file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
NVlabs/DiffRL/dflex/tests/rl_swing_up.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = True name = "cartpole" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render link_width = 0.5 max_depth = depth # if (True): # # create a branched tree # builder.add_articulation() # test_util.build_tree(builder, angle=0.0, width=link_width, max_depth=max_depth) # self.ground = False # # add weight # if (False): # radius = 0.5 # X_pj = df.transform((link_width * 2.0, 0.0, 0.0), df.quat_from_axis_angle( (0.0, 0.0, 1.0), 0.0)) # X_cm = df.transform((radius, 0.0, 0.0), df.quat_identity()) # parent = len(builder.body_mass)-1 # link = builder.add_link(parent, X_pj, (0.0, 0.0, 1.0), df.JOINT_REVOLUTE) # shape = builder.add_shape_sphere(link, pos=(0.0, 0.0, 0.0), radius=radius) # builder.joint_q[0] = -math.pi*0.45 # cartpole test_util.urdf_load(builder, "assets/" + self.name + ".urdf", df.transform((0.0, 2.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False) builder.joint_q[1] = -math.pi self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 if self.name == "cartpole": self.marker_body = 2 self.marker_offset = 1.0 self.discount_scale = 2.0 self.discount_factor = 0.5 if self.name == "cartpole_double": self.marker_body = 3 self.marker_offset = 0.5 self.discount_scale = 6.0 self.discount_factor = 0.5 # # humanoid # test_util.urdf_load( # builder, # "assets/humanoid.urdf", # df.transform((0.0, 1.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), # floating=True, # shape_ke=1.e+3*5.0, # shape_kd=1.e+3, # shape_kf=1.e+2, # shape_mu=0.5) # # set pd-stiffness # for i in range(len(builder.joint_target_ke)): # builder.joint_target_ke[i] = 10.0 # builder.joint_target_kd[i] = 1.0 #builder.joint_q[0] = -math.pi*0.45 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros(self.sim_steps, device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) traj = [] for i in range(0, self.sim_steps): # df.config.no_grad = True #df.config.verify_fp = True self.state.joint_act[0] = self.actions[i] # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) traj.append((X_pole[0], X_pole[1], X_pole[2])) self.renderer.add_line_strip(traj, (1.0, 1.0, 1.0), self.render_time) self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # reward if self.sim_time > 2.0: discount_time = (self.sim_time - 2.0) discount = math.pow(self.discount_factor, discount_time*self.discount_scale) if self.name == "cartpole": loss = loss + (torch.pow(self.state.joint_q[1], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[1], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[0], 2.0)*self.cart_position_penalty + torch.pow(self.state.joint_qd[0], 2.0)*self.cart_velocity_penalty)*discount if self.name == "cartpole_double": loss = loss + (torch.pow(self.state.joint_q[1], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[1], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[2], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[2], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[0], 2.0)*self.cart_position_penalty + torch.pow(self.state.joint_qd[0], 2.0)*self.cart_velocity_penalty)*discount return loss + torch.dot(self.actions, self.actions)*self.cart_action_penalty def run(self): #with torch.no_grad(): l = self.loss() self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = params.grad.numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True robot.load() robot.run() #robot.train(mode='lbfgs') #df.config.verify_fp = True #robot.verify(eps=1.e-2)
11,631
Python
30.523035
172
0.509414
NVlabs/DiffRL/dflex/tests/test_articulation_fk.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 10.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.05 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() x = 0.0 w = 0.5 max_depth = 3 # create a branched tree builder.add_articulation() test_util.build_tree(builder, angle=0.0, width=w, max_depth=max_depth) # add weight if (True): radius = 0.1 X_pj = df.transform((w * 2.0, 0.0, 0.0), df.quat_from_axis_angle( (0.0, 0.0, 1.0), 0.0)) X_cm = df.transform((radius, 0.0, 0.0), df.quat_identity()) parent = len(builder.body_mass)-1 link = builder.add_link(parent, X_pj, (0.0, 0.0, 1.0), df.JOINT_REVOLUTE) shape = builder.add_shape_sphere(link, pos=(0.0, 0.0, 0.0), radius=radius) self.model = builder.finalize(adapter) self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 100.0 self.model.contact_mu = 0.75 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # base state self.state = self.model.state() self.state.joint_q.requires_grad_() # ik target self.target = torch.tensor((1.0, 2.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/articulation_fk.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 if (True): self.state.body_X_sc, self.state.body_X_sm = df.adjoint.launch(df.eval_rigid_fk, 1, [ # inputs self.model.articulation_start, self.model.joint_type, self.model.joint_parent, self.model.joint_q_start, self.model.joint_qd_start, self.state.joint_q, self.model.joint_X_pj, self.model.joint_X_cm, self.model.joint_axis ], [ # outputs self.state.body_X_sc, self.state.body_X_sm ], adapter='cpu', preserve_output=True) p = self.state.body_X_sm[3][0:3] err = torch.norm(p - self.target) # try: # art_start = self.art.articulation_start.clone() # art_end = self.art.articulation_end.clone() # joint_type = self.art.joint_type.clone() # joint_parent = self.art.joint_parent.clone() # joint_q_start = self.art.joint_q_start.clone() # joint_qd_start = self.art.joint_qd_start.clone() # joint_q = self.art.joint_q.clone() # joint_X_pj = self.art.joint_X_pj.clone() # joint_X_cm = self.art.joint_X_cm.clone() # joint_axis = self.art.joint_axis.clone() # torch.autograd.gradcheck(df.EvalRigidFowardKinematicsFunc.apply, ( # art_start, # art_end, # joint_type, # joint_parent, # joint_q_start, # joint_qd_start, # joint_q, # joint_X_pj, # joint_X_cm, # joint_axis, # 'cpu'), eps=1e-3, atol=1e-3, raise_exception=True) # except Exception as e: # print("failed: " + str(e)) # render with df.ScopedTimer("render", False): if (self.stage): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #self.stage.Save() self.sim_time += self.sim_dt return err def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.state.joint_q] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=0.2, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- robot = Robot(adapter='cpu') #robot.run() mode = 'lbfgs' robot.set_target((1.0, 2.0, 0.0), "target_1") robot.train(mode) robot.set_target((1.0, -2.0, 0.0), "target_2") robot.train(mode) robot.set_target((-1.0, -2.0, 0.0), "target_3") robot.train(mode) robot.set_target((-2.0, 2.0, 0.0), "target_4") robot.train(mode) #rigid.stage.Save()
8,503
Python
28.425605
141
0.49359
NVlabs/DiffRL/dflex/tests/test_fem.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class FEM: sim_duration = 5.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.01 #1.0/(sim_dt*sim_dt) phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/prop.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/mesh")) points = geom.GetPointsAttr().Get() tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() tri_indices = geom.GetFaceVertexIndicesAttr().Get() tri_counts = geom.GetFaceVertexCountsAttr().Get() r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.0)) builder.add_soft_mesh(pos=(0.0, 2.0, 0.0), rot=r, scale=1.0, vel=(1.5, 0.0, 0.0), vertices=points, indices=tet_indices, density=1.0, k_mu=1000.0, k_lambda=1000.0, k_damp=1.0) #builder.add_soft_grid(pos=(0.0, 0.5, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=1, dim_y=2, dim_z=1, cell_x=0.5, cell_y=0.5, cell_z=0.5, density=1.0) # s = 2.0 # builder.add_particle((0.0, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((s, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, 0.5, s), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, s + 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_tetrahedron(1, 3, 0, 2) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1.0 self.model.contact_kf = 10.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.05 self.model.ground = True # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/fem.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # build sinusoidal input phases with df.ScopedTimer("inference", False): phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq * self.sim_time + p * self.phase_step) # compute activations (rest angles) self.model.tet_activations = self.network(phases) * self.activation_strength # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd, 0) #act_loss = torch.norm(selfactivation)*self.activation_penalty loss = loss - com_loss[0] # - act_loss return loss def run(self, profile=False, render=True): df.config.no_grad = True with torch.no_grad(): with df.ScopedTimer("run"): if profile: cp = cProfile.Profile() cp.clear() cp.enable() # run forward dynamics if profile: self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt else: l = self.loss(render) if profile: cp.disable() cp.print_stats(sort='tottime') if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- fem = FEM(adapter='cuda') fem.run(profile=False, render=True) #fem.train('lbfgs') #fem.train('sgd')
8,649
Python
30.918819
174
0.513239
NVlabs/DiffRL/dflex/tests/test_chain.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Chain: sim_duration = 10.0 # seconds sim_substeps = 2 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 20 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() # anchor builder.add_particle((0.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) for i in range(1, 10): builder.add_particle((i, 1.0, 0.0), (0.0, 0., 0.0), 1.0) builder.add_spring(i - 1, i, 1.e+6, 0.0, 0) self.model = builder.finalize(adapter) self.model.ground = False self.impulse = torch.tensor((0.0, 0.0, 0.0), requires_grad=True, device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/chain.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True #self.integrator = df.sim.SemiImplicitIntegrator() self.integrator = df.sim.XPBDIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() self.state.particle_qd[1] = self.impulse for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt target = torch.tensor((0.0, 2.0, 0.0), device=self.model.adapter) loss = torch.norm(self.state.particle_q[1] - target) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.impulse # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print(l) with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- chain = Chain(adapter='cpu') #cloth.train('lbfgs') chain.run()
3,794
Python
24.993151
136
0.552188
NVlabs/DiffRL/dflex/tests/test_cloth_collisions.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 10.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 4.0 builder = df.sim.ModelBuilder() # builder.add_particle(pos=(2.5, 3.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) # builder.add_particle(pos=(2.5, 4.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) # builder.add_particle(pos=(2.5, 5.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi / 2), vel=(0, 5.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) usd = Usd.Stage.Open("assets/box.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Cube/Cube")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() mesh = df.sim.Mesh(points, indices) rigid = builder.add_rigid_body(pos=(2.5, 3.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(0.5, 0.5, 0.5), density=100.0, ke=1.e+5, kd=1000.0, kf=1000.0, mu=0.5) # rigid = builder.add_rigid_body(pos=(2.5, 5.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi*0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) # shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(0.5, 0.5, 0.5), density=100.0, ke=1.e+5, kd=1000.0, kf=1000.0, mu=0.5) # attach0 = 1 # attach1 = 21 # attach2 = 423 # attach3 = 443 # anchor0 = builder.add_particle(pos=builder.particle_x[attach0]-(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor1 = builder.add_particle(pos=builder.particle_x[attach1]+(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor2 = builder.add_particle(pos=builder.particle_x[attach2]-(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor3 = builder.add_particle(pos=builder.particle_x[attach3]+(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # builder.add_spring(anchor0, attach0, 500.0, 1000.0, 0) # builder.add_spring(anchor1, attach1, 10000.0, 1000.0, 0) # builder.add_spring(anchor2, attach2, 10000.0, 1000.0, 0) # builder.add_spring(anchor3, attach3, 10000.0, 1000.0, 0) self.model = builder.finalize(adapter) # self.model.tri_ke = 10000.0 # self.model.tri_ka = 10000.0 # self.model.tri_kd = 100.0 self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 50.0 self.model.tri_drag = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.1 self.model.ground = True self.model.tri_collisions = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth_collision.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() # cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
8,834
Python
34.199203
164
0.514716
NVlabs/DiffRL/dflex/tests/test_cloth_sphere_collisions.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 10.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 4.0 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi / 2), vel=(0, 5.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) usd = Usd.Stage.Open("assets/sphere.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Sphere/Sphere")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() mesh = df.sim.Mesh(points, indices) rigid = builder.add_rigid_body(pos=(2.5, 1.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(1 / 100, 1 / 100, 1 / 100), density=0.0, ke=1e3, kd=1e3, kf=1e3, mu=1.0) self.model = builder.finalize(adapter) # self.model.tri_ke = 10000.0 # self.model.tri_ka = 10000.0 # self.model.tri_kd = 100.0 self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 50.0 self.model.tri_drag = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.1 self.model.ground = False self.model.tri_collisions = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth_sphere.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() # cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
7,413
Python
31.234782
154
0.507757
NVlabs/DiffRL/dflex/tests/test_beam.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Beam: sim_duration = 3.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 1.0 def __init__(self, device='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() builder.add_soft_grid(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=2, dim_z=2, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=10.0, k_mu=1000.0, k_lambda=1000.0, k_damp=5.0, fix_left=True, fix_right=True) self.model = builder.finalize(device) # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.particle_radius = 0.05 self.model.ground = False self.target = torch.tensor((-0.5)).to(device) self.material = torch.tensor((100.0, 50.0, 5.0), requires_grad=True, device=device) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/beam.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # clamp material params to reasonable range mat_min = torch.tensor((1.e+1, 1.e+1, 5.0), device=self.model.adapter) mat_max = torch.tensor((1.e+5, 1.e+5, 5.0), device=self.model.adapter) mat_val = torch.max(torch.min(mat_max, self.material), mat_min) # broadcast stiffness params to all tets self.model.tet_materials = mat_val.expand((self.model.tet_count, 3)).contiguous() # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_q, 0) # minimize y loss = loss - torch.norm(com_loss[1] - self.target) return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [ self.material, ] def closure(): if optimizer: optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(self.material) print(self.material.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for param in params: param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.5, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- beam = Beam(device='cpu') #beam.run() #beam.train('lbfgs') beam.train('gd')
6,623
Python
28.704036
141
0.495697
NVlabs/DiffRL/dflex/tests/test_rigid_bounce.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class RigidBounce: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = True name = "rigid_bounce" def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render builder.add_articulation() # add sphere link = builder.add_link(-1, df.transform((0.0, 0.0, 0.0), df.quat_identity()), (0,0,0), df.JOINT_FREE) shape = builder.add_shape_sphere( link, (0.0, 0.0, 0.0), df.quat_identity(), radius=0.1, ke=1.e+4, kd=10.0, kf=1.e+2, mu=0.25) builder.joint_q[1] = 1.0 #v_s = df.get_body_twist((0.0, 0.0, 0.0), (1.0, -1.0, 0.0), builder.joint_q[0:3]) w_m = (0.0, 0.0, 3.0) # angular velocity (expressed in world space) v_m = (0.0, 0.0, 0.0) # linear velocity at center of mass (expressed in world space) p_m = builder.joint_q[0:3] # position of the center of mass (expressed in world space) # set body0 twist builder.joint_qd[0:6] = df.get_body_twist(w_m, v_m, p_m) # get decomposed velocities print(df.get_body_angular_velocity(builder.joint_qd[0:6])) print(df.get_body_linear_velocity(builder.joint_qd[0:6], p_m)) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) # initial velocity #self.model.joint_qd[3] = 0.5 #self.model.joint_qd[4] = -0.5 #self.model.joint_qd[2] = 1.0 self.model.joint_qd.requires_grad_() self.target = torch.tensor((1.0, 1.0, 0.0), dtype=torch.float32, device=adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): for i in range(0, self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") #loss = loss + torch.dot(self.state.joint_qd[3:6], self.state.joint_qd[3:6])*self.balance_penalty*discount pos = self.state.joint_q[0:3] loss = torch.norm(pos-self.target) return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.model.joint_qd n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.model.joint_qd.grad.tolist() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.model.joint_qd] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.model.joint_qd, "outputs/" + self.name + ".pt") def load(self): self.model.joint_qd = torch.load("outputs/" + self.name + ".pt") #--------- robot = RigidBounce(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.check_grad = True #df.config.no_grad = True robot.run() #df.config.verify_fp = True #robot.load() #robot.train(mode='lbfgs') #robot.verify(eps=1.e-3)
8,881
Python
27.196825
118
0.516158
NVlabs/DiffRL/dflex/tests/test_rigid_slide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np from pxr import Usd, UsdGeom, Gf class RigidSlide: sim_duration = 3.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.1 discount_scale = 1.0 discount_factor = 0.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) # load mesh usd = Usd.Stage.Open("assets/suzanne.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Suzanne/Suzanne")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() builder = df.sim.ModelBuilder() mesh = df.sim.Mesh(points, indices) articulation = builder.add_articulation() rigid = builder.add_link( parent=-1, X_pj=df.transform((0.0, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 0.0), type=df.JOINT_FREE) ke = 1.e+4 kd = 1.e+3 kf = 1.e+3 mu = 0.5 # shape = builder.add_shape_mesh( # rigid, # mesh=mesh, # scale=(0.2, 0.2, 0.2), # density=1000.0, # ke=1.e+4, # kd=1000.0, # kf=1000.0, # mu=0.75) radius = 0.1 #shape = builder.add_shape_sphere(rigid, pos=(0.0, 0.0, 0.0), ke=ke, kd=kd, kf=kf, mu=mu, radius=radius) #shape = builder.add_shape_capsule(rigid, pos=(0.0, 0.0, 0.0), radius=radius, half_width=0.5) shape = builder.add_shape_box(rigid, pos=(0.0, 0.0, 0.0), hx=radius, hy=radius, hz=radius, ke=ke, kd=kd, kf=kf, mu=mu) builder.joint_q[1] = radius self.model = builder.finalize(adapter) self.model.joint_qd.requires_grad = True self.vel = torch.tensor((1.0, 0.0, 0.0), dtype=torch.float32, device=adapter, requires_grad=True) self.target = torch.tensor((3.0, 0.2, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/rigid_slide.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #--------------- # run simulation # construct contacts once at startup self.model.joint_qd = torch.cat((torch.tensor((0.0, 0.0, 0.0), dtype=torch.float32, device=self.model.adapter), self.vel)) self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #com = self.state.joint_q[0:3] com = self.state.body_X_sm[0, 0:3] loss = loss + torch.norm(com - self.target) return loss def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.vel] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- rigid = RigidSlide(adapter='cpu') #rigid.run() rigid.train('adam')
7,018
Python
28.124481
141
0.526503
NVlabs/DiffRL/dflex/tests/test_snu_mlp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class MultiLayerPerceptron(nn.Module): def __init__(self, n_in, n_out, n_hd, adapter, inference=False): super(MultiLayerPerceptron,self).__init__() self.n_in = n_in self.n_out = n_out self.n_hd = n_hd #self.ll = nn.Linear(n_in, n_out) self.fc1 = nn.Linear(n_in, n_hd).to(adapter) self.fc2 = nn.Linear(n_hd, n_hd).to(adapter) self.fc3 = nn.Linear(n_hd, n_out).to(adapter) self.bn1 = nn.LayerNorm(n_in, elementwise_affine=False).to(adapter) self.bn2 = nn.LayerNorm(n_hd, elementwise_affine=False).to(adapter) self.bn3 = nn.LayerNorm(n_out, elementwise_affine=False).to(adapter) def forward(self, x: torch.Tensor): x = F.leaky_relu(self.bn2(self.fc1(x))) x = F.leaky_relu(self.bn2(self.fc2(x))) x = torch.tanh(self.bn3(self.fc3(x))-2.0) return x class HumanoidSNU: train_iters = 100000000 train_rate = 0.001 train_size = 128 train_batch_size = 4 train_batch_iters = 128 train_batch_count = int(train_size/train_batch_size) train_data = None ground = True name = "humanoid_snu_lower" regularization = 1.e-3 inference = False initial_y = 1.0 def __init__(self, depth=1, mode='numpy', render=True, sim_duration=1.0, adapter='cpu', inference=False): self.sim_duration = sim_duration # seconds self.sim_substeps = 16 self.sim_dt = (1.0 / 60.0) / self.sim_substeps self.sim_steps = int(self.sim_duration / self.sim_dt) self.sim_time = 0.0 torch.manual_seed(41) np.random.seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL" } self.ground = False if self.name == "humanoid_snu_lower": self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.ground = True self.initial_y = 1.0 if self.name == "humanoid_snu": self.filter = {} self.ground = True self.skeletons = [] self.inference = inference # if (self.inference): # self.train_batch_size = 1 for i in range(self.train_batch_size): skeleton = test_util.Skeleton("assets/snu/arm.xml", "assets/snu/muscle284.xml", builder, self.filter) # set initial position 1m off the ground builder.joint_q[skeleton.coord_start + 0] = i*1.5 builder.joint_q[skeleton.coord_start + 1] = self.initial_y # offset on z-axis #builder.joint_q[skeleton.coord_start + 2] = 10.0 # initial velcoity #builder.joint_qd[skeleton.dof_start + 5] = 3.0 self.skeletons.append(skeleton) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) #self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.network = MultiLayerPerceptron(3, len(self.skeletons[0].muscles), 128, adapter) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 # generate training data targets = [] for i in range(self.train_size): # generate a random point in -1, 1 away from the head t = np.random.rand(2)*2.0 - 1.0 t[1] += 0.5 targets.append((t[0], t[1] + 0.5, 1.0)) self.train_data = torch.tensor(targets, dtype=torch.float32, device=self.adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target(torch.tensor((0.75, 0.4, 0.5), dtype=torch.float32, device=self.adapter), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = x if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name, self.render_time) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # apply actions #self.model.muscle_activation = self.activations[0]*self.muscle_strength # compute activations for each target in the batch targets = self.train_data[0:self.train_batch_size] activations = torch.flatten(self.network(targets)) self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # one time collision self.model.collide(self.state) for i in range(self.sim_steps): # apply random actions per-frame #self.model.muscle_activation = (activations*0.5 + 0.5 + torch.rand_like(activations,dtype=torch.float32, device=self.model.adapter))*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) #if self.inference: #x = math.cos(self.sim_time*0.5)*0.5 #y = math.sin(self.sim_time*0.5)*0.5 # t = self.sim_time*0.5 # x = math.sin(t)*0.5 # y = math.sin(t)*math.cos(t)*0.5 # self.set_target(torch.tensor((x, y + 0.5, 1.0), dtype=torch.float32, device=self.adapter), "target") # activations = self.network(self.target) # self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(len(s.muscles)):#.self.model.muscle_count): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) for i in range(self.train_batch_size): skel = self.skeletons[i] head_pos = self.state.body_X_sc[skel.node_map["Head"]][0:3] head_forward = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], up_dir) target_dir = self.train_data[i] - head_pos loss_forward = torch.dot(head_forward, target_dir)*self.target_penalty loss_up = torch.dot(head_up, up_dir)*self.target_penalty*0.5 loss_penalty = torch.dot(activations, activations)*self.action_penalty loss = loss - loss_forward - loss_up + loss_penalty #self.writer.add_scalar("loss_forward", loss_forward.item(), self.step_count) #self.writer.add_scalar("loss_up", loss_up.item(), self.step_count) #self.writer.add_scalar("loss_penalty", loss_penalty.item(), self.step_count) return loss def run(self): df.config.no_grad = True self.inference = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): self.writer = SummaryWriter() self.writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.best_loss = math.inf optimizer = None scheduler = None params = self.network.parameters()#[self.activations] def closure(): batch = int(self.step_count/self.train_batch_iters)%self.train_batch_count print("Batch: " + str(batch) + " Iter: " + str(self.step_count%self.train_batch_iters)) if (optimizer): optimizer.zero_grad() # compute loss on all examples with df.ScopedTimer("forward"):#, detailed=True): l = self.loss() # compute gradient with df.ScopedTimer("backward"):#, detailed=True): l.backward() # batch stats self.writer.add_scalar("loss_batch", l.item(), self.step_count) self.writer.flush() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: self.stage.Save() except: print("USD save error") # save network if (l < self.best_loss): self.save() self.best_loss = l return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): last_LR = 1e-5 init_LR = 1e-3 decay_LR_steps = 2000 gamma = math.exp(math.log(last_LR/init_LR)/decay_LR_steps) optimizer = torch.optim.Adam(params, lr=self.train_rate, weight_decay=1e-5) #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = gamma) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) if optimizer: optimizer.step(closure) if scheduler: scheduler.step() # final save try: self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self, suffix=""): self.network = torch.load("outputs/" + self.name + suffix + ".pt") if self.inference: self.network.eval() else: self.network.train() #--------- #env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda') #env.train(mode='adam') env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda', inference=True) #env.load() env.run()
17,357
Python
32.445087
235
0.526358
NVlabs/DiffRL/dflex/tests/test_allegro.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "allegro" regularization = 1.e-3 env_count = 1 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # allegro for i in range(self.env_count): test_util.urdf_load( builder, #"assets/franka_description/robots/franka_panda.urdf", "assets/allegro_hand_description/allegro_hand_description_right.urdf", df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi*0.5)), floating=False, limit_ke=0.0,#1.e+3, limit_kd=0.0)#1.e+2) # set fingers to mid-range of their limits for i in range(len(builder.joint_q_start)): if (builder.joint_type[i] == df.JOINT_REVOLUTE): dof = builder.joint_q_start[i] mid = (builder.joint_limit_lower[dof] + builder.joint_limit_upper[dof])*0.5 builder.joint_q[dof] = mid builder.joint_target[dof] = mid builder.joint_target_kd[i] = 0.02 builder.joint_target_ke[i] = 1.0 solid = False # create FEM block if (solid): builder.add_soft_grid( pos=(-0.05, 0.2, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=10, dim_y=5, dim_z=5, cell_x=0.01, cell_y=0.01, cell_z=0.01, density=1000.0, k_mu=500.0, k_lambda=1000.0, k_damp=1.0) else: builder.add_cloth_grid( pos=(-0.1, 0.2, -0.1), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi*0.5), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=20, cell_x=0.01, cell_y=0.01, mass=0.0125) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.contact_ke = 1.e+3 self.model.contact_kd = 2.0 self.model.contact_kf = 0.1 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 if (solid): self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 else: self.model.tri_ke = 100.0 self.model.tri_ka = 100.0 self.model.tri_kd = 1.0 self.model.tri_kb = 0.0 self.model.edge_ke = 0.01 self.model.edge_kd = 0.001 self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() robot.run() #robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
10,608
Python
27.986339
165
0.488028
NVlabs/DiffRL/dflex/tests/test_adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df
626
Python
25.124999
82
0.785942
NVlabs/DiffRL/dflex/tests/assets/humanoid.xml
