, cfg_train["params"]["diff_env"]["name"]) env = env_fn(num_envs=cfg_train["params"]["config"]["num_actors"], \ render=args.render, seed=args.seed, \ episode_length=cfg_train["params"]["diff_env"].get("episode_length", 1000), \ no_grad=True, stochastic_init=cfg_train['params']['diff_env']['stochastic_env'], \ MM_caching_frequency=cfg_train['params']['diff_env'].get('MM_caching_frequency', 1)) print('num_envs = ', env.num_envs) print('num_actions = ', env.num_actions) print('num_obs = ', env.num_obs) frames = kwargs.pop('frames', 1) if frames > 1: env = wrappers.FrameStack(env, frames, False) return env class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]['env_creator'](**kwargs) self.full_state = {} self.rl_device = "cuda:0" self.full_state["obs"] = self.env.reset(force_reset=True).to(self.rl_device) print(self.full_state["obs"].shape) def step(self, actions): self.full_state["obs"], reward, is_done, info = self.env.step(actions.to(self.env.device)) return self.full_state["obs"].to(self.rl_device), reward.to(self.rl_device), is_done.to(self.rl_device), info def reset(self): self.full_state["obs"] = self.env.reset(force_reset=True) return self.full_state["obs"].to(self.rl_device) def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info['action_space'] = self.env.action_space info['observation_space'] = self.env.observation_space print(info['action_space'], info['observation_space']) return info vecenv.register('DFLEX', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register('dflex', { 'env_creator': lambda **kwargs: create_dflex_env(**kwargs), 'vecenv_type': 'DFLEX'}) def parse_arguments(description="Testing Args", custom_parameters=[]): parser = argparse.ArgumentParser() for argument in custom_parameters: if ("name" in argument) and ("type" in argument or "action" in argument): help_str = "" if "help" in argument: help_str = argument["help"] if "type" in argument: if "default" in argument: parser.add_argument(argument["name"], type=argument["type"], default=argument["default"], help=help_str) else: print("ERROR: default must be specified if using type") elif "action" in argument: parser.add_argument(argument["name"], action=argument["action"], help=help_str) else: print() print("ERROR: command line argument name, type/action must be defined, argument not added to parser") print("supported keys: name, type, default, action, help") print() args = parser.parse_args() if args.test: args.play = args.test args.train = False elif args.play: args.train = False else: args.train = True return args def get_args(): # TODO: delve into the arguments custom_parameters = [ {"name": "--test", "action": "store_true", "default": False, "help": "Run trained policy, no training"}, {"name": "--num_envs", "type": int, "default": 0, "help": "Number of envirnments"}, {"name": "--cfg", "type": str, "default": "./cfg/rl/ant.yaml", "help": "Configuration file for training/playing"}, {"name": "--play", "action": "store_true", "default": False, "help": "Run trained policy, the same as test"}, {"name": "--checkpoint", "type": str, "default": "Base", "help": "Path to the saved weights, only for rl_games RL library"}, {"name": "--rl_device", "type": str, "default": "cuda:0", "help": "Choose CPU or GPU device for inferencing policy network"}, {"name": "--seed", "type": int, "default": 0, "help": "Random seed"}, {"name": "--render", "action": "store_true", "default": False, "help": "whether generate rendering file."}, {"name": "--logdir", "type": str, "default": "logs/tmp/rl/"}, {"name": "--no-time-stamp", "action": "store_true", "default": False, "help": "whether not add time stamp at the log path"}] # parse arguments args = parse_arguments( description="RL Policy", custom_parameters=custom_parameters) return args if __name__ == '__main__': args = get_args() with open(args.cfg, 'r') as f: cfg_train = yaml.load(f, Loader=yaml.SafeLoader) if args.play or args.test: cfg_train["params"]["config"]["num_actors"] = cfg_train["params"]["config"].get("player", {}).get("num_actors", 1) if not args.no_time_stamp: args.logdir = os.path.join(args.logdir, get_time_stamp()) if args.num_envs > 0: cfg_train["params"]["config"]["num_actors"] = args.num_envs vargs = vars(args) cfg_train["params"]["general"] = {} for key in vargs.keys(): cfg_train["params"]["general"][key] = vargs[key] # save config if cfg_train['params']['general']['train']: log_dir = cfg_train["params"]["general"]["logdir"] os.makedirs(log_dir, exist_ok = True) # save config yaml.dump(cfg_train, open(os.path.join(log_dir, 'cfg.yaml'), 'w')) runner = Runner() runner.load(cfg_train) runner.reset() runner.run(vargs)
6,658
Python
34.801075
124
0.611745
NVlabs/DiffRL/examples/cfg/sac/hopper.yaml
params: diff_env: name: HopperEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [256, 128, 64] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/hopper.pth config: name: 'Hopper_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 5000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 2048 learnable_temperature: true num_seed_steps: 5 replay_buffer_size: 1000000 num_actors: 64 env_config: env_name: 'ant'
982
YAML
17.203703
31
0.602851
NVlabs/DiffRL/examples/cfg/sac/snu_humanoid.yaml
params: diff_env: name: SNUHumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 8 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 512, 512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/humanoid_mtu.pth config: name: 'Humanoid_SNU_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 10000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.0002 actor_lr: 0.0003 critic_lr: 0.0003 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 2 replay_buffer_size: 1000000 num_actors: 256 env_config: env_name: 'snu_humanoid'
1,011
YAML
17.74074
33
0.614243
NVlabs/DiffRL/examples/cfg/sac/humanoid.yaml
params: diff_env: name: HumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 48 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/humanoid.pth config: name: 'Humanoid_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 5000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.0002 actor_lr: 0.0003 critic_lr: 0.0003 critic_tau: 0.005 batch_size: 2048 learnable_temperature: true num_seed_steps: 2 replay_buffer_size: 1000000 num_actors: 64 env_config: env_name: 'humanoid'
985
YAML
17.259259
31
0.611168
NVlabs/DiffRL/examples/cfg/sac/ant.yaml
params: diff_env: name: AntEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [256, 128, 64] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/Ant.pth config: name: 'Ant_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 5000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 replay_buffer_size: 1000000 num_actors: 128 env_config: env_name: 'ant'
974
YAML
17.055555
31
0.599589
NVlabs/DiffRL/examples/cfg/sac/cartpole_swing_up.yaml
params: diff_env: name: CartPoleSwingUpEnv stochastic_env: True episode_length: 240 MM_caching_frequency: 4 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [64, 64] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/cartpole_swing_up.pth config: name: 'CartPoleSwingUp_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 1000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 1024 learnable_temperature: true num_seed_steps: 5 replay_buffer_size: 1000000 num_actors: 32 env_config: env_name: 'ant'
1,003
YAML
17.592592
37
0.611166
NVlabs/DiffRL/examples/cfg/sac/cheetah.yaml
params: diff_env: name: CheetahEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [256, 128, 64] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/cheetah.pth config: name: 'Cheetah_SAC' env_name: dflex normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 5000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 2048 learnable_temperature: true num_seed_steps: 5 replay_buffer_size: 1000000 num_actors: 64 env_config: env_name: 'ant'
985
YAML
17.259259
31
0.604061
NVlabs/DiffRL/examples/cfg/bptt/hopper.yaml
params: diff_env: name: HopperEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: adam # ['gd', 'adam', 'sgd', 'lbfgs'] network: actor: ActorStochasticMLP actor_mlp: units: [128, 64, 32] activation: elu actor_logstd_init: -1.0 config: name: df_hopp_bptt env_name: dflex actor_learning_rate: 1e-3 # adam lr_schedule: linear # ['constant', 'linear'] obs_rms: True gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 128 grad_norm: 1.0 truncate_grads: True num_actors: 32 player: determenistic: True games_num: 6 num_actors: 2 print_stats: True
727
YAML
18.675675
48
0.580468
NVlabs/DiffRL/examples/cfg/bptt/snu_humanoid.yaml
params: diff_env: name: SNUHumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 8 algo: name: adam network: actor: ActorStochasticMLP actor_mlp: units: [512, 256] activation: elu actor_logstd_init: -1.0 config: name: df_humanoid_ac env_name: dflex actor_learning_rate: 2e-3 # adam lr_schedule: linear # ['constant', 'linear'] obs_rms: True gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 1000 grad_norm: 1.0 truncate_grads: True num_actors: 16 save_interval: 200 player: determenistic: True games_num: 4 num_actors: 1 print_stats: True
716
YAML
17.868421
48
0.599162
NVlabs/DiffRL/examples/cfg/bptt/humanoid.yaml
params: diff_env: name: HumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 48 algo: name: adam network: actor: ActorStochasticMLP actor_mlp: units: [256, 128] activation: elu actor_logstd_init: -1.0 config: name: df_humanoid_bptt env_name: dflex actor_learning_rate: 2e-3 # adam lr_schedule: linear # ['constant', 'linear'] obs_rms: True gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 1000 grad_norm: 1.0 truncate_grads: True num_actors: 32 save_interval: 200 player: determenistic: True games_num: 4 num_actors: 1 print_stats: True
723
YAML
18.052631
48
0.593361
NVlabs/DiffRL/examples/cfg/bptt/ant.yaml
params: diff_env: name: AntEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: adam network: actor: ActorStochasticMLP actor_mlp: units: [128, 64, 32] activation: elu actor_logstd_init: -1.0 config: name: df_ant_bptt env_name: dflex actor_learning_rate: 4e-3 # adam lr_schedule: linear # ['constant', 'linear'] obs_rms: True gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 1000 grad_norm: 1.0 truncate_grads: True num_actors: 32 player: determenistic: True games_num: 6 num_actors: 2 print_stats: True
691
YAML
17.702702
48
0.586107
NVlabs/DiffRL/examples/cfg/bptt/cartpole_swing_up.yaml
params: diff_env: name: CartPoleSwingUpEnv stochastic_env: True episode_length: 240 MM_caching_frequency: 4 algo: name: adam network: actor: ActorStochasticMLP actor_mlp: units: [64, 64] activation: elu actor_logstd_init: -1.0 config: name: df_cartpole_swing_up_bptt env_name: dflex actor_learning_rate: 1e-2 # adam with linear schedule lr_schedule: linear # ['constant', 'linear'] betas: [0.7, 0.95] # adam max_epochs: 500 steps_num: 240 grad_norm: 1.0 truncate_grads: True num_actors: 64 player: # render: True determenistic: True games_num: 12 num_actors: 4 print_stats: True
711
YAML
18.777777
57
0.609001
NVlabs/DiffRL/examples/cfg/bptt/cheetah.yaml
params: diff_env: name: CheetahEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: adam # ['gd', 'adam', 'sgd', 'lbfgs'] network: actor: ActorStochasticMLP actor_mlp: units: [128, 64, 32] activation: elu actor_logstd_init: -1.0 config: name: df_cheetah_bptt env_name: dflex actor_learning_rate: 2e-3 # adam lr_schedule: linear # ['constant', 'linear'] obs_rms: True gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 128 grad_norm: 1.0 truncate_grads: True num_actors: 32 player: determenistic: True games_num: 6 num_actors: 2 print_stats: True
731
YAML
18.783783
48
0.582763
NVlabs/DiffRL/examples/cfg/ppo/hopper.yaml
params: diff_env: name: HopperEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_ant_ppo.pth config: name: df_hopper_ppo env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 5000 save_best_after: 100 save_frequency: 400 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 num_actors: 1024 steps_num: 32 minibatch_size: 8192 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
1,517
YAML
17.975
33
0.588003
NVlabs/DiffRL/examples/cfg/ppo/snu_humanoid.yaml
params: diff_env: name: SNUHumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_hum_mtu_ppo.pth config: name: df_hum_mtu_ppo env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 20000 save_best_after: 100 save_frequency: 1000 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 num_actors: 1024 steps_num: 32 minibatch_size: 8192 mini_epochs: 6 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: determenistic: True games_num: 6 num_actors: 2 print_stats: True
1,530
YAML
18.1375
34
0.590196
NVlabs/DiffRL/examples/cfg/ppo/humanoid.yaml
params: diff_env: name: HumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 48 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_humanoid_ppo.pth config: name: df_humanoid_ppo env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 5000 save_best_after: 50 save_frequency: 400 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 num_actors: 1024 steps_num: 32 minibatch_size: 8192 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: determenistic: True games_num: 5 num_actors: 1 print_stats: True
1,529
YAML
18.367088
35
0.589274
NVlabs/DiffRL/examples/cfg/ppo/ant.yaml
params: diff_env: name: AntEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_ant_ppo.pth config: name: df_ant_ppo env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 5000 save_best_after: 100 save_frequency: 400 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 num_actors: 2048 steps_num: 32 minibatch_size: 16384 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: determenistic: True games_num: 24 num_actors: 3 print_stats: True
1,513
YAML
17.925
33
0.586913
NVlabs/DiffRL/examples/cfg/ppo/cartpole_swing_up.yaml
params: diff_env: name: CartPoleSwingUpEnv stochastic_env: True episode_length: 240 MM_caching_frequency: 4 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_cartpole_swing.pth config: name: df_cartpole_swing_up env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 steps_num: 240 num_actors: 32 minibatch_size: 1920 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: # render: True determenistic: True games_num: 12 num_actors: 4 print_stats: True
1,552
YAML
18.172839
37
0.590851
NVlabs/DiffRL/examples/cfg/ppo/cheetah.yaml
params: diff_env: name: CheetahEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/df_ant_ppo.pth config: name: df_cheetah_ppo env_name: dflex multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive lr_threshold: 0.008 kl_threshold: 0.008 score_to_win: 20000 max_epochs: 5000 save_best_after: 100 save_frequency: 400 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 num_actors: 1024 steps_num: 32 minibatch_size: 8192 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
1,519
YAML
18
33
0.588545
NVlabs/DiffRL/examples/cfg/shac/hopper.yaml
params: diff_env: name: HopperEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 network: actor: ActorStochasticMLP actor_mlp: units: [128, 64, 32] activation: elu critic: CriticMLP critic_mlp: units: [64, 64] activation: elu config: name: df_hopper_shac actor_learning_rate: 2e-3 # adam critic_learning_rate: 2e-4 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.2 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 256 save_interval: 400 player: determenistic: False games_num: 1 num_actors: 1 print_stats: True
902
YAML
19.066666
48
0.600887
NVlabs/DiffRL/examples/cfg/shac/snu_humanoid.yaml
params: diff_env: name: SNUHumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 8 network: actor: ActorStochasticMLP actor_mlp: units: [512, 256] activation: elu critic: CriticMLP critic_mlp: units: [256, 256] activation: elu config: name: df_snu_humanoid_shac actor_learning_rate: 2e-3 # adam critic_learning_rate: 5e-4 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.995 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 64 save_interval: 400 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
910
YAML
19.244444
48
0.606593
NVlabs/DiffRL/examples/cfg/shac/humanoid.yaml
params: diff_env: name: HumanoidEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 48 network: actor: ActorStochasticMLP actor_mlp: units: [256, 128] activation: elu critic: CriticMLP critic_mlp: units: [128, 128] activation: elu config: name: df_humanoid_shac actor_learning_rate: 2e-3 # adam critic_learning_rate: 5e-4 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.995 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 64 save_interval: 400 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
908
YAML
19.2
48
0.602423
NVlabs/DiffRL/examples/cfg/shac/ant.yaml
params: diff_env: name: AntEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 network: actor: ActorStochasticMLP # ActorDeterministicMLP actor_mlp: units: [128, 64, 32] activation: elu critic: CriticMLP critic_mlp: units: [64, 64] activation: elu config: name: df_ant_shac actor_learning_rate: 2e-3 # adam critic_learning_rate: 2e-3 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.2 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda # ['td-lambda', 'one-step'] lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 64 save_interval: 400 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
946
YAML
20.044444
56
0.602537
NVlabs/DiffRL/examples/cfg/shac/cartpole_swing_up.yaml
params: diff_env: name: CartPoleSwingUpEnv stochastic_env: True episode_length: 240 MM_caching_frequency: 4 network: actor: ActorStochasticMLP #ActorDeterministicMLP actor_mlp: units: [64, 64] activation: elu critic: CriticMLP critic_mlp: units: [64, 64] activation: elu config: name: df_cartpole_swing_up_shac actor_learning_rate: 1e-2 # adam critic_learning_rate: 1e-3 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.2 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda # ['td-lambda', 'one-step'] lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 500 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 64 save_interval: 100 player: determenistic: True games_num: 4 num_actors: 4 print_stats: True
961
YAML
20.377777
56
0.611863
NVlabs/DiffRL/examples/cfg/shac/cheetah.yaml
params: diff_env: name: CheetahEnv stochastic_env: True episode_length: 1000 MM_caching_frequency: 16 network: actor: ActorStochasticMLP # ActorDeterministicMLP actor_mlp: units: [128, 64, 32] activation: elu critic: CriticMLP critic_mlp: units: [64, 64] activation: elu config: name: df_cheetah_shac actor_learning_rate: 2e-3 # adam critic_learning_rate: 2e-3 # adam lr_schedule: linear # ['constant', 'linear'] target_critic_alpha: 0.2 obs_rms: True ret_rms: False critic_iterations: 16 critic_method: td-lambda # ['td-lambda', 'one-step'] lambda: 0.95 num_batch: 4 gamma: 0.99 betas: [0.7, 0.95] # adam max_epochs: 2000 steps_num: 32 grad_norm: 1.0 truncate_grads: True num_actors: 64 save_interval: 400 player: determenistic: True games_num: 1 num_actors: 1 print_stats: True
958
YAML
20.311111
56
0.60334
NVlabs/DiffRL/envs/cartpole_swing_up.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class CartPoleSwingUpEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=1024, seed=0, episode_length=240, no_grad=True, stochastic_init=False, MM_caching_frequency = 1, early_termination = False): num_obs = 5 num_act = 1 super(CartPoleSwingUpEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.early_termination = early_termination self.init_sim() # action parameters self.action_strength = 1000. # loss related self.pole_angle_penalty = 1.0 self.pole_velocity_penalty = 0.1 self.cart_position_penalty = 0.05 self.cart_velocity_penalty = 0.1 self.cart_action_penalty = 0.0 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "CartPoleSwingUp_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1. / 60. self.sim_substeps = 4 self.sim_dt = self.dt if self.visualize: self.env_dist = 1.0 else: self.env_dist = 0.0 self.num_joint_q = 2 self.num_joint_qd = 2 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): lu.urdf_load(self.builder, os.path.join(asset_folder, 'cartpole.urdf'), df.transform((0.0, 2.5, 0.0 + self.env_dist * i), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False, shape_kd=1e4, limit_kd=1.) self.builder.joint_q[i * self.num_joint_q + 1] = -math.pi self.model = self.builder.finalize(self.device) self.model.ground = False self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype = torch.float, device = self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() self.start_joint_q = self.state.joint_q.clone() self.start_joint_qd = self.state.joint_qd.clone() def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) if (self.num_frames == 40): try: self.stage.Save() except: print('USD save error') self.num_frames -= 40 def step(self, actions): with df.ScopedTimer("simulate", active=False, detailed=False): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) self.actions = actions self.state.joint_act.view(self.num_envs, -1)[:, 0:1] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) #self.obs_buf_before_reset = self.obs_buf.clone() with df.ScopedTimer("reset", active=False, detailed=False): if len(env_ids) > 0: self.reset(env_ids) with df.ScopedTimer("render", active=False, detailed=False): self.render() #self.extras = {'obs_before_reset': self.obs_buf_before_reset} return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids=None, force_reset=True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # fixed start state self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, :] = self.start_joint_q.view(-1, self.num_joint_q)[env_ids, :].clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = self.start_joint_qd.view(-1, self.num_joint_qd)[env_ids, :].clone() if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, :] = \ self.state.joint_q.view(self.num_envs, -1)[env_ids, :] \ + np.pi * (torch.rand(size=(len(env_ids), self.num_joint_q), device=self.device) - 0.5) self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = \ self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] \ + 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self): with torch.no_grad(): # TODO: check with Miles current_joint_q = self.state.joint_q.clone() current_joint_qd = self.state.joint_qd.clone() current_joint_act = self.state.joint_act.clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.state.joint_act = current_joint_act ''' This function starts collecting a new trajectory from the current states but cut off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and return the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def calculateObservations(self): x = self.state.joint_q.view(self.num_envs, -1)[:, 0:1] theta = self.state.joint_q.view(self.num_envs, -1)[:, 1:2] xdot = self.state.joint_qd.view(self.num_envs, -1)[:, 0:1] theta_dot = self.state.joint_qd.view(self.num_envs, -1)[:, 1:2] # observations: [x, xdot, sin(theta), cos(theta), theta_dot] self.obs_buf = torch.cat([x, xdot, torch.sin(theta), torch.cos(theta), theta_dot], dim = -1) def calculateReward(self): x = self.state.joint_q.view(self.num_envs, -1)[:, 0] theta = tu.normalize_angle(self.state.joint_q.view(self.num_envs, -1)[:, 1]) xdot = self.state.joint_qd.view(self.num_envs, -1)[:, 0] theta_dot = self.state.joint_qd.view(self.num_envs, -1)[:, 1] self.rew_buf = -torch.pow(theta, 2.) * self.pole_angle_penalty \ - torch.pow(theta_dot, 2.) * self.pole_velocity_penalty \ - torch.pow(x, 2.) * self.cart_position_penalty \ - torch.pow(xdot, 2.) * self.cart_velocity_penalty \ - torch.sum(self.actions ** 2, dim = -1) * self.cart_action_penalty # reset agents self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
9,011
Python
38.876106
187
0.582399
NVlabs/DiffRL/envs/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv from envs.ant import AntEnv from envs.cheetah import CheetahEnv from envs.hopper import HopperEnv from envs.snu_humanoid import SNUHumanoidEnv from envs.cartpole_swing_up import CartPoleSwingUpEnv from envs.humanoid import HumanoidEnv
694
Python
48.642854
76
0.832853
NVlabs/DiffRL/envs/snu_humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd, UsdGeom, Gf except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class SNUHumanoidEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1): self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.skeletons = [] self.muscle_strengths = [] self.mtu_actuations = True self.inv_control_freq = 1 # "humanoid_snu_lower" self.num_joint_q = 29 self.num_joint_qd = 24 self.num_dof = self.num_joint_q - 7 # 22 self.num_muscles = 152 self.str_scale = 0.6 num_act = self.num_joint_qd - 6 # 18 num_obs = 71 # 13 + 22 + 18 + 18 if self.mtu_actuations: num_obs = 53 # 71 - 18 if self.mtu_actuations: num_act = self.num_muscles super(SNUHumanoidEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.init_sim() # other parameters self.termination_height = 0.46 self.termination_tolerance = 0.05 self.height_rew_scale = 4.0 self.action_strength = 100.0 self.action_penalty = -0.001 self.joint_vel_obs_scaling = 0.1 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + "HumanoidSNU_Low_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 48 self.sim_dt = self.dt self.ground = True self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rot = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.heading_vec = self.x_unit_tensor.clone() self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = tu.to_torch([10000.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_pos = [] if self.visualize: self.env_dist = 2.0 else: self.env_dist = 0. # set to zero for training for numerical consistency start_height = 1.0 self.asset_folder = os.path.join(os.path.dirname(__file__), 'assets/snu') asset_path = os.path.join(self.asset_folder, "human.xml") muscle_path = os.path.join(self.asset_folder, "muscle284.xml") for i in range(self.num_environments): if self.mtu_actuations: skeleton = lu.Skeleton(asset_path, muscle_path, self.builder, self.filter, stiffness=5.0, damping=2.0, contact_ke=5e3, contact_kd=2e3, contact_kf=1e3, contact_mu=0.5, limit_ke=1e3, limit_kd=1e1, armature=0.05) else: skeleton = lu.Skeleton(asset_path, None, self.builder, self.filter, stiffness=5.0, damping=2.0, contact_ke=5e3, contact_kd=2e3, contact_kf=1e3, contact_mu=0.5, limit_ke=1e3, limit_kd=1e1, armature=0.05) # set initial position 1m off the ground self.builder.joint_q[skeleton.coord_start + 2] = i * self.env_dist self.builder.joint_q[skeleton.coord_start + 1] = start_height self.builder.joint_q[skeleton.coord_start + 3:skeleton.coord_start + 7] = self.start_rot self.start_pos.append([self.builder.joint_q[skeleton.coord_start], start_height, self.builder.joint_q[skeleton.coord_start + 2]]) self.skeletons.append(skeleton) num_muscles = len(self.skeletons[0].muscles) num_q = int(len(self.builder.joint_q)/self.num_environments) num_qd = int(len(self.builder.joint_qd)/self.num_environments) print(num_q, num_qd) print("Start joint_q: ", self.builder.joint_q[0:num_q]) print("Num muscles: ", num_muscles) self.start_joint_q = self.builder.joint_q[7:num_q].copy() self.start_joint_target = self.start_joint_q.copy() for m in self.skeletons[0].muscles: self.muscle_strengths.append(self.str_scale * m.muscle_strength) for mi in range(len(self.muscle_strengths)): self.muscle_strengths[mi] = self.str_scale * self.muscle_strengths[mi] self.muscle_strengths = tu.to_torch(self.muscle_strengths, device=self.device).repeat(self.num_envs) self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) mesh_path = os.path.join(self.asset_folder, "OBJ/" + mesh + ".usd") self.renderer.add_mesh(mesh, mesh_path, X_sc, 1.0, self.render_time) for m in range(len(s.muscles)): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strengths[m], 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 self.render_time += self.dt * self.inv_control_freq self.renderer.update(self.state, self.render_time) if (self.num_frames == 1): try: self.stage.Save() except: print("USD save error") self.num_frames -= 1 def step(self, actions): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) actions = actions * 0.5 + 0.5 ##### an ugly fix for simulation nan values #### # reference: https://github.com/pytorch/pytorch/issues/15131 def create_hook(): def hook(grad): torch.nan_to_num(grad, 0.0, 0.0, 0.0, out = grad) return hook if self.state.joint_q.requires_grad: self.state.joint_q.register_hook(create_hook()) if self.state.joint_qd.requires_grad: self.state.joint_qd.register_hook(create_hook()) if actions.requires_grad: actions.register_hook(create_hook()) ################################################# self.actions = actions.clone() for ci in range(self.inv_control_freq): if self.mtu_actuations: self.model.muscle_activation = actions.view(-1) * self.muscle_strengths else: self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) with df.ScopedTimer("render", False): self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2. angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12. axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5) self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis)) self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} # NOTE: any other things to restore? checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self): torso_pos = self.state.joint_q.view(self.num_envs, -1)[:, 0:3] torso_rot = self.state.joint_q.view(self.num_envs, -1)[:, 3:7] lin_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 3:6] ang_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets + self.start_pos - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0) self.obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 self.state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:33 self.joint_vel_obs_scaling * self.state.joint_qd.view(self.num_envs, -1)[:, 6:], # 33:51 up_vec[:, 1:2], # 51 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1)], # 52 dim = -1) def calculateReward(self): up_reward = 0.1 * self.obs_buf[:, 51] heading_reward = self.obs_buf[:, 52] height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_tolerance) height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) # JIE: not smooth height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) act_penalty = torch.sum(torch.abs(self.actions), dim = -1) * self.action_penalty #torch.sum(self.actions ** 2, dim = -1) * self.action_penalty progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + up_reward + heading_reward + act_penalty # reset agents self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # an ugly fix for simulation nan values nan_masks = torch.logical_or(torch.isnan(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isnan(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isnan(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) inf_masks = torch.logical_or(torch.isinf(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isinf(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isinf(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) invalid_value_masks = torch.logical_or((torch.abs(self.state.joint_q.view(self.num_environments, -1)) > 1e6).sum(-1) > 0, (torch.abs(self.state.joint_qd.view(self.num_environments, -1)) > 1e6).sum(-1) > 0) invalid_masks = torch.logical_or(invalid_value_masks, torch.logical_or(nan_masks, inf_masks)) self.reset_buf = torch.where(invalid_masks, torch.ones_like(self.reset_buf), self.reset_buf) self.rew_buf[invalid_masks] = 0.
19,037
Python
42.967667
248
0.563429
NVlabs/DiffRL/envs/cheetah.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class CheetahEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1, early_termination = False): num_obs = 17 num_act = 6 super(CheetahEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.early_termination = early_termination self.init_sim() # other parameters self.action_strength = 200.0 self.action_penalty = -0.1 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "Cheetah_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 16 self.sim_dt = self.dt self.ground = True self.num_joint_q = 9 self.num_joint_qd = 9 self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rotation = torch.tensor([0.], device = self.device, requires_grad = False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.potentials = tu.to_torch([0.], device=self.device, requires_grad=False).repeat(self.num_envs) self.prev_potentials = self.potentials.clone() self.start_pos = [] self.start_joint_q = [0., 0., 0., 0., 0., 0.] self.start_joint_target = [0., 0., 0., 0., 0., 0.] start_height = -0.2 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): link_start = len(self.builder.joint_type) lu.parse_mjcf(os.path.join(asset_folder, "half_cheetah.xml"), self.builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=2.e+4, contact_kd=1.e+3, contact_kf=1.e+3, contact_mu=1., limit_ke=1.e+3, limit_kd=1.e+1, armature=0.1, radians=True, load_stiffness=True) self.builder.joint_X_pj[link_start] = df.transform((0.0, 1.0, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)) # base transform self.start_pos.append([0.0, start_height]) # set joint targets to rest pose in mjcf self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 9] = [0., 0., 0., 0., 0., 0.] self.builder.joint_target[i*self.num_joint_q + 3:i*self.num_joint_q + 9] = [0., 0., 0., 0., 0., 0.] self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) render_interval = 1 if (self.num_frames == render_interval): try: self.stage.Save() except: print("USD save error") self.num_frames -= render_interval def step(self, actions): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) self.actions = actions.clone() self.state.joint_act.view(self.num_envs, -1)[:, 3:] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 2] = self.start_rotation.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] = self.start_joint_q.clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] + 0.1 * (torch.rand(size=(len(env_ids), 2), device=self.device) - 0.5) * 2. self.state.joint_q.view(self.num_envs, -1)[env_ids, 2] = (torch.rand(len(env_ids), device = self.device) - 0.5) * 0.2 self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] + 0.1 * (torch.rand(size=(len(env_ids), self.num_joint_q - 3), device = self.device) - 0.5) * 2. self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self): self.obs_buf = torch.cat([self.state.joint_q.view(self.num_envs, -1)[:, 1:], self.state.joint_qd.view(self.num_envs, -1)], dim = -1) def calculateReward(self): progress_reward = self.obs_buf[:, 8] self.rew_buf = progress_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty # reset agents self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
10,563
Python
39.1673
226
0.594717
NVlabs/DiffRL/envs/humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class HumanoidEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1): num_obs = 76 num_act = 21 super(HumanoidEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.init_sim() # other parameters self.termination_height = 0.74 self.motor_strengths = [ 200, 200, 200, 200, 200, 600, 400, 100, 100, 200, 200, 600, 400, 100, 100, 100, 100, 200, 100, 100, 200] self.motor_scale = 0.35 self.motor_strengths = tu.to_torch(self.motor_strengths, dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.action_penalty = -0.002 self.joint_vel_obs_scaling = 0.1 self.termination_tolerance = 0.1 self.height_rew_scale = 10.0 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "Humanoid_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 48 self.sim_dt = self.dt self.ground = True self.num_joint_q = 28 self.num_joint_qd = 27 self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rot = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.heading_vec = self.x_unit_tensor.clone() self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = tu.to_torch([200.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_pos = [] if self.visualize: self.env_dist = 2.5 else: self.env_dist = 0. # set to zero for training for numerical consistency start_height = 1.35 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): lu.parse_mjcf(os.path.join(asset_folder, "humanoid.xml"), self.builder, stiffness=5.0, damping=0.1, contact_ke=2.e+4, contact_kd=5.e+3, contact_kf=1.e+3, contact_mu=0.75, limit_ke=1.e+3, limit_kd=1.e+1, armature=0.007, load_stiffness=True, load_armature=True) # base transform start_pos_z = i*self.env_dist self.start_pos.append([0.0, start_height, start_pos_z]) self.builder.joint_q[i*self.num_joint_q:i*self.num_joint_q + 3] = self.start_pos[-1] self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 7] = self.start_rot num_q = int(len(self.builder.joint_q)/self.num_environments) num_qd = int(len(self.builder.joint_qd)/self.num_environments) print(num_q, num_qd) print("Start joint_q: ", self.builder.joint_q[0:num_q]) self.start_joint_q = self.builder.joint_q[7:num_q].copy() self.start_joint_target = self.start_joint_q.copy() self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() num_act = int(len(self.state.joint_act) / self.num_environments) - 6 print('num_act = ', num_act) if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) if (self.num_frames == 1): try: self.stage.Save() except: print("USD save error") self.num_frames -= 1 def step(self, actions): actions = actions.view((self.num_envs, self.num_actions)) # todo - make clip range a parameter actions = torch.clip(actions, -1., 1.) ##### an ugly fix for simulation nan values #### # reference: https://github.com/pytorch/pytorch/issues/15131 def create_hook(): def hook(grad): torch.nan_to_num(grad, 0.0, 0.0, 0.0, out = grad) return hook if self.state.joint_q.requires_grad: self.state.joint_q.register_hook(create_hook()) if self.state.joint_qd.requires_grad: self.state.joint_qd.register_hook(create_hook()) if actions.requires_grad: actions.register_hook(create_hook()) ################################################# self.actions = actions.clone() self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.motor_scale * self.motor_strengths self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2. angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12. axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5) self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis)) self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] + 0.2 * (torch.rand(size=(len(env_ids), self.num_joint_q - 7), device = self.device) - 0.5) * 2. self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self): torso_pos = self.state.joint_q.view(self.num_envs, -1)[:, 0:3] torso_rot = self.state.joint_q.view(self.num_envs, -1)[:, 3:7] lin_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 3:6] ang_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets + self.start_pos - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0) self.obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 self.state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:32 self.joint_vel_obs_scaling * self.state.joint_qd.view(self.num_envs, -1)[:, 6:], # 32:53 up_vec[:, 1:2], # 53:54 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 54:55 self.actions.clone()], # 55:76 dim = -1) def calculateReward(self): up_reward = 0.1 * self.obs_buf[:, 53] heading_reward = self.obs_buf[:, 54] height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_tolerance) height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + up_reward + heading_reward + height_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty # reset agents self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # an ugly fix for simulation nan values nan_masks = torch.logical_or(torch.isnan(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isnan(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isnan(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) inf_masks = torch.logical_or(torch.isinf(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isinf(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isinf(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) invalid_value_masks = torch.logical_or((torch.abs(self.state.joint_q.view(self.num_environments, -1)) > 1e6).sum(-1) > 0, (torch.abs(self.state.joint_qd.view(self.num_environments, -1)) > 1e6).sum(-1) > 0) invalid_masks = torch.logical_or(invalid_value_masks, torch.logical_or(nan_masks, inf_masks)) self.reset_buf = torch.where(invalid_masks, torch.ones_like(self.reset_buf), self.reset_buf) self.rew_buf[invalid_masks] = 0.
