file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
NVlabs/DiffRL/externals/rl_games/rl_games/envs/test/test_asymmetric_env.py
import gym import numpy as np from rl_games.common.wrappers import MaskVelocityWrapper class TestAsymmetricCritic(gym.Env): def __init__(self, wrapped_env_name, **kwargs): gym.Env.__init__(self) self.apply_mask = kwargs.pop('apply_mask', True) self.use_central_value = kwargs.pop('use_central_value', True) self.env = gym.make(wrapped_env_name) if self.apply_mask: if wrapped_env_name not in ["CartPole-v1", "Pendulum-v0", "LunarLander-v2", "LunarLanderContinuous-v2"]: raise 'unsupported env' self.mask = MaskVelocityWrapper(self.env, wrapped_env_name).mask else: self.mask = 1 self.n_agents = 1 self.use_central_value = True self.action_space = self.env.action_space self.observation_space = self.env.observation_space self.state_space = self.env.observation_space def get_number_of_agents(self): return self.n_agents def reset(self): obs = self.env.reset() obs_dict = {} obs_dict["obs"] = obs * self.mask obs_dict["state"] = obs if self.use_central_value: obses = obs_dict else: obses = obs_dict["obs"].astype(np.float32) return obses def step(self, actions): obs, rewards, dones, info = self.env.step(actions) obs_dict = {} obs_dict["obs"] = obs * self.mask obs_dict["state"] = obs if self.use_central_value: obses = obs_dict else: obses = obs_dict["obs"].astype(np.float32) return obses, rewards, dones, info def has_action_mask(self): return False
1,715
Python
31.377358
116
0.580758
NVlabs/DiffRL/externals/rl_games/rl_games/envs/diambra/diambra.py
import gym import numpy as np import os import random from diambra_environment.diambraGym import diambraGym from diambra_environment.makeDiambraEnv import make_diambra_env class DiambraEnv(gym.Env): def __init__(self, **kwargs): gym.Env.__init__(self) self.seed = kwargs.pop('seed', None) self.difficulty = kwargs.pop('difficulty', 3) self.env_path = kwargs.pop('env_path', "/home/trrrrr/Documents/github/ml/diambra/DIAMBRAenvironment-main") self.character = kwargs.pop('character', 'Raidou') self.frame_stack = kwargs.pop('frame_stack', 3) self.attacks_buttons = kwargs.pop('attacks_buttons', False) self._game_num = 0 self.n_agents = 1 self.rank = random.randint(0, 100500) repo_base_path = os.path.abspath(self.env_path) # Absolute path to your DIAMBRA environment env_kwargs = {} env_kwargs["gameId"] = "doapp" env_kwargs["roms_path"] = os.path.join(repo_base_path, "roms/") # Absolute path to roms env_kwargs["mame_diambra_step_ratio"] = 6 env_kwargs["render"] = False env_kwargs["lock_fps"] = False # Locks to 60 FPS env_kwargs["sound"] = env_kwargs["lock_fps"] and env_kwargs["render"] env_kwargs["player"] = "Random" env_kwargs["difficulty"] = self.difficulty env_kwargs["characters"] = [[self.character, "Random"], [self.character, "Random"]] env_kwargs["charOutfits"] = [2, 2] gym_kwargs = {} gym_kwargs["P2brain"] = None gym_kwargs["continue_game"] = 0.0 gym_kwargs["show_final"] = False gym_kwargs["gamePads"] = [None, None] gym_kwargs["actionSpace"] = ["discrete", "multiDiscrete"] #gym_kwargs["attackButCombinations"] = [False, False] gym_kwargs["attackButCombinations"] = [self.attacks_buttons, self.attacks_buttons] gym_kwargs["actBufLen"] = 12 wrapper_kwargs = {} wrapper_kwargs["hwc_obs_resize"] = [128, 128, 1] wrapper_kwargs["normalize_rewards"] = True wrapper_kwargs["clip_rewards"] = False wrapper_kwargs["frame_stack"] = self.frame_stack wrapper_kwargs["dilation"] = 1 wrapper_kwargs["scale"] = True wrapper_kwargs["scale_mod"] = 0 key_to_add = [] key_to_add.append("actionsBuf") key_to_add.append("ownHealth") key_to_add.append("oppHealth") key_to_add.append("ownPosition") key_to_add.append("oppPosition") key_to_add.append("stage") key_to_add.append("character") self.env = make_diambra_env(diambraGym, env_prefix="Train" + str(self.rank), seed= self.rank, diambra_kwargs=env_kwargs, diambra_gym_kwargs=gym_kwargs, wrapper_kwargs=wrapper_kwargs, key_to_add=key_to_add) self.observation_space = self.env.observation_space self.action_space = self.env.action_space def _preproc_state_obs(self, obs): return obs def reset(self): self._game_num += 1 obs = self.env.reset() # rename, to think remove obs_dict = self._preproc_state_obs(obs) return obs_dict def step(self, actions): obs, reward, done, info = self.env.step(actions) return obs, reward, done, info def has_action_mask(self): return False
3,496
Python
38.292134
114
0.588673
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/torch_ext.py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.optimizer import Optimizer numpy_to_torch_dtype_dict = { np.dtype('bool') : torch.bool, np.dtype('uint8') : torch.uint8, np.dtype('int8') : torch.int8, np.dtype('int16') : torch.int16, np.dtype('int32') : torch.int32, np.dtype('int64') : torch.int64, np.dtype('float16') : torch.float16, np.dtype('float32') : torch.float32, np.dtype('float64') : torch.float64, np.dtype('complex64') : torch.complex64, np.dtype('complex128') : torch.complex128, } torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma, reduce=True): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions if reduce: return kl.mean() else: return kl def mean_mask(input, mask, sum_mask): return (input * rnn_masks).sum() / sum_mask def shape_whc_to_cwh(shape): #if len(shape) == 2: # return (shape[1], shape[0]) if len(shape) == 3: return (shape[2], shape[0], shape[1]) return shape def safe_filesystem_op(func, *args, **kwargs): """ This is to prevent spurious crashes related to saving checkpoints or restoring from checkpoints in a Network Filesystem environment (i.e. NGC cloud or SLURM) """ num_attempts = 5 for attempt in range(num_attempts): try: return func(*args, **kwargs) except Exception as exc: print(f'Exception {exc} when trying to execute {func} with args:{args} and kwargs:{kwargs}...') wait_sec = 2 ** attempt print(f'Waiting {wait_sec} before trying again...') time.sleep(wait_sec) raise RuntimeError(f'Could not execute {func}, give up after {num_attempts} attempts...') def safe_save(state, filename): return safe_filesystem_op(torch.save, state, filename) def safe_load(filename): return safe_filesystem_op(torch.load, filename) def save_checkpoint(filename, state): print("=> saving checkpoint '{}'".format(filename + '.pth')) safe_save(state, filename + '.pth') def load_checkpoint(filename): print("=> loading checkpoint '{}'".format(filename)) state = safe_load(filename) return state def parameterized_truncated_normal(uniform, mu, sigma, a, b): normal = torch.distributions.normal.Normal(0, 1) alpha = (a - mu) / sigma beta = (b - mu) / sigma alpha_normal_cdf = normal.cdf(torch.from_numpy(np.array(alpha))) p = alpha_normal_cdf + (normal.cdf(torch.from_numpy(np.array(beta))) - alpha_normal_cdf) * uniform p = p.numpy() one = np.array(1, dtype=p.dtype) epsilon = np.array(np.finfo(p.dtype).eps, dtype=p.dtype) v = np.clip(2 * p - 1, -one + epsilon, one - epsilon) x = mu + sigma * np.sqrt(2) * torch.erfinv(torch.from_numpy(v)) x = torch.clamp(x, a, b) return x def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): return parameterized_truncated_normal(uniform, mu, sigma, a, b) def sample_truncated_normal(shape=(), mu=0.0, sigma=1.0, a=-2, b=2): return truncated_normal(torch.from_numpy(np.random.uniform(0, 1, shape)), mu, sigma, a, b) def variance_scaling_initializer(tensor, mode='fan_in',scale = 2.0): fan = torch.nn.init._calculate_correct_fan(tensor, mode) print(fan, scale) sigma = np.sqrt(scale / fan) with torch.no_grad(): tensor[:] = sample_truncated_normal(tensor.size(), sigma=sigma) return tensor def random_sample(obs_batch, prob): num_batches = obs_batch.size()[0] permutation = torch.randperm(num_batches, device=obs_batch.device) start = 0 end = int(prob * num_batches) indices = permutation[start:end] return torch.index_select(obs_batch, 0, indices) def mean_list(val): return torch.mean(torch.stack(val)) def apply_masks(losses, mask=None): sum_mask = None if mask is not None: mask = mask.unsqueeze(1) sum_mask = mask.numel()# #sum_mask = mask.sum() res_losses = [(l * mask).sum() / sum_mask for l in losses] else: res_losses = [torch.mean(l) for l in losses] return res_losses, sum_mask def normalization_with_masks(values, masks): sum_mask = masks.sum() values_mask = values * masks values_mean = values_mask.sum() / sum_mask min_sqr = ((((values_mask)**2)/sum_mask).sum() - ((values_mask/sum_mask).sum())**2) values_std = torch.sqrt(min_sqr * sum_mask / (sum_mask-1)) normalized_values = (values_mask - values_mean) / (values_std + 1e-8) return normalized_values class CoordConv2d(nn.Conv2d): pool = {} def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__(in_channels + 2, out_channels, kernel_size, stride, padding, dilation, groups, bias) @staticmethod def get_coord(x): key = int(x.size(0)), int(x.size(2)), int(x.size(3)), x.type() if key not in CoordConv2d.pool: theta = torch.Tensor([[[1, 0, 0], [0, 1, 0]]]) coord = torch.nn.functional.affine_grid(theta, torch.Size([1, 1, x.size(2), x.size(3)])).permute([0, 3, 1, 2]).repeat( x.size(0), 1, 1, 1).type_as(x) CoordConv2d.pool[key] = coord return CoordConv2d.pool[key] def forward(self, x): return torch.nn.functional.conv2d(torch.cat([x, self.get_coord(x).type_as(x)], 1), self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class LayerNorm2d(nn.Module): """ Layer norm the just works on the channel axis for a Conv2d Ref: - code modified from https://github.com/Scitator/Run-Skeleton-Run/blob/master/common/modules/LayerNorm.py - paper: https://arxiv.org/abs/1607.06450 Usage: ln = LayerNormConv(3) x = Variable(torch.rand((1,3,4,2))) ln(x).size() """ def __init__(self, features, eps=1e-6): super().__init__() self.register_buffer("gamma", torch.ones(features).unsqueeze(-1).unsqueeze(-1)) self.register_buffer("beta", torch.ones(features).unsqueeze(-1).unsqueeze(-1)) self.eps = eps self.features = features def _check_input_dim(self, input): if input.size(1) != self.gamma.nelement(): raise ValueError('got {}-feature tensor, expected {}' .format(input.size(1), self.features)) def forward(self, x): self._check_input_dim(x) x_flat = x.transpose(1,-1).contiguous().view((-1, x.size(1))) mean = x_flat.mean(0).unsqueeze(-1).unsqueeze(-1).expand_as(x) std = x_flat.std(0).unsqueeze(-1).unsqueeze(-1).expand_as(x) return self.gamma.expand_as(x) * (x - mean) / (std + self.eps) + self.beta.expand_as(x) class DiscreteActionsEncoder(nn.Module): def __init__(self, actions_max, mlp_out, emb_size, num_agents, use_embedding): super().__init__() self.actions_max = actions_max self.emb_size = emb_size self.num_agents = num_agents self.use_embedding = use_embedding if use_embedding: self.embedding = torch.nn.Embedding(actions_max, emb_size) else: self.emb_size = actions_max self.linear = torch.nn.Linear(self.emb_size * num_agents, mlp_out) def forward(self, discrete_actions): if self.use_embedding: emb = self.embedding(discrete_actions) else: emb = torch.nn.functional.one_hot(discrete_actions, num_classes=self.actions_max) emb = emb.view( -1, self.emb_size * self.num_agents).float() emb = self.linear(emb) return emb def get_model_gradients(model): grad_list = [] for param in model.parameters(): grad_list.append(param.grad) return grad_list def get_mean(v): if len(v) > 0: mean = np.mean(v) else: mean = 0 return mean class CategoricalMaskedNaive(torch.distributions.Categorical): def __init__(self, probs=None, logits=None, validate_args=None, masks=None): self.masks = masks if self.masks is None: super(CategoricalMasked, self).__init__(probs, logits, validate_args) else: inf_mask = torch.log(masks.float()) logits = logits + inf_mask super(CategoricalMasked, self).__init__(probs, logits, validate_args) def entropy(self): if self.masks is None: return super(CategoricalMasked, self).entropy() p_log_p = self.logits * self.probs p_log_p[p_log_p != p_log_p] = 0 return -p_log_p.sum(-1) class CategoricalMasked(torch.distributions.Categorical): def __init__(self, probs=None, logits=None, validate_args=None, masks=None): self.masks = masks if masks is None: super(CategoricalMasked, self).__init__(probs, logits, validate_args) else: self.device = self.masks.device logits = torch.where(self.masks, logits, torch.tensor(-1e+8).to(self.device)) super(CategoricalMasked, self).__init__(probs, logits, validate_args) def rsample(self): u = torch.distributions.Uniform(low=torch.zeros_like(self.logits, device = self.logits.device), high=torch.ones_like(self.logits, device = self.logits.device)).sample() #print(u.size(), self.logits.size()) rand_logits = self.logits -(-u.log()).log() return torch.max(rand_logits, axis=-1)[1] def entropy(self): if self.masks is None: return super(CategoricalMasked, self).entropy() p_log_p = self.logits * self.probs p_log_p = torch.where(self.masks, p_log_p, torch.tensor(0.0).to(self.device)) return -p_log_p.sum(-1) class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy() class IdentityRNN(nn.Module): def __init__(self, in_shape, out_shape): super(IdentityRNN, self).__init__() assert(in_shape == out_shape) self.identity = torch.nn.Identity() def forward(self, x, h): return self.identity(x), h
11,332
Python
35.092357
176
0.607395
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/sac_agent.py
from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import vecenv from rl_games.common import schedulers from rl_games.common import experience from torch.utils.tensorboard import SummaryWriter from datetime import datetime from torch import optim import torch from torch import nn import torch.nn.functional as F import numpy as np import time import os class SACAgent: def __init__(self, base_name, config): print(config) # TODO: Get obs shape and self.network self.base_init(base_name, config) self.num_seed_steps = config["num_seed_steps"] self.gamma = config["gamma"] self.critic_tau = config["critic_tau"] self.batch_size = config["batch_size"] self.init_alpha = config["init_alpha"] self.learnable_temperature = config["learnable_temperature"] self.replay_buffer_size = config["replay_buffer_size"] self.num_steps_per_episode = config.get("num_steps_per_episode", 1) self.normalize_input = config.get("normalize_input", False) self.max_env_steps = config.get("max_env_steps", 1000) # temporary, in future we will use other approach print(self.batch_size, self.num_actors, self.num_agents) self.num_frames_per_epoch = self.num_actors * self.num_steps_per_episode self.log_alpha = torch.tensor(np.log(self.init_alpha)).float().to(self.sac_device) self.log_alpha.requires_grad = True action_space = self.env_info['action_space'] self.actions_num = action_space.shape[0] self.action_range = [ float(self.env_info['action_space'].low.min()), float(self.env_info['action_space'].high.max()) ] obs_shape = torch_ext.shape_whc_to_cwh(self.obs_shape) net_config = { 'obs_dim': self.env_info["observation_space"].shape[0], 'action_dim': self.env_info["action_space"].shape[0], 'actions_num' : self.actions_num, 'input_shape' : obs_shape } self.model = self.network.build(net_config) self.model.to(self.sac_device) print("Number of Agents", self.num_actors, "Batch Size", self.batch_size) self.actor_optimizer = torch.optim.Adam(self.model.sac_network.actor.parameters(), lr=self.config['actor_lr'], betas=self.config.get("actor_betas", [0.9, 0.999])) self.critic_optimizer = torch.optim.Adam(self.model.sac_network.critic.parameters(), lr=self.config["critic_lr"], betas=self.config.get("critic_betas", [0.9, 0.999])) self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=self.config["alpha_lr"], betas=self.config.get("alphas_betas", [0.9, 0.999])) self.replay_buffer = experience.VectorizedReplayBuffer(self.env_info['observation_space'].shape, self.env_info['action_space'].shape, self.replay_buffer_size, self.sac_device) self.target_entropy_coef = config.get("target_entropy_coef", 0.5) self.target_entropy = self.target_entropy_coef * -self.env_info['action_space'].shape[0] print("Target entropy", self.target_entropy) self.step = 0 self.algo_observer = config['features']['observer'] # TODO: Is there a better way to get the maximum number of episodes? self.max_episodes = torch.ones(self.num_actors, device=self.sac_device)*self.num_steps_per_episode # self.episode_lengths = np.zeros(self.num_actors, dtype=int) if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.sac_device) def base_init(self, base_name, config): self.config = config self.env_config = config.get('env_config', {}) self.num_actors = config.get('num_actors', 1) self.env_name = config['env_name'] print("Env name:", self.env_name) self.env_info = config.get('env_info') if self.env_info is None: self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.env_info = self.vec_env.get_env_info() self.sac_device = config.get('device', 'cuda:0') #temporary: self.ppo_device = self.sac_device print('Env info:') print(self.env_info) self.rewards_shaper = config['reward_shaper'] self.observation_space = self.env_info['observation_space'] self.weight_decay = config.get('weight_decay', 0.0) #self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.c_loss = nn.MSELoss() # self.c2_loss = nn.SmoothL1Loss() self.save_best_after = config.get('save_best_after', 500) self.print_stats = config.get('print_stats', True) self.rnn_states = None self.name = base_name self.max_epochs = self.config.get('max_epochs', 1e6) self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_agents = self.env_info.get('agents', 1) self.obs_shape = self.observation_space.shape self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = torch_ext.AverageMeter(1, self.games_to_track).to(self.sac_device) self.game_lengths = torch_ext.AverageMeter(1, self.games_to_track).to(self.sac_device) self.obs = None self.min_alpha = torch.tensor(np.log(1)).float().to(self.sac_device) self.frame = 0 self.update_time = 0 self.last_mean_rewards = -100500 self.play_time = 0 self.epoch_num = 0 # self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) # print("Run Directory:", config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.experiment_dir = config.get('logdir', './') self.nn_dir = os.path.join(self.experiment_dir, 'nn') self.summaries_dir = os.path.join(self.experiment_dir, 'runs') os.makedirs(self.experiment_dir, exist_ok=True) os.makedirs(self.nn_dir, exist_ok=True) os.makedirs(self.summaries_dir, exist_ok=True) self.writer = SummaryWriter(self.summaries_dir) print("Run Directory:", self.summaries_dir) self.is_tensor_obses = None self.is_rnn = False self.last_rnn_indices = None self.last_state_indices = None def init_tensors(self): if self.observation_space.dtype == np.uint8: torch_dtype = torch.uint8 else: torch_dtype = torch.float32 batch_size = self.num_agents * self.num_actors self.current_rewards = torch.zeros(batch_size, dtype=torch.float32, device=self.sac_device) self.current_lengths = torch.zeros(batch_size, dtype=torch.long, device=self.sac_device) self.dones = torch.zeros((batch_size,), dtype=torch.uint8, device=self.sac_device) @property def alpha(self): return self.log_alpha.exp() @property def device(self): return self.sac_device def get_full_state_weights(self): state = self.get_weights() state['steps'] = self.step state['actor_optimizer'] = self.actor_optimizer.state_dict() state['critic_optimizer'] = self.critic_optimizer.state_dict() state['log_alpha_optimizer'] = self.log_alpha_optimizer.state_dict() return state def get_weights(self): state = {'actor': self.model.sac_network.actor.state_dict(), 'critic': self.model.sac_network.critic.state_dict(), 'critic_target': self.model.sac_network.critic_target.state_dict()} return state def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def set_weights(self, weights): self.model.sac_network.actor.load_state_dict(weights['actor']) self.model.sac_network.critic.load_state_dict(weights['critic']) self.model.sac_network.critic_target.load_state_dict(weights['critic_target']) if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) def set_full_state_weights(self, weights): self.set_weights(weights) self.step = weights['step'] self.actor_optimizer.load_state_dict(weights['actor_optimizer']) self.critic_optimizer.load_state_dict(weights['critic_optimizer']) self.log_alpha_optimizer.load_state_dict(weights['log_alpha_optimizer']) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): assert False def set_eval(self): self.model.eval() if self.normalize_input: self.running_mean_std.eval() def set_train(self): self.model.train() if self.normalize_input: self.running_mean_std.train() def update_critic(self, obs, action, reward, next_obs, not_done, step): with torch.no_grad(): dist = self.model.actor(next_obs) next_action = dist.rsample() log_prob = dist.log_prob(next_action).sum(-1, keepdim=True) target_Q1, target_Q2 = self.model.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha * log_prob target_Q = reward + (not_done * self.gamma * target_V) target_Q = target_Q.detach() # get current Q estimates current_Q1, current_Q2 = self.model.critic(obs, action) critic1_loss = self.c_loss(current_Q1, target_Q) critic2_loss = self.c_loss(current_Q2, target_Q) critic_loss = critic1_loss + critic2_loss self.critic_optimizer.zero_grad(set_to_none=True) critic_loss.backward() self.critic_optimizer.step() return critic_loss.detach(), critic1_loss.detach(), critic2_loss.detach() def update_actor_and_alpha(self, obs, step): for p in self.model.sac_network.critic.parameters(): p.requires_grad = False dist = self.model.actor(obs) action = dist.rsample() log_prob = dist.log_prob(action).sum(-1, keepdim=True) entropy = dist.entropy().sum(-1, keepdim=True).mean() actor_Q1, actor_Q2 = self.model.critic(obs, action) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (torch.max(self.alpha.detach(), self.min_alpha) * log_prob - actor_Q) actor_loss = actor_loss.mean() self.actor_optimizer.zero_grad(set_to_none=True) actor_loss.backward() self.actor_optimizer.step() for p in self.model.sac_network.critic.parameters(): p.requires_grad = True if self.learnable_temperature: alpha_loss = (self.alpha * (-log_prob - self.target_entropy).detach()).mean() self.log_alpha_optimizer.zero_grad(set_to_none=True) alpha_loss.backward() self.log_alpha_optimizer.step() else: alpha_loss = None return actor_loss.detach(), entropy.detach(), self.alpha.detach(), alpha_loss # TODO: maybe not self.alpha def soft_update_params(self, net, target_net, tau): for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def update(self, step): obs, action, reward, next_obs, done = self.replay_buffer.sample(self.batch_size) not_done = ~done obs = self.preproc_obs(obs) next_obs = self.preproc_obs(next_obs) critic_loss, critic1_loss, critic2_loss = self.update_critic(obs, action, reward, next_obs, not_done, step) actor_loss, entropy, alpha, alpha_loss = self.update_actor_and_alpha(obs, step) actor_loss_info = actor_loss, entropy, alpha, alpha_loss self.soft_update_params(self.model.sac_network.critic, self.model.sac_network.critic_target, self.critic_tau) return actor_loss_info, critic1_loss, critic2_loss def preproc_obs(self, obs): if isinstance(obs, dict): obs = obs['obs'] if self.normalize_input: obs = self.running_mean_std(obs) return obs def env_step(self, actions): obs, rewards, dones, infos = self.vec_env.step(actions) # (obs_space) -> (n, obs_space) self.step += self.num_actors if self.is_tensor_obses: return obs, rewards, dones, infos else: return torch.from_numpy(obs).to(self.sac_device), torch.from_numpy(rewards).to(self.sac_device), torch.from_numpy(dones).to(self.sac_device), infos def env_reset(self): with torch.no_grad(): obs = self.vec_env.reset() if self.is_tensor_obses is None: self.is_tensor_obses = torch.is_tensor(obs) print("Observations are tensors:", self.is_tensor_obses) if self.is_tensor_obses: return obs.to(self.sac_device) else: return torch.from_numpy(obs).to(self.sac_device) def act(self, obs, action_dim, sample=False): obs = self.preproc_obs(obs) dist = self.model.actor(obs) actions = dist.sample() if sample else dist.mean actions = actions.clamp(*self.action_range) assert actions.ndim == 2 return actions def extract_actor_stats(self, actor_losses, entropies, alphas, alpha_losses, actor_loss_info): actor_loss, entropy, alpha, alpha_loss = actor_loss_info actor_losses.append(actor_loss) entropies.append(entropy) if alpha_losses is not None: alphas.append(alpha) alpha_losses.append(alpha_loss) def play_steps(self, random_exploration=False): total_time_start = time.time() total_update_time = 0 total_time = 0 step_time = 0.0 actor_losses = [] entropies = [] alphas = [] alpha_losses = [] critic1_losses = [] critic2_losses = [] obs = self.obs for _ in range(self.num_steps_per_episode): self.set_eval() if random_exploration: action = torch.rand((self.num_actors, *self.env_info["action_space"].shape), device=self.sac_device) * 2 - 1 else: with torch.no_grad(): action = self.act(obs.float(), self.env_info["action_space"].shape, sample=True) step_start = time.time() with torch.no_grad(): next_obs, rewards, dones, infos = self.env_step(action) step_end = time.time() self.current_rewards += rewards self.current_lengths += 1 total_time += step_end - step_start step_time += (step_end - step_start) all_done_indices = dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) not_dones = 1.0 - dones.float() self.algo_observer.process_infos(infos, done_indices) no_timeouts = self.current_lengths != self.max_env_steps