<!-- ====================================================== This file is part of MuJoCo. Copyright 2009-2015 Roboti LLC. Model :: Humanoid Mujoco :: Advanced physics simulation engine Source : www.roboti.us Version : 1.31 Released : 23Apr16 Author :: Vikash Kumar Contacts : [email protected] Last edits : 30Apr'16, 30Nov'15, 26Sept'15 ====================================================== --> <mujoco model='humanoid (v1.31)'> <compiler inertiafromgeom='true' angle='degree'/> <default> <joint limited='true' damping='1' armature='0' /> <geom contype='1' conaffinity='1' condim='1' rgba='0.8 0.6 .4 1' margin="0.001" solref=".02 1" solimp=".8 .8 .01" material="geom"/> <motor ctrlrange='-.4 .4' ctrllimited='true'/> </default> <option timestep='0.002' iterations="50" solver="PGS"> <flag energy="enable"/> </option> <size nkey='5'/> <visual> <map fogstart="3" fogend="5" force="0.1"/> <quality shadowsize="2048"/> </visual> <asset> <texture type="skybox" builtin="gradient" width="100" height="100" rgb1=".4 .6 .8" rgb2="0 0 0"/> <texture name="texgeom" type="cube" builtin="flat" mark="cross" width="127" height="1278" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" random="0.01"/> <texture name="texplane" type="2d" builtin="checker" rgb1=".2 .3 .4" rgb2=".1 0.15 0.2" width="100" height="100"/> <material name='MatPlane' reflectance='0.5' texture="texplane" texrepeat="1 1" texuniform="true"/> <material name='geom' texture="texgeom" texuniform="true"/> </asset> <worldbody> <geom name='floor' pos='0 0 0' size='10 10 0.125' type='plane' material="MatPlane" condim='3'/> <body name='torso' pos='0 0 1.4'> <light mode='trackcom' directional='false' diffuse='.8 .8 .8' specular='0.3 0.3 0.3' pos='0 0 4.0' dir='0 0 -1'/> <joint name='root' type='free' pos='0 0 0' limited='false' damping='0' armature='0' stiffness='0'/> <geom name='torso1' type='capsule' fromto='0 -.07 0 0 .07 0' size='0.07' /> <geom name='head' type='sphere' pos='0 0 .19' size='.09'/> <geom name='uwaist' type='capsule' fromto='-.01 -.06 -.12 -.01 .06 -.12' size='0.06'/> <body name='lwaist' pos='-.01 0 -0.260' quat='1.000 0 -0.002 0' > <geom name='lwaist' type='capsule' fromto='0 -.06 0 0 .06 0' size='0.06' /> <joint name='abdomen_z' type='hinge' pos='0 0 0.065' axis='0 0 1' range='-45 45' damping='5' stiffness='20' armature='0.02' /> <joint name='abdomen_y' type='hinge' pos='0 0 0.065' axis='0 1 0' range='-75 30' damping='5' stiffness='10' armature='0.02' /> <body name='pelvis' pos='0 0 -0.165' quat='1.000 0 -0.002 0' > <joint name='abdomen_x' type='hinge' pos='0 0 0.1' axis='1 0 0' range='-35 35' damping='5' stiffness='10' armature='0.02' /> <geom name='butt' type='capsule' fromto='-.02 -.07 0 -.02 .07 0' size='0.09' /> <body name='right_thigh' pos='0 -0.1 -0.04' > <joint name='right_hip_x' type='hinge' pos='0 0 0' axis='1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_z' type='hinge' pos='0 0 0' axis='0 0 1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='right_thigh1' type='capsule' fromto='0 0 0 0 0.01 -.34' size='0.06' /> <body name='right_shin' pos='0 0.01 -0.403' > <joint name='right_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='right_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='right_foot' pos='0 0 -.39' > <joint name='right_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='right_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='right_foot_cap1' type='capsule' fromto='-.07 -0.02 0 0.14 -0.04 0' size='0.027' /> <geom name='right_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 0.02 0' size='0.027' /> </body> </body> </body> <body name='left_thigh' pos='0 0.1 -0.04' > <joint name='left_hip_x' type='hinge' pos='0 0 0' axis='-1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_z' type='hinge' pos='0 0 0' axis='0 0 -1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='left_thigh1' type='capsule' fromto='0 0 0 0 -0.01 -.34' size='0.06' /> <body name='left_shin' pos='0 -0.01 -0.403' > <joint name='left_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='left_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='left_foot' pos='0 0 -.39' > <joint name='left_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='left_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='left_foot_cap1' type='capsule' fromto='-.07 0.02 0 0.14 0.04 0' size='0.027' /> <geom name='left_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 -0.02 0' size='0.027' /> </body> </body> </body> </body> </body> <body name='right_upper_arm' pos='0 -0.17 0.06' > <joint name='right_shoulder1' type='hinge' pos='0 0 0' axis='2 1 1' range='-85 60' stiffness='1' armature='0.0068' /> <joint name='right_shoulder2' type='hinge' pos='0 0 0' axis='0 -1 1' range='-85 60' stiffness='1' armature='0.0051' /> <geom name='right_uarm1' type='capsule' fromto='0 0 0 .16 -.16 -.16' size='0.04 0.16' /> <body name='right_lower_arm' pos='.18 -.18 -.18' > <joint name='right_elbow' type='hinge' pos='0 0 0' axis='0 -1 1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='right_larm' type='capsule' fromto='0.01 0.01 0.01 .17 .17 .17' size='0.031' /> <geom name='right_hand' type='sphere' pos='.18 .18 .18' size='0.04'/> </body> </body> <body name='left_upper_arm' pos='0 0.17 0.06' > <joint name='left_shoulder1' type='hinge' pos='0 0 0' axis='2 -1 1' range='-60 85' stiffness='1' armature='0.0068' /> <joint name='left_shoulder2' type='hinge' pos='0 0 0' axis='0 1 1' range='-60 85' stiffness='1' armature='0.0051' /> <geom name='left_uarm1' type='capsule' fromto='0 0 0 .16 .16 -.16' size='0.04 0.16' /> <body name='left_lower_arm' pos='.18 .18 -.18' > <joint name='left_elbow' type='hinge' pos='0 0 0' axis='0 -1 -1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='left_larm' type='capsule' fromto='0.01 -0.01 0.01 .17 -.17 .17' size='0.031' /> <geom name='left_hand' type='sphere' pos='.18 -.18 .18' size='0.04'/> </body> </body> </body> </worldbody> <tendon> <fixed name='left_hipknee'> <joint joint='left_hip_y' coef='-1'/> <joint joint='left_knee' coef='1'/> </fixed> <fixed name='right_hipknee'> <joint joint='right_hip_y' coef='-1'/> <joint joint='right_knee' coef='1'/> </fixed> </tendon> <keyframe> <key qpos='-0.0233227 0.00247283 0.0784829 0.728141 0.00223397 -0.685422 -0.00181805 -0.000580139 -0.245119 0.0329713 -0.0461148 0.0354257 0.252234 -0.0347763 -0.4663 -0.0313013 0.0285638 0.0147285 0.264063 -0.0346441 -0.559198 0.021724 -0.0333332 -0.718563 0.872778 0.000260393 0.733088 0.872748' /> <key qpos='0.0168601 -0.00192002 0.127167 0.762693 0.00191588 0.646754 -0.00210291 -0.000199049 0.0573113 -4.05731e-005 0.0134177 -0.00468944 0.0985945 -0.282695 -0.0469067 0.00874203 0.0263262 -0.00295056 0.0984851 -0.282098 -0.044293 0.00475795 0.127371 -0.42895 0.882402 -0.0980573 0.428506 0.88193' /> <key qpos='0.000471586 0.0317577 0.210587 0.758805 -0.583984 0.254155 0.136322 -0.0811633 0.0870309 -0.0935227 0.0904958 -0.0278004 -0.00978614 -0.359193 0.139761 -0.240168 0.060149 0.237062 -0.00622109 -0.252598 -0.00376874 -0.160597 0.25253 -0.278634 0.834376 -0.990444 -0.169065 0.652876' /> <key qpos='-0.0602175 0.048078 0.194579 -0.377418 -0.119412 -0.675073 -0.622553 0.139093 0.0710746 -0.0506027 0.0863461 0.196165 -0.0276685 -0.521954 -0.267784 0.179051 0.0371897 0.0560134 -0.032595 -0.0480022 0.0357436 0.108502 0.963806 0.157805 0.873092 -1.01145 -0.796409 0.24736' /> </keyframe> <actuator> <motor name='abdomen_y' gear='200' joint='abdomen_y' /> <motor name='abdomen_z' gear='200' joint='abdomen_z' /> <motor name='abdomen_x' gear='200' joint='abdomen_x' /> <motor name='right_hip_x' gear='200' joint='right_hip_x' /> <motor name='right_hip_z' gear='200' joint='right_hip_z' /> <motor name='right_hip_y' gear='600' joint='right_hip_y' /> <motor name='right_knee' gear='400' joint='right_knee' /> <motor name='right_ankle_x' gear='100' joint='right_ankle_x' /> <motor name='right_ankle_y' gear='100' joint='right_ankle_y' /> <motor name='left_hip_x' gear='200' joint='left_hip_x' /> <motor name='left_hip_z' gear='200' joint='left_hip_z' /> <motor name='left_hip_y' gear='600' joint='left_hip_y' /> <motor name='left_knee' gear='400' joint='left_knee' /> <motor name='left_ankle_x' gear='100' joint='left_ankle_x' /> <motor name='left_ankle_y' gear='100' joint='left_ankle_y' /> <motor name='right_shoulder1' gear='100' joint='right_shoulder1' /> <motor name='right_shoulder2' gear='100' joint='right_shoulder2' /> <motor name='right_elbow' gear='200' joint='right_elbow' /> <motor name='left_shoulder1' gear='100' joint='left_shoulder1' /> <motor name='left_shoulder2' gear='100' joint='left_shoulder2' /> <motor name='left_elbow' gear='200' joint='left_elbow' /> </actuator> </mujoco>
11,517
XML
68.385542
314
0.528784
NVlabs/DiffRL/dflex/tests/assets/ant.xml
<mujoco model="ant"> <compiler angle="degree" coordinate="local" inertiafromgeom="true"/> <option integrator="RK4" timestep="0.01"/> <custom> <numeric data="0.0 0.0 0.55 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 1.0" name="init_qpos"/> </custom> <default> <joint armature="0.001" damping="1" limited="true"/> <geom conaffinity="0" condim="3" density="5.0" friction="1.5 0.1 0.1" margin="0.01" rgba="0.97 0.38 0.06 1"/> </default> <worldbody> <body name="torso" pos="0 0 0.75"> <geom name="torso_geom" pos="0 0 0" size="0.25" type="sphere"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="aux_1_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="aux_2_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="aux_3_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="aux_4_geom" size="0.08" type="capsule" rgba=".999 .2 .02 1"/> <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0" type="free"/> <body name="front_left_leg" pos="0.2 0.2 0"> <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 0.2 0" name="front_left_foot"> <joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 0.4 0.0" name="left_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> <body name="front_right_leg" pos="-0.2 0.2 0"> <joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 0.2 0" name="front_right_foot"> <joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 0.4 0.0" name="right_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="left_back_leg" pos="-0.2 -0.2 0"> <joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="back_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 -0.2 0" name="left_back_foot"> <joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 -0.4 0.0" name="third_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="right_back_leg" pos="0.2 -0.2 0"> <joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="rightback_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 -0.2 0" name="right_back_foot"> <joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 -0.4 0.0" name="fourth_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> </body> </worldbody> <actuator> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_3" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_3" gear="150"/> </actuator> </mujoco>
4,043
XML
61.215384
125
0.550829
NVlabs/DiffRL/dflex/docs/index.rst
Welcome to dFlex's documentation! ================================== dFlex is a differentiable multiphysics engine for PyTorch. It is written entirely in Python and supports reverse mode differentiation w.r.t. to any simulation inputs. It includes a USD-based visualization module (:class:`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly. Prerequisites ------------- * Python 3.6 * PyTorch 1.4.0 or higher * Pixar USD lib (for visualization) Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable. .. toctree:: :maxdepth: 3 :caption: Contents: modules/model modules/sim modules/render Quick Start ----------------- First ensure that the package is installed in your local Python environment (use the -e option if you will be doing development): .. code-block:: pip install -e dflex Then, to use the engine you can import the simulation module as follows: .. code-block:: import dflex To build physical models there is a helper class available in :class:`dflex.model.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles: .. code-block:: builder = dflex.model.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # add ground plane builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0) Once you have built your model you must convert it to a finalized PyTorch simulation data structure using :func:`dflex.model.ModelBuilder.finalize()`: .. code-block:: model = builder.finalize('cpu') The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state. Time Stepping ------------- To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the :class:`dflex.sim.SemiImplicitIntegrator` class as follows: .. code-block:: sim_dt = 1.0/60.0 sim_steps = 100 integrator = dflex.sim.SemiImplicitIntegrator() for i in range(0, sim_steps): state = integrator.forward(model, state, sim_dt) Rendering --------- To visualize the scene dFlex supports a USD-based update via. the :class:`dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model. .. code-block:: import dflex.render stage = Usd.Stage.CreateNew("test.usda") renderer = dflex.render.UsdRenderer(model, stage) renderer.draw_points = True renderer.draw_springs = True renderer.draw_shapes = True Each frame the renderer should be updated with the current model state and the current elapsed simulation time: .. code-block:: renderer.update(state, sim_time) Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
3,311
reStructuredText
27.8
228
0.700393
NVlabs/DiffRL/dflex/docs/conf.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../dflex')) # -- Project information ----------------------------------------------------- project = 'dFlex' copyright = '2020, NVIDIA' author = 'NVIDIA' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', # 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'autodocsumm' ] # put type hints inside the description instead of the signature (easier to read) autodoc_typehints = 'description' # document class *and* __init__ methods autoclass_content = 'both' # todo_include_todos = True intersphinx_mapping = { 'python': ("https://docs.python.org/3", None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'PyTorch': ('http://pytorch.org/docs/master/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme = "sphinx_rtd_theme" # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = []
2,515
Python
32.105263
81
0.659245
NVlabs/DiffRL/dflex/docs/modules/sim.rst
dflex.sim =========== .. currentmodule:: dflex.sim .. toctree:: :maxdepth: 2 .. automodule:: dflex.sim :members: :undoc-members: :show-inheritance:
171
reStructuredText
12.230768
28
0.567251
NVlabs/DiffRL/dflex/docs/modules/model.rst
dflex.model =========== .. currentmodule:: dflex.model .. toctree:: :maxdepth: 2 model.modelbuilder model.model model.state
151
reStructuredText
10.692307
30
0.569536
NVlabs/DiffRL/dflex/docs/modules/model.model.rst
dflex.model.Model ======================== .. autoclasssumm:: dflex.model.Model .. autoclass:: dflex.model.Model :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
NVlabs/DiffRL/dflex/docs/modules/render.rst
dflex.render ============ .. currentmodule:: dflex.render .. toctree:: :maxdepth: 2 .. automodule:: dflex.render :members: :undoc-members: :show-inheritance:
178
reStructuredText
11.785713
31
0.595506
NVlabs/DiffRL/dflex/docs/modules/model.state.rst
dflex.model.State ======================== .. autoclasssumm:: dflex.model.State .. autoclass:: dflex.model.State :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
NVlabs/DiffRL/dflex/docs/modules/model.modelbuilder.rst
dflex.model.ModelBuilder ======================== .. autoclasssumm:: dflex.model.ModelBuilder .. autoclass:: dflex.model.ModelBuilder :members: :undoc-members: :show-inheritance:
194
reStructuredText
16.727271
43
0.628866
NVlabs/DiffRL/utils/common.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys # if there's overlap between args_list and commandline input, use commandline input def solve_argv_conflict(args_list): arguments_to_be_removed = [] arguments_size = [] for argv in sys.argv[1:]: if argv.startswith('-'): size_count = 1 for i, args in enumerate(args_list): if args == argv: arguments_to_be_removed.append(args) for more_args in args_list[i+1:]: if not more_args.startswith('-'): size_count += 1 else: break arguments_size.append(size_count) break for args, size in zip(arguments_to_be_removed, arguments_size): args_index = args_list.index(args) for _ in range(size): args_list.pop(args_index) def print_error(*message): print('\033[91m', 'ERROR ', *message, '\033[0m') raise RuntimeError def print_ok(*message): print('\033[92m', *message, '\033[0m') def print_warning(*message): print('\033[93m', *message, '\033[0m') def print_info(*message): print('\033[96m', *message, '\033[0m') from datetime import datetime def get_time_stamp(): now = datetime.now() year = now.strftime('%Y') month = now.strftime('%m') day = now.strftime('%d') hour = now.strftime('%H') minute = now.strftime('%M') second = now.strftime('%S') return '{}-{}-{}-{}-{}-{}'.format(month, day, year, hour, minute, second) import argparse def parse_model_args(model_args_path): fp = open(model_args_path, 'r') model_args = eval(fp.read()) model_args = argparse.Namespace(**model_args) return model_args import torch import numpy as np import random import os def seeding(seed=0, torch_deterministic=False): print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed
2,965
Python
31.23913
91
0.629005
NVlabs/DiffRL/utils/torch_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands # torch quat/vector utils def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False): return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([x, y, z, w], dim=-1).view(shape) return quat @torch.jit.script def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def quat_apply(a, b): shape = b.shape a = a.reshape(-1, 4) b = b.reshape(-1, 3) xyz = a[:, :3] t = xyz.cross(b, dim=-1) * 2 return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c @torch.jit.script def quat_axis(q, axis=0): # type: (Tensor, int) -> Tensor basis_vec = torch.zeros(q.shape[0], 3, device=q.device) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec) @torch.jit.script def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape) @torch.jit.script def quat_unit(a): return normalize(a) @torch.jit.script def quat_from_angle_axis(angle, axis): theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return quat_unit(torch.cat([xyz, w], dim=-1)) @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def tf_inverse(q, t): q_inv = quat_conjugate(q) return q_inv, -quat_apply(q_inv, t) @torch.jit.script def tf_apply(q, t, v): return quat_apply(q, v) + t @torch.jit.script def tf_vector(q, v): return quat_apply(q, v) @torch.jit.script def tf_combine(q1, t1, q2, t2): return quat_mul(q1, q2), quat_apply(q1, t2) + t1 @torch.jit.script def get_basis_vector(q, v): return quat_rotate(q, v) def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN) def grad_norm(params): grad_norm = 0. for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad ** 2) return torch.sqrt(grad_norm) def print_leaf_nodes(grad_fn, id_set): if grad_fn is None: return if hasattr(grad_fn, 'variable'): mem_id = id(grad_fn.variable) if not(mem_id in id_set): print('is leaf:', grad_fn.variable.is_leaf) print(grad_fn.variable) id_set.add(mem_id) # print(grad_fn) for i in range(len(grad_fn.next_functions)): print_leaf_nodes(grad_fn.next_functions[i][0], id_set) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions return kl.mean()
6,536
Python
27.176724
114
0.568696
NVlabs/DiffRL/utils/average_meter.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import numpy as np class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy()
1,368
Python
34.102563
82
0.65424
NVlabs/DiffRL/utils/load_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import torch import random import xml.etree.ElementTree as ET import dflex as df def set_np_formatting(): np.set_printoptions(edgeitems=30, infstr='inf', linewidth=4000, nanstr='nan', precision=2, suppress=False, threshold=10000, formatter=None) def set_seed(seed, torch_deterministic=False): if seed == -1 and torch_deterministic: seed = 42 elif seed == -1: seed = np.random.randint(0, 10000) print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+4, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=1.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # Mujoco file format parser def parse_mjcf( filename, builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=1e4, contact_kd=1e4, contact_kf=1e3, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0, armature=0.01, radians=False, load_stiffness=False, load_armature=False): file = ET.parse(filename) root = file.getroot() type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_bool(node, key, default): if key in node.attrib: if node.attrib[key] == "true": return True else: return False else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent, last_joint_pos): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") # last_joint_pos = np.zeros(3) #----------------- # add body for each joint, we assume the joints attached to one body have the same joint_pos for i, joint in enumerate(body.findall("joint")): joint_name = joint.attrib["name"] joint_type = type_map[joint.attrib.get("type", 'hinge')] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_limited = parse_bool(joint, "limited", True) if joint_limited: if radians: joint_range = parse_vec(joint, "range", (np.deg2rad(-170.), np.deg2rad(170.))) else: joint_range = np.deg2rad(parse_vec(joint, "range", (-170.0, 170.0))) else: joint_range = np.array([-1.e+6, 1.e+6]) if load_stiffness: joint_stiffness = parse_float(joint, 'stiffness', stiffness) else: joint_stiffness = stiffness joint_damping = parse_float(joint, 'damping', damping) if load_armature: joint_armature = parse_float(joint, "armature", armature) else: joint_armature = armature joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) #----------------- # add body link = builder.add_link( parent, X_pj=df.transform(body_pos + joint_pos - last_joint_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=joint_range[0], limit_upper=joint_range[1], limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) # assume that each joint is one body in simulation parent = link body_pos = [0.0, 0.0, 0.0] last_joint_pos = joint_pos #----------------- # add shapes to the last joint in the body for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos - last_joint_pos, # position relative to the parent frame rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) if ("axisangle" in geom.attrib): axis_angle = parse_vec(geom, "axisangle", (0.0, 1.0, 0.0, 0.0)) geom_rot = df.quat_from_axis_angle(axis_angle[0:3], axis_angle[3]) if ("quat" in geom.attrib): q = parse_vec(geom, "quat", df.quat_identity()) geom_rot = q geom_rot = df.quat_multiply(geom_rot, df.quat_from_axis_angle((0.0, 1.0, 0.0), -math.pi*0.5)) builder.add_shape_capsule( link, pos=geom_pos - last_joint_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link, last_joint_pos) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1, np.zeros(3)) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] self.muscle_strength = 0.0 class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter={}, visualize_shapes=True, stiffness=5.0, damping=2.0, contact_ke=5000.0, contact_kd=2000.0, contact_kf=1000.0, contact_mu=0.5, limit_ke=1000.0, limit_kd=10.0, armature = 0.05): self.armature = armature self.stiffness = stiffness self.damping = damping self.contact_ke = contact_ke self.contact_kd = contact_kd self.contact_kf = contact_kf self.limit_ke = limit_ke self.limit_kd = limit_kd self.contact_mu = contact_mu self.visualize_shapes = visualize_shapes self.parse_skeleton(skeleton_file, builder, filter) if muscle_file != None: self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = float(body.attrib["mass"]) x=body_size[0] y=body_size[1] z=body_size[2] density = body_mass / (x*y*z) max_body_mass = 15.0 mass_scale = body_mass / max_body_mass body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = -1.e+3 joint_upper = 1.e+3 if (joint_type == type_map["Revolute"]): if ("lower" in joint.attrib): joint_lower = np.fromstring(joint.attrib["lower"], sep=" ")[0] if ("upper" in joint.attrib): joint_upper = np.fromstring(joint.attrib["upper"], sep=" ")[0] # print(joint_type, joint_lower, joint_upper) if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, limit_lower=joint_lower, limit_upper=joint_upper, limit_ke=self.limit_ke * mass_scale, limit_kd=self.limit_kd * mass_scale, damping=self.damping, stiffness=self.stiffness * math.sqrt(mass_scale), armature=self.armature) # armature=self.armature * math.sqrt(mass_scale)) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=x*0.5, hy=y*0.5, hz=z*0.5, density=density, ke=self.contact_ke, kd=self.contact_kd, kf=self.contact_kf, mu=self.contact_mu) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name m.muscle_strength = unit_f0 incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
22,759
Python
30.523546
130
0.482622
NVlabs/DiffRL/utils/dataset.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np class CriticDataset: def __init__(self, batch_size, obs, target_values, shuffle = False, drop_last = False): self.obs = obs.view(-1, obs.shape[-1]) self.target_values = target_values.view(-1) self.batch_size = batch_size if shuffle: self.shuffle() if drop_last: self.length = self.obs.shape[0] // self.batch_size else: self.length = ((self.obs.shape[0] - 1) // self.batch_size) + 1 def shuffle(self): index = np.random.permutation(self.obs.shape[0]) self.obs = self.obs[index, :] self.target_values = self.target_values[index] def __len__(self): return self.length def __getitem__(self, index): start_idx = index * self.batch_size end_idx = min((index + 1) * self.batch_size, self.obs.shape[0]) return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx]}
1,420
Python
37.405404
110
0.645775
NVlabs/DiffRL/utils/time_report.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import time from utils.common import * class Timer: def __init__(self, name): self.name = name self.start_time = None self.time_total = 0. def on(self): assert self.start_time is None, "Timer {} is already turned on!".format(self.name) self.start_time = time.time() def off(self): assert self.start_time is not None, "Timer {} not started yet!".format(self.name) self.time_total += time.time() - self.start_time self.start_time = None def report(self): print_info('Time report [{}]: {:.2f} seconds'.format(self.name, self.time_total)) def clear(self): self.start_time = None self.time_total = 0. class TimeReport: def __init__(self): self.timers = {} def add_timer(self, name): assert name not in self.timers, "Timer {} already exists!".format(name) self.timers[name] = Timer(name = name) def start_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].on() def end_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].off() def report(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() else: print_info("------------Time Report------------") for timer_name in self.timers.keys(): self.timers[timer_name].report() print_info("-----------------------------------") def clear_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].clear() else: for timer_name in self.timers.keys(): self.timers[timer_name].clear() def pop_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() del self.timers[name] else: self.report() self.timers = {}
2,688
Python
34.853333
90
0.58631
NVlabs/DiffRL/utils/running_mean_std.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Tuple import torch class RunningMeanStd(object): def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = (), device = 'cuda:0'): """ Calulates the running mean and std of a data stream https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm :param epsilon: helps with arithmetic issues :param shape: the shape of the data stream's output """ self.mean = torch.zeros(shape, dtype = torch.float32, device = device) self.var = torch.ones(shape, dtype = torch.float32, device = device) self.count = epsilon def to(self, device): rms = RunningMeanStd(device = device) rms.mean = self.mean.to(device).clone() rms.var = self.var.to(device).clone() rms.count = self.count return rms @torch.no_grad() def update(self, arr: torch.tensor) -> None: batch_mean = torch.mean(arr, dim = 0) batch_var = torch.var(arr, dim = 0, unbiased = False) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean: torch.tensor, batch_var: torch.tensor, batch_count: int) -> None: delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + torch.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count def normalize(self, arr:torch.tensor, un_norm = False) -> torch.tensor: if not un_norm: result = (arr - self.mean) / torch.sqrt(self.var + 1e-5) else: result = arr * torch.sqrt(self.var + 1e-5) + self.mean return result
2,462
Python
40.745762
111
0.638099
NVlabs/fast-explicit-teleop/README.md
# Fast Explicit-Input Assistance for Teleoperation in Clutter This repository contains the research code for [Fast Explicit-Input Assistance for Teleoperation in Clutter](https://arxiv.org/abs/2402.02612). The performance of prediction-based assistance for robot teleoperation degrades in unseen or goal-rich environments due to incorrect or quickly-changing intent inferences. Poor predictions can confuse operators or cause them to change their control input to implicitly signal their goal, resulting in unnatural movement. We present a new assistance algorithm and interface for robotic manipulation where an operator can explicitly communicate a manipulation goal by pointing the end-effector. Rapid optimization and parallel collision checking in a local region around the pointing target enable direct, interactive control over grasp and place pose candidates. This codebase enables running the explicit and implicit assistance conditions on a simulated environment in Isaac Sim, as used in the experiments. It has a dependency on the [spacemouse extension](https://github.com/NVlabs/spacemouse-extension), which is the device used for teleoperating the robot. Some of the tools and utilities might be helpful as a guidance in developing your own simulation environments and teleoperation interfaces. # srl.teleop The codebase is structured as an Isaac Sim Extension. It is currently supported on Isaac Sim 2022.2.1. ## Installation Clone into `~/Documents/Kit/apps/Isaac-Sim/exts`, and ensure the folder is titled `srl.teleop`. You could also clone the Extension to a different directory and add it to the list of extensions paths in Isaac Sim. The one above is just used by default. OpenSCAD is required for trimesh boolean operations (used in collision checking): sudo apt-get install openscad ### SpaceMouse Setup Clone the [SpaceMouse extension](https://github.com/NVlabs/spacemouse-extension) and carefully follow the setup instructions to install it. Currently, the assistance extension won't function without the SpaceMouse extension. <!-- #### 2022.2.0: Cortex doesn't declare a module, which seems to prevent imports from other extensions. Add the following to its `extension.toml`: [[python.module]] name = "omni.isaac" --> ## Usage * Run Isaac Sim from the OV Launcher. Activate the extension in the `Window > Extensions` menu by searching for `SRL` and toggling the extension on. Set it to autoload if you don't want to have to enable it manually every launch. * Click on the new `Teleop Assistance` pane that appeared near the `Stage` pane (right side menus). * Click `Load World`. * Open the `SpaceMouse` pane, select your device, and click the `Engage` checkbox. SpaceMouse input moves the target, visualized with a small axis marker, that the robot tries to move towards. Suggestions will appear, indicated by a ghost gripper, you can hold the `Pull` button to have the target slowly moved to match the target. When you have an object in your gripper, you will see a ghost version of the held object floating along planes in the scene. You can move the robot around as normal and the ghost will move in tandem. You can move the robot as normal until you're happy with where the marker is, then use `Pull` to have the object plopped down into the plane. | Function | SpaceMouse | SpaceMouse Pro | |--------------------|------------|----------------| | Gripper open/close | Left click | Ctrl | | Pull | Right hold | Alt | | Home | - | Menu | | Left View | - | F | | Right View | - | R | | Top View | - | T | | Free View | - | Clockwise (Center on right pad) | | Rotate View | - | Roll (Top-left on right pad) | ### Recording a Demonstration Under the Data Logging panel of the extension, enter the operator's name, then click "Start" to begin collecting a demonstration. Press pause when finished and click "Save Data" to store the information into a JSON file at the "Output Directory". ## Development Run `source ${ISAAC_SIM_ROOT}/setup_python_env.sh` in a shell, then run `code .` in the repository. The included `.vscode` config is based on the one distributed with Isaac Sim. Omniverse will monitor the Python source files making up the extension and automatically "hot reload" the extension when you save changes. This repo tracks a VS Code configuration for connecting the debugger to the Python environment while Isaac Sim is running. Enabling the debugger by enabling its host extension brings a performance penalty (even if it isn't connected), so be sure to disable it before judging frame rates. **Note: You must start with a fresh Omniverse stage every time you open the plugin. Use `File > New From Stage Template > Empty` to clear the stage. Then you can `Load World` and proceed.** # Contributions Some parts of this codebase reuse and modify the "Isaac Sim Examples" plugin and Cortex from NVIDIA Isaac Sim. # Citation If you find this work useful, please star or fork this repository and cite the following paper: ``` @misc{walker2024fast, title={Fast Explicit-Input Assistance for Teleoperation in Clutter}, author={Nick Walker and Xuning Yang and Animesh Garg and Maya Cakmak and Dieter Fox and Claudia P\'{e}rez-D'Arpino}, year={2024}, eprint={2402.02612}, archivePrefix={arXiv}, primaryClass={cs.RO} } ```
5,545
Markdown
60.622222
590
0.732372
NVlabs/fast-explicit-teleop/PACKAGE-LICENSES/omni.isaac.examples-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