15,758
Python
41.707317
248
0.582054
NVlabs/DiffRL/envs/ant.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class AntEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1, early_termination = True): num_obs = 37 num_act = 8 super(AntEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.early_termination = early_termination self.init_sim() # other parameters self.termination_height = 0.27 self.action_strength = 200.0 self.action_penalty = 0.0 self.joint_vel_obs_scaling = 0.1 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "Ant_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 16 self.sim_dt = self.dt self.ground = True self.num_joint_q = 15 self.num_joint_qd = 14 self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rot = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.heading_vec = self.x_unit_tensor.clone() self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = tu.to_torch([10000.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_pos = [] self.start_joint_q = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] self.start_joint_target = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] if self.visualize: self.env_dist = 2.5 else: self.env_dist = 0. # set to zero for training for numerical consistency start_height = 0.75 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): lu.parse_mjcf(os.path.join(asset_folder, "ant.xml"), self.builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=4.e+4, contact_kd=1.e+4, contact_kf=3.e+3, contact_mu=0.75, limit_ke=1.e+3, limit_kd=1.e+1, armature=0.05) # base transform start_pos_z = i*self.env_dist self.start_pos.append([0.0, start_height, start_pos_z]) self.builder.joint_q[i*self.num_joint_q:i*self.num_joint_q + 3] = self.start_pos[-1] self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 7] = self.start_rot # set joint targets to rest pose in mjcf self.builder.joint_q[i*self.num_joint_q + 7:i*self.num_joint_q + 15] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] self.builder.joint_target[i*self.num_joint_q + 7:i*self.num_joint_q + 15] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) render_interval = 1 if (self.num_frames == render_interval): try: self.stage.Save() except: print("USD save error") self.num_frames -= render_interval def step(self, actions): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) self.actions = actions.clone() self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2. angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12. axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5) self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis)) self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] + 0.2 * (torch.rand(size=(len(env_ids), self.num_joint_q - 7), device = self.device) - 0.5) * 2. self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), 14), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self): torso_pos = self.state.joint_q.view(self.num_envs, -1)[:, 0:3] torso_rot = self.state.joint_q.view(self.num_envs, -1)[:, 3:7] lin_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 3:6] ang_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets + self.start_pos - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0) self.obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 self.state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:19 self.joint_vel_obs_scaling * self.state.joint_qd.view(self.num_envs, -1)[:, 6:], # 19:27 up_vec[:, 1:2], # 27 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 28 self.actions.clone()], # 29:37 dim = -1) def calculateReward(self): up_reward = 0.1 * self.obs_buf[:, 27] heading_reward = self.obs_buf[:, 28] height_reward = self.obs_buf[:, 0] - self.termination_height progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + up_reward + heading_reward + height_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty # reset agents if self.early_termination: self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
13,087
Python
41.631922
226
0.585008
NVlabs/DiffRL/envs/dflex_env.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import numpy as np import torch import dflex as df import xml.etree.ElementTree as ET from gym import spaces class DFlexEnv: def __init__(self, num_envs, num_obs, num_act, episode_length, MM_caching_frequency = 1, seed=0, no_grad=True, render=False, device='cuda:0'): self.seed = seed self.no_grad = no_grad df.config.no_grad = self.no_grad self.episode_length = episode_length self.device = device self.visualize = render self.sim_time = 0.0 self.num_frames = 0 # record the number of frames for rendering self.num_environments = num_envs self.num_agents = 1 self.MM_caching_frequency = MM_caching_frequency # initialize observation and action space self.num_observations = num_obs self.num_actions = num_act self.obs_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) self.act_space = spaces.Box(np.ones(self.num_actions) * -1., np.ones(self.num_actions) * 1.) # allocate buffers self.obs_buf = torch.zeros( (self.num_envs, self.num_observations), device=self.device, dtype=torch.float, requires_grad=False) self.rew_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.float, requires_grad=False) self.reset_buf = torch.ones( self.num_envs, device=self.device, dtype=torch.long, requires_grad=False) # end of the episode self.termination_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long, requires_grad=False) self.progress_buf = torch.zeros( self.num_envs, device=self.device, dtype=torch.long, requires_grad=False) self.actions = torch.zeros( (self.num_envs, self.num_actions), device = self.device, dtype = torch.float, requires_grad = False) self.extras = {} def get_number_of_agents(self): return self.num_agents @property def observation_space(self): return self.obs_space @property def action_space(self): return self.act_space @property def num_envs(self): return self.num_environments @property def num_acts(self): return self.num_actions @property def num_obs(self): return self.num_observations def get_state(self): return self.state.joint_q.clone(), self.state.joint_qd.clone() def reset_with_state(self, init_joint_q, init_joint_qd, env_ids=None, force_reset=True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # fixed start state self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, :] = init_joint_q.view(-1, self.num_joint_q)[env_ids, :].clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = init_joint_qd.view(-1, self.num_joint_qd)[env_ids, :].clone() self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf
3,847
Python
33.981818
146
0.641799
NVlabs/DiffRL/envs/hopper.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. #from numpy.lib.function_base import angle from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from copy import deepcopy import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class HopperEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1, early_termination = True): num_obs = 11 num_act = 3 super(HopperEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.early_termination = early_termination self.init_sim() # other parameters self.termination_height = -0.45 self.termination_angle = np.pi / 6. self.termination_height_tolerance = 0.15 self.termination_angle_tolerance = 0.05 self.height_rew_scale = 1.0 self.action_strength = 200.0 self.action_penalty = -1e-1 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "Hopper_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 16 self.sim_dt = self.dt self.ground = True self.num_joint_q = 6 self.num_joint_qd = 6 self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rotation = torch.tensor([0.], device = self.device, requires_grad = False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.start_pos = [] self.start_joint_q = [0., 0., 0.] self.start_joint_target = [0., 0., 0.] start_height = 0.0 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): link_start = len(self.builder.joint_type) lu.parse_mjcf(os.path.join(asset_folder, "hopper.xml"), self.builder, density=1000.0, stiffness=0.0, damping=2.0, contact_ke=2.e+4, contact_kd=1.e+3, contact_kf=1.e+3, contact_mu=0.9, limit_ke=1.e+3, limit_kd=1.e+1, armature=1.0, radians=True, load_stiffness=True) self.builder.joint_X_pj[link_start] = df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)) # base transform self.start_pos.append([0.0, start_height]) # set joint targets to rest pose in mjcf self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 6] = [0., 0., 0.] self.builder.joint_target[i*self.num_joint_q + 3:i*self.num_joint_q + 6] = [0., 0., 0., 0.] self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) render_interval = 1 if (self.num_frames == render_interval): try: self.stage.Save() except: print("USD save error") self.num_frames -= render_interval def step(self, actions): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) self.actions = actions.clone() self.state.joint_act.view(self.num_envs, -1)[:, 3:] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 2] = self.start_rotation.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] = self.start_joint_q.clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:2] + 0.05 * (torch.rand(size=(len(env_ids), 2), device=self.device) - 0.5) * 2. self.state.joint_q.view(self.num_envs, -1)[env_ids, 2] = (torch.rand(len(env_ids), device = self.device) - 0.5) * 0.1 self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:] + 0.05 * (torch.rand(size=(len(env_ids), self.num_joint_q - 3), device = self.device) - 0.5) * 2. self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.05 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) * 2. # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self): self.obs_buf = torch.cat([self.state.joint_q.view(self.num_envs, -1)[:, 1:], self.state.joint_qd.view(self.num_envs, -1)], dim = -1) def calculateReward(self): height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_height_tolerance) height_reward = torch.clip(height_diff, -1.0, 0.3) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) angle_reward = 1. * (-self.obs_buf[:, 1] ** 2 / (self.termination_angle ** 2) + 1.) progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + height_reward + angle_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty # reset agents self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) if self.early_termination: self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf)
11,333
Python
39.916967
227
0.599224
NVlabs/DiffRL/envs/assets/humanoid.xml
<mujoco model="humanoid"> <statistic extent="2" center="0 0 1"/> <option timestep="0.00555"/> <default> <motor ctrlrange="-1 1" ctrllimited="true"/> <default class="body"> <geom type="capsule" condim="1" friction="1.0 0.05 0.05" solimp=".9 .99 .003" solref=".015 1" material="self"/> <joint limited="true" type="hinge" damping="0.1" stiffness="5" armature=".007" solimplimit="0 .99 .01"/> <site size=".04" group="3"/> <default class="force-torque"> <site type="box" size=".01 .01 .02" rgba="1 0 0 1" /> </default> <default class="touch"> <site type="capsule" rgba="0 0 1 .3"/> </default> </default> </default> <worldbody> <geom name="floor" type="plane" conaffinity="1" size="100 100 .2" material="grid"/> <body name="torso" pos="0 0 1.5" childclass="body"> <light name="top" pos="0 0 2" mode="trackcom"/> <camera name="back" pos="-3 0 1" xyaxes="0 -1 0 1 0 2" mode="trackcom"/> <camera name="side" pos="0 -3 1" xyaxes="1 0 0 0 1 2" mode="trackcom"/> <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0" type="free"/> <site name="root" class="force-torque"/> <geom name="torso" type="capsule" fromto="0 -.07 0 0 .07 0" size=".07"/> <geom name="upper_waist" type="capsule" fromto="-.01 -.06 -.12 -.01 .06 -.12" size=".06"/> <site name="torso" class="touch" type="box" pos="0 0 -.05" size=".075 .14 .13"/> <geom name="head" type="sphere" size=".09" pos="0 0 .19"/> <body name="lower_waist" pos="-.01 0 -.260" quat="1.000 0 -.002 0"> <geom name="lower_waist" type="capsule" fromto="0 -.06 0 0 .06 0" size=".06"/> <site name="lower_waist" class="touch" size=".061 .06" zaxis="0 1 0"/> <joint limited="true" name="abdomen_z" pos="0 0 .065" axis="0 0 1" range="-45 45" damping="5" stiffness="20" armature=".02"/> <joint limited="true" name="abdomen_y" pos="0 0 .065" axis="0 1 0" range="-75 30" damping="5" stiffness="20" armature=".01"/> <body name="pelvis" pos="0 0 -.165" quat="1.000 0 -.002 0"> <joint limited="true" name="abdomen_x" pos="0 0 .1" axis="1 0 0" range="-35 35" damping="5" stiffness="10" armature=".01"/> <geom name="butt" type="capsule" fromto="-.02 -.07 0 -.02 .07 0" size=".09"/> <site name="butt" class="touch" size=".091 .07" pos="-.02 0 0" zaxis="0 1 0"/> <body name="right_thigh" pos="0 -.1 -.04"> <site name="right_hip" class="force-torque"/> <joint limited="true" name="right_hip_x" axis="1 0 0" range="-25 5" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="right_hip_z" axis="0 0 1" range="-60 35" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="right_hip_y" axis="0 1 0" range="-80 20" damping="5" stiffness="20" armature=".01"/> <geom name="right_thigh" type="capsule" fromto="0 0 0 0 .01 -.34" size=".06"/> <site name="right_thigh" class="touch" pos="0 .005 -.17" size=".061 .17" zaxis="0 -1 34"/> <body name="right_shin" pos="0 .01 -.403"> <site name="right_knee" class="force-torque" pos="0 0 .02"/> <joint limited="true" name="right_knee" pos="0 0 .02" axis="0 -1 0" range="-160 2"/> <geom name="right_shin" type="capsule" fromto="0 0 0 0 0 -.3" size=".049"/> <site name="right_shin" class="touch" pos="0 0 -.15" size=".05 .15"/> <body name="right_foot" pos="0 0 -.39"> <site name="right_ankle" class="force-torque"/> <joint limited="true" name="right_ankle_y" pos="0 0 .08" axis="0 1 0" range="-50 50" damping="1.0" stiffness="2" armature=".006"/> <joint limited="true" name="right_ankle_x" pos="0 0 .08" axis="1 0 .5" range="-50 50" damping="1.0" stiffness="2" armature=".006"/> <geom name="right_right_foot" type="capsule" fromto="-.07 -.02 0 .14 -.04 0" size=".027"/> <geom name="left_right_foot" type="capsule" fromto="-.07 0 0 .14 .02 0" size=".027"/> <site name="right_right_foot" class="touch" pos=".035 -.03 0" size=".03 .11" zaxis="21 -2 0"/> <site name="left_right_foot" class="touch" pos=".035 .01 0" size=".03 .11" zaxis="21 2 0"/> </body> </body> </body> <body name="left_thigh" pos="0 .1 -.04"> <site name="left_hip" class="force-torque"/> <joint limited="true" name="left_hip_x" axis="-1 0 0" range="-25 5" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="left_hip_z" axis="0 0 -1" range="-60 35" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="left_hip_y" axis="0 1 0" range="-80 20" damping="5" stiffness="20" armature=".01"/> <geom name="left_thigh" type="capsule" fromto="0 0 0 0 -.01 -.34" size=".06"/> <site name="left_thigh" class="touch" pos="0 -.005 -.17" size=".061 .17" zaxis="0 1 34"/> <body name="left_shin" pos="0 -.01 -.403"> <site name="left_knee" class="force-torque" pos="0 0 .02"/> <joint limited="true" name="left_knee" pos="0 0 .02" axis="0 -1 0" range="-160 2"/> <geom name="left_shin" type="capsule" fromto="0 0 0 0 0 -.3" size=".049"/> <site name="left_shin" class="touch" pos="0 0 -.15" size=".05 .15"/> <body name="left_foot" pos="0 0 -.39"> <site name="left_ankle" class="force-torque"/> <joint limited="true" name="left_ankle_y" pos="0 0 .08" axis="0 1 0" range="-50 50" damping="1.0" stiffness="2" armature=".006"/> <joint limited="true" name="left_ankle_x" pos="0 0 .08" axis="1 0 .5" range="-50 50" damping="1.0" stiffness="2" armature=".006"/> <geom name="left_left_foot" type="capsule" fromto="-.07 .02 0 .14 .04 0" size=".027"/> <geom name="right_left_foot" type="capsule" fromto="-.07 0 0 .14 -.02 0" size=".027"/> <site name="right_left_foot" class="touch" pos=".035 -.01 0" size=".03 .11" zaxis="21 -2 0"/> <site name="left_left_foot" class="touch" pos=".035 .03 0" size=".03 .11" zaxis="21 2 0"/> </body> </body> </body> </body> </body> <body name="right_upper_arm" pos="0 -.17 .06"> <joint limited="true" name="right_shoulder1" axis="2 1 1" range="-60 60" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="right_shoulder2" axis="0 -1 1" range="-60 60" damping="5" stiffness="10" armature=".01"/> <geom name="right_upper_arm" type="capsule" fromto="0 0 0 .16 -.16 -.16" size=".04 .16"/> <site name="right_upper_arm" class="touch" pos=".08 -.08 -.08" size=".041 .14" zaxis="1 -1 -1"/> <body name="right_lower_arm" pos=".18 -.18 -.18"> <joint limited="true" name="right_elbow" axis="0 -1 1" range="-90 50" damping="1.0" stiffness="2" armature=".006"/> <geom name="right_lower_arm" type="capsule" fromto=".01 .01 .01 .17 .17 .17" size=".031"/> <site name="right_lower_arm" class="touch" pos=".09 .09 .09" size=".032 .14" zaxis="1 1 1"/> <geom name="right_hand" type="sphere" size=".04" pos=".18 .18 .18"/> </body> </body> <body name="left_upper_arm" pos="0 .17 .06"> <joint limited="true" name="left_shoulder1" axis="-2 1 -1" range="-60 60" damping="5" stiffness="10" armature=".01"/> <joint limited="true" name="left_shoulder2" axis="0 -1 -1" range="-60 60" damping="5" stiffness="10" armature=".01"/> <geom name="left_upper_arm" type="capsule" fromto="0 0 0 .16 .16 -.16" size=".04 .16"/> <site name="left_upper_arm" class="touch" pos=".08 .08 -.08" size=".041 .14" zaxis="1 1 -1"/> <body name="left_lower_arm" pos=".18 .18 -.18"> <joint limited="true" name="left_elbow" axis="0 -1 -1" range="-90 50" damping="1.0" stiffness="2" armature=".006"/> <geom name="left_lower_arm" type="capsule" fromto=".01 -.01 .01 .17 -.17 .17" size=".031"/> <site name="left_lower_arm" class="touch" pos=".09 -.09 .09" size=".032 .14" zaxis="1 -1 1"/> <geom name="left_hand" type="sphere" size=".04" pos=".18 -.18 .18"/> </body> </body> </body> </worldbody> <actuator> <motor name='abdomen_y' gear='67.5' joint='abdomen_y'/> <motor name='abdomen_z' gear='67.5' joint='abdomen_z'/> <motor name='abdomen_x' gear='67.5' joint='abdomen_x'/> <motor name='right_hip_x' gear='45.0' joint='right_hip_x'/> <motor name='right_hip_z' gear='45.0' joint='right_hip_z'/> <motor name='right_hip_y' gear='135.0' joint='right_hip_y'/> <motor name='right_knee' gear='90.0' joint='right_knee'/> <motor name='right_ankle_x' gear='22.5' joint='right_ankle_x'/> <motor name='right_ankle_y' gear='22.5' joint='right_ankle_y'/> <motor name='left_hip_x' gear='45.0' joint='left_hip_x'/> <motor name='left_hip_z' gear='45.0' joint='left_hip_z'/> <motor name='left_hip_y' gear='135.0' joint='left_hip_y'/> <motor name='left_knee' gear='90.0' joint='left_knee'/> <motor name='left_ankle_x' gear='22.5' joint='left_ankle_x'/> <motor name='left_ankle_y' gear='22.5' joint='left_ankle_y'/> <motor name='right_shoulder1' gear='67.5' joint='right_shoulder1'/> <motor name='right_shoulder2' gear='67.5' joint='right_shoulder2'/> <motor name='right_elbow' gear='45.0' joint='right_elbow'/> <motor name='left_shoulder1' gear='67.5' joint='left_shoulder1'/> <motor name='left_shoulder2' gear='67.5' joint='left_shoulder2'/> <motor name='left_elbow' gear='45.0' joint='left_elbow'/> </actuator> <sensor> <subtreelinvel name="torso_subtreelinvel" body="torso"/> <accelerometer name="torso_accel" site="root"/> <velocimeter name="torso_vel" site="root"/> <gyro name="torso_gyro" site="root"/> <force name="left_ankle_force" site="left_ankle"/> <force name="right_ankle_force" site="right_ankle"/> <force name="left_knee_force" site="left_knee"/> <force name="right_knee_force" site="right_knee"/> <force name="left_hip_force" site="left_hip"/> <force name="right_hip_force" site="right_hip"/> <torque name="left_ankle_torque" site="left_ankle"/> <torque name="right_ankle_torque" site="right_ankle"/> <torque name="left_knee_torque" site="left_knee"/> <torque name="right_knee_torque" site="right_knee"/> <torque name="left_hip_torque" site="left_hip"/> <torque name="right_hip_torque" site="right_hip"/> <touch name="torso_touch" site="torso"/> <touch name="head_touch" site="head"/> <touch name="lower_waist_touch" site="lower_waist"/> <touch name="butt_touch" site="butt"/> <touch name="right_thigh_touch" site="right_thigh"/> <touch name="right_shin_touch" site="right_shin"/> <touch name="right_right_foot_touch" site="right_right_foot"/> <touch name="left_right_foot_touch" site="left_right_foot"/> <touch name="left_thigh_touch" site="left_thigh"/> <touch name="left_shin_touch" site="left_shin"/> <touch name="right_left_foot_touch" site="right_left_foot"/> <touch name="left_left_foot_touch" site="left_left_foot"/> <touch name="right_upper_arm_touch" site="right_upper_arm"/> <touch name="right_lower_arm_touch" site="right_lower_arm"/> <touch name="right_hand_touch" site="right_hand"/> <touch name="left_upper_arm_touch" site="left_upper_arm"/> <touch name="left_lower_arm_touch" site="left_lower_arm"/> <touch name="left_hand_touch" site="left_hand"/> </sensor> </mujoco>
12,020
XML
64.331521
147
0.562396
NVlabs/DiffRL/envs/assets/hopper.xml
<mujoco model="hopper"> <compiler angle="radian" /> <option integrator="RK4" /> <size njmax="500" nconmax="100" /> <visual> <map znear="0.02" /> </visual> <default class="main"> <joint limited="true" armature="1" damping="1" /> <geom condim="1" solimp="0.8 0.8 0.01 0.5 2" margin="0.001" material="geom" rgba="0.8 0.6 0.4 1" /> <general ctrllimited="true" ctrlrange="-0.4 0.4" /> </default> <asset> <texture type="skybox" builtin="gradient" rgb1="0.4 0.5 0.6" rgb2="0 0 0" width="100" height="600" /> <texture type="cube" name="texgeom" builtin="flat" mark="cross" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" width="127" height="762" /> <texture type="2d" name="texplane" builtin="checker" rgb1="0 0 0" rgb2="0.8 0.8 0.8" width="100" height="100" /> <material name="MatPlane" texture="texplane" texrepeat="60 60" specular="1" shininess="1" reflectance="0.5" /> <material name="geom" texture="texgeom" texuniform="true" /> </asset> <worldbody> <geom name="floor" size="20 20 0.125" type="plane" condim="3" material="MatPlane" rgba="0.8 0.9 0.8 1" /> <light pos="0 0 1.3" dir="0 0 -1" directional="true" cutoff="100" exponent="1" diffuse="1 1 1" specular="0.1 0.1 0.1" /> <body name="torso" pos="0 0 1.25"> <joint name="rootx" pos="0 0 -1.25" axis="1 0 0" type="slide" limited="false" armature="0" damping="0" /> <joint name="rootz" pos="0 0 0" axis="0 0 1" type="slide" ref="1.25" limited="false" armature="0" damping="0" /> <joint name="rooty" pos="0 0 0" axis="0 1 0" limited="false" type="hinge" armature="0" damping="0" /> <geom name="torso_geom" size="0.05 0.2" type="capsule" friction="0.9 0.005 0.0001" /> <body name="thigh" pos="0 0 -0.2"> <joint name="thigh_joint" pos="0 0 0" type="hinge" axis="0 -1 0" range="-2.61799 0" /> <geom name="thigh_geom" size="0.05 0.225" pos="0 0 -0.225" type="capsule" friction="0.9 0.005 0.0001" /> <body name="leg" pos="0 0 -0.7"> <joint name="leg_joint" pos="0 0 0.25" type="hinge" axis="0 -1 0" range="-2.61799 0" /> <geom name="leg_geom" size="0.04 0.25" type="capsule" friction="0.9 0.005 0.0001" /> <body name="foot" pos="0.0 0 -0.25"> <joint name="foot_joint" pos="0 0 0.0" type="hinge" axis="0 -1 0" range="-0.785398 0.785398" /> <geom name="foot_geom" size="0.06 0.195" pos="0.06 0 0.0" quat="0.707107 0 -0.707107 0" type="capsule" friction="2 0.005 0.0001" /> </body> </body> </body> </body> </worldbody> <actuator> <general joint="thigh_joint" ctrlrange="-1 1" gear="200 0 0 0 0 0" /> <general joint="leg_joint" ctrlrange="-1 1" gear="200 0 0 0 0 0" /> <general joint="foot_joint" ctrlrange="-1 1" gear="200 0 0 0 0 0" /> </actuator> </mujoco>
3,049
XML
62.541665
155
0.544441
NVlabs/DiffRL/envs/assets/half_cheetah.xml
<!-- Cheetah Model The state space is populated with joints in the order that they are defined in this file. The actuators also operate on joints. State-Space (name/joint/parameter): - rootx slider position (m) - rootz slider position (m) - rooty hinge angle (rad) - bthigh hinge angle (rad) - bshin hinge angle (rad) - bfoot hinge angle (rad) - fthigh hinge angle (rad) - fshin hinge angle (rad) - ffoot hinge angle (rad) - rootx slider velocity (m/s) - rootz slider velocity (m/s) - rooty hinge angular velocity (rad/s) - bthigh hinge angular velocity (rad/s) - bshin hinge angular velocity (rad/s) - bfoot hinge angular velocity (rad/s) - fthigh hinge angular velocity (rad/s) - fshin hinge angular velocity (rad/s) - ffoot hinge angular velocity (rad/s) Actuators (name/actuator/parameter): - bthigh hinge torque (N m) - bshin hinge torque (N m) - bfoot hinge torque (N m) - fthigh hinge torque (N m) - fshin hinge torque (N m) - ffoot hinge torque (N m) --> <mujoco model="cheetah"> <compiler angle="radian" coordinate="local" inertiafromgeom="true" settotalmass="14"/> <default> <joint armature=".1" damping=".01" limited="true" solimplimit="0 .8 .03" solreflimit=".02 1" stiffness="8"/> <geom conaffinity="0" condim="3" contype="1" friction="0.8 .1 .1" rgba="0.8 0.6 .4 1" solimp="0.0 0.8 0.01" solref="0.02 1"/> <motor ctrllimited="true" ctrlrange="-1 1"/> </default> <size nstack="300000" nuser_geom="1"/> <option gravity="0 0 -9.81" timestep="0.01"/> <worldbody> <body name="torso" pos="0 0 0"> <joint armature="0" axis="1 0 0" damping="0" limited="false" name="ignorex" pos="0 0 0" stiffness="0" type="slide"/> <joint armature="0" axis="0 0 1" damping="0" limited="false" name="ignorez" pos="0 0 0" stiffness="0" type="slide"/> <joint armature="0" axis="0 1 0" damping="0" limited="false" name="ignorey" pos="0 0 0" stiffness="0" type="hinge"/> <geom fromto="-.5 0 0 .5 0 0" name="torso" size="0.046" type="capsule"/> <geom axisangle="0 1 0 .87" name="head" pos=".6 0 .1" size="0.046 .15" type="capsule"/> <!-- <site name='tip' pos='.15 0 .11'/>--> <body name="bthigh" pos="-.5 0 0"> <joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.52 1.05" stiffness="240" type="hinge"/> <geom axisangle="0 1 0 -3.8" name="bthigh" pos=".1 0 -.13" size="0.046 .145" type="capsule"/> <body name="bshin" pos=".16 0 -.25"> <joint axis="0 1 0" damping="4.5" name="bshin" pos="0 0 0" range="-.785 .785" stiffness="180" type="hinge"/> <geom axisangle="0 1 0 -2.03" name="bshin" pos="-.14 0 -.07" rgba="0.9 0.6 0.6 1" size="0.046 .15" type="capsule"/> <body name="bfoot" pos="-.28 0 -.14"> <joint axis="0 1 0" damping="3" name="bfoot" pos="0 0 0" range="-.4 .785" stiffness="120" type="hinge"/> <geom axisangle="0 1 0 -.27" name="bfoot" pos=".03 0 -.097" rgba="0.9 0.6 0.6 1" size="0.046 .094" type="capsule"/> <inertial mass="10"/> </body> </body> </body> <body name="fthigh" pos=".5 0 0"> <joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0 0" range="-1.5 0.8" stiffness="180" type="hinge"/> <geom axisangle="0 1 0 .52" name="fthigh" pos="-.07 0 -.12" size="0.046 .133" type="capsule"/> <body name="fshin" pos="-.14 0 -.24"> <joint axis="0 1 0" damping="3" name="fshin" pos="0 0 0" range="-1.2 1.1" stiffness="120" type="hinge"/> <geom axisangle="0 1 0 -.6" name="fshin" pos=".065 0 -.09" rgba="0.9 0.6 0.6 1" size="0.046 .106" type="capsule"/> <body name="ffoot" pos=".13 0 -.18"> <joint axis="0 1 0" damping="1.5" name="ffoot" pos="0 0 0" range="-3.1 -0.3" stiffness="60" type="hinge"/> <geom axisangle="0 1 0 -.6" name="ffoot" pos=".045 0 -.07" rgba="0.9 0.6 0.6 1" size="0.046 .07" type="capsule"/> <inertial mass="10"/> </body> </body> </body> </body> </worldbody> <actuator> <motor gear="120" joint="bthigh" name="bthigh"/> <motor gear="90" joint="bshin" name="bshin"/> <motor gear="60" joint="bfoot" name="bfoot"/> <motor gear="120" joint="fthigh" name="fthigh"/> <motor gear="60" joint="fshin" name="fshin"/> <motor gear="30" joint="ffoot" name="ffoot"/> </actuator> </mujoco>
4,788
XML
52.808988
129
0.540518
NVlabs/DiffRL/envs/assets/ant.xml
<mujoco model="ant"> <compiler angle="degree" coordinate="local" inertiafromgeom="true"/> <option integrator="RK4" timestep="0.01"/> <custom> <numeric data="0.0 0.0 0.55 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 1.0" name="init_qpos"/> </custom> <default> <joint armature="0.001" damping="1" limited="true"/> <geom conaffinity="0" condim="3" density="5.0" friction="1.5 0.1 0.1" margin="0.01" rgba="0.97 0.38 0.06 1"/> </default> <worldbody> <body name="torso" pos="0 0 0.75"> <geom name="torso_geom" pos="0 0 0" size="0.25" type="sphere"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="aux_1_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="aux_2_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="aux_3_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="aux_4_geom" size="0.08" type="capsule" rgba=".999 .2 .02 1"/> <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0" type="free"/> <body name="front_left_leg" pos="0.2 0.2 0"> <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 0.2 0" name="front_left_foot"> <joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 0.4 0.0" name="left_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> <body name="front_right_leg" pos="-0.2 0.2 0"> <joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 0.2 0" name="front_right_foot"> <joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 0.4 0.0" name="right_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="left_back_leg" pos="-0.2 -0.2 0"> <joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="back_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 -0.2 0" name="left_back_foot"> <joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 -0.4 0.0" name="third_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="right_back_leg" pos="0.2 -0.2 0"> <joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="rightback_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 -0.2 0" name="right_back_foot"> <joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 -0.4 0.0" name="fourth_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> </body> </worldbody> <actuator> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_3" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_3" gear="150"/> </actuator> </mujoco>
4,043
XML
61.215384
125
0.550829
NVlabs/DiffRL/envs/assets/snu/human.xml