dones = dones * no_timeouts self.current_rewards = self.current_rewards * not_dones self.current_lengths = self.current_lengths * not_dones if isinstance(obs, dict): obs = obs['obs'] if isinstance(next_obs, dict): next_obs = next_obs['obs'] rewards = self.rewards_shaper(rewards) #if torch.min(obs) < -150 or torch.max(obs) > 150: # print('ATATATA') #else: self.replay_buffer.add(obs, action, torch.unsqueeze(rewards, 1), next_obs, torch.unsqueeze(dones, 1)) self.obs = obs = next_obs.clone() if not random_exploration: self.set_train() update_time_start = time.time() actor_loss_info, critic1_loss, critic2_loss = self.update(self.epoch_num) update_time_end = time.time() update_time = update_time_end - update_time_start self.extract_actor_stats(actor_losses, entropies, alphas, alpha_losses, actor_loss_info) critic1_losses.append(critic1_loss) critic2_losses.append(critic2_loss) else: update_time = 0 total_update_time += update_time total_time_end = time.time() total_time = total_time_end - total_time_start play_time = total_time - total_update_time return step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses def train_epoch(self): if self.epoch_num < self.num_seed_steps: step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.play_steps(random_exploration=True) else: step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.play_steps(random_exploration=False) return step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses def train(self): self.init_tensors() self.algo_observer.after_init(self) self.last_mean_rewards = -100500 total_time = 0 # rep_count = 0 self.frame = 0 self.obs = self.env_reset() while True: self.epoch_num += 1 step_time, play_time, update_time, epoch_total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.train_epoch() total_time += epoch_total_time scaled_time = epoch_total_time scaled_play_time = play_time curr_frames = self.num_frames_per_epoch self.frame += curr_frames frame = self.frame #TODO: Fix frame # print(frame) self.writer.add_scalar('performance/step_inference_rl_update_fps', curr_frames / scaled_time, frame) self.writer.add_scalar('performance/step_inference_fps', curr_frames / scaled_play_time, frame) self.writer.add_scalar('performance/step_fps', curr_frames / step_time, frame) self.writer.add_scalar('performance/rl_update_time', update_time, frame) self.writer.add_scalar('performance/step_inference_time', play_time, frame) self.writer.add_scalar('performance/step_time', step_time, frame) if self.epoch_num >= self.num_seed_steps: self.writer.add_scalar('losses/a_loss', torch_ext.mean_list(actor_losses).item(), frame) self.writer.add_scalar('losses/c1_loss', torch_ext.mean_list(critic1_losses).item(), frame) self.writer.add_scalar('losses/c2_loss', torch_ext.mean_list(critic2_losses).item(), frame) self.writer.add_scalar('losses/entropy', torch_ext.mean_list(entropies).item(), frame) if alpha_losses[0] is not None: self.writer.add_scalar('losses/alpha_loss', torch_ext.mean_list(alpha_losses).item(), frame) self.writer.add_scalar('info/alpha', torch_ext.mean_list(alphas).item(), frame) self.writer.add_scalar('info/epochs', self.epoch_num, frame) self.algo_observer.after_print_stats(frame, self.epoch_num, total_time) mean_rewards = 0 mean_lengths = 0 if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.writer.add_scalar('rewards/step', mean_rewards, frame) self.writer.add_scalar('rewards/iter', mean_rewards, self.epoch_num) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) # self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards and self.epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards # self.save("./nn/" + self.config['name']) self.save(os.path.join(self.nn_dir, self.config['name'])) # if self.last_mean_rewards > self.config.get('score_to_win', float('inf')): # print('Network won!') # self.save("./nn/" + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards)) # return self.last_mean_rewards, self.epoch_num if self.epoch_num > self.max_epochs: # self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards)) self.save(os.path.join(self.nn_dir, 'last_' + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards))) print('MAX EPOCHS NUM!') return self.last_mean_rewards, self.epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time print(f'epoch: {self.epoch_num} fps step: {fps_step:.1f} fps total: {fps_total:.1f} reward: {mean_rewards:.3f} episode len: {mean_lengths:.3f}')
22,630
Python
41.943074
186
0.595095
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/d2rl.py
import torch class D2RLNet(torch.nn.Module): def __init__(self, input_size, units, activations, norm_func_name = None): torch.nn.Module.__init__(self) self.activations = torch.nn.ModuleList(activations) self.linears = torch.nn.ModuleList([]) self.norm_layers = torch.nn.ModuleList([]) self.num_layers = len(units) last_size = input_size for i in range(self.num_layers): self.linears.append(torch.nn.Linear(last_size, units[i])) last_size = units[i] + input_size if norm_func_name == 'layer_norm': self.norm_layers.append(torch.nn.LayerNorm(units[i])) elif norm_func_name == 'batch_norm': self.norm_layers.append(torch.nn.BatchNorm1d(units[i])) else: self.norm_layers.append(torch.nn.Identity()) def forward(self, input): x = self.linears[0](input) x = self.activations[0](x) x = self.norm_layers[0](x) for i in range(1,self.num_layers): x = torch.cat([x,input], dim=1) x = self.linears[i](x) x = self.norm_layers[i](x) x = self.activations[i](x) return x
1,259
Python
37.181817
71
0.544083
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/players.py
from rl_games.common.player import BasePlayer from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common.tr_helpers import unsqueeze_obs import gym import torch from torch import nn import numpy as np def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class PpoPlayerContinuous(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] self.actions_num = self.action_space.shape[0] self.actions_low = torch.from_numpy(self.action_space.low.copy()).float().to(self.device) self.actions_high = torch.from_numpy(self.action_space.high.copy()).float().to(self.device) self.mask = [False] self.normalize_input = self.config['normalize_input'] obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_agents } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) self.running_mean_std.eval() def get_action(self, obs, is_determenistic = False): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) mu = res_dict['mus'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if is_determenistic: current_action = mu else: current_action = action current_action = torch.squeeze(current_action.detach()) return rescale_actions(self.actions_low, self.actions_high, torch.clamp(current_action, -1.0, 1.0)) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def reset(self): self.init_rnn() class PpoPlayerDiscrete(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] if type(self.action_space) is gym.spaces.Discrete: self.actions_num = self.action_space.n self.is_multi_discrete = False if type(self.action_space) is gym.spaces.Tuple: self.actions_num = [action.n for action in self.action_space] self.is_multi_discrete = True self.mask = [False] self.normalize_input = self.config['normalize_input'] obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_agents, 'value_size': self.value_size } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) self.running_mean_std.eval() def get_masked_action(self, obs, action_masks, is_determenistic = True): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) action_masks = torch.Tensor(action_masks).to(self.device) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'action_masks' : action_masks, 'rnn_states' : self.states } self.model.eval() with torch.no_grad(): neglogp, value, action, logits, self.states = self.model(input_dict) logits = res_dict['logits'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if self.is_multi_discrete: if is_determenistic: action = [torch.argmax(logit.detach(), axis=-1).squeeze() for logit in logits] return torch.stack(action,dim=-1) else: return action.squeeze().detach() else: if is_determenistic: return torch.argmax(logits.detach(), axis=-1).squeeze() else: return action.squeeze().detach() def get_action(self, obs, is_determenistic = False): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) self.model.eval() input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) logits = res_dict['logits'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if self.is_multi_discrete: if is_determenistic: action = [torch.argmax(logit.detach(), axis=1).squeeze() for logit in logits] return torch.stack(action,dim=-1) else: return action.squeeze().detach() else: if is_determenistic: return torch.argmax(logits.detach(), axis=-1).squeeze() else: return action.squeeze().detach() def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def reset(self): self.init_rnn() class SACPlayer(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] self.actions_num = self.action_space.shape[0] self.action_range = [ float(self.env_info['action_space'].low.min()), float(self.env_info['action_space'].high.max()) ] obs_shape = torch_ext.shape_whc_to_cwh(self.state_shape) self.normalize_input = False config = { 'obs_dim': self.env_info["observation_space"].shape[0], 'action_dim': self.env_info["action_space"].shape[0], 'actions_num' : self.actions_num, 'input_shape' : obs_shape } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() # if self.normalize_input: # self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) # self.running_mean_std.eval() def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.sac_network.actor.load_state_dict(checkpoint['actor']) self.model.sac_network.critic.load_state_dict(checkpoint['critic']) self.model.sac_network.critic_target.load_state_dict(checkpoint['critic_target']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def get_action(self, obs, sample=False): dist = self.model.actor(obs) actions = dist.sample() if sample else dist.mean actions = actions.clamp(*self.action_range).to(self.device) assert actions.ndim == 2 return actions def reset(self): pass
7,933
Python
36.074766
108
0.576831
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/self_play_manager.py
import numpy as np class SelfPlayManager: def __init__(self, config, writter): self.config = config self.writter = writter self.update_score = self.config['update_score'] self.games_to_check = self.config['games_to_check'] self.check_scores = self.config.get('check_scores', False) self.env_update_num = self.config.get('env_update_num', 1) self.env_indexes = np.arange(start=0, stop=self.env_update_num) self.updates_num = 0 def update(self, algo): self.updates_num += 1 if self.check_scores: data = algo.game_scores else: data = algo.game_rewards if len(data) >= self.games_to_check: mean_scores = data.get_mean() mean_rewards = algo.game_rewards.get_mean() if mean_scores > self.update_score: print('Mean scores: ', mean_scores, ' mean rewards: ', mean_rewards, ' updating weights') algo.clear_stats() self.writter.add_scalar('selfplay/iters_update_weigths', self.updates_num, algo.frame) algo.vec_env.set_weights(self.env_indexes, algo.get_weights()) self.env_indexes = (self.env_indexes + 1) % (algo.num_actors) self.updates_num = 0
1,332
Python
40.656249
105
0.572072
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/sac_helper.py
# from rl_games.algos_torch.network_builder import NetworkBuilder from torch import distributions as pyd import torch import torch.nn as nn import math import torch.nn.functional as F import numpy as np class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) @staticmethod def atanh(x): return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return self.atanh(y) def log_abs_det_jacobian(self, x, y): # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 return 2. * (math.log(2.) - x - F.softplus(-2. * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu def entropy(self): return self.base_dist.entropy()
1,720
Python
28.169491
137
0.647093
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/a2c_discrete.py
from rl_games.common import a2c_common from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd, RunningMeanStdObs from rl_games.algos_torch import central_value from rl_games.common import common_losses from rl_games.common import datasets from rl_games.algos_torch import ppg_aux from torch import optim import torch from torch import nn import numpy as np import gym class DiscreteA2CAgent(a2c_common.DiscreteA2CBase): def __init__(self, base_name, config): a2c_common.DiscreteA2CBase.__init__(self, base_name, config) obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_actors * self.num_agents, 'value_size': self.env_info.get('value_size',1) } self.model = self.network.build(config) self.model.to(self.ppo_device) self.init_rnn_from_model(self.model) self.last_lr = float(self.last_lr) self.optimizer = optim.Adam(self.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=self.weight_decay) if self.normalize_input: if isinstance(self.observation_space, gym.spaces.Dict): self.running_mean_std = RunningMeanStdObs(obs_shape).to(self.ppo_device) else: self.running_mean_std = RunningMeanStd(obs_shape).to(self.ppo_device) if self.has_central_value: cv_config = { 'state_shape' : self.state_shape, 'value_size' : self.value_size, 'ppo_device' : self.ppo_device, 'num_agents' : self.num_agents, 'num_steps' : self.horizon_length, 'num_actors' : self.num_actors, 'num_actions' : self.actions_num, 'seq_len' : self.seq_len, 'model' : self.central_value_config['network'], 'config' : self.central_value_config, 'writter' : self.writer, 'max_epochs' : self.max_epochs, 'multi_gpu' : self.multi_gpu } self.central_value_net = central_value.CentralValueTrain(**cv_config).to(self.ppo_device) self.use_experimental_cv = self.config.get('use_experimental_cv', False) self.dataset = datasets.PPODataset(self.batch_size, self.minibatch_size, self.is_discrete, self.is_rnn, self.ppo_device, self.seq_len) if 'phasic_policy_gradients' in self.config: self.has_phasic_policy_gradients = True self.ppg_aux_loss = ppg_aux.PPGAux(self, self.config['phasic_policy_gradients']) self.has_value_loss = (self.has_central_value \ and self.use_experimental_cv) \ or not self.has_phasic_policy_gradients self.algo_observer.after_init(self) def update_epoch(self): self.epoch_num += 1 return self.epoch_num def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): processed_obs = self._preproc_obs(obs['obs']) action_masks = torch.BoolTensor(action_masks).to(self.ppo_device) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'action_masks' : action_masks, 'rnn_states' : self.rnn_states } with torch.no_grad(): res_dict = self.model(input_dict) if self.has_central_value: input_dict = { 'is_train': False, 'states' : obs['states'], #'actions' : action, } value = self.get_central_value(input_dict) res_dict['values'] = value if self.normalize_value: value = self.value_mean_std(value, True) if self.is_multi_discrete: action_masks = torch.cat(action_masks, dim=-1) res_dict['action_masks'] = action_masks return res_dict def train_actor_critic(self, input_dict): self.set_train() self.calc_gradients(input_dict) for param_group in self.optimizer.param_groups: param_group['lr'] = self.last_lr return self.train_result def calc_gradients(self, input_dict): value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } if self.use_action_masks: batch_dict['action_masks'] = input_dict['action_masks'] rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['values'] entropy = res_dict['entropy'] a_loss = common_losses.actor_loss(old_action_log_probs_batch, action_log_probs, advantage, self.ppo, curr_e_clip) if self.has_value_loss: c_loss = common_losses.critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) else: c_loss = torch.zeros(1, device=self.ppo_device) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy = losses[0], losses[1], losses[2] loss = a_loss + 0.5 *c_loss * self.critic_coef - entropy * self.entropy_coef if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): kl_dist = 0.5 * ((old_action_log_probs_batch - action_log_probs)**2) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() # / sum_mask else: kl_dist = kl_dist.mean() if self.has_phasic_policy_gradients: c_loss = self.ppg_aux_loss.train_value(self,input_dict) self.train_result = (a_loss, c_loss, entropy, kl_dist,self.last_lr, lr_mul)
7,889
Python
38.848485
142
0.566865
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/ppg_aux.py
from rl_games.common import tr_helpers from rl_games.algos_torch import torch_ext from rl_games.common import common_losses from rl_games.common.datasets import DatasetList import torch from torch import nn from torch import optim import copy class PPGAux: def __init__(self, algo, config): self.config = config self.writer = algo.writer self.mini_epoch = config['mini_epochs'] self.mini_batch = config['minibatch_size'] self.mixed_precision = algo.mixed_precision self.is_rnn = algo.network.is_rnn() self.kl_coef = config.get('kl_coef', 1.0) self.n_aux = config.get('n_aux', 16) self.is_continuous = True self.last_lr = config['learning_rate'] self.optimizer = optim.Adam(algo.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=algo.weight_decay) self.scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self._freeze_grads(algo.model) self.value_optimizer = optim.Adam(filter(lambda p: p.requires_grad, algo.model.parameters()), float(self.last_lr), eps=1e-08, weight_decay=algo.weight_decay) self.value_scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self._unfreeze_grads(algo.model) self.dataset_list = DatasetList() def _freeze_grads(self, model): for param in model.parameters(): param.requires_grad = False model.a2c_network.value.weight.requires_grad = True model.a2c_network.value.bias.requires_grad = True def _unfreeze_grads(self, model): for param in model.parameters(): param.requires_grad = True def train_value(self, algo, input_dict): value_preds_batch = input_dict['old_values'] return_batch = input_dict['returns'] obs_batch = input_dict['obs'] actions_batch = input_dict['actions'] obs_batch = algo._preproc_obs(obs_batch) batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = algo.model(batch_dict) values = res_dict['values'] c_loss = common_losses.critic_loss(value_preds_batch, values, algo.e_clip, return_batch, algo.clip_value) losses, sum_mask = torch_ext.apply_masks([c_loss], rnn_masks) c_loss = losses[0] loss = c_loss if algo.multi_gpu: self.value_optimizer.zero_grad() else: for param in algo.model.parameters(): param.grad = None self.value_scaler.scale(loss).backward() if algo.truncate_grads: if algo.multi_gpu: self.value_optimizer.synchronize() self.value_scaler.unscale_(self.value_optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) with self.value_optimizer.skip_synchronize(): self.value_scaler.step(self.value_optimizer) self.value_scaler.update() else: self.value_scaler.unscale_(self.value_optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) self.value_scaler.step(self.value_optimizer) self.value_scaler.update() else: self.value_scaler.step(self.value_optimizer) self.value_scaler.update() return loss.detach() def update(self, algo): self.dataset_list.add_dataset(algo.dataset) def train_net(self, algo): self.update(algo) if algo.epoch_num % self.n_aux != 0: return self.old_model = copy.deepcopy(algo.model) self.old_model.eval() dataset = self.dataset_list for _ in range(self.mini_epoch): for idx in range(len(dataset)): loss_c, loss_kl = self.calc_gradients(algo, dataset[idx]) avg_loss_c = loss_c / len(dataset) avg_loss_kl = loss_kl / len(dataset) if self.writer != None: self.writer.add_scalar('losses/pgg_loss_c', avg_loss_c, algo.frame) self.writer.add_scalar('losses/pgg_loss_kl', avg_loss_kl, algo.frame) self.dataset_list.clear() def calc_gradients(self, algo, input_dict): value_preds_batch = input_dict['old_values'] return_batch = input_dict['returns'] obs_batch = input_dict['obs'] actions_batch = input_dict['actions'] obs_batch = algo._preproc_obs(obs_batch) batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } #if self.use_action_masks: # batch_dict['action_masks'] = input_dict['action_masks'] rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): with torch.no_grad(): old_dict = self.old_model(batch_dict.copy()) res_dict = algo.model(batch_dict) values = res_dict['values'] if 'mu' in res_dict: old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] mu = res_dict['mus'] sigma = res_dict['sigmas'] #kl_loss = torch_ext.policy_kl(mu, sigma.detach(), old_mu_batch, old_sigma_batch, False) kl_loss = torch.abs(mu - old_mu_batch) else: kl_loss = algo.model.kl(res_dict, old_dict) c_loss = common_losses.critic_loss(value_preds_batch, values, algo.e_clip, return_batch, algo.clip_value) losses, sum_mask = torch_ext.apply_masks([c_loss, kl_loss.unsqueeze(1)], rnn_masks) c_loss, kl_loss = losses[0], losses[1] loss = c_loss + kl_loss * self.kl_coef if algo.multi_gpu: self.optimizer.zero_grad() else: for param in algo.model.parameters(): param.grad = None self.scaler.scale(loss).backward() if algo.truncate_grads: if algo.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() return c_loss, kl_loss
7,361
Python
39.010869
165
0.570439
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/central_value.py
import torch from torch import nn import numpy as np from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import common_losses from rl_games.common import datasets from rl_games.common import schedulers class CentralValueTrain(nn.Module): def __init__(self, state_shape, value_size, ppo_device, num_agents, num_steps, num_actors, num_actions, seq_len, model, config, writter, max_epochs, multi_gpu): nn.Module.__init__(self) self.ppo_device = ppo_device self.num_agents, self.num_steps, self.num_actors, self.seq_len = num_agents, num_steps, num_actors, seq_len self.num_actions = num_actions self.state_shape = state_shape self.value_size = value_size self.max_epochs = max_epochs self.multi_gpu = multi_gpu self.truncate_grads = config.get('truncate_grads', False) state_config = { 'value_size' : value_size, 'input_shape' : state_shape, 'actions_num' : num_actions, 'num_agents' : num_agents, 'num_seqs' : num_actors } self.config = config self.model = model.build('cvalue', **state_config) self.lr = float(config['learning_rate']) self.linear_lr = config.get('lr_schedule') == 'linear' if self.linear_lr: self.scheduler = schedulers.LinearScheduler(self.lr, max_steps=self.max_epochs, apply_to_entropy=False, start_entropy_coef=0) else: self.scheduler = schedulers.IdentityScheduler() self.mini_epoch = config['mini_epochs'] self.mini_batch = config['minibatch_size'] self.num_minibatches = self.num_steps * self.num_actors // self.mini_batch self.clip_value = config['clip_value'] self.normalize_input = config['normalize_input'] self.writter = writter self.weight_decay = config.get('weight_decay', 0.0) self.optimizer = torch.optim.Adam(self.model.parameters(), float(self.lr), eps=1e-08, weight_decay=self.weight_decay) self.frame = 0 self.epoch_num = 0 self.running_mean_std = None self.grad_norm = config.get('grad_norm', 1) self.truncate_grads = config.get('truncate_grads', False) self.e_clip = config.get('e_clip', 0.2) self.truncate_grad = self.config.get('truncate_grads', False) if self.normalize_input: self.running_mean_std = RunningMeanStd(state_shape) self.is_rnn = self.model.is_rnn() self.rnn_states = None self.batch_size = self.num_steps * self.num_actors if self.is_rnn: self.rnn_states = self.model.get_default_rnn_state() self.rnn_states = [s.to(self.ppo_device) for s in self.rnn_states] num_seqs = self.num_steps * self.num_actors // self.seq_len assert((self.num_steps * self.num_actors // self.num_minibatches) % self.seq_len == 0) self.mb_rnn_states = [torch.zeros((s.size()[0], num_seqs, s.size()[2]), dtype = torch.float32, device=self.ppo_device) for s in self.rnn_states] self.dataset = datasets.PPODataset(self.batch_size, self.mini_batch, True, self.is_rnn, self.ppo_device, self.seq_len) def update_lr(self, lr): if self.multi_gpu: lr_tensor = torch.tensor([lr]) self.hvd.broadcast_value(lr_tensor, 'cv_learning_rate') lr = lr_tensor.item() for param_group in self.optimizer.param_groups: param_group['lr'] = lr def get_stats_weights(self): if self.normalize_input: return self.running_mean_std.state_dict() else: return {} def set_stats_weights(self, weights): self.running_mean_std.load_state_dict(weights) def update_dataset(self, batch_dict): value_preds = batch_dict['old_values'] returns = batch_dict['returns'] actions = batch_dict['actions'] rnn_masks = batch_dict['rnn_masks'] if self.num_agents > 1: res = self.update_multiagent_tensors(value_preds, returns, actions, rnn_masks) batch_dict['old_values'] = res[0] batch_dict['returns'] = res[1] batch_dict['actions'] = res[2] if self.is_rnn: batch_dict['rnn_states'] = self.mb_rnn_states if self.num_agents > 1: rnn_masks = res[3] batch_dict['rnn_masks'] = rnn_masks self.dataset.update_values_dict(batch_dict) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k,v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def pre_step_rnn(self, rnn_indices, state_indices): if self.num_agents > 1: rnn_indices = rnn_indices[::self.num_agents] shifts = rnn_indices % (self.num_steps // self.seq_len) rnn_indices = (rnn_indices - shifts) // self.num_agents + shifts state_indices = state_indices[::self.num_agents] // self.num_agents for s, mb_s in zip(self.rnn_states, self.mb_rnn_states): mb_s[:, rnn_indices, :] = s[:, state_indices, :] def post_step_rnn(self, all_done_indices): all_done_indices = all_done_indices[::self.num_agents] // self.num_agents for s in self.rnn_states: s[:,all_done_indices,:] = s[:,all_done_indices,:] * 0.0 def forward(self, input_dict): value, rnn_states = self.model(input_dict) return value, rnn_states def get_value(self, input_dict): self.eval() obs_batch = input_dict['states'] actions = input_dict.get('actions', None) obs_batch = self._preproc_obs(obs_batch) value, self.rnn_states = self.forward({'obs' : obs_batch, 'actions': actions, 'rnn_states': self.rnn_states}) if self.num_agents > 1: value = value.repeat(1, self.num_agents) value = value.view(value.size()[0]*self.num_agents, -1) return value def train_critic(self, input_dict): self.train() loss = self.calc_gradients(input_dict) return loss.item() def update_multiagent_tensors(self, value_preds, returns, actions, rnn_masks): batch_size = self.batch_size ma_batch_size = self.num_actors * self.num_agents * self.num_steps value_preds = value_preds.view(self.num_actors, self.num_agents, self.num_steps, self.value_size).transpose(0,1) returns = returns.view(self.num_actors, self.num_agents, self.num_steps, self.value_size).transpose(0,1) value_preds = value_preds.contiguous().view(ma_batch_size, self.value_size)[:batch_size] returns = returns.contiguous().view(ma_batch_size, self.value_size)[:batch_size] if self.is_rnn: rnn_masks = rnn_masks.view(self.num_actors, self.num_agents, self.num_steps).transpose(0,1) rnn_masks = rnn_masks.flatten(0)[:batch_size] return value_preds, returns, actions, rnn_masks def train_net(self): self.train() loss = 0 for _ in range(self.mini_epoch): for idx in range(len(self.dataset)): loss += self.train_critic(self.dataset[idx]) avg_loss = loss / (self.mini_epoch * self.num_minibatches) self.epoch_num += 1 self.lr, _ = self.scheduler.update(self.lr, 0, self.epoch_num, 0, 0) self.update_lr(self.lr) self.frame += self.batch_size if self.writter != None: self.writter.add_scalar('losses/cval_loss', avg_loss, self.frame) self.writter.add_scalar('info/cval_lr', self.lr, self.frame) return avg_loss def calc_gradients(self, batch): obs_batch = self._preproc_obs(batch['obs']) value_preds_batch = batch['old_values'] returns_batch = batch['returns'] actions_batch = batch['actions'] rnn_masks_batch = batch.get('rnn_masks') batch_dict = {'obs' : obs_batch, 'actions' : actions_batch, 'seq_length' : self.seq_len } if self.is_rnn: batch_dict['rnn_states'] = batch['rnn_states'] values, _ = self.forward(batch_dict) loss = common_losses.critic_loss(value_preds_batch, values, self.e_clip, returns_batch, self.clip_value) losses, _ = torch_ext.apply_masks([loss], rnn_masks_batch) loss = losses[0] if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None loss.backward() #TODO: Refactor this ugliest code of they year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() #self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.optimizer.step() else: #self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.optimizer.step() else: self.optimizer.step() return loss