NVlabs/fast-explicit-teleop/scripts/render_demo.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import argparse import os from pathlib import Path parser = argparse.ArgumentParser() parser.add_argument('input_file', help='Path to hdf5 file') args = parser.parse_args() selection_path = Path(args.input_file) # selection path but without file extension prefix = "" out_path = prefix + str(selection_path.parent) + "/" + str(selection_path.stem) if os.path.exists(out_path + "/operator_view.mp4"): print("Already rendered, skipping") exit() if "lifting" in out_path or "reaching" in out_path: print("Skipping warm up") exit() from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) from omni.isaac.core.utils.extensions import enable_extension # Enable the layers and stage windows in the UI enable_extension("srl.teleop") import atexit def exit_handler(): simulation_app.close() atexit.register(exit_handler) import numpy as np import h5py import asyncio import os from omni.isaac.core.world import World from srl.teleop.analysis.playback import Playback import math import subprocess import os import argparse from tqdm import tqdm import shlex def get_hdf5_files(dir_path): hdf5_files = [] for dirpath, dirnames, filenames in os.walk(dir_path): for filename in filenames: if filename.endswith('.hdf5'): hdf5_files.append(os.path.join(dirpath, filename)) return hdf5_files def main(input_path): selection_path = Path(input_path) # selection path but without file extension prefix = "" out_path = prefix + str(selection_path.parent) + "/" + str(selection_path.stem) if os.path.exists(out_path + "/operator_view.mp4"): print("Already rendered, skipping") return if "lifting" in out_path or "reaching" in out_path: print("Skipping warm up") return # Clear out old renders os.system(f"rm -rf {out_path}/main {out_path}/secondary {out_path}/table {out_path}/gripper") with h5py.File(selection_path, 'r') as f: task = f.attrs["task"] scene_description = f.attrs["scene_description"] trajectory = f["frames"][()] print("**********************") print(input_path) print(f"Frames in trajectory: {len(trajectory)}") frame_duration = len(trajectory) / 60 print(f"Frame duration: {int(frame_duration//60)}:{math.floor(frame_duration % 60)}") duration = sum([frame['time'] for frame in trajectory]) print(f"Wall clock length: {int(duration//60)}:{math.floor(duration % 60)} ") filepath_no_ext, ext = os.path.splitext(selection_path) playback = Playback(task, scene_description, trajectory, save_images_path=filepath_no_ext, half_res=True, every_other_frame=True) playback._world = World() playback.setup_scene() loop = asyncio.get_event_loop() playback._world.reset() loop.run_until_complete(playback.setup_post_load()) playback._world.play() with tqdm(total=len(trajectory)) as pbar: pbar.set_description("Rendering " + str(selection_path)) while True: playback._world.step(render=True) if not playback._world.is_playing(): break pbar.update(2) # Rename RenderProduct_Replicator_01 folder to something more descriptive os.rename(out_path + "/RenderProduct_Replicator_01/rgb", out_path + "/table") os.rename(out_path + "/RenderProduct_Replicator/rgb", out_path + "/gripper") os.system(f"rmdir {out_path}/RenderProduct_Replicator {out_path}/RenderProduct_Replicator_01") # Remove rgb_ prefix from filenames (sudo apt install rename) os.system(f"find {out_path}/table -type f -name '*' | rename 's/rgb_//'") os.system(f"find {out_path}/gripper -type f -name '*' | rename 's/rgb_//'") os.mkdir(out_path + "/main") os.mkdir(out_path + "/secondary") for i, frame in enumerate(tqdm(trajectory)): # frame number as string with leading zeros frame_str = str(i).zfill(5) # check if frame file exists if not os.path.isfile(f"{out_path}/table/{frame_str}.png") or not os.path.isfile(f"{out_path}/gripper/{frame_str}.png"): continue if frame["ui_state"]["primary_camera"] == 0: os.system(f"ln -s ../gripper/{frame_str}.png {out_path}/secondary/{frame_str}.png") os.system(f"ln -s ../table/{frame_str}.png {out_path}/main/{frame_str}.png") else: os.system(f"ln -s ../table/{frame_str}.png {out_path}/secondary/{frame_str}.png") os.system(f"ln -s ../gripper/{frame_str}.png {out_path}/main/{frame_str}.png") commands = [f"ffmpeg -framerate 30 -i '{out_path}/main/%05d.png' \ -c:v libx264 -pix_fmt yuv420p -y {out_path}/main.mp4", f"ffmpeg -framerate 30 -i '{out_path}/secondary/%05d.png' \ -c:v libx264 -pix_fmt yuv420p -y {out_path}/secondary.mp4", f"ffmpeg -framerate 30 -i '{out_path}/table/%05d.png' \ -c:v libx264 -pix_fmt yuv420p -y {out_path}/table.mp4", f"ffmpeg -framerate 30 -i '{out_path}/gripper/%05d.png' \ -c:v libx264 -pix_fmt yuv420p -y {out_path}/gripper.mp4", f"ffmpeg -framerate 30 -i '{out_path}/main/%05d.png' -framerate 30 -i '{out_path}/secondary/%05d.png' -filter_complex '[1]scale=iw/3:ih/3 [pip]; [0][pip] overlay=main_w-overlay_w:0[v]' -map '[v]' -vcodec libx264 -y {out_path}/operator_view.mp4", ] processes = set() for cmd in commands: p = subprocess.Popen(shlex.split(cmd), stdin=subprocess.PIPE) processes.add(p) for process in processes: fout = process.stdin process.wait() if process.returncode !=0: raise subprocess.CalledProcessError(process.returncode, process.args) #os.system(f"rm -rf {out_path}/main {out_path}/secondary {out_path}/table {out_path}/gripper") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('input_file', help='Path to hdf5 file') args = parser.parse_args() main(args.input_file) simulation_app.close()
6,125
Python
35.464286
247
0.657469
NVlabs/fast-explicit-teleop/srl/teleop/base_sample/base_sample.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core import World from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async import gc from abc import abstractmethod class BaseSample(object): def __init__(self) -> None: self._world = None self._current_tasks = None self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # self._logging_info = "" return def get_world(self) -> World: return self._world def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt return async def load_world_async(self): """Function called when clicking load buttton """ if World.instance() is None: await create_new_stage_async() self._world = World(**self._world_settings) await self._world.initialize_simulation_context_async() self.setup_scene() else: self._world = World.instance() self._current_tasks = self._world.get_current_tasks() await self._world.reset_async() await self._world.pause_async() await self.setup_post_load() if len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return async def reset_async(self): """Function called when clicking reset buttton """ if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.remove_physics_callback("tasks_step") await self._world.play_async() await update_stage_async() await self.setup_pre_reset() await self._world.reset_async() await self._world.pause_async() await self.setup_post_reset() if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return @abstractmethod def setup_scene(self, scene: Scene) -> None: """used to setup anything in the world, adding tasks happen here for instance. Args: scene (Scene): [description] """ return @abstractmethod async def setup_post_load(self): """called after first reset of the world when pressing load, intializing provate variables happen here. """ return @abstractmethod async def setup_pre_reset(self): """ called in reset button before resetting the world to remove a physics callback for instance or a controller reset """ return @abstractmethod async def setup_post_reset(self): """ called in reset button after resetting the world which includes one step with rendering """ return @abstractmethod async def setup_post_clear(self): """called after clicking clear button or after creating a new stage and clearing the instance of the world with its callbacks """ return def _world_cleanup(self): self._world.stop() # check callbacks on stage close if self._world.physics_callback_exists("tasks_step"): self._world.remove_physics_callback("tasks_step") self._current_tasks = None self.world_cleanup() return def world_cleanup(self): """Function called when extension shutdowns and starts again, (hot reloading feature) """ return async def clear_async(self): """Function called when clicking clear buttton """ await create_new_stage_async() if self._world is not None: self._world_cleanup() self._world.clear_instance() self._world = None gc.collect() await self.setup_post_clear() return
4,687
Python
34.786259
115
0.628334
NVlabs/fast-explicit-teleop/srl/teleop/base_sample/__init__.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.base_sample.base_sample import BaseSample
201
Python
32.666661
79
0.781095
NVlabs/fast-explicit-teleop/srl/teleop/analysis/analysis_extension.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import os import asyncio import omni.ui as ui from omni.isaac.ui.ui_utils import btn_builder, setup_ui_headers, get_style import asyncio import carb from omni.kit.viewport.utility import get_active_viewport_window import omni from srl.teleop.analysis.playback import Playback from srl.teleop.assistance.logging import is_hdf5_file from srl.teleop.assistance.ui import str_builder from srl.spacemouse.ui_utils import xyz_plot_builder from .ui import joint_state_plot_builder import numpy as np import carb from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription import weakref import omni.ext import asyncio from omni.isaac.core import World from functools import partial import h5py class AnalysisExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._ext_id = ext_id menu_items = [MenuItemDescription(name="Teleop Analysis", onclick_fn=lambda a=weakref.proxy(self): a._menu_callback())] self._menu_items = menu_items add_menu_items(self._menu_items, "SRL") self._viewport = get_active_viewport_window("Viewport") self.timeline = omni.timeline.get_timeline_interface() self._world_buttons = {} self._plots = {} self.build_ui(name="Teleop Analysis", title="Teleop Analysis", doc_link="", overview="Provides playback and analysis of saved trajectories", file_path=os.path.abspath(__file__), number_of_extra_frames=3, window_width=350,) self.build_control_ui(self.get_frame(index=0)) self.build_joint_state_plotting_ui(self.get_frame(index=1)) self._joint_states_plotting_buffer = np.zeros((360, 14)) self._control_plotting_buffer = np.zeros((360, 6)) self._plotting_event_subscription = None self.playback = None def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def _menu_callback(self): self._window.visible = not self._window.visible return def shutdown_cleanup(self): pass def _on_snapping_button_event(self, value): pass def post_reset_button_event(self): pass def post_load_button_event(self): pass def _on_load_world(self): self._world_buttons["Load World"].enabled = False if self.playback: self.playback._world_cleanup() self.playback._world.clear_instance() self.playback = None else: World.clear_instance() async def _on_load_world_async(): selection_path = self._world_buttons["Trajectory Selection"].get_value_as_string() if os.path.isdir(selection_path): return elif os.path.isfile(selection_path): with h5py.File(selection_path, 'r') as f: task = f.attrs["task"] user = f.attrs["user"] objects = f.attrs["objects"] scene_description = f.attrs["scene_description"] trajectory = f["frames"][()] filepath_no_ext, ext = os.path.splitext(selection_path) self.playback = Playback(task, scene_description, trajectory, save_images_path=filepath_no_ext) if not self._plotting_event_subscription: self. _plotting_event_subscription = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_plotting_step) else: return await self.playback.load_world_async() await omni.kit.app.get_app().next_update_async() self.playback._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self.post_load_button_event() self.playback._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) self._world_buttons["Load World"].enabled = True asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): if self.playback: await self.playback.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_plotting_step(self, e: carb.events.IEvent): if not self.playback: return robot = self.playback.franka if robot is not None: positions = robot.get_joint_positions()[:7] velocities = robot.get_joint_velocities()[:7] if positions is not None: self._joint_states_plotting_buffer = np.roll(self._joint_states_plotting_buffer, shift=1, axis=0) self._joint_states_plotting_buffer[0, :7] = positions self._joint_states_plotting_buffer[0, 7:] = velocities for i in range(7): self._plots["joint_positions"][i].set_data(*self._joint_states_plotting_buffer[:, i]) self._plots["joint_velocities"][i].set_data(*self._joint_states_plotting_buffer[:, 7 + i]) control = self.playback.control if control is not None: self._control_plotting_buffer = np.roll(self._control_plotting_buffer, shift=1, axis=0) self._control_plotting_buffer[0, :3] = control["trans"] self._control_plotting_buffer[0, 3:] = control["rot"] for i in range(3): self._plots["xyz_plot"][i].set_data(*self._control_plotting_buffer[:, i]) self._plots["xyz_vals"][i].set_value(self._control_plotting_buffer[0, i]) self._plots["rpy_plot"][i].set_data(*self._control_plotting_buffer[:, 3 + i]) self._plots["rpy_vals"][i].set_value(self._control_plotting_buffer[0, 3 + i]) if len(self._plots["xyz_plot"]) == 4: self._plots["xyz_plot"][3].set_data(*np.linalg.norm(self._control_plotting_buffer[:, :3], axis=1)) self._plots["xyz_vals"][3].set_value(np.linalg.norm(self._control_plotting_buffer[0,:3])) if len(self._plots["rpy_plot"]) == 4: self._plots["rpy_plot"][3].set_data(*np.linalg.norm(self._control_plotting_buffer[:, 3:], axis=1)) self._plots["rpy_vals"][3].set_value(np.linalg.norm(self._control_plotting_buffer[0,3:])) def _enable_all_buttons(self, flag): for btn_name, btn in self._world_buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _menu_callback(self): self._window.visible = not self._window.visible return def on_shutdown(self): self._extra_frames = [] if self._menu_items is not None: self._window_cleanup() if self._world_buttons is not None: self._world_buttons["Load World"].enabled = True self._enable_all_buttons(False) self.shutdown_cleanup() return def _window_cleanup(self): remove_menu_items(self._menu_items, "SRL") self._window = None self._menu_items = None self._world_buttons = None return def on_stage_event(self, event): # event_type = omni.usd.StageEventType(event.type) if event.type == int(omni.usd.StageEventType.CLOSED): self. _plotting_event_subscription = None # If the stage is closed before on_startup has run, all of our fields will be undefined if World.instance() is not None and hasattr(self, "playback"): self.playback._world_cleanup() # There's no World now, so in any case the user can load anew! if hasattr(self, "_world_buttons"): self._enable_all_buttons(False) self._world_buttons["Load World"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self._world_buttons["Load World"].enabled = False self._world_buttons["Reset"].enabled = True self.post_clear_button_event() return def build_ui(self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width): self._window = omni.ui.Window( name, width=window_width, height=0, visible=True, dockPreference=ui.DockPreference.RIGHT_TOP ) self._window.deferred_dock_in("Stage", ui.DockPolicy.TARGET_WINDOW_IS_ACTIVE) self._extra_frames = [] with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="Log Loading", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def update_load_button_enabled(new_val): if os.path.splitext(new_val.lower())[1] == ".hdf5": self._world_buttons["Load World"].enabled = True else: self._world_buttons["Load World"].enabled = False dict = { "label": "Trajectory File", "type": "stringfield", "default_val": os.path.expanduser('~/Documents/trajectories'), "tooltip": "Output Directory", "on_clicked_fn": update_load_button_enabled, "use_folder_picker": True, "item_filter_fn": is_hdf5_file, "read_only": False, } self._world_buttons["Trajectory Selection"] = str_builder(**dict) dict = { "label": "Load", "type": "button", "text": "Load", "tooltip": "Load World and Task", "on_clicked_fn": self._on_load_world, } self._world_buttons["Load World"] = btn_builder(**dict) self._world_buttons["Load World"].enabled = False dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._world_buttons["Reset"] = btn_builder(**dict) self._world_buttons["Reset"].enabled = False with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) def build_control_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Data" frame.visible = True kwargs = { "label": "XYZ", "data": [[],[],[]], "include_norm": False } self._plots["xyz_plot"], self._plots[ "xyz_vals" ] = xyz_plot_builder(**kwargs) kwargs = { "label": "RPY", "data": [[],[],[]], "value_names": ("R", "P", "Y"), "include_norm": False } self._plots["rpy_plot"], self._plots[ "rpy_vals" ] = xyz_plot_builder(**kwargs) return def build_joint_state_plotting_ui(self, frame): frame.collapsed = True with frame: with ui.VStack(spacing=5): frame.title = "Joint States" frame.visible = True kwargs = { "label": "Positions", "data": [[] for i in range(7)], "min": -3.14, "max": 3.14 } self._plots["joint_positions"] = joint_state_plot_builder(**kwargs) kwargs = { "label": "Velocities", "data": [[] for i in range(7)], "min": -.45, "max": .45 } self._plots["joint_velocities"] = joint_state_plot_builder(**kwargs)
14,001
Python
40.922156
156
0.526605
NVlabs/fast-explicit-teleop/srl/teleop/analysis/playback.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core.utils.types import ArticulationAction from srl.teleop.assistance.camera_controls import SwappableViewControls from srl.teleop.assistance.tasks.lifting import LiftingTask from srl.teleop.assistance.tasks.reaching import ReachingTask from srl.teleop.assistance.tasks.sorting import SortingTask from srl.teleop.assistance.tasks.stacking import StackingTask from srl.teleop.assistance.tasks.subset_stacking import SubsetStackingTask from srl.teleop.assistance.viewport import configure_main_viewport, configure_realsense_viewport, get_realsense_viewport, layout_picture_in_picture from srl.teleop.assistance.viz import viz_axis from srl.teleop.base_sample.base_sample import BaseSample import numpy as np from omni.kit.viewport.utility import get_active_viewport_window import os import aiofiles async def save_frame(im, path): from io import BytesIO buffer = BytesIO() im.save(buffer, format="png") async with aiofiles.open(path, "wb") as file: await file.write(buffer.getbuffer()) class Playback(BaseSample): def __init__(self, task, scene_description, trajectory, save_images_path=None) -> None: super().__init__() self.set_world_settings(rendering_dt= 1 / 30, physics_dt=1/60) self._articulation_controller = None self.trajectory = trajectory self.target_marker = None self.mode = "play_state" self.franka = None self.control = None self.control_raw = None self._writer = None self._render_products = [] self._save_images_path = save_images_path if task == "sorting": self.task = SortingTask(initial_scene_description=scene_description) elif task =="stacking": self.task = StackingTask(initial_scene_description=scene_description) elif task == "lifting": self.task = LiftingTask(initial_scene_description=scene_description) elif task =="subset_stacking": self.task = SubsetStackingTask(initial_scene_description=scene_description) elif task =="reaching": self.task = ReachingTask(initial_scene_description=scene_description) else: raise NotImplementedError("No playback for task " + task) def setup_scene(self): world = self.get_world() world.add_task(self.task) return def world_cleanup(self): self._clear_recorder() async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("replay_scene"): world.remove_physics_callback("replay_scene") return async def setup_post_load(self): scene = self._world.scene self.franka = scene.get_object(self.task.get_params()["robot_name"]) self.ghosts = [scene.get_object("ghost_franka0"),scene.get_object("ghost_franka1")] self._object_ghosts = self.task.get_ghost_objects() self.target_marker = viz_axis("/target_marker", (0,0,0.), (0,0,0,1.), (0.2, 0.2, 0.2)) self._articulation_controller = self.franka.get_articulation_controller() self.realsense_vp = get_realsense_viewport(self.franka.camera.prim.GetPath()) configure_realsense_viewport(self.realsense_vp) self.main_vp = get_active_viewport_window("Viewport") configure_main_viewport(self.main_vp) layout_picture_in_picture(self.main_vp, self.realsense_vp) #self._camera_controls = ArcballCameraControls("/OmniverseKit_Persp", focus_delegate=get_focus) self._camera_controls = SwappableViewControls("/OmniverseKit_Persp",self.main_vp, self.realsense_vp) self._camera_controls.set_fixed_view() self._camera_controls.camera.set_resolution((1280 // 2,720 // 2)) self.franka.camera.set_resolution((1280 // 2,720 // 2)) world = self.get_world() world.play() world.add_physics_callback("replay_scene", self._on_replay_scene_step) if self._save_images_path: self._init_recorder(self._save_images_path, [self._camera_controls.camera, self.franka.camera]) def _clear_recorder(self): import omni.replicator.core as rep rep.orchestrator.stop() if self._writer: self._writer.detach() self._writer = None import omni stage = omni.usd.get_context().get_stage() """for rp in self._render_products: stage.RemovePrim(rp) self._render_products.clear()""" rep.scripts.utils.viewport_manager.destroy_hydra_textures() def _init_recorder(self, out_path, cameras) -> bool: import omni.replicator.core as rep # Init the writer writer_params = { "rgb": True } try: self._writer = rep.BasicWriter(output_dir=out_path, **writer_params) except Exception as e: return False # Create or get existing render products self._render_prods = [] for camera in cameras: #note pass # Attach the render products to the writer try: self._writer.attach([camera._render_product_path for camera in cameras]) #self._writer.attach(self._render_prods) except Exception as e: return False rep.orchestrator.run() return True def _on_replay_scene_step(self, step_size): from omni.kit.viewport.utility import get_active_viewport, capture_viewport_to_file from PIL import Image from io import BytesIO import omni.renderer_capture import asyncio import time current_step_i = self._world.current_time_step_index capture_filename = f"{os.path.expanduser('~/out/')}test{current_step_i}.png" """async def wait_on_result(): await cap_obj.wait_for_result(completion_frames=30) asyncio.ensure_future(wait_on_result())""" if current_step_i < len(self.trajectory): frame = self.trajectory[current_step_i] self.target_marker.set_world_pose(*frame["robot_state"]["target_pose"]) self.control = frame["controls_state"]["filtered"] self.control_raw = frame["controls_state"]["raw"] if frame["ui_state"]["primary_camera"] != self._camera_controls.active_index: self._camera_controls.swap() if self.mode == "play_actions": if current_step_i == 0: self.task.set_object_poses(frame["scene_state"]["poses"]) self._articulation_controller.apply_action( ArticulationAction(joint_positions=frame["robot_state"]["applied_joint_positions"]) ) else: self.franka.set_joint_positions(frame["robot_state"]["joint_positions"]) self.task.set_object_poses(frame["scene_state"]["poses"]) ui_state = frame["ui_state"] ghost_joint_pos = ui_state["robot_ghost_joint_positions"] if not np.isnan(ghost_joint_pos[0]): ghost = self.ghosts[0] ghost.set_joint_positions(ghost_joint_pos) ghost.show(gripper_only=True) else: ghost = self.ghosts[0] ghost.hide() ghost_obj_index = ui_state["object_ghost_index"] if ghost_obj_index != -1: ghost = list(self._object_ghosts.values())[ghost_obj_index] ghost.show() ghost.set_world_pose(*ui_state["object_ghost_pose"]) else: for _, ghost in self._object_ghosts.items(): ghost.hide() else: self.get_world().pause() self._clear_recorder()
8,277
Python
41.891191
147
0.627764
NVlabs/fast-explicit-teleop/srl/teleop/analysis/__init__.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from .analysis_extension import AnalysisExtension from .playback import Playback
224
Python
31.142853
79
0.794643
NVlabs/fast-explicit-teleop/srl/teleop/analysis/ui.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from omni.ui import color as cl from scipy.spatial.transform import Rotation import omni.ui as ui from omni.isaac.ui.ui_utils import add_separator LABEL_WIDTH = 160 LABEL_WIDTH_LIGHT = 235 LABEL_HEIGHT = 18 HORIZONTAL_SPACING = 4 colors = [0xFF1515EA, 0xFF5FC054, 0xFFC5822A, 0xFFFF00FF, 0xFF00FFFF, 0xFFFFFF00, 0xFFFF77FF] def joint_state_plot_builder(label="", data=[], num_joints=7, min=-1, max=1, tooltip=""): """Creates a stylized static XYZ plot Args: label (str, optional): Label to the left of the UI element. Defaults to "". data (list(float), optional): Data to plot. Defaults to []. min (int, optional): Minimum Y Value. Defaults to -1. max (int, optional): Maximum Y Value. Defaults to "". tooltip (str, optional): Tooltip to display over the Label.. Defaults to "". Returns: list(ui.Plot): list(x_plot, y_plot, z_plot) """ with ui.VStack(spacing=5): with ui.HStack(): ui.Label(label, width=LABEL_WIDTH, alignment=ui.Alignment.LEFT_TOP, tooltip=tooltip) plot_height = LABEL_HEIGHT * 5 + 13 plot_width = ui.Fraction(1) with ui.ZStack(): ui.Rectangle(width=plot_width, height=plot_height) plots = [] for i in range(num_joints): plot = ui.Plot( ui.Type.LINE, min, max, *data[i], value_stride=1, width=plot_width, height=plot_height, style={"color": colors[i], "background_color": 0x0}, ) plots.append(plot) def update_min(model): for plot in plots: plot.scale_min = model.as_float def update_max(model): for plot in plots: plot.scale_max = model.as_float ui.Spacer(width=5) with ui.Frame(width=0): with ui.VStack(spacing=5): max_model = ui.FloatDrag( name="Field", width=40, alignment=ui.Alignment.LEFT_BOTTOM, tooltip="Max" ).model max_model.set_value(max) min_model = ui.FloatDrag( name="Field", width=40, alignment=ui.Alignment.LEFT_TOP, tooltip="Min" ).model min_model.set_value(min) min_model.add_value_changed_fn(update_min) max_model.add_value_changed_fn(update_max) ui.Spacer(width=20) add_separator() return plots
2,886
Python
34.207317
97
0.52876
NVlabs/fast-explicit-teleop/srl/teleop/assistance/experiment.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.assistance.tasks.lifting import LiftingTask from srl.teleop.assistance.tasks.subset_stacking import SubsetStackingTask from srl.teleop.assistance.tasks.reaching import ReachingTask from srl.teleop.assistance.tasks.sorting import SortingTask from srl.teleop.assistance.tasks.stacking import StackingTask import numpy as np from itertools import permutations SLOT_NAMES = ["3D Mouse Demo", "Control Demo", "Reaching", "Reaching Assist", "Stacking A Warmup", "Stacking A", "Multi-Stacking A", "Stacking B Warmup", "Stacking B", "Multi-Stacking B", "Stacking C Warmup", "Stacking C", "Multi-Stacking C"] PARTICIPANT_ID = 0 TASK_BY_INDEX = [0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5] CONDITION_BY_INDEX = [0, 0, 1, 0,0,0, 1,1,1, 2,2,2] CONDITION_ORDERS = list(permutations([0,1,2])) LATIN_SQUARE = [[0,1,2], [1,2,0], [2,0,1]] def get_ordering(participant_id): return CONDITION_ORDERS[participant_id % len(CONDITION_ORDERS)] def configure_for_condition_index(i, task_ui_models, participant_id): task_i = TASK_BY_INDEX[i] condition_i = CONDITION_BY_INDEX[i] if i > 2: # Counterbalance actual experimental tasks condition_i = get_ordering(participant_id)[condition_i] if task_i == 0: task = LiftingTask(n_cuboids=1, rng=np.random.RandomState(0), max_duration=None) elif task_i == 1: task = ReachingTask() elif task_i == 2: task = ReachingTask(max_duration=None) elif task_i == 3: task = StackingTask(n_cuboids=2, rng=np.random.RandomState(participant_id + 1000 * condition_i), max_duration=None, repeat=False) elif task_i == 4: task = StackingTask(n_cuboids=2, rng=np.random.RandomState(participant_id + 1000 * (condition_i + 1)), max_duration=60 * 2, repeat=True) elif task_i == 5: task = SubsetStackingTask(rng=np.random.RandomState(LATIN_SQUARE[participant_id % 3][condition_i])) elif task_i == 6: task = SortingTask(rng=np.random.RandomState(LATIN_SQUARE[participant_id % 3][condition_i])) else: raise Exception("Unknown task index") if condition_i == 0: task_ui_models["Surrogates"].set_value(False) task_ui_models["Suggest Grasps"].set_value(False) task_ui_models["Suggest Placements"].set_value(False) elif condition_i == 1: task_ui_models["Surrogates"].set_value(False) task_ui_models["Suggest Grasps"].set_value(True) task_ui_models["Suggest Placements"].set_value(True) elif condition_i == 2: task_ui_models["Surrogates"].set_value(True) task_ui_models["Suggest Grasps"].set_value(True) task_ui_models["Suggest Placements"].set_value(True) return task, condition_i
2,875
Python
43.246153
242
0.676522
NVlabs/fast-explicit-teleop/srl/teleop/assistance/scene.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from omni.ui_scene import scene as sc from omni.ui import color as cl from typing import List import numpy as np from scipy.spatial.transform import Rotation import omni.ui as ui from srl.teleop.assistance.proposals import InvalidReason from .proposals import GroupedPoseProposalTable, PlanePlaneProposalTable import matplotlib.cm as cm from matplotlib.colors import LinearSegmentedColormap import omni import time class ViewportScene(): def __init__(self, viewport_window: ui.Window, ext_id: str, use_scene_camera: bool=True) -> None: self._scene_view = None self._viewport_window = viewport_window self._ext_id = ext_id self.manipulator = None self.use_scene_camera = use_scene_camera with self._viewport_window.get_frame(ext_id): if use_scene_camera: # scene view (default camera-model) self._scene_view = sc.SceneView() # register the scene view to get projection and view updates self._viewport_window.viewport_api.add_scene_view(self._scene_view) else: projection = [1e-1, 0, 0, 0] projection += [0, 1e-1, 0, 0] projection += [0, 0, 2e-2, 0] projection += [0, 0, 1, 1] view = sc.Matrix44.get_translation_matrix(8.5, -4.25, 0) * sc.Matrix44.get_rotation_matrix(-0.5,0.,0.) self._scene_view = sc.SceneView(projection=projection, view=view) def add_manipulator(self, manipulator_class: sc.Manipulator): # add handlers into the scene view's scene with self._scene_view.scene: self.manipulator = manipulator_class() def __del__(self): self.destroy() def destroy(self): if self.manipulator: self.manipulator.clear() if self._scene_view: # empty the scene view self._scene_view.scene.clear() # un-register the scene view if self._viewport_window and self.use_scene_camera: self._viewport_window.viewport_api.remove_scene_view(self._scene_view) # remove references self._viewport_window = None self._scene_view = None class AssistanceManipulator(sc.Manipulator): def __init__(self, **kwargs): super().__init__(**kwargs) self._plane_table = None self._grasp_table = None self._placement_table = None self._grasp_distribution = None self._plane_distribution = None self.cfg_frames_show = True self.cfg_frames_color = [1.0, 1.0, 1.0, 1.0] self.cfg_frames_size = 4 self.cfg_names_show = True self.cfg_names_color = [1.0, 1.0, 0.0, 1.0] self.cfg_names_size = 20 self.cfg_axes_show = True self.cfg_axes_length = 0.1 self.cfg_axes_thickness = 4 self.cfg_arrows_show = True self.cfg_arrows_color = [0.0, 1.0, 1.0, 1.0] self.cfg_arrows_thickness = 4 self.cm = cm.hot ncolors = 256 color_array = cm.hot(np.linspace(0.,1., ncolors)) # change alpha values color_array[:,-1] = np.linspace(0.05,0.7,ncolors) # create a colormap object self.cm = LinearSegmentedColormap.from_list(name='hot_alpha',colors=color_array) def on_build(self): if not self._plane_table: return grasps = self._grasp_table planes = self._plane_table if self._plane_distribution is not None: positions = planes.get_centroids_world()[planes._valid == InvalidReason.VALID.value] sc.Points(positions.tolist(), colors=[cl(*self.cfg_frames_color)] * len(positions), sizes=[self.cfg_frames_size] * len(positions)) if self._grasp_distribution is not None: start = time.time() # This'll only exist if we're actively inferring valid_mask = grasps._valid == InvalidReason.VALID.value positions = grasps._poses_world[:, :3, 3][valid_mask] if len(positions) == 0: return score_probs = np.exp(self._grasp_distribution[valid_mask]) score_probs /= np.max(np.abs(score_probs),axis=0) colors = self.cm(score_probs) #sc.Points(positions.tolist(), colors=[cl(*color) for color in colors], sizes=[self.cfg_frames_size] * len(positions)) for grasp, color in zip(grasps._poses_world[valid_mask], colors): with sc.Transform(transform=sc.Matrix44(*grasp.T.flatten())): sc.Line([0, 0, -0.04], [0, 0, -0.09], color=cl(*color), thickness=3) sc.Line([0, -.04, -0.04], [0, 0.04, -0.04], color=cl(*color), thickness=3) sc.Line([0, 0.04, -0.04], [0, 0.04, 0], color=cl(*color), thickness=3) sc.Line([0, -0.04, -0.04], [0, -0.04, 0], color=cl(*color), thickness=3) end = time.time() #print(end - start) return # draw names and axes T = np.eye(4) for name, position, quaternion in zip(names, positions, quaternions): # names T[:3,3] = position if self.cfg_names_show: with sc.Transform(transform=sc.Matrix44(*T.T.flatten())): sc.Label(name, alignment=ui.Alignment.CENTER_TOP, color=cl(*self.cfg_names_color), size=self.cfg_names_size) # axes if self.cfg_axes_show: T[:3,:3] = Rotation.from_quat(quaternion).as_matrix() with sc.Transform(transform=sc.Matrix44(*T.T.flatten())): k = self.cfg_axes_length sc.Line([0, 0, 0], [k, 0, 0], color=cl("#ff0000"), thickness=self.cfg_axes_thickness) sc.Line([0, 0, 0], [0, k, 0], color=cl("#00ff00"), thickness=self.cfg_axes_thickness) sc.Line([0, 0, 0], [0, 0, k], color=cl("#0000ff"), thickness=self.cfg_axes_thickness) def update(self, grasp_table: GroupedPoseProposalTable, placement_table: GroupedPoseProposalTable, plane_table: PlanePlaneProposalTable): self._grasp_table = grasp_table self._placement_table = placement_table self._plane_table = plane_table # Triggers rebuilding. self.invalidate() def set_grasp_distribution(self, distribution): self._grasp_distribution = distribution def reset(self): self._grasp_table = self._placement_table = self._plane_table = None self.invalidate()
6,690
Python
38.591716
142
0.589686