<Skeleton name="Human"> <Node name="Pelvis" parent="None" > <Body type="Box" mass="15.0" size="0.2083 0.1454 0.1294" contact="Off" color="0.6 0.6 1.5 1.0" obj="Pelvis.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 0.9809 -0.0308 "/> </Body> <Joint type="Free" bvh="Character1_Hips"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 0.9809 -0.0308 "/> </Joint> </Node> <Node name="FemurR" parent="Pelvis" > <Body type="Box" mass="7.0" size="0.1271 0.4043 0.1398" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Femur.obj"> <Transformation linear="0.9998 -0.0174 -0.0024 -0.0175 -0.9997 -0.0172 -0.21 0.0172 -0.9998 " translation="-0.0959 0.7241 -0.0227 "/> </Body> <Joint type="Ball" bvh="Character1_RightUpLeg" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0903 0.9337 -0.0116 "/> </Joint> </Node> <Node name="TibiaR" parent="FemurR" > <Body type="Box" mass="3.0" size="0.1198 0.4156 0.1141 " contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Tibia.obj"> <Transformation linear="0.9994 0.0348 -0.0030 0.0349 -0.9956 0.0871 0.0 -0.0872 -0.9962 " translation="-0.0928 0.3018 -0.0341 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" bvh="Character1_RightLeg" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0995 0.5387 -0.0103 "/> </Joint> </Node> <Node name="TalusR" parent="TibiaR" endeffector="True"> <Body type="Box" mass="0.6" size="0.0756 0.0498 0.1570" contact="On" color="0.3 0.3 1.5 1.0" obj="R_Talus.obj"> <Transformation linear="0.9779 0.0256 0.2073 0.0199 -0.9994 0.0295 0.2079 -0.0247 -0.9778 " translation="-0.0826 0.0403 -0.0242 "/> </Body> <Joint type="Ball" bvh="Character1_RightFoot" lower="-1.0 -1.0 -1.0" upper="1.0 1.0 1.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.08 0.0776 -0.0419"/> </Joint> </Node> <Node name="FootThumbR" parent="TalusR" > <Body type="Box" mass="0.2" size="0.0407 0.0262 0.0563 " contact="On" color="0.3 0.3 1.5 1.0" obj="R_FootThumb.obj"> <Transformation linear="0.9847 -0.0097 0.1739 -0.0129 -0.9998 0.0177 0.1737 -0.0196 -0.9846 " translation="-0.0765 0.0268 0.0938 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0781 0.0201 0.0692"/> </Joint> </Node> <Node name="FootPinkyR" parent="TalusR" > <Body type="Box" mass="0.2" size="0.0422 0.0238 0.0529 " contact="On" color="0.3 0.3 1.5 1.0" obj="R_FootPinky.obj"> <Transformation linear="0.9402 0.0126 0.3405 0.0083 -0.9999 0.0142 0.3407 -0.0105 -0.9401 " translation="-0.1244 0.0269 0.0810 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.1227 0.0142 0.0494"/> </Joint> </Node> <Node name="FemurL" parent="Pelvis" > <Body type="Box" mass="7.0" size="0.1271 0.4043 0.1398" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Femur.obj"> <Transformation linear="0.9998 -0.0174 -0.0024 0.0175 0.9997 0.0172 0.21 -0.0172 0.9998 " translation="0.0959 0.7241 -0.0227 "/> </Body> <Joint type="Ball" bvh="Character1_LeftUpLeg" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0903 0.9337 -0.0116 "/> </Joint> </Node> <Node name="TibiaL" parent="FemurL" > <Body type="Box" mass="3.0" size="0.1198 0.4156 0.1141 " contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Tibia.obj"> <Transformation linear="0.9994 0.0348 -0.0030 -0.0349 0.9956 -0.0871 -0.0 0.0872 0.9962 " translation="0.0928 0.3018 -0.0341 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" bvh="Character1_LeftLeg" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0995 0.5387 -0.0103 "/> </Joint> </Node> <Node name="TalusL" parent="TibiaL" endeffector="True"> <Body type="Box" mass="0.6" size="0.0756 0.0498 0.1570" contact="On" color="0.6 0.6 1.5 1.0" obj="L_Talus.obj"> <Transformation linear="0.9779 0.0256 0.2073 -0.0199 0.9994 -0.0295 -0.2079 0.0247 0.9778 " translation="0.0826 0.0403 -0.0242 "/> </Body> <Joint type="Ball" bvh="Character1_LeftFoot" lower="-1.0 -1.0 -1.0" upper="1.0 1.0 1.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.08 0.0776 -0.0419 "/> </Joint> </Node> <Node name="FootThumbL" parent="TalusL" > <Body type="Box" mass="0.2" size="0.0407 0.0262 0.0563 " contact="On" color="0.6 0.6 1.5 1.0" obj="L_FootThumb.obj"> <Transformation linear="0.9402 0.0126 0.3405 -0.0083 0.9999 -0.0142 -0.3407 0.0105 0.9401 " translation="0.1244 0.0269 0.0810 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.1215 0.0116 0.0494 "/> </Joint> </Node> <Node name="FootPinkyL" parent="TalusL" > <Body type="Box" mass="0.2" size="0.0422 0.0238 0.0529 " contact="On" color="0.6 0.6 1.5 1.0" obj="L_FootPinky.obj"> <Transformation linear="0.9847 -0.0097 0.1739 0.0129 0.9998 -0.0177 -0.1737 0.0196 0.9846 " translation="0.0765 0.0268 0.0938 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0756 0.0118 0.0676 "/> </Joint> </Node> <Node name="Spine" parent="Pelvis" > <Body type="Box" mass="5.0" size="0.1170 0.0976 0.0984" contact="Off" color="0.6 0.6 1.5 1.0" obj="Spine.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 " translation="0.0 1.1204 -0.0401 "/> </Body> <Joint type="Ball" bvh="Character1_Spine" lower="-0.4 -0.4 -0.2 " upper="0.4 0.4 0.2 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.0675 -0.0434 "/> </Joint> </Node> <Node name="Torso" parent="Spine" > <Body type="Box" mass="10.0" size="0.1798 0.2181 0.1337" contact="Off" color="0.6 0.6 1.5 1.0" obj="Torso.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 -0.0092 0.0 0.0092 1.0 " translation="0.0 1.3032 -0.0398 "/> </Body> <Joint type="Ball" bvh="Character1_Spine1" lower="-0.4 -0.4 -0.2 " upper="0.4 0.4 0.2 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.1761 -0.0498 "/> </Joint> </Node> <Node name="Neck" parent="Torso" > <Body type="Box" mass="2.0" size="0.0793 0.0728 0.0652" contact="Off" color="0.6 0.6 1.5 1.0" obj="Neck.obj"> <Transformation linear="1.0 0.0 0.0 0.0 0.9732 -0.2301 0.0 0.2301 0.9732 " translation="0.0 1.5297 -0.0250 "/> </Body> <Joint type="Ball" bvh="Character1_Neck" lower="-0.4 -0.4 -0.4 " upper="0.6 0.6 1.5 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.4844 -0.0436 "/> </Joint> </Node> <Node name="Head" parent="Neck" endeffector="True"> <Body type="Box" mass="2.0" size="0.1129 0.1144 0.1166" contact="Off" color="0.6 0.6 1.5 1.0" obj="Skull.obj"> <Transformation linear="1.0 0.0 0.0 0.0 0.9895 -0.1447 0.0 0.1447 0.9895 " translation="0.0 1.6527 -0.0123 "/> </Body> <Joint type="Ball" lower="-0.4 -0.4 -0.4 " upper="0.6 0.6 1.5 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.5652 -0.0086 "/> </Joint> </Node> <Node name="ShoulderR" parent="Torso" > <Body type="Box" mass="1.0" size="0.1635 0.0634 0.0645" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Shoulder.obj"> <Transformation linear="0.9985 -0.0048 0.0549 -0.0047 -1.0 -0.0011 0.0549 0.0008 -0.9985 " translation="-0.0981 1.4644 -0.0391 "/> </Body> <Joint type="Ball" bvh="Character1_RightShoulder" lower="-0.5 -0.5 -0.5" upper="0.5 0.5 0.5"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0147 1.4535 -0.0381 "/> </Joint> </Node> <Node name="ArmR" parent="ShoulderR" > <Body type="Box" mass="1.0" size="0.3329 0.0542 0.0499" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Humerus.obj"> <Transformation linear="0.9960 0.0361 -0.0812 -0.0669 -0.2971 -0.952500 -0.0585 0.9542 -0.2936 " translation="-0.3578 1.4522 -0.0235 "/> </Body> <Joint type="Ball" bvh="Character1_RightArm" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.1995 1.4350 -0.0353 "/> </Joint> </Node> <Node name="ForeArmR" parent="ArmR" > <Body type="Box" mass="0.5" size="0.2630 0.0506 0.0513" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Radius.obj"> <Transformation linear="0.9929 0.0823 -0.0856 -0.0517 -0.3492 -0.9356 -0.1069 0.9334 -0.3424 " translation="-0.6674 1.4699 -0.0059 "/> </Body> <Joint type="Revolute" axis="0.0 1.0 0.0" bvh="Character1_RightForeArm" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.5234 1.4607 -0.0105 "/> </Joint> </Node> <Node name="HandR" parent="ForeArmR" endeffector="True"> <Body type="Box" mass="0.2" size="0.1306 0.0104 0.0846" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Hand.obj"> <Transformation linear="0.9712 0.2357 -0.0353 0.2243 -0.9540 -0.1990 -0.0806 0.1853 -0.9794 " translation="-0.8810 1.4647 0.0315 "/> </Body> <Joint type="Ball" bvh="Character1_RightHand" lower="-0.7 -0.7 -0.7 " upper="0.7 0.7 0.7"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.8102 1.469 0.0194 "/> </Joint> </Node> <Node name="ShoulderL" parent="Torso" > <Body type="Box" mass="1.0" size="0.1635 0.0634 0.0645" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Shoulder.obj"> <Transformation linear="0.9985 -0.0048 0.0549 0.0047 1.0000 0.0011 -0.0549 -0.0008 0.9985 " translation="0.0981 1.4644 -0.0391 "/> </Body> <Joint type="Ball" bvh="Character1_LeftShoulder" lower="-0.5 -0.5 -0.5" upper="0.5 0.5 0.5"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0147 1.4535 -0.0381"/> </Joint> </Node> <Node name="ArmL" parent="ShoulderL" > <Body type="Box" mass="1.0" size="0.3329 0.0542 0.0499" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Humerus.obj"> <Transformation linear="0.9960 0.0361 -0.0812 0.0669 0.2971 0.9525 0.0585 -0.9542 0.2936 " translation="0.3578 1.4522 -0.0235 "/> </Body> <Joint type="Ball" bvh="Character1_LeftArm" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.1995 1.4350 -0.0353"/> </Joint> </Node> <Node name="ForeArmL" parent="ArmL" > <Body type="Box" mass="0.5" size="0.2630 0.0506 0.0513" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Radius.obj"> <Transformation linear="0.9929 0.0823 -0.0856 0.0517 0.3492 0.9356 0.1069 -0.9334 0.3424 " translation="0.6674 1.4699 -0.0059 "/> </Body> <Joint type="Revolute" axis="0.0 1.0 0.0" bvh="Character1_LeftForeArm" lower="-2.3" upper="0.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.5234 1.4607 -0.0105"/> </Joint> </Node> <Node name="HandL" parent="ForeArmL" endeffector="True"> <Body type="Box" mass="0.2" size="0.1306 0.0104 0.0846" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Hand.obj"> <Transformation linear="0.9712 0.2357 -0.0353 -0.2243 0.9540 0.1990 0.0806 -0.1853 0.9794 " translation="0.8813 1.4640 0.0315 "/> </Body> <Joint type="Ball" bvh="Character1_LeftHand" lower="-0.7 -0.7 -0.7 " upper="0.7 0.7 0.7"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.8102 1.4694 0.0194"/> </Joint> </Node> </Skeleton>
12,775
XML
65.541666
148
0.570176
NVlabs/DiffRL/envs/assets/snu/arm.xml
<Skeleton name="Human"> <Node name="Pelvis" parent="None" > <Body type="Box" mass="15.0" size="0.2083 0.1454 0.1294" contact="Off" color="0.6 0.6 1.5 1.0" obj="Pelvis.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 0.9809 -0.0308 "/> </Body> <Joint type="Free" bvh="Character1_Hips"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 0.9809 -0.0308 "/> </Joint> </Node> <Node name="FemurR" parent="Pelvis" > <Body type="Box" mass="7.0" size="0.1271 0.4043 0.1398" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Femur.obj"> <Transformation linear="0.9998 -0.0174 -0.0024 -0.0175 -0.9997 -0.0172 -0.21 0.0172 -0.9998 " translation="-0.0959 0.7241 -0.0227 "/> </Body> <Joint type="Ball" bvh="Character1_RightUpLeg" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0903 0.9337 -0.0116 "/> </Joint> </Node> <Node name="TibiaR" parent="FemurR" > <Body type="Box" mass="3.0" size="0.1198 0.4156 0.1141 " contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Tibia.obj"> <Transformation linear="0.9994 0.0348 -0.0030 0.0349 -0.9956 0.0871 0.0 -0.0872 -0.9962 " translation="-0.0928 0.3018 -0.0341 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" bvh="Character1_RightLeg" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0995 0.5387 -0.0103 "/> </Joint> </Node> <Node name="TalusR" parent="TibiaR" endeffector="True"> <Body type="Box" mass="0.6" size="0.0756 0.0498 0.1570" contact="On" color="0.3 0.3 1.5 1.0" obj="R_Talus.obj"> <Transformation linear="0.9779 0.0256 0.2073 0.0199 -0.9994 0.0295 0.2079 -0.0247 -0.9778 " translation="-0.0826 0.0403 -0.0242 "/> </Body> <Joint type="Ball" bvh="Character1_RightFoot" lower="-1.0 -1.0 -1.0" upper="1.0 1.0 1.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.08 0.0776 -0.0419"/> </Joint> </Node> <Node name="FootThumbR" parent="TalusR" > <Body type="Box" mass="0.2" size="0.0407 0.0262 0.0563 " contact="On" color="0.3 0.3 1.5 1.0" obj="R_FootThumb.obj"> <Transformation linear="0.9847 -0.0097 0.1739 -0.0129 -0.9998 0.0177 0.1737 -0.0196 -0.9846 " translation="-0.0765 0.0268 0.0938 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0781 0.0201 0.0692"/> </Joint> </Node> <Node name="FootPinkyR" parent="TalusR" > <Body type="Box" mass="0.2" size="0.0422 0.0238 0.0529 " contact="On" color="0.3 0.3 1.5 1.0" obj="R_FootPinky.obj"> <Transformation linear="0.9402 0.0126 0.3405 0.0083 -0.9999 0.0142 0.3407 -0.0105 -0.9401 " translation="-0.1244 0.0269 0.0810 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.1227 0.0142 0.0494"/> </Joint> </Node> <Node name="FemurL" parent="Pelvis" > <Body type="Box" mass="7.0" size="0.1271 0.4043 0.1398" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Femur.obj"> <Transformation linear="0.9998 -0.0174 -0.0024 0.0175 0.9997 0.0172 0.21 -0.0172 0.9998 " translation="0.0959 0.7241 -0.0227 "/> </Body> <Joint type="Ball" bvh="Character1_LeftUpLeg" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0903 0.9337 -0.0116 "/> </Joint> </Node> <Node name="TibiaL" parent="FemurL" > <Body type="Box" mass="3.0" size="0.1198 0.4156 0.1141 " contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Tibia.obj"> <Transformation linear="0.9994 0.0348 -0.0030 -0.0349 0.9956 -0.0871 -0.0 0.0872 0.9962 " translation="0.0928 0.3018 -0.0341 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" bvh="Character1_LeftLeg" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0995 0.5387 -0.0103 "/> </Joint> </Node> <Node name="TalusL" parent="TibiaL" endeffector="True"> <Body type="Box" mass="0.6" size="0.0756 0.0498 0.1570" contact="On" color="0.6 0.6 1.5 1.0" obj="L_Talus.obj"> <Transformation linear="0.9779 0.0256 0.2073 -0.0199 0.9994 -0.0295 -0.2079 0.0247 0.9778 " translation="0.0826 0.0403 -0.0242 "/> </Body> <Joint type="Ball" bvh="Character1_LeftFoot" lower="-1.0 -1.0 -1.0" upper="1.0 1.0 1.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.08 0.0776 -0.0419 "/> </Joint> </Node> <Node name="FootThumbL" parent="TalusL" > <Body type="Box" mass="0.2" size="0.0407 0.0262 0.0563 " contact="On" color="0.6 0.6 1.5 1.0" obj="L_FootThumb.obj"> <Transformation linear="0.9402 0.0126 0.3405 -0.0083 0.9999 -0.0142 -0.3407 0.0105 0.9401 " translation="0.1244 0.0269 0.0810 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.1215 0.0116 0.0494 "/> </Joint> </Node> <Node name="FootPinkyL" parent="TalusL" > <Body type="Box" mass="0.2" size="0.0422 0.0238 0.0529 " contact="On" color="0.6 0.6 1.5 1.0" obj="L_FootPinky.obj"> <Transformation linear="0.9847 -0.0097 0.1739 0.0129 0.9998 -0.0177 -0.1737 0.0196 0.9846 " translation="0.0765 0.0268 0.0938 "/> </Body> <Joint type="Revolute" axis ="1.0 0.0 0.0" lower="-0.6" upper="0.6"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0756 0.0118 0.0676 "/> </Joint> </Node> <Node name="Spine" parent="Pelvis" > <Body type="Box" mass="5.0" size="0.1170 0.0976 0.0984" contact="Off" color="0.6 0.6 1.5 1.0" obj="Spine.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 " translation="0.0 1.1204 -0.0401 "/> </Body> <Joint type="Ball" bvh="Character1_Spine" lower="-0.4 -0.4 -0.2 " upper="0.4 0.4 0.2 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.0675 -0.0434 "/> </Joint> </Node> <Node name="Torso" parent="Spine" > <Body type="Box" mass="10.0" size="0.1798 0.2181 0.1337" contact="Off" color="0.6 0.6 1.5 1.0" obj="Torso.obj"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 -0.0092 0.0 0.0092 1.0 " translation="0.0 1.3032 -0.0398 "/> </Body> <Joint type="Fixed" bvh="Character1_Spine1" lower="-0.4 -0.4 -0.2 " upper="0.4 0.4 0.2 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.1761 -0.0498 "/> </Joint> </Node> <Node name="Neck" parent="Torso" > <Body type="Box" mass="2.0" size="0.0793 0.0728 0.0652" contact="Off" color="0.6 0.6 1.5 1.0" obj="Neck.obj"> <Transformation linear="1.0 0.0 0.0 0.0 0.9732 -0.2301 0.0 0.2301 0.9732 " translation="0.0 1.5297 -0.0250 "/> </Body> <Joint type="Ball" bvh="Character1_Neck" lower="-0.4 -0.4 -0.4 " upper="0.6 0.6 1.5 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.4844 -0.0436 "/> </Joint> </Node> <Node name="Head" parent="Neck" endeffector="True"> <Body type="Box" mass="2.0" size="0.1129 0.1144 0.1166" contact="Off" color="0.6 0.6 1.5 1.0" obj="Skull.obj"> <Transformation linear="1.0 0.0 0.0 0.0 0.9895 -0.1447 0.0 0.1447 0.9895 " translation="0.0 1.6527 -0.0123 "/> </Body> <Joint type="Ball" lower="-0.4 -0.4 -0.4 " upper="0.6 0.6 1.5 "> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0. 1.5652 -0.0086 "/> </Joint> </Node> <Node name="ShoulderR" parent="Torso" > <Body type="Box" mass="1.0" size="0.1635 0.0634 0.0645" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Shoulder.obj"> <Transformation linear="0.9985 -0.0048 0.0549 -0.0047 -1.0 -0.0011 0.0549 0.0008 -0.9985 " translation="-0.0981 1.4644 -0.0391 "/> </Body> <Joint type="Ball" bvh="Character1_RightShoulder" lower="-0.5 -0.5 -0.5" upper="0.5 0.5 0.5"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.0147 1.4535 -0.0381 "/> </Joint> </Node> <Node name="ArmR" parent="ShoulderR" > <Body type="Box" mass="1.0" size="0.3329 0.0542 0.0499" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Humerus.obj"> <Transformation linear="0.9960 0.0361 -0.0812 -0.0669 -0.2971 -0.952500 -0.0585 0.9542 -0.2936 " translation="-0.3578 1.4522 -0.0235 "/> </Body> <Joint type="Ball" bvh="Character1_RightArm" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.1995 1.4350 -0.0353 "/> </Joint> </Node> <Node name="ForeArmR" parent="ArmR" > <Body type="Box" mass="0.5" size="0.2630 0.0506 0.0513" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Radius.obj"> <Transformation linear="0.9929 0.0823 -0.0856 -0.0517 -0.3492 -0.9356 -0.1069 0.9334 -0.3424 " translation="-0.6674 1.4699 -0.0059 "/> </Body> <Joint type="Revolute" axis="0.0 1.0 0.0" bvh="Character1_RightForeArm" lower="0.0" upper="2.3"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.5234 1.4607 -0.0105 "/> </Joint> </Node> <Node name="HandR" parent="ForeArmR" endeffector="True"> <Body type="Box" mass="0.2" size="0.1306 0.0104 0.0846" contact="Off" color="0.3 0.3 1.5 1.0" obj="R_Hand.obj"> <Transformation linear="0.9712 0.2357 -0.0353 0.2243 -0.9540 -0.1990 -0.0806 0.1853 -0.9794 " translation="-0.8810 1.4647 0.0315 "/> </Body> <Joint type="Ball" bvh="Character1_RightHand" lower="-0.7 -0.7 -0.7 " upper="0.7 0.7 0.7"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="-0.8102 1.469 0.0194 "/> </Joint> </Node> <Node name="ShoulderL" parent="Torso" > <Body type="Box" mass="1.0" size="0.1635 0.0634 0.0645" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Shoulder.obj"> <Transformation linear="0.9985 -0.0048 0.0549 0.0047 1.0000 0.0011 -0.0549 -0.0008 0.9985 " translation="0.0981 1.4644 -0.0391 "/> </Body> <Joint type="Ball" bvh="Character1_LeftShoulder" lower="-0.5 -0.5 -0.5" upper="0.5 0.5 0.5"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0147 1.4535 -0.0381"/> </Joint> </Node> <Node name="ArmL" parent="ShoulderL" > <Body type="Box" mass="1.0" size="0.3329 0.0542 0.0499" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Humerus.obj"> <Transformation linear="0.9960 0.0361 -0.0812 0.0669 0.2971 0.9525 0.0585 -0.9542 0.2936 " translation="0.3578 1.4522 -0.0235 "/> </Body> <Joint type="Ball" bvh="Character1_LeftArm" lower="-2.0 -2.0 -2.0" upper="2.0 2.0 2.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.1995 1.4350 -0.0353"/> </Joint> </Node> <Node name="ForeArmL" parent="ArmL" > <Body type="Box" mass="0.5" size="0.2630 0.0506 0.0513" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Radius.obj"> <Transformation linear="0.9929 0.0823 -0.0856 0.0517 0.3492 0.9356 0.1069 -0.9334 0.3424 " translation="0.6674 1.4699 -0.0059 "/> </Body> <Joint type="Revolute" axis="0.0 1.0 0.0" bvh="Character1_LeftForeArm" lower="-2.3" upper="0.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.5234 1.4607 -0.0105"/> </Joint> </Node> <Node name="HandL" parent="ForeArmL" endeffector="True"> <Body type="Box" mass="0.2" size="0.1306 0.0104 0.0846" contact="Off" color="0.6 0.6 1.5 1.0" obj="L_Hand.obj"> <Transformation linear="0.9712 0.2357 -0.0353 -0.2243 0.9540 0.1990 0.0806 -0.1853 0.9794 " translation="0.8813 1.4640 0.0315 "/> </Body> <Joint type="Ball" bvh="Character1_LeftHand" lower="-0.7 -0.7 -0.7 " upper="0.7 0.7 0.7"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.8102 1.4694 0.0194"/> </Joint> </Node> </Skeleton>
12,782
XML
63.560606
148
0.569942
NVlabs/DiffRL/envs/assets/snu/muscle284.xml
<Muscle> <Unit name="L_Abductor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmL" p="0.629400 1.471000 -0.014000 " /> <Waypoint body="ForeArmL" p="0.732300 1.488400 0.018000 " /> <Waypoint body="ForeArmL" p="0.786300 1.491600 0.024800 " /> <Waypoint body="HandL" p="0.822700 1.472900 0.061900 " /> </Unit> <Unit name="R_Abductor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmR" p="-0.629400 1.471000 -0.014000 " /> <Waypoint body="ForeArmR" p="-0.732300 1.488400 0.018000 " /> <Waypoint body="ForeArmR" p="-0.786300 1.491600 0.024800 " /> <Waypoint body="HandR" p="-0.822700 1.472900 0.061900 " /> </Unit> <Unit name="L_Adductor_Brevis" f0="151.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.031900 0.919600 0.041600 " /> <Waypoint body="FemurL" p="0.083100 0.833800 0.004900 " /> <Waypoint body="FemurL" p="0.110400 0.826200 -0.008400 " /> </Unit> <Unit name="R_Adductor_Brevis" f0="151.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.031900 0.919600 0.041600 " /> <Waypoint body="FemurR" p="-0.083100 0.833800 0.004900 " /> <Waypoint body="FemurR" p="-0.110400 0.826200 -0.008400 " /> </Unit> <Unit name="L_Adductor_Brevis1" f0="151.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.014100 0.911600 0.042700 " /> <Waypoint body="FemurL" p="0.076700 0.756500 -0.000700 " /> <Waypoint body="FemurL" p="0.104000 0.730500 0.002500 " /> </Unit> <Unit name="R_Adductor_Brevis1" f0="151.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.014100 0.911600 0.042700 " /> <Waypoint body="FemurR" p="-0.076700 0.756500 -0.000700 " /> <Waypoint body="FemurR" p="-0.104000 0.730500 0.002500 " /> </Unit> <Unit name="L_Adductor_Longus" f0="199.750000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.030200 0.921600 0.042700 " /> <Waypoint body="FemurL" p="0.100300 0.738600 0.002700 " /> <Waypoint body="FemurL" p="0.109600 0.701000 0.001400 " /> </Unit> <Unit name="R_Adductor_Longus" f0="199.750000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.030200 0.921600 0.042700 " /> <Waypoint body="FemurR" p="-0.100300 0.738600 0.002700 " /> <Waypoint body="FemurR" p="-0.109600 0.701000 0.001400 " /> </Unit> <Unit name="L_Adductor_Longus1" f0="199.750000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.014000 0.914800 0.048900 " /> <Waypoint body="FemurL" p="0.050500 0.729800 0.005100 " /> <Waypoint body="FemurL" p="0.099100 0.634300 0.001400 " /> </Unit> <Unit name="R_Adductor_Longus1" f0="199.750000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.014000 0.914800 0.048900 " /> <Waypoint body="FemurR" p="-0.050500 0.729800 0.005100 " /> <Waypoint body="FemurR" p="-0.099100 0.634300 0.001400 " /> </Unit> <Unit name="L_Adductor_Magnus" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.022300 0.891300 0.013400 " /> <Waypoint body="FemurL" p="0.106400 0.837500 -0.017200 " /> <Waypoint body="FemurL" p="0.133800 0.833900 -0.017600 " /> </Unit> <Unit name="R_Adductor_Magnus" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.022300 0.891300 0.013400 " /> <Waypoint body="FemurR" p="-0.106400 0.837500 -0.017200 " /> <Waypoint body="FemurR" p="-0.133800 0.833900 -0.017600 " /> </Unit> <Unit name="L_Adductor_Magnus1" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.023500 0.881300 0.013000 " /> <Waypoint body="FemurL" p="0.097700 0.800600 -0.023300 " /> <Waypoint body="FemurL" p="0.124400 0.759600 -0.002000 " /> </Unit> <Unit name="R_Adductor_Magnus1" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.023500 0.881300 0.013000 " /> <Waypoint body="FemurR" p="-0.097700 0.800600 -0.023300 " /> <Waypoint body="FemurR" p="-0.124400 0.759600 -0.002000 " /> </Unit> <Unit name="L_Adductor_Magnus2" f0="259.380000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.035600 0.870400 -0.025800 " /> <Waypoint body="FemurL" p="0.069900 0.809100 -0.024200 " /> <Waypoint body="FemurL" p="0.102600 0.745100 -0.024800 " /> <Waypoint body="FemurL" p="0.116600 0.719600 0.001200 " /> </Unit> <Unit name="R_Adductor_Magnus2" f0="259.380000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.035600 0.870400 -0.025800 " /> <Waypoint body="FemurR" p="-0.069900 0.809100 -0.024200 " /> <Waypoint body="FemurR" p="-0.102600 0.745100 -0.024800 " /> <Waypoint body="FemurR" p="-0.116600 0.719600 0.001200 " /> </Unit> <Unit name="L_Adductor_Magnus3" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.047500 0.869700 -0.043600 " /> <Waypoint body="FemurL" p="0.074400 0.781900 -0.034000 " /> <Waypoint body="FemurL" p="0.102400 0.704000 -0.022500 " /> <Waypoint body="FemurL" p="0.105400 0.641800 -0.002200 " /> </Unit> <Unit name="R_Adductor_Magnus3" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.047500 0.869700 -0.043600 " /> <Waypoint body="FemurR" p="-0.074400 0.781900 -0.034000 " /> <Waypoint body="FemurR" p="-0.102400 0.704000 -0.022500 " /> <Waypoint body="FemurR" p="-0.105400 0.641800 -0.002200 " /> </Unit> <Unit name="L_Adductor_Magnus4" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.068700 0.877200 -0.056000 " /> <Waypoint body="Pelvis" p="0.063000 0.844300 -0.048200 " /> <Waypoint body="FemurL" p="0.063700 0.641200 -0.031400 " /> <Waypoint body="FemurL" p="0.065300 0.555500 -0.028900 " /> </Unit> <Unit name="R_Adductor_Magnus4" f0="259.380000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.068700 0.877200 -0.056000 " /> <Waypoint body="Pelvis" p="-0.063000 0.844300 -0.048200 " /> <Waypoint body="FemurR" p="-0.063700 0.641200 -0.031400 " /> <Waypoint body="FemurR" p="-0.065300 0.555500 -0.028900 " /> </Unit> <Unit name="L_Anconeous" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.506400 1.482400 -0.009500 " /> <Waypoint body="ForeArmL" p="0.537100 1.479700 -0.026300 " /> <Waypoint body="ForeArmL" p="0.571200 1.468800 -0.029500 " /> </Unit> <Unit name="R_Anconeous" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.506400 1.482400 -0.009500 " /> <Waypoint body="ForeArmR" p="-0.537100 1.479700 -0.026300 " /> <Waypoint body="ForeArmR" p="-0.571200 1.468800 -0.029500 " /> </Unit> <Unit name="L_Bicep_Brachii_Long_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.169300 1.443700 -0.036900 " /> <Waypoint body="ArmL" p="0.177900 1.421700 -0.033000 " /> <Waypoint body="ArmL" p="0.181000 1.432000 -0.018300 " /> <Waypoint body="ArmL" p="0.191100 1.434300 -0.008400 " /> <Waypoint body="ArmL" p="0.214500 1.434800 -0.007100 " /> <Waypoint body="ArmL" p="0.259100 1.434100 -0.002400 " /> <Waypoint body="ForeArmL" p="0.529000 1.448300 0.025000 " /> <Waypoint body="ForeArmL" p="0.583200 1.462500 0.001900 " /> </Unit> <Unit name="R_Bicep_Brachii_Long_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.169300 1.443700 -0.036900 " /> <Waypoint body="ArmR" p="-0.177900 1.421700 -0.033000 " /> <Waypoint body="ArmR" p="-0.181000 1.432000 -0.018300 " /> <Waypoint body="ArmR" p="-0.191100 1.434300 -0.008400 " /> <Waypoint body="ArmR" p="-0.214500 1.434800 -0.007100 " /> <Waypoint body="ArmR" p="-0.259100 1.434100 -0.002400 " /> <Waypoint body="ForeArmR" p="-0.529000 1.448300 0.025000 " /> <Waypoint body="ForeArmR" p="-0.583200 1.462500 0.001900 " /> </Unit> <Unit name="L_Bicep_Brachii_Short_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.168400 1.434700 -0.007400 " /> <Waypoint body="ArmL" p="0.252000 1.411300 -0.007700 " /> <Waypoint body="ArmL" p="0.489000 1.425300 0.023400 " /> <Waypoint body="ForeArmL" p="0.585400 1.461400 -0.001300 " /> </Unit> <Unit name="R_Bicep_Brachii_Short_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.168400 1.434700 -0.007400 " /> <Waypoint body="ArmR" p="-0.252000 1.411300 -0.007700 " /> <Waypoint body="ArmR" p="-0.489000 1.425300 0.023400 " /> <Waypoint body="ForeArmR" p="-0.585400 1.461400 -0.001300 " /> </Unit> <Unit name="L_Bicep_Femoris_Longus" f0="705.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.070900 0.900200 -0.063600 " /> <Waypoint body="FemurL" p="0.096500 0.854800 -0.046300 " /> <Waypoint body="FemurL" p="0.139900 0.574300 -0.029200 " /> <Waypoint body="FemurL" p="0.144100 0.541600 -0.032800 " /> <Waypoint body="TibiaL" p="0.138200 0.488800 -0.038800 " /> </Unit> <Unit name="R_Bicep_Femoris_Longus" f0="705.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.070900 0.900200 -0.063600 " /> <Waypoint body="FemurR" p="-0.096500 0.854800 -0.046300 " /> <Waypoint body="FemurR" p="-0.139900 0.574300 -0.029200 " /> <Waypoint body="FemurR" p="-0.144100 0.541600 -0.032800 " /> <Waypoint body="TibiaR" p="-0.138200 0.488800 -0.038800 " /> </Unit> <Unit name="L_Bicep_Femoris_Short" f0="157.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.118200 0.729800 0.000200 " /> <Waypoint body="FemurL" p="0.143500 0.545000 -0.029700 " /> <Waypoint body="TibiaL" p="0.139800 0.489100 -0.034100 " /> </Unit> <Unit name="R_Bicep_Femoris_Short" f0="157.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.118200 0.729800 0.000200 " /> <Waypoint body="FemurR" p="-0.143500 0.545000 -0.029700 " /> <Waypoint body="TibiaR" p="-0.139800 0.489100 -0.034100 " /> </Unit> <Unit name="L_Bicep_Femoris_Short1" f0="157.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.111800 0.618400 0.001900 " /> <Waypoint body="FemurL" p="0.141600 0.532000 -0.019900 " /> <Waypoint body="TibiaL" p="0.137900 0.488500 -0.030700 " /> </Unit> <Unit name="R_Bicep_Femoris_Short1" f0="157.