9,703
Python
41.561403
164
0.587241
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/models.py
import rl_games.algos_torch.layers import numpy as np import torch.nn as nn import torch import torch.nn.functional as F import rl_games.common.divergence as divergence from rl_games.algos_torch.torch_ext import CategoricalMasked from torch.distributions import Categorical from rl_games.algos_torch.sac_helper import SquashedNormal class BaseModel(): def __init__(self): pass def is_rnn(self): return False def is_separate_critic(self): return False class ModelA2C(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2C.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['logits'] q = q_dict['logits'] return divergence.d_kl_discrete(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) action_masks = input_dict.get('action_masks', None) prev_actions = input_dict.get('prev_actions', None) logits, value, states = self.a2c_network(input_dict) if is_train: categorical = CategoricalMasked(logits=logits, masks=action_masks) prev_neglogp = -categorical.log_prob(prev_actions) entropy = categorical.entropy() result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'logits' : categorical.logits, 'values' : value, 'entropy' : entropy, 'rnn_states' : states } return result else: categorical = CategoricalMasked(logits=logits, masks=action_masks) selected_action = categorical.sample().long() neglogp = -categorical.log_prob(selected_action) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'logits' : categorical.logits, 'rnn_states' : states } return result class ModelA2CMultiDiscrete(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2CMultiDiscrete.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['logits'] q = q_dict['logits'] return divergence.d_kl_discrete_list(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) action_masks = input_dict.get('action_masks', None) prev_actions = input_dict.get('prev_actions', None) logits, value, states = self.a2c_network(input_dict) if is_train: if action_masks is None: categorical = [Categorical(logits=logit) for logit in logits] else: categorical = [CategoricalMasked(logits=logit, masks=mask) for logit, mask in zip(logits, action_masks)] prev_actions = torch.split(prev_actions, 1, dim=-1) prev_neglogp = [-c.log_prob(a.squeeze()) for c,a in zip(categorical, prev_actions)] prev_neglogp = torch.stack(prev_neglogp, dim=-1).sum(dim=-1) entropy = [c.entropy() for c in categorical] entropy = torch.stack(entropy, dim=-1).sum(dim=-1) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'logits' : [c.logits for c in categorical], 'values' : value, 'entropy' : torch.squeeze(entropy), 'rnn_states' : states } return result else: if action_masks is None: categorical = [Categorical(logits=logit) for logit in logits] else: categorical = [CategoricalMasked(logits=logit, masks=mask) for logit, mask in zip(logits, action_masks)] selected_action = [c.sample().long() for c in categorical] neglogp = [-c.log_prob(a.squeeze()) for c,a in zip(categorical, selected_action)] selected_action = torch.stack(selected_action, dim=-1) neglogp = torch.stack(neglogp, dim=-1).sum(dim=-1) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'logits' : [c.logits for c in categorical], 'rnn_states' : states } return result class ModelA2CContinuous(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2CContinuous.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['mu'], p_dict['sigma'] q = q_dict['mu'], q_dict['sigma'] return divergence.d_kl_normal(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) prev_actions = input_dict.get('prev_actions', None) mu, sigma, value, states = self.a2c_network(input_dict) distr = torch.distributions.Normal(mu, sigma) if is_train: entropy = distr.entropy().sum(dim=-1) prev_neglogp = -distr.log_prob(prev_actions).sum(dim=-1) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'value' : value, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result else: selected_action = distr.sample().squeeze() neglogp = -distr.log_prob(selected_action).sum(dim=-1) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : torch.squeeze(value), 'actions' : selected_action, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result class ModelA2CContinuousLogStd(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): net = self.network_builder.build('a2c', **config) for name, _ in net.named_parameters(): print(name) return ModelA2CContinuousLogStd.Network(net) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def forward(self, input_dict): is_train = input_dict.get('is_train', True) prev_actions = input_dict.get('prev_actions', None) mu, logstd, value, states = self.a2c_network(input_dict) sigma = torch.exp(logstd) distr = torch.distributions.Normal(mu, sigma) if is_train: entropy = distr.entropy().sum(dim=-1) prev_neglogp = self.neglogp(prev_actions, mu, sigma, logstd) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'values' : value, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result else: selected_action = distr.sample() neglogp = self.neglogp(selected_action, mu, sigma, logstd) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result def neglogp(self, x, mean, std, logstd): return 0.5 * (((x - mean) / std)**2).sum(dim=-1) \ + 0.5 * np.log(2.0 * np.pi) * x.size()[-1] \ + logstd.sum(dim=-1) class ModelSACContinuous(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelSACContinuous.Network(self.network_builder.build('sac', **config)) class Network(nn.Module): def __init__(self, sac_network): nn.Module.__init__(self) self.sac_network = sac_network def critic(self, obs, action): return self.sac_network.critic(obs, action) def critic_target(self, obs, action): return self.sac_network.critic_target(obs, action) def actor(self, obs): return self.sac_network.actor(obs) def is_rnn(self): return False def forward(self, input_dict): is_train = input_dict.pop('is_train', True) mu, sigma = self.sac_network(input_dict) dist = SquashedNormal(mu, sigma) return dist
10,919
Python
36.142857
140
0.514699
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/model_builder.py
from rl_games.common import object_factory import rl_games.algos_torch from rl_games.algos_torch import network_builder from rl_games.algos_torch import models NETWORK_REGISTRY = {} def register_network(name, target_class): NETWORK_REGISTRY[name] = lambda **kwargs : target_class() class ModelBuilder: def __init__(self): self.model_factory = object_factory.ObjectFactory() self.model_factory.register_builder('discrete_a2c', lambda network, **kwargs : models.ModelA2C(network)) self.model_factory.register_builder('multi_discrete_a2c', lambda network, **kwargs : models.ModelA2CMultiDiscrete(network)) self.model_factory.register_builder('continuous_a2c', lambda network, **kwargs : models.ModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_logstd', lambda network, **kwargs : models.ModelA2CContinuousLogStd(network)) self.model_factory.register_builder('soft_actor_critic', lambda network, **kwargs : models.ModelSACContinuous(network)) #self.model_factory.register_builder('dqn', lambda network, **kwargs : models.AtariDQN(network)) self.network_factory = object_factory.ObjectFactory() self.network_factory.set_builders(NETWORK_REGISTRY) self.network_factory.register_builder('actor_critic', lambda **kwargs : network_builder.A2CBuilder()) self.network_factory.register_builder('resnet_actor_critic', lambda **kwargs : network_builder.A2CResnetBuilder()) self.network_factory.register_builder('rnd_curiosity', lambda **kwargs : network_builder.RNDCuriosityBuilder()) self.network_factory.register_builder('soft_actor_critic', lambda **kwargs: network_builder.SACBuilder()) def load(self, params): self.model_name = params['model']['name'] self.network_name = params['network']['name'] network = self.network_factory.create(self.network_name) network.load(params['network']) model = self.model_factory.create(self.model_name, network=network) return model
2,062
Python
53.289472
137
0.723084
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/moving_mean_std.py
import torch import torch.nn as nn import numpy as np ''' updates moving statistics with momentum ''' class MovingMeanStd(nn.Module): def __init__(self, insize, momentum = 0.9998, epsilon=1e-05, per_channel=False, norm_only=False): super(MovingMeanStd, self).__init__() self.insize = insize self.epsilon = epsilon self.momentum = momentum self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("moving_mean", torch.zeros(in_size, dtype = torch.float64)) self.register_buffer("moving_var", torch.ones(in_size, dtype = torch.float64)) def forward(self, input, unnorm=False): if self.training: mean = input.mean(self.axis) # along channel axis var = input.var(self.axis) self.moving_mean = self.moving_mean * self.momentum + mean * (1 - self.momentum) self.moving_var = self.moving_var * self.momentum + var * (1 - self.momentum) # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.moving_mean.view([1, self.insize[0], 1, 1]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.moving_mean.view([1, self.insize[0], 1]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.moving_mean.view([1, self.insize[0]]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0]]).expand_as(input) else: current_mean = self.moving_mean current_var = self.moving_var # get output if unnorm: y = torch.clamp(input, min=-5.0, max=5.0) y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float() else: y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon) y = torch.clamp(y, min=-5.0, max=5.0) return y
2,521
Python
42.482758
101
0.554145
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/layers.py
import math import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class NoisyLinear(nn.Linear): def __init__(self, in_features, out_features, sigma_init=0.017, bias=True): super(NoisyLinear, self).__init__(in_features, out_features, bias=bias) self.sigma_weight = nn.Parameter(torch.full((out_features, in_features), sigma_init)) self.register_buffer("epsilon_weight", torch.zeros(out_features, in_features)) if bias: self.sigma_bias = nn.Parameter(torch.full((out_features,), sigma_init)) self.register_buffer("epsilon_bias", torch.zeros(out_features)) self.reset_parameters() def reset_parameters(self): std = math.sqrt(3 / self.in_features) self.weight.data.uniform_(-std, std) self.bias.data.uniform_(-std, std) def forward(self, input): self.epsilon_weight.normal_() bias = self.bias if bias is not None: self.epsilon_bias.normal_() bias = bias + self.sigma_bias * self.epsilon_bias.data return F.linear(input, self.weight + self.sigma_weight * self.epsilon_weight.data, bias) class NoisyFactorizedLinear(nn.Linear): def __init__(self, in_features, out_features, sigma_zero=0.4, bias=True): super(NoisyFactorizedLinear, self).__init__(in_features, out_features, bias=bias) sigma_init = sigma_zero / math.sqrt(in_features) self.sigma_weight = nn.Parameter(torch.full((out_features, in_features), sigma_init)) self.register_buffer("epsilon_input", torch.zeros(1, in_features)) self.register_buffer("epsilon_output", torch.zeros(out_features, 1)) if bias: self.sigma_bias = nn.Parameter(torch.full((out_features,), sigma_init)) def forward(self, input): self.epsison_input.normal_() self.epsilon_output.normal_() func = lambda x: torch.sign(x) * torch.sqrt(torch.abs(x)) eps_in = func(self.epsilon_input.data) eps_out = func(self.epsilon_output.data) bias = self.bias if bias is not None: bias = bias + self.sigma_bias * eps_out.t() noise_v = torch.mul(eps_in, eps_out) return F.linear(input, self.weight + self.sigma_weight * noise_v, bias) class LSTMWithDones(nn.Module): def __init__(self, input_sz: int, hidden_sz: int): super().__init__() self.input_sz = input_sz self.hidden_size = hidden_sz self.weight_ih = nn.Parameter(torch.Tensor(input_sz, hidden_sz * 4)) self.weight_hh = nn.Parameter(torch.Tensor(hidden_sz, hidden_sz * 4)) self.bias = nn.Parameter(torch.Tensor(hidden_sz * 4)) self.init_weights() def init_weights(self): for p in self.parameters(): if p.data.ndimension() >= 2: nn.init.xavier_uniform_(p.data) else: nn.init.zeros_(p.data) def forward(self, x, dones, init_states): """Assumes x is of shape (batch, sequence, feature)""" bs, seq_sz, _ = x.size() hidden_seq = [] assert(init_states) h_t, c_t = init_states HS = self.hidden_size for t in range(seq_sz): d = dones[:, t] h_t = h_t * (1 - d) c_t = c_t * (1 - d) x_t = x[:, t, :] # batch the computations into a single matrix multiplication gates = x_t @ self.weight_ih + h_t @ self.weight_hh + self.bias i_t, f_t, g_t, o_t = ( torch.sigmoid(gates[:, :HS]), # input torch.sigmoid(gates[:, HS:HS*2]), # forget torch.tanh(gates[:, HS*2:HS*3]), torch.sigmoid(gates[:, HS*3:]), # output ) c_t = f_t * c_t + i_t * g_t h_t = o_t * torch.tanh(c_t) hidden_seq.append(h_t.unsqueeze(0)) hidden_seq = torch.cat(hidden_seq, dim=1) # reshape from shape (sequence, batch, feature) to (batch, sequence, feature) hidden_seq = hidden_seq.transpose(1, 0).contiguous() return hidden_seq, (h_t, c_t)
4,148
Python
39.67647
96
0.578833
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/network_builder.py
from rl_games.common import object_factory from rl_games.algos_torch import torch_ext import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import math import numpy as np from rl_games.algos_torch.d2rl import D2RLNet from rl_games.algos_torch.sac_helper import SquashedNormal def _create_initializer(func, **kwargs): return lambda v : func(v, **kwargs) class NetworkBuilder: def __init__(self, **kwargs): pass def load(self, params): pass def build(self, name, **kwargs): pass def __call__(self, name, **kwargs): return self.build(name, **kwargs) class BaseNetwork(nn.Module): def __init__(self, **kwargs): nn.Module.__init__(self, **kwargs) self.activations_factory = object_factory.ObjectFactory() self.activations_factory.register_builder('relu', lambda **kwargs : nn.ReLU(**kwargs)) self.activations_factory.register_builder('tanh', lambda **kwargs : nn.Tanh(**kwargs)) self.activations_factory.register_builder('sigmoid', lambda **kwargs : nn.Sigmoid(**kwargs)) self.activations_factory.register_builder('elu', lambda **kwargs : nn.ELU(**kwargs)) self.activations_factory.register_builder('selu', lambda **kwargs : nn.SELU(**kwargs)) self.activations_factory.register_builder('softplus', lambda **kwargs : nn.Softplus(**kwargs)) self.activations_factory.register_builder('None', lambda **kwargs : nn.Identity()) self.init_factory = object_factory.ObjectFactory() #self.init_factory.register_builder('normc_initializer', lambda **kwargs : normc_initializer(**kwargs)) self.init_factory.register_builder('const_initializer', lambda **kwargs : _create_initializer(nn.init.constant_,**kwargs)) self.init_factory.register_builder('orthogonal_initializer', lambda **kwargs : _create_initializer(nn.init.orthogonal_,**kwargs)) self.init_factory.register_builder('glorot_normal_initializer', lambda **kwargs : _create_initializer(nn.init.xavier_normal_,**kwargs)) self.init_factory.register_builder('glorot_uniform_initializer', lambda **kwargs : _create_initializer(nn.init.xavier_uniform_,**kwargs)) self.init_factory.register_builder('variance_scaling_initializer', lambda **kwargs : _create_initializer(torch_ext.variance_scaling_initializer,**kwargs)) self.init_factory.register_builder('random_uniform_initializer', lambda **kwargs : _create_initializer(nn.init.uniform_,**kwargs)) self.init_factory.register_builder('kaiming_normal', lambda **kwargs : _create_initializer(nn.init.kaiming_normal_,**kwargs)) self.init_factory.register_builder('orthogonal', lambda **kwargs : _create_initializer(nn.init.orthogonal_,**kwargs)) self.init_factory.register_builder('default', lambda **kwargs : nn.Identity() ) def is_separate_critic(self): return False def is_rnn(self): return False def get_default_rnn_state(self): return None def _calc_input_size(self, input_shape,cnn_layers=None): if cnn_layers is None: assert(len(input_shape) == 1) return input_shape[0] else: return nn.Sequential(*cnn_layers)(torch.rand(1, *(input_shape))).flatten(1).data.size(1) def _noisy_dense(self, inputs, units): return layers.NoisyFactorizedLinear(inputs, units) def _build_rnn(self, name, input, units, layers): if name == 'identity': return torch_ext.IdentityRNN(input, units) if name == 'lstm': return torch.nn.LSTM(input, units, layers, batch_first=True) if name == 'gru': return torch.nn.GRU(input, units, layers, batch_first=True) if name == 'sru': from sru import SRU return SRU(input, units, layers, dropout=0, layer_norm=False) def _build_sequential_mlp(self, input_size, units, activation, dense_func, norm_only_first_layer=False, norm_func_name = None): print('build mlp:', input_size) in_size = input_size layers = [] need_norm = True for unit in units: layers.append(dense_func(in_size, unit)) layers.append(self.activations_factory.create(activation)) if not need_norm: continue if norm_only_first_layer and norm_func_name is not None: need_norm = False if norm_func_name == 'layer_norm': layers.append(torch.nn.LayerNorm(unit)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm1d(unit)) in_size = unit return nn.Sequential(*layers) def _build_mlp(self, input_size, units, activation, dense_func, norm_only_first_layer=False, norm_func_name = None, d2rl=False): if d2rl: act_layers = [self.activations_factory.create(activation) for i in range(len(units))] return D2RLNet(input_size, units, act_layers, norm_func_name) else: return self._build_sequential_mlp(input_size, units, activation, dense_func, norm_func_name = None,) def _build_conv(self, ctype, **kwargs): print('conv_name:', ctype) if ctype == 'conv2d': return self._build_cnn2d(**kwargs) if ctype == 'coord_conv2d': return self._build_cnn2d(conv_func=torch_ext.CoordConv2d, **kwargs) if ctype == 'conv1d': return self._build_cnn1d(**kwargs) def _build_cnn2d(self, input_shape, convs, activation, conv_func=torch.nn.Conv2d, norm_func_name=None): in_channels = input_shape[0] layers = [] for conv in convs: layers.append(conv_func(in_channels=in_channels, out_channels=conv['filters'], kernel_size=conv['kernel_size'], stride=conv['strides'], padding=conv['padding'])) conv_func=torch.nn.Conv2d act = self.activations_factory.create(activation) layers.append(act) in_channels = conv['filters'] if norm_func_name == 'layer_norm': layers.append(torch_ext.LayerNorm2d(in_channels)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm2d(in_channels)) return nn.Sequential(*layers) def _build_cnn1d(self, input_shape, convs, activation, norm_func_name=None): print('conv1d input shape:', input_shape) in_channels = input_shape[0] layers = [] for conv in convs: layers.append(torch.nn.Conv1d(in_channels, conv['filters'], conv['kernel_size'], conv['strides'], conv['padding'])) act = self.activations_factory.create(activation) layers.append(act) in_channels = conv['filters'] if norm_func_name == 'layer_norm': layers.append(torch.nn.LayerNorm(in_channels)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm2d(in_channels)) return nn.Sequential(*layers) class A2CBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') self.value_size = kwargs.pop('value_size', 1) self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) NetworkBuilder.BaseNetwork.