NVlabs/fast-explicit-teleop/srl/teleop/assistance/suggestions.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import numpy as np from omni.isaac.core.utils.prims import is_prim_path_valid, get_prim_type_name, delete_prim, get_all_matching_child_prims import math from srl.teleop.assistance.shapenet_import import ShapeNetPrim from srl.teleop.assistance.transforms import normalized, T2pq, pq2T import scipy.spatial.transform def get_cube_symmetry_rotations(): octahedral_group = scipy.spatial.transform.Rotation.create_group('O') return octahedral_group.as_matrix() def get_cylinder_symmetry_rotations(n_rotational_steps=20): results = np.empty((1 + n_rotational_steps, 3, 3)) # X flip results[0] = np.diag((1,-1,-1)) theta = np.linspace(0, 2 * math.pi, n_rotational_steps) results[1:, 0,0] = np.cos(theta) results[1:, 0,1] = -np.sin(theta) results[1:, 1,0] = np.sin(theta) results[1:, 1,1] = np.cos(theta) results[1:, 2,2] = 1 return results CUBE_SYMMETRY_Rs = get_cube_symmetry_rotations() CYLINDER_SYMMETRY_Rs = get_cylinder_symmetry_rotations() def make_grasp_T(t, ay): az = normalized(-t) ax = np.cross(ay, az) T = np.eye(4) T[:3, 0] = ax T[:3, 1] = ay T[:3, 2] = az T[:3, 3] = t return T def make_cuboid_grasp_Ts(block_pick_height): R = np.eye(3) t_i = 0 Ts = np.empty((24, 4, 4)) for i in range(3): t = block_pick_height * R[:, i] for j in range(2): ay = R[:, (i + j + 1) % 3] for sign_1 in [1, -1]: for sign_2 in [1, -1]: Ts[t_i] = make_grasp_T(sign_1 * t, sign_2 * ay) t_i += 1 return Ts def make_cylinder_grasp_Ts(r, h): # The cylinder axis centered at (0,0,0) pointing up in +Z # Some of these are redundant, and the ones that aren't don't lend themselves to stable placement... as_cuboid_grasps = make_cuboid_grasp_Ts(np.array((r,r,h/2))) # Point gripper z toward the grasp point, x toward negative world Z rotational_steps = 20 side_candidates = np.empty((rotational_steps * 2, 4, 4)) for k in range(rotational_steps): x = (2 * math.pi / rotational_steps) * k point = np.array((r * np.cos(x), r * np.sin(x), 0)) ay = np.array((-np.sin(x), np.cos(x), 0)) side_candidates[k] = make_grasp_T(point, ay) side_candidates[k + rotational_steps] = make_grasp_T(point, -ay) top_candidates = np.empty((rotational_steps * 2, 4, 4)) for k in range(rotational_steps): x = (2 * math.pi / rotational_steps) * k point = np.array((0, 0, h / 2)) ay = np.array((np.cos(x), np.sin(x), 0)) top_candidates[k] = make_grasp_T(point, ay) top_candidates[k + rotational_steps] = make_grasp_T(-point, ay) return np.vstack((side_candidates, top_candidates)) def make_cone_grasp_Ts(r, h): return [] def make_cuboid_cuboid_placement_Ts(to_place_size, to_align_with_size): # Strategy: centroids aligned. Compute all possible pairs of orientations. Put to_place up against # the side of to_align_with along the x axis # See https://en.wikipedia.org/wiki/Octahedral_symmetry Ts = [] for align_R in CUBE_SYMMETRY_Rs: # We're transforming the sizes to determine the depth of the cube # in the X direction. Sign doesn't matter. v_align = np.abs(align_R.dot(to_align_with_size)) for place_R in CUBE_SYMMETRY_Rs: v_place = np.abs(place_R.dot(to_place_size)) # We have the two cuboids in an arbirtary orientation. Now we stack them next to eachother in X T = np.identity(4) # X displacement, with a little epsilon so the collision checker stays clear T[0,3] = 0.001 + (v_place[0] + v_align[0]) / 2.0 # Orientation wrt to to_align_with. Sub out anchor frame and get just relative orientation inv_align_R_4 = np.identity(4) inv_align_R_4[:3,:3] = align_R.T # How we should rotate the placement... T[:3,:3] = place_R # but in the alignment frame T = inv_align_R_4.dot(T) Ts.append(T) return np.array(Ts) def make_cylinder_cylinder_placement_Ts(to_place_h, anchor_h): # Placements only for planar faces (+Z, -Z) Ts = [] for align_R in CYLINDER_SYMMETRY_Rs: for place_R in CYLINDER_SYMMETRY_Rs: T = np.identity(4) # Z displacement T[2,3] = 0.001 + (to_place_h + anchor_h) / 2.0 # Orientation wrt to to_align_with. Sub out anchor frame and get just relative orientation inv_align_R_4 = np.identity(4) inv_align_R_4[:3,:3] = align_R.T # How we should rotate the placement... T[:3,:3] = place_R # but in the alignment frame T = inv_align_R_4.dot(T) Ts.append(T) return np.array(Ts) def check_grasp_orientation_similarity( world_grasp_T, axis_x_filter=None, axis_x_filter_thresh=0.1, axis_y_filter=None, axis_y_filter_thresh=0.1, axis_z_filter=None, axis_z_filter_thresh=0.1, ): to_use_i = [] filters = np.zeros((3,3)) for i, filter in enumerate((axis_x_filter, axis_y_filter, axis_z_filter)): if filter is None: continue to_use_i.append(i) filters[i,:] = filter thresh = np.array((axis_x_filter_thresh, axis_y_filter_thresh, axis_z_filter_thresh)) axes_to_check = world_grasp_T[:, :3, to_use_i] # Get dot products between the axes of the grasps and the filter directions. Batch over the leading # indices. scores = 1.0 - np.einsum('...ij,...ji->...i', filters[to_use_i,:], axes_to_check) # count num thresholds we are under, threshes_satisfied = (scores < thresh[to_use_i,]).sum(1) # Should be under all of them return threshes_satisfied == len(to_use_i) def generate_candidate_grasps(obj): prim_type = get_prim_type_name(obj.prim_path) as_prim = obj.prim to_world_tf = pq2T(*obj.get_world_pose()) if isinstance(obj, ShapeNetPrim): #return [] return obj.grasp_annotations elif prim_type == "Cube": size = obj.get_world_scale() block_grasp_Ts = make_cuboid_grasp_Ts(size / 2 - .015) #res = get_world_block_grasp_Ts(to_world_tf, block_grasp_Ts, axis_z_filter=np.array((0.,0.,-1.))) return block_grasp_Ts """for T in res: p,q = T2pq(T) viz_axis(viz_prefix, p, q)""" elif prim_type == "Cylinder": height = obj.get_height() radius = obj.get_radius() return make_cylinder_grasp_Ts(radius - 0.01, height - 0.01) elif prim_type == "Mesh": mesh = dict() mesh["points"] = mesh.GetPointsAttr().Get() mesh["normals"] = mesh.GetNormalsAttr().Get() mesh["vertex_counts"] = mesh.GetFaceVertexCountsAttr().Get() mesh["vertex_indices"] = mesh.GetFaceVertexIndicesAttr().Get() else: # Ignore other objects for now pass return np.empty((0,4,4)) def generate_candidate_placements(to_place, to_align_with): to_place_type = get_prim_type_name(to_place.prim_path) to_place_prim = to_place.prim align_T = pq2T(*to_align_with.get_world_pose()) place_T = pq2T(*to_place.get_world_pose()) to_place_type = get_prim_type_name(to_place.prim_path) to_align_with_type = get_prim_type_name(to_align_with.prim_path) if to_place_type == "Cube": to_place_size = to_place.get_world_scale() if to_align_with_type == "Cube": to_align_with_size = to_align_with.get_world_scale() return make_cuboid_cuboid_placement_Ts(to_place_size, to_align_with_size) elif to_place_type == "Cylinder": if to_align_with_type == "Cylinder": return make_cylinder_cylinder_placement_Ts(to_place.get_height(), to_align_with.get_height()) elif to_align_with_type == "Cube": pass elif to_place_type == "Mesh": pass return np.empty((0,4,4))
8,138
Python
35.173333
121
0.603219
NVlabs/fast-explicit-teleop/srl/teleop/assistance/ghost_franka.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from typing import Optional, List import numpy as np from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema, UsdShade, Sdf import omni from omni.isaac.core.materials.visual_material import VisualMaterial from srl.teleop.assistance.camera_franka import CameraFranka import os import srl.teleop.assistance def load_ghost_material(to_path="/Looks/GhostVolumetric"): if not is_prim_path_valid(to_path): success = omni.kit.commands.execute( "CreateMdlMaterialPrim", mtl_url=os.path.join(srl.teleop.assistance.DATA_DIR, "GhostVolumetric.mdl"), mtl_name="voltest_02", mtl_path=Sdf.Path(to_path), ) shader = UsdShade.Shader(get_prim_at_path(f"{to_path}/Shader")) material = UsdShade.Material(get_prim_at_path(to_path)) shader.CreateInput("absorption", Sdf.ValueTypeNames.Color3f).Set(Gf.Vec3f(0.8, 0.8, 0.8)) shader.CreateInput("scattering", Sdf.ValueTypeNames.Color3f).Set(Gf.Vec3f(0.5, 0.5, 0.5)) shader.CreateInput("transmission_color", Sdf.ValueTypeNames.Color3f).Set( Gf.Vec3f(0.1, 1.0, 0.3) ) shader.CreateInput("emission_color", Sdf.ValueTypeNames.Color3f).Set( Gf.Vec3f(0.1, 1.0, 0.3) ) shader.CreateInput("distance_scale", Sdf.ValueTypeNames.Float).Set(1.0) shader.CreateInput("emissive_scale", Sdf.ValueTypeNames.Float).Set(300.0) shader.CreateInput("transmission_color", Sdf.ValueTypeNames.Color3f).Set( Gf.Vec3f(0.3, 1.0, 0.3) ) else: shader = UsdShade.Shader(get_prim_at_path(f"{to_path}/Shader")) material = UsdShade.Material(get_prim_at_path(to_path)) material = VisualMaterial( name="GhostVolumetric", prim_path=to_path, prim=get_prim_at_path(to_path), shaders_list=[shader], material=material, ) material_inputs = {} for input in material.shaders_list[0].GetInputs(): material_inputs[input.GetFullName()] = input return material, material_inputs class GhostFranka(CameraFranka): """[summary] Args: prim_path (str): [description] name (str, optional): [description]. Defaults to "franka_robot". usd_path (Optional[str], optional): [description]. Defaults to None. position (Optional[np.ndarray], optional): [description]. Defaults to None. orientation (Optional[np.ndarray], optional): [description]. Defaults to None. end_effector_prim_name (Optional[str], optional): [description]. Defaults to None. gripper_dof_names (Optional[List[str]], optional): [description]. Defaults to None. gripper_open_position (Optional[np.ndarray], optional): [description]. Defaults to None. gripper_closed_position (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, prim_path: str, name: str = "franka_robot", usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, end_effector_prim_name: Optional[str] = None, gripper_dof_names: Optional[List[str]] = None, gripper_open_position: Optional[np.ndarray] = None, gripper_closed_position: Optional[np.ndarray] = None, material_path="/Looks/GhostVolumetric" ) -> None: super().__init__(prim_path, name, usd_path, position, orientation,end_effector_prim_name, gripper_dof_names, gripper_open_position, gripper_closed_position, collision_sensors=False, camera_sensor=False) self.material, self.material_inputs = load_ghost_material(material_path) self.material_inputs["inputs:transmission_color"].Set((1.5, 1.5, 1.5)) self.material_inputs["inputs:emission_color"].Set((1.25, 1.25, 1.25)) self.material_inputs["inputs:emissive_scale"].Set(300.) self._imageable = UsdGeom.Imageable(self.prim) self.apply_visual_material(self.material) self.disable_collisions(remove=True) self.hide() self._current_color = None self._current_opacity = None # Populate simplifed meshes under the right links of the robot if not is_prim_path_valid(prim_path + "/panda_hand/viz"): self.viz_palm = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "panda_hand_viz.usd"), prim_path=prim_path + "/panda_hand/viz") self.viz_left_finger = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "panda_leftfinger_viz.usd"), prim_path=prim_path + "/panda_leftfinger/viz") self.viz_right_finger = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "panda_rightfinger_viz.usd"), prim_path=prim_path + "/panda_rightfinger/viz") else: self.viz_palm = get_prim_at_path(prim_path + "/panda_hand/viz") self.viz_left_finger = get_prim_at_path(prim_path + "/panda_leftfinger/viz") self.viz_right_finger = get_prim_at_path(prim_path + "/panda_rightfinger/viz") for p in [self.viz_left_finger, self.viz_right_finger, self.viz_palm]: viz_mesh = get_prim_at_path(f"{p.GetPath()}/mesh") def disable_collisions(self, remove=False): for p in Usd.PrimRange(self.prim): if p.HasAPI(UsdPhysics.CollisionAPI): collision_api = UsdPhysics.CollisionAPI(p) collision_api.GetCollisionEnabledAttr().Set(False) if remove: p.RemoveAPI(UsdPhysics.CollisionAPI) @property def visible(self): return self._imageable.GetVisibilityAttr().Get() != "invisible" def hide(self): self._imageable.MakeInvisible() def show(self, gripper_only=False): if not gripper_only: self._imageable.MakeVisible() else: for p in [self.viz_left_finger, self.viz_right_finger, self.viz_palm]: UsdGeom.Imageable(p).MakeVisible() def set_color(self, color, opacity=1.0): if color == self._current_color and opacity == self._current_opacity: # idempotent return transmission = 1.0 - opacity def clip(value): # Inputs seem to behave differently for 0 and close to 0 for some reason... return Gf.Vec3f(*np.clip(value, 0.0001, 1.0)) # The colors you don't absorb will shine through. # The color you emit shows in the absence of other colors if color == "red": self.material_inputs["inputs:absorption"].Set((transmission, 0, 0)) elif color == "yellow": self.material_inputs["inputs:absorption"].Set(clip((.0, .0, transmission))) elif color == "green": self.material_inputs["inputs:absorption"].Set(clip((transmission, .0, transmission))) elif color == "white": self.material_inputs["inputs:absorption"].Set(clip((opacity, opacity, opacity))) else: return self._current_color = color self._current_opacity = opacity
7,588
Python
45.558282
214
0.635213
NVlabs/fast-explicit-teleop/srl/teleop/assistance/check_collision.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from typing import Union from srl.teleop.assistance.transforms import T2pq_array import warp as wp import warp.render import numpy as np import time from pxr import Usd, UsdGeom, UsdSkel, Gf import trimesh import quaternion import carb DEVICE = wp.get_preferred_device() #DEVICE = 'cpu' @wp.func def cw_min(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.min(a[0], b[0]), wp.min(a[1], b[1]), wp.min(a[2], b[2])) @wp.func def cw_max(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.max(a[0], b[0]), wp.max(a[1], b[1]), wp.max(a[2], b[2])) @wp.kernel def intersect(query_mesh: wp.uint64, query_mesh_scale: wp.float32, query_xforms: wp.array(dtype=wp.transform), fixed_mesh: wp.uint64, result: wp.array(dtype=int, ndim=2)): batch, face = wp.tid() # mesh_0 is assumed to be the query mesh, we launch one thread # for each face in mesh_0 and test it against the opposing mesh's BVH # transforms from query -> fixed space xform = query_xforms[batch] # load query triangles points and transform to mesh_1's space # Local scale is useful for checking whether the interior (roughly) of the object would overlap. v0 = wp.transform_point(xform, wp.mesh_eval_position(query_mesh, face, 1.0, 0.0) * query_mesh_scale) v1 = wp.transform_point(xform, wp.mesh_eval_position(query_mesh, face, 0.0, 1.0) * query_mesh_scale) v2 = wp.transform_point(xform, wp.mesh_eval_position(query_mesh, face, 0.0, 0.0) * query_mesh_scale) # compute bounds of the query triangle lower = cw_min(cw_min(v0, v1), v2) upper = cw_max(cw_max(v0, v1), v2) query = wp.mesh_query_aabb(fixed_mesh, lower, upper) result[batch][face] = 0 for f in query: u0 = wp.mesh_eval_position(fixed_mesh, f, 1.0, 0.0) u1 = wp.mesh_eval_position(fixed_mesh, f, 0.0, 1.0) u2 = wp.mesh_eval_position(fixed_mesh, f, 0.0, 0.0) # test for triangle intersection i = wp.intersect_tri_tri(v0, v1, v2, u0, u1, u2) if i > 0: result[batch][face] = 1 return # use if you want to count all intersections #wp.atomic_add(result, batch, i) @wp.kernel def grasp_contacts( mesh_1: wp.uint64, left_finger_pad_point: wp.vec3, right_finger_pad_point: wp.vec3, palm_point: wp.vec3, xforms: wp.array(dtype=wp.transform), result: wp.array(dtype=float, ndim=2), points: wp.array(dtype=wp.vec3, ndim=2)): batch = wp.tid() # mesh_0 is assumed to be the query mesh, we launch one thread # for each face in mesh_0 and test it against the opposing mesh's BVH # transforms from mesh_0 -> mesh_1 space xform = xforms[batch] # load query triangles points and transform to mesh_1's space left_ray_origin = wp.transform_point(xform, left_finger_pad_point) right_ray_origin = wp.transform_point(xform, right_finger_pad_point) palm_ray_origin = wp.transform_point(xform, palm_point) left_ray_dir = wp.transform_vector(xform, wp.vec3(0., -1., 0.)) right_ray_dir = wp.transform_vector(xform, wp.vec3(0., 1., 0.)) palm_ray_dir = wp.transform_vector(xform, wp.vec3(0., 0., 1.)) left_ray_t = float(0.) left_ray_sign = float(0.) u = float(0.) v = float(0.0) normal = wp.vec3() face = int(0) left_hit = wp.mesh_query_ray(mesh_1, left_ray_origin, left_ray_dir, .1, left_ray_t, u, v, left_ray_sign, normal, face) right_ray_t = float(0.) right_ray_sign = float(0.) right_hit = wp.mesh_query_ray(mesh_1, right_ray_origin, right_ray_dir, .1, right_ray_t, u, v, right_ray_sign, normal, face) palm_ray_t = float(100.) palm_ray_sign = float(0.) palm_hit = wp.mesh_query_ray(mesh_1, palm_ray_origin, palm_ray_dir, .04, palm_ray_t, u, v, palm_ray_sign, normal, face) #points[batch][0] = left_ray_origin + left_ray_t * left_ray_dir #points[batch][1] = right_ray_origin + right_ray_t * right_ray_dir #points[batch][2] = palm_ray_origin + palm_ray_t * palm_ray_dir result[batch][2] = palm_ray_t if not left_hit and right_hit: # Usually, _both_ rays will hit. If only one doesn't, report both as zero anyways # to let the outside code assume as much. result[batch][0] = 0. result[batch][1] = 0. else: result[batch][0] = left_ray_t result[batch][1] = right_ray_t class WarpGeometeryScene: def __init__(self): self._warp_mesh_cache = {} self._trimesh_cache = {} def query(self, Ts, from_mesh, to_mesh, render=False, query_name=None, from_mesh_scale=1.0): # Transforms take "from-mesh" coordinates into "to-mesh" coordinates from_mesh = self._load_and_cache_geometry(from_mesh, "warp") to_mesh = self._load_and_cache_geometry(to_mesh, "warp") pq_array = T2pq_array(Ts) xforms = wp.array(pq_array[:, (0,1,2,4,5,6,3)], dtype=wp.transform, device=DEVICE) with wp.ScopedTimer("intersect", active=False): carb.profiler.begin(1, f"collision check (N={len(Ts)})", active=True) query_num_faces = len(from_mesh.indices) // 3 shape = (len(xforms),query_num_faces) array_results = wp.empty(shape=shape, dtype=int, device=DEVICE) wp.launch(kernel=intersect, dim=shape, inputs=[from_mesh.id, from_mesh_scale, xforms, to_mesh.id, array_results], device=DEVICE) wp.synchronize() # Get num contacts per transform by summing over all faces results = array_results.numpy() if len(Ts) == 0: # warp 0.5.1 results = np.empty(shape) results = results.sum(1) carb.profiler.end(1, True) if render: if query_name is None: query_name = str(self._get_mesh_name(to_mesh)).split("/")[-1] self.viz_query(results, xforms, from_mesh, to_mesh, query_name) return results def query_grasp_contacts(self, Ts, from_mesh, to_mesh, render=False, query_name=None): # Transforms take "from-mesh" coordinates into "to-mesh" coordinates carb.profiler.begin(1, "Prep meshes", active=True) from_mesh = self._load_and_cache_geometry(from_mesh, "warp") to_mesh = self._load_and_cache_geometry(to_mesh, "warp") carb.profiler.end(1, True) carb.profiler.begin(1, "Prep transforms", active=True) carb.profiler.begin(1, "T2pq", active=True) pq_array = T2pq_array(Ts) carb.profiler.end(1, True) xforms = wp.array(pq_array[:, (0,1,2,4,5,6,3)], dtype=wp.transform, device=DEVICE) carb.profiler.end(1, True) with wp.ScopedTimer("intersect_and_contact", active=False): carb.profiler.begin(1, f"collision and contact measure (N={len(Ts)})", active=True) query_num_faces = len(from_mesh.indices) // 3 shape = (len(xforms),query_num_faces) contacts_shape = (len(xforms), 3) contact_results = wp.empty(shape=contacts_shape, dtype=float, device=DEVICE) points = wp.empty(shape=(len(xforms), 3), dtype=wp.vec3, device=DEVICE) intersect_results = wp.empty(shape=shape, dtype=int, device=DEVICE) wp.launch(kernel=intersect, dim=shape, inputs=[from_mesh.id, 1.0, xforms, to_mesh.id, intersect_results], device=DEVICE) wp.launch(kernel=grasp_contacts, dim=(len(xforms),), inputs=[to_mesh.id, (0.0, 0.04, 0.005), (0.0, -0.04, 0.005), (0.0,0.0,-0.025), xforms, contact_results, points], device=DEVICE) wp.synchronize() # Get num contacts per transform by summing over all faces intersections = intersect_results.numpy() contacts = contact_results.numpy() if len(Ts) == 0: # warp 0.5.1 intersections = np.empty(shape) contacts = np.empty(shape) intersections = intersections.sum(1) carb.profiler.end(1, True) if render: if query_name is None: query_name = str(self._get_mesh_name(to_mesh)).split("/")[-1] self.viz_query(intersections, xforms, from_mesh, to_mesh, query_name, contacts=points.numpy()) return intersections, contacts def viz_query(self, collisions, xforms, from_mesh, to_mesh, target_name, contacts=None): if len(xforms) == 0: return renderer = wp.render.UsdRenderer(f"/tmp/collision_viz/{target_name}-{time.time()}.usd", upaxis="z") #renderer.render_ground() with wp.ScopedTimer("render", active=True): renderer.begin_frame(0.0) to_mesh_points = to_mesh.points.numpy() to_mesh_indices = to_mesh.indices.numpy() from_mesh_points = from_mesh.points.numpy() from_mesh_indices = from_mesh.indices.numpy() to_extents = np.max(to_mesh_points, axis=0) - np.min(to_mesh_points, axis=0) spacing_x = to_extents[0] + .3 spacing_y = to_extents[1] + .3 row_size = int(np.sqrt(len(xforms))) for i, xform in enumerate(xforms.numpy()): x_offset = (i % row_size) * spacing_x y_offset = (i // row_size) * spacing_y renderer.render_mesh(f"to_{target_name}_{i}", points=to_mesh_points, indices=to_mesh_indices, pos=wp.vec3(x_offset, y_offset, 0)) p, q = xform[:3], xform[3:] renderer.render_mesh(f"frommesh_{i}", points=from_mesh_points, indices=from_mesh_indices, pos=wp.vec3(p[0] + x_offset, p[1] + y_offset, p[2]), rot=q) if contacts is not None: for j, contact in enumerate(contacts[i]): renderer.render_sphere(f"contact_{i}_{j}", pos=wp.vec3(contact[0] + x_offset, contact[1] + y_offset, contact[2]), rot=q, radius=.01) # if pair intersects then draw a small box above the pair if collisions[i] > 0: renderer.render_box(f"result_{i}", pos=wp.vec3(x_offset, y_offset, .15), rot=wp.quat_identity(), extents=(0.01, 0.01, 0.02)) renderer.end_frame() renderer.save() def get_support_surfaces(self, geom): as_trimesh = self._load_and_cache_geometry(geom, "trimesh") facet_centroids = np.empty((len(as_trimesh.facets), 3)) for i, (facet, total_area) in enumerate(zip(as_trimesh.facets, as_trimesh.facets_area)): weighted_centroid = 0 for tri_index in facet: weighted_centroid += as_trimesh.area_faces[tri_index] * as_trimesh.triangles_center[tri_index] facet_centroids[i] = weighted_centroid / total_area if len(facet_centroids) == 0: return facet_centroids, np.empty((0,3)), as_trimesh.facets, as_trimesh.facets_area, as_trimesh.facets_boundary return facet_centroids, as_trimesh.facets_normal, as_trimesh.facets, as_trimesh.facets_area, as_trimesh.facets_boundary def combine_geometries_to_mesh(self, geoms, xforms) -> wp.Mesh: tri = self.combine_geometries_to_trimesh(geoms, xforms) mesh = warp_from_trimesh(tri) return mesh def combine_geometries_to_trimesh(self, geoms, xforms) -> trimesh.Trimesh: assert len(geoms) == len(xforms) trimeshes = [self._load_and_cache_geometry(geom, target="trimesh").copy(include_cache=True).apply_transform(xform) for geom, xform in zip(geoms, xforms)] tri = trimesh.util.concatenate(trimeshes) return tri def _load_and_cache_geometry(self, obj, target='warp') -> Union[wp.Mesh, trimesh.Trimesh]: if target == 'warp': if isinstance(obj, wp.Mesh): return obj cached = self._warp_mesh_cache.get(obj.GetPath(), None) if cached is not None: return cached else: # Assume that the object is a usd geom tri = self._load_and_cache_geometry(obj, target='trimesh') processed = warp_from_trimesh(tri) self._warp_mesh_cache[obj.GetPath()] = processed return processed elif target == "trimesh": if isinstance(obj, trimesh.Trimesh): return obj cached = self._trimesh_cache.get(obj.GetPath(), None) if cached is not None: return cached else: # Assume that the object is a usd geom tri = geom_to_trimesh(obj) self._trimesh_cache[obj.GetPath()] = tri return tri else: assert(False) def _get_mesh_name(self, mesh): return list(self._warp_mesh_cache.keys())[list(self._warp_mesh_cache.values()).index(mesh)] def warp_from_trimesh(trimesh: trimesh.Trimesh): mesh = wp.Mesh( points=wp.array(trimesh.vertices, dtype=wp.vec3, device=DEVICE), indices=wp.array(trimesh.faces.flatten(), dtype=int, device=DEVICE)) return mesh def get_support_surfaces_trimesh(mesh: trimesh.Trimesh, for_normal=None, threshold=None): # No caching at the moment so don't put this in any loops facet_centroids = [] if for_normal: scores = mesh.facets_normal.dot(for_normal) support_mask = scores < threshold else: support_mask = np.ones((len(mesh.facets))) facets = [] for facet, total_area, is_support in zip(mesh.facets, mesh.facets_area, support_mask): if not is_support: continue facets.append(facet) weighted_centroid = 0 for tri_index in facet: weighted_centroid += mesh.area_faces[tri_index] * mesh.triangles_center[tri_index] facet_centroids.append(weighted_centroid / total_area) return facets, mesh.facets_area[support_mask], np.array(facet_centroids), mesh.facets_normal[support_mask] def geom_to_trimesh(geom): if isinstance(geom, UsdGeom.Mesh): trimesh = load_trimesh_from_usdgeom(geom) elif isinstance(geom, UsdGeom.Cube): trimesh = get_trimesh_for_cube(geom) elif isinstance(geom, UsdGeom.Cylinder): trimesh = get_trimesh_for_cylinder(geom) elif isinstance(geom, UsdGeom.Cone): trimesh = get_trimesh_for_cone(geom) elif isinstance(geom, UsdGeom.Sphere): trimesh = get_trimesh_for_sphere(geom) else: raise Exception("No mesh representation for obj" + str(geom)) return trimesh def get_trimesh_for_cube(cube: UsdGeom.Cube): transform = cube.GetLocalTransformation() translate, rotation, scale = UsdSkel.DecomposeTransform(transform) transform = Gf.Matrix4d(Gf.Vec4d(scale[0], scale[1], scale[2], 1)) size = cube.GetSizeAttr().Get() baked_trimesh = trimesh.creation.box(extents=(size, size, size)) baked_trimesh.apply_transform(transform) return baked_trimesh def get_trimesh_for_cylinder(cylinder: UsdGeom.Cylinder): transform = cylinder.GetLocalTransformation() translate, rotation, scale = UsdSkel.DecomposeTransform(transform) transform = Gf.Matrix4d(Gf.Vec4d(scale[0], scale[1], scale[2], 1)) baked_trimesh = trimesh.creation.cylinder(radius=cylinder.GetRadiusAttr().Get(), height=cylinder.GetHeightAttr().Get()) baked_trimesh.apply_transform(transform) return baked_trimesh def get_trimesh_for_cone(cone: UsdGeom.Cone): baked_trimesh = trimesh.creation.cone(radius=cone.GetRadiusAttr().Get(), height=cone.GetHeightAttr().Get()) baked_trimesh.apply_transform(trimesh.transformations.translation_matrix([0,0,-cone.GetHeightAttr().Get() / 2])) return baked_trimesh def get_trimesh_for_sphere(shpere: UsdGeom.Sphere): transform = shpere.GetLocalTransformation() baked_trimesh = trimesh.creation.icosphere(radius=shpere.GetRadiusAttr().Get()) baked_trimesh.apply_transform(transform) return baked_trimesh def load_trimesh_from_usdgeom(mesh: UsdGeom.Mesh): transform = mesh.GetLocalTransformation() baked_trimesh = trimesh.Trimesh(vertices=mesh.GetPointsAttr().Get(), faces=np.array(mesh.GetFaceVertexIndicesAttr().Get()).reshape(-1,3)) baked_trimesh.apply_transform(transform) return baked_trimesh
16,494
Python
42.637566
192
0.619619
NVlabs/fast-explicit-teleop/srl/teleop/assistance/motion_commander.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import os from typing import Optional, Union import numpy as np import omni.isaac.cortex.math_util as math_util import omni.isaac.motion_generation.interface_config_loader as icl import quaternion from omni.isaac.core.objects import VisualSphere from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.core.utils.math import normalized from omni.isaac.core.utils.prims import ( get_prim_at_path, is_prim_path_valid, ) from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.cortex.cortex_object import CortexObject from omni.isaac.cortex.math_util import to_stage_units, matrix_to_quat, unpack_T, invert_T from omni.isaac.motion_generation import MotionPolicyController, ArticulationMotionPolicy, RmpFlowSmoothed, PathPlannerVisualizer from omni.isaac.motion_generation.lula import RRT from pxr import Gf, UsdGeom, Usd, Sdf import srl.teleop.assistance from srl.teleop.assistance.transforms import integrate_twist def build_motion_commander(physics_dt, robot, obstacles): """ Build the motion commander object. Creates an RmpFlowSmoothed motion policy to govern the motion generation using the RMPflowCortex motion policy config. This policy is a wrapped version of RmpFlowSmoothed which measures jerk and both dynamically adjusts the system's speed if a large jerk is predicted, and truncates small/medium sized jerks. Also, adds the target prim, adds end-effector prim to the hand prim returned by get_robot_hand_prim_path(robot), and adds the provided obstacles to the underlying policy. Params: - physics_dt: The time delta used by physics in seconds. Default: 1./60 seconds. - robot: The robot object. Supported robots are currently Franka and UR10. - obstacles: A dictionary of obstacles to be added to the underlying motion policy. """ """motion_policy = RmpFlowSmoothed( **icl.load_supported_motion_policy_config("Franka", "RMPflow", policy_config_dir=get_extension_path_from_name("srl.teleop") + "/data/rmpflow") )""" motion_policy = RmpFlowSmoothed( **icl.load_supported_motion_policy_config("Franka", "RMPflowCortex") ) # Setup the robot commander and replace its (xform) target prim with a visible version. motion_policy_controller = MotionPolicyController( name="rmpflow_controller", articulation_motion_policy=ArticulationMotionPolicy( robot_articulation=robot, motion_policy=motion_policy ), ) # Lula config files for supported robots are stored in the motion_generation extension under # "/path_planner_configs" and "motion_policy_configs" mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") rrt_config_dir = os.path.join(mg_extension_path, "path_planner_configs") rmp_config_dir = os.path.join(mg_extension_path, "motion_policy_configs") # Initialize an RRT object rrt = RRT( robot_description_path = rmp_config_dir + "/franka/rmpflow/robot_descriptor.yaml", urdf_path = rmp_config_dir + "/franka/lula_franka_gen.urdf", rrt_config_path = rrt_config_dir + "/franka/rrt/franka_planner_config.yaml", end_effector_frame_name = "right_gripper" ) target_prim = make_target_prim("/motion_controller_target") commander = MotionCommander(robot, motion_policy_controller, rrt, target_prim) hand_prim_path = robot.prim_path + "/panda_hand" add_end_effector_prim_to_robot(commander, hand_prim_path, "eff") for obs in obstacles.values(): commander.add_obstacle(obs) return commander def make_target_prim(prim_path="/cortex/belief/motion_controller_target"): """ Create the prim to be used as the motion controller target and add it to the stage. Creates an axis marker. """ target_prim = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "axis.usda"), prim_path=prim_path) target_prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) xformable = XFormPrim(target_prim.GetPath(), "motion_controller_target") xformable.set_local_scale((.4,.4,.4)) return CortexObject(xformable) def add_end_effector_prim_to_robot(motion_commander, hand_prim_path, eff_prim_name): """ Add an end-effector prim as a child of the specified hand prim. In general, a motion policy consuming commands from the motion commander may not use an end-effector explicitly represented as a prim in the underlying robot USD. This method measures the location of the underlying policy's end-effector, computes the relative transform between the specified hand prim and that end-effector, and adds an explicit end-effector prim as a child of the hand prim to represent the end-effector in USD. This call uses MotionCommander.calc_policy_eff_pose_rel_to_hand(hand_prim_path) to calculate where the end-effector transform used by the underlying motion policy is relative to the specified hand prim. The end-effector prim is added to the path <hand_prim_path>/<eff_prim_name> """ eff_prim_path = hand_prim_path + "/" + eff_prim_name # Only add the prim if it doesn't already exist. if not is_prim_path_valid(eff_prim_path): print("No end effector detected. Adding one.") eff_prim = XFormPrim(eff_prim_path, "eff_transform") eff_prim_viz = VisualSphere(eff_prim_path + "/viz", "eff_viz", radius=0.003) eff_prim_viz.