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.111800 0.618400 0.001900 " /> <Waypoint body="FemurR" p="-0.141600 0.532000 -0.019900 " /> <Waypoint body="TibiaR" p="-0.137900 0.488500 -0.030700 " /> </Unit> <Unit name="L_Brachialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.332100 1.460400 -0.019000 " /> <Waypoint body="ArmL" p="0.350000 1.471800 -0.008100 " /> <Waypoint body="ArmL" p="0.496300 1.460600 0.017500 " /> <Waypoint body="ForeArmL" p="0.557200 1.461900 -0.011000 " /> </Unit> <Unit name="R_Brachialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.332100 1.460400 -0.019000 " /> <Waypoint body="ArmR" p="-0.350000 1.471800 -0.008100 " /> <Waypoint body="ArmR" p="-0.496300 1.460600 0.017500 " /> <Waypoint body="ForeArmR" p="-0.557200 1.461900 -0.011000 " /> </Unit> <Unit name="L_Brachioradialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.442800 1.465200 -0.020900 " /> <Waypoint body="ArmL" p="0.465100 1.490300 -0.008200 " /> <Waypoint body="ArmL" p="0.499700 1.478900 0.025100 " /> <Waypoint body="ForeArmL" p="0.561800 1.460900 0.037700 " /> <Waypoint body="ForeArmL" p="0.708600 1.474300 0.036200 " /> <Waypoint body="ForeArmL" p="0.786700 1.488000 0.030200 " /> </Unit> <Unit name="R_Brachioradialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.442800 1.465200 -0.020900 " /> <Waypoint body="ArmR" p="-0.465100 1.490300 -0.008200 " /> <Waypoint body="ArmR" p="-0.499700 1.478900 0.025100 " /> <Waypoint body="ForeArmR" p="-0.561800 1.460900 0.037700 " /> <Waypoint body="ForeArmR" p="-0.708600 1.474300 0.036200 " /> <Waypoint body="ForeArmR" p="-0.786700 1.488000 0.030200 " /> </Unit> <Unit name="L_Coracobrachialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.168100 1.432600 -0.008300 " /> <Waypoint body="ArmL" p="0.228900 1.407100 -0.019200 " /> <Waypoint body="ArmL" p="0.312100 1.429100 -0.019400 " /> <Waypoint body="ArmL" p="0.338600 1.441800 -0.016700 " /> </Unit> <Unit name="R_Coracobrachialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.168100 1.432600 -0.008300 " /> <Waypoint body="ArmR" p="-0.228900 1.407100 -0.019200 " /> <Waypoint body="ArmR" p="-0.312100 1.429100 -0.019400 " /> <Waypoint body="ArmR" p="-0.338600 1.441800 -0.016700 " /> </Unit> <Unit name="L_Deltoid" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.143200 1.466200 -0.019000 " /> <Waypoint body="ShoulderL" p="0.160700 1.447600 0.001500 " /> <Waypoint body="ArmL" p="0.221300 1.411900 0.013700 " /> <Waypoint body="ArmL" p="0.268700 1.443100 0.014100 " /> <Waypoint body="ArmL" p="0.299600 1.446200 -0.010700 " /> </Unit> <Unit name="R_Deltoid" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.143200 1.466200 -0.019000 " /> <Waypoint body="ShoulderR" p="-0.160700 1.447600 0.001500 " /> <Waypoint body="ArmR" p="-0.221300 1.411900 0.013700 " /> <Waypoint body="ArmR" p="-0.268700 1.443100 0.014100 " /> <Waypoint body="ArmR" p="-0.299600 1.446200 -0.010700 " /> </Unit> <Unit name="L_Deltoid1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.197700 1.465900 -0.025700 " /> <Waypoint body="ArmL" p="0.186600 1.450500 -0.008600 " /> <Waypoint body="ArmL" p="0.227700 1.467700 0.006400 " /> <Waypoint body="ArmL" p="0.278600 1.469800 0.007400 " /> <Waypoint body="ArmL" p="0.318300 1.452900 -0.008100 " /> </Unit> <Unit name="R_Deltoid1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.197700 1.465900 -0.025700 " /> <Waypoint body="ArmR" p="-0.186600 1.450500 -0.008600 " /> <Waypoint body="ArmR" p="-0.227700 1.467700 0.006400 " /> <Waypoint body="ArmR" p="-0.278600 1.469800 0.007400 " /> <Waypoint body="ArmR" p="-0.318300 1.452900 -0.008100 " /> </Unit> <Unit name="L_Deltoid2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.203700 1.459300 -0.052000 " /> <Waypoint body="ShoulderL" p="0.193300 1.466900 -0.038600 " /> <Waypoint body="ArmL" p="0.236700 1.485800 -0.026200 " /> <Waypoint body="ArmL" p="0.295100 1.477600 -0.016200 " /> <Waypoint body="ArmL" p="0.324100 1.456900 -0.011200 " /> </Unit> <Unit name="R_Deltoid2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.203700 1.459300 -0.052000 " /> <Waypoint body="ShoulderR" p="-0.193300 1.466900 -0.038600 " /> <Waypoint body="ArmR" p="-0.236700 1.485800 -0.026200 " /> <Waypoint body="ArmR" p="-0.295100 1.477600 -0.016200 " /> <Waypoint body="ArmR" p="-0.324100 1.456900 -0.011200 " /> </Unit> <Unit name="L_Extensor_Carpi_Radialis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.478900 1.470500 -0.017300 " /> <Waypoint body="ArmL" p="0.501100 1.489700 -0.001000 " /> <Waypoint body="ForeArmL" p="0.552500 1.490000 0.029900 " /> <Waypoint body="ForeArmL" p="0.720600 1.483000 0.027900 " /> <Waypoint body="ForeArmL" p="0.782100 1.488200 0.013300 " /> <Waypoint body="HandL" p="0.829300 1.485400 0.038500 " /> </Unit> <Unit name="R_Extensor_Carpi_Radialis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.478900 1.470500 -0.017300 " /> <Waypoint body="ArmR" p="-0.501100 1.489700 -0.001000 " /> <Waypoint body="ForeArmR" p="-0.552500 1.490000 0.029900 " /> <Waypoint body="ForeArmR" p="-0.720600 1.483000 0.027900 " /> <Waypoint body="ForeArmR" p="-0.782100 1.488200 0.013300 " /> <Waypoint body="HandR" p="-0.829300 1.485400 0.038500 " /> </Unit> <Unit name="L_Extensor_Carpi_Ulnaris" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.518600 1.483100 -0.006700 " /> <Waypoint body="ForeArmL" p="0.559300 1.490700 -0.017100 " /> <Waypoint body="ForeArmL" p="0.652300 1.470700 -0.029700 " /> <Waypoint body="ForeArmL" p="0.785500 1.449400 0.000900 " /> <Waypoint body="HandL" p="0.825500 1.477700 0.001000 " /> </Unit> <Unit name="R_Extensor_Carpi_Ulnaris" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.518600 1.483100 -0.006700 " /> <Waypoint body="ForeArmR" p="-0.559300 1.490700 -0.017100 " /> <Waypoint body="ForeArmR" p="-0.652300 1.470700 -0.029700 " /> <Waypoint body="ForeArmR" p="-0.785500 1.449400 0.000900 " /> <Waypoint body="HandR" p="-0.825500 1.477700 0.001000 " /> </Unit> <Unit name="L_Extensor_Digiti_Minimi" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.520400 1.483700 -0.005400 " /> <Waypoint body="ForeArmL" p="0.548300 1.490000 -0.007600 " /> <Waypoint body="ForeArmL" p="0.783200 1.463200 -0.003600 " /> <Waypoint body="HandL" p="0.821600 1.482100 0.001400 " /> <Waypoint body="HandL" p="0.884700 1.462100 -0.005200 " /> <Waypoint body="HandL" p="0.927800 1.443100 -0.002500 " /> </Unit> <Unit name="R_Extensor_Digiti_Minimi" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.520400 1.483700 -0.005400 " /> <Waypoint body="ForeArmR" p="-0.548300 1.490000 -0.007600 " /> <Waypoint body="ForeArmR" p="-0.783200 1.463200 -0.003600 " /> <Waypoint body="HandR" p="-0.821600 1.482100 0.001400 " /> <Waypoint body="HandR" p="-0.884700 1.462100 -0.005200 " /> <Waypoint body="HandR" p="-0.927800 1.443100 -0.002500 " /> </Unit> <Unit name="L_Extensor_Digitorum_Longus" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.123300 0.482800 -0.012800 " /> <Waypoint body="TibiaL" p="0.124900 0.447400 -0.025500 " /> <Waypoint body="TibiaL" p="0.094400 0.112800 -0.025500 " /> <Waypoint body="TalusL" p="0.091900 0.084400 -0.015300 " /> <Waypoint body="TalusL" p="0.090000 0.027700 0.067600 " /> <Waypoint body="FootThumbL" p="0.092000 0.021200 0.096100 " /> <Waypoint body="FootThumbL" p="0.093800 0.013000 0.112100 " /> </Unit> <Unit name="R_Extensor_Digitorum_Longus" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.123300 0.482800 -0.012800 " /> <Waypoint body="TibiaR" p="-0.124900 0.447400 -0.025500 " /> <Waypoint body="TibiaR" p="-0.094400 0.112800 -0.025500 " /> <Waypoint body="TalusR" p="-0.091900 0.084400 -0.015300 " /> <Waypoint body="TalusR" p="-0.090000 0.027700 0.067600 " /> <Waypoint body="FootThumbR" p="-0.092000 0.021200 0.096100 " /> <Waypoint body="FootThumbR" p="-0.093800 0.013000 0.112100 " /> </Unit> <Unit name="L_Extensor_Digitorum_Longus1" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.128600 0.491900 -0.010000 " /> <Waypoint body="TibiaL" p="0.133600 0.407000 -0.020000 " /> <Waypoint body="TibiaL" p="0.097300 0.113900 -0.023900 " /> <Waypoint body="TalusL" p="0.098400 0.080700 -0.011500 " /> <Waypoint body="TalusL" p="0.104700 0.024500 0.061600 " /> <Waypoint body="FootPinkyL" p="0.107400 0.019500 0.079600 " /> <Waypoint body="FootPinkyL" p="0.112000 0.010600 0.103200 " /> </Unit> <Unit name="R_Extensor_Digitorum_Longus1" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.128600 0.491900 -0.010000 " /> <Waypoint body="TibiaR" p="-0.133600 0.407000 -0.020000 " /> <Waypoint body="TibiaR" p="-0.097300 0.113900 -0.023900 " /> <Waypoint body="TalusR" p="-0.098400 0.080700 -0.011500 " /> <Waypoint body="TalusR" p="-0.104700 0.024500 0.061600 " /> <Waypoint body="FootPinkyR" p="-0.107400 0.019500 0.079600 " /> <Waypoint body="FootPinkyR" p="-0.112000 0.010600 0.103200 " /> </Unit> <Unit name="L_Extensor_Digitorum_Longus2" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.127100 0.488400 -0.009500 " /> <Waypoint body="TibiaL" p="0.140800 0.406700 -0.014400 " /> <Waypoint body="TibiaL" p="0.098500 0.113700 -0.024500 " /> <Waypoint body="TalusL" p="0.101300 0.077500 -0.010600 " /> <Waypoint body="FootPinkyL" p="0.118000 0.026000 0.054300 " /> <Waypoint body="FootPinkyL" p="0.121400 0.022400 0.068700 " /> <Waypoint body="FootPinkyL" p="0.125200 0.012900 0.084600 " /> </Unit> <Unit name="R_Extensor_Digitorum_Longus2" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.127100 0.488400 -0.009500 " /> <Waypoint body="TibiaR" p="-0.140800 0.406700 -0.014400 " /> <Waypoint body="TibiaR" p="-0.098500 0.113700 -0.024500 " /> <Waypoint body="TalusR" p="-0.101300 0.077500 -0.010600 " /> <Waypoint body="FootPinkyR" p="-0.118000 0.026000 0.054300 " /> <Waypoint body="FootPinkyR" p="-0.121400 0.022400 0.068700 " /> <Waypoint body="FootPinkyR" p="-0.125200 0.012900 0.084600 " /> </Unit> <Unit name="L_Extensor_Digitorum_Longus3" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.130000 0.493100 -0.011700 " /> <Waypoint body="TibiaL" p="0.131500 0.407000 -0.033100 " /> <Waypoint body="TibiaL" p="0.103700 0.082400 -0.017500 " /> <Waypoint body="TalusL" p="0.114200 0.059400 0.000900 " /> <Waypoint body="TalusL" p="0.130700 0.028300 0.039500 " /> <Waypoint body="FootPinkyL" p="0.137100 0.009300 0.074500 " /> </Unit> <Unit name="R_Extensor_Digitorum_Longus3" f0="172.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.130000 0.493100 -0.011700 " /> <Waypoint body="TibiaR" p="-0.131500 0.407000 -0.033100 " /> <Waypoint body="TibiaR" p="-0.103700 0.082400 -0.017500 " /> <Waypoint body="TalusR" p="-0.114200 0.059400 0.000900 " /> <Waypoint body="TalusR" p="-0.130700 0.028300 0.039500 " /> <Waypoint body="FootPinkyR" p="-0.137100 0.009300 0.074500 " /> </Unit> <Unit name="L_Extensor_Digitorum1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.519300 1.487900 -0.001600 " /> <Waypoint body="ForeArmL" p="0.745800 1.482600 0.005500 " /> <Waypoint body="ForeArmL" p="0.782100 1.478400 0.002300 " /> <Waypoint body="HandL" p="0.824700 1.491700 0.026300 " /> <Waypoint body="HandL" p="0.895700 1.481400 0.034000 " /> <Waypoint body="HandL" p="0.960600 1.441800 0.044200 " /> </Unit> <Unit name="R_Extensor_Digitorum1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.519300 1.487900 -0.001600 " /> <Waypoint body="ForeArmR" p="-0.745800 1.482600 0.005500 " /> <Waypoint body="ForeArmR" p="-0.782100 1.478400 0.002300 " /> <Waypoint body="HandR" p="-0.824700 1.491700 0.026300 " /> <Waypoint body="HandR" p="-0.895700 1.481400 0.034000 " /> <Waypoint body="HandR" p="-0.960600 1.441800 0.044200 " /> </Unit> <Unit name="L_Extensor_Hallucis_Longus" f0="165.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.115100 0.380600 -0.028300 " /> <Waypoint body="TibiaL" p="0.097000 0.119900 -0.023000 " /> <Waypoint body="TalusL" p="0.083400 0.082500 -0.015100 " /> <Waypoint body="TalusL" p="0.072400 0.063500 0.027400 " /> <Waypoint body="TalusL" p="0.065600 0.031800 0.071700 " /> <Waypoint body="FootThumbL" p="0.060600 0.012900 0.112800 " /> </Unit> <Unit name="R_Extensor_Hallucis_Longus" f0="165.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.115100 0.380600 -0.028300 " /> <Waypoint body="TibiaR" p="-0.097000 0.119900 -0.023000 " /> <Waypoint body="TalusR" p="-0.083400 0.082500 -0.015100 " /> <Waypoint body="TalusR" p="-0.072400 0.063500 0.027400 " /> <Waypoint body="TalusR" p="-0.065600 0.031800 0.071700 " /> <Waypoint body="FootThumbR" p="-0.060600 0.012900 0.112800 " /> </Unit> <Unit name="L_Extensor_Pollicis_Brevis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmL" p="0.700700 1.470500 0.008700 " /> <Waypoint body="ForeArmL" p="0.791900 1.490900 0.019900 " /> <Waypoint body="HandL" p="0.816700 1.482000 0.054200 " /> <Waypoint body="HandL" p="0.855900 1.457500 0.079600 " /> </Unit> <Unit name="R_Extensor_Pollicis_Brevis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmR" p="-0.700700 1.470500 0.008700 " /> <Waypoint body="ForeArmR" p="-0.791900 1.490900 0.019900 " /> <Waypoint body="HandR" p="-0.816700 1.482000 0.054200 " /> <Waypoint body="HandR" p="-0.855900 1.457500 0.079600 " /> </Unit> <Unit name="L_Extensor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmL" p="0.671800 1.469500 -0.007300 " /> <Waypoint body="ForeArmL" p="0.770900 1.479600 0.005500 " /> <Waypoint body="HandL" p="0.815100 1.490300 0.039500 " /> <Waypoint body="HandL" p="0.847400 1.466000 0.075500 " /> <Waypoint body="HandL" p="0.877000 1.446000 0.087800 " /> </Unit> <Unit name="R_Extensor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmR" p="-0.671800 1.469500 -0.007300 " /> <Waypoint body="ForeArmR" p="-0.770900 1.479600 0.005500 " /> <Waypoint body="HandR" p="-0.815100 1.490300 0.039500 " /> <Waypoint body="HandR" p="-0.847400 1.466000 0.075500 " /> <Waypoint body="HandR" p="-0.877000 1.446000 0.087800 " /> </Unit> <Unit name="L_Flexor_Carpi_Radialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.518400 1.426200 -0.016200 " /> <Waypoint body="ForeArmL" p="0.741200 1.458600 0.027000 " /> <Waypoint body="ForeArmL" p="0.784600 1.465300 0.028700 " /> <Waypoint body="HandL" p="0.832400 1.474100 0.039100 " /> </Unit> <Unit name="R_Flexor_Carpi_Radialis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.518400 1.426200 -0.016200 " /> <Waypoint body="ForeArmR" p="-0.741200 1.458600 0.027000 " /> <Waypoint body="ForeArmR" p="-0.784600 1.465300 0.028700 " /> <Waypoint body="HandR" p="-0.832400 1.474100 0.039100 " /> </Unit> <Unit name="L_Flexor_Carpi_Ulnaris" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.525500 1.425600 -0.022000 " /> <Waypoint body="ForeArmL" p="0.581900 1.436100 -0.034700 " /> <Waypoint body="ForeArmL" p="0.759400 1.450100 0.006800 " /> <Waypoint body="HandL" p="0.805300 1.467100 0.009900 " /> </Unit> <Unit name="R_Flexor_Carpi_Ulnaris" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.525500 1.425600 -0.022000 " /> <Waypoint body="ForeArmR" p="-0.581900 1.436100 -0.034700 " /> <Waypoint body="ForeArmR" p="-0.759400 1.450100 0.006800 " /> <Waypoint body="HandR" p="-0.805300 1.467100 0.009900 " /> </Unit> <Unit name="L_Flexor_Digiti_Minimi_Brevis_Foot" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FootPinkyL" p="0.136400 0.011200 0.049600 " /> <Waypoint body="TalusL" p="0.120100 0.023600 -0.009200 " /> </Unit> <Unit name="R_Flexor_Digiti_Minimi_Brevis_Foot" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FootPinkyR" p="-0.136400 0.011200 0.049600 " /> <Waypoint body="TalusR" p="-0.120100 0.023600 -0.009200 " /> </Unit> <Unit name="L_Flexor_Digitorum_Longus" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.089500 0.398600 -0.020400 " /> <Waypoint body="TibiaL" p="0.062700 0.111200 -0.055500 " /> <Waypoint body="TalusL" p="0.063700 0.040400 -0.022200 " /> <Waypoint body="TalusL" p="0.083100 0.032200 -0.001400 " /> <Waypoint body="TalusL" p="0.086700 0.009400 0.059100 " /> <Waypoint body="FootThumbL" p="0.092700 0.008800 0.108400 " /> </Unit> <Unit name="R_Flexor_Digitorum_Longus" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.089500 0.398600 -0.020400 " /> <Waypoint body="TibiaR" p="-0.062700 0.111200 -0.055500 " /> <Waypoint body="TalusR" p="-0.063700 0.040400 -0.022200 " /> <Waypoint body="TalusR" p="-0.083100 0.032200 -0.001400 " /> <Waypoint body="TalusR" p="-0.086700 0.009400 0.059100 " /> <Waypoint body="FootThumbR" p="-0.092700 0.008800 0.108400 " /> </Unit> <Unit name="L_Flexor_Digitorum_Longus1" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.089500 0.398600 -0.020400 " /> <Waypoint body="TibiaL" p="0.065700 0.111000 -0.056200 " /> <Waypoint body="TalusL" p="0.064900 0.040300 -0.023900 " /> <Waypoint body="TalusL" p="0.085000 0.031700 -0.008900 " /> <Waypoint body="TalusL" p="0.101600 0.007000 0.053000 " /> <Waypoint body="FootPinkyL" p="0.110200 0.009200 0.099700 " /> </Unit> <Unit name="R_Flexor_Digitorum_Longus1" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.089500 0.398600 -0.020400 " /> <Waypoint body="TibiaR" p="-0.065700 0.111000 -0.056200 " /> <Waypoint body="TalusR" p="-0.064900 0.040300 -0.023900 " /> <Waypoint body="TalusR" p="-0.085000 0.031700 -0.008900 " /> <Waypoint body="TalusR" p="-0.101600 0.007000 0.053000 " /> <Waypoint body="FootPinkyR" p="-0.110200 0.009200 0.099700 " /> </Unit> <Unit name="L_Flexor_Digitorum_Longus2" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.089600 0.389300 -0.023100 " /> <Waypoint body="TibiaL" p="0.066600 0.115900 -0.056200 " /> <Waypoint body="TalusL" p="0.063400 0.043000 -0.025700 " /> <Waypoint body="TalusL" p="0.091200 0.030200 -0.006400 " /> <Waypoint body="TalusL" p="0.115100 0.008900 0.042100 " /> <Waypoint body="FootPinkyL" p="0.124100 0.009500 0.083100 " /> </Unit> <Unit name="R_Flexor_Digitorum_Longus2" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.089600 0.389300 -0.023100 " /> <Waypoint body="TibiaR" p="-0.066600 0.115900 -0.056200 " /> <Waypoint body="TalusR" p="-0.063400 0.043000 -0.025700 " /> <Waypoint body="TalusR" p="-0.091200 0.030200 -0.006400 " /> <Waypoint body="TalusR" p="-0.115100 0.008900 0.042100 " /> <Waypoint body="FootPinkyR" p="-0.124100 0.009500 0.083100 " /> </Unit> <Unit name="L_Flexor_Digitorum_Longus3" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.083900 0.388100 -0.018800 " /> <Waypoint body="TibiaL" p="0.068200 0.120700 -0.056400 " /> <Waypoint body="TalusL" p="0.059800 0.051000 -0.027300 " /> <Waypoint body="TalusL" p="0.106800 0.026000 -0.001100 " /> <Waypoint body="TalusL" p="0.130900 0.008800 0.039000 " /> <Waypoint body="FootPinkyL" p="0.136400 0.007100 0.070500 " /> </Unit> <Unit name="R_Flexor_Digitorum_Longus3" f0="137.200000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.083900 0.388100 -0.018800 " /> <Waypoint body="TibiaR" p="-0.068200 0.120700 -0.056400 " /> <Waypoint body="TalusR" p="-0.059800 0.051000 -0.027300 " /> <Waypoint body="TalusR" p="-0.106800 0.026000 -0.001100 " /> <Waypoint body="TalusR" p="-0.130900 0.008800 0.039000 " /> <Waypoint body="FootPinkyR" p="-0.136400 0.007100 0.070500 " /> </Unit> <Unit name="L_Flexor_Digitorum_Profundus2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmL" p="0.594200 1.465300 -0.009100 " /> <Waypoint body="ForeArmL" p="0.651800 1.456600 0.000400 " /> <Waypoint body="ForeArmL" p="0.783100 1.459500 0.023800 " /> <Waypoint body="HandL" p="0.828300 1.470900 0.028400 " /> <Waypoint body="HandL" p="0.955500 1.442100 0.043300 " /> </Unit> <Unit name="R_Flexor_Digitorum_Profundus2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmR" p="-0.594200 1.465300 -0.009100 " /> <Waypoint body="ForeArmR" p="-0.651800 1.456600 0.000400 " /> <Waypoint body="ForeArmR" p="-0.783100 1.459500 0.023800 " /> <Waypoint body="HandR" p="-0.828300 1.470900 0.028400 " /> <Waypoint body="HandR" p="-0.955500 1.442100 0.043300 " /> </Unit> <Unit name="L_Flexor_Hallucis" f0="218.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.119700 0.393000 -0.038900 " /> <Waypoint body="TibiaL" p="0.074600 0.107600 -0.058000 " /> <Waypoint body="TalusL" p="0.061400 0.067100 -0.063500 " /> <Waypoint body="TalusL" p="0.067800 0.046700 -0.042800 " /> <Waypoint body="TalusL" p="0.064900 0.011400 0.057700 " /> <Waypoint body="FootThumbL" p="0.061700 0.008000 0.107200 " /> </Unit> <Unit name="R_Flexor_Hallucis" f0="218.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.119700 0.393000 -0.038900 " /> <Waypoint body="TibiaR" p="-0.074600 0.107600 -0.058000 " /> <Waypoint body="TalusR" p="-0.061400 0.067100 -0.063500 " /> <Waypoint body="TalusR" p="-0.067800 0.046700 -0.042800 " /> <Waypoint body="TalusR" p="-0.064900 0.011400 0.057700 " /> <Waypoint body="FootThumbR" p="-0.061700 0.008000 0.107200 " /> </Unit> <Unit name="L_Flexor_Hallucis1" f0="218.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.119700 0.393000 -0.038900 " /> <Waypoint body="TibiaL" p="0.074600 0.107600 -0.058000 " /> <Waypoint body="TalusL" p="0.061400 0.067100 -0.063500 " /> <Waypoint body="TalusL" p="0.067800 0.046700 -0.042800 " /> <Waypoint body="TalusL" p="0.064900 0.011400 0.057700 " /> <Waypoint body="FootThumbL" p="0.061700 0.008000 0.107200 " /> </Unit> <Unit name="R_Flexor_Hallucis1" f0="218.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.119700 0.393000 -0.038900 " /> <Waypoint body="TibiaR" p="-0.074600 0.107600 -0.058000 " /> <Waypoint body="TalusR" p="-0.061400 0.067100 -0.063500 " /> <Waypoint body="TalusR" p="-0.067800 0.046700 -0.042800 " /> <Waypoint body="TalusR" p="-0.064900 0.011400 0.057700 " /> <Waypoint body="FootThumbR" p="-0.061700 0.008000 0.107200 " /> </Unit> <Unit name="L_Flexor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmL" p="0.677200 1.471300 0.022400 " /> <Waypoint body="ForeArmL" p="0.784600 1.465900 0.028100 " /> <Waypoint body="HandL" p="0.813900 1.469600 0.030800 " /> <Waypoint body="HandL" p="0.830500 1.466600 0.057100 " /> <Waypoint body="HandL" p="0.878900 1.445600 0.083700 " /> </Unit> <Unit name="R_Flexor_Pollicis_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ForeArmR" p="-0.677200 1.471300 0.022400 " /> <Waypoint body="ForeArmR" p="-0.784600 1.465900 0.028100 " /> <Waypoint body="HandR" p="-0.813900 1.469600 0.030800 " /> <Waypoint body="HandR" p="-0.830500 1.466600 0.057100 " /> <Waypoint body="HandR" p="-0.878900 1.445600 0.083700 " /> </Unit> <Unit name="L_Gastrocnemius_Lateral_Head" f0="606.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.126400 0.562000 -0.005900 " /> <Waypoint body="FemurL" p="0.121900 0.554700 -0.038300 " /> <Waypoint body="TibiaL" p="0.126200 0.505900 -0.066200 " /> <Waypoint body="TibiaL" p="0.112000 0.302400 -0.091700 " /> </Unit> <Unit name="R_Gastrocnemius_Lateral_Head" f0="606.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.126400 0.562000 -0.005900 " /> <Waypoint body="FemurR" p="-0.121900 0.554700 -0.038300 " /> <Waypoint body="TibiaR" p="-0.126200 0.505900 -0.066200 " /> <Waypoint body="TibiaR" p="-0.112000 0.302400 -0.091700 " /> </Unit> <Unit name="L_Gastrocnemius_Medial_Head" f0="1308.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.075000 0.567300 -0.014400 " /> <Waypoint body="FemurL" p="0.095200 0.550700 -0.046600 " /> <Waypoint body="TibiaL" p="0.092400 0.505800 -0.069100 " /> <Waypoint body="TibiaL" p="0.060300 0.273200 -0.059200 " /> </Unit> <Unit name="R_Gastrocnemius_Medial_Head" f0="1308.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.075000 0.567300 -0.014400 " /> <Waypoint body="FemurR" p="-0.095200 0.550700 -0.046600 " /> <Waypoint body="TibiaR" p="-0.092400 0.505800 -0.069100 " /> <Waypoint body="TibiaR" p="-0.060300 0.273200 -0.059200 " /> </Unit> <Unit name="L_Gluteus_Maximus" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.053900 1.035800 -0.096200 " /> <Waypoint body="Pelvis" p="0.111500 1.013300 -0.089300 " /> <Waypoint body="FemurL" p="0.153100 0.939700 -0.046600 " /> <Waypoint body="FemurL" p="0.148200 0.872600 -0.016900 " /> </Unit> <Unit name="R_Gluteus_Maximus" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.053900 1.035800 -0.096200 " /> <Waypoint body="Pelvis" p="-0.111500 1.013300 -0.089300 " /> <Waypoint body="FemurR" p="-0.153100 0.939700 -0.046600 " /> <Waypoint body="FemurR" p="-0.148200 0.872600 -0.016900 " /> </Unit> <Unit name="L_Gluteus_Maximus1" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.038200 0.988600 -0.099300 " /> <Waypoint body="Pelvis" p="0.103800 0.968800 -0.110800 " /> <Waypoint body="FemurL" p="0.155300 0.900100 -0.049300 " /> <Waypoint body="FemurL" p="0.141600 0.845900 -0.011300 " /> </Unit> <Unit name="R_Gluteus_Maximus1" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.038200 0.988600 -0.099300 " /> <Waypoint body="Pelvis" p="-0.103800 0.968800 -0.110800 " /> <Waypoint body="FemurR" p="-0.155300 0.900100 -0.049300 " /> <Waypoint body="FemurR" p="-0.141600 0.845900 -0.011300 " /> </Unit> <Unit name="L_Gluteus_Maximus2" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.029700 0.949800 -0.094300 " /> <Waypoint body="Pelvis" p="0.051700 0.942200 -0.120100 " /> <Waypoint body="Pelvis" p="0.122100 0.906900 -0.097000 " /> <Waypoint body="FemurL" p="0.149300 0.840100 -0.036100 " /> <Waypoint body="FemurL" p="0.134200 0.818200 -0.008900 " /> </Unit> <Unit name="R_Gluteus_Maximus2" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.029700 0.949800 -0.094300 " /> <Waypoint body="Pelvis" p="-0.051700 0.942200 -0.120100 " /> <Waypoint body="Pelvis" p="-0.122100 0.906900 -0.097000 " /> <Waypoint body="FemurR" p="-0.149300 0.840100 -0.036100 " /> <Waypoint body="FemurR" p="-0.134200 0.818200 -0.008900 " /> </Unit> <Unit name="L_Gluteus_Maximus3" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.035200 0.919200 -0.080700 " /> <Waypoint body="Pelvis" p="0.066500 0.880800 -0.111700 " /> <Waypoint body="FemurL" p="0.124400 0.851200 -0.076200 " /> <Waypoint body="FemurL" p="0.130200 0.789300 -0.001200 " /> </Unit> <Unit name="R_Gluteus_Maximus3" f0="370.520000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.035200 0.919200 -0.080700 " /> <Waypoint body="Pelvis" p="-0.066500 0.880800 -0.111700 " /> <Waypoint body="FemurR" p="-0.124400 0.851200 -0.076200 " /> <Waypoint body="FemurR" p="-0.130200 0.789300 -0.001200 " /> </Unit> <Unit name="L_Gluteus_Maximus4" f0="370.520000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.045000 0.896000 -0.064800 " /> <Waypoint body="Pelvis" p="0.064500 0.848700 -0.073000 " /> <Waypoint body="FemurL" p="0.115600 0.809100 -0.040200 " /> <Waypoint body="FemurL" p="0.129100 0.772300 0.002800 " /> </Unit> <Unit name="R_Gluteus_Maximus4" f0="370.520000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.045000 0.896000 -0.064800 " /> <Waypoint body="Pelvis" p="-0.064500 0.848700 -0.073000 " /> <Waypoint body="FemurR" p="-0.115600 0.809100 -0.040200 " /> <Waypoint body="FemurR" p="-0.129100 0.772300 0.002800 " /> </Unit> <Unit name="L_Gluteus_Medius" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.129500 1.013800 0.028700 " /> <Waypoint body="FemurL" p="0.157200 0.945600 -0.005300 " /> <Waypoint body="FemurL" p="0.157400 0.923400 -0.006700 " /> </Unit> <Unit name="R_Gluteus_Medius" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.129500 1.013800 0.028700 " /> <Waypoint body="FemurR" p="-0.157200 0.945600 -0.005300 " /> <Waypoint body="FemurR" p="-0.157400 0.923400 -0.006700 " /> </Unit> <Unit name="L_Gluteus_Medius1" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.128200 1.067300 -0.029900 " /> <Waypoint body="FemurL" p="0.155500 0.950900 -0.026500 " /> <Waypoint body="FemurL" p="0.165600 0.891400 -0.008800 " /> </Unit> <Unit name="R_Gluteus_Medius1" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.128200 1.067300 -0.029900 " /> <Waypoint body="FemurR" p="-0.155500 0.950900 -0.026500 " /> <Waypoint body="FemurR" p="-0.165600 0.891400 -0.008800 " /> </Unit> <Unit name="L_Gluteus_Medius2" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.079200 1.064500 -0.069600 " /> <Waypoint body="Pelvis" p="0.122200 1.028400 -0.073600 " /> <Waypoint body="FemurL" p="0.159000 0.918600 -0.029900 " /> <Waypoint body="FemurL" p="0.159700 0.891200 -0.021000 " /> </Unit> <Unit name="R_Gluteus_Medius2" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.079200 1.064500 -0.069600 " /> <Waypoint body="Pelvis" p="-0.122200 1.028400 -0.073600 " /> <Waypoint body="FemurR" p="-0.159000 0.918600 -0.029900 " /> <Waypoint body="FemurR" p="-0.159700 0.891200 -0.021000 " /> </Unit> <Unit name="L_Gluteus_Medius3" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.061100 1.008700 -0.087500 " /> <Waypoint body="Pelvis" p="0.088300 0.988400 -0.082900 " /> <Waypoint body="FemurL" p="0.139700 0.936300 -0.048200 " /> <Waypoint body="FemurL" p="0.147400 0.899400 -0.033100 " /> </Unit> <Unit name="R_Gluteus_Medius3" f0="549.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.061100 1.008700 -0.087500 " /> <Waypoint body="Pelvis" p="-0.088300 0.988400 -0.082900 " /> <Waypoint body="FemurR" p="-0.139700 0.936300 -0.048200 " /> <Waypoint body="FemurR" p="-0.147400 0.899400 -0.033100 " /> </Unit> <Unit name="L_Gluteus_Minimus" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.068600 0.992600 -0.066800 " /> <Waypoint body="Pelvis" p="0.097800 0.971500 -0.059200 " /> <Waypoint body="FemurL" p="0.152300 0.932100 -0.011500 " /> <Waypoint body="FemurL" p="0.160700 0.905400 -0.004900 " /> </Unit> <Unit name="R_Gluteus_Minimus" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.068600 0.992600 -0.066800 " /> <Waypoint body="Pelvis" p="-0.097800 0.971500 -0.059200 " /> <Waypoint body="FemurR" p="-0.152300 0.932100 -0.011500 " /> <Waypoint body="FemurR" p="-0.160700 0.905400 -0.004900 " /> </Unit> <Unit name="L_Gluteus_Minimus1" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.098200 1.046000 -0.041700 " /> <Waypoint body="Pelvis" p="0.125700 1.015900 -0.040000 " /> <Waypoint body="FemurL" p="0.156400 0.933100 -0.001700 " /> <Waypoint body="FemurL" p="0.158300 0.893000 0.002200 " /> </Unit> <Unit name="R_Gluteus_Minimus1" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.098200 1.046000 -0.041700 " /> <Waypoint body="Pelvis" p="-0.125700 1.015900 -0.040000 " /> <Waypoint body="FemurR" p="-0.156400 0.933100 -0.001700 " /> <Waypoint body="FemurR" p="-0.158300 0.893000 0.002200 " /> </Unit> <Unit name="L_Gluteus_Minimus2" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.133400 1.037300 0.009000 " /> <Waypoint body="FemurL" p="0.154800 0.933000 0.005900 " /> <Waypoint body="FemurL" p="0.151600 0.897400 0.004600 " /> </Unit> <Unit name="R_Gluteus_Minimus2" f0="198.333333" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.133400 1.037300 0.009000 " /> <Waypoint body="FemurR" p="-0.154800 0.933000 0.005900 " /> <Waypoint body="FemurR" p="-0.151600 0.897400 0.004600 " /> </Unit> <Unit name="L_Gracilis" f0="137.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.011300 0.903100 0.030700 " /> <Waypoint body="FemurL" p="0.048900 0.529700 -0.042600 " /> <Waypoint body="TibiaL" p="0.061600 0.479800 -0.021700 " /> <Waypoint body="TibiaL" p="0.077600 0.465700 -0.003300 " /> </Unit> <Unit name="R_Gracilis" f0="137.