__init__(self) self.load(params) self.actor_cnn = nn.Sequential() self.critic_cnn = nn.Sequential() self.actor_mlp = nn.Sequential() self.critic_mlp = nn.Sequential() if self.has_cnn: input_shape = torch_ext.shape_whc_to_cwh(input_shape) cnn_args = { 'ctype' : self.cnn['type'], 'input_shape' : input_shape, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'norm_func_name' : self.normalization, } self.actor_cnn = self._build_conv(**cnn_args) if self.separate: self.critic_cnn = self._build_conv( **cnn_args) mlp_input_shape = self._calc_input_size(input_shape, self.actor_cnn) in_mlp_shape = mlp_input_shape if len(self.units) == 0: out_size = mlp_input_shape else: out_size = self.units[-1] if self.has_rnn: if not self.is_rnn_before_mlp: rnn_in_size = out_size out_size = self.rnn_units if self.rnn_concat_input: rnn_in_size += in_mlp_shape else: rnn_in_size = in_mlp_shape in_mlp_shape = self.rnn_units if self.separate: self.a_rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) self.c_rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) if self.rnn_ln: self.a_layer_norm = torch.nn.LayerNorm(self.rnn_units) self.c_layer_norm = torch.nn.LayerNorm(self.rnn_units) else: self.rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) if self.rnn_ln: self.layer_norm = torch.nn.LayerNorm(self.rnn_units) mlp_args = { 'input_size' : in_mlp_shape, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } self.actor_mlp = self._build_mlp(**mlp_args) if self.separate: self.critic_mlp = self._build_mlp(**mlp_args) self.value = torch.nn.Linear(out_size, self.value_size) self.value_act = self.activations_factory.create(self.value_activation) if self.is_discrete: self.logits = torch.nn.Linear(out_size, actions_num) ''' for multidiscrete actions num is a tuple ''' if self.is_multi_discrete: self.logits = torch.nn.ModuleList([torch.nn.Linear(out_size, num) for num in actions_num]) if self.is_continuous: self.mu = torch.nn.Linear(out_size, actions_num) self.mu_act = self.activations_factory.create(self.space_config['mu_activation']) mu_init = self.init_factory.create(**self.space_config['mu_init']) self.sigma_act = self.activations_factory.create(self.space_config['sigma_activation']) sigma_init = self.init_factory.create(**self.space_config['sigma_init']) if self.space_config['fixed_sigma']: self.sigma = nn.Parameter(torch.zeros(actions_num, requires_grad=True, dtype=torch.float32), requires_grad=True) else: self.sigma = torch.nn.Linear(out_size, actions_num) mlp_init = self.init_factory.create(**self.initializer) if self.has_cnn: cnn_init = self.init_factory.create(**self.cnn['initializer']) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): cnn_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if isinstance(m, nn.Linear): mlp_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if self.is_continuous: mu_init(self.mu.weight) if self.space_config['fixed_sigma']: sigma_init(self.sigma) else: sigma_init(self.sigma.weight) def forward(self, obs_dict): obs = obs_dict['obs'] states = obs_dict.get('rnn_states', None) seq_length = obs_dict.get('seq_length', 1) if self.has_cnn: # for obs shape 4 # input expected shape (B, W, H, C) # convert to (B, C, W, H) if len(obs.shape) == 4: obs = obs.permute((0, 3, 1, 2)) if self.separate: a_out = c_out = obs a_out = self.actor_cnn(a_out) a_out = a_out.contiguous().view(a_out.size(0), -1) c_out = self.critic_cnn(c_out) c_out = c_out.contiguous().view(c_out.size(0), -1) if self.has_rnn: if not self.is_rnn_before_mlp: a_out_in = a_out c_out_in = c_out a_out = self.actor_mlp(a_out_in) c_out = self.critic_mlp(c_out_in) if self.rnn_concat_input: a_out = torch.cat([a_out, a_out_in], dim=1) c_out = torch.cat([c_out, c_out_in], dim=1) batch_size = a_out.size()[0] num_seqs = batch_size // seq_length a_out = a_out.reshape(num_seqs, seq_length, -1) c_out = c_out.reshape(num_seqs, seq_length, -1) if self.rnn_name == 'sru': a_out =a_out.transpose(0,1) c_out =c_out.transpose(0,1) if len(states) == 2: a_states = states[0] c_states = states[1] else: a_states = states[:2] c_states = states[2:] a_out, a_states = self.a_rnn(a_out, a_states) c_out, c_states = self.c_rnn(c_out, c_states) if self.rnn_name == 'sru': a_out = a_out.transpose(0,1) c_out = c_out.transpose(0,1) else: if self.rnn_ln: a_out = self.a_layer_norm(a_out) c_out = self.c_layer_norm(c_out) a_out = a_out.contiguous().reshape(a_out.size()[0] * a_out.size()[1], -1) c_out = c_out.contiguous().reshape(c_out.size()[0] * c_out.size()[1], -1) if type(a_states) is not tuple: a_states = (a_states,) c_states = (c_states,) states = a_states + c_states if self.is_rnn_before_mlp: a_out = self.actor_mlp(a_out) c_out = self.critic_mlp(c_out) else: a_out = self.actor_mlp(a_out) c_out = self.critic_mlp(c_out) value = self.value_act(self.value(c_out)) if self.is_discrete: logits = self.logits(a_out) return logits, value, states if self.is_multi_discrete: logits = [logit(a_out) for logit in self.logits] return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(a_out)) if self.space_config['fixed_sigma']: sigma = mu * 0.0 + self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(a_out)) return mu, sigma, value, states else: out = obs out = self.actor_cnn(out) out = out.flatten(1) if self.has_rnn: out_in = out if not self.is_rnn_before_mlp: out_in = out out = self.actor_mlp(out) if self.rnn_concat_input: out = torch.cat([out, out_in], dim=1) batch_size = out.size()[0] num_seqs = batch_size // seq_length out = out.reshape(num_seqs, seq_length, -1) if len(states) == 1: states = states[0] if self.rnn_name == 'sru': out = out.transpose(0,1) out, states = self.rnn(out, states) out = out.contiguous().reshape(out.size()[0] * out.size()[1], -1) if self.rnn_name == 'sru': out = out.transpose(0,1) if self.rnn_ln: out = self.layer_norm(out) if self.is_rnn_before_mlp: out = self.actor_mlp(out) if type(states) is not tuple: states = (states,) else: out = self.actor_mlp(out) value = self.value_act(self.value(out)) if self.central_value: return value, states if self.is_discrete: logits = self.logits(out) return logits, value, states if self.is_multi_discrete: logits = [logit(out) for logit in self.logits] return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(out)) if self.space_config['fixed_sigma']: sigma = self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(out)) return mu, mu*0 + sigma, value, states def is_separate_critic(self): return self.separate def is_rnn(self): return self.has_rnn def get_default_rnn_state(self): if not self.has_rnn: return None num_layers = self.rnn_layers if self.rnn_name == 'identity': rnn_units = 1 else: rnn_units = self.rnn_units if self.rnn_name == 'lstm': if self.separate: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: if self.separate: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, rnn_units)),) def load(self, params): self.separate = params.get('separate', False) self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_d2rl = params['mlp'].get('d2rl', False) self.norm_only_first_layer = params['mlp'].get('norm_only_first_layer', False) self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_rnn = 'rnn' in params self.has_space = 'space' in params self.central_value = params.get('central_value', False) self.joint_obs_actions_config = params.get('joint_obs_actions', None) if self.has_space: self.is_multi_discrete = 'multi_discrete'in params['space'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] elif self.is_multi_discrete: self.space_config = params['space']['multi_discrete'] else: self.is_discrete = False self.is_continuous = False self.is_multi_discrete = False if self.has_rnn: self.rnn_units = params['rnn']['units'] self.rnn_layers = params['rnn']['layers'] self.rnn_name = params['rnn']['name'] self.rnn_ln = params['rnn'].get('layer_norm', False) self.is_rnn_before_mlp = params['rnn'].get('before_mlp', False) self.rnn_concat_input = params['rnn'].get('concat_input', False) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): net = A2CBuilder.Network(self.params, **kwargs) return net class Conv2dAuto(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2) # dynamic add padding based on the kernel_size class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, use_bn=False): super().__init__() self.use_bn = use_bn self.conv = Conv2dAuto(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, bias=not use_bn) if use_bn: self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, activation='relu', use_bn=False, use_zero_init=True, use_attention=False): super().__init__() self.use_zero_init=use_zero_init self.use_attention = use_attention if use_zero_init: self.alpha = nn.Parameter(torch.zeros(1)) self.activation = activation self.conv1 = ConvBlock(channels, channels, use_bn) self.conv2 = ConvBlock(channels, channels, use_bn) self.activate1 = nn.ELU() self.activate2 = nn.ELU() if use_attention: self.ca = ChannelAttention(channels) self.sa = SpatialAttention() def forward(self, x): residual = x x = self.activate1(x) x = self.conv1(x) x = self.activate2(x) x = self.conv2(x) if self.use_attention: x = self.ca(x) * x x = self.sa(x) * x if self.use_zero_init: x = x * self.alpha + residual else: x = x + residual return x class ImpalaSequential(nn.Module): def __init__(self, in_channels, out_channels, activation='elu', use_bn=True, use_zero_init=False): super().__init__() self.conv = ConvBlock(in_channels, out_channels, use_bn) self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.res_block1 = ResidualBlock(out_channels, activation=activation, use_bn=use_bn, use_zero_init=use_zero_init) self.res_block2 = ResidualBlock(out_channels, activation=activation, use_bn=use_bn, use_zero_init=use_zero_init) def forward(self, x): x = self.conv(x) x = self.max_pool(x) x = self.res_block1(x) x = self.res_block2(x) return x class A2CResnetBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') input_shape = torch_ext.shape_whc_to_cwh(input_shape) self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) self.value_size = kwargs.pop('value_size', 1) NetworkBuilder.BaseNetwork.__init__(self, **kwargs) self.load(params) self.cnn = self._build_impala(input_shape, self.conv_depths) mlp_input_shape = self._calc_input_size(input_shape, self.cnn) in_mlp_shape = mlp_input_shape if len(self.units) == 0: out_size = mlp_input_shape else: out_size = self.units[-1] if self.has_rnn: if not self.is_rnn_before_mlp: rnn_in_size = out_size out_size = self.rnn_units else: rnn_in_size = in_mlp_shape in_mlp_shape = self.rnn_units self.rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) #self.layer_norm = torch.nn.LayerNorm(self.rnn_units) mlp_args = { 'input_size' : in_mlp_shape, 'units' :self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear } self.mlp = self._build_mlp(**mlp_args) self.value = torch.nn.Linear(out_size, self.value_size) self.value_act = self.activations_factory.create(self.value_activation) self.flatten_act = self.activations_factory.create(self.activation) if self.is_discrete: self.logits = torch.nn.Linear(out_size, actions_num) if self.is_continuous: self.mu = torch.nn.Linear(out_size, actions_num) self.mu_act = self.activations_factory.create(self.space_config['mu_activation']) mu_init = self.init_factory.create(**self.space_config['mu_init']) self.sigma_act = self.activations_factory.create(self.space_config['sigma_activation']) sigma_init = self.init_factory.create(**self.space_config['sigma_init']) if self.space_config['fixed_sigma']: self.sigma = nn.Parameter(torch.zeros(actions_num, requires_grad=True, dtype=torch.float32), requires_grad=True) else: self.sigma = torch.nn.Linear(out_size, actions_num) mlp_init = self.init_factory.create(**self.initializer) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') #nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('elu')) for m in self.mlp: if isinstance(m, nn.Linear): mlp_init(m.weight) if self.is_discrete: mlp_init(self.logits.weight) if self.is_continuous: mu_init(self.mu.weight) if self.space_config['fixed_sigma']: sigma_init(self.sigma) else: sigma_init(self.sigma.weight) mlp_init(self.value.weight) def forward(self, obs_dict): obs = obs_dict['obs'] obs = obs.permute((0, 3, 1, 2)) states = obs_dict.get('rnn_states', None) seq_length = obs_dict.get('seq_length', 1) out = obs out = self.cnn(out) out = out.flatten(1) out = self.flatten_act(out) if self.has_rnn: if not self.is_rnn_before_mlp: out = self.mlp(out) batch_size = out.size()[0] num_seqs = batch_size // seq_length out = out.reshape(num_seqs, seq_length, -1) if len(states) == 1: states = states[0] out, states = self.rnn(out, states) out = out.contiguous().reshape(out.size()[0] * out.size()[1], -1) #out = self.layer_norm(out) if type(states) is not tuple: states = (states,) if self.is_rnn_before_mlp: for l in self.mlp: out = l(out) else: for l in self.mlp: out = l(out) value = self.value_act(self.value(out)) if self.is_discrete: logits = self.logits(out) return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(out)) if self.space_config['fixed_sigma']: sigma = self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(out)) return mu, mu*0 + sigma, value, states def load(self, params): self.separate = params['separate'] self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous' in params['space'] self.is_multi_discrete = 'multi_discrete'in params['space'] self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] elif self.is_multi_discrete: self.space_config = params['space']['multi_discrete'] self.has_rnn = 'rnn' in params if self.has_rnn: self.rnn_units = params['rnn']['units'] self.rnn_layers = params['rnn']['layers'] self.rnn_name = params['rnn']['name'] self.is_rnn_before_mlp = params['rnn'].get('before_mlp', False) self.has_cnn = True self.conv_depths = params['cnn']['conv_depths'] def _build_impala(self, input_shape, depths): in_channels = input_shape[0] layers = nn.ModuleList() for d in depths: layers.append(ImpalaSequential(in_channels, d)) in_channels = d return nn.Sequential(*layers) def is_separate_critic(self): return False def is_rnn(self): return self.has_rnn def get_default_rnn_state(self): num_layers = self.rnn_layers if self.rnn_name == 'lstm': return (torch.zeros((num_layers, self.num_seqs, self.rnn_units)), torch.zeros((num_layers, self.num_seqs, self.rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, self.rnn_units))) def build(self, name, **kwargs): net = A2CResnetBuilder.Network(self.params, **kwargs) return net class DiagGaussianActor(NetworkBuilder.BaseNetwork): """torch.distributions implementation of an diagonal Gaussian policy.""" def __init__(self, output_dim, log_std_bounds, **mlp_args): super().__init__() self.log_std_bounds = log_std_bounds self.trunk = self._build_mlp(**mlp_args) last_layer = list(self.trunk.children())[-2].out_features self.trunk = nn.Sequential(*list(self.trunk.children()), nn.Linear(last_layer, output_dim)) def forward(self, obs): mu, log_std = self.trunk(obs).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] #log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = torch.clamp(log_std, log_std_min, log_std_max) #log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() # TODO: Refactor dist = SquashedNormal(mu, std) # Modify to only return mu and std return dist class DoubleQCritic(NetworkBuilder.BaseNetwork): """Critic network, employes double Q-learning.""" def __init__(self, output_dim, **mlp_args): super().__init__() self.Q1 = self._build_mlp(**mlp_args) last_layer = list(self.Q1.children())[-2].out_features self.Q1 = nn.Sequential(*list(self.Q1.children()), nn.Linear(last_layer, output_dim)) self.Q2 = self._build_mlp(**mlp_args) last_layer = list(self.Q2.children())[-2].out_features self.Q2 = nn.Sequential(*list(self.Q2.children()), nn.Linear(last_layer, output_dim)) def forward(self, obs, action): assert obs.size(0) == action.size(0) obs_action = torch.cat([obs, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) return q1, q2 class SACBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params def build(self, name, **kwargs): net = SACBuilder.Network(self.params, **kwargs) return net class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') obs_dim = kwargs.pop('obs_dim') action_dim = kwargs.pop('action_dim') self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) NetworkBuilder.BaseNetwork.__init__(self) self.load(params) mlp_input_shape = input_shape actor_mlp_args = { 'input_size' : obs_dim, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } critic_mlp_args = { 'input_size' : obs_dim + action_dim, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } print("Building Actor") self.actor = self._build_actor(2*action_dim, self.log_std_bounds, **actor_mlp_args) if self.separate: print("Building Critic") self.critic = self._build_critic(1, **critic_mlp_args) print("Building Critic Target") self.critic_target = self._build_critic(1, **critic_mlp_args) self.critic_target.load_state_dict(self.critic.state_dict()) mlp_init = self.init_factory.create(**self.initializer) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): cnn_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if isinstance(m, nn.Linear): mlp_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) def _build_critic(self, output_dim, **mlp_args): return DoubleQCritic(output_dim, **mlp_args) def _build_actor(self, output_dim, log_std_bounds, **mlp_args): return DiagGaussianActor(output_dim, log_std_bounds, **mlp_args) def forward(self, obs_dict): """TODO""" obs = obs_dict['obs'] mu, sigma = self.actor(obs) return mu, sigma def is_separate_critic(self): return self.separate def load(self, params): self.separate = params.get('separate', True) self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_d2rl = params['mlp'].get('d2rl', False) self.norm_only_first_layer = params['mlp'].get('norm_only_first_layer', False) self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_space = 'space' in params self.value_shape = params.get('value_shape', 1) self.central_value = params.get('central_value', False) self.joint_obs_actions_config = params.get('joint_obs_actions', None) self.log_std_bounds = params.get('log_std_bounds', None) if self.has_space: self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] else: self.is_discrete = False self.is_continuous = False ''' class DQNBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_dueling = params['dueling'] self.atoms = params['atoms'] self.is_noisy = params['noisy'] self.normalization = params.get('normalization', None) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') is_train = kwargs.pop('is_train', True) if self.is_noisy: dense_layer = self._noisy_dense else: dense_layer = torch.nn.Linear with tf.variable_scope(name, reuse=reuse): out = input if self.has_cnn: cnn_args = { 'name' :'dqn_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } out = self._build_conv(**cnn_args) out = tf.contrib.layers.flatten(out) mlp_args = { 'name' :'dqn_mlp', 'input' : out, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train, 'dense_func' : dense_layer } if self.is_dueling: if len(self.units) > 1: mlp_args['units'] = self.units[:-1] out = self._build_mlp(**mlp_args) hidden_value = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_val') hidden_advantage = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_adv') value = dense_layer(inputs=hidden_value, units=self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), activation=tf.identity, kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='value') advantage = dense_layer(inputs=hidden_advantage, units= actions_num * self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='advantage') advantage = tf.reshape(advantage, shape = [-1, actions_num, self.atoms]) value = tf.reshape(value, shape = [-1, 1, self.atoms]) q_values = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) else: mlp_args['units'] = self.units out = self._build_mlp('dqn_mlp', out, self.units, self.activation, self.initializer, self.regularizer) q_values = dense_layer(inputs=out, units=actions_num *self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='q_vals') q_values = tf.reshape(q_values, shape = [-1, actions_num, self.atoms]) if self.atoms == 1: return tf.squeeze(q_values) else: return q_values '''
43,505
Python
42.160714
301
0.520607
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/a2c_continuous.py
from rl_games.common import a2c_common from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd, RunningMeanStdObs from rl_games.algos_torch import central_value from rl_games.common import common_losses from rl_games.common import datasets from rl_games.algos_torch import ppg_aux from torch import optim import torch from torch import nn import numpy as np import gym class A2CAgent(a2c_common.ContinuousA2CBase): def __init__(self, base_name, config): a2c_common.ContinuousA2CBase.__init__(self, base_name, config) obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_actors * self.num_agents, 'value_size': self.env_info.get('value_size',1) } self.model = self.network.build(config) self.model.to(self.ppo_device) self.states = None self.init_rnn_from_model(self.model) self.last_lr = float(self.last_lr) self.optimizer = optim.Adam(self.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=self.weight_decay) if self.normalize_input: if isinstance(self.observation_space,gym.spaces.Dict): self.running_mean_std = RunningMeanStdObs(obs_shape).to(self.ppo_device) else: self.running_mean_std = RunningMeanStd(obs_shape).to(self.ppo_device) if self.has_central_value: cv_config = { 'state_shape' : self.state_shape, 'value_size' : self.value_size, 'ppo_device' : self.ppo_device, 'num_agents' : self.num_agents, 'num_steps' : self.horizon_length, 'num_actors' : self.num_actors, 'num_actions' : self.actions_num, 'seq_len' : self.seq_len, 'model' : self.central_value_config['network'], 'config' : self.central_value_config, 'writter' : self.writer, 'max_epochs' : self.max_epochs, 'multi_gpu' : self.multi_gpu } self.central_value_net = central_value.CentralValueTrain(**cv_config).to(self.ppo_device) self.use_experimental_cv = self.config.get('use_experimental_cv', True) self.dataset = datasets.PPODataset(self.batch_size, self.minibatch_size, self.is_discrete, self.is_rnn, self.ppo_device, self.seq_len) if 'phasic_policy_gradients' in self.config: self.has_phasic_policy_gradients = True self.ppg_aux_loss = ppg_aux.PPGAux(self, self.config['phasic_policy_gradients']) self.has_value_loss = (self.has_central_value \ and self.use_experimental_cv) \ or not self.has_phasic_policy_gradients self.algo_observer.after_init(self) def update_epoch(self): self.epoch_num += 1 return self.epoch_num def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): assert False def calc_gradients(self, input_dict): value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['values'] entropy = res_dict['entropy'] mu = res_dict['mus'] sigma = res_dict['sigmas'] a_loss = common_losses.actor_loss(old_action_log_probs_batch, action_log_probs, advantage, self.ppo, curr_e_clip) if self.has_value_loss: c_loss = common_losses.critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) else: c_loss = torch.zeros(1, device=self.ppo_device) b_loss = self.bound_loss(mu) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1), b_loss.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy, b_loss = losses[0], losses[1], losses[2], losses[3] loss = a_loss + 0.5 * c_loss * self.critic_coef - entropy * self.entropy_coef + b_loss * self.bounds_loss_coef if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() #TODO: Refactor this ugliest code of they year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): reduce_kl = not self.is_rnn kl_dist = torch_ext.policy_kl(mu.detach(), sigma.detach(), old_mu_batch, old_sigma_batch, reduce_kl) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() #/ sum_mask self.train_result = (a_loss, c_loss, entropy, \ kl_dist, self.last_lr, lr_mul, \ mu.detach(), sigma.detach(), b_loss) def train_actor_critic(self, input_dict): self.calc_gradients(input_dict) return self.train_result def bound_loss(self, mu): if self.bounds_loss_coef is not None: soft_bound = 1.1 mu_loss_high = torch.clamp_max(mu - soft_bound, 0.0)**2 mu_loss_low = torch.clamp_max(-mu + soft_bound, 0.0)**2 b_loss = (mu_loss_low + mu_loss_high).sum(axis=-1) else: b_loss = 0 return b_loss
7,399
Python
39.217391
142
0.570347
NVlabs/DiffRL/externals/rl_games/rl_games/algos_torch/running_mean_std.py
import torch import torch.nn as nn import numpy as np ''' updates statistic from a full data ''' class RunningMeanStd(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): super(RunningMeanStd, self).__init__() print('RunningMeanStd: ', insize) self.insize = insize self.epsilon = epsilon self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("running_mean", torch.zeros(in_size, dtype = torch.float64)) self.register_buffer("running_var", torch.ones(in_size, dtype = torch.float64)) self.register_buffer("count", torch.ones((), dtype = torch.float64)) def _update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + delta**2 * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def forward(self, input, unnorm=False): if self.training: mean = input.mean(self.axis) # along channel axis var = input.var(self.axis) self.running_mean, self.running_var, self.count = self._update_mean_var_count_from_moments(self.running_mean, self.running_var, self.count, mean, var, input.size()[0] ) # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.running_mean.view([1, self.insize[0], 1, 1]).expand_as(input) current_var = self.running_var.view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.running_mean.view([1, self.insize[0], 1]).expand_as(input) current_var = self.running_var.view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.running_mean.view([1, self.insize[0]]).expand_as(input) current_var = self.running_var.view([1, self.insize[0]]).expand_as(input) else: current_mean = self.running_mean current_var = self.running_var # get output if unnorm: y = torch.clamp(input, min=-5.0, max=5.0) y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float() else: if self.norm_only: y = input/ torch.sqrt(current_var.float() + self.epsilon) else: y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon) y = torch.clamp(y, min=-5.0, max=5.0) return y class RunningMeanStdObs(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): assert(insize is dict) super(RunningMeanStdObs, self).__init__() self.running_mean_std = nn.ModuleDict({ k : RunningMeanStd(v, epsilon, per_channel, norm_only) for k,v in insize.items() }) def forward(self, input, unnorm=False): res = {k : self.running_mean_std(v, unnorm) for k,v in input.items()} return res
3,757
Python
41.224719
152
0.558957
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/tensorflow_utils.py