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) eff_prim = eff_prim.prim else: eff_prim = get_prim_at_path(eff_prim_path) pose = calc_policy_eff_pose_rel_to_hand(motion_commander, hand_prim_path) p = to_stage_units(pose[0]) q = pose[1] eff_prim.GetAttribute("xformOp:translate").Set(Gf.Vec3d(*p.tolist())) eff_prim.GetAttribute("xformOp:orient").Set(Gf.Quatd(*q.tolist())) #eff_prim.GetAttribute("xformOp:scale").Set(Gf.Vec3d(.1,.1,.1)) def calc_policy_eff_pose_rel_to_hand(commander, ref_prim_path): """ Calculates the pose of the controlled end-effector in coordinates of the reference prim in the named path. The underlying motion policy uses an end-effector that's not necessarily available in the franka robot. It's that control end-effector pose that's returned by the forward kinematics (fk) methods below. This method gets that control end-effector pose relative to a given prim (such as the hand frame) so, for instance, a new prim can be added relative to that frame for reference elsewhere. """ ref_T = get_prim_world_T_meters(ref_prim_path) #print("hand_prim_T_meter:\n", ref_T) #note eff_T = commander.get_fk_T() #print("eff_T from mg:\n", eff_T) eff_T_rel2ref = invert_T(ref_T).dot(eff_T) R, p = unpack_T(eff_T_rel2ref) q = matrix_to_quat(R) return p, q class ApproachParams(object): """ Parameters describing how to approach a target (in position). The direction is a 3D vector pointing in the direction of approach. It'd magnitude defines the max offset from the position target the intermediate approach target will be shifted by. The std dev defines the length scale a radial basis (Gaussian) weight function that defines what fraction of the shift we take. The radial basis function is defined on the orthogonal distance to the line defined by the target and the direction vector. Intuitively, the normalized vector direction of the direction vector defines which direction to approach from, and it's magnitude defines how far back we want the end effector to come in from. The std dev defines how tighly the end-effector approaches along that line. Small std dev is tight around that approach line, large std dev is looser. A good value is often between 1 and 3 cm. See calc_shifted_approach_target() for the specific implementation of how these parameters are used. """ def __init__(self, direction, std_dev): self.direction = direction self.std_dev = std_dev def __str__(self): return "{direction: %s, std_dev %s}" % (str(self.approach), str(self.std_dev)) class MotionCommand: """ A motion command includes the motion API parameters: a target pose (required), optional approach parameters, and an optional posture configuration. The target pose is a full position and orientation target. The approach params define how the end-effector should approach that target. And the posture config defines how the system should resolve redundancy and generally posture the arm on approach. """ def __init__(self, target_position: Optional[np.array], target_orientation: Optional[quaternion.quaternion]=None, approach_params=None, posture_config=None): self.target_position = target_position self.target_orientation = target_orientation self.approach_params = approach_params self.posture_config = posture_config @property def has_approach_params(self): return self.approach_params is not None @property def has_posture_config(self): return self.posture_config is not None class VelocityMotionCommand: def __init__(self, target_linear_velocity: np.ndarray, target_angular_velocity: np.ndarray, frame_trans=np.identity(3), frame_rot=np.identity(3)): self.target_linear_velocity = target_linear_velocity self.target_angular_velocity = target_angular_velocity self.frame_trans = frame_trans self.frame_rot = frame_rot class PlannedMoveCommand: def __init__(self, cspace_goal: Optional[np.ndarray]=None, end_effector_goal: Optional[np.ndarray]=None): self.cspace_target = cspace_goal self.end_effector_goal = end_effector_goal def __eq__(self, obj): if not isinstance(obj, PlannedMoveCommand): return False if self.cspace_target is not None and obj.cspace_target is not None: return np.allclose(self.cspace_target, obj.cspace_target) else: return False class SmoothedCommand(object): """ Represents a smoothed command. The API includes: - reset(): Clear the current smoothed target data. - update(): Updating the data given a new target. A command consists of a position target, an optional rotation matrix target, and a posture config. The smoothed command is stored in members x (position), R (rotation matrix), q (posture config), and can be accessed from there. On first update of any given component, the component is set directly to the value provided. On subsequent updates the currently value is averaged with the new value, creating an exponentially weighted average of values received. If a particular component is never received (e.g. the posture config, or the rotation matrix) the corresponding member is never initialized and remains None. Rotation recursive averaging is done by averaging the matrices themselves then projecting using math_util.proj_R(), which converts the (invalid) rotation matrix to a quaternion, normalizes, then converts back to a matrix. If use_distance_based_smoothing_regulation is set to True (default) the degree of smoothing diminishes to a minimum value of 0.5 as the system approaches the target. This feature is optimized for discrete jumps in targets. Then a large jump is detected, the smoothing increase to the interpolation_alpha provided on initialization, but then decreases to the minimum value as it nears the target. Note that the distance between rotation matrices factors into the distance to target. """ def __init__(self, interpolation_alpha=0.95, use_distance_based_smoothing_regulation=True): """ Initialize to use interpolation_alpha as the alpha blender. Larger values mean higher smoothing. interpolation_alpha should be between 0 and 1; a good default (for use with 60hz updates) is given by SmoothedCommand_a. """ self.x = None self.R = None self.q = None self.init_interpolation_alpha = interpolation_alpha self.use_distance_based_smoothing_regulation = use_distance_based_smoothing_regulation self.reset() def reset(self): """ Reset the smoother back to its initial state. """ self.x = None self.R = None self.q = None self.interpolation_alpha = self.init_interpolation_alpha def update(self, target_p, target_R, posture_config, eff_x, eff_R): """ Update the smoothed target given the current command (target, posture_config) and the current end-effector frame (eff_{x,R}). Params: - target: A target object implementing the TargetAdapter API. (It need not have a rotational target.) - posture_config: The posture configuration for this command. None is valid. - eff_x: The position component of the current end-effector frame. - eff_R: The rotational component of the current end-effector frame. """ x_curr = target_p R_curr = None if target_R is not None: R_curr = target_R q_curr = None if posture_config is not None: q_curr = np.array(posture_config) if self.x is None: self.x = eff_x if self.R is None: self.R = eff_R if self.q is None: self.q = q_curr # Clear the R if there's no rotation command. But don't do the same for the posture config. # Always keep around the previous posture config. if R_curr is None: self.R = None if self.use_distance_based_smoothing_regulation: d = np.linalg.norm([eff_x - x_curr]) if self.R is not None: d2 = np.linalg.norm([eff_R - self.R]) * 1.0 d = max(d, d2) std_dev = 0.05 scalar = 1.0 - np.exp(-0.5 * (d / std_dev) ** 2) alpha_min = 0.5 a = scalar * self.interpolation_alpha + (1.0 - scalar) * alpha_min else: a = self.interpolation_alpha self.x = a * self.x + (1.0 - a) * x_curr if self.R is not None and R_curr is not None: self.R = math_util.proj_R(a * self.R + (1.0 - a) * R_curr) if self.q is not None and q_curr is not None: self.q = a * self.q + (1.0 - a) * q_curr def calc_shifted_approach_target(target_T, eff_T, approach_params): """ Calculates how the target should be shifted to implement the approach given the current end-effector position. - target_p: Final target position. - eff_p: Current end effector position. - approach_params: The approach parameters. """ target_R, target_p = math_util.unpack_T(target_T) eff_R, eff_p = math_util.unpack_T(eff_T) direction = approach_params.direction std_dev = approach_params.std_dev v = eff_p - target_p an = normalized(direction) norm = np.linalg.norm dist = norm(v - np.dot(v, an) * an) dist += 0.5 * norm(target_R - eff_R) / 3 alpha = 1.0 - np.exp(-0.5 * dist * dist / (std_dev * std_dev)) shifted_target_p = target_p - alpha * direction return shifted_target_p def get_prim_world_T_meters(prim_path): """ Computes and returns the world transform of the prim at the provided prim path in units of meters. """ prim = get_prim_at_path(prim_path) prim_tf = UsdGeom.Xformable(prim).ComputeLocalToWorldTransform(Usd.TimeCode.Default()) transform = Gf.Transform() transform.SetMatrix(prim_tf) position = transform.GetTranslation() orientation = transform.GetRotation().GetQuat() p = np.array(position) R = np.array(Gf.Matrix3d(orientation).GetTranspose()) T = math_util.pack_Rp(R, math_util.to_meters(p)) return T class MotionCommander: """ The motion commander provides an abstraction of motion for the cortex wherein a lower-level policy implements the motion commands defined by MotionCommand objects. This class adds and end-effector prim to the robot's hand and creates a target prim for setting targets. The target prim can be set to a target manually via a call to set_target() or it can be controlled using a gizmo through the OV viewport. Independent of what the stage units currently are, this class provides an SI interface. Commands are specified in units of meters and forward kinematics is returned in units of meters. """ def __init__(self, robot, motion_controller, rrt, target_prim): self.robot = robot self.motion_controller = motion_controller self.smoothed_command = SmoothedCommand() self.rrt = rrt # Use the PathPlannerVisualizer wrapper to generate a trajectory of ArticulationActions self.path_planner_visualizer = PathPlannerVisualizer(robot,rrt) self.robot_prim = get_prim_at_path(self.amp.get_robot_articulation().prim_path) self.target_prim = None self.register_target_prim(target_prim) self.is_target_position_only = False self.last_command = None def set_target_position_only(self): self.is_target_position_only = True def set_target_full_pose(self): self.is_target_position_only = False def register_target_prim(self, target_prim): """ Register the specified target prim with this commander. This prim will both visualize the commands being sent to the motion commander, and it can be used to manually control the robot using the OV viewport's gizmo. """ self.target_prim = CortexObject(target_prim) # Target prim will be in units of meters. self.set_command(MotionCommand(*self.get_fk_pq())) def calc_policy_eff_pose_rel_to_hand(self, ref_prim_path): """ Calculates the pose of the controlled end-effector in coordinates of the reference prim in the named path. The underlying motion policy uses an end-effector that's not necessarily available in the franka robot. It's that control end-effector pose that's returned by the forward kinematics (fk) methods below. This method gets that control end-effector pose relative to a given prim (such as the hand frame) so, for instance, a new prim can be added relative to that frame for reference elsewhere. """ ref_T = get_prim_world_T_meters(ref_prim_path) print("hand_prim_T_meter:\n", ref_T) eff_T = self.get_fk_T() print("eff_T from mg:\n", eff_T) eff_T_rel2ref = math_util.invert_T(ref_T).dot(eff_T) R, p = math_util.unpack_T(eff_T_rel2ref) q = math_util.matrix_to_quat(R) return p, q def reset(self): """ Reset this motion controller. This method ensures that any internal integrators of the motion policy are reset, as is the smoothed command. """ self.motion_policy.reset() self.smoothed_command.reset() @property def amp(self): """ Accessor for articulation motion policy from the motion controller. """ return self.motion_controller.get_articulation_motion_policy() @property def motion_policy(self): """ The motion policy used to command the robot. """ return self.motion_controller.get_articulation_motion_policy().get_motion_policy() @property def aji(self): """ Active joint indices. These are the indices into the full C-space configuration vector of the joints which are actively controlled. """ return self.amp.get_active_joints_subset().get_joint_subset_indices() def get_end_effector_pose(self, config=None): """ Returns the control end-effector pose in units of meters (the end-effector used by motion gen). Motion generation returns the end-effector pose in stage units. We convert it to meters here. Returns the result in the same (<position>, <rotation_matrix>) tuple form as motion generation. If config is None (default), it uses the current applied action (i.e. current integration state of the underlying motion policy which the robot is trying to follow). By using the applied action (rather than measured simulation state) the behavior is robust and consistent regardless of simulated PD control nuances. Otherwise, if config is set, calculates the forward kinematics for the provided joint config. config should be the full C-space configuration of the robot. """ if config is None: # No active joints config was specified, so fill it in with the current applied action. action = self.robot.get_applied_action() config = np.array(action.joint_positions) active_joints_config = config[self.aji] p, R = self.motion_policy.get_end_effector_pose(active_joints_config) p = math_util.to_meters(p) return p, R def get_eef_T(self): """ Return the true, current end effect pose, using latest joint angle measurements """ return self.get_fk_T(self.robot.get_joint_positions()[:-2]) def get_fk_T(self, config=None): """ Returns the forward kinematic transform to the control frame as a 4x4 homogeneous matrix. Uses currently applied joint position goal, which may differ from real joint positions in cases where the controller is oscillating. """ p, R = self.get_end_effector_pose(config) return math_util.pack_Rp(R, p) def get_fk_pq(self, config=None): """ Returns the forward kinematic transform to the control frame as a (<position>,<quaternion>) pair. """ p, R = self.get_end_effector_pose(config) return p, quaternion.from_rotation_matrix(R) def get_fk_p(self, config=None): """ Returns the position components of the forward kinematics transform to the end-effector control frame. """ p, _ = self.get_end_effector_pose(config) return p def get_fk_R(self, config=None): """ Returns the rotation matrix components of the forward kinematics transform to the end-effector control frame. """ _, R = self.get_end_effector_pose(config) return R def set_command(self, command: Union[MotionCommand, VelocityMotionCommand]): """ Set the active command to the specified value. The command is smoothed before passing it into the underlying policy to ensure it doesn't change too quickly. If the command does not have a rotational target, the end-effector's current rotation is used in its place. Note the posture configure should be a full C-space configuration for the robot. """ eff_T = self.get_fk_T() eff_p = eff_T[:3, 3] eff_R = eff_T[:3, :3] if isinstance(command, VelocityMotionCommand): screw_T = integrate_twist(3 * command.frame_trans @ command.target_linear_velocity, 12 * command.frame_rot @ command.target_angular_velocity, 2) target_posture = None self.smoothed_command.interpolation_alpha = .6 new_T = eff_T @ screw_T self.smoothed_command.update(new_T[:3,3], new_T[:3,:3], None, eff_p, eff_R) elif isinstance(command, MotionCommand): target_p, target_q = command.target_position, command.target_orientation if target_q is None: target_q = quaternion.from_rotation_matrix(eff_R) if command.has_approach_params: target_T = math_util.pack_Rp(quaternion.as_rotation_matrix(target_q), target_p) target_p = calc_shifted_approach_target(target_T, eff_T, command.approach_params) self.smoothed_command.interpolation_alpha = .95 self.smoothed_command.update(target_p, quaternion.as_rotation_matrix(target_q), command.posture_config, eff_p, eff_R) elif isinstance(command, PlannedMoveCommand): need_replan = True if isinstance(self.last_command, PlannedMoveCommand): if self.last_command == command: need_replan = False if need_replan: self.rrt.set_cspace_target(command.cspace_target) self.plan = self.path_planner_visualizer.compute_plan_as_articulation_actions(max_cspace_dist = .01) if self.plan: next_action = self.plan[0] p, q = self.get_fk_pq(config=next_action.joint_positions) self.smoothed_command.interpolation_alpha = 0 self.smoothed_command.update(p, quaternion.as_rotation_matrix(q), None, eff_p, eff_R) target_p = self.smoothed_command.x target_R = self.smoothed_command.R target_T = math_util.pack_Rp(target_R, target_p) target_posture = self.smoothed_command.q self.target_prim.set_world_pose(position=target_p, orientation=math_util.matrix_to_quat(target_R)) if target_posture is not None: self.set_posture_config(target_posture) self.last_command = command def set_posture_config(self, posture_config): """ Set the posture configuration of the underlying motion policy. The posture configure should be a full C-space configuration for the robot. """ policy = self.motion_policy._policy policy.set_cspace_attractor(posture_config) def _sync_end_effector_target_to_motion_policy(self): """ Set the underlying motion generator's target to the pose in the target prim. Note that the world prim is a CortexObject which is always in units of meters. The motion generator uses stage units, so we have to convert. """ target_translation, target_orientation = self.target_prim.get_world_pose() if self.is_target_position_only: self.motion_policy.set_end_effector_target(math_util.to_stage_units(target_translation)) p, _ = self.target_prim.get_world_pose() q = self.get_fk_pq().q self.target_prim.set_world_pose(p, q) else: self.motion_policy.set_end_effector_target(math_util.to_stage_units(target_translation), target_orientation) def get_action(self, dt): """ Get the next action from the underlying motion policy. Returns the result as an ArticulationAction object. """ self.amp.physics_dt = dt self._sync_end_effector_target_to_motion_policy() self.motion_policy.update_world() action = self.amp.get_next_articulation_action() if isinstance(self.last_command, PlannedMoveCommand): if self.plan: action = self.plan.pop(0) return action def step(self, dt): """ Convenience method for both getting the current action and applying it to the underlying robot's articulation controller. """ action = self.get_action(dt) self.robot.get_articulation_controller().apply_action(action) def add_obstacle(self, obs): """ Add the provided obstacle to the underlying motion policy so they will be avoided. The obstacles must be core primitive types. See omni.isaac.core/omni/isaac/core/objects for options. See also omni.isaac.motion_generation/omni/isaac/motion_generation/world_interface.py: WorldInterface.add_obstacle(...) """ self.motion_policy.add_obstacle(obs) def disable_obstacle(self, obj): """ Distable the given object as an obstacle in the underlying motion policy. Disabling can be done repeatedly safely. The object can either be a core api object or a cortex object. """ try: # Handle cortex objects -- extract the underlying core api object. if hasattr(obj, "obj"): obj = obj.obj self.motion_policy.disable_obstacle(obj) except Exception as e: err_substr = "Attempted to disable an already-disabled obstacle" if err_substr in str(e): print("<lula error caught and ignored (obj already disabled)>") else: raise e def enable_obstacle(self, obj): """ Enable the given object as an obstacle in the underlying motion policy. Enabling can be done repeatedly safely. The object can either be a core api object or a cortex object. """ try: # Handle cortex objects -- extract the underlying core api object. if hasattr(obj, "obj"): obj = obj.obj self.motion_policy.enable_obstacle(obj) except Exception as e: err_substr = "Attempted to enable an already-enabled obstacle" if err_substr in str(e): print("<lula error caught and ignored (obj already enabled)>") else: raise e
29,384
Python
42.340708
161
0.672441
NVlabs/fast-explicit-teleop/srl/teleop/assistance/camera_controls.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import omni from omni.isaac.sensor import Camera import math from srl.teleop.assistance.transforms import rotate_vec_by_quat from omni.isaac.core.utils.viewports import set_camera_view import time import quaternion class ArcballCameraControls: def __init__(self, camera_path, focus_delegate) -> None: self.camera_path = camera_path self.last_free_camera_view = None self._last_holdable_control = None self._hold_stamp = time.time() self._hold_duration = 0 self.camera = Camera(self.camera_path, name="persp") self.focus_delegate = focus_delegate def update(self, control_input): if control_input in {"ROTATE RIGHT", "ROTATE LEFT", "PITCH DOWN", "PITCH UP", "ZOOM IN", "ZOOM OUT"}: now = time.time() if self._last_holdable_control != control_input or now > self._hold_stamp + 0.2: # Interpret as a new press self._hold_duration = 0 elif now > self._hold_stamp: self._hold_duration += 1 self._hold_stamp = now self._last_holdable_control = control_input focus_point = self.focus_delegate() if control_input == "ROTATE RIGHT" or control_input == "ROTATE LEFT": sign = 1 if control_input == "ROTATE LEFT": sign = -1 self._rotate_camera_eye_by_quat( quaternion.from_euler_angles(0,0,sign * .02 * min(math.log(math.e + self._hold_duration), 3)), focus_point) elif control_input == "PITCH UP" or control_input == "PITCH DOWN": sign = 1 if control_input == "PITCH DOWN": sign = -1 self._rotate_camera_eye_by_quat( quaternion.from_euler_angles(0,sign * .02 * min(math.log(math.e + self._hold_duration), 3),0), focus_point) elif control_input == "ZOOM IN" or control_input == "ZOOM OUT": sign = 1 if control_input == "ZOOM OUT": sign = -1 current_cam_pose = self.camera.get_world_pose() set_camera_view( eye=current_cam_pose[0] + (sign * .02 * min(math.log(math.e + self._hold_duration), 3)) * (focus_point - current_cam_pose[0]), target=focus_point, camera_prim_path=self.camera_path ) def _rotate_camera_eye_by_quat(self, quat: quaternion.quaternion, focus): current_cam_pose = self.camera.get_world_pose() set_camera_view( eye=rotate_vec_by_quat(current_cam_pose[0], quat), target=focus, camera_prim_path=self.camera_path ) class SwappableViewControls: def __init__(self, camera_path, main_viewport, secondary_viewport, on_flip=lambda x: x): self.main_viewport = main_viewport self.secondary_viewport = secondary_viewport self.camera_path = camera_path # Outside expects us to have a handle to a controllable camera. self.camera = Camera(self.camera_path, name="persp") #self.camera.pause() self._hold_stamp = time.time() self._hold_duration = 0 self.on_flip = on_flip def update(self, control_input): if control_input == 0: return now = time.time() if now > self._hold_stamp + 0.2: # Interpret as a new press self._hold_duration = 0 else: self._hold_duration += 1 self._hold_stamp = now if self._hold_duration > 0: return self.swap() def swap(self): prev_main_camera = self.main_viewport.viewport_api.get_active_camera() prev_secondary_camera = self.secondary_viewport.viewport_api.get_active_camera() self.main_viewport.viewport_api.set_active_camera(prev_secondary_camera) self.secondary_viewport.viewport_api.set_active_camera(prev_main_camera) self.on_flip(prev_secondary_camera == self.camera_path) @property def active_index(self): return 0 if self.camera_path == self.main_viewport.viewport_api.get_active_camera() else 1 def set_fixed_view(self): omni.kit.commands.execute("UnlockSpecs", spec_paths=[self.camera.prim_path]) #set_camera_view((-.35, -1.16, 1.29), (.35, 0, 0), self.camera_path, self.main_viewport.viewport_api) set_camera_view((1.79, 0, 1.35), (.25, 0, 0), self.camera_path, self.main_viewport.viewport_api) def lock_fixed(self): omni.kit.commands.execute("LockSpecs", spec_paths=[self.camera.prim_path])
4,743
Python
40.252174
142
0.598777
NVlabs/fast-explicit-teleop/srl/teleop/assistance/__init__.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.assistance.assistance import Assistance from srl.teleop.assistance.assistance_extension import AssistanceExtension import os # Conveniences to other module directories via relative paths EXT_DIR = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(__file__)), "../../../")) DATA_DIR = os.path.join(EXT_DIR, "data") __all__ = [ # global paths "EXT_DIR", "DATA_DIR", ]
551
Python
28.05263
96
0.720508
NVlabs/fast-explicit-teleop/srl/teleop/assistance/assistance.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import datetime import weakref from srl.teleop.assistance.camera_controls import ArcballCameraControls, SwappableViewControls from srl.teleop.assistance.logging import CONTROLS_STATE_DTYPE, ROBOT_STATE_DTYPE, UI_STATE_DTYPE from srl.teleop.assistance.profiling import profile from srl.teleop.assistance.tasks.reaching import ReachingTask from srl.teleop.base_sample import BaseSample from .behavior.scene import ContextTools, SceneContext from srl.teleop.assistance.behavior.network import build_control_behavior, build_suggestion_display_behavior, build_suggestion_selection_behavior from srl.teleop.assistance.check_collision import WarpGeometeryScene from srl.teleop.assistance.proposals import FixedTargetProposal, build_proposal_tables from srl.spacemouse.spacemouse_extension import get_global_spacemouse from omni.isaac.core.world import World from omni.isaac.core.prims.xform_prim import XFormPrim import numpy as np import omni import carb import time import quaternion from omni.kit.viewport.utility import get_active_viewport_window from srl.teleop.assistance.transforms import invert_T, pack_Rp from srl.teleop.assistance.viewport import configure_main_viewport, configure_realsense_viewport, disable_viewport_interaction, get_realsense_viewport, layout_picture_in_picture from srl.teleop.assistance.viz import viz_laser_rooted_at from srl.teleop.assistance.motion_commander import build_motion_commander, add_end_effector_prim_to_robot from srl.teleop.assistance.ui import AssistanceMode, ControlFrame, strfdelta from pxr import UsdGeom, PhysxSchema from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.debug_draw import _debug_draw class Assistance(BaseSample): def __init__(self, task, viewport_manipulator) -> None: super().__init__() self.set_world_settings(rendering_dt= 1/30, physics_dt=1/60) self._timeline = omni.timeline.get_timeline_interface() self._stage = None self.scene_context = None self.control_behavior = None self.suggestion_selection_behavior = None self.suggestion_display_behavior = None self.models = None self.start_stamp = None self.last_stamp = time.time() self._camera_controls = None self._draw = _debug_draw.acquire_debug_draw_interface() self._task = task self.viewport_manipulator = viewport_manipulator self.viewport_disable_handles = None def setup_scene(self): """ Called by super when the world and stage are setup """ # Turn off scientific notation to make debug prints scannable np.set_printoptions(suppress=True) world = self.get_world() world.add_task(self._task) self._stage = omni.usd.get_context().get_stage() def physics_step(self, step): if self._world.is_stopped(): return if self._task.is_done(): self._world.stop() return carb.profiler.begin(1, "physics step", active=True) if self.start_stamp is None: self.start_stamp = time.time() # Force everyone to redraw anything they want shown each frame self._draw.clear_lines() self._draw.clear_points() # Make sure we've let the simulation settle a few steps before updating the eff prim. Otherwise # the hand prim starts in a strange place which disagrees with joint states if self._world.current_time_step_index > 10: hand_prim_path = self.franka.prim_path + "/panda_hand" # FIXME: This gets called for the first time when the commander is built, but at that point # the hand prim position is wrong relative to the controller's FK frame. We call it again here # to put the eff prim in the right place. add_end_effector_prim_to_robot(self.commander, hand_prim_path, "eff") spacemouse = get_global_spacemouse() if spacemouse and not self.control_behavior: self.configure_behaviors() elif not spacemouse: self.control_behavior = None self.suggestion_selection_behavior = None self.suggestion_display_behavior = None with profile("scene_context.monitors", True): for mon in self.scene_context.monitors: mon(self.scene_context) if self.control_behavior: #HACK: For basic assistance familiarization in study if isinstance(self._task, ReachingTask) and self.models["suggest_grasps"].as_bool: if self.control_behavior.context.button_command[2]: self.selection_behavior.context.fixed_proposal = FixedTargetProposal(self._task._current_target_T) with profile("control_behavior.monitors", True): for mon in self.control_behavior.context.monitors: mon(self.control_behavior.context) with profile("control_behavior.step", True): self.control_behavior.step() with profile("selection.monitors", True): for mon in self.selection_behavior.context.monitors: mon(self.selection_behavior.context) with profile("selection.step", True): self.selection_behavior.step() with profile("suggestion_display_behavior.monitors", True): for mon in self.suggestion_display_behavior.context.monitors: mon(self.suggestion_display_behavior.context) with profile("suggestion_display_behavior.step", True): self.suggestion_display_behavior.step() action = self.commander.get_action(World.instance().get_physics_dt()) self.franka.get_articulation_controller().apply_action(action) if self.models is not None and self.models["use_laser"].as_bool: viz_laser_rooted_at(f"{self.franka.prim_path}/panda_hand/guide", pack_Rp(np.identity(3), np.array((0, 0, .07)))) orig_style = self.models["left_label"][1].style if hasattr(self._task, "time_remaining") and self._task.time_remaining: to_display = datetime.timedelta(seconds=self._task.time_remaining) self.models["left_label"][0].text = strfdelta(to_display, '%M:%S') if to_display.total_seconds() < 60: orig_style["background_color"] = 0x330000FF else: orig_style["background_color"] = 0x33000000 else: to_display = datetime.timedelta(seconds=time.time() - self.start_stamp) self.models["left_label"][0].text = strfdelta(to_display, '%M:%S') orig_style["background_color"] = 0x33000000 self.models["left_label"][1].set_style(orig_style) carb.profiler.end(1, True) async def setup_post_reset(self): self.commander.reset() omni.usd.get_context().get_selection().set_selected_prim_paths([], True) def world_cleanup(self): self._world.remove_physics_callback("sim_step") if self.viewport_disable_handles: self.viewport_disable_handles = None return async def setup_pre_reset(self): return async def setup_post_load(self): scene = self._world.scene self.ghosts = [scene.get_object("ghost_franka0"),scene.get_object("ghost_franka1")] self.franka = scene.get_object("franka") await self._world.play_async() if self.franka is None: carb.log_error("Grasp Suggestion load failed trying to retrieve Franka from scene. Make sure you have" "cleared the stage completely before attempted to load.") assert False self.realsense_vp = get_realsense_viewport(self.franka.camera.prim.GetPath()) configure_realsense_viewport(self.realsense_vp) self.main_vp = get_active_viewport_window("Viewport") configure_main_viewport(self.main_vp) self.viewport_disable_handles = disable_viewport_interaction(self.main_vp), disable_viewport_interaction(self.realsense_vp) self.models["control_frame"].get_item_value_model().set_value(2) layout_picture_in_picture(self.main_vp, self.realsense_vp) def get_focus(): point = self.commander.get_fk_p() point[2] = 0 return point #self._camera_controls = ArcballCameraControls("/OmniverseKit_Persp", focus_delegate=get_focus) def on_flip(main_is_original): if main_is_original: self.models["control_frame"].get_item_value_model().set_value(2) else: self.models["control_frame"].get_item_value_model().set_value(0) self._camera_controls = SwappableViewControls("/OmniverseKit_Persp",self.main_vp, self.realsense_vp, on_flip=on_flip) self._camera_controls.set_fixed_view() self._objects = self._task.get_task_objects() self._scene_objects = self._task.get_scene_objects() self._object_ghosts = self._task.get_ghost_objects() #self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=len(self.ghosts)) # NOTE: motioncommander requires the articulation view to already exist, which it isn't before setup_post_load self.commander = build_motion_commander(self.get_world().get_physics_dt(), self.franka, {}) self.eff_prim = XFormPrim(self.franka.prim_path + "/panda_hand/eff") self.target_prim = XFormPrim("/motion_controller_target") await self._world.play_async() self._camera_controls.lock_fixed() # Generate all possible suggestions we could have based on object geometry ee_T = self.commander.get_eef_T() inv_ee_T = invert_T(ee_T) part_Ts = self.franka.get_gripper_collision_Ts() ee_to_part_Ts = [inv_ee_T.dot(part_T) for part_T in part_Ts] self.ee_to_part_Ts = ee_to_part_Ts self.collision_checker = WarpGeometeryScene() self.gripper_collision_mesh = self.collision_checker.combine_geometries_to_mesh(self.franka.get_gripper_collision_meshes(), self.ee_to_part_Ts) with profile("filter_proposal_tables"): self.grasp_table, self.placement_table, self.plane_table = build_proposal_tables(self.collision_checker, list(self._objects.values()), list(self._scene_objects.values()), self.gripper_collision_mesh) #self.viewport_manipulator.update(self.grasp_table, self.placement_table, self.plane_table) self.scene_context = SceneContext(ContextTools(self._world, self.viewport_manipulator, self._objects, self._scene_objects, {}, self._object_ghosts, self.franka, self.ghosts, self.commander, self.grasp_table, self.placement_table, self.plane_table, self.collision_checker, self.gripper_collision_mesh), self.models["suggest_grasps"].as_bool, self.models["suggest_placements"].as_bool) self._world.add_physics_callback("sim_step", callback_fn=self.physics_step) omni.usd.get_context().get_selection().set_selected_prim_paths([], True) def configure_behaviors(self): assistance_mode = AssistanceMode(self.models["assistance_mode"].get_item_value_model().as_int) control_frame = ControlFrame(self.models["control_frame"].get_item_value_model().as_int) self.control_behavior = build_control_behavior(weakref.proxy(self.scene_context.tools), get_global_spacemouse(), control_frame, weakref.proxy(self.scene_context), assistance_mode, weakref.proxy(self._camera_controls).update, self.models["avoid_obstacles"].as_bool) self.selection_behavior = build_suggestion_selection_behavior(weakref.proxy(self.scene_context.tools), weakref.proxy(self.scene_context), weakref.proxy(self.control_behavior.context), self.models["use_surrogates"].as_bool, self.models["snapping"].as_bool) self.control_behavior.context.selection_context = weakref.proxy(self.selection_behavior.context) self.suggestion_display_behavior = build_suggestion_display_behavior(weakref.proxy(self.scene_context.tools), weakref.proxy(self.scene_context), weakref.proxy(self.control_behavior.context), weakref.proxy(self.selection_behavior.context), self.models["center_label"]) def register_ui_models(self, models): self.models = models def overlay_opacity_change(model): value = model.get_value_as_float() self.suggestion_display_behavior.context.overlay_opacity = value def control_frame_change(model,_): if self.control_behavior: self.control_behavior.context.control_frame = ControlFrame(model.get_item_value_model().as_int) def assistance_mode_change(model, _): if self.control_behavior: self.control_behavior.context.assistance_mode = AssistanceMode(model.get_item_value_model().as_int) def should_assist_change(model): self.scene_context.should_suggest_placements = self.models["suggest_placements"].as_bool self.scene_context.should_suggest_grasps = self.models["suggest_grasps"].as_bool if self.selection_behavior: self.selection_behavior.context.use_surrogates = self.models["use_surrogates"].as_bool self.selection_behavior.context.use_snapping = self.models["snapping"].as_bool self.models["overlay_opacity"][0].add_value_changed_fn(overlay_opacity_change) self.models["control_frame"].add_item_changed_fn(control_frame_change) self.models["assistance_mode"].add_item_changed_fn(assistance_mode_change) self.models["suggest_grasps"].add_value_changed_fn(should_assist_change) self.models["suggest_placements"].add_value_changed_fn(should_assist_change) self.models["use_surrogates"].add_value_changed_fn(should_assist_change) self.models["snapping"].add_value_changed_fn(should_assist_change) async def _on_ui_value_change(self, name, value): if name == "suggest_grasps": self.scene_context.should_suggest_grasps = value elif name == "suggest_placements": self.scene_context.should_suggest_placements = value elif name == "avoid_obstacles": if self.control_behavior: self.control_behavior.context.avoid_obstacles = value elif name == "use_laser": imageable = UsdGeom.Imageable(get_prim_at_path(f"{self.franka.prim_path}/panda_hand/guide")) if not value: imageable.MakeInvisible() else: imageable.MakeVisible() elif name == "use_surrogates": if self.selection_behavior: self.selection_behavior.context.use_surrogates = value else: print("unhandled ui event", name, value) def _on_logging_event(self, val): world = self.get_world() data_logger = world.get_data_logger() if not world.get_data_logger().is_started(): data_logger.add_data_frame_logging_func(self.frame_logging_func) if val: data_logger.start() else: data_logger.pause() return def frame_logging_func(self, tasks, scene): if self.suggestion_display_behavior.context is None: return {} # return always a dict applied_action = self.franka.get_applied_action() spacemouse = get_global_spacemouse() trans, rot, buttons = (0,0,0), (0,0,0), 0 trans_raw, rot_raw, buttons_raw = (0,0,0), (0,0,0), 0 if spacemouse: stamp, trans, rot, buttons = spacemouse.get_controller_state() stamp, trans_raw, rot_raw, buttons_raw = spacemouse._control p,q = self.commander.get_fk_pq() target_p, target_q = self.commander.target_prim.get_world_pose() data = {} robot_state = np.empty((1,), dtype=ROBOT_STATE_DTYPE) robot_state['eef_pose']["position"] = p robot_state['eef_pose']["orientation"] = quaternion.as_float_array(q) robot_state['target_pose']["position"] = target_p robot_state['target_pose']["orientation"] = target_q #frame['eef_vel_lin'] = self.franka.gripper.get_linear_velocity() #frame['eef_vel_ang'] = self.franka.gripper.get_angular_velocity() twist = self.scene_context.ee_vel_tracker.get_twist() if twist is None: twist = np.zeros(6) robot_state['eef_vel_lin'] = twist[:3] robot_state['eef_vel_ang'] = twist[3:] robot_state['joint_positions'] = self.franka.get_joint_positions() robot_state['joint_velocities'] = self.franka.get_joint_velocities() robot_state['applied_joint_positions'] = applied_action.joint_positions robot_state['applied_joint_velocities'] = applied_action.joint_velocities ui_state = np.empty((1,), dtype=UI_STATE_DTYPE) cam_p, cam_q = self._camera_controls.camera.get_world_pose() ui_state['primary_camera'] = self._camera_controls.active_index ui_state['camera_pose']['position'] = cam_p ui_state['camera_pose']['orientation'] = cam_q ghost_i, (ghost_p, ghost_q) = self.suggestion_display_behavior.context.get_current_object_ghost_index_and_pose() ui_state['object_ghost_pose']['position'] = ghost_p ui_state['object_ghost_pose']['orientation'] = ghost_q ui_state['object_ghost_index'] = ghost_i ui_state["robot_ghost_joint_positions"] = self.suggestion_display_behavior.context.get_current_robot_ghost_joint_positions() ui_state["ghost_is_snapped"] = self.selection_behavior.context.suggestion_is_snap controls_state = np.empty((1,), dtype=CONTROLS_STATE_DTYPE) controls_state["filtered"] = trans, rot, buttons controls_state["raw"] = trans_raw, rot_raw, buttons_raw data["robot_state"] = robot_state data["controls_state"] = controls_state data["scene_state"] = self._task.get_observations() data["ui_state"] = ui_state return data
18,162
Python
51.799418
391
0.665345
NVlabs/fast-explicit-teleop/srl/teleop/assistance/viz.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import os import omni import srl.teleop from srl.teleop.assistance.transforms import T2pq, make_rotation_matrix, pq2T, invert_T, normalized from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.prims import is_prim_path_valid, get_prim_at_path from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.objects.cone import VisualCone from omni.isaac.core.objects.cylinder import VisualCylinder from omni.isaac.core.objects.sphere import VisualSphere from pxr import Usd, UsdGeom, Sdf, UsdLux import quaternion import numpy as np import math from pxr import Sdf, Usd, UsdGeom, Gf from omni.isaac.debug_draw import _debug_draw def ray_cast( position: np.array, orientation: np.array, offset: np.array, max_dist: float = 100.0 , viz=False): """Projects a raycast forward along x axis with specified offset If a hit is found within the maximum distance, then the object's prim path and distance to it is returned. Otherwise, a None and 10000 is returned. Args: position (np.array): origin's position for ray cast orientation (np.array): origin's orientation for ray cast offset (np.array): offset for ray cast max_dist (float, optional): maximum distance to test for collisions in stage units. Defaults to 100.0. Returns: typing.Tuple[typing.Union[None, str], float]: path to geometry that was hit and hit distance, returns None, 10000 if no hit occurred """ # based on omni.isaac.core.utils.collisions.ray_cast if viz: draw = _debug_draw.acquire_debug_draw_interface() draw.clear_lines() input_tr = Gf.Matrix4f() input_tr.SetTranslate(Gf.Vec3f(*position.tolist())) input_tr.SetRotateOnly(Gf.Quatf(*orientation.tolist())) offset_transform = Gf.Matrix4f() offset_transform.SetTranslate(Gf.Vec3f(*offset.tolist())) raycast_tf = offset_transform * input_tr trans = raycast_tf.ExtractTranslation() direction = raycast_tf.ExtractRotation().TransformDir((1, 0, 0)) origin = (trans[0], trans[1], trans[2]) ray_dir = (direction[0], direction[1], direction[2]) if viz: draw.draw_lines([np.array(trans)], [np.array(trans) + np.array(direction) * max_dist], [np.array((1,0,0, 1))], [1]) hit = omni.physx.get_physx_scene_query_interface().raycast_closest(origin, ray_dir, max_dist) if hit["hit"]: usdGeom = UsdGeom.Mesh.Get(get_current_stage(), hit["rigidBody"]) distance = hit["distance"] return usdGeom.GetPath().pathString, distance return None, 10000.0 def viz_axis(parent_path, position, orientation, scale=(1,1,1)): prim_path = omni.usd.get_stage_next_free_path(get_current_stage(), parent_path, False) prim = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "axis.usda"), prim_path=prim_path) prim = XFormPrim(str(prim.GetPath()), position=position, orientation=orientation) prim.prim.SetInstanceable(True) prim.set_local_scale(scale) return prim def viz_axis_named_T(name: str, T: np.ndarray, scale=(1,1,1)): p, q = T2pq(T, as_float_array=True) viz_axis_named(name,p, q, scale) def viz_axis_named_Rp(name: str, R: np.ndarray, p: np.ndarray, scale=(1,1,1)): q = quaternion.from_rotation_matrix(R) viz_axis_named(name, p, quaternion.as_float_array(q), scale) def viz_axis_named_Ts(name: str, Ts: np.ndarray, scale=(1,1,1)): path = f"/Viz/{name}" proto_path = "/Viz/axis_proto" if not is_prim_path_valid(proto_path): proto = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "axis.usda"), prim_path=proto_path) #UsdGeom.Imageable(proto).MakeInvisible() p, q = T2pq(Ts) QF = quaternion.as_float_array(q) if is_prim_path_valid(path): axes_prim = UsdGeom.PointInstancer(get_prim_at_path(path)) axes_prim.GetPositionsAttr().Set(p) axes_prim.GetOrientationsAttr().Set(QF[:, (1,2,3,0)]) axes_prim.GetScalesAttr().Set([scale] * len(p)) else: axes_prim = UsdGeom.PointInstancer.Define(get_current_stage(), path) axes_prim.CreatePositionsAttr(p) axes_prim.CreateOrientationsAttr(QF[:, (1,2,3,0)]) axes_prim.CreateProtoIndicesAttr([0] * len(p)) axes_prim.CreatePrototypesRel().SetTargets([proto_path]) axes_prim.CreateScalesAttr([scale] * len(p)) def viz_axis_named(name: str, position: np.ndarray, orientation: np.ndarray, scale=(1,1,1)): path = f"/Viz/{name}" if is_prim_path_valid(path): axis_prim = XFormPrim(path) else: axis_prim = add_reference_to_stage(usd_path=os.path.join(srl.teleop.assistance.DATA_DIR, "axis.usda"), prim_path=path) axis_prim = XFormPrim(str(axis_prim.GetPath())) axis_prim.prim.SetInstanceable(True) axis_prim.set_world_pose(position, orientation) axis_prim.set_local_scale(scale) return axis_prim def viz_point_named(name: str, point, scale=(1,1,1)): path = f"/Viz/{name}" prim = VisualSphere(path, name, radius=scale[0] * .05 / 8) prim.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) prim.set_world_pose(position=point) def viz_points_named(name: str, points: np.ndarray, scale=(1,1,1), max_instances=None): path = f"/Viz/{name}" proto_path = "/Viz/sphere_proto" p = points assert len(points.shape) == 2 and points.shape[-1] == 3 if not is_prim_path_valid(proto_path): proto = VisualSphere(proto_path, "sphere_Proto", radius=.05 / 8) proto.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) if max_instances is None: max_instances = len(points) else: p = np.resize(points, (max_instances, 3)) visible = np.arange(0, max_instances) invisible = visible[len(points):] if is_prim_path_valid(path): axes_prim = UsdGeom.PointInstancer(get_prim_at_path(path)) axes_prim.GetPositionsAttr().Set(p) #axes_prim.GetScalesAttr().Set([scale] * max_instances) axes_prim.GetInvisibleIdsAttr().Set(invisible) else: axes_prim = UsdGeom.PointInstancer.Define(get_current_stage(), path) axes_prim.CreatePositionsAttr(p) axes_prim.CreateProtoIndicesAttr([0] * len(p)) axes_prim.CreatePrototypesRel().SetTargets([proto_path]) axes_prim.CreateScalesAttr([scale] * max_instances) axes_prim.CreateInvisibleIdsAttr(invisible) def viz_dirs_named_Ts(name, Ts, scale=(1,1,1), max_instances=None): path = f"/Viz/{name}" proto_path = "/Viz/cone_proto" if not is_prim_path_valid(proto_path): proto = VisualCone(proto_path, "cone_proto", height=0.05, radius=.05 / 8) proto.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) p, q = T2pq(Ts) QF = quaternion.as_float_array(q) if max_instances is None: max_instances = len(Ts) else: p = np.resize(p, (max_instances, 3)) QF = np.resize(QF, (max_instances, 4)) visible = np.arange(0, max_instances) invisible = visible[len(Ts):] if is_prim_path_valid(path): axes_prim = UsdGeom.PointInstancer(get_prim_at_path(path)) axes_prim.GetPositionsAttr().Set(p) axes_prim.GetOrientationsAttr().Set(QF[:, (1,2,3,0)]) #axes_prim.GetScalesAttr().Set([scale] * max_instances) axes_prim.GetInvisibleIdsAttr().Set(invisible) else: axes_prim = UsdGeom.PointInstancer.Define(get_current_stage(), path) axes_prim.CreatePositionsAttr(p) axes_prim.CreateOrientationsAttr(QF[:, (1,2,3,0)]) axes_prim.CreateProtoIndicesAttr([0] * len(p)) axes_prim.CreatePrototypesRel().SetTargets([proto_path]) axes_prim.CreateScalesAttr([scale] * max_instances) axes_prim.CreateInvisibleIdsAttr(invisible) def viz_delta(name, from_prim, to_prim, radius=0.001): path = f"/Viz/delta/{name}" if not is_prim_path_valid(path): prim = VisualCylinder(path, f"delta{name}", height=0, radius=radius) prim.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) else: prim = VisualCylinder(path, f"delta{name}", height=0, radius=radius) from_pq = from_prim.get_world_pose() from_p, from_q = from_pq[0], quaternion.from_float_array(from_pq[1]) from_T = pq2T(*from_pq) to_T = pq2T(*to_prim.get_world_pose()) direction = to_T[:3,3] - from_T[:3,3] prim.set_height(np.linalg.norm(direction)) ori = quaternion.from_rotation_matrix(make_rotation_matrix(normalized(direction), (1,0,0))) prim.set_world_pose(from_p + (direction / 2), quaternion.as_float_array(ori)) def viz_delta_rooted_at(name, root_path, to_prim, radius=0.0005): path = f"{root_path}/{name}" prim = XFormPrim(path) marker_prim = VisualCylinder(path + "/marker", f"delta{name}", height=0, radius=radius) marker_prim.geom.GetAxisAttr().Set("Z") from_prim = XFormPrim(root_path) from_pq = from_prim.get_world_pose() from_T = pq2T(*from_pq) to_T = pq2T(*to_prim.get_world_pose()) diff = invert_T(from_T) @ to_T direction = diff[:3,3] ori = quaternion.from_rotation_matrix(make_rotation_matrix((direction), (1,0,0))) prim.set_local_pose((0,0,0), quaternion.as_float_array(ori)) dist = np.linalg.norm(direction) marker_prim.set_height(dist) marker_prim.set_local_pose((0,0, dist / 2), (1,0,0,0)) def viz_laser_rooted_at(root_path, T): beam_path = f"{root_path}/beam" hit_path = f"{root_path}/hit" if not is_prim_path_valid(root_path): root = XFormPrim(root_path) p, q = T2pq(T) # Rotate to point Y in direction of X. No axis attr on CylinderLight q = q * quaternion.from_euler_angles(np.array((0,-math.pi / 2,0))) root.set_local_pose(p, quaternion.as_float_array(q)) beam = UsdLux.CylinderLight.Define(get_current_stage(), beam_path) beam.AddTranslateOp() beam.CreateColorAttr((1.,.1,.1)) beam.CreateIntensityAttr(50000.) beam.CreateRadiusAttr(0.00075) beam.CreateLengthAttr(0.0) raw_beam = get_prim_at_path(beam_path) raw_beam.CreateAttribute("visibleInPrimaryRay", Sdf.ValueTypeNames.Bool, True).Set(True) hit = UsdLux.SphereLight.Define(get_current_stage(), hit_path) hit.CreateColorAttr((1.,.8,.8)) hit.CreateIntensityAttr(300.) hit.CreateRadiusAttr(0.0025) hit.CreateExposureAttr(2.0) hit.CreateDiffuseAttr(0.1) hit.CreateSpecularAttr(0.9) hit.AddTranslateOp() raw_hit = get_prim_at_path(hit_path) raw_hit.CreateAttribute("visibleInPrimaryRay", Sdf.ValueTypeNames.Bool, True).Set(True) else: root = XFormPrim(root_path) beam = UsdLux.CylinderLight(get_prim_at_path(beam_path)) hit = UsdLux.SphereLight(get_prim_at_path(hit_path)) p,q = root.get_world_pose() _, dist = ray_cast(p, q, np.zeros(3), 100) beam.GetLengthAttr().Set(dist) beam.GetOrderedXformOps()[0].Set((dist / 2.0, 0, 0)) hit.GetOrderedXformOps()[0].Set((dist, 0, 0))
11,334
Python
41.453183
140
0.667461
NVlabs/fast-explicit-teleop/srl/teleop/assistance/camera_franka.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Optional, List import numpy as np from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import get_stage_units, get_current_stage, add_reference_to_stage from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid, delete_prim, find_matching_prim_paths from omni.isaac.core.prims.rigid_prim_view import RigidContactView, RigidPrimView from omni.isaac.core.objects import VisualCuboid from omni.isaac.franka import Franka from pxr import Sdf, UsdGeom, Gf import omni import omni.kit import quaternion from srl.teleop.assistance.profiling import profile from srl.teleop.assistance.transforms import T2pq, pq2T, rotate_vec_by_quat from omni.isaac.sensor import Camera, ContactSensor FINGER_CONTACT_OFFSET = np.array((0,0,.045)) class GripperContentsDebouncer: def __init__(self) -> None: self.last_contents_path = None self.last_contents_timestamp = None self.to_report = None self.to_report_stamp = None self.last_update = time.time() def update(self, content_path): now = time.time() self.last_update = now if self.last_contents_path == content_path: self.last_contents_timestamp = now elif now - self.last_contents_timestamp > 0.4: #print("change to " + str(content_path)) self.last_contents_path = content_path self.last_contents_timestamp = now else: pass #print("ignoring change to " + str(content_path)) return self.last_contents_path class CameraFranka(Franka): HOME_CONFIG = np.array([-0.01561307, -1.2717055 , -0.02706644, -2.859138, -0.01377442, 2.0233166, 0.7314064]) """[summary] Args: prim_path (str): [description] name (str, optional): [description]. Defaults to "franka_robot". usd_path (Optional[str], optional): [description]. Defaults to None. position (Optional[np.ndarray], optional): [description]. Defaults to None. orientation (Optional[np.ndarray], optional): [description]. Defaults to None. end_effector_prim_name (Optional[str], optional): [description]. Defaults to None. gripper_dof_names (Optional[List[str]], optional): [description]. Defaults to None. gripper_open_position (Optional[np.ndarray], optional): [description]. Defaults to None. gripper_closed_position (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, prim_path: str, name: str = "franka_robot", usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, end_effector_prim_name: Optional[str] = None, gripper_dof_names: Optional[List[str]] = None, gripper_open_position: Optional[np.ndarray] = None, gripper_closed_position: Optional[np.ndarray] = None, deltas: Optional[np.ndarray] = None, collision_sensors=True, contact_paths=None, camera_sensor=True ) -> None: if usd_path is None: assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Franka/franka.usd" super().__init__(prim_path, name, usd_path, position, orientation,end_effector_prim_name, gripper_dof_names, gripper_open_position, gripper_closed_position) stage = get_current_stage() prim = stage.GetPrimAtPath(prim_path + "/panda_link0/geometry") prim.GetReferences().ClearReferences() prim.GetReferences().AddReference(assets_root_path + "/Isaac/Robots/Franka/DetailedProps/panda_link0.usd") realsense_path = self.prim_path + "/panda_hand/geometry/realsense" alt_fingers_realsense_path = f"{self.prim_path}/panda_hand/geometry/realsense/realsense_camera" self._default_camera_transform = ((0.00,0.049,0.053), (.5,-.5,-.5,-.5)) if camera_sensor: if not is_prim_path_valid(realsense_path): realsense = UsdGeom.Xformable(add_reference_to_stage(assets_root_path + "/Isaac/Robots/Franka/DetailedProps/realsense.usd",realsense_path)) realsense.AddRotateXYZOp().Set((180.,180.,90.)) self._camera = Camera(alt_fingers_realsense_path) self._camera.set_horizontal_aperture(200) self._camera.set_focal_length(48.0) self._camera.set_clipping_range(0.001, 10000000.0) self._camera.set_local_pose(*self._default_camera_transform) self._camera.set_resolution((1280,720)) #self._camera.pause() else: self._camera = Camera(alt_fingers_realsense_path) else: self._camera = None self._physx_query_interface = omni.physx.get_physx_scene_query_interface() self._gripper_contents_debouncer = GripperContentsDebouncer() if self._end_effector_prim_name is None: self._end_effector_prim_path = prim_path + "/panda_rightfinger" if gripper_dof_names is None: gripper_dof_names = ["panda_finger_joint1", "panda_finger_joint2"] if gripper_open_position is None: gripper_open_position = np.array([0.05, 0.05]) / get_stage_units() if gripper_closed_position is None: gripper_closed_position = np.array([0.0, 0.0]) if gripper_dof_names is not None: if deltas is None: deltas = np.array([0.05, 0.05]) / get_stage_units() self._gripper = ParallelGripper( end_effector_prim_path=self._end_effector_prim_path, joint_prim_names=gripper_dof_names, joint_opened_positions=gripper_open_position, joint_closed_positions=gripper_closed_position, action_deltas=deltas, ) if not is_prim_path_valid(self.prim_path + "/panda_hand/leftfinger_collider"): left_cube = UsdGeom.Cube.Define(get_current_stage(), self.prim_path + "/panda_hand/leftfinger_collider") left_cube.AddTranslateOp().Set((0.0, 0.0525, 0.09)) left_cube.AddScaleOp().Set((0.01, 0.013, 0.025)) UsdGeom.Imageable(left_cube).MakeInvisible() right_cube = UsdGeom.Cube.Define(get_current_stage(), self.prim_path + "/panda_hand/rightfinger_collider") right_cube.AddTranslateOp().Set((0.0, -0.0525, 0.09)) right_cube.AddScaleOp().Set((0.01, 0.013, 0.025)) UsdGeom.Imageable(right_cube).MakeInvisible() gripper_cube = UsdGeom.Cube.Define(get_current_stage(), self.prim_path + "/panda_hand/hand_collider") gripper_cube.AddTranslateOp().Set((0.025, 0.0, 0.016)) gripper_cube.AddScaleOp().Set((0.045, 0.1, 0.05)) UsdGeom.Imageable(gripper_cube).MakeInvisible() else: left_cube = get_prim_at_path(self.prim_path + "/panda_hand/leftfinger_collider") right_cube = get_prim_at_path(self.prim_path + "/panda_hand/rightfinger_collider") gripper_cube = get_prim_at_path(self.prim_path + "/panda_hand/hand_collider") self._gripper_collision_meshes = [gripper_cube, left_cube, right_cube] self._gripper_collision_views = [XFormPrim(f"{part.GetPath()}") for part in self._gripper_collision_meshes] self._palm_prim = XFormPrim(self.prim_path + "/panda_hand") self.contact_sensors = [] self.contact_views = [] self.contact_path_filter = None if collision_sensors: if contact_paths: for part in ["panda_leftfinger", "panda_rightfinger"]: self.contact_views.append(RigidContactView(f"{prim_path}/{part}", contact_paths, name=f"{part}_rigid_contact_view")) else: if is_prim_path_valid(prim_path + "/panda_leftfinger/contact_sensor"): delete_prim(prim_path + "/panda_leftfinger/contact_sensor") delete_prim(prim_path + "/panda_rightfinger/contact_sensor") left = ContactSensor(prim_path + "/panda_leftfinger/contact_sensor", "left_finger_contact_sensor", translation=FINGER_CONTACT_OFFSET, radius=.03) right = ContactSensor(prim_path + "/panda_rightfinger/contact_sensor", "right_finger_contact_sensor", translation=FINGER_CONTACT_OFFSET, radius=.03) left.add_raw_contact_data_to_frame() right.add_raw_contact_data_to_frame() self.contact_sensors = [left, right] self.reset_camera_position() @property def camera(self) -> Camera: """[summary] Returns: RigidPrim: [description] """ return self._camera def initialize(self, physics_sim_view=None) -> None: """[summary] """ for sensor in self.contact_sensors: sensor.initialize(physics_sim_view) for view in self.contact_views: view.initialize(physics_sim_view) super().initialize(physics_sim_view) if self.camera: # Prevent scrolling or clicking from moving the wrist camera omni.kit.commands.execute("LockSpecs", spec_paths=[self.camera.prim_path]) return def post_reset(self) -> None: """[summary] """ super().post_reset() self.reset_camera_position() return def reset_camera_position(self) -> None: if self.camera: self.camera.set_local_pose(*self._default_camera_transform) def set_contact_path_filter(self, path_filter): self.contact_path_filter = path_filter def check_gripper_contents(self, threshold=None) -> Optional[str]: """Get the path of a prim that is colliding with the gripper's palm and/or either finger Args: threshold (_type_, optional): _description_. Defaults to None. Returns: str: _description_ """ if len(self.contact_views) > 0: forces = np.zeros(2) finger_contact_ids = np.full(2, -1) for i, view in enumerate(self.contact_views): reading = np.squeeze(view.get_contact_force_matrix()) per_obj_norm = np.linalg.norm(reading, axis=-1) highest_j = np.argmax(per_obj_norm) forces[i] = per_obj_norm[highest_j] finger_contact_ids[i] = highest_j #print(finger_contact_paths, finger_contact_forces, finger_contact_times, overlapping) if sum(forces != 0) == 2 and finger_contact_ids[0] == finger_contact_ids[1]: # Optionally ensure that we're applying at least a certain amount of force if threshold is not None and sum(forces) < threshold: return None return self.contact_path_filter[finger_contact_ids[0]] return None finger_contact_forces = [] finger_contact_paths = [] finger_contact_times = [] def check_non_robot_overlap(): paths = [] true_path = None x_offset = (self.gripper.get_joint_positions()[0] - self.gripper.get_joint_positions()[1]) / 2 aperture = max(self.gripper.get_joint_positions()[0] + self.gripper.get_joint_positions()[1] - 0.01, 0) if aperture == 0.0: return None def report_hit(hit): nonlocal true_path nonlocal paths path = hit.rigid_body if self.prim_path in path: return True paths.append(path) if self.contact_path_filter is not None and self.contact_path_filter(path): true_path = path return False return True # return True to continue the query gripper_mesh = self._palm_prim #left_mesh, right_mesh = self._gripper_collision_meshes[1], self._gripper_collision_meshes[2] position, orientation = gripper_mesh.get_world_pose()[0], gripper_mesh.get_world_pose()[1] position += rotate_vec_by_quat(np.array((0.,x_offset, .0895)), quaternion.from_float_array(orientation)) scale = (0.02, aperture ,0.045) #cube = VisualCuboid("/viz/overlap", position=position, orientation=orientation,scale=scale) numHits = self._physx_query_interface.overlap_box(np.array(scale) / 2, position, orientation, report_hit, False) return true_path overlapping = check_non_robot_overlap() for sensor in self.contact_sensors: reading = sensor.get_current_frame() if len(reading["contacts"]) == 0: continue contact = reading["contacts"][0] body0 = contact["body0"] body1 = contact["body1"] # Make sure we're getting the body that _isn't_ the robot if self.prim_path not in body0.lower(): to_report = body0 elif self.prim_path not in body1.lower(): to_report = body1 else: # Might happen if self collision is enabled? assert False finger_contact_forces.append(reading["force"]) finger_contact_paths.append(to_report) finger_contact_times.append(reading["time"]) reading["contacts"].clear() finger_contact_forces = tuple(finger_contact_forces) #print(finger_contact_paths, finger_contact_forces, finger_contact_times, overlapping) if len(finger_contact_forces) == 2: # Optionally ensure that we're applying at least a certain amount of force if threshold is not None and sum(finger_contact_forces) < threshold: return None if overlapping != finger_contact_paths[0]: pass #print("gripper contents mismatch") return overlapping elif len(finger_contact_forces) == 1: # Object isn't grasped unless both fingers are in contact, but sometimes the sensor is not correct # so we just trust the overlap query return overlapping else: return None @property def gripper_contents(self): if time.time() - self._gripper_contents_debouncer.last_update > 0.01: return self._gripper_contents_debouncer.update(self.check_gripper_contents(threshold=0.0001)) else: return self._gripper_contents_debouncer.last_contents_path def get_gripper_collision_meshes(self): return self._gripper_collision_meshes def get_gripper_collision_Ts(self): self._gripper_collision_transforms = [pq2T(*view.get_world_pose()) for view in self._gripper_collision_views] return self._gripper_collision_transforms
15,255
Python
45.941538
164
0.615011
NVlabs/fast-explicit-teleop/srl/teleop/assistance/transforms.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import numpy as np import math from pxr import Gf import quaternion from quaternion import quaternion as quat from numpy.linalg import norm import copy import traceback from omni.isaac.core.utils.rotations import quat_to_rot_matrix, matrix_to_euler_angles, euler_angles_to_quat from typing import Tuple, List, Optional from omni.isaac.core.prims.rigid_prim import RigidPrim from scipy.spatial.transform import Rotation def orthogonalize(R: np.ndarray, prioritize=(0,1,2)) -> np.ndarray: reverse_mapping = tuple(prioritize.index(i) for i in range(3)) # QR decomp will preserve the first axis. The priority # arg lets the caller decide what they want to preserve. ordered = R[:, prioritize] ortho_R, r = np.linalg.qr(ordered) # Sign of the upper-triangular component diagonals indicate # whether the sign of the original axes were flipped. The # result is still orthogonal, but we # choose to flip them all back so that we have a unique # solution that respects the input signs. if r[0,0] < 0: ortho_R[:, 0] *= -1 if r[1,1] < 0: ortho_R[:, 1] *= -1 if r[2,2] < 0: ortho_R[:, 2] *= -1 reordered = ortho_R[:, reverse_mapping] return reordered def matrix_to_quat(rot_mat): return euler_angles_to_quat(matrix_to_euler_angles(rot_mat)) def unpack_T(T) -> Tuple[np.ndarray, np.ndarray]: """ Returns the rotation matrix and translation separately Returns (R, p) """ return T[..., :3, :3], T[..., :3, 3] def unpack_R(R) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Returns the individual axes of the rotation matrix. """ return R[...,:3, 0], R[...,:3, 1], R[...,:3, 2] def pack_R(ax, ay, az, as_homogeneous=False): """ Returns a rotation matrix with the supplied axis columns. R = [ax, ay, az] """ ax_v = np.atleast_2d(ax) ay_v = np.atleast_2d(ay) az_v = np.atleast_2d(az) assert ax_v.shape[0] == ay_v.shape[0] == az_v.shape[0] if as_homogeneous: R = np.empty((ax_v.shape[0], 4, 4)) R[:] = np.eye(4) else: R = np.empty((ax_v.shape[0], 3, 3)) R[:] = np.eye(3) R[...,:3, 0] = ax R[...,:3, 1] = ay R[...,:3, 2] = az return np.squeeze(R) def pack_Rp(R: np.ndarray, p: np.ndarray) -> np.ndarray: """ Packs the provided rotation matrix (R) and position (p) into a homogeneous transform matrix. """ # np.atleast_3d puts the extra dimension at the back but we need it at the front Rv = np.atleast_2d(R) Rb = Rv.view() if Rv.ndim == 2: Rb = Rv[None, :, :] # The user can pass in a single R for many P, or a single P for many R. We'll size the output for # the expected result of broadcasting. pb = np.atleast_2d(p) num_results = max(Rb.shape[0], pb.shape[0]) T = np.tile(np.eye(4)[None,...], (num_results, 1,1)) T[..., :3, :3] = Rb T[..., :3, 3] = pb if Rv.ndim == 2: return T.squeeze() else: return T def invert_T(T: np.ndarray): """ Inverts the provided transform matrix using the explicit formula leveraging the orthogonality of R and the sparsity of the transform. Specifically, denote T = h(R, t) where h(.,.) is a function mapping the rotation R and translation t to a homogeneous matrix defined by those parameters. Then inv(T) = inv(h(R,t)) = h(R', -R't). """ R, t = unpack_T(T) R_trans = np.swapaxes(R, -1, -2) return pack_Rp(R_trans, np.squeeze(-R_trans @ t[..., None])) def T2pq(T: np.ndarray, as_float_array=False) -> Tuple[np.ndarray, quat]: """ Converts a 4d homogeneous matrix to a position-quaternion representation. """ R, p = unpack_T(T) q = quaternion.from_rotation_matrix(R) if as_float_array: q = quaternion.as_float_array(q) return p, q def T2pq_array(T: np.ndarray) -> np.ndarray: """ Converts 4d homogeneous matrices to position-quaternion representation and stores them in a (N,7) array. Rotation components of the transforms are assumed to already be orthonormal """ result = np.empty((len(T), 7), dtype=float) R, result[:, :3] = unpack_T(T) result[:, 3:] = quaternion.as_float_array(quaternion.from_rotation_matrix(R, nonorthogonal=False)) return result def pq2T(p: np.ndarray, q: np.ndarray): """ Converts a pose given as (<position>,<quaternion>) to a 4x4 homogeneous transform matrix. """ q_view = q if q_view.dtype != "quaternion": q_view = quaternion.from_float_array(q) return pack_Rp(quaternion.as_rotation_matrix(q_view), p) def euler2R(angles: np.array): return pq2T((0,0,0), euler_angles_to_quat(angles)) def np_to_gfquat(q: np.array) -> Gf.Quatd: qf = q.astype(float) return Gf.Quatf(qf[0], Gf.Vec3f(qf[1], qf[2], qf[3])) def rotate_vec_by_quat(v: np.ndarray, q: quat) -> np.ndarray: q_view = quaternion.as_float_array(q) u = q_view[1:] s = q_view[0] return 2.0 * np.dot(u, v) * u + (s*s - np.dot(u, u)) * v + 2.0 * s * np.cross(u, v) def quat_vector_part(q): """Create an array of vector parts from an array of quaternions. Parameters ---------- q : quaternion array_like Array of quaternions. Returns ------- v : array Float array of shape `q.shape + (3,)` """ q = np.asarray(q, dtype=np.quaternion) return quaternion.as_float_array(q)[..., 1:] def transform_dist(T1: np.ndarray, T2: np.ndarray, R_weight: float): # eq 7 from 10.1007/978-3-319-33714-2_10 # Here the R distance is based on the magnitude of the geodesic, calculated directly via the trace # If the translational distance is 0, the maximum distance is 2 * R_weight * sqrt(2/3). Set R_weight based on the size of the rigid bodies # you are measuring between. So, around .15 is reasonable for a gripper T1_v = T1.view() T2_v = T2.view() if len(T1.shape) == 2: T1_v = T1[None,:] if len(T2.shape) == 2: T2_v = T2[None, :] R1_inv = np.swapaxes(T1_v[...,:3,:3], -1, -2) R2 = T2_v[...,:3,:3] dists = np.linalg.norm(T2_v[..., :3, 3] - T1_v[...,:3,3], axis=-1) ** 2 + (2 * R_weight ** 2 * (1 - (np.trace(R1_inv @ R2, axis1=-1, axis2=-2) / 3))) np.sqrt(dists, dists, where=dists>0) return