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.011300 0.903100 0.030700 " /> <Waypoint body="FemurR" p="-0.048900 0.529700 -0.042600 " /> <Waypoint body="TibiaR" p="-0.061600 0.479800 -0.021700 " /> <Waypoint body="TibiaR" p="-0.077600 0.465700 -0.003300 " /> </Unit> <Unit name="L_Inferior_Gemellus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.066200 0.885700 -0.062100 " /> <Waypoint body="FemurL" p="0.124300 0.908300 -0.046900 " /> <Waypoint body="FemurL" p="0.135700 0.908900 -0.033200 " /> </Unit> <Unit name="R_Inferior_Gemellus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.066200 0.885700 -0.062100 " /> <Waypoint body="FemurR" p="-0.124300 0.908300 -0.046900 " /> <Waypoint body="FemurR" p="-0.135700 0.908900 -0.033200 " /> </Unit> <Unit name="L_Infraspinatus1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.091600 1.368800 -0.127100 " /> <Waypoint body="ShoulderL" p="0.187000 1.423800 -0.075700 " /> <Waypoint body="ShoulderL" p="0.203800 1.458100 -0.046900 " /> <Waypoint body="ShoulderL" p="0.198000 1.461500 -0.027000 " /> </Unit> <Unit name="R_Infraspinatus1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.091600 1.368800 -0.127100 " /> <Waypoint body="ShoulderR" p="-0.187000 1.423800 -0.075700 " /> <Waypoint body="ShoulderR" p="-0.203800 1.458100 -0.046900 " /> <Waypoint body="ShoulderR" p="-0.198000 1.461500 -0.027000 " /> </Unit> <Unit name="L_Latissimus_Dorsi" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.311400 -0.126600 " /> <Waypoint body="ShoulderL" p="0.115800 1.327800 -0.129300 " /> <Waypoint body="ShoulderL" p="0.152500 1.353400 -0.094600 " /> <Waypoint body="ArmL" p="0.244800 1.415400 -0.039800 " /> <Waypoint body="ArmL" p="0.224400 1.432000 -0.016800 " /> </Unit> <Unit name="R_Latissimus_Dorsi" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.311400 -0.126600 " /> <Waypoint body="ShoulderR" p="-0.115800 1.327800 -0.129300 " /> <Waypoint body="ShoulderR" p="-0.152500 1.353400 -0.094600 " /> <Waypoint body="ArmR" p="-0.244800 1.415400 -0.039800 " /> <Waypoint body="ArmR" p="-0.224400 1.432000 -0.016800 " /> </Unit> <Unit name="L_Latissimus_Dorsi3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="0.000600 1.103500 -0.092000 " /> <Waypoint body="Torso" p="0.101200 1.233200 -0.119000 " /> <Waypoint body="Torso" p="0.153700 1.300700 -0.098800 " /> <Waypoint body="ArmL" p="0.279500 1.420700 -0.045900 " /> <Waypoint body="ArmL" p="0.264300 1.422600 -0.024800 " /> <Waypoint body="ArmL" p="0.250400 1.435600 -0.016200 " /> </Unit> <Unit name="R_Latissimus_Dorsi3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="-0.000600 1.103500 -0.092000 " /> <Waypoint body="Torso" p="-0.101200 1.233200 -0.119000 " /> <Waypoint body="Torso" p="-0.153700 1.300700 -0.098800 " /> <Waypoint body="ArmR" p="-0.279500 1.420700 -0.045900 " /> <Waypoint body="ArmR" p="-0.264300 1.422600 -0.024800 " /> <Waypoint body="ArmR" p="-0.250400 1.435600 -0.016200 " /> </Unit> <Unit name="L_Latissimus_Dorsi5" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.077400 1.063600 -0.076000 " /> <Waypoint body="Torso" p="0.117900 1.178400 -0.077500 " /> <Waypoint body="Torso" p="0.169200 1.298600 -0.060000 " /> <Waypoint body="ArmL" p="0.282700 1.416800 -0.032700 " /> <Waypoint body="ArmL" p="0.259200 1.435500 -0.017400 " /> </Unit> <Unit name="R_Latissimus_Dorsi5" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.077400 1.063600 -0.076000 " /> <Waypoint body="Torso" p="-0.117900 1.178400 -0.077500 " /> <Waypoint body="Torso" p="-0.169200 1.298600 -0.060000 " /> <Waypoint body="ArmR" p="-0.282700 1.416800 -0.032700 " /> <Waypoint body="ArmR" p="-0.259200 1.435500 -0.017400 " /> </Unit> <Unit name="L_Longissimus_Capitis3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.026200 1.428700 -0.102300 " /> <Waypoint body="Torso" p="0.030500 1.500200 -0.074800 " /> <Waypoint body="Neck" p="0.031100 1.565300 -0.039000 " /> <Waypoint body="Head" p="0.057000 1.608800 -0.017300 " /> </Unit> <Unit name="R_Longissimus_Capitis3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.026200 1.428700 -0.102300 " /> <Waypoint body="Torso" p="-0.030500 1.500200 -0.074800 " /> <Waypoint body="Neck" p="-0.031100 1.565300 -0.039000 " /> <Waypoint body="Head" p="-0.057000 1.608800 -0.017300 " /> </Unit> <Unit name="L_Longissimus_Thoracis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.003600 0.898800 -0.072600 " /> <Waypoint body="Pelvis" p="0.020100 1.003800 -0.104000 " /> <Waypoint body="Spine" p="0.020800 1.092300 -0.080300 " /> <Waypoint body="Torso" p="0.029200 1.198600 -0.095400 " /> <Waypoint body="Torso" p="0.034500 1.274000 -0.119600 " /> <Waypoint body="Torso" p="0.036400 1.393700 -0.115200 " /> <Waypoint body="Torso" p="0.034300 1.454000 -0.093800 " /> <Waypoint body="Neck" p="0.032000 1.501100 -0.040400 " /> </Unit> <Unit name="R_Longissimus_Thoracis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.003600 0.898800 -0.072600 " /> <Waypoint body="Pelvis" p="-0.020100 1.003800 -0.104000 " /> <Waypoint body="Spine" p="-0.020800 1.092300 -0.080300 " /> <Waypoint body="Torso" p="-0.029200 1.198600 -0.095400 " /> <Waypoint body="Torso" p="-0.034500 1.274000 -0.119600 " /> <Waypoint body="Torso" p="-0.036400 1.393700 -0.115200 " /> <Waypoint body="Torso" p="-0.034300 1.454000 -0.093800 " /> <Waypoint body="Neck" p="-0.032000 1.501100 -0.040400 " /> </Unit> <Unit name="L_Longus_Capitis2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="0.019100 1.526900 -0.012500 " /> <Waypoint body="Neck" p="0.010400 1.588100 0.011300 " /> <Waypoint body="Head" p="0.002100 1.622700 0.010300 " /> </Unit> <Unit name="R_Longus_Capitis2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="-0.019100 1.526900 -0.012500 " /> <Waypoint body="Neck" p="-0.010400 1.588100 0.011300 " /> <Waypoint body="Head" p="-0.002100 1.622700 0.010300 " /> </Unit> <Unit name="L_Multifidus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.009100 0.923600 -0.091700 " /> <Waypoint body="Pelvis" p="0.011100 0.974800 -0.110600 " /> <Waypoint body="Pelvis" p="0.011700 1.013300 -0.100100 " /> <Waypoint body="Spine" p="0.009300 1.107200 -0.077700 " /> <Waypoint body="Torso" p="0.005600 1.179500 -0.085200 " /> <Waypoint body="Torso" p="0.000500 1.284600 -0.120700 " /> </Unit> <Unit name="R_Multifidus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.009100 0.923600 -0.091700 " /> <Waypoint body="Pelvis" p="-0.011100 0.974800 -0.110600 " /> <Waypoint body="Pelvis" p="-0.011700 1.013300 -0.100100 " /> <Waypoint body="Spine" p="-0.009300 1.107200 -0.077700 " /> <Waypoint body="Torso" p="-0.005600 1.179500 -0.085200 " /> <Waypoint body="Torso" p="-0.000500 1.284600 -0.120700 " /> </Unit> <Unit name="L_Obturator_Externus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.021200 0.911400 0.024700 " /> <Waypoint body="Pelvis" p="0.068400 0.894500 -0.028500 " /> <Waypoint body="FemurL" p="0.138000 0.909800 -0.026500 " /> </Unit> <Unit name="R_Obturator_Externus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.021200 0.911400 0.024700 " /> <Waypoint body="Pelvis" p="-0.068400 0.894500 -0.028500 " /> <Waypoint body="FemurR" p="-0.138000 0.909800 -0.026500 " /> </Unit> <Unit name="L_Obturator_Internus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.018500 0.905800 0.013900 " /> <Waypoint body="Pelvis" p="0.051600 0.905300 -0.058800 " /> <Waypoint body="Pelvis" p="0.074000 0.904600 -0.070500 " /> <Waypoint body="FemurL" p="0.138600 0.914000 -0.030600 " /> </Unit> <Unit name="R_Obturator_Internus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.018500 0.905800 0.013900 " /> <Waypoint body="Pelvis" p="-0.051600 0.905300 -0.058800 " /> <Waypoint body="Pelvis" p="-0.074000 0.904600 -0.070500 " /> <Waypoint body="FemurR" p="-0.138600 0.914000 -0.030600 " /> </Unit> <Unit name="L_Omohyoid" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.125400 1.456800 -0.062000 " /> <Waypoint body="ShoulderL" p="0.111000 1.479500 -0.032300 " /> <Waypoint body="Torso" p="0.046600 1.491300 0.000000 " /> <Waypoint body="ShoulderL" p="0.018300 1.506200 0.025200 " /> <Waypoint body="Head" p="0.013200 1.560100 0.043100 " /> </Unit> <Unit name="R_Omohyoid" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.125400 1.456800 -0.062000 " /> <Waypoint body="ShoulderR" p="-0.111000 1.479500 -0.032300 " /> <Waypoint body="Torso" p="-0.046600 1.491300 0.000000 " /> <Waypoint body="ShoulderR" p="-0.018300 1.506200 0.025200 " /> <Waypoint body="Head" p="-0.013200 1.560100 0.043100 " /> </Unit> <Unit name="L_Palmaris_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.522100 1.424400 -0.018800 " /> <Waypoint body="ForeArmL" p="0.643800 1.433500 0.000000 " /> <Waypoint body="ForeArmL" p="0.784200 1.459100 0.025400 " /> <Waypoint body="HandL" p="0.886300 1.461800 0.033000 " /> </Unit> <Unit name="R_Palmaris_Longus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.522100 1.424400 -0.018800 " /> <Waypoint body="ForeArmR" p="-0.643800 1.433500 0.000000 " /> <Waypoint body="ForeArmR" p="-0.784200 1.459100 0.025400 " /> <Waypoint body="HandR" p="-0.886300 1.461800 0.033000 " /> </Unit> <Unit name="L_Pectineus" f0="177.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.040400 0.927800 0.032700 " /> <Waypoint body="Pelvis" p="0.057200 0.917900 0.046900 " /> <Waypoint body="FemurL" p="0.101100 0.836800 -0.007700 " /> <Waypoint body="FemurL" p="0.112200 0.830300 -0.004200 " /> </Unit> <Unit name="R_Pectineus" f0="177.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.040400 0.927800 0.032700 " /> <Waypoint body="Pelvis" p="-0.057200 0.917900 0.046900 " /> <Waypoint body="FemurR" p="-0.101100 0.836800 -0.007700 " /> <Waypoint body="FemurR" p="-0.112200 0.830300 -0.004200 " /> </Unit> <Unit name="L_Pectoralis_Major" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.054800 1.462800 0.020200 " /> <Waypoint body="Torso" p="0.102100 1.436100 0.043400 " /> <Waypoint body="Torso" p="0.151800 1.405700 0.027600 " /> <Waypoint body="ArmL" p="0.244900 1.401200 0.003200 " /> <Waypoint body="ArmL" p="0.274200 1.446800 -0.009800 " /> </Unit> <Unit name="R_Pectoralis_Major" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.054800 1.462800 0.020200 " /> <Waypoint body="Torso" p="-0.102100 1.436100 0.043400 " /> <Waypoint body="Torso" p="-0.151800 1.405700 0.027600 " /> <Waypoint body="ArmR" p="-0.244900 1.401200 0.003200 " /> <Waypoint body="ArmR" p="-0.274200 1.446800 -0.009800 " /> </Unit> <Unit name="L_Pectoralis_Major2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.004300 1.367700 0.077300 " /> <Waypoint body="Torso" p="0.076600 1.371900 0.084300 " /> <Waypoint body="Torso" p="0.146000 1.374200 0.050500 " /> <Waypoint body="ArmL" p="0.248300 1.409600 -0.002500 " /> <Waypoint body="ArmL" p="0.247700 1.443900 -0.011600 " /> </Unit> <Unit name="R_Pectoralis_Major2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.004300 1.367700 0.077300 " /> <Waypoint body="Torso" p="-0.076600 1.371900 0.084300 " /> <Waypoint body="Torso" p="-0.146000 1.374200 0.050500 " /> <Waypoint body="ArmR" p="-0.248300 1.409600 -0.002500 " /> <Waypoint body="ArmR" p="-0.247700 1.443900 -0.011600 " /> </Unit> <Unit name="L_Pectoralis_Minor1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.085500 1.347400 0.079900 " /> <Waypoint body="Torso" p="0.114400 1.373600 0.059700 " /> <Waypoint body="ShoulderL" p="0.159200 1.448100 -0.017700 " /> </Unit> <Unit name="R_Pectoralis_Minor1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.085500 1.347400 0.079900 " /> <Waypoint body="Torso" p="-0.114400 1.373600 0.059700 " /> <Waypoint body="ShoulderR" p="-0.159200 1.448100 -0.017700 " /> </Unit> <Unit name="L_Peroneus_Brevis" f0="305.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.117900 0.283900 -0.044900 " /> <Waypoint body="TibiaL" p="0.112200 0.109700 -0.067800 " /> <Waypoint body="TalusL" p="0.101900 0.067700 -0.069000 " /> <Waypoint body="TalusL" p="0.116900 0.024300 -0.015100 " /> </Unit> <Unit name="R_Peroneus_Brevis" f0="305.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.117900 0.283900 -0.044900 " /> <Waypoint body="TibiaR" p="-0.112200 0.109700 -0.067800 " /> <Waypoint body="TalusR" p="-0.101900 0.067700 -0.069000 " /> <Waypoint body="TalusR" p="-0.116900 0.024300 -0.015100 " /> </Unit> <Unit name="L_Peroneus_Longus" f0="653.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.140500 0.479500 -0.026300 " /> <Waypoint body="TibiaL" p="0.152700 0.366000 -0.037900 " /> <Waypoint body="TibiaL" p="0.115600 0.103700 -0.063600 " /> <Waypoint body="TalusL" p="0.104900 0.059000 -0.068700 " /> <Waypoint body="TalusL" p="0.111800 0.039900 -0.041200 " /> <Waypoint body="TalusL" p="0.085000 0.037700 -0.011400 " /> <Waypoint body="TalusL" p="0.072100 0.036600 0.025000 " /> </Unit> <Unit name="R_Peroneus_Longus" f0="653.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.140500 0.479500 -0.026300 " /> <Waypoint body="TibiaR" p="-0.152700 0.366000 -0.037900 " /> <Waypoint body="TibiaR" p="-0.115600 0.103700 -0.063600 " /> <Waypoint body="TalusR" p="-0.104900 0.059000 -0.068700 " /> <Waypoint body="TalusR" p="-0.111800 0.039900 -0.041200 " /> <Waypoint body="TalusR" p="-0.085000 0.037700 -0.011400 " /> <Waypoint body="TalusR" p="-0.072100 0.036600 0.025000 " /> </Unit> <Unit name="L_Peroneus_Tertius" f0="45.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.107500 0.133200 -0.052300 " /> <Waypoint body="TibiaL" p="0.112000 0.081900 -0.026000 " /> <Waypoint body="TalusL" p="0.118900 0.034800 0.002500 " /> </Unit> <Unit name="R_Peroneus_Tertius" f0="45.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.107500 0.133200 -0.052300 " /> <Waypoint body="TibiaR" p="-0.112000 0.081900 -0.026000 " /> <Waypoint body="TalusR" p="-0.118900 0.034800 0.002500 " /> </Unit> <Unit name="L_Peroneus_Tertius1" f0="45.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.107500 0.133200 -0.052300 " /> <Waypoint body="TibiaL" p="0.112000 0.081900 -0.026000 " /> <Waypoint body="TalusL" p="0.118900 0.034800 0.002500 " /> </Unit> <Unit name="R_Peroneus_Tertius1" f0="45.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.107500 0.133200 -0.052300 " /> <Waypoint body="TibiaR" p="-0.112000 0.081900 -0.026000 " /> <Waypoint body="TalusR" p="-0.118900 0.034800 0.002500 " /> </Unit> <Unit name="L_Piriformis" f0="148.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.031600 0.981400 -0.089800 " /> <Waypoint body="FemurL" p="0.137200 0.930900 -0.025700 " /> </Unit> <Unit name="R_Piriformis" f0="148.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.031600 0.981400 -0.089800 " /> <Waypoint body="FemurR" p="-0.137200 0.930900 -0.025700 " /> </Unit> <Unit name="L_Piriformis1" f0="148.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.016000 0.936300 -0.088100 " /> <Waypoint body="FemurL" p="0.139700 0.920500 -0.022800 " /> </Unit> <Unit name="R_Piriformis1" f0="148.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.016000 0.936300 -0.088100 " /> <Waypoint body="FemurR" p="-0.139700 0.920500 -0.022800 " /> </Unit> <Unit name="L_Plantaris" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.119300 0.565800 -0.013200 " /> <Waypoint body="FemurL" p="0.111500 0.549400 -0.037000 " /> <Waypoint body="TibiaL" p="0.106800 0.498000 -0.049400 " /> <Waypoint body="TibiaL" p="0.073700 0.102800 -0.079600 " /> <Waypoint body="TalusL" p="0.075100 0.037300 -0.098000 " /> </Unit> <Unit name="R_Plantaris" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.119300 0.565800 -0.013200 " /> <Waypoint body="FemurR" p="-0.111500 0.549400 -0.037000 " /> <Waypoint body="TibiaR" p="-0.106800 0.498000 -0.049400 " /> <Waypoint body="TibiaR" p="-0.073700 0.102800 -0.079600 " /> <Waypoint body="TalusR" p="-0.075100 0.037300 -0.098000 " /> </Unit> <Unit name="L_Platysma1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.089300 1.451000 0.033000 " /> <Waypoint body="ShoulderL" p="0.047400 1.475800 0.018700 " /> <Waypoint body="Neck" p="0.030800 1.542500 0.022700 " /> <Waypoint body="Head" p="0.028400 1.555400 0.037200 " /> <Waypoint body="Head" p="0.033500 1.562100 0.068400 " /> </Unit> <Unit name="R_Platysma1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.089300 1.451000 0.033000 " /> <Waypoint body="ShoulderR" p="-0.047400 1.475800 0.018700 " /> <Waypoint body="Neck" p="-0.030800 1.542500 0.022700 " /> <Waypoint body="Head" p="-0.028400 1.555400 0.037200 " /> <Waypoint body="Head" p="-0.033500 1.562100 0.068400 " /> </Unit> <Unit name="L_Popliteus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.137300 0.540300 -0.012900 " /> <Waypoint body="FemurL" p="0.136300 0.526900 -0.033300 " /> <Waypoint body="TibiaL" p="0.116500 0.500900 -0.042900 " /> <Waypoint body="TibiaL" p="0.080500 0.455000 -0.018800 " /> </Unit> <Unit name="R_Popliteus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.137300 0.540300 -0.012900 " /> <Waypoint body="FemurR" p="-0.136300 0.526900 -0.033300 " /> <Waypoint body="TibiaR" p="-0.116500 0.500900 -0.042900 " /> <Waypoint body="TibiaR" p="-0.080500 0.455000 -0.018800 " /> </Unit> <Unit name="L_Psoas_Major" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.014600 1.222700 -0.048100 " /> <Waypoint body="Pelvis" p="0.092000 1.073400 -0.031100 " /> <Waypoint body="Pelvis" p="0.087100 0.931100 0.044900 " /> <Waypoint body="FemurL" p="0.094500 0.881500 0.001300 " /> <Waypoint body="FemurL" p="0.109600 0.850500 -0.015600 " /> </Unit> <Unit name="R_Psoas_Major" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.014600 1.222700 -0.048100 " /> <Waypoint body="Pelvis" p="-0.092000 1.073400 -0.031100 " /> <Waypoint body="Pelvis" p="-0.087100 0.931100 0.044900 " /> <Waypoint body="FemurR" p="-0.094500 0.881500 0.001300 " /> <Waypoint body="FemurR" p="-0.109600 0.850500 -0.015600 " /> </Unit> <Unit name="L_Psoas_Major1" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="0.021400 1.132400 -0.037200 " /> <Waypoint body="Pelvis" p="0.068300 1.033300 -0.020900 " /> <Waypoint body="Pelvis" p="0.074400 0.930400 0.043900 " /> <Waypoint body="FemurL" p="0.092400 0.877400 -0.007300 " /> <Waypoint body="FemurL" p="0.109800 0.856700 -0.009200 " /> </Unit> <Unit name="R_Psoas_Major1" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="-0.021400 1.132400 -0.037200 " /> <Waypoint body="Pelvis" p="-0.068300 1.033300 -0.020900 " /> <Waypoint body="Pelvis" p="-0.074400 0.930400 0.043900 " /> <Waypoint body="FemurR" p="-0.092400 0.877400 -0.007300 " /> <Waypoint body="FemurR" p="-0.109800 0.856700 -0.009200 " /> </Unit> <Unit name="L_Psoas_Major2" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="0.018400 1.048500 -0.037400 " /> <Waypoint body="Pelvis" p="0.053600 1.010400 -0.032900 " /> <Waypoint body="Pelvis" p="0.068500 0.929500 0.036600 " /> <Waypoint body="FemurL" p="0.092400 0.879400 0.001500 " /> <Waypoint body="FemurL" p="0.108500 0.856300 -0.014800 " /> </Unit> <Unit name="R_Psoas_Major2" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="-0.018400 1.048500 -0.037400 " /> <Waypoint body="Pelvis" p="-0.053600 1.010400 -0.032900 " /> <Waypoint body="Pelvis" p="-0.068500 0.929500 0.036600 " /> <Waypoint body="FemurR" p="-0.092400 0.879400 0.001500 " /> <Waypoint body="FemurR" p="-0.108500 0.856300 -0.014800 " /> </Unit> <Unit name="L_Psoas_Minor" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.011300 1.221400 -0.045600 " /> <Waypoint body="Spine" p="0.055300 1.120100 -0.011600 " /> <Waypoint body="Pelvis" p="0.063300 0.999200 -0.005400 " /> <Waypoint body="Pelvis" p="0.057800 0.938700 0.019800 " /> </Unit> <Unit name="R_Psoas_Minor" f0="239.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.011300 1.221400 -0.045600 " /> <Waypoint body="Spine" p="-0.055300 1.120100 -0.011600 " /> <Waypoint body="Pelvis" p="-0.063300 0.999200 -0.005400 " /> <Waypoint body="Pelvis" p="-0.057800 0.938700 0.019800 " /> </Unit> <Unit name="L_Quadratus_Femoris" f0="254.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.085900 0.917600 -0.043300 " /> <Waypoint body="Pelvis" p="0.108700 0.897900 -0.049000 " /> <Waypoint body="FemurL" p="0.136100 0.879700 -0.028600 " /> </Unit> <Unit name="R_Quadratus_Femoris" f0="254.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.085900 0.917600 -0.043300 " /> <Waypoint body="Pelvis" p="-0.108700 0.897900 -0.049000 " /> <Waypoint body="FemurR" p="-0.136100 0.879700 -0.028600 " /> </Unit> <Unit name="L_Quadratus_Lumborum1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.077300 1.068600 -0.069300 " /> <Waypoint body="Torso" p="0.047900 1.184700 -0.083700 " /> </Unit> <Unit name="R_Quadratus_Lumborum1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.077300 1.068600 -0.069300 " /> <Waypoint body="Torso" p="-0.047900 1.184700 -0.083700 " /> </Unit> <Unit name="L_Rectus_Femoris" f0="424.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.107500 0.980300 0.014400 " /> <Waypoint body="FemurL" p="0.116500 0.941600 0.031000 " /> <Waypoint body="FemurL" p="0.104500 0.602800 0.043200 " /> <Waypoint body="TibiaL" p="0.110800 0.542200 0.034900 " /> </Unit> <Unit name="R_Rectus_Femoris" f0="424.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.107500 0.980300 0.014400 " /> <Waypoint body="FemurR" p="-0.116500 0.941600 0.031000 " /> <Waypoint body="FemurR" p="-0.104500 0.602800 0.043200 " /> <Waypoint body="TibiaR" p="-0.110800 0.542200 0.034900 " /> </Unit> <Unit name="L_Rectus_Femoris1" f0="424.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.105900 0.973500 0.016500 " /> <Waypoint body="FemurL" p="0.106500 0.926300 0.031800 " /> <Waypoint body="FemurL" p="0.081600 0.606600 0.043100 " /> <Waypoint body="TibiaL" p="0.075700 0.539900 0.032000 " /> </Unit> <Unit name="R_Rectus_Femoris1" f0="424.400000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.105900 0.973500 0.016500 " /> <Waypoint body="FemurR" p="-0.106500 0.926300 0.031800 " /> <Waypoint body="FemurR" p="-0.081600 0.606600 0.043100 " /> <Waypoint body="TibiaR" p="-0.075700 0.539900 0.032000 " /> </Unit> <Unit name="L_Rhomboid_Major2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.426100 -0.119400 " /> <Waypoint body="Torso" p="0.040400 1.408500 -0.128600 " /> <Waypoint body="ShoulderL" p="0.086800 1.391200 -0.123400 " /> </Unit> <Unit name="R_Rhomboid_Major2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.426100 -0.119400 " /> <Waypoint body="Torso" p="-0.040400 1.408500 -0.128600 " /> <Waypoint body="ShoulderR" p="-0.086800 1.391200 -0.123400 " /> </Unit> <Unit name="L_Rhomboid_Minor" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="0.000000 1.507800 -0.087400 " /> <Waypoint body="Torso" p="0.022900 1.494400 -0.088100 " /> <Waypoint body="ShoulderL" p="0.090700 1.461100 -0.089900 " /> </Unit> <Unit name="R_Rhomboid_Minor" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="-0.000000 1.507800 -0.087400 " /> <Waypoint body="Torso" p="-0.022900 1.494400 -0.088100 " /> <Waypoint body="ShoulderR" p="-0.090700 1.461100 -0.089900 " /> </Unit> <Unit name="L_Sartorius" f0="113.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.124100 1.009800 0.031400 " /> <Waypoint body="FemurL" p="0.035200 0.707300 0.026000 " /> <Waypoint body="TibiaL" p="0.054400 0.496500 -0.022400 " /> <Waypoint body="TibiaL" p="0.090700 0.453900 0.009200 " /> </Unit> <Unit name="R_Sartorius" f0="113.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.124100 1.009800 0.031400 " /> <Waypoint body="FemurR" p="-0.035200 0.707300 0.026000 " /> <Waypoint body="TibiaR" p="-0.054400 0.496500 -0.022400 " /> <Waypoint body="TibiaR" p="-0.090700 0.453900 0.009200 " /> </Unit> <Unit name="L_Scalene_Anterior1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.058400 1.467000 -0.005800 " /> <Waypoint body="Neck" p="0.035000 1.504000 -0.009500 " /> <Waypoint body="Neck" p="0.018300 1.523600 -0.017300 " /> </Unit> <Unit name="R_Scalene_Anterior1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.058400 1.467000 -0.005800 " /> <Waypoint body="Neck" p="-0.035000 1.504000 -0.009500 " /> <Waypoint body="Neck" p="-0.018300 1.523600 -0.017300 " /> </Unit> <Unit name="L_Scalene_Middle4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.055600 1.481100 -0.034400 " /> <Waypoint body="Neck" p="0.039900 1.548400 -0.010800 " /> <Waypoint body="Neck" p="0.026700 1.571200 -0.006000 " /> </Unit> <Unit name="R_Scalene_Middle4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.055600 1.481100 -0.034400 " /> <Waypoint body="Neck" p="-0.039900 1.548400 -0.010800 " /> <Waypoint body="Neck" p="-0.026700 1.571200 -0.006000 " /> </Unit> <Unit name="L_Semimembranosus" f0="581.350000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.075100 0.901700 -0.057400 " /> <Waypoint body="Pelvis" p="0.070100 0.846200 -0.039100 " /> <Waypoint body="FemurL" p="0.053400 0.544300 -0.049600 " /> <Waypoint body="TibiaL" p="0.056700 0.511900 -0.042000 " /> <Waypoint body="TibiaL" p="0.062100 0.490300 -0.029700 " /> </Unit> <Unit name="R_Semimembranosus" f0="581.350000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.075100 0.901700 -0.057400 " /> <Waypoint body="Pelvis" p="-0.070100 0.846200 -0.039100 " /> <Waypoint body="FemurR" p="-0.053400 0.544300 -0.049600 " /> <Waypoint body="TibiaR" p="-0.056700 0.511900 -0.042000 " /> <Waypoint body="TibiaR" p="-0.062100 0.490300 -0.029700 " /> </Unit> <Unit name="L_Semimembranosus1" f0="581.350000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.078400 0.905300 -0.053300 " /> <Waypoint body="FemurL" p="0.093700 0.862300 -0.034300 " /> <Waypoint body="FemurL" p="0.104400 0.560200 -0.047900 " /> <Waypoint body="FemurL" p="0.081200 0.527200 -0.056200 " /> <Waypoint body="TibiaL" p="0.082000 0.495000 -0.042200 " /> </Unit> <Unit name="R_Semimembranosus1" f0="581.350000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.078400 0.905300 -0.053300 " /> <Waypoint body="FemurR" p="-0.093700 0.862300 -0.034300 " /> <Waypoint body="FemurR" p="-0.104400 0.560200 -0.047900 " /> <Waypoint body="FemurR" p="-0.081200 0.527200 -0.056200 " /> <Waypoint body="TibiaR" p="-0.082000 0.495000 -0.042200 " /> </Unit> <Unit name="L_Semispinalis_Capitis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.026000 1.431100 -0.100400 " /> <Waypoint body="Neck" p="0.014600 1.512500 -0.066300 " /> <Waypoint body="Neck" p="0.010900 1.566200 -0.054700 " /> <Waypoint body="Head" p="0.008700 1.614700 -0.069800 " /> </Unit> <Unit name="R_Semispinalis_Capitis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.026000 1.431100 -0.100400 " /> <Waypoint body="Neck" p="-0.014600 1.512500 -0.066300 " /> <Waypoint body="Neck" p="-0.010900 1.566200 -0.054700 " /> <Waypoint body="Head" p="-0.008700 1.614700 -0.069800 " /> </Unit> <Unit name="L_Semitendinosus" f0="301.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.068000 0.894100 -0.065200 " /> <Waypoint body="Pelvis" p="0.088100 0.853300 -0.046300 " /> <Waypoint body="FemurL" p="0.085600 0.565300 -0.061100 " /> <Waypoint body="TibiaL" p="0.070400 0.494600 -0.047500 " /> <Waypoint body="TibiaL" p="0.065500 0.471600 -0.026400 " /> <Waypoint body="TibiaL" p="0.079800 0.448400 -0.003800 " /> </Unit> <Unit name="R_Semitendinosus" f0="301.900000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.068000 0.894100 -0.065200 " /> <Waypoint body="Pelvis" p="-0.088100 0.853300 -0.046300 " /> <Waypoint body="FemurR" p="-0.085600 0.565300 -0.061100 " /> <Waypoint body="TibiaR" p="-0.070400 0.494600 -0.047500 " /> <Waypoint body="TibiaR" p="-0.065500 0.471600 -0.026400 " /> <Waypoint body="TibiaR" p="-0.079800 0.448400 -0.003800 " /> </Unit> <Unit name="L_Serratus_Anterior2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.090100 1.410200 -0.117700 " /> <Waypoint body="ShoulderL" p="0.104600 1.410000 -0.100000 " /> <Waypoint body="Torso" p="0.131200 1.404600 -0.043300 " /> <Waypoint body="Torso" p="0.120600 1.412000 -0.023900 " /> </Unit> <Unit name="R_Serratus_Anterior2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.090100 1.410200 -0.117700 " /> <Waypoint body="ShoulderR" p="-0.104600 1.410000 -0.100000 " /> <Waypoint body="Torso" p="-0.131200 1.404600 -0.043300 " /> <Waypoint body="Torso" p="-0.120600 1.412000 -0.023900 " /> </Unit> <Unit name="L_Serratus_Anterior4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.093900 1.348200 -0.128300 " /> <Waypoint body="Torso" p="0.115300 1.354700 -0.095600 " /> <Waypoint body="Torso" p="0.142600 1.328400 -0.011900 " /> <Waypoint body="Torso" p="0.126400 1.312800 0.047600 " /> </Unit> <Unit name="R_Serratus_Anterior4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.093900 1.348200 -0.128300 " /> <Waypoint body="Torso" p="-0.115300 1.354700 -0.095600 " /> <Waypoint body="Torso" p="-0.142600 1.328400 -0.011900 " /> <Waypoint body="Torso" p="-0.126400 1.312800 0.047600 " /> </Unit> <Unit name="L_Soleus" f0="1792.950000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.087500 0.468500 -0.023700 " /> <Waypoint body="TibiaL" p="0.087000 0.419000 -0.059200 " /> <Waypoint body="TibiaL" p="0.071100 0.150700 -0.060800 " /> <Waypoint body="TibiaL" p="0.073400 0.098300 -0.077500 " /> <Waypoint body="TalusL" p="0.072900 0.029900 -0.095200 " /> </Unit> <Unit name="R_Soleus" f0="1792.950000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.087500 0.468500 -0.023700 " /> <Waypoint body="TibiaR" p="-0.087000 0.419000 -0.059200 " /> <Waypoint body="TibiaR" p="-0.071100 0.150700 -0.060800 " /> <Waypoint body="TibiaR" p="-0.073400 0.098300 -0.077500 " /> <Waypoint body="TalusR" p="-0.072900 0.029900 -0.095200 " /> </Unit> <Unit name="L_Soleus1" f0="1792.950000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.136600 0.490900 -0.045500 " /> <Waypoint body="TibiaL" p="0.130800 0.393000 -0.075700 " /> <Waypoint body="TalusL" p="0.085300 0.086300 -0.085500 " /> <Waypoint body="TalusL" p="0.087600 0.029800 -0.098200 " /> </Unit> <Unit name="R_Soleus1" f0="1792.950000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.136600 0.490900 -0.045500 " /> <Waypoint body="TibiaR" p="-0.130800 0.393000 -0.075700 " /> <Waypoint body="TalusR" p="-0.085300 0.086300 -0.085500 " /> <Waypoint body="TalusR" p="-0.087600 0.029800 -0.098200 " /> </Unit> <Unit name="L_Splenius_Capitis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="0.000000 1.502100 -0.086200 " /> <Waypoint body="Neck" p="0.022400 1.555700 -0.056700 " /> <Waypoint body="Head" p="0.039100 1.595500 -0.048600 " /> <Waypoint body="Head" p="0.060600 1.639000 -0.045600 " /> </Unit> <Unit name="R_Splenius_Capitis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="-0.000000 1.502100 -0.086200 " /> <Waypoint body="Neck" p="-0.022400 1.555700 -0.056700 " /> <Waypoint body="Head" p="-0.039100 1.595500 -0.048600 " /> <Waypoint body="Head" p="-0.060600 1.639000 -0.045600 " /> </Unit> <Unit name="L_Splenius_Cervicis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.406700 -0.120100 " /> <Waypoint body="Torso" p="0.035700 1.496300 -0.079500 " /> <Waypoint body="Neck" p="0.039800 1.546300 -0.039200 " /> <Waypoint body="Neck" p="0.037500 1.591800 -0.005600 " /> </Unit> <Unit name="R_Splenius_Cervicis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.406700 -0.120100 " /> <Waypoint body="Torso" p="-0.035700 1.496300 -0.079500 " /> <Waypoint body="Neck" p="-0.039800 1.546300 -0.039200 " /> <Waypoint body="Neck" p="-0.037500 1.591800 -0.005600 " /> </Unit> <Unit name="L_Splenius_Cervicis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.344600 -0.125800 " /> <Waypoint body="Torso" p="0.033000 1.415500 -0.112900 " /> <Waypoint body="Torso" p="0.048700 1.492700 -0.070600 " /> <Waypoint body="Neck" p="0.042000 1.540600 -0.028700 " /> <Waypoint body="Neck" p="0.027000 1.571000 -0.006300 " /> </Unit> <Unit name="R_Splenius_Cervicis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.344600 -0.125800 " /> <Waypoint body="Torso" p="-0.033000 1.415500 -0.112900 " /> <Waypoint body="Torso" p="-0.048700 1.492700 -0.070600 " /> <Waypoint body="Neck" p="-0.042000 1.540600 -0.028700 " /> <Waypoint body="Neck" p="-0.027000 1.571000 -0.006300 " /> </Unit> <Unit name="L_Sternocleidomastoid1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.056800 1.465000 0.017500 " /> <Waypoint body="Neck" p="0.054600 1.572800 -0.030900 " /> <Waypoint body="Head" p="0.049000 1.638500 -0.060800 " /> </Unit> <Unit name="R_Sternocleidomastoid1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.056800 1.465000 0.017500 " /> <Waypoint body="Neck" p="-0.054600 1.572800 -0.030900 " /> <Waypoint body="Head" p="-0.049000 1.638500 -0.060800 " /> </Unit> <Unit name="L_Subclavian" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.053000 1.448900 0.021900 " /> <Waypoint body="ShoulderL" p="0.136800 1.460600 -0.024200 " /> </Unit> <Unit name="R_Subclavian" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.053000 1.448900 0.021900 " /> <Waypoint body="ShoulderR" p="-0.136800 1.460600 -0.024200 " /> </Unit> <Unit name="L_Subscapularis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.094400 1.384800 -0.119400 " /> <Waypoint body="ShoulderL" p="0.153300 1.419200 -0.040900 " /> <Waypoint body="ArmL" p="0.203200 1.406600 -0.016300 " /> <Waypoint body="ArmL" p="0.201300 1.413300 -0.017700 " /> </Unit> <Unit name="R_Subscapularis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.094400 1.384800 -0.119400 " /> <Waypoint body="ShoulderR" p="-0.153300 1.419200 -0.040900 " /> <Waypoint body="ArmR" p="-0.203200 1.406600 -0.016300 " /> <Waypoint body="ArmR" p="-0.201300 1.413300 -0.017700 " /> </Unit> <Unit name="L_Superior_Gemellus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.061300 0.918700 -0.059200 " /> <Waypoint body="Pelvis" p="0.090400 0.922400 -0.061300 " /> <Waypoint body="FemurL" p="0.140200 0.921300 -0.024800 " /> </Unit> <Unit name="R_Superior_Gemellus" f0="50.000000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.061300 0.918700 -0.059200 " /> <Waypoint body="Pelvis" p="-0.090400 0.922400 -0.061300 " /> <Waypoint body="FemurR" p="-0.140200 0.921300 -0.024800 " /> </Unit> <Unit name="L_Supraspinatus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.093300 1.467600 -0.081400 " /> <Waypoint body="ShoulderL" p="0.169200 1.460100 -0.044700 " /> <Waypoint body="ArmL" p="0.177300 1.434600 -0.027700 " /> <Waypoint body="ArmL" p="0.182700 1.440100 -0.022100 " /> </Unit> <Unit name="R_Supraspinatus" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.093300 1.467600 -0.081400 " /> <Waypoint body="ShoulderR" p="-0.169200 1.460100 -0.044700 " /> <Waypoint body="ArmR" p="-0.177300 1.434600 -0.027700 " /> <Waypoint body="ArmR" p="-0.182700 1.440100 -0.022100 " /> </Unit> <Unit name="L_Tensor_Fascia_Lata" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.137300 1.062800 -0.023900 " /> <Waypoint body="FemurL" p="0.162800 0.923700 -0.024600 " /> <Waypoint body="FemurL" p="0.159900 0.811900 -0.004500 " /> <Waypoint body="FemurL" p="0.141700 0.555800 0.005600 " /> <Waypoint body="TibiaL" p="0.132200 0.482000 -0.007900 " /> </Unit> <Unit name="R_Tensor_Fascia_Lata" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.137300 1.062800 -0.023900 " /> <Waypoint body="FemurR" p="-0.162800 0.923700 -0.024600 " /> <Waypoint body="FemurR" p="-0.159900 0.811900 -0.004500 " /> <Waypoint body="FemurR" p="-0.141700 0.555800 0.005600 " /> <Waypoint body="TibiaR" p="-0.132200 0.482000 -0.007900 " /> </Unit> <Unit name="L_Tensor_Fascia_Lata1" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.135400 1.030700 0.019200 " /> <Waypoint body="FemurL" p="0.115400 0.920800 0.055100 " /> <Waypoint body="FemurL" p="0.144300 0.607000 0.025000 " /> <Waypoint body="TibiaL" p="0.110600 0.542300 0.034200 " /> </Unit> <Unit name="R_Tensor_Fascia_Lata1" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.135400 1.030700 0.019200 " /> <Waypoint body="FemurR" p="-0.115400 0.920800 0.055100 " /> <Waypoint body="FemurR" p="-0.144300 0.607000 0.025000 " /> <Waypoint body="TibiaR" p="-0.110600 0.542300 0.034200 " /> </Unit> <Unit name="L_Tensor_Fascia_Lata2" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.142900 1.049200 0.003200 " /> <Waypoint body="FemurL" p="0.159000 0.917700 0.021900 " /> <Waypoint body="FemurL" p="0.134600 0.557100 0.015600 " /> <Waypoint body="TibiaL" p="0.121600 0.477400 0.004900 " /> </Unit> <Unit name="R_Tensor_Fascia_Lata2" f0="77.500000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.142900 1.049200 0.003200 " /> <Waypoint body="FemurR" p="-0.159000 0.917700 0.021900 " /> <Waypoint body="FemurR" p="-0.134600 0.557100 0.015600 " /> <Waypoint body="TibiaR" p="-0.121600 0.477400 0.004900 " /> </Unit> <Unit name="L_Teres_Major" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.100000 1.336900 -0.131100 " /> <Waypoint body="ShoulderL" p="0.159000 1.374300 -0.101300 " /> <Waypoint body="ArmL" p="0.250600 1.431000 -0.052200 " /> <Waypoint body="ArmL" p="0.243500 1.430100 -0.021200 " /> </Unit> <Unit name="R_Teres_Major" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.100000 1.336900 -0.131100 " /> <Waypoint body="ShoulderR" p="-0.159000 1.374300 -0.101300 " /> <Waypoint body="ArmR" p="-0.250600 1.431000 -0.052200 " /> <Waypoint body="ArmR" p="-0.243500 1.430100 -0.021200 " /> </Unit> <Unit name="L_Tibialis_Anterior" f0="673.