import tensorflow as tf import numpy as np import collections from collections import deque, OrderedDict def unflatten(vector, shapes): i = 0 arrays = [] for shape in shapes: size = np.prod(shape, dtype=np.int) array = vector[i:(i + size)].reshape(shape) arrays.append(array) i += size assert len(vector) == i, "Passed weight does not have the correct shape." return arrays class TensorFlowVariables(object): """A class used to set and get weights for Tensorflow networks. Attributes: sess (tf.Session): The tensorflow session used to run assignment. variables (Dict[str, tf.Variable]): Extracted variables from the loss or additional variables that are passed in. placeholders (Dict[str, tf.placeholders]): Placeholders for weights. assignment_nodes (Dict[str, tf.Tensor]): Nodes that assign weights. """ def __init__(self, output, sess=None, input_variables=None): """Creates TensorFlowVariables containing extracted variables. The variables are extracted by performing a BFS search on the dependency graph with loss as the root node. After the tree is traversed and those variables are collected, we append input_variables to the collected variables. For each variable in the list, the variable has a placeholder and assignment operation created for it. Args: output (tf.Operation, List[tf.Operation]): The tensorflow operation to extract all variables from. sess (tf.Session): Session used for running the get and set methods. input_variables (List[tf.Variables]): Variables to include in the list. """ self.sess = sess if not isinstance(output, (list, tuple)): output = [output] queue = deque(output) variable_names = [] explored_inputs = set(output) # We do a BFS on the dependency graph of the input function to find # the variables. while len(queue) != 0: tf_obj = queue.popleft() if tf_obj is None: continue # The object put into the queue is not necessarily an operation, # so we want the op attribute to get the operation underlying the # object. Only operations contain the inputs that we can explore. if hasattr(tf_obj, "op"): tf_obj = tf_obj.op for input_op in tf_obj.inputs: if input_op not in explored_inputs: queue.append(input_op) explored_inputs.add(input_op) # Tensorflow control inputs can be circular, so we keep track of # explored operations. for control in tf_obj.control_inputs: if control not in explored_inputs: queue.append(control) explored_inputs.add(control) if "Variable" in tf_obj.node_def.op: variable_names.append(tf_obj.node_def.name) self.variables = OrderedDict() variable_list = [ v for v in tf.global_variables() if v.op.node_def.name in variable_names ] if input_variables is not None: variable_list += input_variables for v in variable_list: self.variables[v.op.node_def.name] = v self.placeholders = {} self.assignment_nodes = {} # Create new placeholders to put in custom weights. for k, var in self.variables.items(): self.placeholders[k] = tf.placeholder( var.value().dtype, var.get_shape().as_list(), name="Placeholder_" + k) self.assignment_nodes[k] = var.assign(self.placeholders[k]) def set_session(self, sess): """Sets the current session used by the class. Args: sess (tf.Session): Session to set the attribute with. """ self.sess = sess def get_flat_size(self): """Returns the total length of all of the flattened variables. Returns: The length of all flattened variables concatenated. """ return sum( np.prod(v.get_shape().as_list()) for v in self.variables.values()) def _check_sess(self): """Checks if the session is set, and if not throw an error message.""" assert self.sess is not None, ("The session is not set. Set the " "session either by passing it into the " "TensorFlowVariables constructor or by " "calling set_session(sess).") def get_flat(self): """Gets the weights and returns them as a flat array. Returns: 1D Array containing the flattened weights. """ self._check_sess() return np.concatenate([ v.eval(session=self.sess).flatten() for v in self.variables.values() ]) def set_flat(self, new_weights): """Sets the weights to new_weights, converting from a flat array. Note: You can only set all weights in the network using this function, i.e., the length of the array must match get_flat_size. Args: new_weights (np.ndarray): Flat array containing weights. """ self._check_sess() shapes = [v.get_shape().as_list() for v in self.variables.values()] arrays = unflatten(new_weights, shapes) placeholders = [ self.placeholders[k] for k, v in self.variables.items() ] self.sess.run( list(self.assignment_nodes.values()), feed_dict=dict(zip(placeholders, arrays))) def get_weights(self): """Returns a dictionary containing the weights of the network. Returns: Dictionary mapping variable names to their weights. """ self._check_sess() return { k: v.eval(session=self.sess) for k, v in self.variables.items() } def set_weights(self, new_weights): """Sets the weights to new_weights. Note: Can set subsets of variables as well, by only passing in the variables you want to be set. Args: new_weights (Dict): Dictionary mapping variable names to their weights. """ self._check_sess() assign_list = [ self.assignment_nodes[name] for name in new_weights.keys() if name in self.assignment_nodes ] assert assign_list, ("No variables in the input matched those in the " "network. Possible cause: Two networks were " "defined in the same TensorFlow graph. To fix " "this, place each network definition in its own " "tf.Graph.") self.sess.run( assign_list, feed_dict={ self.placeholders[name]: value for (name, value) in new_weights.items() if name in self.placeholders })
7,289
Python
39.5
79
0.571409
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/tf_moving_mean_std.py
import tensorflow as tf from tensorflow.python.training.moving_averages import assign_moving_average class MovingMeanStd(object): def __init__(self, shape, epsilon, decay, clamp = 5.0): self.moving_mean = tf.Variable(tf.constant(0.0, shape=shape, dtype=tf.float64), trainable=False)#, name='moving_mean') self.moving_variance = tf.Variable(tf.constant(1.0, shape=shape, dtype=tf.float64), trainable=False)#, name='moving_variance' ) self.epsilon = epsilon self.shape = shape self.decay = decay self.count = tf.Variable(tf.constant(epsilon, shape=shape, dtype=tf.float64), trainable=False) self.clamp = clamp def update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + tf.square(delta) * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def normalize(self, x, train=True): x64 = tf.cast(x, tf.float64) if train: shape = x.get_shape().as_list() if (len(shape) == 2): axis = [0] if (len(shape) == 3): axis = [0, 1] if (len(shape) == 4): axis = [0, 1, 2] mean, var = tf.nn.moments(x64, axis) new_mean, new_var, new_count = self.update_mean_var_count_from_moments(self.moving_mean, self.moving_variance, self.count, mean, var, tf.cast(tf.shape(x)[0], tf.float64)) mean_op = self.moving_mean.assign(new_mean) var_op = self.moving_variance.assign(tf.maximum(new_var, 1e-2)) count_op = self.count.assign(new_count) with tf.control_dependencies([mean_op, var_op, count_op]): res = tf.cast((x64 - self.moving_mean) / (tf.sqrt(self.moving_variance)), tf.float32) return tf.clip_by_value(res, -self.clamp, self.clamp) else: res = tf.cast((x64 - self.moving_mean) / (tf.sqrt(self.moving_variance)), tf.float32) return tf.clip_by_value(res, -self.clamp, self.clamp)
2,361
Python
49.255318
182
0.581957
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/players.py
from rl_games.common import env_configurations from rl_games.algos_tf14 import dqnagent from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class BasePlayer(object): def __init__(self, sess, config): self.config = config self.sess = sess self.env_name = self.config['env_name'] self.env_spaces = env_configurations.get_env_info(self.config) self.obs_space, self.action_space, self.num_agents = self.env_spaces['observation_space'], self.env_spaces['action_space'], self.env_spaces['agents'] self.env = None self.env_config = self.config.get('env_config', None) def restore(self, fn): raise NotImplementedError('restore') def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def create_env(self): return env_configurations.configurations[self.env_name]['env_creator']() def get_action(self, obs, is_determenistic = False): raise NotImplementedError('step') def get_masked_action(self, obs, mask, is_determenistic = False): raise NotImplementedError('step') def reset(self): raise NotImplementedError('raise') def run(self, n_games=1000, n_game_life = 1, render= False): self.env = self.create_env() sum_rewards = 0 sum_steps = 0 sum_game_res = 0 n_games = n_games * n_game_life has_masks = False has_masks_func = getattr(self.env, "has_action_mask", None) is not None if has_masks_func: has_masks = self.env.has_action_mask() is_determenistic = True for _ in range(n_games): cr = 0 steps = 0 s = self.env.reset() for _ in range(5000): if has_masks: masks = self.env.get_action_mask() action = self.get_masked_action(s, masks, is_determenistic) else: action = self.get_action(s, is_determenistic) s, r, done, info = self.env.step(action) cr += r steps += 1 if render: self.env.render(mode = 'human') if not np.isscalar(done): done = done.any() if done: game_res = 0.0 if isinstance(info, dict): if 'battle_won' in info: game_res = info['battle_won'] if 'scores' in info: game_res = info['scores'] print('reward:', np.mean(cr), 'steps:', steps, 'scores:', game_res) sum_game_res += game_res sum_rewards += np.mean(cr) sum_steps += steps break print('av reward:', sum_rewards / n_games * n_game_life, 'av steps:', sum_steps / n_games * n_game_life, 'scores:', sum_game_res / n_games * n_game_life) class PpoPlayerContinuous(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.obs_ph = tf.placeholder('float32', (None, ) + self.obs_space.shape, name = 'obs') self.actions_num = self.action_space.shape[0] self.actions_low = self.action_space.low self.actions_high = self.action_space.high self.mask = [False] self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = self.obs_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : 1, 'games_num' : 1, 'actions_num' : self.actions_num, 'prev_actions_ph' : None } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.mu, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.run_dict, reuse=False) self.last_state = self.initial_state else: self.neglop, self.value, self.action, _, self.mu, _ = self.network(self.run_dict, reuse=False) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic = True): if is_determenistic: ret_action = self.mu else: ret_action = self.action if self.network.is_rnn(): action, self.last_state = self.sess.run([ret_action, self.lstm_state], {self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action = self.sess.run([ret_action], {self.obs_ph : obs}) action = np.squeeze(action) return rescale_actions(self.actions_low, self.actions_high, np.clip(action, -1.0, 1.0)) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state #self.mask = [True] class PpoPlayerDiscrete(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.use_action_masks = config.get('use_action_masks', False) self.obs_ph = tf.placeholder(self.obs_space.dtype, (None, ) + self.obs_space.shape, name = 'obs') self.actions_num = self.action_space.n if self.use_action_masks: print('using masks for action') self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name = 'actions_mask') else: self.action_mask_ph = None self.mask = [False] * self.num_agents self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = self.obs_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.num_agents, 'games_num' : self.num_agents, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, 'action_mask_ph' : self.action_mask_ph } self.last_state = None if self.network.is_rnn(): self.neglop , self.value, self.action, _,self.states_ph, self.masks_ph, self.lstm_state, self.initial_state, self.logits = self.network(self.run_dict, reuse=False) self.last_state = self.initial_state * self.num_agents else: self.neglop , self.value, self.action, _, self.logits = self.network(self.run_dict, reuse=False) self.variables = TensorFlowVariables([self.neglop, self.value, self.action], self.sess) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic = True): ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run([ret_action, self.lstm_state, self.logits], {self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action, logits = self.sess.run([ret_action, self.logits], {self.obs_ph : obs}) if is_determenistic: return np.argmax(logits, axis = -1).astype(np.int32) else: return int(np.squeeze(action)) def get_masked_action(self, obs, mask, is_determenistic = False): #if is_determenistic: ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run([ret_action, self.lstm_state, self.logits], {self.action_mask_ph : mask, self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action, logits = self.sess.run([ret_action, self.logits], {self.action_mask_ph : mask, self.obs_ph : obs}) if is_determenistic: logits = np.array(logits) return np.argmax(logits, axis = -1).astype(np.int32) else: return np.squeeze(action).astype(np.int32) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state class DQNPlayer(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.dqn = dqnagent.DQNAgent(sess, 'player', self.obs_space, self.action_space, config) def get_action(self, obs, is_determenistic = False): return self.dqn.get_action(np.squeeze(obs), 0.0) def restore(self, fn): self.dqn.restore(fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state
10,057
Python
38.754941
213
0.577608
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/networks.py
import tensorflow as tf import numpy as np import tensorflow_probability as tfp tfd = tfp.distributions def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def sample_noise(shape, mean = 0.0, std = 1.0): noise = tf.random_normal(shape, mean = mean, stddev = std) return noise # Added by Andrew Liao # for NoisyNet-DQN (using Factorised Gaussian noise) # modified from ```dense``` function def noisy_dense(inputs, units, name, bias=True, activation=tf.identity, mean = 0.0, std = 1.0): # the function used in eq.7,8 def f(x): return tf.multiply(tf.sign(x), tf.pow(tf.abs(x), 0.5)) # Initializer of \mu and \sigma mu_init = tf.random_uniform_initializer(minval=-1*1/np.power(inputs.get_shape().as_list()[1], 0.5), maxval=1*1/np.power(inputs.get_shape().as_list()[1], 0.5)) sigma_init = tf.constant_initializer(0.4/np.power(inputs.get_shape().as_list()[1], 0.5)) # Sample noise from gaussian p = sample_noise([inputs.get_shape().as_list()[1], 1], mean = 0.0, std = 1.0) q = sample_noise([1, units], mean = 0.0, std = 1.0) f_p = f(p); f_q = f(q) w_epsilon = f_p*f_q; b_epsilon = tf.squeeze(f_q) # w = w_mu + w_sigma*w_epsilon w_mu = tf.get_variable(name + "/w_mu", [inputs.get_shape()[1], units], initializer=mu_init) w_sigma = tf.get_variable(name + "/w_sigma", [inputs.get_shape()[1], units], initializer=sigma_init) w = w_mu + tf.multiply(w_sigma, w_epsilon) ret = tf.matmul(inputs, w) if bias: # b = b_mu + b_sigma*b_epsilon b_mu = tf.get_variable(name + "/b_mu", [units], initializer=mu_init) b_sigma = tf.get_variable(name + "/b_sigma", [units], initializer=sigma_init) b = b_mu + tf.multiply(b_sigma, b_epsilon) return activation(ret + b) else: return activation(ret) def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def lstm(xs, ms, s, scope, nh, nin): with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(), dtype=tf.float32 ) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init() ) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True) x = (x-u)/tf.sqrt(s+e) x = x*g+b return x def lnlstm(xs, ms, s, scope, nh, nin): with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init()) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init()) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) tk = 0 for idx, (x, m) in enumerate(zip(xs, ms)): print(tk) tk = tk + 1 c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s ''' used lstm from openai baseline as the most convenient way to work with dones. TODO: try to use more efficient tensorflow way ''' def openai_lstm(name, inputs, states_ph, dones_ph, units, env_num, batch_num, layer_norm=True): nbatch = batch_num nsteps = nbatch // env_num print('nbatch: ', nbatch) print('env_num: ', env_num) dones_ph = tf.to_float(dones_ph) inputs_seq = batch_to_seq(inputs, env_num, nsteps) dones_seq = batch_to_seq(dones_ph, env_num, nsteps) nin = inputs.get_shape()[1].value with tf.variable_scope(name): if layer_norm: hidden_seq, final_state = lnlstm(inputs_seq, dones_seq, states_ph, scope='lnlstm', nin=nin, nh=units) else: hidden_seq, final_state = lstm(inputs_seq, dones_seq, states_ph, scope='lstm', nin=nin, nh=units) hidden = seq_to_batch(hidden_seq) initial_state = np.zeros(states_ph.shape.as_list(), dtype=float) return [hidden, final_state, initial_state] def distributional_output(inputs, actions_num, atoms_num): distributed_qs = tf.layers.dense(inputs=inputs, activation=tf.nn.softmax, units=atoms_num * actions_num) distributed_qs = tf.reshape(distributed_qs, shape = [-1, actions_num, atoms_num]) distributed_qs = tf.nn.softmax(distributed_qs, dim = -1) return distributed_qs def distributional_noisy_output(inputs, actions_num, atoms_num, name, mean = 0.0, std = 1.0): distributed_qs = noisy_dense(inputs=inputs, name=name, activation=tf.nn.softmax, units=atoms_num * actions_num, mean=mean, std=std) distributed_qs = tf.reshape(distributed_qs, shape = [-1, actions_num, atoms_num]) distributed_qs = tf.nn.softmax(distributed_qs, dim = -1) return distributed_qs def atari_conv_net(inputs): NUM_FILTERS_1 = 32 NUM_FILTERS_2 = 64 NUM_FILTERS_3 = 64 conv1 = tf.layers.conv2d(inputs=inputs, filters=NUM_FILTERS_1, kernel_size=[8, 8], strides=(4, 4), activation=tf.nn.relu) conv2 = tf.layers.conv2d(inputs=conv1, filters=NUM_FILTERS_2, kernel_size=[4, 4], strides=(2, 2), activation=tf.nn.relu) conv3 = tf.layers.conv2d(inputs=conv2, filters=NUM_FILTERS_3, kernel_size=[3, 3], strides=(1, 1), activation=tf.nn.relu) return conv3 def dqn_network(name, inputs, actions_num, atoms_num = 1, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) if atoms_num == 1: logits = tf.layers.dense(inputs=hidden, units=actions_num) else: logits = distributional_output(inputs=hidden, actions_num=actions_num, atoms_num=atoms_num) return logits ''' dueling_type = 'SIMPLE', 'AVERAGE', 'MAX' ''' def dueling_dqn_network(name, inputs, actions_num, reuse=False, dueling_type = 'AVERAGE'): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hidden_advantage = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden_value, units=1) advantage = tf.layers.dense(inputs=hidden_advantage, units=actions_num) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def dueling_dqn_network_with_batch_norm(name, inputs, actions_num, reuse=False, dueling_type = 'AVERAGE', is_train=True): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net_batch_norm(inputs, is_train) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hidden_advantage = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden_value, units=1) advantage = tf.layers.dense(inputs=hidden_advantage, units=actions_num) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def noisy_dqn_network(name, inputs, actions_num, mean, std, atoms_num = 1, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_fc1') if atoms_num == 1: logits = noisy_dense(inputs=hidden, units=actions_num, name = 'noisy_fc2', mean = mean, std = std) else: logits = distributional_noisy_output(inputs=hidden, actions_num=actions_num, atoms_num = atoms_num, name = 'noisy_fc2', mean = mean, std = std) return logits ''' dueling_type = 'SIMPLE', 'AVERAGE', 'MAX' ''' def noisy_dueling_dqn_network(name, inputs, actions_num, mean, std, reuse=False, dueling_type = 'AVERAGE'): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_v1', mean = mean, std = std) hidden_advantage = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_a1', mean = mean, std = std) value = noisy_dense(inputs=hidden_value, units=1, name = 'noisy_v2', mean = mean, std = std) advantage = noisy_dense(inputs=hidden_advantage, units=actions_num, name = 'noisy_a2', mean = mean, std = std) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def noisy_dueling_dqn_network_with_batch_norm(name, inputs, actions_num, mean, std, reuse=False, dueling_type = 'AVERAGE', is_train=True): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net_batch_norm(inputs, is_train) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_v1', mean = mean, std = std) hidden_advantage = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_a1', mean = mean, std = std) value = noisy_dense(inputs=hidden_value, units=1, name = 'noisy_v2', mean = mean, std = std) advantage = noisy_dense(inputs=hidden_advantage, units=actions_num, name = 'noisy_a2', mean = mean, std = std) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def default_small_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False, activation=tf.nn.elu): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 128 NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 32 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, kernel_initializer=normc_initializer(0.01), activation=None) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False, activation=tf.nn.elu): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None, kernel_initializer=hidden_init) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, kernel_initializer=normc_initializer(0.01), activation=None) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network_separated_logstd(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden_init = normc_initializer(1.0) # tf.random_normal_initializer(stddev= 1.0) hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=tf.nn.elu, kernel_initializer=hidden_init) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None, kernel_initializer=hidden_init) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None,) #std = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) #logstd = tf.layers.dense(inputs=hidden2a, units=actions_num) logstd = tf.get_variable(name='log_std', shape=(actions_num), initializer=tf.constant_initializer(0.0), trainable=True) return mu, mu * 0 + logstd, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden0 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.relu) hidden1 = tf.layers.dense(inputs=hidden0, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden2, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2, units=actions_num, activation=None) return logits, value def default_a2c_lstm_network(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 128 NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 64 LSTM_UNITS = 64 hidden0 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.relu) hidden1 = tf.layers.dense(inputs=hidden0, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.float32, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden2, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def default_a2c_lstm_network_separated(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 LSTM_UNITS = 128 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) hidden = tf.concat((hidden1a, hidden1c), axis=1) lstm_out, lstm_state, initial_state = openai_lstm('lstm_a', hidden, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) value = tf.layers.dense(inputs=lstm_outc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01)) var = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_lstm_network_separated(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 32 NUM_HIDDEN_NODES2 = 32 #NUM_HIDDEN_NODES3 = 16 LSTM_UNITS = 16 hidden1c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) hidden1a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2* 2*LSTM_UNITS]) states_a, states_c = tf.split(states_ph, 2, axis=1) lstm_outa, lstm_statae, initial_statea = openai_lstm('lstm_actions', hidden2a, dones_ph=dones_ph, states_ph=states_a, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) lstm_outc, lstm_statec, initial_statec = openai_lstm('lstm_critics', hidden2c, dones_ph=dones_ph, states_ph=states_c, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) initial_state = np.concatenate((initial_statea, initial_statec), axis=1) lstm_state = tf.concat( values=(lstm_statae, lstm_statec), axis=1) #lstm_outa = tf.layers.dense(inputs=lstm_outa, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) #lstm_outc = tf.layers.dense(inputs=lstm_outc, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=lstm_outc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_lstm_network(name, inputs, actions_num, env_num, batch_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 32 NUM_HIDDEN_NODES2 = 32 LSTM_UNITS = 16 hidden1 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden2, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_network_separated(name, inputs, actions_num, activation = tf.nn.elu, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 64 hidden1c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=activation) hidden1a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def simple_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden1 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden2, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2, units=actions_num, activation=None) return logits, value def atari_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3a = atari_conv_net(inputs) conv3c = atari_conv_net(inputs) flattena = tf.contrib.layers.flatten(inputs = conv3a) flattenc = tf.contrib.layers.flatten(inputs = conv3c) hiddena = tf.layers.dense(inputs=flattena, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hiddenc = tf.layers.dense(inputs=flattenc, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hiddenc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hiddena, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hiddena, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hiddena, units=actions_num, activation=None) return logits, value def atari_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden, units=actions_num, activation=None) return logits, value def atari_a2c_network_lstm(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 LSTM_UNITS = 256 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state
32,489
Python
50.984
181
0.645141
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/a2c_discrete.py