np.squeeze(dists) def quat_angle(q1: np.ndarray, q2: np.ndarray): # Angle of rotation to get from one orientation to another return np.arccos(2. * np.inner(q1, q2) ** 2 - 1) def matrix_to_quat(mat: np.ndarray) -> np.ndarray: """ Converts the provided rotation matrix into a quaternion in (w, x, y, z) order. """ return quaternion.as_float_array(quaternion.from_rotation_matrix(mat)) def matrix_to_euler_angles(mat: np.ndarray) -> np.ndarray: """Convert rotation matrix to Euler XYZ angles. Args: mat (np.ndarray): A 3x3 rotation matrix. Returns: np.ndarray: Euler XYZ angles (in radians). """ cy = np.sqrt(mat[0, 0] * mat[0, 0] + mat[1, 0] * mat[1, 0]) singular = cy < 0.00001 if not singular: roll = math.atan2(mat[2, 1], mat[2, 2]) pitch = math.atan2(-mat[2, 0], cy) yaw = math.atan2(mat[1, 0], mat[0, 0]) else: roll = math.atan2(-mat[1, 2], mat[1, 1]) pitch = math.atan2(-mat[2, 0], cy) yaw = 0 return np.array([roll, pitch, yaw]) def slerp_quat(quaternion_0: quat, quaternion_1: quat, alpha: float) -> quat: return quaternion.slerp(quaternion_0, quaternion_1, 0, 1, alpha) def normalize(v, axis=-1): l2 = np.atleast_1d(norm(v, axis=axis)) l2[l2==0] = 1 return np.squeeze(v / np.expand_dims(l2, axis)) def normalized(v, axis=-1): if v is None: return None return normalize(copy.deepcopy(v), axis=axis) def proj_orth(v1, v2, normalize_res=False, eps=1e-5): """ Projects v1 orthogonal to v2. If v2 is zero (within eps), v1 is returned unchanged. If normalize_res is true, normalizes the result before returning. """ v1v = np.atleast_2d(v1) v2_norm = np.atleast_1d(np.linalg.norm(v2, axis=-1)) unproj_mask = v2_norm < eps v2n = v2 / np.expand_dims(v2_norm,axis=-1) res = v1v - np.expand_dims(np.einsum('ij,ij->i',np.atleast_2d(v1), np.atleast_2d(v2n)), axis=-1) * v2n res[unproj_mask] = v1v[unproj_mask] res = np.squeeze(res) if normalize_res: return normalized(res) else: return res def make_rotation_matrix(az_dominant: np.array, ax_suggestion: np.array): """ Constructs a rotation matrix with the z-axis given by az_dominant (normalized), and the x-axis given by a orthogonally projected version of ax_suggestion. The y-axis is formed via the right hand rule. """ az_v = np.atleast_1d(az_dominant) ax_v = np.atleast_1d(ax_suggestion) az_norm = normalized(az_v) ax_proj = proj_orth(ax_v, az_norm, normalize_res=True) ay = np.cross(az_norm, ax_proj) return pack_R(ax_proj, ay, az_norm) def axes_to_mat(axis_x, axis_z, dominant_axis="z"): if dominant_axis == "z": axis_x = proj_orth(axis_x, axis_z) elif dominant_axis == "x": axis_z = proj_orth(axis_z, axis_x) elif dominant_axis is None: pass else: raise RuntimeError("Unrecognized dominant_axis: %s" % dominant_axis) axis_x = axis_x / norm(axis_x) axis_z = axis_z / norm(axis_z) axis_y = np.cross(axis_z, axis_x) R = np.zeros((3, 3)) R[0:3, 0] = axis_x R[0:3, 1] = axis_y R[0:3, 2] = axis_z return R # Projects T to align with the provided direction vector v. def proj_to_align(R, v): max_entry = max(enumerate([np.abs(np.dot(R[0:3, i], v)) for i in range(3)]), key=lambda entry: entry[1]) return axes_to_mat(R[0:3, (max_entry[0] + 1) % 3], v) def shortest_arc(normal_1: np.ndarray, normal_2: np.ndarray) -> quat: # Are the normals already parallel? normal_dot = normal_1.dot(normal_2) if normal_dot > .99999: # Same direction -> identity quat return quaternion.quaternion(1,0,0,0) elif normal_dot < -.999999: # Exactly opposing -> 180 about arbitrary axis return quaternion.quaternion(0,0,1,0) else: # Shortest arc between the vectors a = np.cross(normal_1, normal_2) # w is simple because we have unit normals: sqrt(norm(v1)**2 * norm(v2)**2) -> 1 return quaternion.quaternion(1 + normal_dot, *a).normalized() def transform_point(p: np.ndarray, T: np.ndarray) -> np.ndarray: return (T @ np.array((*p, 1)))[:3] def R_to_rot_vector(R: np.ndarray) -> np.ndarray: theta = R_to_angle(R) with np.errstate(invalid='ignore', divide='ignore'): # undefined if theta is 0 but we handle that in the following line aa = theta /(2 * np.sin(theta))*np.array([R[...,2,1]-R[...,1,2], R[...,0,2]-R[...,2,0], R[...,1,0]-R[...,0,1]]) return np.where(~np.isnan(theta) & (theta != 0.0), aa, 0).T def R_to_angle(R: np.ndarray) -> np.ndarray: return np.arccos(np.clip((np.trace(R, axis1=-1, axis2=-2) - 1) / 2.,-1, 1)) def random_vector_in_spherical_cap(theta, dir, n, rng=None) -> np.ndarray: result = np.empty((n,3)) if rng is None: rng = np.random.default_rng() result[:, 2] = rng.uniform(size=n, low=np.cos(theta), high=1.) phi = np.random.rand(n) * 2 * math.pi result[:, 0] = np.sqrt(1-result[:,2]**2)*np.cos(phi) result[:, 1] = np.sqrt(1-result[:,2]**2)*np.sin(phi) if np.allclose(dir, (0,0,1)): return result rot = shortest_arc(np.array((0,0,1)), dir) return quaternion.rotate_vectors(rot, result) def cone_vectors(theta, phi_steps): """ Generate unit vectors along the surface of the cone with aperture theta pointing toward -Z, taking phi_steps stops along the circle """ theta_v = np.atleast_1d(theta) result = np.empty((len(theta_v), phi_steps, 3), dtype=float) phi = np.linspace(0, math.pi * 2, phi_steps, endpoint=False) # These are spherical coordinates result[:,:,0] = np.sin(theta_v)[:,None] * np.cos(phi) result[:,:,1] = np.sin(theta_v)[:,None] * np.sin(phi) result[:,:,2] = np.cos(theta_v)[:,None] return result.squeeze() class FrameVelocityEstimator: def __init__(self, dt): self.T_prev = None self.T_diff = None self.last_dt = None self.dt = dt @property def is_available(self): return self.T_diff is not None def update(self, T, dt=None): if self.T_prev is not None: self.T_diff = (invert_T(self.T_prev) @ T) self.T_prev = T self.last_dt = dt def get_twist(self, small_angle=False) -> Optional[np.ndarray]: if self.T_diff is None: return None dt = self.last_dt if self.last_dt is not None else self.dt diff = np.reshape(self.T_diff, (-1, 4,4)) out = np.zeros((diff.shape[0], 6)) out[:, :3] = self.T_diff[...,:3,3] if small_angle: # If the angle is small, the difference matrix is very close to I + an infinitesimal rotation. # This is good up to about theta=0.1 out[:, 3] = self.T_diff[..., 2,1] out[:, 4] = self.T_diff[..., 0,2] out[:, 5] = self.T_diff[..., 1,0] else: out[:, 3:] = R_to_rot_vector(self.T_diff[...,:3, :3]) return np.squeeze(out / dt) def get_obj_poses(objects: List[RigidPrim]) -> np.ndarray: N = len(objects) positions = np.empty((N, 3)) quats = np.empty((N, 4)) for i, obj in enumerate(objects): p, q = obj.get_world_pose() positions[i, :] = p quats[i, :] = q return pq2T(positions, quaternion.from_float_array(quats)) def integrate_twist(v: np.ndarray, w: np.ndarray, time=1): """ Find the matrix exponential of the 6 element twist, parameterized by by time. Integrates the application of this twist over time. """ v = np.atleast_1d(v) theta = np.linalg.norm(w) if theta == 0: return np.array([[1, 0, 0, v[0] * time], [0, 1, 0, v[1] * time], [0, 0, 1, v[2] * time], [0, 0, 0, 1]]) else: w_n = normalized(w) theta *= time # theta = time / theta skew_w = np.array([[0, -w_n[2], w_n[1]], [w_n[2], 0, -w_n[0]], [-w_n[1], w_n[0], 0]]) skew_w_2 = skew_w @ skew_w # Rodrigues' formula, forward exponential map (modern robotics 3.51) R = np.eye(3) + (np.sin(theta) * skew_w) + ((1-np.cos(theta)) * skew_w_2) # modern robotics 3.88, but we the amount which we move down the screw axis # by the magnitude of the rotation p = ((np.eye(3) * theta) + (1 - np.cos(theta)) * skew_w + (theta - np.sin(theta)) * (skew_w_2)) @ (v / np.linalg.norm(w)) return np.array([[R[0,0], R[0,1], R[0,2], p[0]], [R[1,0], R[1,1], R[1,2], p[1]], [R[2,0], R[2,1], R[2,2], p[2]], [0, 0, 0, 1]]) def integrate_twist_stepwise(v: np.ndarray, w: np.ndarray, until_time: float, n_steps: int) -> np.ndarray: """ Integrate the twist (v,w), providing 1 + until_time * n_steps points, beginning with (0,0,0) """ step = 1 / n_steps result = np.empty((1 + int(until_time * n_steps), 3)) result[0] = (0,0,0) R = quaternion.as_rotation_matrix(quaternion.from_rotation_vector(w * step)) for i in range(1, len(result)): result[i] = (R @ result[i-1]) + v * step return result def homogeneous_to_twist(Ts): diff = np.reshape(Ts, (-1, 4,4)) out = np.zeros((diff.shape[0], 6)) out[:, :3] = Ts[...,:3,3] out[:, 3:] = R_to_rot_vector(Ts[...,:3, :3]) return np.squeeze(out) def lognormalize(x): # Calculate log of all components exponentiated a = np.logaddexp.reduce(x) if a == float('-inf'): # Return unchanged dist for all 0s return x.copy() # "Divide" all values by the max return x - a
16,151
Python
32.861635
153
0.590737
NVlabs/fast-explicit-teleop/srl/teleop/assistance/ghost_object.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from typing import Optional import numpy as np from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from pxr import Usd, UsdGeom, UsdPhysics, UsdShade, Sdf from omni.isaac.core.prims.xform_prim import XFormPrim import omni from typing import Sequence from pxr import Gf from omni.physxcommands import UnapplyAPISchemaCommand from srl.teleop.assistance.ghost_franka import load_ghost_material def make_ghost(from_object_at_path, ghost_path, ghost_name, material_path="/Looks/GhostVolumetric"): if is_prim_path_valid(ghost_path): return result = omni.kit.commands.execute( "CopyPrimCommand", path_from=from_object_at_path, path_to=ghost_path, duplicate_layers=False, combine_layers=False ) return GhostObject(ghost_path, ghost_name, material_path=material_path) class GhostObject(XFormPrim): def __init__(self, prim_path: str, name: str = "xform_prim", position: Optional[Sequence[float]] = None, translation: Optional[Sequence[float]] = None, orientation: Optional[Sequence[float]] = None, scale: Optional[Sequence[float]] = None, visible: Optional[bool] = False, material_path="/Looks/GhostVolumetric") -> None: super().__init__(prim_path, name, position, translation, orientation, scale, visible) self.material, self.material_inputs = load_ghost_material(material_path) self.material_inputs["inputs:transmission_color"].Set((1.5, 1.5, 1.5)) self.material_inputs["inputs:emission_color"].Set((1.25, 1.25, 1.25)) self.material_inputs["inputs:emissive_scale"].Set(300.) self._current_color = None self._current_opacity = None self._imageable = UsdGeom.Imageable(self.prim) self.apply_visual_material(self.material) self.remove_physics() # Shadows give better depth cues, but have strange artifacts (z-fighting, and slow pop in) #self.prim.CreateAttribute("primvars:doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True) def disable_collisions(self): # Disable colliders for p in Usd.PrimRange(self.prim): if p.HasAPI(UsdPhysics.CollisionAPI): collision_api = UsdPhysics.CollisionAPI(p) collision_api.GetCollisionEnabledAttr().Set(False) if p.HasAPI(UsdPhysics.RigidBodyAPI): physx_api = UsdPhysics.RigidBodyAPI(p) physx_api.CreateRigidBodyEnabledAttr(False) physx_api.GetRigidBodyEnabledAttr().Set(False) def remove_physics(self): UnapplyAPISchemaCommand(UsdPhysics.CollisionAPI, self.prim).do() UnapplyAPISchemaCommand(UsdPhysics.RigidBodyAPI, self.prim).do() @property def visible(self): return self._imageable.GetVisibilityAttr().Get() != "invisible" def hide(self): self._imageable.MakeInvisible() def show(self): self._imageable.MakeVisible() def set_color(self, color, opacity=1.0): if color == self._current_color and opacity == self._current_opacity: # idempotent return transmission = 1.0 - opacity def clip(value): # Inputs seem to behave differently for 0 and close to 0 for some reason... return Gf.Vec3f(*np.clip(value, 0.0001, 1.0)) # The colors you don't absorb will shine through. # The color you emit shows in the absence of other colors if color == "red": self.material_inputs["inputs:absorption"].Set((transmission, 0, 0)) elif color == "yellow": self.material_inputs["inputs:absorption"].Set((transmission, transmission, 0)) elif color == "green": self.material_inputs["inputs:absorption"].Set((0, transmission, 0)) elif color == "white": self.material_inputs["inputs:absorption"].Set(clip((opacity, opacity, opacity))) else: return self._current_color = color self._current_opacity = opacity
4,158
Python
42.778947
325
0.664502
NVlabs/fast-explicit-teleop/srl/teleop/assistance/swing_twist.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import numpy as np from quaternion import quaternion as quat from typing import Tuple from .transforms import quat_vector_part def swing_twist_decomposition(q: quat, axis: np.ndarray) -> Tuple[quat, quat]: dir = quat_vector_part(q) dot_dir_axis = dir.dot(axis) projected = dot_dir_axis / np.linalg.norm(axis) * axis twist = quat(q.w ,projected[0], projected[1], projected[2]) if dot_dir_axis < 0.0: twist *= -1 twist /= twist.norm() swing = q * twist.conjugate() swing /= swing.norm() return swing, twist class SwingTwistLeash: def __init__(self, trans_limit, rot_limit) -> None: self.set_limits(trans_limit, rot_limit) def set_limits(self, trans: float, rot: float): # Radians self.rot_limit = rot self.trans_limit = trans self.max_swing_mag = (1. - np.cos(self.rot_limit)) / 2 self.max_swing_mag2 = np.sin(.5 * self.rot_limit) self.max_swing_w = np.sqrt(1.0 - self.max_swing_mag) def apply(self, anchor_p: np.ndarray, anchor_q: quat, new_p: np.ndarray, new_q: quat): # And now we'll apply limits to keep the target within a certain delta from the current gripper pose limited_p = new_p pos_diff = np.array(new_p - anchor_p) pos_diff_norm = np.linalg.norm(pos_diff) pos_dir = pos_diff / pos_diff_norm if pos_diff_norm > self.trans_limit: # Project the desired position target onto the surface of the sphere with the limit radius limited_p = anchor_p + (pos_dir * self.trans_limit) # Orientation limits limited_q = new_q # Just the relative rotation from current orientation to the proposed new target r_delta = new_q * anchor_q.conjugate() # Get the part of the rotation that twists about (1,0,0) and the part that swings that axis swing, twist = swing_twist_decomposition(r_delta, np.array((1,0,0))) swing_vec = quat_vector_part(swing) swing_magnitude = np.linalg.norm(swing_vec) # Cone constraint: limit swing if (swing_magnitude > self.max_swing_mag): limited_swing_vec = swing_vec / swing_magnitude * self.max_swing_mag w_sign = -1 if swing.w < 0 else 1 swing = quat(w_sign * self.max_swing_w, *limited_swing_vec) limited_q = swing * twist * anchor_q return limited_p, limited_q
2,559
Python
38.384615
109
0.63306
NVlabs/fast-explicit-teleop/srl/teleop/assistance/assistance_extension.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.assistance import Assistance from omni.isaac.ui.ui_utils import cb_builder, dropdown_builder, btn_builder, combo_floatfield_slider_builder, state_btn_builder from omni.kit.viewport.utility import get_active_viewport_window import omni from srl.teleop.assistance.experiment import PARTICIPANT_ID, SLOT_NAMES, configure_for_condition_index, get_ordering from srl.teleop.assistance.logging import is_folder from srl.teleop.assistance.spacemouse_demo import SpaceMouseManipulator from srl.teleop.assistance.ui import ASSISTANCE_MODES, CONTROL_FRAMES, add_overlay, str_builder, multi_btn_builder from srl.teleop.assistance.scene import ViewportScene from srl.spacemouse.spacemouse_extension import get_global_spacemouse, get_global_spacemouse_extension import os from omni.isaac.ui.ui_utils import setup_ui_headers, get_style import numpy as np import carb from omni.isaac.core.utils.viewports import set_camera_view import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription import weakref import omni.ext import asyncio from omni.isaac.core import World from omni.kit.quicklayout import QuickLayout from .logging import save_log from functools import partial import time class AssistanceExtension(omni.ext.IExt): def on_startup(self, ext_id: str): # profiling note from . import profiling self._ext_id = ext_id menu_items = [MenuItemDescription(name="Teleop Assistance", onclick_fn=lambda a=weakref.proxy(self): a._menu_callback())] self._menu_items = menu_items add_menu_items(self._menu_items, "SRL") self._settings = carb.settings.get_settings() self._viewport = get_active_viewport_window("Viewport") self.timeline = omni.timeline.get_timeline_interface() self.task_ui_elements = {} self._world_buttons = {} self._plots = {} self.build_ui(name="Teleop Assistance", title="Teleop Assistance", doc_link="", overview="Provides assistance during human operated pick and place", file_path=os.path.abspath(__file__), number_of_extra_frames=3, window_width=350,) frame = self.get_frame(index=0) self.build_assistance_ui(frame) self.logging_ui = {} frame = self.get_frame(index=1) self.build_data_logging_ui(frame) self.center_label, self.left_label = add_overlay(self._viewport, ext_id) self._viewport_scene = ViewportScene(self._viewport, ext_id) self._assistance_system = None self._plotting_event_subscription = None def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def _menu_callback(self): self._window.visible = not self._window.visible return def shutdown_cleanup(self): if self.center_label: self.center_label[0].destroy() self.center_label[1].destroy() self.center_label = None if self.left_label: self.left_label[0].destroy() self.left_label[1].destroy() self.left_label = None # destroy scene if self._viewport_scene: self._viewport_scene.destroy() self._viewport_scene = None def _on_logging_button_event(self, val): self._assistance_system._on_logging_event(val) self.logging_ui["Save Data"].enabled = True return def _on_save_data_button_event(self): world = World.instance() data_logger = world.get_data_logger() frames = data_logger._data_frames current_task_name = list(world.get_current_tasks())[0] current_task = world.get_current_tasks()[current_task_name] #user_name = self.logging_ui["User"].get_value_as_string() user_name = str(PARTICIPANT_ID) timestamp = time.time() timestamp_str = time.strftime("%Y%m%d-%H%M%S") log_path = self.logging_ui["Output Directory"].get_value_as_string() log_name = f"{user_name}-{current_task_name}-{self.condition_i}-{timestamp_str}" log_path = f"{log_path}/{log_name}.hdf5" metadata = {"collected_timestamp": timestamp, "task": current_task_name, "user": user_name, "condition_id": self.condition_i, "experiment_i": self.world_i} metadata = {**metadata, **current_task.get_params()} def done_saving(): data_logger.reset() # If we're saving at a shutdown point, UI and self will vanish if hasattr(self, "logging_ui") and self.logging_ui: self.logging_ui["Save Data"].enabled = False self.logging_ui["Start Logging"].text = "START" carb.log_info("Saved " + log_path) self._viewport._post_toast_message("Saved log", "test") asyncio.ensure_future( save_log(log_path, frames, metadata, done=done_saving) ) def _on_option_button_event(self, name, value): asyncio.ensure_future( self._assistance_system._on_ui_value_change(name, value) ) def post_reset_button_event(self): self.logging_ui["Start Logging"].enabled = True self.logging_ui["Save Data"].enabled = False def post_load_button_event(self): self.logging_ui["Start Logging"].enabled = True self.logging_ui["Save Data"].enabled = False def _on_load_world(self, world_index): self._enable_all_buttons(False, False) if self._viewport_scene: self._viewport_scene.destroy() self._viewport_scene = ViewportScene(self._viewport, self._ext_id, use_scene_camera=False) # This will close the current stage and stop the world, causing any logs to be saved omni.usd.get_context().new_stage() task, condition_i = configure_for_condition_index(world_index, self.task_ui_elements, PARTICIPANT_ID) self.condition_i = condition_i self.world_i = world_index self._assistance_system = Assistance(task, None) self._assistance_system.viewport_scene = self._viewport_scene self._assistance_system.register_ui_models({ "control_frame": self.task_ui_elements["Control Frame"], "overlay_opacity": self.task_ui_elements["Overlay Opacity"], "assistance_mode": self.task_ui_elements["Assistance Mode"], "avoid_obstacles": self.task_ui_elements["Avoid Obstacles"], "suggest_grasps": self.task_ui_elements["Suggest Grasps"], "suggest_placements": self.task_ui_elements["Suggest Placements"], "snapping": self.task_ui_elements["Snapping"], "use_laser": self.task_ui_elements["Laser"], "use_surrogates": self.task_ui_elements["Surrogates"], "center_label": self.center_label, "left_label": self.left_label }) async def _on_load_world_async(): found_mouse = await get_global_spacemouse_extension().discover_mouse() if not found_mouse: self._enable_all_buttons(True, True) carb.log_error("Can't connect to spacemouse") return await self._assistance_system.load_world_async() await omni.kit.app.get_app().next_update_async() #self._viewport_scene.add_manipulator(lambda: SpaceMouseManipulator(grid=False)) self._assistance_system._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True, True) self.post_load_button_event() self._assistance_system._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) self.timeline.play() self._assistance_system._on_logging_event(True) asyncio.ensure_future(_on_load_world_async()) """if not self._plotting_event_subscription: self._plotting_event_subscription = ( omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_plotting_step) )""" return def _on_load_spacemouse_demo(self): from srl.teleop.assistance import DATA_DIR if self._viewport_scene: self._viewport_scene.destroy() self._viewport_scene = ViewportScene(self._viewport, self._ext_id, use_scene_camera=True) # This will close the current stage and stop the world, causing any logs to be saved omni.usd.get_context().new_stage() QuickLayout.load_file(f"{DATA_DIR}/experiment_layout.json", False) async def _load_async(): set_camera_view((-1., -3, 3), (0.,0.,0.)) found_mouse = await get_global_spacemouse_extension().discover_mouse() if not found_mouse: carb.log_error("Can't connect to spacemouse") return await omni.kit.app.get_app().next_update_async() self._viewport_scene.add_manipulator(SpaceMouseManipulator) self._enable_all_buttons(True, True) self.post_load_button_event() self._plotting_event_subscription = ( omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_plotting_step) ) asyncio.ensure_future(_load_async()) def _on_plotting_step(self, step): device = get_global_spacemouse() if self._viewport_scene.manipulator: self._viewport_scene.manipulator.update(device.get_controller_state()) def _on_reset(self): async def _on_reset_async(): await self._assistance_system.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_stop(self): async def _on_stop_async(): world = World.instance() world.stop() asyncio.ensure_future(_on_stop_async()) return def _enable_all_buttons(self, load_flag, other_flag): for btn in self._world_buttons["Load World"]: btn.enabled=load_flag for btn_name, btn in self._world_buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = other_flag self._world_buttons["Stop"].enabled = other_flag def _menu_callback(self): self._window.visible = not self._window.visible return def on_shutdown(self): self._extra_frames = [] if self._assistance_system is None: print("self._assistance_system is none. Not sure if this is a problem") if self._assistance_system is not None and self._assistance_system._world is not None: self._assistance_system._world_cleanup() if self._menu_items is not None: self._window_cleanup() if self._world_buttons is not None: self._enable_all_buttons(True, False) self.shutdown_cleanup() return def _window_cleanup(self): remove_menu_items(self._menu_items, "SRL") self._window = None self._menu_items = None self._world_buttons = None return def on_stage_event(self, event): # event_type = omni.usd.StageEventType(event.type) if event.type == int(omni.usd.StageEventType.CLOSED): # If the stage is closed before on_startup has run, all of our fields will be undefined if World.instance() is not None and hasattr(self, "_assistance_system") and self._assistance_system: self._assistance_system._world_cleanup() self._assistance_system._world.clear_instance() self._assistance_system = None # There's no World now, so in any case the user can load anew! if hasattr(self, "_world_buttons"): self._enable_all_buttons(True, False) return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): if self._assistance_system: self._enable_all_buttons(True, False) self._on_save_data_button_event() # NOTE(3-8-22): Trying to close the world here produces segfaults return def build_ui(self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width): self._window = omni.ui.Window( name, width=window_width, height=0, visible=True, dockPreference=ui.DockPreference.RIGHT_TOP ) self._window.deferred_dock_in("Stage", ui.DockPolicy.TARGET_WINDOW_IS_ACTIVE) self._extra_frames = [] with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): ui.Label(f"You are participant {PARTICIPANT_ID}", width=ui.Fraction(1), alignment=ui.Alignment.CENTER, tooltip="Use this ID whenever prompted") ui.Spacer(height=5) dict = { "label": "Load World", "type": "button", "text": SLOT_NAMES, "tooltip": ["Load World and Task" for _ in range(len(SLOT_NAMES) + 1)], "on_clicked_fn": [self._on_load_spacemouse_demo] + [partial(self._on_load_world,i) for i in range(len(SLOT_NAMES) - 1)], } self._world_buttons["Load World"] = multi_btn_builder(**dict) for btn in self._world_buttons["Load World"]: btn.enabled=True dict = { "label": "Stop", "type": "button", "text": "Stop", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_stop, } self._world_buttons["Stop"] = btn_builder(**dict) self._world_buttons["Stop"].enabled = False dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._world_buttons["Reset"] = btn_builder(**dict) self._world_buttons["Reset"].enabled = False ui.Spacer(height=10) ui.Label(f"Version 6430.{''.join(map(str,get_ordering(PARTICIPANT_ID)))}", width=ui.Fraction(1), alignment=ui.Alignment.CENTER, tooltip="") with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=True, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) def build_assistance_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Settings" frame.visible = True dict = { "label": "Control Frame", "tooltip": "The coordinate system used to map control input to robot motion", #"on_clicked_fn": self._on_control_frame_event, "default_val": 2, "items": CONTROL_FRAMES } self.task_ui_elements["Control Frame"] = dropdown_builder(**dict) dict = { "label": "Assistance Overlay Opacity", "tooltip": ["How opaque the overlaid suggestions should be", ""], "default_val": .2, "min": 0.0, "max": 1.0 } self.task_ui_elements["Overlay Opacity"] = combo_floatfield_slider_builder(**dict) dict = { "label": "Assistance Mode", "tooltip": "The format of assistance provided", #"on_clicked_fn": self._on_assistance_mode_event, "items": ASSISTANCE_MODES } self.task_ui_elements["Assistance Mode"] = dropdown_builder(**dict) dict = { "label": "Use Surrogates", "tooltip": "Whether to use interactive surrogates to select suggestions", "default_val": False, "on_clicked_fn": partial(self._on_option_button_event, "use_surrogates"), } self.task_ui_elements["Surrogates"] = cb_builder(**dict) dict = { "label": "Avoid Obstacles", "tooltip": "Avoid Obstacles", "default_val": False, "on_clicked_fn": partial(self._on_option_button_event, "avoid_obstacles"), } self.task_ui_elements["Avoid Obstacles"] = cb_builder(**dict) dict = { "label": "Suggest Grasps", "tooltip": "Whether to suggest grasps", "default_val": True, "on_clicked_fn": partial(self._on_option_button_event, "suggest_grasps"), } self.task_ui_elements["Suggest Grasps"] = cb_builder(**dict) dict = { "label": "Suggest Placements", "tooltip": "Whether to suggest placements", "default_val": True, "on_clicked_fn": partial(self._on_option_button_event, "suggest_placements"), } self.task_ui_elements["Suggest Placements"] = cb_builder(**dict) dict = { "label": "Snapping", "tooltip": "Whether to snap suggestions", "default_val": True, "on_clicked_fn": partial(self._on_option_button_event, "snapping"), } self.task_ui_elements["Snapping"] = cb_builder(**dict) dict = { "label": "Laser", "tooltip": "Enable a laser pointer attached to the gripper", "default_val": False, "on_clicked_fn": partial(self._on_option_button_event, "use_laser"), } self.task_ui_elements["Laser"] = cb_builder(**dict) return def build_data_logging_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Data Logging" frame.visible = True dict = { "label": "Output Directory", "type": "stringfield", "default_val": os.path.expanduser('~/Documents/trajectories'), "tooltip": "Output Directory", "on_clicked_fn": None, "use_folder_picker": True, "item_filter_fn": is_folder, "read_only": False, } self.logging_ui["Output Directory"] = str_builder(**dict) dict = { "label": "User", "type": "stringfield", "default_val": "unspecified", "tooltip": "Name of operator", "on_clicked_fn": None, "use_folder_picker": False, "read_only": False, } self.logging_ui["User"] = str_builder(**dict) dict = { "label": "Start Logging", "type": "button", "a_text": "START", "b_text": "PAUSE", "tooltip": "Start Logging", "on_clicked_fn": self._on_logging_button_event, } self.logging_ui["Start Logging"] = state_btn_builder(**dict) self.logging_ui["Start Logging"].enabled = False dict = { "label": "Save Data", "type": "button", "text": "Save Data", "tooltip": "Save Data", "on_clicked_fn": self._on_save_data_button_event, } self.logging_ui["Save Data"] = btn_builder(**dict) self.logging_ui["Save Data"].enabled = False return
22,036
Python
43.609312
167
0.548058
NVlabs/fast-explicit-teleop/srl/teleop/assistance/profiling.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from time import perf_counter import carb.profiler profile_table = {} name_stack = [] class profile: def __init__(self, name="", active=True) -> None: self.name = name self.active = active pass def __enter__(self): self.time = perf_counter() carb.profiler.begin(1, self.name, active=self.active) return self def __exit__(self, type, value, traceback): self.time = perf_counter() - self.time self.readout = f'{self.name} Time: {self.time * 1000:.2f} milliseconds' carb.profiler.end(1, self.active) def is_profiler_active(): # Flip this to True if you want profiling information to print out return False def begin(mask, name, stack_offset=0, active=False): if not is_profiler_active() or not active: return profile_table[name] = perf_counter() name_stack.append(name) def end(mask, active=False): if not is_profiler_active() or not active: return start_stack_depth = len(name_stack) if start_stack_depth == 0: return name = name_stack.pop() print(" " * (start_stack_depth - 1) + f"{name}: {(perf_counter() - profile_table[name]) * 1000:.2f}ms") del profile_table[name] # TBR carb.profiler.begin = begin carb.profiler.end = end
1,432
Python
26.557692
108
0.638966