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.130300 0.488500 -0.010100 " /> <Waypoint body="TibiaL" p="0.072200 0.103100 -0.014000 " /> <Waypoint body="TalusL" p="0.055900 0.061300 -0.009100 " /> <Waypoint body="TalusL" p="0.066100 0.037300 0.024200 " /> </Unit> <Unit name="R_Tibialis_Anterior" f0="673.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.130300 0.488500 -0.010100 " /> <Waypoint body="TibiaR" p="-0.072200 0.103100 -0.014000 " /> <Waypoint body="TalusR" p="-0.055900 0.061300 -0.009100 " /> <Waypoint body="TalusR" p="-0.066100 0.037300 0.024200 " /> </Unit> <Unit name="L_Tibialis_Posterior" f0="905.600000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaL" p="0.104800 0.472500 -0.023600 " /> <Waypoint body="TibiaL" p="0.084700 0.137800 -0.050400 " /> <Waypoint body="TibiaL" p="0.053700 0.091000 -0.052300 " /> <Waypoint body="TalusL" p="0.059000 0.048800 -0.021300 " /> <Waypoint body="TalusL" p="0.089900 0.039200 0.010000 " /> </Unit> <Unit name="R_Tibialis_Posterior" f0="905.600000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="TibiaR" p="-0.104800 0.472500 -0.023600 " /> <Waypoint body="TibiaR" p="-0.084700 0.137800 -0.050400 " /> <Waypoint body="TibiaR" p="-0.053700 0.091000 -0.052300 " /> <Waypoint body="TalusR" p="-0.059000 0.048800 -0.021300 " /> <Waypoint body="TalusR" p="-0.089900 0.039200 0.010000 " /> </Unit> <Unit name="L_Triceps_Lateral_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.243900 1.452400 -0.032900 " /> <Waypoint body="ArmL" p="0.319200 1.484700 -0.046100 " /> <Waypoint body="ArmL" p="0.488700 1.477900 -0.024200 " /> <Waypoint body="ForeArmL" p="0.523500 1.467000 -0.027000 " /> </Unit> <Unit name="R_Triceps_Lateral_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.243900 1.452400 -0.032900 " /> <Waypoint body="ArmR" p="-0.319200 1.484700 -0.046100 " /> <Waypoint body="ArmR" p="-0.488700 1.477900 -0.024200 " /> <Waypoint body="ForeArmR" p="-0.523500 1.467000 -0.027000 " /> </Unit> <Unit name="L_Triceps_Long_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderL" p="0.174200 1.411500 -0.063300 " /> <Waypoint body="ArmL" p="0.256000 1.443300 -0.060300 " /> <Waypoint body="ArmL" p="0.341900 1.464700 -0.075600 " /> <Waypoint body="ArmL" p="0.475900 1.462800 -0.048200 " /> <Waypoint body="ForeArmL" p="0.517200 1.462700 -0.033400 " /> </Unit> <Unit name="R_Triceps_Long_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ShoulderR" p="-0.174200 1.411500 -0.063300 " /> <Waypoint body="ArmR" p="-0.256000 1.443300 -0.060300 " /> <Waypoint body="ArmR" p="-0.341900 1.464700 -0.075600 " /> <Waypoint body="ArmR" p="-0.475900 1.462800 -0.048200 " /> <Waypoint body="ForeArmR" p="-0.517200 1.462700 -0.033400 " /> </Unit> <Unit name="L_Triceps_Medial_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmL" p="0.292100 1.442600 -0.033800 " /> <Waypoint body="ArmL" p="0.435900 1.428200 -0.036500 " /> <Waypoint body="ForeArmL" p="0.518300 1.454400 -0.028300 " /> </Unit> <Unit name="R_Triceps_Medial_Head" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="ArmR" p="-0.292100 1.442600 -0.033800 " /> <Waypoint body="ArmR" p="-0.435900 1.428200 -0.036500 " /> <Waypoint body="ForeArmR" p="-0.518300 1.454400 -0.028300 " /> </Unit> <Unit name="L_Vastus_Intermedius" f0="512.100000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.114500 0.871100 0.000900 " /> <Waypoint body="FemurL" p="0.096900 0.811600 0.033600 " /> <Waypoint body="FemurL" p="0.082200 0.604300 0.036300 " /> <Waypoint body="TibiaL" p="0.079500 0.545000 0.026800 " /> </Unit> <Unit name="R_Vastus_Intermedius" f0="512.100000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.114500 0.871100 0.000900 " /> <Waypoint body="FemurR" p="-0.096900 0.811600 0.033600 " /> <Waypoint body="FemurR" p="-0.082200 0.604300 0.036300 " /> <Waypoint body="TibiaR" p="-0.079500 0.545000 0.026800 " /> </Unit> <Unit name="L_Vastus_Intermedius1" f0="512.100000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.124000 0.871400 0.002600 " /> <Waypoint body="FemurL" p="0.130600 0.790100 0.032900 " /> <Waypoint body="FemurL" p="0.118200 0.650700 0.036700 " /> <Waypoint body="TibiaL" p="0.095000 0.557500 0.032300 " /> </Unit> <Unit name="R_Vastus_Intermedius1" f0="512.100000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.124000 0.871400 0.002600 " /> <Waypoint body="FemurR" p="-0.130600 0.790100 0.032900 " /> <Waypoint body="FemurR" p="-0.118200 0.650700 0.036700 " /> <Waypoint body="TibiaR" p="-0.095000 0.557500 0.032300 " /> </Unit> <Unit name="L_Vastus_Lateralis" f0="1127.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.148900 0.915000 0.001000 " /> <Waypoint body="FemurL" p="0.133900 0.882600 0.016900 " /> <Waypoint body="FemurL" p="0.105300 0.588000 0.039300 " /> <Waypoint body="TibiaL" p="0.088600 0.549500 0.035000 " /> </Unit> <Unit name="R_Vastus_Lateralis" f0="1127.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.148900 0.915000 0.001000 " /> <Waypoint body="FemurR" p="-0.133900 0.882600 0.016900 " /> <Waypoint body="FemurR" p="-0.105300 0.588000 0.039300 " /> <Waypoint body="TibiaR" p="-0.088600 0.549500 0.035000 " /> </Unit> <Unit name="L_Vastus_Lateralis1" f0="1127.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.159500 0.905200 -0.002200 " /> <Waypoint body="FemurL" p="0.153200 0.859200 -0.000000 " /> <Waypoint body="FemurL" p="0.136300 0.597400 0.008600 " /> <Waypoint body="TibiaL" p="0.102300 0.540500 0.035900 " /> </Unit> <Unit name="R_Vastus_Lateralis1" f0="1127.700000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.159500 0.905200 -0.002200 " /> <Waypoint body="FemurR" p="-0.153200 0.859200 -0.000000 " /> <Waypoint body="FemurR" p="-0.136300 0.597400 0.008600 " /> <Waypoint body="TibiaR" p="-0.102300 0.540500 0.035900 " /> </Unit> <Unit name="L_Vastus_Medialis" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.118600 0.871200 0.002900 " /> <Waypoint body="FemurL" p="0.039000 0.680200 0.013200 " /> <Waypoint body="FemurL" p="0.043200 0.604100 0.004100 " /> <Waypoint body="TibiaL" p="0.074700 0.541400 0.024100 " /> </Unit> <Unit name="R_Vastus_Medialis" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.118600 0.871200 0.002900 " /> <Waypoint body="FemurR" p="-0.039000 0.680200 0.013200 " /> <Waypoint body="FemurR" p="-0.043200 0.604100 0.004100 " /> <Waypoint body="TibiaR" p="-0.074700 0.541400 0.024100 " /> </Unit> <Unit name="L_Vastus_Medialis1" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.119100 0.867000 0.003500 " /> <Waypoint body="FemurL" p="0.080700 0.669600 0.048800 " /> <Waypoint body="TibiaL" p="0.087600 0.551300 0.035800 " /> </Unit> <Unit name="R_Vastus_Medialis1" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.119100 0.867000 0.003500 " /> <Waypoint body="FemurR" p="-0.080700 0.669600 0.048800 " /> <Waypoint body="TibiaR" p="-0.087600 0.551300 0.035800 " /> </Unit> <Unit name="L_Vastus_Medialis2" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurL" p="0.118600 0.871200 0.002900 " /> <Waypoint body="FemurL" p="0.057800 0.647400 0.037200 " /> <Waypoint body="TibiaL" p="0.076800 0.546900 0.031200 " /> </Unit> <Unit name="R_Vastus_Medialis2" f0="721.850000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="FemurR" p="-0.118600 0.871200 0.002900 " /> <Waypoint body="FemurR" p="-0.057800 0.647400 0.037200 " /> <Waypoint body="TibiaR" p="-0.076800 0.546900 0.031200 " /> </Unit> <Unit name="L_iliacus" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.068000 1.047100 -0.061100 " /> <Waypoint body="Pelvis" p="0.077600 0.942100 0.018000 " /> <Waypoint body="FemurL" p="0.094000 0.880500 -0.015000 " /> <Waypoint body="FemurL" p="0.111200 0.853400 -0.020900 " /> </Unit> <Unit name="R_iliacus" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.068000 1.047100 -0.061100 " /> <Waypoint body="Pelvis" p="-0.077600 0.942100 0.018000 " /> <Waypoint body="FemurR" p="-0.094000 0.880500 -0.015000 " /> <Waypoint body="FemurR" p="-0.111200 0.853400 -0.020900 " /> </Unit> <Unit name="L_iliacus1" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.116900 1.069700 -0.032400 " /> <Waypoint body="Pelvis" p="0.084100 0.973000 0.013000 " /> <Waypoint body="Pelvis" p="0.086800 0.917100 0.029700 " /> <Waypoint body="FemurL" p="0.099600 0.877100 -0.009200 " /> <Waypoint body="FemurL" p="0.118700 0.867700 -0.022800 " /> </Unit> <Unit name="R_iliacus1" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.116900 1.069700 -0.032400 " /> <Waypoint body="Pelvis" p="-0.084100 0.973000 0.013000 " /> <Waypoint body="Pelvis" p="-0.086800 0.917100 0.029700 " /> <Waypoint body="FemurR" p="-0.099600 0.877100 -0.009200 " /> <Waypoint body="FemurR" p="-0.118700 0.867700 -0.022800 " /> </Unit> <Unit name="L_iliacus2" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.128500 1.033500 0.022400 " /> <Waypoint body="Pelvis" p="0.099900 0.973000 0.031300 " /> <Waypoint body="FemurL" p="0.102000 0.908800 0.014700 " /> <Waypoint body="FemurL" p="0.109200 0.863700 -0.013300 " /> </Unit> <Unit name="R_iliacus2" f0="207.300000" lm="1.000000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.128500 1.033500 0.022400 " /> <Waypoint body="Pelvis" p="-0.099900 0.973000 0.031300 " /> <Waypoint body="FemurR" p="-0.102000 0.908800 0.014700 " /> <Waypoint body="FemurR" p="-0.109200 0.863700 -0.013300 " /> </Unit> <Unit name="L_iliocostalis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.003600 0.898900 -0.073600 " /> <Waypoint body="Pelvis" p="0.025200 1.026700 -0.101000 " /> <Waypoint body="Spine" p="0.052800 1.110900 -0.079000 " /> <Waypoint body="Torso" p="0.058200 1.174400 -0.093400 " /> <Waypoint body="Torso" p="0.063900 1.239200 -0.126200 " /> <Waypoint body="Torso" p="0.050100 1.433400 -0.104800 " /> <Waypoint body="Torso" p="0.041100 1.491600 -0.062400 " /> <Waypoint body="Neck" p="0.022400 1.538000 -0.010700 " /> </Unit> <Unit name="R_iliocostalis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.003600 0.898900 -0.073600 " /> <Waypoint body="Pelvis" p="-0.025200 1.026700 -0.101000 " /> <Waypoint body="Spine" p="-0.052800 1.110900 -0.079000 " /> <Waypoint body="Torso" p="-0.058200 1.174400 -0.093400 " /> <Waypoint body="Torso" p="-0.063900 1.239200 -0.126200 " /> <Waypoint body="Torso" p="-0.050100 1.433400 -0.104800 " /> <Waypoint body="Torso" p="-0.041100 1.491600 -0.062400 " /> <Waypoint body="Neck" p="-0.022400 1.538000 -0.010700 " /> </Unit> <Unit name="L_Rectus_Abdominis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.022100 0.922600 0.050800 " /> <Waypoint body="Pelvis" p="0.040200 1.029200 0.086100 " /> <Waypoint body="Torso" p="0.060100 1.110900 0.089400 " /> <Waypoint body="Torso" p="0.063500 1.170800 0.092300 " /> <Waypoint body="Torso" p="0.076200 1.304200 0.092900 " /> </Unit> <Unit name="R_Rectus_Abdominis1" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.022100 0.922600 0.050800 " /> <Waypoint body="Pelvis" p="-0.040200 1.029200 0.086100 " /> <Waypoint body="Torso" p="-0.060100 1.110900 0.089400 " /> <Waypoint body="Torso" p="-0.063500 1.170800 0.092300 " /> <Waypoint body="Torso" p="-0.076200 1.304200 0.092900 " /> </Unit> <Unit name="L_Serratus_Posterior_Inferior" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="0.000000 1.139400 -0.092000 " /> <Waypoint body="Torso" p="0.072300 1.156800 -0.084000 " /> <Waypoint body="Torso" p="0.080500 1.162800 -0.075700 " /> </Unit> <Unit name="R_Serratus_Posterior_Inferior" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Spine" p="-0.000000 1.139400 -0.092000 " /> <Waypoint body="Torso" p="-0.072300 1.156800 -0.084000 " /> <Waypoint body="Torso" p="-0.080500 1.162800 -0.075700 " /> </Unit> <Unit name="L_Transversus_Abdominis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.054100 1.043200 -0.092800 " /> <Waypoint body="Torso" p="0.063200 1.172600 -0.079300 " /> </Unit> <Unit name="R_Transversus_Abdominis" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.054100 1.043200 -0.092800 " /> <Waypoint body="Torso" p="-0.063200 1.172600 -0.079300 " /> </Unit> <Unit name="L_Transversus_Abdominis2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.135600 1.040700 0.017800 " /> <Waypoint body="Torso" p="0.111200 1.137900 -0.011800 " /> </Unit> <Unit name="R_Transversus_Abdominis2" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.135600 1.040700 0.017800 " /> <Waypoint body="Torso" p="-0.111200 1.137900 -0.011800 " /> </Unit> <Unit name="L_Transversus_Abdominis4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="0.016000 0.927700 0.053500 " /> <Waypoint body="Torso" p="0.038900 1.181000 0.093000 " /> <Waypoint body="Torso" p="0.021000 1.297800 0.093300 " /> </Unit> <Unit name="R_Transversus_Abdominis4" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Pelvis" p="-0.016000 0.927700 0.053500 " /> <Waypoint body="Torso" p="-0.038900 1.181000 0.093000 " /> <Waypoint body="Torso" p="-0.021000 1.297800 0.093300 " /> </Unit> <Unit name="L_Trapezius" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.179900 -0.096800 " /> <Waypoint body="Torso" p="0.034800 1.279400 -0.128000 " /> <Waypoint body="Torso" p="0.080500 1.345200 -0.135600 " /> <Waypoint body="ShoulderL" p="0.131400 1.447600 -0.102400 " /> </Unit> <Unit name="R_Trapezius" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.179900 -0.096800 " /> <Waypoint body="Torso" p="-0.034800 1.279400 -0.128000 " /> <Waypoint body="Torso" p="-0.080500 1.345200 -0.135600 " /> <Waypoint body="ShoulderR" p="-0.131400 1.447600 -0.102400 " /> </Unit> <Unit name="L_Trapezius3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="0.000000 1.437300 -0.119300 " /> <Waypoint body="ShoulderL" p="0.085900 1.476100 -0.103200 " /> <Waypoint body="ShoulderL" p="0.122700 1.472800 -0.092500 " /> <Waypoint body="ShoulderL" p="0.145500 1.455600 -0.091900 " /> </Unit> <Unit name="R_Trapezius3" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Torso" p="-0.000000 1.437300 -0.119300 " /> <Waypoint body="ShoulderR" p="-0.085900 1.476100 -0.103200 " /> <Waypoint body="ShoulderR" p="-0.122700 1.472800 -0.092500 " /> <Waypoint body="ShoulderR" p="-0.145500 1.455600 -0.091900 " /> </Unit> <Unit name="L_Trapezius5" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="0.000000 1.563000 -0.063600 " /> <Waypoint body="Neck" p="0.039300 1.549500 -0.062400 " /> <Waypoint body="ShoulderL" p="0.113300 1.496700 -0.064900 " /> <Waypoint body="ShoulderL" p="0.198900 1.460800 -0.056900 " /> </Unit> <Unit name="R_Trapezius5" f0="1000.000000" lm="1.200000" lt="0.200000" pen_angle="0.000000" lmax="-0.100000"> <Waypoint body="Neck" p="-0.000000 1.563000 -0.063600 " /> <Waypoint body="Neck" p="-0.039300 1.549500 -0.062400 " /> <Waypoint body="ShoulderR" p="-0.113300 1.496700 -0.064900 " /> <Waypoint body="ShoulderR" p="-0.198900 1.460800 -0.056900 " /> </Unit> </Muscle>
120,105
XML
66.36175
133
0.602073
NVlabs/DiffRL/envs/assets/snu/ground.xml
<Skeleton name="Ground"> <Node name="ground" parent="None" > <Body type="Box" mass="15.0" size="1000.0 1.0 1000.0" contact="On" color="1.2 1.2 1.2 1.0"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 -0.49958 0.0"/> </Body> <Joint type="Weld"> <Transformation linear="1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0" translation="0.0 0.0 0.0"/> </Joint> </Node> </Skeleton>
457
XML
40.63636
105
0.538293
NVlabs/DiffRL/optim/gd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch from torch.optim.optimizer import Optimizer class GD(Optimizer): r"""Implements Pure Gradient Descent algorithm. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) """ def __init__(self, params, lr=1e-3): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) defaults = dict(lr=lr) super(GD, self).__init__(params, defaults) def __setstate__(self, state): super(GD, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: p.add_(p.grad, alpha = -group['lr']) return loss
1,572
Python
33.955555
79
0.632952
NVlabs/DiffRL/algorithms/shac.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from multiprocessing.sharedctypes import Value import sys, os from torch.nn.utils.clip_grad import clip_grad_norm_ project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) import time import numpy as np import copy import torch from tensorboardX import SummaryWriter import yaml import dflex as df import envs import models.actor import models.critic from utils.common import * import utils.torch_utils as tu from utils.running_mean_std import RunningMeanStd from utils.dataset import CriticDataset from utils.time_report import TimeReport from utils.average_meter import AverageMeter class SHAC: def __init__(self, cfg): env_fn = getattr(envs, cfg["params"]["diff_env"]["name"]) seeding(cfg["params"]["general"]["seed"]) self.env = env_fn(num_envs = cfg["params"]["config"]["num_actors"], \ device = cfg["params"]["general"]["device"], \ render = cfg["params"]["general"]["render"], \ seed = cfg["params"]["general"]["seed"], \ episode_length=cfg["params"]["diff_env"].get("episode_length", 250), \ stochastic_init = cfg["params"]["diff_env"].get("stochastic_env", True), \ MM_caching_frequency = cfg["params"]['diff_env'].get('MM_caching_frequency', 1), \ no_grad = False) print('num_envs = ', self.env.num_envs) print('num_actions = ', self.env.num_actions) print('num_obs = ', self.env.num_obs) self.num_envs = self.env.num_envs self.num_obs = self.env.num_obs self.num_actions = self.env.num_actions self.max_episode_length = self.env.episode_length self.device = cfg["params"]["general"]["device"] self.gamma = cfg['params']['config'].get('gamma', 0.99) self.critic_method = cfg['params']['config'].get('critic_method', 'one-step') # ['one-step', 'td-lambda'] if self.critic_method == 'td-lambda': self.lam = cfg['params']['config'].get('lambda', 0.95) self.steps_num = cfg["params"]["config"]["steps_num"] self.max_epochs = cfg["params"]["config"]["max_epochs"] self.actor_lr = float(cfg["params"]["config"]["actor_learning_rate"]) self.critic_lr = float(cfg['params']['config']['critic_learning_rate']) self.lr_schedule = cfg['params']['config'].get('lr_schedule', 'linear') self.target_critic_alpha = cfg['params']['config'].get('target_critic_alpha', 0.4) self.obs_rms = None if cfg['params']['config'].get('obs_rms', False): self.obs_rms = RunningMeanStd(shape = (self.num_obs), device = self.device) self.ret_rms = None if cfg['params']['config'].get('ret_rms', False): self.ret_rms = RunningMeanStd(shape = (), device = self.device) self.rew_scale = cfg['params']['config'].get('rew_scale', 1.0) self.critic_iterations = cfg['params']['config'].get('critic_iterations', 16) self.num_batch = cfg['params']['config'].get('num_batch', 4) self.batch_size = self.num_envs * self.steps_num // self.num_batch self.name = cfg['params']['config'].get('name', "Ant") self.truncate_grad = cfg["params"]["config"]["truncate_grads"] self.grad_norm = cfg["params"]["config"]["grad_norm"] if cfg['params']['general']['train']: self.log_dir = cfg["params"]["general"]["logdir"] os.makedirs(self.log_dir, exist_ok = True) # save config save_cfg = copy.deepcopy(cfg) if 'general' in save_cfg['params']: deleted_keys = [] for key in save_cfg['params']['general'].keys(): if key in save_cfg['params']['config']: deleted_keys.append(key) for key in deleted_keys: del save_cfg['params']['general'][key] yaml.dump(save_cfg, open(os.path.join(self.log_dir, 'cfg.yaml'), 'w')) self.writer = SummaryWriter(os.path.join(self.log_dir, 'log')) # save interval self.save_interval = cfg["params"]["config"].get("save_interval", 500) # stochastic inference self.stochastic_evaluation = True else: self.stochastic_evaluation = not (cfg['params']['config']['player'].get('determenistic', False) or cfg['params']['config']['player'].get('deterministic', False)) self.steps_num = self.env.episode_length # create actor critic network self.actor_name = cfg["params"]["network"].get("actor", 'ActorStochasticMLP') # choices: ['ActorDeterministicMLP', 'ActorStochasticMLP'] self.critic_name = cfg["params"]["network"].get("critic", 'CriticMLP') actor_fn = getattr(models.actor, self.actor_name) self.actor = actor_fn(self.num_obs, self.num_actions, cfg['params']['network'], device = self.device) critic_fn = getattr(models.critic, self.critic_name) self.critic = critic_fn(self.num_obs, cfg['params']['network'], device = self.device) self.all_params = list(self.actor.parameters()) + list(self.critic.parameters()) self.target_critic = copy.deepcopy(self.critic) if cfg['params']['general']['train']: self.save('init_policy') # initialize optimizer self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), betas = cfg['params']['config']['betas'], lr = self.actor_lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), betas = cfg['params']['config']['betas'], lr = self.critic_lr) # replay buffer self.obs_buf = torch.zeros((self.steps_num, self.num_envs, self.num_obs), dtype = torch.float32, device = self.device) self.rew_buf = torch.zeros((self.steps_num, self.num_envs), dtype = torch.float32, device = self.device) self.done_mask = torch.zeros((self.steps_num, self.num_envs), dtype = torch.float32, device = self.device) self.next_values = torch.zeros((self.steps_num, self.num_envs), dtype = torch.float32, device = self.device) self.target_values = torch.zeros((self.steps_num, self.num_envs), dtype = torch.float32, device = self.device) self.ret = torch.zeros((self.num_envs), dtype = torch.float32, device = self.device) # for kl divergence computing self.old_mus = torch.zeros((self.steps_num, self.num_envs, self.num_actions), dtype = torch.float32, device = self.device) self.old_sigmas = torch.zeros((self.steps_num, self.num_envs, self.num_actions), dtype = torch.float32, device = self.device) self.mus = torch.zeros((self.steps_num, self.num_envs, self.num_actions), dtype = torch.float32, device = self.device) self.sigmas = torch.zeros((self.steps_num, self.num_envs, self.num_actions), dtype = torch.float32, device = self.device) # counting variables self.iter_count = 0 self.step_count = 0 # loss variables self.episode_length_his = [] self.episode_loss_his = [] self.episode_discounted_loss_his = [] self.episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) self.episode_length = torch.zeros(self.num_envs, dtype = int) self.best_policy_loss = np.inf self.actor_loss = np.inf self.value_loss = np.inf # average meter self.episode_loss_meter = AverageMeter(1, 100).to(self.device) self.episode_discounted_loss_meter = AverageMeter(1, 100).to(self.device) self.episode_length_meter = AverageMeter(1, 100).to(self.device) # timer self.time_report = TimeReport() def compute_actor_loss(self, deterministic = False): rew_acc = torch.zeros((self.steps_num + 1, self.num_envs), dtype = torch.float32, device = self.device) gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) next_values = torch.zeros((self.steps_num + 1, self.num_envs), dtype = torch.float32, device = self.device) actor_loss = torch.tensor(0., dtype = torch.float32, device = self.device) with torch.no_grad(): if self.obs_rms is not None: obs_rms = copy.deepcopy(self.obs_rms) if self.ret_rms is not None: ret_var = self.ret_rms.var.clone() # initialize trajectory to cut off gradients between episodes. obs = self.env.initialize_trajectory() if self.obs_rms is not None: # update obs rms with torch.no_grad(): self.obs_rms.update(obs) # normalize the current obs obs = obs_rms.normalize(obs) for i in range(self.steps_num): # collect data for critic training with torch.no_grad(): self.obs_buf[i] = obs.clone() actions = self.actor(obs, deterministic = deterministic) obs, rew, done, extra_info = self.env.step(torch.tanh(actions)) with torch.no_grad(): raw_rew = rew.clone() # scale the reward rew = rew * self.rew_scale if self.obs_rms is not None: # update obs rms with torch.no_grad(): self.obs_rms.update(obs) # normalize the current obs obs = obs_rms.normalize(obs) if self.ret_rms is not None: # update ret rms with torch.no_grad(): self.ret = self.ret * self.gamma + rew self.ret_rms.update(self.ret) rew = rew / torch.sqrt(ret_var + 1e-6) self.episode_length += 1 done_env_ids = done.nonzero(as_tuple = False).squeeze(-1) next_values[i + 1] = self.target_critic(obs).squeeze(-1) for id in done_env_ids: if torch.isnan(extra_info['obs_before_reset'][id]).sum() > 0 \ or torch.isinf(extra_info['obs_before_reset'][id]).sum() > 0 \ or (torch.abs(extra_info['obs_before_reset'][id]) > 1e6).sum() > 0: # ugly fix for nan values next_values[i + 1, id] = 0. elif self.episode_length[id] < self.max_episode_length: # early termination next_values[i + 1, id] = 0. else: # otherwise, use terminal value critic to estimate the long-term performance if self.obs_rms is not None: real_obs = obs_rms.normalize(extra_info['obs_before_reset'][id]) else: real_obs = extra_info['obs_before_reset'][id] next_values[i + 1, id] = self.target_critic(real_obs).squeeze(-1) if (next_values[i + 1] > 1e6).sum() > 0 or (next_values[i + 1] < -1e6).sum() > 0: print('next value error') raise ValueError rew_acc[i + 1, :] = rew_acc[i, :] + gamma * rew if i < self.steps_num - 1: actor_loss = actor_loss + (- rew_acc[i + 1, done_env_ids] - self.gamma * gamma[done_env_ids] * next_values[i + 1, done_env_ids]).sum() else: # terminate all envs at the end of optimization iteration actor_loss = actor_loss + (- rew_acc[i + 1, :] - self.gamma * gamma * next_values[i + 1, :]).sum() # compute gamma for next step gamma = gamma * self.gamma # clear up gamma and rew_acc for done envs gamma[done_env_ids] = 1. rew_acc[i + 1, done_env_ids] = 0. # collect data for critic training with torch.no_grad(): self.rew_buf[i] = rew.clone() if i < self.steps_num - 1: self.done_mask[i] = done.clone().to(torch.float32) else: self.done_mask[i, :] = 1. self.next_values[i] = next_values[i + 1].clone() # collect episode loss with torch.no_grad(): self.episode_loss -= raw_rew self.episode_discounted_loss -= self.episode_gamma * raw_rew self.episode_gamma *= self.gamma if len(done_env_ids) > 0: self.episode_loss_meter.update(self.episode_loss[done_env_ids]) self.episode_discounted_loss_meter.update(self.episode_discounted_loss[done_env_ids]) self.episode_length_meter.update(self.episode_length[done_env_ids]) for done_env_id in done_env_ids: if (self.episode_loss[done_env_id] > 1e6 or self.episode_loss[done_env_id] < -1e6): print('ep loss error') raise ValueError self.episode_loss_his.append(self.episode_loss[done_env_id].item()) self.episode_discounted_loss_his.append(self.episode_discounted_loss[done_env_id].item()) self.episode_length_his.append(self.episode_length[done_env_id].item()) self.episode_loss[done_env_id] = 0. self.episode_discounted_loss[done_env_id] = 0. self.episode_length[done_env_id] = 0 self.episode_gamma[done_env_id] = 1. actor_loss /= self.steps_num * self.num_envs if self.ret_rms is not None: actor_loss = actor_loss * torch.sqrt(ret_var + 1e-6) self.actor_loss = actor_loss.detach().cpu().item() self.step_count += self.steps_num * self.num_envs return actor_loss @torch.no_grad() def evaluate_policy(self, num_games, deterministic = False): episode_length_his = [] episode_loss_his = [] episode_discounted_loss_his = [] episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) episode_length = torch.zeros(self.num_envs, dtype = int) episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) obs = self.env.reset() games_cnt = 0 while games_cnt < num_games: if self.obs_rms is not None: obs = self.obs_rms.normalize(obs) actions = self.actor(obs, deterministic = deterministic) obs, rew, done, _ = self.env.step(torch.tanh(actions)) episode_length += 1 done_env_ids = done.nonzero(as_tuple = False).squeeze(-1) episode_loss -= rew episode_discounted_loss -= episode_gamma * rew episode_gamma *= self.gamma if len(done_env_ids) > 0: for done_env_id in done_env_ids: print('loss = {:.2f}, len = {}'.format(episode_loss[done_env_id].item(), episode_length[done_env_id])) episode_loss_his.append(episode_loss[done_env_id].item()) episode_discounted_loss_his.append(episode_discounted_loss[done_env_id].item()) episode_length_his.append(episode_length[done_env_id].item()) episode_loss[done_env_id] = 0. episode_discounted_loss[done_env_id] = 0. episode_length[done_env_id] = 0 episode_gamma[done_env_id] = 1. games_cnt += 1 mean_episode_length = np.mean(np.array(episode_length_his)) mean_policy_loss = np.mean(np.array(episode_loss_his)) mean_policy_discounted_loss = np.mean(np.array(episode_discounted_loss_his)) return mean_policy_loss, mean_policy_discounted_loss, mean_episode_length @torch.no_grad() def compute_target_values(self): if self.critic_method == 'one-step': self.target_values = self.rew_buf + self.gamma * self.next_values elif self.critic_method == 'td-lambda': Ai = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) Bi = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) lam = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) for i in reversed(range(self.steps_num)): lam = lam * self.lam * (1. - self.done_mask[i]) + self.done_mask[i] Ai = (1.0 - self.done_mask[i]) * (self.lam * self.gamma * Ai + self.gamma * self.next_values[i] + (1. - lam) / (1. - self.lam) * self.rew_buf[i]) Bi = self.gamma * (self.next_values[i] * self.done_mask[i] + Bi * (1.0 - self.done_mask[i])) + self.rew_buf[i] self.target_values[i] = (1.0 - self.lam) * Ai + lam * Bi else: raise NotImplementedError def compute_critic_loss(self, batch_sample): predicted_values = self.critic(batch_sample['obs']).squeeze(-1) target_values = batch_sample['target_values'] critic_loss = ((predicted_values - target_values) ** 2).mean() return critic_loss def initialize_env(self): self.env.clear_grad() self.env.reset() @torch.no_grad() def run(self, num_games): mean_policy_loss, mean_policy_discounted_loss, mean_episode_length = self.evaluate_policy(num_games = num_games, deterministic = not self.stochastic_evaluation) print_info('mean episode loss = {}, mean discounted loss = {}, mean episode length = {}'.format(mean_policy_loss, mean_policy_discounted_loss, mean_episode_length)) def train(self): self.start_time = time.time() # add timers self.time_report.add_timer("algorithm") self.time_report.add_timer("compute actor loss") self.time_report.add_timer("forward simulation") self.time_report.add_timer("backward simulation") self.time_report.add_timer("prepare critic dataset") self.time_report.add_timer("actor training") self.time_report.add_timer("critic training") self.time_report.start_timer("algorithm") # initializations self.initialize_env() self.episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_length = torch.zeros(self.num_envs, dtype = int) self.episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) def actor_closure(): self.actor_optimizer.zero_grad() self.time_report.start_timer("compute actor loss") self.time_report.start_timer("forward simulation") actor_loss = self.compute_actor_loss() self.time_report.end_timer("forward simulation") self.time_report.start_timer("backward simulation") actor_loss.backward() self.time_report.end_timer("backward simulation") with torch.no_grad(): self.grad_norm_before_clip = tu.grad_norm(self.actor.parameters()) if self.truncate_grad: clip_grad_norm_(self.actor.parameters(), self.grad_norm) self.grad_norm_after_clip = tu.grad_norm(self.actor.parameters()) # sanity check if torch.isnan(self.grad_norm_before_clip) or self.grad_norm_before_clip > 1000000.: print('NaN gradient') raise ValueError self.time_report.end_timer("compute actor loss") return actor_loss # main training process for epoch in range(self.max_epochs): time_start_epoch = time.time() # learning rate schedule if self.lr_schedule == 'linear': actor_lr = (1e-5 - self.actor_lr) * float(epoch / self.max_epochs) + self.actor_lr for param_group in self.actor_optimizer.param_groups: param_group['lr'] = actor_lr lr = actor_lr critic_lr = (1e-5 - self.critic_lr) * float(epoch / self.max_epochs) + self.critic_lr for param_group in self.critic_optimizer.param_groups: param_group['lr'] = critic_lr else: lr = self.actor_lr # train actor self.time_report.start_timer("actor training") self.actor_optimizer.step(actor_closure).detach().item() self.time_report.end_timer("actor training") # train critic # prepare dataset self.time_report.start_timer("prepare critic dataset") with torch.no_grad(): self.compute_target_values() dataset = CriticDataset(self.batch_size, self.obs_buf, self.target_values, drop_last = False) self.time_report.end_timer("prepare critic dataset") self.time_report.start_timer("critic training") self.value_loss = 0. for j in range(self.critic_iterations): total_critic_loss = 0. batch_cnt = 0 for i in range(len(dataset)): batch_sample = dataset[i] self.critic_optimizer.zero_grad() training_critic_loss = self.compute_critic_loss(batch_sample) training_critic_loss.backward() # ugly fix for simulation nan problem for params in self.critic.parameters(): params.grad.nan_to_num_(0.0, 0.0, 0.0) if self.truncate_grad: clip_grad_norm_(self.critic.parameters(), self.grad_norm) self.critic_optimizer.step() total_critic_loss += training_critic_loss batch_cnt += 1 self.value_loss = (total_critic_loss / batch_cnt).detach().cpu().item() print('value iter {}/{}, loss = {:7.6f}'.format(j + 1, self.critic_iterations, self.value_loss), end='\r') self.time_report.end_timer("critic training") self.iter_count += 1 time_end_epoch = time.time() # logging time_elapse = time.time() - self.start_time self.writer.add_scalar('lr/iter', lr, self.iter_count) self.writer.add_scalar('actor_loss/step', self.actor_loss, self.step_count) self.writer.add_scalar('actor_loss/iter', self.actor_loss, self.iter_count) self.writer.add_scalar('value_loss/step', self.value_loss, self.step_count) self.writer.add_scalar('value_loss/iter', self.value_loss, self.iter_count) if len(self.episode_loss_his) > 0: mean_episode_length = self.episode_length_meter.get_mean() mean_policy_loss = self.episode_loss_meter.get_mean() mean_policy_discounted_loss = self.episode_discounted_loss_meter.get_mean() if mean_policy_loss < self.best_policy_loss: print_info("save best policy with loss {:.2f}".format(mean_policy_loss)) self.save() self.best_policy_loss = mean_policy_loss self.writer.add_scalar('policy_loss/step', mean_policy_loss, self.step_count) self.writer.add_scalar('policy_loss/time', mean_policy_loss, time_elapse) self.writer.add_scalar('policy_loss/iter', mean_policy_loss, self.iter_count) self.writer.add_scalar('rewards/step', -mean_policy_loss, self.step_count) self.writer.add_scalar('rewards/time', -mean_policy_loss, time_elapse) self.writer.add_scalar('rewards/iter', -mean_policy_loss, self.iter_count) self.writer.add_scalar('policy_discounted_loss/step', mean_policy_discounted_loss, self.step_count) self.writer.add_scalar('policy_discounted_loss/iter', mean_policy_discounted_loss, self.iter_count) self.writer.add_scalar('best_policy_loss/step', self.best_policy_loss, self.step_count) self.writer.add_scalar('best_policy_loss/iter', self.best_policy_loss, self.iter_count) self.writer.add_scalar('episode_lengths/iter', mean_episode_length, self.iter_count) self.writer.add_scalar('episode_lengths/step', mean_episode_length, self.step_count) self.writer.add_scalar('episode_lengths/time', mean_episode_length, time_elapse) else: mean_policy_loss = np.inf mean_policy_discounted_loss = np.inf mean_episode_length = 0 print('iter {}: ep loss {:.2f}, ep discounted loss {:.2f}, ep len {:.1f}, fps total {:.2f}, value loss {:.2f}, grad norm before clip {:.2f}, grad norm after clip {:.2f}'.format(\ self.iter_count, mean_policy_loss, mean_policy_discounted_loss, mean_episode_length, self.steps_num * self.num_envs / (time_end_epoch - time_start_epoch), self.value_loss, self.grad_norm_before_clip, self.grad_norm_after_clip)) self.writer.flush() if self.save_interval > 0 and (self.iter_count % self.save_interval == 0): self.save(self.name + "policy_iter{}_reward{:.3f}".format(self.iter_count, -mean_policy_loss)) # update target critic with torch.no_grad(): alpha = self.target_critic_alpha for param, param_targ in zip(self.critic.parameters(), self.target_critic.parameters()): param_targ.data.mul_(alpha) param_targ.data.add_((1. - alpha) * param.data) self.time_report.end_timer("algorithm") self.time_report.report() self.save('final_policy') # save reward/length history self.episode_loss_his = np.array(self.episode_loss_his) self.episode_discounted_loss_his = np.array(self.episode_discounted_loss_his) self.episode_length_his = np.array(self.episode_length_his) np.save(open(os.path.join(self.log_dir, 'episode_loss_his.npy'), 'wb'), self.episode_loss_his) np.save(open(os.path.join(self.log_dir, 'episode_discounted_loss_his.npy'), 'wb'), self.episode_discounted_loss_his) np.save(open(os.path.join(self.log_dir, 'episode_length_his.npy'), 'wb'), self.episode_length_his) # evaluate the final policy's performance self.run(self.num_envs) self.close() def play(self, cfg): self.load(cfg['params']['general']['checkpoint']) self.run(cfg['params']['config']['player']['games_num']) def save(self, filename = None): if filename is None: filename = 'best_policy' torch.save([self.actor, self.critic, self.target_critic, self.obs_rms, self.ret_rms], os.path.join(self.log_dir, "{}.pt".format(filename))) def load(self, path): checkpoint = torch.load(path) self.actor = checkpoint[0].to(self.device) self.critic = checkpoint[1].to(self.device) self.target_critic = checkpoint[2].to(self.device) self.obs_rms = checkpoint[3].to(self.device) self.ret_rms = checkpoint[4].to(self.device) if checkpoint[4] is not None else checkpoint[4] def close(self): self.writer.close()
28,575
Python
48.439446
247
0.576378
NVlabs/DiffRL/algorithms/bptt.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys, os from torch.nn.utils.clip_grad import clip_grad_norm_ project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) import time import numpy as np import copy import torch from tensorboardX import SummaryWriter import yaml import dflex as df import envs import models.actor from optim.gd import GD from utils.common import * import utils.torch_utils as tu from utils.time_report import TimeReport from utils.average_meter import AverageMeter from utils.running_mean_std import RunningMeanStd class BPTT: def __init__(self, cfg): env_fn = getattr(envs, cfg["params"]["diff_env"]["name"]) seeding(cfg["params"]["general"]["seed"]) self.env = env_fn(num_envs = cfg["params"]["config"]["num_actors"], \ device = cfg["params"]["general"]["device"], \ render = cfg["params"]["general"]["render"], \ seed = cfg["params"]["general"]["seed"], \ episode_length=cfg["params"]["diff_env"].get("episode_length", 250), \ stochastic_init = cfg["params"]["diff_env"].get("stochastic_env", False), \ MM_caching_frequency = cfg["params"]['diff_env'].get('MM_caching_frequency', 1), \ no_grad = False) print('num_envs = ', self.env.num_envs) print('num_actions = ', self.env.num_actions) print('num_obs = ', self.env.num_obs) self.num_envs = self.env.num_envs self.num_obs = self.env.num_obs self.num_actions = self.env.num_actions self.max_episode_length = self.env.episode_length self.device = cfg["params"]["general"]["device"] self.gamma = cfg['params']['config'].get('gamma', 0.99) self.steps_num = cfg["params"]["config"]["steps_num"] self.max_epochs = cfg["params"]["config"]["max_epochs"] self.actor_lr = float(cfg["params"]["config"]["actor_learning_rate"]) self.lr_schedule = cfg['params']['config'].get('lr_schedule', 'linear') self.obs_rms = None if cfg['params']['config'].get('obs_rms', False): self.obs_rms = RunningMeanStd(shape = (self.num_obs), device = self.device) self.rew_scale = cfg['params']['config'].get('rew_scale', 1.0) self.name = cfg['params']['config'].get('name', "Ant") self.truncate_grad = cfg["params"]["config"]["truncate_grads"] self.grad_norm = cfg["params"]["config"]["grad_norm"] if cfg['params']['general']['train']: self.log_dir = cfg["params"]["general"]["logdir"] os.makedirs(self.log_dir, exist_ok = True) # save config save_cfg = copy.deepcopy(cfg) if 'general' in save_cfg['params']: deleted_keys = [] for key in save_cfg['params']['general'].keys(): if key in save_cfg['params']['config']: deleted_keys.append(key) for key in deleted_keys: del save_cfg['params']['general'][key] yaml.dump(save_cfg, open(os.path.join(self.log_dir, 'cfg.yaml'), 'w')) self.writer = SummaryWriter(os.path.join(self.log_dir, 'log')) # save interval self.save_interval = cfg["params"]["config"].get("save_interval", 500) # stochastic inference self.stochastic_evaluation = True else: self.stochastic_evaluation = not (cfg['params']['config']['player'].get('determenistic', False) or cfg['params']['config']['player'].get('deterministic', False)) self.steps_num = self.env.episode_length # create actor critic network self.algo = cfg["params"]["algo"]['name'] # choices: ['gd', 'adam', 'SGD'] self.actor_name = cfg["params"]["network"].get("actor", 'ActorStochasticMLP') # choices: ['ActorDeterministicMLP', 'ActorStochasticMLP'] actor_fn = getattr(models.actor, self.actor_name) self.actor = actor_fn(self.num_obs, self.num_actions, cfg['params']['network'], device = self.device) if cfg['params']['general']['train']: self.save('init_policy') # initialize optimizer self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), betas = cfg['params']['config']['betas'], lr = self.actor_lr) # counting variables self.iter_count = 0 self.step_count = 0 # loss variables self.episode_length_his = [] self.episode_loss_his = [] self.episode_discounted_loss_his = [] self.episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) self.episode_length = torch.zeros(self.num_envs, dtype = int) self.best_policy_loss = np.inf self.actor_loss = np.inf # average meter self.episode_loss_meter = AverageMeter(1, 100).to(self.device) self.episode_discounted_loss_meter = AverageMeter(1, 100).to(self.device) self.episode_length_meter = AverageMeter(1, 100).to(self.device) # timer self.time_report = TimeReport() def compute_actor_loss(self, deterministic = False): rew_acc = torch.zeros((self.steps_num + 1, self.num_envs), dtype = torch.float32, device = self.device) gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) actor_loss = torch.tensor(0., dtype = torch.float32, device = self.device) with torch.no_grad(): if self.obs_rms is not None: obs_rms = copy.deepcopy(self.obs_rms) obs = self.env.initialize_trajectory() if self.obs_rms is not None: # update obs rms with torch.no_grad(): self.obs_rms.update(obs) # normalize the current obs obs = obs_rms.normalize(obs) for i in range(self.steps_num): actions = self.actor(obs, deterministic = deterministic) obs, rew, done, extra_info = self.env.step(torch.tanh(actions)) with torch.no_grad(): raw_rew = rew.clone() # scale the reward rew = rew * self.rew_scale if self.obs_rms is not None: # update obs rms with torch.no_grad(): self.obs_rms.update(obs) # normalize the current obs obs = obs_rms.normalize(obs) self.episode_length += 1 done_env_ids = done.nonzero(as_tuple = False).squeeze(-1) # JIE rew_acc[i + 1, :] = rew_acc[i, :] + gamma * rew if i < self.steps_num - 1: actor_loss = actor_loss + (- rew_acc[i + 1, done_env_ids]).sum() else: # terminate all envs at the end of optimization iteration actor_loss = actor_loss + (- rew_acc[i + 1, :]).sum() # compute gamma for next step gamma = gamma * self.gamma # clear up gamma and rew_acc for done envs gamma[done_env_ids] = 1. rew_acc[i + 1, done_env_ids] = 0. # collect episode loss with torch.no_grad(): self.episode_loss -= raw_rew self.episode_discounted_loss -= self.episode_gamma * raw_rew self.episode_gamma *= self.gamma if len(done_env_ids) > 0: self.episode_loss_meter.update(self.episode_loss[done_env_ids]) self.episode_discounted_loss_meter.update(self.episode_discounted_loss[done_env_ids]) self.episode_length_meter.update(self.episode_length[done_env_ids]) for done_env_id in done_env_ids: if (self.episode_loss[done_env_id] > 1e6 or self.episode_loss[done_env_id] < -1e6): print('ep loss error') import IPython IPython.embed() self.episode_loss_his.append(self.episode_loss[done_env_id].item()) self.episode_discounted_loss_his.append(self.episode_discounted_loss[done_env_id].item()) self.episode_length_his.append(self.episode_length[done_env_id].item()) self.episode_loss[done_env_id] = 0. self.episode_discounted_loss[done_env_id] = 0. self.episode_length[done_env_id] = 0 self.episode_gamma[done_env_id] = 1. actor_loss /= self.steps_num * self.num_envs self.actor_loss = actor_loss.detach().cpu().item() self.step_count += self.steps_num * self.num_envs return actor_loss @torch.no_grad() def evaluate_policy(self, num_games, deterministic = False): episode_length_his = [] episode_loss_his = [] episode_discounted_loss_his = [] episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) episode_length = torch.zeros(self.num_envs, dtype = int) episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) obs = self.env.reset() games_cnt = 0 while games_cnt < num_games: if self.obs_rms is not None: obs = self.obs_rms.normalize(obs) actions = self.actor(obs, deterministic = deterministic) obs, rew, done, _ = self.env.step(torch.tanh(actions)) episode_length += 1 done_env_ids = done.nonzero(as_tuple = False).squeeze(-1) episode_loss -= rew episode_discounted_loss -= episode_gamma * rew episode_gamma *= self.gamma if len(done_env_ids) > 0: for done_env_id in done_env_ids: print('loss = {:.2f}, len = {}'.format(episode_loss[done_env_id].item(), episode_length[done_env_id])) episode_loss_his.append(episode_loss[done_env_id].item()) episode_discounted_loss_his.append(episode_discounted_loss[done_env_id].item()) episode_length_his.append(episode_length[done_env_id].item()) episode_loss[done_env_id] = 0. episode_discounted_loss[done_env_id] = 0. episode_length[done_env_id] = 0 episode_gamma[done_env_id] = 1. games_cnt += 1 mean_episode_length = np.mean(np.array(episode_length_his)) mean_policy_loss = np.mean(np.array(episode_loss_his)) mean_policy_discounted_loss = np.mean(np.array(episode_discounted_loss_his)) return mean_policy_loss, mean_policy_discounted_loss, mean_episode_length def initialize_env(self): self.env.clear_grad() self.env.reset() @torch.no_grad() def run(self, num_games): mean_policy_loss, mean_policy_discounted_loss, mean_episode_length = self.evaluate_policy(num_games = num_games, deterministic = not self.stochastic_evaluation) print_info('mean episode loss = {}, mean discounted loss = {}, mean episode length = {}'.format(mean_policy_loss, mean_policy_discounted_loss, mean_episode_length)) def train(self): self.start_time = time.time() # timers self.time_report.add_timer("algorithm") self.time_report.add_timer("compute actor loss") self.time_report.add_timer("forward simulation") self.time_report.add_timer("backward simulation") self.time_report.add_timer("actor training") self.time_report.start_timer("algorithm") self.initialize_env() self.episode_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_discounted_loss = torch.zeros(self.num_envs, dtype = torch.float32, device = self.device) self.episode_length = torch.zeros(self.num_envs, dtype = int) self.episode_gamma = torch.ones(self.num_envs, dtype = torch.float32, device = self.device) def actor_closure(): self.actor_optimizer.zero_grad() self.time_report.start_timer("compute actor loss") self.time_report.start_timer("forward simulation") actor_loss = self.compute_actor_loss() self.time_report.end_timer("forward simulation") self.time_report.start_timer("backward simulation") actor_loss.backward() self.time_report.end_timer("backward simulation") with torch.no_grad(): self.grad_norm_before_clip = tu.grad_norm(self.actor.parameters()) if self.truncate_grad: clip_grad_norm_(self.actor.parameters(), self.grad_norm) self.grad_norm_after_clip = tu.grad_norm(self.actor.parameters()) if torch.isnan(self.grad_norm_before_clip): # JIE print('here!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! NaN gradient') import IPython IPython.embed() for params in self.actor.parameters(): params.grad.zero_() if torch.isnan(self.grad_norm_before_clip) or self.grad_norm_before_clip > 1000000.: self.save("nan_policy") self.time_report.end_timer("compute actor loss") return actor_loss for epoch in range(self.max_epochs): time_start_epoch = time.time() if self.lr_schedule == 'linear': actor_lr = (1e-5 - self.actor_lr) * float(epoch / self.max_epochs) + self.actor_lr for param_group in self.actor_optimizer.param_groups: param_group['lr'] = actor_lr lr = actor_lr else: lr = self.actor_lr # train actor self.time_report.start_timer("actor training") self.actor_optimizer.step(actor_closure).detach().item() self.time_report.end_timer("actor training") self.iter_count += 1 time_end_epoch = time.time() # logging time_elapse = time.time() - self.start_time self.writer.add_scalar('lr/iter', lr, self.iter_count) self.writer.add_scalar('actor_loss/step', self.actor_loss, self.step_count) self.writer.add_scalar('actor_loss/iter', self.actor_loss, self.iter_count) if len(self.episode_loss_his) > 0: mean_episode_length = self.episode_length_meter.get_mean() mean_policy_loss = self.episode_loss_meter.get_mean() mean_policy_discounted_loss = self.episode_discounted_loss_meter.get_mean() if mean_policy_loss < self.best_policy_loss: print_info("save best policy with loss {:.2f}".format(mean_policy_loss)) self.save() self.best_policy_loss = mean_policy_loss # self.save("latest_policy") self.writer.add_scalar('policy_loss/step', mean_policy_loss, self.step_count) self.writer.add_scalar('policy_loss/time', mean_policy_loss, time_elapse) self.writer.add_scalar('policy_loss/iter', mean_policy_loss, self.iter_count) self.writer.add_scalar('rewards/step', -mean_policy_loss, self.step_count) self.writer.add_scalar('rewards/time', -mean_policy_loss, time_elapse) self.writer.add_scalar('rewards/iter', -mean_policy_loss, self.iter_count) self.writer.add_scalar('policy_discounted_loss/step', mean_policy_discounted_loss, self.step_count) self.writer.add_scalar('policy_discounted_loss/iter', mean_policy_discounted_loss, self.iter_count) self.writer.add_scalar('best_policy_loss/step', self.best_policy_loss, self.step_count) self.writer.add_scalar('best_policy_loss/iter', self.best_policy_loss, self.iter_count) self.writer.add_scalar('episode_lengths/iter', mean_episode_length, self.iter_count) self.writer.add_scalar('episode_lengths/step', mean_episode_length, self.step_count) self.writer.add_scalar('episode_lengths/time', mean_episode_length, time_elapse) else: mean_policy_loss = np.inf mean_policy_discounted_loss = np.inf mean_episode_length = 0 print('iter {}: ep loss {:.2f}, ep discounted loss {:.2f}, ep len {:.1f}, fps total {:.2f}, grad norm before clip {:.2f}, grad norm after clip {:.2f}'.format(\ self.iter_count, mean_policy_loss, mean_policy_discounted_loss, mean_episode_length, self.steps_num * self.num_envs / (time_end_epoch - time_start_epoch), self.grad_norm_before_clip, self.grad_norm_after_clip)) self.writer.flush() if self.save_interval > 0 and (self.iter_count % self.save_interval == 0): self.save(self.name + "policy_iter{}_reward{:.3f}".format(self.iter_count, -mean_policy_loss)) self.time_report.end_timer("algorithm") self.time_report.report() self.save('final_policy') # save reward/length history self.episode_loss_his = np.array(self.episode_loss_his) self.episode_discounted_loss_his = np.array(self.episode_discounted_loss_his) self.episode_length_his = np.array(self.episode_length_his) np.save(open(os.path.join(self.log_dir, 'episode_loss_his.npy'), 'wb'), self.episode_loss_his) np.save(open(os.path.join(self.log_dir, 'episode_discounted_loss_his.npy'), 'wb'), self.episode_discounted_loss_his) np.save(open(os.path.join(self.log_dir, 'episode_length_his.npy'), 'wb'), self.episode_length_his) # evaluate the final policy's performance self.run(self.num_envs) self.close() def play(self, cfg): self.load(cfg['params']['general']['checkpoint']) self.run(cfg['params']['config']['player']['games_num']) def save(self, filename = None): if filename is None: filename = 'best_policy' torch.save([self.actor, self.obs_rms], os.path.join(self.log_dir, "{}.pt".format(filename))) def load(self, path): checkpoint = torch.load(path) self.actor = checkpoint[0].to(self.device) self.obs_rms = checkpoint[1].to(self.device) def close(self): self.writer.close()
19,592
Python
45.209906
230
0.576868
NVlabs/DiffRL/externals/rl_games/setup.py
"""Setup script for rl_games""" import sys import os import pathlib from setuptools import setup, find_packages # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() print(find_packages()) setup(name='rl-games', long_description=README, long_description_content_type="text/markdown", url="https://github.com/Denys88/rl_games", packages = ['.','rl_games','docs'], package_data={'rl_games':['*'],'docs':['*'],}, version='1.1.0', author='Denys Makoviichuk, Viktor Makoviichuk', author_email='[email protected], [email protected]', license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], #packages=["rlg"], include_package_data=True, install_requires=[ # this setup is only for pytorch # 'gym>=0.17.2', 'numpy>=1.16.0', 'tensorboard>=1.14.0', 'tensorboardX>=1.6', 'setproctitle', 'psutil', 'pyyaml' ], )
1,300
Python
27.91111
70
0.559231
NVlabs/DiffRL/externals/rl_games/runner.py
import numpy as np import argparse, copy, os, yaml import ray, signal os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false" #import warnings #warnings.filterwarnings("error") if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument("-tf", "--tf", required=False, help="run tensorflow runner", action='store_true') ap.add_argument("-t", "--train", required=False, help="train network", action='store_true') ap.add_argument("-p", "--play", required=False, help="play(test) network", action='store_true') ap.add_argument("-c", "--checkpoint", required=False, help="path to checkpoint") ap.add_argument("-f", "--file", required=True, help="path to config") ap.add_argument("-na", "--num_actors", type=int, default=0, required=False, help="number of envs running in parallel, if larger than 0 will overwrite the value in yaml config") os.makedirs("nn", exist_ok=True) os.makedirs("runs", exist_ok=True) args = vars(ap.parse_args()) config_name = args['file'] print('Loading config: ', config_name) with open(config_name, 'r') as stream: config = yaml.safe_load(stream) if args['num_actors'] > 0: config['params']['config']['num_actors'] = args['num_actors'] if args['tf']: from rl_games.tf14_runner import Runner else: from rl_games.torch_runner import Runner ray.init(object_store_memory=1024*1024*1000) #signal.signal(signal.SIGINT, exit_gracefully) runner = Runner() try: runner.load(config) except yaml.YAMLError as exc: print(exc) runner.reset() runner.run(args) ray.shutdown()
1,739
Python
33.799999
120
0.615296
NVlabs/DiffRL/externals/rl_games/README.md
# RL Games: High performance RL library ## Papers and related links * Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning: https://arxiv.org/abs/2108.10470 * Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger: https://s2r2-ig.github.io/ https://arxiv.org/abs/2108.09779 * Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? <https://arxiv.org/abs/2011.09533> ## Some results on interesting environments * [NVIDIA Isaac Gym](docs/ISAAC_GYM.md) ![Ant_running](https://user-images.githubusercontent.com/463063/125260924-a5969800-e2b5-11eb-931c-116cc90d4bbe.gif) ![Humanoid_running](https://user-images.githubusercontent.com/463063/125266095-4edf8d00-e2ba-11eb-9c1a-4dc1524adf71.gif) ![Allegro_Hand_400](https://user-images.githubusercontent.com/463063/125261559-38373700-e2b6-11eb-80eb-b250a0693f0b.gif) ![Shadow_Hand_OpenAI](https://user-images.githubusercontent.com/463063/125262637-328e2100-e2b7-11eb-99af-ea546a53f66a.gif) * [Starcraft 2 Multi Agents](docs/SMAC.md) * [BRAX](docs/BRAX.md) * [Old TF1.x results](docs/BRAX.md) ## Config file * [Configuration](docs/CONFIG_PARAMS.md) Implemented in Pytorch: * PPO with the support of asymmetric actor-critic variant * Support of end-to-end GPU accelerated training pipeline with Isaac Gym and Brax * Masked actions support * Multi-agent training, decentralized and centralized critic variants * Self-play Implemented in Tensorflow 1.x (not updates now): * Rainbow DQN * A2C * PPO # Installation For maximum training performance a preliminary installation of Pytorch 1.9+ with CUDA 11.1 is highly recommended: ```conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia``` or: ```pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.htm``` Then: ```pip install rl-games``` # Training **NVIDIA Isaac Gym** Download and follow the installation instructions from https://developer.nvidia.com/isaac-gym Run from ```python/rlgpu``` directory: Ant ```python rlg_train.py --task Ant --headless``` ```python rlg_train.py --task Ant --play --checkpoint nn/Ant.pth --num_envs 100``` Humanoid ```python rlg_train.py --task Humanoid --headless``` ```python rlg_train.py --task Humanoid --play --checkpoint nn/Humanoid.pth --num_envs 100``` Shadow Hand block orientation task ```python rlg_train.py --task ShadowHand --headless``` ```python rlg_train.py --task ShadowHand --play --checkpoint nn/ShadowHand.pth --num_envs 100``` **Atari Pong** ```python runner.py --train --file rl_games/configs/atari/ppo_pong.yaml``` ```python runner.py --play --file rl_games/configs/atari/ppo_pong.yaml --checkpoint nn/PongNoFrameskip.pth``` **Brax Ant** ```python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml``` ```python runner.py --play --file rl_games/configs/atari/ppo_ant.yaml --checkpoint nn/Ant_brax.pth``` # Release Notes 1.1.0 * Added to pypi: ```pip install rl-games``` * Added reporting env (sim) step fps, without policy inference. Improved naming. * Renames in yaml config for better readability: steps_num to horizon_length amd lr_threshold to kl_threshold # Troubleshouting * Some of the supported envs are not installed with setup.py, you need to manually install them * Starting from rl-games 1.1.0 old yaml configs won't be compatible with the new version: * ```steps_num``` should be changed to ```horizon_length``` amd ```lr_threshold``` to ```kl_threshold```
3,558
Markdown
35.690721
151
0.737493
NVlabs/DiffRL/externals/rl_games/tests/simple_test.py
import pytest def test_true(): assert True
48
Python
8.799998
16
0.6875
NVlabs/DiffRL/externals/rl_games/docs/SMAC.md
## Starcraft 2 Multiple Agents Results * Starcraft 2 Multiple Agents Results with PPO (https://github.com/oxwhirl/smac) * Every agent was controlled independently and has restricted information * All the environments were trained with a default difficulty level 7 * No curriculum, just baseline PPO * Full state information wasn't used for critic, actor and critic recieved the same agent observations * Most results are significantly better by win rate and were trained on a single PC much faster than QMIX (https://arxiv.org/pdf/1902.04043.pdf), MAVEN (https://arxiv.org/pdf/1910.07483.pdf) or QTRAN * No hyperparameter search * 4 frames + conv1d actor-critic network * Miniepoch num was set to 1, higher numbers didn't work * Simple MLP networks didnot work good on hard envs [![Watch the video](pictures/smac/mmm2.gif)](https://www.youtube.com/watch?v=F_IfFz-s-iQ) # How to run configs: # Pytorch * ```python runner.py --train --file rl_games/configs/smac/3m_torch.yaml``` * ```python runner.py --play --file rl_games/configs/smac/3m_torch.yaml --checkpoint 'nn/3m_cnn'``` # Tensorflow * ```python runner.py --tf --train --file rl_games/configs/smac/3m_torch.yaml``` * ```python runner.py --tf --play --file rl_games/configs/smac/3m_torch.yaml --checkpoint 'nn/3m_cnn'``` * ```tensorboard --logdir runs``` # Results on some environments: * 2m_vs_1z took near 2 minutes to achive 100% WR * corridor took near 2 hours for 95+% WR * MMM2 4 hours for 90+% WR * 6h_vs_8z got 82% WR after 8 hours of training * 5m_vs_6m got 72% WR after 8 hours of training # Plots: FPS in these plots is calculated on per env basis except MMM2 (it was scaled by number of agents which is 10), to get a win rate per number of environmental steps info, the same as used in plots in QMIX, MAVEN, QTRAN or Deep Coordination Graphs (https://arxiv.org/pdf/1910.00091.pdf) papers FPS numbers under the horizontal axis should be devided by number of agents in player's team. * 2m_vs_1z: ![2m_vs_1z](pictures/smac/2m_vs_1z.png) * 3s5z_vs_3s6z: ![3s5z_vs_3s6z](pictures/smac/3s5z_vs_3s6z.png) * 3s_vs_5z: ![3s_vs_5z](pictures/smac/3s_vs_5z.png) * corridor: ![corridor](pictures/smac/corridor.png) * 5m_vs_6m: ![5m_vs_6m](pictures/smac/5m_vs_6m.png) * MMM2: ![MMM2](pictures/smac/MMM2.png)
2,266
Markdown
48.282608
384
0.735658
NVlabs/DiffRL/externals/rl_games/docs/OTHER.md
## Old Tensorflow results * Double dueling DQN vs DQN with the same parameters ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/dqn_vs_dddqn.png) Near 90 minutes to learn with this setup. * Different DQN Configurations tests Light grey is noisy 1-step dddqn. Noisy 3-step dddqn was even faster. Best network (configuration 5) needs near 20 minutes to learn, on NVIDIA 1080. Currently the best setup for pong is noisy 3-step double dueling network. In pong_runs.py different experiments could be found. Less then 200k frames to take score > 18. ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/pong_dqn.png) DQN has more optimistic Q value estimations. # Other Games Results This results are not stable. Just best games, for good average results you need to train network more then 10 million steps. Some games need 50m steps. * 5 million frames two step noisy double dueling dqn: [![Watch the video](https://j.gifs.com/K1OL6r.gif)](https://youtu.be/Lu9Cm9K_6ms) * Random lucky game in Space Invaders after less then one hour learning: [![Watch the video](https://j.gifs.com/D1RQE5.gif)](https://www.youtube.com/watch?v=LO0RL437rh4) # A2C and PPO Results * More than 2 hours for Pong to achieve 20 score with one actor playing. * 8 Hours for Supermario lvl1 [![Watch the video](https://j.gifs.com/nxOYyp.gif)](https://www.youtube.com/watch?v=T9ujS3HIvMY) * PPO with LSTM layers [![Watch the video](https://j.gifs.com/YWV9W0.gif)](https://www.youtube.com/watch?v=fjY4AWbmhHg) ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/mario_random_stages.png)
1,627
Markdown
36.860464
124
0.75968
NVlabs/DiffRL/externals/rl_games/docs/BRAX.md
# Brax (https://github.com/google/brax) ## How to run: * **Ant** ```python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml``` * **Humanoid** ```python runner.py --train --file rl_games/configs/brax/ppo_humanoid.yaml``` ## Visualization: * run **brax_visualization.ipynb** ## Results: * **Ant** fps step: 1692066.6 fps total: 885603.1 ![Ant](pictures/brax/brax_ant.jpg) * **Humanoid** fps step: 1244450.3 fps total: 661064.5 ![Humanoid](pictures/brax/brax_humanoid.jpg) * **ur5e** fps step: 1116872.3 fps total: 627117.0 ![Humanoid](pictures/brax/brax_ur5e.jpg) ![Alt Text](pictures/brax/humanoid.gif) ![Alt Text](pictures/brax/ur5e.gif)