from rl_games.common import tr_helpers, vecenv #from rl_games.algos_tf14 import networks from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque, OrderedDict from tensorboardX import SummaryWriter import gym from datetime import datetime def swap_and_flatten01(arr): """ swap and then flatten axes 0 and 1 """ if arr is None: return arr s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): observation_shape = observation_space.shape self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.self_play = config.get('self_play', False) self.name = base_name self.config = config self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = self.config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.horizon_length = config['horizon_length'] self.seq_len = self.config['seq_length'] self.normalize_advantage = config['normalize_advantage'] self.normalize_input = self.config['normalize_input'] self.state_shape = observation_shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.ignore_dead_batches = self.config.get('ignore_dead_batches', False) self.dones = np.asarray([False]*self.num_actors *self.num_agents, dtype=np.bool) self.current_rewards = np.asarray([0]*self.num_actors *self.num_agents, dtype=np.float32) self.current_lengths = np.asarray([0]*self.num_actors *self.num_agents, dtype=np.float32) self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = deque([], maxlen=self.games_to_track) self.game_lengths = deque([], maxlen=self.games_to_track) self.game_scores = deque([], maxlen=self.games_to_track) self.obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name = 'obs') self.target_obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name = 'target_obs') self.actions_num = action_space.n self.actions_ph = tf.placeholder('int32', (None,), name = 'actions') if self.use_action_masks: self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name = 'actions_mask') else: self.action_mask_ph = None self.old_logp_actions_ph = tf.placeholder('float32', (None, ), name = 'old_logpactions') self.rewards_ph = tf.placeholder('float32', (None,), name = 'rewards') self.old_values_ph = tf.placeholder('float32', (None,), name = 'old_values') self.advantages_ph = tf.placeholder('float32', (None,), name = 'advantages') self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, self.epoch_num, config['max_epochs'], end_learning_rate=0.001, power=config.get('decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, self.epoch_num,config['max_epochs'], decay_rate = config['decay_rate']) if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = observation_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize(self.input_target_obs, train=False) games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.config['minibatch_size'], 'games_num' : games_num, 'actions_num' : self.actions_num, 'prev_actions_ph' : self.actions_ph, 'action_mask_ph' : None } self.run_dict = { 'name' : 'agent', 'inputs' : self.input_target_obs, 'batch_num' : self.num_actors * self.num_agents, 'games_num' : self.num_actors * self.num_agents, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, 'action_mask_ph' : self.action_mask_ph } self.states = None if self.network.is_rnn(): self.logp_actions ,self.state_values, self.action, self.entropy, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state, self.logits = self.network(self.run_dict, reuse=True) self.states = self.target_initial_state else: self.logp_actions ,self.state_values, self.action, self.entropy = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.logits = self.network(self.run_dict, reuse=True) self.saver = tf.train.Saver() self.variables = TensorFlowVariables([self.target_action, self.target_state_values, self.target_neglogp], self.sess) if self.is_train: self.setup_losses() self.sess.run(tf.global_variables_initializer()) def setup_losses(self): curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_logp_actions_ph - self.logp_actions) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply(self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1.- curr_e_clip, 1.+ curr_e_clip)) self.actor_loss = tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped) else: self.actor_loss = self.logp_actions * self.advantages_ph self.actor_loss = tf.reduce_mean(self.actor_loss) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value(tf.squeeze(self.state_values) - self.old_values_ph, - curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.maximum(self.c_loss, self.c_loss_clipped) else: self.critic_loss = self.c_loss self.critic_loss = tf.reduce_mean(self.critic_loss) self.kl_approx = 0.5 * tf.stop_gradient(tf.reduce_mean((self.old_logp_actions_ph - self.logp_actions)**2)) if self.is_adaptive_lr: self.current_lr = tf.where(self.kl_approx > (2.0 * self.kl_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where(self.kl_approx < (0.5 * self.kl_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config['entropy_coef'] * self.entropy self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [self.target_action, self.target_state_values, self.target_neglogp] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.target_obs_ph : obs}), None) def get_masked_action_values(self, obs, action_masks): run_ops = [self.target_action, self.target_state_values, self.target_neglogp, self.logits] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.action_mask_ph: action_masks, self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.action_mask_ph: action_masks, self.target_obs_ph : obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run([self.target_state_values], {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return self.sess.run([self.target_state_values], {self.target_obs_ph : obs}) def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def play_steps(self): # here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[] mb_states = [] epinfos = [] # for n in range number of steps for _ in range(self.horizon_length): if self.network.is_rnn(): mb_states.append(self.states) if self.use_action_masks: masks = self.vec_env.get_action_masks() if self.use_action_masks: actions, values, neglogpacs, _, self.states = self.get_masked_action_values(self.obs, masks) else: actions, values, neglogpacs, self.states = self.get_action_values(self.obs) actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) self.obs[:], rewards, self.dones, infos = self.vec_env.step(actions) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done, info in zip(self.current_rewards[::self.num_agents], self.current_lengths[::self.num_agents], self.dones[::self.num_agents], infos): if done: self.game_rewards.append(reward) self.game_lengths.append(length) game_res = 1.0 if isinstance(info, dict): game_res = info.get('battle_won', 0.5) self.game_scores.append(game_res) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_states )), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): self.obs = self.vec_env.reset() batch_size = self.horizon_length * self.num_actors * self.num_agents batch_size_envs = self.horizon_length * self.num_actors minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] frame = 0 update_time = 0 self.last_mean_rewards = -100500 play_time = 0 epoch_num = 0 max_epochs = self.config.get('max_epochs', 1e6) start_time = time.time() total_time = 0 rep_count = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size_envs obses, returns, dones, actions, values, neglogpacs, lstm_states, _ = self.play_steps() advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape(total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_logp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[mb_indexes] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_approx, self.current_lr, self.lr_multiplier, self.train_op] run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) a_loss, c_loss, entropy, kl, last_lr, lr_mul,_, _ = self.sess.run(run_ops, dict) a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = {self.obs_ph: obses[batch], self.actions_ph : actions[batch], self.rewards_ph : returns[batch], self.advantages_ph : advantages[batch], self.old_logp_actions_ph : neglogpacs[batch], self.old_values_ph : values[batch]} dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_approx, self.current_lr, self.lr_multiplier, self.train_op] run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) a_loss, c_loss, entropy, kl, last_lr, lr_mul, _, _ = self.sess.run(run_ops, dict) a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if True: scaled_time = self.num_agents * sum_time print('frames per seconds: ', batch_size / scaled_time) self.writer.add_scalar('performance/fps', batch_size / scaled_time, frame) self.writer.add_scalar('performance/update_time', update_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) mean_scores = np.mean(self.game_scores) self.writer.add_scalar('rewards/mean', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/mean', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) self.writer.add_scalar('scores/mean', mean_scores, frame) self.writer.add_scalar('scores/time', mean_scores, total_time) if rep_count % 10 == 0: self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) rep_count += 1 if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.config['name']) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num if epoch_num > max_epochs: self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0
22,809
Python
49.688889
232
0.577404
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/dqnagent.py
from rl_games.common import tr_helpers, vecenv, experience, env_configurations from rl_games.common.categorical import CategoricalQ from rl_games.algos_tf14 import networks, models from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque from tensorboardX import SummaryWriter from datetime import datetime class DQNAgent: def __init__(self, sess, base_name, observation_space, action_space, config): observation_shape = observation_space.shape actions_num = action_space.n self.config = config self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.games_to_track = config.get('games_to_track', 100) self.max_epochs = config.get('max_epochs', 1e6) self.game_rewards = deque([], maxlen=self.games_to_track) self.game_lengths = deque([], maxlen=self.games_to_track) self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, global_step=self.epoch_num, decay_steps=self.max_epochs, end_learning_rate=0.001, power=config.get(config, 'decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, global_step=self.epoch_num, decay_steps=self.max_epochs, decay_rate = config['decay_rate']) self.env_name = config['env_name'] self.network = config['network'] self.state_shape = observation_shape self.actions_num = actions_num self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.epsilon = self.config['epsilon'] self.rewards_shaper = self.config['reward_shaper'] self.epsilon_processor = tr_helpers.LinearValueProcessor(self.config['epsilon'], self.config['min_epsilon'], self.config['epsilon_decay_frames']) self.beta_processor = tr_helpers.LinearValueProcessor(self.config['priority_beta'], self.config['max_beta'], self.config['beta_decay_frames']) if self.env_name: self.env = env_configurations.configurations[self.env_name]['env_creator']() self.sess = sess self.horizon_length = self.config['horizon_length'] self.states = deque([], maxlen=self.horizon_length) self.is_prioritized = config['replay_buffer_type'] != 'normal' self.atoms_num = self.config['atoms_num'] self.is_categorical = self.atoms_num > 1 if self.is_categorical: self.v_min = self.config['v_min'] self.v_max = self.config['v_max'] self.delta_z = (self.v_max - self.v_min) / (self.atoms_num - 1) self.all_z = tf.range(self.v_min, self.v_max + self.delta_z, self.delta_z) self.categorical = CategoricalQ(self.atoms_num, self.v_min, self.v_max) if not self.is_prioritized: self.exp_buffer = experience.ReplayBuffer(config['replay_buffer_size'], observation_space) else: self.exp_buffer = experience.PrioritizedReplayBuffer(config['replay_buffer_size'], config['priority_alpha'], observation_space) self.sample_weights_ph = tf.placeholder(tf.float32, shape= [None,] , name='sample_weights') self.obs_ph = tf.placeholder(observation_space.dtype, shape=(None,) + self.state_shape , name = 'obs_ph') self.actions_ph = tf.placeholder(tf.int32, shape=[None,], name = 'actions_ph') self.rewards_ph = tf.placeholder(tf.float32, shape=[None,], name = 'rewards_ph') self.next_obs_ph = tf.placeholder(observation_space.dtype, shape=(None,) + self.state_shape , name = 'next_obs_ph') self.is_done_ph = tf.placeholder(tf.float32, shape=[None,], name = 'is_done_ph') self.is_not_done = 1 - self.is_done_ph self.name = base_name self.gamma = self.config['gamma'] self.gamma_step = self.gamma**self.horizon_length self.input_obs = self.obs_ph self.input_next_obs = self.next_obs_ph if observation_space.dtype == np.uint8: print('scaling obs') self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_next_obs = tf.to_float(self.input_next_obs) / 255.0 if self.atoms_num == 1: self.setup_qvalues(actions_num) else: self.setup_cat_qvalues(actions_num) self.reg_loss = tf.losses.get_regularization_loss() self.td_loss_mean += self.reg_loss self.learning_rate = self.config['learning_rate'] self.train_step = tf.train.AdamOptimizer(self.learning_rate * self.lr_multiplier).minimize(self.td_loss_mean, var_list=self.weights) self.saver = tf.train.Saver() self.assigns_op = [tf.assign(w_target, w_self, validate_shape=True) for w_self, w_target in zip(self.weights, self.target_weights)] self.variables = TensorFlowVariables(self.qvalues, self.sess) if self.env_name: sess.run(tf.global_variables_initializer()) self._reset() def _get_q(self, probs): res = probs * self.all_z return tf.reduce_sum(res, axis=2) def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def setup_cat_qvalues(self, actions_num): config = { 'name' : 'agent', 'inputs' : self.input_obs, 'actions_num' : actions_num, } self.logits = self.network(config, reuse=False) self.qvalues_c = tf.nn.softmax(self.logits, axis = 2) self.qvalues = self._get_q(self.qvalues_c) config = { 'name' : 'target', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.target_logits = self.network(config, reuse=False) self.target_qvalues_c = tf.nn.softmax(self.target_logits, axis = 2) self.target_qvalues = self._get_q(self.target_qvalues_c) if self.config['is_double'] == True: config = { 'name' : 'agent', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.next_logits = tf.stop_gradient(self.network(config, reuse=True)) self.next_qvalues_c = tf.nn.softmax(self.next_logits, axis = 2) self.next_qvalues = self._get_q(self.next_qvalues_c) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') self.target_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target') self.current_action_values = tf.reduce_sum(tf.expand_dims(tf.one_hot(self.actions_ph, actions_num), -1) * self.logits, reduction_indices = (1,)) if self.config['is_double'] == True: self.next_selected_actions = tf.argmax(self.next_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( tf.expand_dims(self.next_selected_actions_onehot, -1) * self.target_qvalues_c , reduction_indices = (1,) )) else: self.next_selected_actions = tf.argmax(self.target_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( tf.expand_dims(self.next_selected_actions_onehot, -1) * self.target_qvalues_c , reduction_indices = (1,) )) self.proj_dir_ph = tf.placeholder(tf.float32, shape=[None, self.atoms_num], name = 'best_proj_dir') log_probs = tf.nn.log_softmax( self.current_action_values, axis=1) if self.is_prioritized: # we need to return loss to update priority buffer self.abs_errors = tf.reduce_sum(-log_probs * self.proj_dir_ph, axis = 1) + 1e-5 self.td_loss = self.abs_errors * self.sample_weights_ph else: self.td_loss = tf.reduce_sum(-log_probs * self.proj_dir_ph, axis = 1) self.td_loss_mean = tf.reduce_mean(self.td_loss) def setup_qvalues(self, actions_num): config = { 'name' : 'agent', 'inputs' : self.input_obs, 'actions_num' : actions_num, } self.qvalues = self.network(config, reuse=False) config = { 'name' : 'target', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.target_qvalues = tf.stop_gradient(self.network(config, reuse=False)) if self.config['is_double'] == True: config = { 'name' : 'agent', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.next_qvalues = tf.stop_gradient(self.network(config, reuse=True)) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') self.target_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target') self.current_action_qvalues = tf.reduce_sum(tf.one_hot(self.actions_ph, actions_num) * self.qvalues, reduction_indices = 1) if self.config['is_double'] == True: self.next_selected_actions = tf.argmax(self.next_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( self.target_qvalues * self.next_selected_actions_onehot , reduction_indices=[1,] )) else: self.next_state_values_target = tf.stop_gradient(tf.reduce_max(self.target_qvalues, reduction_indices=1)) self.reference_qvalues = self.rewards_ph + self.gamma_step *self.is_not_done * self.next_state_values_target if self.is_prioritized: # we need to return l1 loss to update priority buffer self.abs_errors = tf.abs(self.current_action_qvalues - self.reference_qvalues) + 1e-5 # the same as multiply gradients later (other way is used in different examples over internet) self.td_loss = tf.losses.huber_loss(self.current_action_qvalues, self.reference_qvalues, reduction=tf.losses.Reduction.NONE) * self.sample_weights_ph self.td_loss_mean = tf.reduce_mean(self.td_loss) else: self.td_loss_mean = tf.losses.huber_loss(self.current_action_qvalues, self.reference_qvalues, reduction=tf.losses.Reduction.MEAN) self.reg_loss = tf.losses.get_regularization_loss() self.td_loss_mean += self.reg_loss self.learning_rate = self.config['learning_rate'] if self.env_name: self.train_step = tf.train.AdamOptimizer(self.learning_rate * self.lr_multiplier).minimize(self.td_loss_mean, var_list=self.weights) def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def _reset(self): self.states.clear() if self.env_name: self.state = self.env.reset() self.total_reward = 0.0 self.total_shaped_reward = 0.0 self.step_count = 0 def get_qvalues(self, state): return self.sess.run(self.qvalues, {self.obs_ph: state}) def get_action(self, state, epsilon=0.0): if np.random.random() < epsilon: action = self.env.action_space.sample() else: qvals = self.get_qvalues([state]) action = np.argmax(qvals) return action def play_steps(self, steps, epsilon=0.0): done_reward = None done_shaped_reward = None done_steps = None steps_rewards = 0 cur_gamma = 1 cur_states_len = len(self.states) # always break after one while True: if cur_states_len > 0: state = self.states[-1][0] else: state = self.state action = self.get_action(state, epsilon) new_state, reward, is_done, _ = self.env.step(action) #reward = reward * (1 - is_done) self.step_count += 1 self.total_reward += reward shaped_reward = self.rewards_shaper(reward) self.total_shaped_reward += shaped_reward self.states.append([new_state, action, shaped_reward]) if len(self.states) < steps: break for i in range(steps): sreward = self.states[i][2] steps_rewards += sreward * cur_gamma cur_gamma = cur_gamma * self.gamma next_state, current_action, _ = self.states[0] self.exp_buffer.add(self.state, current_action, steps_rewards, new_state, is_done) self.state = next_state break if is_done: done_reward = self.total_reward done_steps = self.step_count done_shaped_reward = self.total_shaped_reward self._reset() return done_reward, done_shaped_reward, done_steps def load_weigths_into_target_network(self): self.sess.run(self.assigns_op) def sample_batch(self, exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { self.obs_ph:obs_batch, self.actions_ph:act_batch, self.rewards_ph:reward_batch, self.is_done_ph:is_done_batch, self.next_obs_ph:next_obs_batch } def sample_prioritized_batch(self, exp_replay, batch_size, beta): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch, sample_weights, sample_idxes = exp_replay.sample(batch_size, beta) batch = { self.obs_ph:obs_batch, self.actions_ph:act_batch, self.rewards_ph:reward_batch, self.is_done_ph:is_done_batch, self.next_obs_ph:next_obs_batch, self.sample_weights_ph: sample_weights } return [batch , sample_idxes] def train(self): mem_free_steps = 0 self.last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 self.load_weigths_into_target_network() for _ in range(0, self.config['num_steps_fill_buffer']): self.play_steps(self.horizon_length, self.epsilon) steps_per_epoch = self.config['steps_per_epoch'] num_epochs_to_copy = self.config['num_epochs_to_copy'] batch_size = self.config['batch_size'] lives_reward = self.config['lives_reward'] episodes_to_log = self.config['episodes_to_log'] frame = 0 play_time = 0 update_time = 0 rewards = [] shaped_rewards = [] steps = [] losses = deque([], maxlen=100) while True: epoch_num = self.update_epoch() t_play_start = time.time() self.epsilon = self.epsilon_processor(frame) self.beta = self.beta_processor(frame) for _ in range(0, steps_per_epoch): reward, shaped_reward, step = self.play_steps(self.horizon_length, self.epsilon) if reward != None: self.game_lengths.append(step) self.game_rewards.append(reward) #shaped_rewards.append(shaped_reward) t_play_end = time.time() play_time += t_play_end - t_play_start # train frame = frame + steps_per_epoch t_start = time.time() if self.is_categorical: if self.is_prioritized: batch, idxes = self.sample_prioritized_batch(self.exp_buffer, batch_size=batch_size, beta = self.beta) next_state_vals = self.sess.run([self.next_state_values_target], batch)[0] projected = self.categorical.distr_projection(next_state_vals, batch[self.rewards_ph], batch[self.is_done_ph], self.gamma ** self.horizon_length) batch[self.proj_dir_ph] = projected _, loss_t, errors_update, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.abs_errors, self.lr_multiplier], batch) self.exp_buffer.update_priorities(idxes, errors_update) else: batch = self.sample_batch(self.exp_buffer, batch_size=batch_size) next_state_vals = self.sess.run([self.next_state_values_target], batch)[0] projected = self.categorical.distr_projection(next_state_vals, batch[self.rewards_ph], batch[self.is_done_ph], self.gamma ** self.horizon_length) batch[self.proj_dir_ph] = projected _, loss_t, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.lr_multiplier], batch) else: if self.is_prioritized: batch, idxes = self.sample_prioritized_batch(self.exp_buffer, batch_size=batch_size, beta = self.beta) _, loss_t, errors_update, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.abs_errors, self.lr_multiplier], batch) self.exp_buffer.update_priorities(idxes, errors_update) else: batch = self.sample_batch(self.exp_buffer, batch_size=batch_size) _, loss_t, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.lr_multiplier], batch) losses.append(loss_t) t_end = time.time() update_time += t_end - t_start total_time += update_time if frame % 1000 == 0: mem_free_steps += 1 if mem_free_steps == 10: mem_free_steps = 0 tr_helpers.free_mem() sum_time = update_time + play_time print('frames per seconds: ', 1000 / (sum_time)) self.writer.add_scalar('performance/fps', 1000 / sum_time, frame) self.writer.add_scalar('performance/upd_time', update_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('losses/td_loss', np.mean(losses), frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/lr', self.learning_rate*lr_mul, frame) self.writer.add_scalar('info/epochs', epoch_num, frame) self.writer.add_scalar('info/epsilon', self.epsilon, frame) if self.is_prioritized: self.writer.add_scalar('beta', self.beta, frame) update_time = 0 play_time = 0 num_games = len(self.game_rewards) if num_games > 10: d = num_games / lives_reward mean_rewards = np.sum(self.game_rewards) / d mean_lengths = np.sum(self.game_lengths) / d self.writer.add_scalar('rewards/mean', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/mean', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) if self.last_mean_rewards > self.config['score_to_win']: print('network won!') return self.last_mean_rewards, epoch_num #clear_output(True) # adjust agent parameters if frame % num_epochs_to_copy == 0: self.load_weigths_into_target_network() if epoch_num >= self.max_epochs: print('Max epochs reached') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(np.sum(self.game_rewards) * lives_reward / len(self.game_rewards))) return self.last_mean_rewards, epoch_num
21,405
Python
48.322581
191
0.592245
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/models.py
import tensorflow as tf import numpy as np import tensorflow_probability as tfp from rl_games.algos_tf14 import networks tfd = tfp.distributions def entry_stop_gradients(target, mask): mask_h = tf.abs(mask-1) return tf.stop_gradient(mask_h * target) + mask * target class BaseModel(object): def is_rnn(self): return False class ModelA2C(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=False, is_train=is_train,reuse=reuse) #if action_mask_ph is not None: #masks = tf.layers.dense(tf.to_float(action_mask_ph), actions_num, activation=tf.nn.elu) #logits = masks + logits #logits = entry_stop_gradients(logits, tf.to_float(action_mask_ph)) probs = tf.nn.softmax(logits) # Gumbel Softmax if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=probs) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.stop_gradient(one_hot_actions)) return neglogp, value, action, entropy, logits else: prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy class ModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mu, sigma, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train = is_train, reuse=reuse) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma class ModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mean, logstd, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train=True, reuse=reuse) std = tf.exp(logstd) norm_dist = tfd.Normal(mean, std) action = mean + std * tf.random_normal(tf.shape(mean)) #action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph is None: neglogp = self.neglogp(action, mean, std, logstd) return neglogp, value, action, entropy, mean, std prev_neglogp = self.neglogp(prev_actions_ph, mean, std, logstd) return prev_neglogp, value, action, entropy, mean, std def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) class LSTMModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, logstd, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) std = tf.exp(logstd) action = mu + std * tf.random_normal(tf.shape(mu)) norm_dist = tfd.Normal(mu, std) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, var, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) sigma = tf.sqrt(var) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2C(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=False, is_train=is_train, reuse=reuse) if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.nn.softmax(logits)) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=one_hot_actions) return neglogp, value, action, entropy, states_ph, masks_ph, lstm_state, initial_state, logits prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy, states_ph, masks_ph, lstm_state, initial_state class AtariDQN(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] ''' TODO: fix is_train ''' is_train = name == 'agent' return self.network(name=name, inputs=inputs, actions_num=actions_num, is_train=is_train, reuse=reuse)
10,090
Python
40.356557
167
0.599405
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/model_builder.py
from rl_games.common import object_factory import rl_games.algos_tf14 from rl_games.algos_tf14 import network_builder from rl_games.algos_tf14 import models class ModelBuilder: def __init__(self): self.model_factory = object_factory.ObjectFactory() self.model_factory.register_builder('discrete_a2c', lambda network, **kwargs : models.ModelA2C(network)) self.model_factory.register_builder('discrete_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2C(network)) self.model_factory.register_builder('continuous_a2c', lambda network, **kwargs : models.ModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_logstd', lambda network, **kwargs : models.ModelA2CContinuousLogStd(network)) self.model_factory.register_builder('continuous_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_lstm_logstd', lambda network, **kwargs : models.LSTMModelA2CContinuousLogStd(network)) self.model_factory.register_builder('dqn', lambda network, **kwargs : models.AtariDQN(network)) self.network_factory = object_factory.ObjectFactory() self.network_factory.register_builder('actor_critic', lambda **kwargs : network_builder.A2CBuilder()) self.network_factory.register_builder('dqn', lambda **kwargs : network_builder.DQNBuilder()) def load(self, params): self.model_name = params['model']['name'] self.network_name = params['network']['name'] network = self.network_factory.create(self.network_name) network.load(params['network']) model = self.model_factory.create(self.model_name, network=network) return model
1,761
Python
49.342856
146
0.721181
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/network_builder.py
import tensorflow as tf import numpy as np from rl_games.algos_tf14 import networks from rl_games.common import object_factory def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer class NetworkBuilder: def __init__(self, **kwargs): self.activations_factory = object_factory.ObjectFactory() self.activations_factory.register_builder('relu', lambda **kwargs : tf.nn.relu) self.activations_factory.register_builder('tanh', lambda **kwargs : tf.nn.tanh) self.activations_factory.register_builder('sigmoid', lambda **kwargs : tf.nn.sigmoid) self.activations_factory.register_builder('elu', lambda **kwargs : tf.nn.elu) self.activations_factory.register_builder('selu', lambda **kwargs : tf.nn.selu) self.activations_factory.register_builder('softplus', lambda **kwargs : tf.nn.softplus) self.activations_factory.register_builder('None', lambda **kwargs : None) self.init_factory = object_factory.ObjectFactory() self.init_factory.register_builder('normc_initializer', lambda **kwargs : normc_initializer(**kwargs)) self.init_factory.register_builder('const_initializer', lambda **kwargs : tf.constant_initializer(**kwargs)) self.init_factory.register_builder('orthogonal_initializer', lambda **kwargs : tf.orthogonal_initializer(**kwargs)) self.init_factory.register_builder('glorot_normal_initializer', lambda **kwargs : tf.glorot_normal_initializer(**kwargs)) self.init_factory.register_builder('glorot_uniform_initializer', lambda **kwargs : tf.glorot_uniform_initializer(**kwargs)) self.init_factory.register_builder('variance_scaling_initializer', lambda **kwargs : tf.variance_scaling_initializer(**kwargs)) self.init_factory.register_builder('random_uniform_initializer', lambda **kwargs : tf.random_uniform_initializer(**kwargs)) self.init_factory.register_builder('None', lambda **kwargs : None) self.regularizer_factory = object_factory.ObjectFactory() self.regularizer_factory.register_builder('l1_regularizer', lambda **kwargs : tf.contrib.layers.l1_regularizer(**kwargs)) self.regularizer_factory.register_builder('l2_regularizer', lambda **kwargs : tf.contrib.layers.l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('l1l2_regularizer', lambda **kwargs : tf.contrib.layers.l1l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('None', lambda **kwargs : None) def load(self, params): pass def build(self, name, **kwargs): pass def __call__(self, name, **kwargs): return self.build(name, **kwargs) def _noisy_dense(self, inputs, units, activation, kernel_initializer, kernel_regularizer, name): return networks.noisy_dense(inputs, units, name, True, activation) def _build_mlp(self, name, input, units, activation, initializer, regularizer, norm_func_name = None, dense_func = tf.layers.dense, is_train=True): out = input ind = 0 for unit in units: ind += 1 out = dense_func(out, units=unit, activation=self.activations_factory.create(activation), kernel_initializer = self.init_factory.create(**initializer), kernel_regularizer = self.regularizer_factory.create(**regularizer), #bias_initializer=tf.random_uniform_initializer(-0.1, 0.1), name=name + str(ind)) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out def _build_lstm(self, name, input, units, batch_num, games_num): dones_ph = tf.placeholder(tf.float32, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, input, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm2(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) hidden = tf.concat((inputs[0], inputs[1]), axis=1) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, hidden, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm_sep(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num], name='lstm_masks') states_ph = tf.placeholder(tf.float32, [games_num, 4*units], name='lstm_states') statesa, statesc = tf.split(states_ph, 2, axis=1) a_out, lstm_statea, initial_statea = networks.openai_lstm(name +'a', inputs[0], dones_ph=dones_ph, states_ph=statesa, units=units, env_num=games_num, batch_num=batch_num) c_out, lstm_statec, initial_statec = networks.openai_lstm(name + 'c', inputs[1], dones_ph=dones_ph, states_ph=statesc, units=units, env_num=games_num, batch_num=batch_num) lstm_state = tf.concat([lstm_statea, lstm_statec], axis=1) initial_state = np.concatenate([initial_statea, initial_statec], axis=1) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return a_out, c_out, lstm_state, initial_state, dones_ph, states_ph def _build_conv(self, ctype, **kwargs): print('conv_name:', ctype) if ctype == 'conv2d': return self._build_cnn(**kwargs) if ctype == 'conv1d': return self._build_cnn1d(**kwargs) def _build_cnn(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 for conv in convs: print(out.shape.as_list()) ind += 1 config = conv.copy() config['filters'] = conv['filters'] config['padding'] = conv['padding'] config['kernel_size'] = [conv['kernel_size']] * 2 config['strides'] = [conv['strides']] * 2 config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) out = tf.layers.conv2d(inputs=out, **config) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, name='bn_'+ config['name'], training=is_train) return out def _build_cnn1d(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 print('_build_cnn1d') for conv in convs: ind += 1 config = conv.copy() config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) #config['bias_initializer'] = tf.random_uniform_initializer, # bias_initializer=tf.random_uniform_initializer(-0.1, 0.1) out = tf.layers.conv1d(inputs=out, **config) print('shapes of layer_' + str(ind), str(out.get_shape().as_list())) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out class A2CBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.separate = params['separate'] self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_lstm = 'lstm' in params if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] if self.has_lstm: self.lstm_units = params['lstm']['units'] self.concated = params['lstm']['concated'] if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') batch_num = kwargs.pop('batch_num', 1) games_num = kwargs.pop('games_num', 1) is_train = kwargs.pop('is_train', True) with tf.variable_scope(name, reuse=reuse): actor_input = critic_input = input if self.has_cnn: cnn_args = { 'name' :'actor_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } actor_input = self._build_conv(**cnn_args) actor_input = tf.contrib.layers.flatten(actor_input) critic_input = actor_input if self.separate: cnn_args['name'] = 'critic_cnn' critic_input = self._build_conv( **cnn_args) critic_input = tf.contrib.layers.flatten(critic_input) mlp_args = { 'name' :'actor_fc', 'input' : actor_input, 'units' :self.units, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train } out_actor = self._build_mlp(**mlp_args) if self.separate: mlp_args['name'] = 'critic_fc' mlp_args['input'] = critic_input out_critic = self._build_mlp(**mlp_args) if self.has_lstm: if self.concated: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm2('lstm', [out_actor, out_critic], self.lstm_units, batch_num, games_num) out_critic = out_actor else: out_actor, out_critic, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm_sep('lstm_', [out_actor, out_critic], self.lstm_units, batch_num, games_num) else: if self.has_lstm: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm('lstm', out_actor, self.lstm_units, batch_num, games_num) out_critic = out_actor value = tf.layers.dense(out_critic, units = 1, kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.value_activation), name='value') if self.is_continuous: mu = tf.layers.dense(out_actor, units = actions_num, activation=self.activations_factory.create(self.space_config['mu_activation']), kernel_initializer = self.init_factory.create(**self.space_config['mu_init']), name='mu') if self.space_config['fixed_sigma']: sigma_out = tf.get_variable(name='sigma_out', shape=(actions_num), initializer=self.init_factory.create(**self.space_config['sigma_init']), trainable=True) else: sigma_out = tf.layers.dense(out_actor, units = actions_num, kernel_initializer=self.init_factory.create(**self.space_config['sigma_init']), activation=self.activations_factory.create(self.space_config['sigma_activation']), name='sigma_out') if self.has_lstm: return mu, mu * 0 + sigma_out, value, states_ph, dones_ph, lstm_state, initial_state return mu, mu * 0 + sigma_out, value if self.is_discrete: logits = tf.layers.dense(inputs=out_actor, units=actions_num, name='logits', kernel_initializer = self.init_factory.create(**self.initializer)) if self.has_lstm: return logits, value, states_ph, dones_ph, lstm_state, initial_state return logits, value class DQNBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_dueling = params['dueling'] self.atoms = params['atoms'] self.is_noisy = params['noisy'] self.normalization = params.get('normalization', None) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') is_train = kwargs.pop('is_train', True) if self.is_noisy: dense_layer = self._noisy_dense else: dense_layer = tf.layers.dense with tf.variable_scope(name, reuse=reuse): out = input if self.has_cnn: cnn_args = { 'name' :'dqn_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } out = self._build_conv(**cnn_args) out = tf.contrib.layers.flatten(out) mlp_args = { 'name' :'dqn_mlp', 'input' : out, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train, 'dense_func' : dense_layer } if self.is_dueling: if len(self.units) > 1: mlp_args['units'] = self.units[:-1] out = self._build_mlp(**mlp_args) hidden_value = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_val') hidden_advantage = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_adv') value = dense_layer(inputs=hidden_value, units=self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), activation=tf.identity, kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='value') advantage = dense_layer(inputs=hidden_advantage, units= actions_num * self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='advantage') advantage = tf.reshape(advantage, shape = [-1, actions_num, self.atoms]) value = tf.reshape(value, shape = [-1, 1, self.atoms]) q_values = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) else: mlp_args['units'] = self.units out = self._build_mlp('dqn_mlp', out, self.units, self.activation, self.initializer, self.regularizer) q_values = dense_layer(inputs=out, units=actions_num *self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='q_vals') q_values = tf.reshape(q_values, shape = [-1, actions_num, self.atoms]) if self.atoms == 1: return tf.squeeze(q_values) else: return q_values
18,263
Python
51.034188
301
0.592345
NVlabs/DiffRL/externals/rl_games/rl_games/algos_tf14/a2c_continuous.py
from rl_games.common import tr_helpers, vecenv from rl_games.algos_tf14 import networks from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque, OrderedDict from tensorboardX import SummaryWriter import gym import ray from datetime import datetime def swap_and_flatten01(arr): s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) #(-1, 1) -> (low, high) def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action #(horizon_length, actions_num) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = np.log(p0_sigma/p1_sigma + 1e-5) c2 = (np.square(p0_sigma) + np.square(p1_mu - p0_mu))/(2.0 *(np.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = np.mean(np.sum(kl, axis = -1)) # returning mean between all steps of sum between all actions return kl def policy_kl_tf(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = tf.log(p1_sigma/p0_sigma + 1e-5) c2 = (tf.square(p0_sigma) + tf.square(p1_mu - p0_mu))/(2.0 * (tf.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = tf.reduce_mean(tf.reduce_sum(kl, axis=-1)) # returning mean between all steps of sum between all actions return kl class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): self.name = base_name self.actions_low = action_space.low self.actions_high = action_space.high self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.horizon_length = config['horizon_length'] self.normalize_advantage = config['normalize_advantage'] self.config = config self.state_shape = observation_space.shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.normalize_input = self.config['normalize_input'] self.seq_len = self.config['seq_length'] self.dones = np.asarray([False]*self.num_actors, dtype=np.bool) self.current_rewards = np.asarray([0]*self.num_actors, dtype=np.float32) self.current_lengths = np.asarray([0]*self.num_actors, dtype=np.float32) self.game_rewards = deque([], maxlen=100) self.game_lengths = deque([], maxlen=100) self.obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'obs') self.target_obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'target_obs') self.actions_num = action_space.shape[0] self.actions_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'actions') self.old_mu_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_mu_ph') self.old_sigma_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_sigma_ph') self.old_neglogp_actions_ph = tf.placeholder('float32', (None, ), name = 'old_logpactions') self.rewards_ph = tf.placeholder('float32', (None,), name = 'rewards') self.old_values_ph = tf.placeholder('float32', (None,), name = 'old_values') self.advantages_ph = tf.placeholder('float32', (None,), name = 'advantages') self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.bounds_loss_coef = config.get('bounds_loss_coef', None) if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], end_learning_rate=0.001, power=config.get('decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], decay_rate = config['decay_rate']) self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = observation_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize(self.input_target_obs, train=False) games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.config['minibatch_size'], 'games_num' : games_num, 'actions_num' : self.actions_num, 'prev_actions_ph' : self.actions_ph, } self.run_dict = { 'name' : 'agent', 'inputs' : self.input_target_obs, 'batch_num' : self.num_actors, 'games_num' : self.num_actors, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, } self.states = None if self.network.is_rnn(): self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state = self.network(self.run_dict, reuse=True) self.states = self.target_initial_state else: self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma = self.network(self.run_dict, reuse=True) curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_neglogp_actions_ph - self.neglogp_actions) self.prob_ratio = tf.clip_by_value(self.prob_ratio, 0.0, 16.0) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply(self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1.- curr_e_clip, 1.+ curr_e_clip)) self.actor_loss = tf.reduce_mean(tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped)) else: self.actor_loss = tf.reduce_mean(self.neglogp_actions * self.advantages_ph) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value(tf.squeeze(self.state_values) - self.old_values_ph, -curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.reduce_mean(tf.maximum(self.c_loss, self.c_loss_clipped)) else: self.critic_loss = tf.reduce_mean(self.c_loss) self._calc_kl_dist() self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config['entropy_coef'] * self.entropy self._apply_bound_loss() self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def _calc_kl_dist(self): self.kl_dist = policy_kl_tf(self.mu, self.sigma, self.old_mu_ph, self.old_sigma_ph) if self.is_adaptive_lr: self.current_lr = tf.where(self.kl_dist > (2.0 * self.kl_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where(self.kl_dist < (0.5 * self.kl_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) def _apply_bound_loss(self): if self.bounds_loss_coef: soft_bound = 1.1 mu_loss_high = tf.square(tf.maximum(0.0, self.mu - soft_bound)) mu_loss_low = tf.square(tf.maximum(0.0, -soft_bound - self.mu)) self.bounds_loss = tf.reduce_sum(mu_loss_high + mu_loss_low, axis=1) self.loss += self.bounds_loss * self.bounds_loss_coef else: self.bounds_loss = None def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [self.target_action, self.target_state_values, self.target_neglogp, self.target_mu, self.target_sigma] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.target_obs_ph : obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run([self.target_state_values], {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return self.sess.run([self.target_state_values], {self.target_obs_ph : obs}) def play_steps(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs, mb_mus, mb_sigmas = [],[],[],[],[],[],[],[] mb_states = [] epinfos = [] # For n in range number of steps for _ in range(self.horizon_length): if self.network.is_rnn(): mb_states.append(self.states) actions, values, neglogpacs, mu, sigma, self.states = self.get_action_values(self.obs) #actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) mb_mus.append(mu) mb_sigmas.append(sigma) self.obs[:], rewards, self.dones, infos = self.vec_env.step(rescale_actions(self.actions_low, self.actions_high, np.clip(actions, -1.0, 1.0))) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done in zip(self.current_rewards, self.current_lengths, self.dones): if done: self.game_rewards.append(reward) self.game_lengths.append(length) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_mus = np.asarray(mb_mus, dtype=np.float32) mb_sigmas = np.asarray(mb_sigmas, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas, mb_states )), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): max_epochs = self.config.get('max_epochs', 1e6) self.obs = self.vec_env.reset() batch_size = self.horizon_length * self.num_actors * self.num_agents minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] self.last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size obses, returns, dones, actions, values, neglogpacs, mus, sigmas, lstm_states, _ = self.play_steps() advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape(total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_neglogp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.old_mu_ph] = mus[mbatch] dict[self.old_sigma_ph] = sigmas[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[mb_indexes] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[mbatch] = cmu sigmas[mbatch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] mus = mus[permutation] sigmas = sigmas[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = {self.obs_ph: obses[batch], self.actions_ph : actions[batch], self.rewards_ph : returns[batch], self.advantages_ph : advantages[batch], self.old_neglogp_actions_ph : neglogpacs[batch], self.old_values_ph : values[batch]} dict[self.old_mu_ph] = mus[batch] dict[self.old_sigma_ph] = sigmas[batch] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[batch] = cmu sigmas[batch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if self.rank == 0: scaled_time = sum_time # self.num_agents * scaled_play_time = play_time # self.num_agents * if self.print_stats: fps_step = batch_size / scaled_play_time fps_total = batch_size / scaled_time print(f'fps step: {fps_step:.1f} fps total: {fps_total:.1f}') # performance self.writer.add_scalar('performance/total_fps', batch_size / sum_time, frame) self.writer.add_scalar('performance/step_fps', batch_size / play_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('performance/update_time', update_time, frame) # losses self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', np.mean(b_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) # info self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) self.writer.add_scalar('rewards/frame', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/frame', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.name) if self.last_mean_rewards > self.config['score_to_win']: self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num if epoch_num > max_epochs: print('MAX EPOCHS NUM!') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num update_time = 0
24,499
Python
48.295775
253
0.561982
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_pendulum_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: glorot_normal_initializer gain: 0.01 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: glorot_normal_initializer gain: 2 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-3 name: pendulum score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: Pendulum-v0 ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.016 normalize_input: False bounds_loss_coef: 0
1,266
YAML
18.796875
41
0.559242
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_lunar.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: glorot_normal_initializer #scal: 0.01 sigma_init: name: const_initializer value: 0 fixed_sigma: True mlp: units: [64, 64] activation: relu initializer: name: glorot_normal_initializer #gain: 2 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: LunarLanderContinuous-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0
1,271
YAML
18.875
41
0.558615
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_cartpole_masked_velocity_rnn.yaml
#Cartpole without velocities lstm test params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64, 64] activation: relu normalization: 'layer_norm' norm_only_first_layer: True initializer: name: default regularizer: name: None rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False concat_input: True layer_norm: True config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: CartPoleMaskedVelocity-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 4
1,117
YAML
17.327869
39
0.598926