672
Markdown
34.421051
92
0.671131
NVlabs/DiffRL/externals/rl_games/docs/ISAAC_GYM.md
## Isaac Gym Results https://developer.nvidia.com/isaac-gym Coming.
69
Markdown
12.999997
38
0.753623
NVlabs/DiffRL/externals/rl_games/docs/CONFIG_PARAMS.md
# Yaml Config Description Coming.
37
Markdown
8.499998
27
0.72973
NVlabs/DiffRL/externals/rl_games/rl_games/torch_runner.py
import numpy as np import copy import torch import yaml from rl_games import envs from rl_games.common import object_factory from rl_games.common import env_configurations from rl_games.common import experiment from rl_games.common import tr_helpers from rl_games.algos_torch import network_builder from rl_games.algos_torch import model_builder from rl_games.algos_torch import a2c_continuous from rl_games.algos_torch import a2c_discrete from rl_games.algos_torch import players from rl_games.common.algo_observer import DefaultAlgoObserver from rl_games.algos_torch import sac_agent class Runner: def __init__(self, algo_observer=None): self.algo_factory = object_factory.ObjectFactory() self.algo_factory.register_builder('a2c_continuous', lambda **kwargs : a2c_continuous.A2CAgent(**kwargs)) self.algo_factory.register_builder('a2c_discrete', lambda **kwargs : a2c_discrete.DiscreteA2CAgent(**kwargs)) self.algo_factory.register_builder('sac', lambda **kwargs: sac_agent.SACAgent(**kwargs)) #self.algo_factory.register_builder('dqn', lambda **kwargs : dqnagent.DQNAgent(**kwargs)) self.player_factory = object_factory.ObjectFactory() self.player_factory.register_builder('a2c_continuous', lambda **kwargs : players.PpoPlayerContinuous(**kwargs)) self.player_factory.register_builder('a2c_discrete', lambda **kwargs : players.PpoPlayerDiscrete(**kwargs)) self.player_factory.register_builder('sac', lambda **kwargs : players.SACPlayer(**kwargs)) #self.player_factory.register_builder('dqn', lambda **kwargs : players.DQNPlayer(**kwargs)) self.model_builder = model_builder.ModelBuilder() self.network_builder = network_builder.NetworkBuilder() self.algo_observer = algo_observer torch.backends.cudnn.benchmark = True def reset(self): pass def load_config(self, params): self.seed = params.get('seed', None) self.algo_params = params['algo'] self.algo_name = self.algo_params['name'] self.load_check_point = params['load_checkpoint'] self.exp_config = None if self.seed: torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) np.random.seed(self.seed) if self.load_check_point: print('Found checkpoint') print(params['load_path']) self.load_path = params['load_path'] self.model = self.model_builder.load(params) self.config = copy.deepcopy(params['config']) self.config['reward_shaper'] = tr_helpers.DefaultRewardsShaper(**self.config['reward_shaper']) self.config['network'] = self.model self.config['logdir'] = params['general'].get('logdir', './') has_rnd_net = self.config.get('rnd_config', None) != None if has_rnd_net: print('Adding RND Network') network = self.model_builder.network_factory.create(params['config']['rnd_config']['network']['name']) network.load(params['config']['rnd_config']['network']) self.config['rnd_config']['network'] = network has_central_value_net = self.config.get('central_value_config', None) != None if has_central_value_net: print('Adding Central Value Network') network = self.model_builder.network_factory.create(params['config']['central_value_config']['network']['name']) network.load(params['config']['central_value_config']['network']) self.config['central_value_config']['network'] = network def load(self, yaml_conf): self.default_config = yaml_conf['params'] self.load_config(copy.deepcopy(self.default_config)) if 'experiment_config' in yaml_conf: self.exp_config = yaml_conf['experiment_config'] def get_prebuilt_config(self): return self.config def run_train(self): print('Started to train') if self.algo_observer is None: self.algo_observer = DefaultAlgoObserver() if self.exp_config: self.experiment = experiment.Experiment(self.default_config, self.exp_config) exp_num = 0 exp = self.experiment.get_next_config() while exp is not None: exp_num += 1 print('Starting experiment number: ' + str(exp_num)) self.reset() self.load_config(exp) if 'features' not in self.config: self.config['features'] = {} self.config['features']['observer'] = self.algo_observer #if 'soft_augmentation' in self.config['features']: # self.config['features']['soft_augmentation'] = SoftAugmentation(**self.config['features']['soft_augmentation']) agent = self.algo_factory.create(self.algo_name, base_name='run', config=self.config) self.experiment.set_results(*agent.train()) exp = self.experiment.get_next_config() else: self.reset() self.load_config(self.default_config) if 'features' not in self.config: self.config['features'] = {} self.config['features']['observer'] = self.algo_observer #if 'soft_augmentation' in self.config['features']: # self.config['features']['soft_augmentation'] = SoftAugmentation(**self.config['features']['soft_augmentation']) agent = self.algo_factory.create(self.algo_name, base_name='run', config=self.config) if self.load_check_point and (self.load_path is not None): agent.restore(self.load_path) agent.train() def create_player(self): return self.player_factory.create(self.algo_name, config=self.config) def create_agent(self, obs_space, action_space): return self.algo_factory.create(self.algo_name, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) def run(self, args): if 'checkpoint' in args and args['checkpoint'] is not None: if len(args['checkpoint']) > 0: self.load_path = args['checkpoint'] if args['train']: self.run_train() elif args['play']: print('Started to play') player = self.create_player() player.restore(self.load_path) player.run() else: self.run_train()
6,556
Python
43.304054
148
0.624619
NVlabs/DiffRL/externals/rl_games/rl_games/tf14_runner.py
import tensorflow as tf import numpy as np import yaml import ray import copy from rl_games.common import object_factory from rl_games.common import env_configurations from rl_games.common import experiment from rl_games.common import tr_helpers from rl_games.algos_tf14 import network_builder from rl_games.algos_tf14 import model_builder from rl_games.algos_tf14 import a2c_continuous from rl_games.algos_tf14 import a2c_discrete from rl_games.algos_tf14 import dqnagent from rl_games.algos_tf14 import players class Runner: def __init__(self): self.algo_factory = object_factory.ObjectFactory() self.algo_factory.register_builder('a2c_continuous', lambda **kwargs : a2c_continuous.A2CAgent(**kwargs)) self.algo_factory.register_builder('a2c_discrete', lambda **kwargs : a2c_discrete.A2CAgent(**kwargs)) self.algo_factory.register_builder('dqn', lambda **kwargs : dqnagent.DQNAgent(**kwargs)) self.player_factory = object_factory.ObjectFactory() self.player_factory.register_builder('a2c_continuous', lambda **kwargs : players.PpoPlayerContinuous(**kwargs)) self.player_factory.register_builder('a2c_discrete', lambda **kwargs : players.PpoPlayerDiscrete(**kwargs)) self.player_factory.register_builder('dqn', lambda **kwargs : players.DQNPlayer(**kwargs)) self.model_builder = model_builder.ModelBuilder() self.network_builder = network_builder.NetworkBuilder() self.sess = None def reset(self): gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.8) config = tf.ConfigProto(gpu_options=gpu_options) tf.reset_default_graph() if self.sess: self.sess.close() self.sess = tf.InteractiveSession(config=config) def load_config(self, params): self.seed = params.get('seed', None) self.algo_params = params['algo'] self.algo_name = self.algo_params['name'] self.load_check_point = params['load_checkpoint'] self.exp_config = None if self.seed: tf.set_random_seed(self.seed) np.random.seed(self.seed) if self.load_check_point: self.load_path = params['load_path'] self.model = self.model_builder.load(params) self.config = copy.deepcopy(params['config']) self.config['reward_shaper'] = tr_helpers.DefaultRewardsShaper(**self.config['reward_shaper'], is_torch=False) self.config['network'] = self.model def load(self, yaml_conf): self.default_config = yaml_conf['params'] self.load_config(copy.deepcopy(self.default_config)) if 'experiment_config' in yaml_conf: self.exp_config = yaml_conf['experiment_config'] def get_prebuilt_config(self): return self.config def run_train(self): print('Started to train') ray.init(object_store_memory=1024*1024*1000) shapes = env_configurations.get_obs_and_action_spaces_from_config(self.config) obs_space = shapes['observation_space'] action_space = shapes['action_space'] print('obs_space:', obs_space) print('action_space:', action_space) if self.exp_config: self.experiment = experiment.Experiment(self.default_config, self.exp_config) exp_num = 0 exp = self.experiment.get_next_config() while exp is not None: exp_num += 1 print('Starting experiment number: ' + str(exp_num)) self.reset() self.load_config(exp) agent = self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) self.experiment.set_results(*agent.train()) exp = self.experiment.get_next_config() else: self.reset() self.load_config(self.default_config) agent = self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) if self.load_check_point or (self.load_path is not None): agent.restore(self.load_path) agent.train() def create_player(self): return self.player_factory.create(self.algo_name, sess=self.sess, config=self.config) def create_agent(self, obs_space, action_space): return self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) def run(self, args): if 'checkpoint' in args: self.load_path = args['checkpoint'] if args['train']: self.run_train() elif args['play']: print('Started to play') player = self.player_factory.create(self.algo_name, sess=self.sess, config=self.config) player.restore(self.load_path) player.run() ray.shutdown()
5,099
Python
39.8
175
0.643656
NVlabs/DiffRL/externals/rl_games/rl_games/envs/test_network.py
import torch from torch import nn import torch.nn.functional as F class TestNet(nn.Module): def __init__(self, params, **kwargs): nn.Module.__init__(self) actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') num_inputs = 0 assert(type(input_shape) is dict) for k,v in input_shape.items(): num_inputs +=v[0] self.central_value = params.get('central_value', False) self.value_size = kwargs.pop('value_size', 1) self.linear1 = nn.Linear(num_inputs, 256) self.linear2 = nn.Linear(256, 128) self.linear3 = nn.Linear(128, 64) self.mean_linear = nn.Linear(64, actions_num) self.value_linear = nn.Linear(64, 1) def is_rnn(self): return False def forward(self, obs): obs = obs['obs'] obs = torch.cat([obs['pos'], obs['info']], axis=-1) x = F.relu(self.linear1(obs)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) action = self.mean_linear(x) value = self.value_linear(x) if self.central_value: return value, None return action, value, None from rl_games.algos_torch.network_builder import NetworkBuilder class TestNetBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params def build(self, name, **kwargs): return TestNet(self.params, **kwargs) def __call__(self, name, **kwargs): return self.build(name, **kwargs)
1,596
Python
28.036363
63
0.589599
NVlabs/DiffRL/externals/rl_games/rl_games/envs/smac_env.py
import gym import numpy as np from smac.env import StarCraft2Env class SMACEnv(gym.Env): def __init__(self, name="3m", **kwargs): gym.Env.__init__(self) self.seed = kwargs.pop('seed', None) self.reward_sparse = kwargs.get('reward_sparse', False) self.use_central_value = kwargs.pop('central_value', False) self.random_invalid_step = kwargs.pop('random_invalid_step', False) self.replay_save_freq = kwargs.pop('replay_save_freq', 10000) self.apply_agent_ids = kwargs.pop('apply_agent_ids', False) self.env = StarCraft2Env(map_name=name, seed=self.seed, **kwargs) self.env_info = self.env.get_env_info() self._game_num = 0 self.n_actions = self.env_info["n_actions"] self.n_agents = self.env_info["n_agents"] self.action_space = gym.spaces.Discrete(self.n_actions) one_hot_agents = 0 if self.apply_agent_ids: one_hot_agents = self.n_agents self.observation_space = gym.spaces.Box(low=0, high=1, shape=(self.env_info['obs_shape']+one_hot_agents, ), dtype=np.float32) self.state_space = gym.spaces.Box(low=0, high=1, shape=(self.env_info['state_shape'], ), dtype=np.float32) self.obs_dict = {} def _preproc_state_obs(self, state, obs): # todo: remove from self if self.apply_agent_ids: num_agents = self.n_agents obs = np.array(obs) all_ids = np.eye(num_agents, dtype=np.float32) obs = np.concatenate([obs, all_ids], axis=-1) self.obs_dict["obs"] = np.array(obs) self.obs_dict["state"] = np.array(state) if self.use_central_value: return self.obs_dict else: return self.obs_dict["obs"] def get_number_of_agents(self): return self.n_agents def reset(self): if self._game_num % self.replay_save_freq == 1: print('saving replay') self.env.save_replay() self._game_num += 1 obs, state = self.env.reset() # rename, to think remove obs_dict = self._preproc_state_obs(state, obs) return obs_dict def _preproc_actions(self, actions): actions = actions.copy() rewards = np.zeros_like(actions) mask = self.get_action_mask() for ind, action in enumerate(actions, start=0): avail_actions = np.nonzero(mask[ind])[0] if action not in avail_actions: actions[ind] = np.random.choice(avail_actions) #rewards[ind] = -0.05 return actions, rewards def step(self, actions): fixed_rewards = None if self.random_invalid_step: actions, fixed_rewards = self._preproc_actions(actions) reward, done, info = self.env.step(actions) if done: battle_won = info.get('battle_won', False) if not battle_won and self.reward_sparse: reward = -1.0 obs = self.env.get_obs() state = self.env.get_state() obses = self._preproc_state_obs(state, obs) rewards = np.repeat (reward, self.n_agents) dones = np.repeat (done, self.n_agents) if fixed_rewards is not None: rewards += fixed_rewards return obses, rewards, dones, info def get_action_mask(self): return np.array(self.env.get_avail_actions(), dtype=np.bool) def has_action_mask(self): return not self.random_invalid_step
3,500
Python
34.01
133
0.587714
NVlabs/DiffRL/externals/rl_games/rl_games/envs/connect4_selfplay.py
import gym import numpy as np from pettingzoo.classic import connect_four_v0 import yaml from rl_games.torch_runner import Runner import os from collections import deque class ConnectFourSelfPlay(gym.Env): def __init__(self, name="connect_four_v0", **kwargs): gym.Env.__init__(self) self.name = name self.is_determenistic = kwargs.pop('is_determenistic', False) self.is_human = kwargs.pop('is_human', False) self.random_agent = kwargs.pop('random_agent', False) self.config_path = kwargs.pop('config_path') self.agent = None self.env = connect_four_v0.env()#gym.make(name, **kwargs) self.action_space = self.env.action_spaces['player_0'] observation_space = self.env.observation_spaces['player_0'] shp = observation_space.shape self.observation_space = gym.spaces.Box(low=0, high=1, shape=(shp[:-1] + (shp[-1] * 2,)), dtype=np.uint8) self.obs_deque = deque([], maxlen=2) self.agent_id = 0 def _get_legal_moves(self, agent_id): name = 'player_0' if agent_id == 0 else 'player_1' action_ids = self.env.infos[name]['legal_moves'] mask = np.zeros(self.action_space.n, dtype = np.bool) mask[action_ids] = True return mask, action_ids def env_step(self, action): obs = self.env.step(action) info = {} name = 'player_0' if self.agent_id == 0 else 'player_1' reward = self.env.rewards[name] done = self.env.dones[name] return obs, reward, done, info def get_obs(self): return np.concatenate(self.obs_deque,-1).astype(np.uint8) * 255 def reset(self): if self.agent == None: self.create_agent(self.config_path) self.agent_id = np.random.randint(2) obs = self.env.reset() self.obs_deque.append(obs) self.obs_deque.append(obs) if self.agent_id == 1: op_obs = self.get_obs() op_obs = self.agent.obs_to_torch(op_obs) mask, ids = self._get_legal_moves(0) if self.is_human: self.render() opponent_action = int(input()) else: if self.random_agent: opponent_action = np.random.choice(ids, 1)[0] else: opponent_action = self.agent.get_masked_action(op_obs, mask, self.is_determenistic).item() obs, _, _, _ = self.env_step(opponent_action) self.obs_deque.append(obs) return self.get_obs() def create_agent(self, config): with open(config, 'r') as stream: config = yaml.safe_load(stream) runner = Runner() runner.load(config) config = runner.get_prebuilt_config() #'RAYLIB has bug here, CUDA_VISIBLE_DEVICES become unset' if 'CUDA_VISIBLE_DEVICES' in os.environ: os.environ.pop('CUDA_VISIBLE_DEVICES') self.agent = runner.create_player() self.agent.model.eval() def step(self, action): obs, reward, done, info = self.env_step(action) self.obs_deque.append(obs) if done: if reward == 1: info['battle_won'] = 1 else: info['battle_won'] = 0 return self.get_obs(), reward, done, info op_obs = self.get_obs() op_obs = self.agent.obs_to_torch(op_obs) mask, ids = self._get_legal_moves(1-self.agent_id) if self.is_human: self.render() opponent_action = int(input()) else: if self.random_agent: opponent_action = np.random.choice(ids, 1)[0] else: opponent_action = self.agent.get_masked_action(op_obs, mask, self.is_determenistic).item() obs, reward, done,_ = self.env_step(opponent_action) if done: if reward == -1: info['battle_won'] = 0 else: info['battle_won'] = 1 self.obs_deque.append(obs) return self.get_obs(), reward, done, info def render(self, mode='ansi'): self.env.render(mode) def update_weights(self, weigths): self.agent.set_weights(weigths) def get_action_mask(self): mask, _ = self._get_legal_moves(self.agent_id) return mask def has_action_mask(self): return True
4,505
Python
33.396946
113
0.552719
NVlabs/DiffRL/externals/rl_games/rl_games/envs/__init__.py
from rl_games.envs.connect4_network import ConnectBuilder from rl_games.envs.test_network import TestNetBuilder from rl_games.algos_torch import model_builder model_builder.register_network('connect4net', ConnectBuilder) model_builder.register_network('testnet', TestNetBuilder)
282
Python
30.444441
61
0.833333
NVlabs/DiffRL/externals/rl_games/rl_games/envs/connect4_network.py
import torch from torch import nn import torch.nn.functional as F class ConvBlock(nn.Module): def __init__(self): super(ConvBlock, self).__init__() self.action_size = 7 self.conv1 = nn.Conv2d(4, 128, 3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(128) def forward(self, s): s = s['obs'].contiguous() #s = s.view(-1, 3, 6, 7) # batch_size x channels x board_x x board_y s = F.relu(self.bn1(self.conv1(s))) return s class ResBlock(nn.Module): def __init__(self, inplanes=128, planes=128, stride=1, downsample=None): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) def forward(self, x): residual = x out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += residual out = F.relu(out) return out class OutBlock(nn.Module): def __init__(self): super(OutBlock, self).__init__() self.conv = nn.Conv2d(128, 3, kernel_size=1) # value head self.bn = nn.BatchNorm2d(3) self.fc1 = nn.Linear(3*6*7, 32) self.fc2 = nn.Linear(32, 1) self.conv1 = nn.Conv2d(128, 32, kernel_size=1) # policy head self.bn1 = nn.BatchNorm2d(32) self.fc = nn.Linear(6*7*32, 7) def forward(self,s): v = F.relu(self.bn(self.conv(s))) # value head v = v.view(-1, 3*6*7) # batch_size X channel X height X width v = F.relu(self.fc1(v)) v = F.relu(self.fc2(v)) v = torch.tanh(v) p = F.relu(self.bn1(self.conv1(s))) # policy head p = p.view(-1, 6*7*32) p = self.fc(p) return p, v, None class ConnectNet(nn.Module): def __init__(self, blocks): super(ConnectNet, self).__init__() self.blocks = blocks self.conv = ConvBlock() for block in range(self.blocks): setattr(self, "res_%i" % block,ResBlock()) self.outblock = OutBlock() def is_rnn(self): return False def forward(self,s): s = s.permute((0, 3, 1, 2)) s = self.conv(s) for block in range(self.blocks): s = getattr(self, "res_%i" % block)(s) s = self.outblock(s) return s from rl_games.algos_torch.network_builder import NetworkBuilder class ConnectBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params self.blocks = params['blocks'] def build(self, name, **kwargs): return ConnectNet(self.blocks) def __call__(self, name, **kwargs): return self.build(name, **kwargs)
2,992
Python
28.93
78
0.558489
NVlabs/DiffRL/externals/rl_games/rl_games/envs/brax.py
from rl_games.common.ivecenv import IVecEnv import gym import numpy as np import torch import torch.utils.dlpack as tpack def jax_to_torch(tensor): from jax._src.dlpack import (to_dlpack,) tensor = to_dlpack(tensor) tensor = tpack.from_dlpack(tensor) return tensor def torch_to_jax(tensor): from jax._src.dlpack import (from_dlpack,) tensor = tpack.to_dlpack(tensor) tensor = from_dlpack(tensor) return tensor class BraxEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): import brax from brax import envs import jax import jax.numpy as jnp self.batch_size = num_actors env_fn = envs.create_fn(env_name=kwargs.pop('env_name', 'ant')) self.env = env_fn( action_repeat=1, batch_size=num_actors, episode_length=kwargs.pop('episode_length', 1000)) obs_high = np.inf * np.ones(self.env.observation_size) self.observation_space = gym.spaces.Box(-obs_high, obs_high, dtype=np.float32) action_high = np.ones(self.env.action_size) self.action_space = gym.spaces.Box(-action_high, action_high, dtype=np.float32) def step(first_state, state, action): def test_done(a, b): if a is first_state.done or a is first_state.metrics or a is first_state.reward: return b test_shape = [a.shape[0],] + [1 for _ in range(len(a.shape) - 1)] return jnp.where(jnp.reshape(state.done, test_shape), a, b) state = self.env.step(state, action) state = jax.tree_multimap(test_done, first_state, state) return state, state.obs, state.reward, state.done, {} def reset(key): state = self.env.reset(key) return state, state.obs self._reset = jax.jit(reset, backend='gpu') self._step = jax.jit(step, backend='gpu') def step(self, action): action = torch_to_jax(action) self.state, next_obs, reward, is_done, info = self._step(self.first_state, self.state, action) #next_obs = np.asarray(next_obs).astype(np.float32) #reward = np.asarray(reward).astype(np.float32) #is_done = np.asarray(is_done).astype(np.long) next_obs = jax_to_torch(next_obs) reward = jax_to_torch(reward) is_done = jax_to_torch(is_done) return next_obs, reward, is_done, info def reset(self): import jax import jax.numpy as jnp rng = jax.random.PRNGKey(seed=0) rng = jax.random.split(rng, self.batch_size) self.first_state, _ = self._reset(rng) self.state, obs = self._reset(rng) #obs = np.asarray(obs).astype(np.float32) return jax_to_torch(obs) def get_number_of_agents(self): return 1 def get_env_info(self): info = {} info['action_space'] = self.action_space info['observation_space'] = self.observation_space return info def create_brax_env(**kwargs): return BraxEnv("", kwargs.pop('num_actors', 256), **kwargs)
3,131
Python
32.677419
102
0.600767
NVlabs/DiffRL/externals/rl_games/rl_games/envs/multiwalker.py
import gym import numpy as np from pettingzoo.sisl import multiwalker_v6 import yaml from rl_games.torch_runner import Runner import os from collections import deque import rl_games.envs.connect4_network class MultiWalker(gym.Env): def __init__(self, name="multiwalker", **kwargs): gym.Env.__init__(self) self.name = name self.env = multiwalker_v6.parallel_env() self.use_central_value = kwargs.pop('central_value', False) self.use_prev_actions = kwargs.pop('use_prev_actions', False) self.apply_agent_ids = kwargs.pop('apply_agent_ids', False) self.add_timeouts = kwargs.pop('add_timeouts', False) self.action_space = self.env.action_spaces['walker_0'] self.steps_count = 0 obs_len = self.env.observation_spaces['walker_0'].shape[0] add_obs = 0 if self.apply_agent_ids: add_obs = 3 if self.use_prev_actions: obs_len += self.action_space.shape[0] self.observation_space = gym.spaces.Box(-1, 1, shape =(obs_len + add_obs,)) if self.use_central_value: self.state_space = gym.spaces.Box(-1, 1, shape =(obs_len*3,)) def step(self, action): self.steps_count += 1 actions = {'walker_0' : action[0], 'walker_1' : action[1], 'walker_2' : action[2],} obs, reward, done, info = self.env.step(actions) if self.use_prev_actions: obs = { k: np.concatenate([v, actions[k]]) for k,v in obs.items() } obses = np.stack([obs['walker_0'], obs['walker_1'], obs['walker_2']]) rewards = np.stack([reward['walker_0'], reward['walker_1'], reward['walker_2']]) dones = np.stack([done['walker_0'], done['walker_1'], done['walker_2']]) if self.apply_agent_ids: num_agents = 3 all_ids = np.eye(num_agents, dtype=np.float32) obses = np.concatenate([obses, all_ids], axis=-1) if self.use_central_value: states = np.concatenate([obs['walker_0'], obs['walker_1'], obs['walker_2']]) obses = { 'obs' : obses, 'state': states } return obses, rewards, dones, info def reset(self): obs = self.env.reset() self.steps_count = 0 if self.use_prev_actions: zero_actions = np.zeros(self.action_space.shape[0]) obs = { k: np.concatenate([v, zero_actions]) for k,v in obs.items() } obses = np.stack([obs['walker_0'], obs['walker_1'], obs['walker_2']]) if self.apply_agent_ids: num_agents = 3 all_ids = np.eye(num_agents, dtype=np.float32) obses = np.concatenate([obses, all_ids], axis=-1) if self.use_central_value: states = np.concatenate([obs['walker_0'], obs['walker_1'], obs['walker_2']]) obses = { 'obs' : obses, 'state': states } return obses def render(self, mode='ansi'): self.env.render(mode) def get_number_of_agents(self): return 3 def has_action_mask(self): return False
3,195
Python
37.047619
91
0.554617
NVlabs/DiffRL/externals/rl_games/rl_games/envs/slimevolley_selfplay.py
import gym import numpy as np import slimevolleygym import yaml from rl_games.torch_runner import Runner import os class SlimeVolleySelfplay(gym.Env): def __init__(self, name="SlimeVolleyDiscrete-v0", **kwargs): gym.Env.__init__(self) self.name = name self.is_determenistic = kwargs.pop('is_determenistic', False) self.config_path = kwargs.pop('config_path') self.agent = None self.pos_scale = 1 self.neg_scale = kwargs.pop('neg_scale', 1) self.sum_rewards = 0 self.env = gym.make(name, **kwargs) self.observation_space = self.env.observation_space self.action_space = self.env.action_space def reset(self): if self.agent == None: self.create_agent(self.config_path) obs = self.env.reset() self.opponent_obs = obs self.sum_rewards = 0 return obs def create_agent(self, config='rl_games/configs/ma/ppo_slime_self_play.yaml'): with open(config, 'r') as stream: config = yaml.safe_load(stream) runner = Runner() from rl_games.common.env_configurations import get_env_info config['params']['config']['env_info'] = get_env_info(self) runner.load(config) config = runner.get_prebuilt_config() 'RAYLIB has bug here, CUDA_VISIBLE_DEVICES become unset' os.environ['CUDA_VISIBLE_DEVICES'] = '0' self.agent = runner.create_player() def step(self, action): op_obs = self.agent.obs_to_torch(self.opponent_obs) opponent_action = self.agent.get_action(op_obs, self.is_determenistic).item() obs, reward, done, info = self.env.step(action, opponent_action) self.sum_rewards += reward if reward < 0: reward = reward * self.neg_scale self.opponent_obs = info['otherObs'] if done: info['battle_won'] = np.sign(self.sum_rewards) return obs, reward, done, info def render(self,mode): self.env.render(mode) def update_weights(self, weigths): self.agent.set_weights(weigths)
2,148
Python
32.578124
85
0.607542
NVlabs/DiffRL/externals/rl_games/rl_games/envs/test/__init__.py
import gym gym.envs.register( id='TestRnnEnv-v0', entry_point='rl_games.envs.test.rnn_env:TestRNNEnv', max_episode_steps=100500, ) gym.envs.register( id='TestAsymmetricEnv-v0', entry_point='rl_games.envs.test.test_asymmetric_env:TestAsymmetricCritic' )
279
Python
22.333331
78
0.709677
NVlabs/DiffRL/externals/rl_games/rl_games/envs/test/rnn_env.py
import gym import numpy as np class TestRNNEnv(gym.Env): def __init__(self, **kwargs): gym.Env.__init__(self) self.obs_dict = {} self.max_steps = kwargs.pop('max_steps', 21) self.show_time = kwargs.pop('show_time', 1) self.min_dist = kwargs.pop('min_dist', 2) self.max_dist = kwargs.pop('max_dist', 8) self.hide_object = kwargs.pop('hide_object', False) self.use_central_value = kwargs.pop('use_central_value', False) self.apply_dist_reward = kwargs.pop('apply_dist_reward', False) self.apply_exploration_reward = kwargs.pop('apply_exploration_reward', False) self.multi_head_value = kwargs.pop('multi_head_value', False) if self.multi_head_value: self.value_size = 2 else: self.value_size = 1 self.multi_discrete_space = kwargs.pop('multi_discrete_space', False) if self.multi_discrete_space: self.action_space = gym.spaces.Tuple([gym.spaces.Discrete(2),gym.spaces.Discrete(3)]) else: self.action_space = gym.spaces.Discrete(4) self.multi_obs_space = kwargs.pop('multi_obs_space', False) if self.multi_obs_space: spaces = { 'pos': gym.spaces.Box(low=0, high=1, shape=(2, ), dtype=np.float32), 'info': gym.spaces.Box(low=0, high=1, shape=(4, ), dtype=np.float32), } self.observation_space = gym.spaces.Dict(spaces) else: self.observation_space = gym.spaces.Box(low=0, high=1, shape=(6, ), dtype=np.float32) self.state_space = self.observation_space if self.apply_exploration_reward: pass self.reset() def get_number_of_agents(self): return 1 def reset(self): self._curr_steps = 0 self._current_pos = [0,0] bound = self.max_dist - self.min_dist rand_dir = - 2 * np.random.randint(0, 2, (2,)) + 1 self._goal_pos = rand_dir * np.random.randint(self.min_dist, self.max_dist+1, (2,)) obs = np.concatenate([self._current_pos, self._goal_pos, [1, 0]], axis=None) obs = obs.astype(np.float32) if self.multi_obs_space: obs = { 'pos': obs[:2], 'info': obs[2:] } if self.use_central_value: obses = {} obses["obs"] = obs obses["state"] = obs else: obses = obs return obses def step_categorical(self, action): if self._curr_steps > 1: if action == 0: self._current_pos[0] += 1 if action == 1: self._current_pos[0] -= 1 if action == 2: self._current_pos[1] += 1 if action == 3: self._current_pos[1] -= 1 def step_multi_categorical(self, action): if self._curr_steps > 1: if action[0] == 0: self._current_pos[0] += 1 if action[0] == 1: self._current_pos[0] -= 1 if action[1] == 0: self._current_pos[1] += 1 if action[1] == 1: self._current_pos[1] -= 1 if action[1] == 2: pass def step(self, action): info = {} self._curr_steps += 1 if self.multi_discrete_space: self.step_multi_categorical(action) else: self.step_categorical(action) reward = [0.0, 0.0] done = False dist = self._current_pos - self._goal_pos if (dist**2).sum() < 0.0001: reward[0] = 1.0 info = {'scores' : 1} done = True elif self._curr_steps == self.max_steps: info = {'scores' : 0} done = True dist_coef = -0.1 if self.apply_dist_reward: reward[1] = dist_coef * np.abs(dist).sum() / self.max_dist show_object = 0 if self.hide_object: obs = np.concatenate([self._current_pos, [0,0], [show_object, self._curr_steps]], axis=None) else: show_object = 1 obs = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None) obs = obs.astype(np.float32) #state = state.astype(np.float32) if self.multi_obs_space: obs = { 'pos': obs[:2], 'info': obs[2:] } if self.use_central_value: state = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None) obses = {} obses["obs"] = obs if self.multi_obs_space: obses["state"] = { 'pos': state[:2], 'info': state[2:] } else: obses["state"] = state.astype(np.float32) else: obses = obs if self.multi_head_value: pass else: reward = reward[0] + reward[1] return obses, np.array(reward).astype(np.float32), done, info def has_action_mask(self): return False
5,217
Python
34.020134
115
0.500096