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppg_walker.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_ppg score_to_win: 290 grad_norm: 0.5 entropy_coef: 0 #-0.005 truncate_grads: False env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 1 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.004 normalize_input: False bounds_loss_coef: 0.0005 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 1024 mini_epochs: 6 player: render: True determenistic: True games_num: 200
1,536
YAML
20.347222
56
0.558594
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_continuous.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: BipedalWalkerHardcore-v3
1,271
YAML
18.272727
39
0.552321
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128,64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: 'nn/humanoid_torch.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'humanoid_torch' score_to_win : 20000 grad_norm : 0.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 32 minibatch_size : 4096 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : False normalize_value : True bounds_loss_coef: 0.000 max_epochs: 12000
1,468
YAML
18.851351
39
0.547684
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_reacher.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128] activation: relu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn1: name: lstm units: 64 layers: 1 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: ReacherPyBulletEnv-v0 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.008 normalize_input: True seq_length: 16 bounds_loss_coef: 0.00 max_epochs: 10000 weight_decay: 0.0001 player: render: True games_num: 200 experiment_config1: start_exp: 0 start_sub_exp: 0 experiments: - exp: - path: config.bounds_loss_coef value: [0.5]
1,593
YAML
18.925
56
0.549278
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_walker.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 256 mini_epochs: 4 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.005 normalize_input: True bounds_loss_coef: 0.00 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 player: render: True determenistic: True games_num: 200
1,408
YAML
19.720588
56
0.555398
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_pendulum.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.01 sigma_init: name: const_initializer value: 0 fixed_sigma: False mlp: units: [32, 32] activation: elu initializer: name: default scale: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: Pendulum-v0 ppo: True e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0
1,223
YAML
18.125
39
0.546198
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_revenge_rnd.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False value_shape: 2 space: discrete: cnn: type: conv2d activation: elu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 512] activation: elu regularizer: name: 'None' initializer: name: default config: reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.999 tau: 0.9 learning_rate: 1e-4 name: atari score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.1 clip_value: True num_actors: 32 horizon_length: 512 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: name: MontezumaRevengeNoFrameskip-v4 rnd_config: scale_value: 1.0 episodic: True episode_length: 256 gamma: 0.99 mini_epochs: 2 minibatch_size: 1024 learning_rate: 1e-4 network: name: rnd_curiosity cnn: type: conv2d activation: elu initializer: name: default scale: 2 regularizer: name: 'None' rnd: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 net: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: rnd: units: [512,512, 512] net: units: [512] activation: elu regularizer: name: 'None' initializer: name: default scale: 2
3,072
YAML
21.762963
42
0.427083
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.01 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: lstm units: 64 layers: 1 before_mlp: False load_checkpoint: True load_path: 'nn/humanoid_torch_rnn.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 8e-4 name : 'humanoid_torch_rnn' score_to_win : 20000 grad_norm : 5 entropy_coef : 0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length: 16 bounds_loss_coef: 0.000 weight_decay: 0.001 max_epochs: 6000
1,608
YAML
18.621951
40
0.54291
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_cartpole.yaml
#Cartpole MLP params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [32, 32] activation: relu initializer: name: default regularizer: name: None config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 1.0 entropy_coef: 0.01 truncate_grads: True env_name: CartPole-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 32 minibatch_size: 64 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False device: 'cuda:0'
878
YAML
16.235294
29
0.592255
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_flex_ant_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [128, 64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 16 minibatch_size : 4096 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True normalize_value : True bounds_loss_coef: 0.0001
1,425
YAML
18.27027
39
0.53614
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_continuous_lstm.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_lstm_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: normc_initializer std: 0.01 sigma_init: name: const_initializer value: 0.0 fixed_sigma: True mlp: units: [256, 256, 128] activation: relu initializer: name: normc_initializer std: 1 regularizer: name: 'None' lstm: units: 128 concated: False load_checkpoint: False load_path: 'nn/runBipedalWalkerHardcore-v2' config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: walker_lstm score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: BipedalWalkerHardcore-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.5 max_epochs: 5000
1,334
YAML
19.227272
45
0.561469
NVlabs/DiffRL/externals/rl_games/rl_games/configs/carracing_ppo.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd load_checkpoint: False load_path: 'nn/runCarRacing-v0' network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: racing score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: CarRacing-v0 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True #lr_schedule: adaptive # kl_threshold: 0.008 bounds_loss_coef: 0.001 # max_epochs: 5000 player: render: True deterministic: True
1,684
YAML
18.593023
33
0.541568
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppg_walker_hardcore.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default load_checkpoint: True load_path: './nn/walker_hc_ppg.pth' config: reward_shaper: #min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_hc_ppg score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 #-0.005 truncate_grads: False env_name: BipedalWalkerHardcore-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 4096 minibatch_size: 8192 mini_epochs: 1 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.004 normalize_input: False bounds_loss_coef: 0.0005 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 1024 mini_epochs: 6 player: render: True determenistic: True games_num: 200
1,510
YAML
20.28169
41
0.559603
NVlabs/DiffRL/externals/rl_games/rl_games/configs/rainbow_dqn_breakout.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: 'nn/breakoutep=3638750.0rew=201.75' network: name: dqn dueling: True atoms: 51 noisy: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 gamma : 0.99 learning_rate : 0.0001 steps_per_epoch : 4 batch_size : 32 epsilon : 0.00 min_epsilon : 0.00 epsilon_decay_frames : 1000000 num_epochs_to_copy : 10000 name : 'breakout' env_name: BreakoutNoFrameskip-v4 is_double : True score_to_win : 600 num_steps_fill_buffer : 100000 replay_buffer_type : 'prioritized' replay_buffer_size : 1000000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 1000000 max_beta : 1 horizon_length : 3 episodes_to_log : 100 lives_reward : 5 atoms_num : 51 v_min : -10 v_max : 10 games_to_track : 100 lr_schedule : None max_epochs: 10000000
1,525
YAML
19.346666
48
0.550164
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_smac.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 6h_vs_8z frames: 2 random_invalid_step: False
979
YAML
17.148148
32
0.581205
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_multiwalker.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: relu initializer: name: default load_checkpoint: False load_path: './nn/multiwalker.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 1e-4 name: multiwalker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: multiwalker_env ppo: True e_clip: 0.2 use_experimental_cv: False clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 3072 #768 #3072 #1536 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: None kl_threshold: 0.008 normalize_input: True normalize_value: True bounds_loss_coef: 0.0001 max_epochs: 10000 weight_decay: 0.0000 player: render: True games_num: 200 env_config: central_value: True use_prev_actions: True apply_agent_ids: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True truncate_grads: False network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: elu initializer: name: default
1,881
YAML
20.632184
43
0.549176
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_walker_hardcore.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' load_checkpoint: False load_path: './nn/walker_hc.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_hc score_to_win: 300 grad_norm: 1.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalkerHardcore-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 4096 minibatch_size: 8192 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: 'adaptive' #None # kl_threshold: 0.008 normalize_input: True seq_length: 4 bounds_loss_coef: 0.00 max_epochs: 100000 weight_decay: 0 player: render: False games_num: 200 determenistic: True
1,420
YAML
19.897059
41
0.554225
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: False mlp: units: [128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch_rnn' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0 weight_decay: 0.001 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 32 bounds_loss_coef: 0.000
1,580
YAML
18.280488
39
0.533544
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_smac_cnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/5m_vs_6m2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m_vs_6m2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 5m_vs_6m frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.64935
35
0.547619
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn_copy.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 128 layers: 1 before_mlp: True load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 128 minibatch_size : 4096 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 16 bounds_loss_coef: 0.0
1,509
YAML
18.113924
39
0.530152
NVlabs/DiffRL/externals/rl_games/rl_games/configs/dqn.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: path network: name: dqn dueling: True atoms: 1 noisy: False cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 0.1 gamma : 0.99 learning_rate : 0.0005 steps_per_epoch : 4 batch_size : 128 epsilon : 0.90 min_epsilon : 0.02 epsilon_decay_frames : 100000 num_epochs_to_copy : 10000 name : 'pong_dddqn_config1' env_name: PongNoFrameskip-v4 is_double : True score_to_win : 20.9 num_steps_fill_buffer : 10000 replay_buffer_type : 'normal' replay_buffer_size : 100000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 100000 max_beta : 1 horizon_length : 3 episodes_to_log : 10 lives_reward : 1 atoms_num : 1 games_to_track : 20 lr_schedule : polynom_decay max_epochs: 100000 experiment_config: start_exp: 0 start_sub_exp: 3 experiments: # - exp: # - path: config.learning_rate # value: [0.0005, 0.0002] - exp: - path: network.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237 - path: network.cnn.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237
2,195
YAML
20.742574
46
0.553531
NVlabs/DiffRL/externals/rl_games/rl_games/configs/ppo_lunar_continiuos_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64] activation: relu initializer: name: default scale: 2 rnn: name: 'lstm' units: 64 layers: 1 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-3 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: LunarLanderContinuous-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 schedule_type: standard normalize_input: True seq_length: 4 bounds_loss_coef: 0 player: render: True
1,276
YAML
17.779412
41
0.544671
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True
1,207
YAML
17.584615
33
0.589892
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64] #normalization: 'layer_norm' activation: elu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' units: 64 layers: 1 layer_norm: True config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_asymmetric score_to_win: 100000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 4 weight_decay: 0.0000 env_config: name: TestAsymmetricEnv-v0 wrapped_env_name: "LunarLander-v2" apply_mask: False use_central_value: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,707
YAML
18.632184
40
0.557704
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64, 64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_rnn_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: True player: games_num: 100 determenistic: True central_value_config1: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64,64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,898
YAML
18.989473
32
0.555848
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_discrete_multidiscrete_mhv.yaml
params: algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_mhv score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,223
YAML
17.830769
32
0.592805
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_ppo_walker_truncated_time.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/walker_truncated_step_1000.pth' config: name: walker_truncated_step_1000 reward_shaper: min_val: -1 scale_value: 0.1 normalize_input: True normalize_advantage: True normalize_value: True value_bootstrap: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 schedule_type: standard lr_schedule: adaptive kl_threshold: 0.005 score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 256 mini_epochs: 4 critic_coef: 2 bounds_loss_coef: 0.00 max_epochs: 10000 #weight_decay: 0.0001 env_config: steps_limit: 1000 player: render: True determenistic: True games_num: 200
1,426
YAML
17.776316
50
0.585554
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete_mhv.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn_md_mhv score_to_win: 0.99 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,362
YAML
17.671233
32
0.5837
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv_mops.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: testnet config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_multi_obs score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: False weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 save_frequency: 20 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_obs_space: True multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: testnet central_value: True mlp: units: [64,32] activation: relu initializer: name: default
1,461
YAML
19.885714
30
0.588638
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: discrete: mlp: units: [32] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 32 layers: 1 layer_norm: False before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,941
YAML
19.020618
33
0.55796
NVlabs/DiffRL/externals/rl_games/rl_games/configs/test/test_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False player: games_num: 100 determenistic: True
1,270
YAML
16.901408
32
0.577165
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/27m_vs_30m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 27m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 27m_vs_30m frames: 4 transpose: False random_invalid_step: False
1,459
YAML
18.466666
33
0.544894
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,040
YAML
17.263158
32
0.577885
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/last_3s_vs_5z_cvep=10001rew=9.585825.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,579
YAML
18.75
58
0.569981
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 256] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_separate reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 2 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: False reward_only_positive: False obs_last_action: True frames: 1 #flatten: False
1,108
YAML
18.120689
34
0.590253
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/8m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 env_config: name: 8m frames: 1 transpose: False random_invalid_step: False
1,061
YAML
17.631579
32
0.589067
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/2c_vs_64zg.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zg_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2c_vs_64zg reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 512 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 2c_vs_64zg frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546958
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6zsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' config: name: 3s5z_vs_3s6z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: False random_invalid_step: False
1,600
YAML
19.265823
40
0.555
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [1024, 512] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 8 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,580
YAML
19.269231
34
0.567722
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 entropy_coef: 0.02 truncate_grads: True grad_norm: 10 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: True reward_only_positive: True obs_last_action: False apply_agent_ids: True player: render: False games_num: 200 n_game_life: 1 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: #normalization: layer_norm name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True #reward_negative_scale: 0.1
1,962
YAML
18.828283
34
0.553517
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,099
YAML
17.032787
32
0.579618
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True env_config: name: 3m frames: 1 transpose: False central_value: True reward_only_positive: True state_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale mlp: units: [256, 128] activation: relu initializer: #name: default name: default scale: 2 regularizer: name: 'None'
1,706
YAML
19.817073
63
0.559789
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,532
YAML
18.909091
34
0.567885
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,762
YAML
19.741176
63
0.565834
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_4z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_4z_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: sc2_fc reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 1536 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_4z frames: 1 random_invalid_step: False
1,036
YAML
17.192982
32
0.578185
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/MMM2_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default scale: 1.3 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 0 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1.3 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True env_config: name: MMM2 frames: 4 transpose: False # for pytorch transpose == not Transpose in tf random_invalid_step: False replay_save_freq: 100
1,531
YAML
18.896104
69
0.548661
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6zaa reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: True random_invalid_step: False
1,532
YAML
18.909091
34
0.550914
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/5m_vs_6m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 5m_vs_6m frames: 4 transpose: False random_invalid_step: False
1,455
YAML
18.413333
32
0.543643
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 before_mlp: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 256 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 32 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,120
YAML
17.683333
32
0.576786
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/2s_vs_1c.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/2s_vs_1c_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
1,039
YAML
17.245614
32
0.578441
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/MMM2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/MMM_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True ignore_dead_batches : False seq_length: 4 env_config: name: MMM frames: 4 transpose: True random_invalid_step: False
1,500
YAML
18.493506
32
0.544667
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/8m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 8m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: False obs_last_action: True
1,581
YAML
18.292683
34
0.56673
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.001 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 8 env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,711
YAML
18.906977
34
0.549971
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_cnn_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 3m frames: 4 transpose: True random_invalid_step: True
1,523
YAML
17.814815
40
0.545634
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch_sparse.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True value_shape: 2 #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 reward_sparse: True transpose: False random_invalid_step: False rnd_config: scale_value: 1 episodic: True episode_length: 128 gamma: 0.99 mini_epochs: 2 minibatch_size: 1536 learning_rate: 5e-4 network: name: rnd_curiosity mlp: rnd: units: [512, 256,128,64] net: units: [128, 64, 64] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,625
YAML
19.074074
38
0.536
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/2m_vs_1z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
978
YAML
17.129629
32
0.580777
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 entropy_coef: 0.005 truncate_grads: True grad_norm: 1.5 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: False reward_only_positive: True obs_last_action: True apply_agent_ids: False player: render: False games_num: 200 n_game_life: 1 determenistic: True #reward_negative_scale: 0.1
1,365
YAML
18.239436
34
0.58022
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3s_vs_5z_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.005 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 4 env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,745
YAML
19.068965
34
0.553582
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/corridor.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/corridor_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: True random_invalid_step: False
1,511
YAML
18.636363
32
0.550629
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/10m_vs_11m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 10m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 10m_vs_11m frames: 14 transpose: False random_invalid_step: False
1,460
YAML
18.48
33
0.545205
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/corridor_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/corridor_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: corridor central_value: True reward_only_positive: False obs_last_action: True frames: 1 reward_negative_scale: 0.05 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,598
YAML
19.5
34
0.571339
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/27m_vs_30m_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 27m_vs_30m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 8 use_action_masks: True ignore_dead_batches : False #max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True env_config: name: 27m_vs_30m transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True apply_agent_ids: True
1,776
YAML
19.193182
32
0.556869
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/2m_vs_1z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2m_vs_1z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2s_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
972
YAML
17.35849
32
0.583333
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,022
YAML
17.267857
32
0.588063
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/corridor_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zgsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: False random_invalid_step: False
1,542
YAML
18.782051
40
0.552529
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/6h_vs_8z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546296
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3m.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 4 transpose: True random_invalid_step: False
1,493
YAML
18.402597
32
0.545211
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False config: name: 6h_vs_8z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False
1,734
YAML
18.942529
34
0.553633
NVlabs/DiffRL/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 before_mlp: False config: name: 3s_vs_5z2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,093
YAML
17.542373
32
0.573651