NVlabs/fast-explicit-teleop/srl/teleop/assistance/shapenet_import.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from collections import defaultdict import omni.client import omni.kit import omni.usd import asyncio import os from pxr import UsdGeom, Gf, Tf, Usd, UsdShade, UsdPhysics import random from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.utils.prims import is_prim_path_valid, get_prim_type_name, delete_prim, get_all_matching_child_prims, get_prim_at_path from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.prims.rigid_prim import RigidPrim from typing import Optional, Sequence import numpy as np from srl.teleop.assistance.transforms import invert_T from omni.physx.scripts.utils import setColliderSubtree from os import listdir from os.path import isfile, join ACRONYM_BY_CAT = None ACRONYM_ROOT = os.environ["HOME"] + '/data/acronym/grasps' def load_acronym_index(): if not os.stat(ACRONYM_ROOT): return None acronym_paths = [f for f in listdir(ACRONYM_ROOT) if isfile(join(ACRONYM_ROOT, f))] acronym_tuples = [f[:f.rfind(".")].split("_") for f in acronym_paths] by_cat = defaultdict(lambda: defaultdict(list)) for i, (cat, obj, scale) in enumerate(acronym_tuples): by_cat[cat][obj].append((float(scale), acronym_paths[i])) return by_cat def file_exists_on_omni(file_path): result, _ = omni.client.stat(file_path) if result == omni.client.Result.OK: return True return False async def create_folder_on_omni(folder_path): if not file_exists_on_omni(folder_path): result = await omni.client.create_folder_async(folder_path) return result == omni.client.Result.OK async def convert(in_file, out_file): # import omni.kit.asset_converter as assetimport # Folders must be created first through usd_ext of omni won't be able to create the files creted in them in the current session. out_folder = out_file[0 : out_file.rfind("/") + 1] # only call create_folder_on_omni if it's connected to an omni server if out_file.startswith("omniverse://"): await create_folder_on_omni(out_folder + "materials") def progress_callback(progress, total_steps): pass converter_context = omni.kit.asset_converter.AssetConverterContext() # setup converter and flags converter_context.as_shapenet = True converter_context.single_mesh = True instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(in_file, out_file, progress_callback, converter_context) success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break return success class ShapeNetPrim(RigidPrim): def __init__(self, prim_path: str, metadata, name: str = "rigid_prim", position: Optional[Sequence[float]] = None, translation: Optional[Sequence[float]] = None, orientation: Optional[Sequence[float]] = None, scale: Optional[Sequence[float]] = None, visible: Optional[bool] = None, mass: Optional[float] = None, density: Optional[float] = None, linear_velocity: Optional[np.ndarray] = None, angular_velocity: Optional[np.ndarray] = None) -> None: super().__init__(prim_path, name, position, translation, orientation, scale, visible, mass, density, linear_velocity, angular_velocity) unit = metadata["unit"] self.materials = [] self.material_inputs = {} self.shaders = [] self.shader_inputs = {} self._geometry_prims = [] for p in Usd.PrimRange(self.prim): prim_type = get_prim_type_name(p.GetPath()) if p.GetPath() != self.prim_path and prim_type == "Xform": as_xform = XFormPrim(p.GetPath()) as_xform.set_local_scale((unit, unit, unit)) self._geometery_xform = as_xform self._geometry_prims = p.GetChildren() self._geometry_prims = [UsdGeom.Mesh(raw) for raw in self._geometry_prims] elif prim_type == "Material": as_material = UsdShade.Material(p) self.materials.append(as_material) elif prim_type == "Shader": as_shader = UsdShade.Shader(p) inputs = as_shader.GetInputs() self.shaders.append(as_shader) self.shader_inputs[p.GetPath()] = {} for input in inputs: self.shader_inputs[p.GetPath()][input.GetFullName()] = input self.add_colliders() # Merge component meshes all_points = [] all_indices = [] all_counts = [] index_offset = 0 for component in self._geometry_prims: points = component.GetPointsAttr().Get() indices = component.GetFaceVertexIndicesAttr().Get() counts = component.GetFaceVertexCountsAttr().Get() offset_indices = [x + index_offset for x in indices] all_points.extend(points) all_indices.extend(offset_indices) all_counts.extend(counts) index_offset = index_offset + len(points) self.collision_geom = UsdGeom.Mesh.Define(get_current_stage(), prim_path + "/merged") scale = self.collision_geom.AddXformOp(UsdGeom.XformOp.TypeScale, UsdGeom.XformOp.PrecisionDouble, "") scale.Set(Gf.Vec3d(unit, unit, unit)) self.collision_geom.CreatePointsAttr(all_points) self.collision_geom.CreateFaceVertexIndicesAttr(all_indices) self.collision_geom.CreateFaceVertexCountsAttr(all_counts) UsdGeom.Imageable(self.collision_geom).MakeInvisible() self.make_visible() def make_visible(self): # for shader in self.shaders: opacity_input = self.shader_inputs[shader.GetPath()].get("inputs:opacity_constant", None) if opacity_input: opacity_input.Set(1.0) def add_colliders(self, approximationShape="convexDecomposition"): # setColliderSubtree(self.prim, approximationShape) """for mesh in self._geometry_prims: UsdPhysics.CollisionAPI.Apply(mesh.GetPrim()) meshCollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(mesh.GetPrim()) meshCollisionAPI.CreateApproximationAttr().Set("none")""" @property def geom(self): return self.collision_geom async def add_shapenetsem_model(category, nth, prim_path, position, name): global ACRONYM_BY_CAT try: import meshsets # os.environ['MESHSETS_LOCAL_ROOT_DIR'] = os.environ['HOME'] + '/data/meshes' dataset = meshsets.load_dataset('ShapeNetSem watertight') obj_filepath = dataset.get_filenames(category)[nth] obj_filename = obj_filepath[obj_filepath.rfind("/",1) + 1:] obj_name = obj_filename[:obj_filename.rfind(".")] except ImportError: print("Couldn't import nvidia-meshsets. Can't add shapenet model.") return None if ACRONYM_BY_CAT is None: ACRONYM_BY_CAT = load_acronym_index() scale = None if ACRONYM_BY_CAT is not None: import h5py scales = ACRONYM_BY_CAT[category][obj_name] scale, filename = scales[0] data = h5py.File(ACRONYM_ROOT + "/" + filename, "r") grasps = np.array(data["grasps/transforms"]) success = np.array(data["grasps/qualities/flex/object_in_gripper"]) offset = np.identity(4) # (invert_T(get_prim_world_T_meters("/motion_controller_target")) @ get_prim_world_T_meters(self.franka.prim_path + "/panda_hand"))[:3, 3] offset[2,3] = .06 grasps = grasps[success == 1] @ offset else: grasps = None dataset_name = obj_filepath.replace(os.environ['MESHSETS_LOCAL_ROOT_DIR'], '') dataset_name = dataset_name[1:dataset_name.find("/",1)] converted_folder_name = os.environ["MESHSETS_LOCAL_ROOT_DIR"] + "/" + dataset_name + "/usd" out_filepath = converted_folder_name + "/" + obj_name[:obj_name.rfind(".")] + ".usd" import pathlib pathlib.Path(converted_folder_name).mkdir(parents=True, exist_ok=True) pathlib.Path(converted_folder_name + "/materials").mkdir(parents=True, exist_ok=True) if not os.path.isfile(out_filepath): await convert(obj_filepath, out_filepath) added = add_reference_to_stage(out_filepath, prim_path) metadata = dataset.get_metadata(obj_filepath) if scale is not None: metadata["unit"] = scale # wrapped = ShapeNetPrim(prim_path, metadata, name=name, translation=position, mass=0.03) wrapped.grasp_annotations = grasps return wrapped
8,763
Python
41.543689
450
0.65263
NVlabs/fast-explicit-teleop/srl/teleop/assistance/proposals.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import itertools import math import time from enum import Enum from typing import List, Optional, Union import carb import numpy as np import quaternion from omni.isaac.core.prims.rigid_prim import RigidPrim from srl.teleop.assistance.motion_commander import ApproachParams from srl.teleop.assistance.suggestions import generate_candidate_grasps, generate_candidate_placements from srl.teleop.assistance.transforms import cone_vectors, get_obj_poses, invert_T, make_rotation_matrix, normalize, orthogonalize, pack_Rp, pq2T, \ rotate_vec_by_quat, shortest_arc, transform_point class InvalidReason(Enum): VALID = 0 UNREACHABLE = 1 MOVING = 2 GROUND_COLLISION = 3 SCENE_COLLISION = 4 UNKNOWN = 5 class GroupedPoseProposalTable: def __init__(self, poses: np.ndarray, owning_objects: List[RigidPrim], obj_poses: np.ndarray, pose_owners: np.ndarray, groups: Optional[np.ndarray] = None): self._poses = poses self._poses_world = None if groups is None: self._groups = np.zeros((poses.shape[0])) else: self._groups = groups self.objects = owning_objects self.obj_Ts = obj_poses self.objects_dirty = np.full((len(obj_poses),), True, dtype=bool) self._owners = pose_owners self._configs = np.full((len(poses), 7), np.nan, dtype=float) self._valid = np.full((len(poses)), InvalidReason.UNKNOWN.value, dtype=int) def update_world_poses(self, updated_poses: np.ndarray): if self._poses_world is None: self._poses_world = np.empty_like(self._poses) self._poses_world[:] = updated_poses def update_world_poses_masked(self, mask: np.ndarray, updated_poses: np.ndarray): if self._poses_world is None: self._poses_world = np.empty_like(self._poses) self._poses_world[mask] = updated_poses def mask_by_owner(self, owner_id: int) -> np.ndarray: return self._owners == owner_id @property def valid(self): return self._valid == InvalidReason.VALID.value @property def proposable(self): return self.valid def invalidate(self, mask: np.ndarray, reason: InvalidReason): self._valid[mask] = reason.value # Ensure that consumers don't get stale IK solutions self._configs[mask].fill(np.nan) def invalidate_submask(self, mask: np.ndarray, submask: np.ndarray, reason: InvalidReason): masked, = np.where(mask) self._valid[masked[submask]] = reason.value # Ensure that consumers don't get stale IK solutions self._configs[masked[submask]].fill(np.nan) def invalidate_all(self, reason: InvalidReason): self._valid[:] = reason.value self._configs.fill(np.nan) def __len__(self): return self._poses.shape[0] def empty(self): return self.__len__() == 0 class Proposal: def __init__(self, identifier: int, table: GroupedPoseProposalTable) -> None: self._table = table self.identifier = identifier @property def valid(self): return self._table._valid[self.identifier] == 0 @property def T_obj(self): return self._table._poses[self.identifier][:] @property def T_world(self): return self._table._poses_world[self.identifier][:] def mark_invalid(self, reason: InvalidReason): self._table._valid[self.identifier] = reason.value class FixedTargetProposal: def __init__(self, target_T: np.ndarray): self.target_T = target_T self.joint_config = np.full(9, np.nan) @property def T_world(self): return self.target_T @property def valid(self): return True """ Helpful geometry references: * Surfaces: https://en.wikipedia.org/wiki/Surface_(mathematics) """ class GraspProposal(Proposal): """Proposals are suggestions that have been posed to the user. They can become invalid due to kinematics, collision, etc, and they can be in any of several interaction states. """ def __init__(self, identifier: int, table: GroupedPoseProposalTable) -> None: super().__init__(identifier, table) @property def obj_T(self) -> RigidPrim: return self._table.obj_Ts[self.obj_id] @property def obj_id(self) -> int: return self._table._owners[self.identifier] def map_velocity_input(self, position: np.ndarray, vel: np.ndarray): if np.linalg.norm(vel) < 0.0001: # Fixture is undefined for 0 vel return vel # Prefer straight line to goal line_to_goal = self.T_world[:3,3] - position D = np.array([line_to_goal]).T span_D = D @ (np.linalg.pinv(D.T @ D) @ D.T) goal_dist = np.linalg.norm(line_to_goal) # Lower dist -> more attenuation of motion not allowed by fixture attenuation = sigmoid(goal_dist, .35, 5.0) return vel @ (span_D + attenuation * (np.identity(3) - span_D)) @property def joint_config(self): return self._table._configs[self.identifier][:] @property def valid(self): return self._table._valid[self.identifier] == InvalidReason.VALID.value def update_eff_goal(self, eff_T_world, joint_config): self._table._poses_world[self.identifier] = eff_T_world self._table._configs[self.identifier] = joint_config self._table._valid[self.identifier] = InvalidReason.VALID.value def get_eff_T(self): """ The target pose where the end effector should be for the grasp. Not guaranteed to be reachable. """ return self.obj_T.dot(self.T_obj) def build_approach_grasp_sample_pattern(n_rotations=14, max_rotation=math.pi, n_tilts=12, n_standoffs=1, n_neighbors=18): z_rotations = np.zeros((1 + n_rotations,4,4)) theta = np.empty((1 + n_rotations)) theta[0] = 0 theta[1: 1 + (n_rotations // 2)] = np.linspace(-max_rotation / 2, 0, n_rotations // 2, endpoint=True) theta[1 + (n_rotations //2):] = np.linspace(max_rotation / 2, 0, n_rotations // 2, endpoint=True) z_rotations[:,0,0] = np.cos(theta) z_rotations[:,0,1] = -np.sin(theta) z_rotations[:,1,0] = np.sin(theta) z_rotations[:,1,1] = np.cos(theta) z_rotations[:,2,2] = 1 z_rotations[:,3,3] = 1 if n_neighbors < 10: angle = np.linspace(0, math.pi * 2, n_neighbors // 2, endpoint=False) rad = np.array((0.0025,0.005)) xy_offsets = np.vstack([(0,0), (np.array([np.cos(angle), np.sin(angle)]).T[None] * rad[:, None, None]).reshape(-1, 2)]) else: # Use a hexagonal pattern to pack points efficiently angle = np.empty((n_neighbors + 1)) angle[0] = 0 angle[1:7] = np.linspace(0, math.pi * 2, 6, endpoint=False) angle[7:] = np.linspace(0, math.pi * 2, 12, endpoint=False) rad = np.empty((n_neighbors + 1)) rad[0] = 0 rad[1:7] = .005 rad[7:] = .0075 xy_offsets = np.array([np.cos(angle), np.sin(angle)]).T * rad[:, None] normals = np.vstack([(0,0,1), cone_vectors((0.1, 0.2, 0.3), n_tilts //3).reshape((-1, 3))]) tilts_R = make_rotation_matrix(normals, np.full_like(normals, (1,0,0), dtype=float)) grasp_Ts = np.zeros((n_standoffs + 1, n_rotations + 1, n_neighbors + 1, n_tilts + 1, 4, 4)) grasp_Ts[..., :, :] = np.identity(4) grasp_Ts[..., (0,1),3] = xy_offsets[None, None,:,None] points_view = grasp_Ts[..., :, 3] points_view[1:,..., 2] = (.0075 * np.mgrid[1:n_standoffs + 1])[:, None, None, None] grasp_Ts[..., :, 3] = points_view grasp_Ts[..., :3, :3] = tilts_R[None, None,None, :] grasp_Ts[:] = grasp_Ts[:, 0, :, :][:, None, :, :] @ z_rotations[None,:,None, None] return np.reshape(grasp_Ts, (-1, 4, 4)) SAMPLER_PATTERN = build_approach_grasp_sample_pattern() class GraspNormalProposalTable(): def __init__(self, object: RigidPrim, approach_T: np.ndarray, point: np.ndarray, normal: np.ndarray) -> None: self.object = object self.point = point self.normal = normal ee_ax = approach_T[:3, 0] ee_ay = approach_T[:3, 1] proposed_face_R = np.array([ee_ax, ee_ay, -normal]).T R = orthogonalize(proposed_face_R, prioritize=(2,0,1)) T = pack_Rp(R, point) carb.profiler.begin(1, "buildnormaltable", active=True) self._poses_world = T @ SAMPLER_PATTERN carb.profiler.end(1, True) self._valid = np.full((len(self._poses_world)), InvalidReason.UNKNOWN.value, dtype=int) self._configs = np.full((len(self._poses_world), 7), np.nan, dtype=float) @property def grasp_Ts(self): return self._poses_world @property def valid(self): return self._valid == InvalidReason.VALID.value @property def proposable(self): return self.valid def invalidate(self, mask: np.ndarray, reason: InvalidReason): self._valid[mask] = reason.value # Ensure that consumers don't get stale IK solutions self._configs[mask].fill(np.nan) def invalidate_submask(self, mask: np.ndarray, submask: np.ndarray, reason: InvalidReason): masked, = np.where(mask) self._valid[masked[submask]] = reason.value # Ensure that consumers don't get stale IK solutions self._configs[masked[submask]].fill(np.nan) class PlacementProposal(Proposal): def __init__(self, identifier, table, support_obj, place_obj) -> None: super().__init__(identifier, table) self.support_obj = support_obj self.place_obj = place_obj def update_eff_goal(self, eff_T_world, joint_config): self._table._poses_world[self.identifier] = eff_T_world self._table._configs[self.identifier] = joint_config self._table._valid[self.identifier] = InvalidReason.VALID.value def get_placement_T(self): """ The target pose to place the object into (world frame). Not guaranteed to be reachable. """ support_T = pq2T(*self.support_obj.get_world_pose()) return support_T.dot(self.T_obj) def get_support_normal(self): # T_obj position is vector from the support centroid to the place centroid in the support frame # Rotate it into the global frame return normalize(pq2T(*self.support_obj.get_world_pose())[:3,:3] @ self.T_obj[:3, 3]) def sigmoid(x: Union[float, np.array], x_midpoint: float, steepness: float): """Maps numbers to [0,1], linearly near midpoint, then logarithmically at tails """ return 1. / (1. + np.exp(-steepness * (x - x_midpoint))) class PlanePlaneProposalTable: def __init__(self, owning_objects: List[RigidPrim], obj_poses: np.ndarray, support_centroid: np.ndarray, support_normals: np.ndarray, facet_object_owner: np.ndarray, facet_boundaries: List[List[int]]): self.owning_objects = owning_objects self.support_centroids = support_centroid self.support_normals = support_normals self.facet_object_owner = facet_object_owner self._object_poses = obj_poses.copy() self._valid = np.full((len(support_centroid)), InvalidReason.UNKNOWN.value, dtype=int) def update_object_poses(self, poses: np.ndarray): self._object_poses[:] = poses def get_centroids_world(self, mask=None): if mask is None: # No op mask mask = ... world_Ts = self._object_poses[self.facet_object_owner][mask] @ pack_Rp(np.identity(3), self.support_centroids[mask]) return world_Ts[...,:3, 3] def get_normals_world(self, mask=None): if mask is None: # No op mask mask = ... result = self._object_poses[self.facet_object_owner][mask][...,:3,:3] @ self.support_normals[mask][..., None] return result.squeeze() class PlanePlaneProposal(): def __init__(self, table: PlanePlaneProposalTable, support_index: int, place_index: int) -> None: self._table = table self.support_index = support_index self.place_index = place_index self.trans_offset = None self.rot_offset = None self.T_world = None # FIXME: Check for 0 dot product self.support_a1 = (1,0,0) self.support_a2 = np.cross(self.support_normal_world, (1,0,0)) D = np.array([self.support_a1, self.support_a2]).T self.span_D = D @ (np.linalg.pinv(D.T @ D) @ D.T) self._valid = InvalidReason.VALID @property def support_obj(self) -> RigidPrim: return self._table.owning_objects[self._table.facet_object_owner[self.support_index]] @property def support_obj_T(self) -> RigidPrim: return self._table._object_poses[self._table.facet_object_owner[self.support_index]] @property def support_normal(self) -> np.ndarray: return self._table.support_normals[self.support_index] @property def support_normal_world(self) -> np.ndarray: return self._table.get_normals_world(mask=self.support_index) @property def support_centroid(self) -> np.ndarray: return self._table.support_centroids[self.support_index] @property def support_centroid_world(self) -> np.ndarray: return self._table.get_centroids_world(mask=self.support_index) @property def place_obj(self) -> RigidPrim: return self._table.owning_objects[self._table.facet_object_owner[self.place_index]] @property def place_obj_T(self) -> np.ndarray: return self._table._object_poses[self._table.facet_object_owner[self.place_index]] @property def place_normal(self) -> np.ndarray: return self._table.support_normals[self.place_index] @property def support_T(self) -> np.ndarray: # We'll take the normal as the z axis of it's local coordinate space, # create a shortest rotation to get the object z to match that z, # then use that rotation to define x and y assert False @property def place_normal_world(self) -> np.ndarray: return self._table.get_normals_world(mask=self.place_index) @property def place_centroid(self) -> np.ndarray: return self._table.support_centroids[self.place_index] @property def place_centroid_world(self) -> np.ndarray: return self._table.get_centroids_world(mask=self.place_index) @property def support_p(self) -> np.ndarray: return self._table.support_centroids[self.support_index] def map_velocity_input(self, position: np.ndarray, vel: np.ndarray): if np.linalg.norm(vel) < 0.0001: # Fixture is undefined for 0 vel return vel cur_p, cur_q = self.place_obj.get_world_pose() cur_p += rotate_vec_by_quat(self.place_p, quaternion.from_float_array(cur_q)) # TODO: Make sure we should be using cur_p and not the position arg plane_dist = self.support_normal.dot(cur_p) # Lower dist -> more attenuation of motion not allowed by fixture attenuation = sigmoid(plane_dist, .35, 5.0) return vel @ (self.span_D + attenuation * (np.identity(3) - self.span_D)) def project_control_constraint_plane(self, vector: np.ndarray): # assert False def project_to_constraint(self, point_world, point_obj): # We'll work in the frame of the support object support_obj_T = self.support_obj_T support_normal = self.support_normal support_centroid = self.support_centroid place_centroid_in_support = transform_point(point_world, invert_T(support_obj_T)) #viz_axis_named("support", cur_p, cur_q, scale=(.2,.2,.2)) from_v = place_centroid_in_support - support_centroid amount_orthogonal = np.dot(support_normal, from_v) proj_on_plane = place_centroid_in_support - amount_orthogonal * support_normal # return transform_point(proj_on_plane + np.linalg.norm(point_obj) * support_normal, support_obj_T) def project_current_to_solution(self): # Where is the placement point on the plane right now? current_in_plane = self.project_to_constraint(self.place_centroid_world, self.place_centroid) self.trans_offset = current_in_plane def update_proposal(self, trans: np.ndarray): #trans_in_plane = project_control_constraint_plane(trans) trans_in_plane = (trans[0], trans[1], 0) self.trans_offset += trans_in_plane def get_placement_T(self): # Are the normals already parallel? normal_dot = self.support_normal.dot(self.place_normal) if normal_dot > .99999: # Same direction -> 180 about arbitrary axis alignment_rotation = quaternion.quaternion(0,0,1,0) elif normal_dot < -.999999: # Already exactly opposing -> identity quat alignment_rotation = quaternion.quaternion(1,0,0,0) else: # Shortest arc between the vectors a = np.cross(self.support_normal, self.place_normal) # w is simple because we have unit normals: sqrt(norm(v1)**2 * norm(v2)**2) -> 1 alignment_rotation = quaternion.quaternion(1, *a).normalized() placement_T_obj = rotate_vec_by_quat(self.place_centroid, alignment_rotation) return pq2T(self.support_centroid + -placement_T_obj, alignment_rotation) """T = pack_Rp(axes_to_mat(self.place_normal, (0,0,1)), -placement_T_obj + self.current_offset) return T""" @property def valid(self): return self._valid def mark_invalid(self, reason: InvalidReason): self._valid = reason def build_proposal_tables(collision_checker, objects, fixed_geometry, gripper_collision_mesh): obj_Ts = get_obj_poses(objects) fixed_Ts = get_obj_poses(fixed_geometry) candidates_by_obj = [generate_candidate_grasps(obj) for obj in objects] per_obj = [] owners = [] for candidates, (i, obj) in zip(candidates_by_obj, enumerate(objects)): if len(candidates) == 0: continue counts = collision_checker.query(candidates, from_mesh=gripper_collision_mesh, to_mesh=obj.geom, render=False, query_name=f"{obj.name}_grasp_filter") #viz_axis_named_Ts(obj.name, pq2T(*obj.get_world_pose()) @ candidates, (.2,.2,.2)) non_colliding = candidates[counts == 0] # NOTE: No guarantee there will be any poses left... per_obj.append(non_colliding) owners.append(np.full((len(non_colliding)), i)) if len(per_obj) == 0: per_obj = [np.empty((0, 4, 4))] owners = [np.empty((0,), dtype=int)] grasp_suggestions = GroupedPoseProposalTable(np.vstack(per_obj), None, obj_Ts, np.hstack(owners)) placement_suggestions = [None for _ in objects] # Break placement poses into tables based on the object in the gripper for place_i, to_place in enumerate(objects): placement_suggestions[place_i] = [None for _ in objects] per_obj = [] owners = [] for align_j, align_with in enumerate(objects): if place_i == align_j: continue placements = generate_candidate_placements(to_place, align_with) per_obj.append(placements) owners.append(np.full((len(placements),), align_j)) if len(per_obj) == 0: per_obj = [np.empty((0, 4, 4))] owners = [np.empty((0,), dtype=int)] placement_suggestions[place_i] = GroupedPoseProposalTable(np.vstack(per_obj), None, obj_Ts, np.hstack(owners)) """if place_i == 1: align_T = pq2T(*self.objects[align_j].get_world_pose()) for l, placement_T in enumerate(self.placement_suggestions[place_i][align_j]): viz_axis_named_T(f"placement_{place_i}_{align_j}_{l}", align_T.dot(placement_T), scale=(0.4,0.4,0.4))""" # Precompute all object support facets and their properties centroids, normals, area, boundary = [], [], [], [] for obj in itertools.chain(objects, fixed_geometry): if not hasattr(obj, 'geom'): continue support = collision_checker.get_support_surfaces(obj.geom) centroids.append(support[0]) normals.append(support[1]) area.append(support[3]) boundary.append(support[4]) support_centroids = np.vstack(centroids) support_normals = np.vstack(normals) facet_owners = [[i] * len(centroids) for i, centroids in enumerate(centroids)] facet_owners = np.fromiter(itertools.chain(*facet_owners), int) plane_proposals = PlanePlaneProposalTable(objects, np.vstack((obj_Ts, fixed_Ts)), support_centroids, support_normals, facet_owners, boundary) return grasp_suggestions, placement_suggestions, plane_proposals def make_approach_params_for_proposal(proposal): if isinstance(proposal, GraspProposal): # Pull out the Z axis of the target approach_axis = proposal.T_world[:3, 2] return ApproachParams(direction=0.15 * approach_axis, std_dev=0.02) elif isinstance(proposal, PlacementProposal): approach_axis = -proposal.get_support_normal() return ApproachParams(direction=0.15 * approach_axis, std_dev=0.02) elif isinstance(proposal, PlanePlaneProposal): approach_axis = -proposal.support_normal_world return ApproachParams(direction=0.15 * approach_axis, std_dev=0.02) else: return None
21,540
Python
37.673249
205
0.634912
NVlabs/fast-explicit-teleop/srl/teleop/assistance/spacemouse_demo.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import numpy as np import quaternion from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.ui import scene as sc from omni.ui import color as cl from srl.teleop.assistance.transforms import integrate_twist_stepwise, integrate_twist class SpaceMouseManipulator(sc.Manipulator): def __init__(self, grid=True, axis_colors=True, **kwargs): super().__init__(**kwargs) self.current_twist = np.zeros(6, dtype=float) self.grid = grid def on_build(self): T = np.eye(4) points = integrate_twist_stepwise(self.current_twist[:3], self.current_twist[3:], 1, 20) point_delta = np.linalg.norm(points[0] - points[1]) * 20 #point_deltas = np.linalg.norm(np.diff(points, axis=0), axis=1) target_T = integrate_twist(self.current_twist[:3], self.current_twist[3:], 1) # axes with sc.Transform(transform=sc.Matrix44(*T.T.flatten())): if self.grid: t = 1 # Draw a ground grid for v in np.linspace(-2, 2, 20): sc.Line([v, -2, -1], [v, 2, -1], color=cl("#444444ff"), thickness=t) sc.Line([-2, v, -1], [2, v, -1], color=cl("#444444ff"), thickness=t) k = .25 t = 4 # Draw faint origin axis sc.Line([0, 0, 0], [k, 0, 0], color=cl("#ff000066"), thickness=t) sc.Line([0, 0, 0], [0, k, 0], color=cl("#00ff0066"), thickness=t) sc.Line([0, 0, 0], [0, 0, k], color=cl("#0000ff66"), thickness=t) opacity = max(point_delta, .2) sc.Curve( points.tolist(), thicknesses=[4.0], colors=[cl(opacity, opacity, opacity)], curve_type=sc.Curve.CurveType.LINEAR, ) with sc.Transform(transform=sc.Matrix44(*target_T.T.flatten())): k = .5 sc.Line([0, 0, 0], [k, 0, 0], color=cl("#ff0000"), thickness=t) sc.Line([0, 0, 0], [0, k, 0], color=cl("#00ff00"), thickness=t) sc.Line([0, 0, 0], [0, 0, k], color=cl("#0000ff"), thickness=t) def update(self, control): trans, rot = control.xyz, control.rpy rot[[0,1]] = rot[[1,0]] rot[0] *= -1 rot[2] *= -1 dori_world = quaternion.from_float_array(euler_angles_to_quat(rot)) self.current_twist[:3] = trans self.current_twist[3:] = quaternion.as_rotation_vector(dori_world) self.invalidate()
2,662
Python
37.594202
96
0.549587
NVlabs/fast-explicit-teleop/srl/teleop/assistance/viewport.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from omni.kit.viewport.utility import create_viewport_window, get_num_viewports, get_viewport_from_window_name, disable_context_menu, disable_selection from omni.kit.viewport.window import get_viewport_window_instances, ViewportWindow import omni from pxr import Sdf from typing import Optional def get_window_by_name(window_name: str) -> Optional[ViewportWindow]: try: from omni.kit.viewport.window import get_viewport_window_instances # Get every ViewportWindow, regardless of UsdContext it is attached to for window in get_viewport_window_instances(None): if window.title == window_name: return window except ImportError: pass def get_realsense_viewport(camera_path: Sdf.Path,): num_viewports = get_num_viewports() if num_viewports == 1: viewport_window = create_viewport_window(camera_path=camera_path,) else: viewport_window = get_window_by_name("Viewport 1") viewport_window.viewport_api.set_active_camera(camera_path) return viewport_window def configure_main_viewport(viewport_window): viewport_window.viewport_widget.fill_frame = False viewport_window.viewport_api.set_texture_resolution((1280,720)) def configure_realsense_viewport(viewport_window): viewport_window.viewport_widget.fill_frame = False viewport_window.viewport_api.set_texture_resolution((1280,720)) def disable_viewport_interaction(viewport_window): # These are RAII-style handles which will keep the viewport configured this way until the window handle # is destroyed. return disable_selection(viewport_window, disable_click=True), disable_context_menu(viewport_window) def layout_picture_in_picture(main_viewport, nested_viewport): width = main_viewport.width / 3 height = 26 + (width * 9/16) pos_x = main_viewport.width + main_viewport.position_x - width pos_y = main_viewport.position_y nested_viewport.setPosition(pos_x, pos_y) nested_viewport.width = width nested_viewport.height = height
2,189
Python
38.107142
151
0.734582
NVlabs/fast-explicit-teleop/srl/teleop/assistance/ui.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import os import omni.ui as ui from enum import Enum from omni.isaac.ui.ui_utils import add_separator, add_line_rect_flourish, get_style from omni.kit.window.filepicker import FilePickerDialog CONTROL_FRAMES = ["End-effector", "Mixed", "World"] class ControlFrame(Enum): END_EFFECTOR = 0 MIXED = 1 WORLD = 2 ASSISTANCE_MODES = ["Completion", "Virtual Fixture", "Forced Fixture", "Interactive Fixture"] class AssistanceMode(Enum): COMPLETION = 0 VIRTUAL_FIXTURE = 1 FORCED_FIXTURE = 2 INTERACTIVE_FIXTURE = 3 def add_overlay(viewport_window: ui.Window, ext_id: str): with viewport_window.get_frame(ext_id + "_button_indicator_center"): with ui.Placer(offset_x=ui.Percent(45), offset_y=ui.Percent(90)): with ui.ZStack(width=ui.Percent(10), height=48): center_bg = ui.Rectangle(name="bg", style={"background_color": 0x33000000, "border_radius": 8}) center_label = ui.Label("",name="center_label", alignment=ui.Alignment.CENTER, width=ui.Percent(100), height=ui.Percent(100), style={"color":0x66FFFFFF, "font_size":24}) with viewport_window.get_frame(ext_id + "_button_indicator_left"): with ui.Placer(offset_x=ui.Percent(10), offset_y=ui.Percent(90)): with ui.ZStack(width=ui.Percent(5), height=48): left_bg = ui.Rectangle(name="bg2", style={"background_color": 0x33000000, "border_radius": 8}) left_label = ui.Label("", name="left_label", alignment=ui.Alignment.CENTER, width=ui.Percent(100), height=ui.Percent(100), style={"color":0x99FFFFFF, "font_size":16}) return (center_label, center_bg), (left_label, left_bg) LABEL_WIDTH = 160 LABEL_WIDTH_LIGHT = 235 LABEL_HEIGHT = 18 HORIZONTAL_SPACING = 4 def str_builder( label="", type="stringfield", default_val=" ", tooltip="", on_clicked_fn=None, use_folder_picker=False, read_only=False, item_filter_fn=None, bookmark_label=None, bookmark_path=None, folder_dialog_title="Select Output Folder", folder_button_title="Select Folder", ): """Creates a Stylized Stringfield Widget Args: label (str, optional): Label to the left of the UI element. Defaults to "". type (str, optional): Type of UI element. Defaults to "stringfield". default_val (str, optional): Text to initialize in Stringfield. Defaults to " ". tooltip (str, optional): Tooltip to display over the UI elements. Defaults to "". use_folder_picker (bool, optional): Add a folder picker button to the right. Defaults to False. read_only (bool, optional): Prevents editing. Defaults to False. item_filter_fn (Callable, optional): filter function to pass to the FilePicker bookmark_label (str, optional): bookmark label to pass to the FilePicker bookmark_path (str, optional): bookmark path to pass to the FilePicker Returns: AbstractValueModel: model of Stringfield """ with ui.HStack(): ui.Label(label, width=LABEL_WIDTH, alignment=ui.Alignment.LEFT_CENTER, tooltip=tooltip) str_field = ui.StringField( name="StringField", width=ui.Fraction(1), height=0, alignment=ui.Alignment.LEFT_CENTER, read_only=read_only ).model str_field.set_value(default_val) if use_folder_picker: def update_field(filename, path): if filename == "": val = path elif filename[0] != "/" and path[-1] != "/": val = path + "/" + filename elif filename[0] == "/" and path[-1] == "/": val = path + filename[1:] else: val = path + filename str_field.set_value(val) if on_clicked_fn: on_clicked_fn(val) def set_initial_path(picker): input_path = str_field.get_value_as_string() picker.set_current_directory(input_path) # Doesn't work... #picker.navigate_to(input_path) add_folder_picker_icon( on_click_fn=update_field, on_open_fn=set_initial_path, item_filter_fn=item_filter_fn, bookmark_label=bookmark_label, bookmark_path=bookmark_path, dialog_title=folder_dialog_title, button_title=folder_button_title, ) else: add_line_rect_flourish(False) return str_field def add_folder_picker_icon( on_click_fn, on_open_fn=None, item_filter_fn=None, bookmark_label=None, bookmark_path=None, dialog_title="Select Trajectory File", button_title="Select File", ): def open_file_picker(): def on_selected(filename, path): on_click_fn(filename, path) file_picker.hide() def on_canceled(a, b): file_picker.hide() file_picker = FilePickerDialog( dialog_title, allow_multi_selection=False, apply_button_label=button_title, click_apply_handler=lambda a, b: on_selected(a, b), click_cancel_handler=lambda a, b: on_canceled(a, b), item_filter_fn=item_filter_fn, enable_versioning_pane=False, ) if bookmark_label and bookmark_path: file_picker.toggle_bookmark_from_path(bookmark_label, bookmark_path, True) if on_open_fn: on_open_fn(file_picker) with ui.Frame(width=0, tooltip=button_title): ui.Button( name="IconButton", width=24, height=24, clicked_fn=open_file_picker, style=get_style()["IconButton.Image::FolderPicker"], alignment=ui.Alignment.RIGHT_TOP, ) def multi_btn_builder( label="", type="multi_button", text=None, tooltip=None, on_clicked_fn=None ): """Creates a Row of Stylized Buttons Args: label (str, optional): Label to the left of the UI element. Defaults to "". type (str, optional): Type of UI element. Defaults to "multi_button". count (int, optional): Number of UI elements to create. Defaults to 2. text (list, optional): List of text rendered on the UI elements. Defaults to ["button", "button"]. tooltip (list, optional): List of tooltips to display over the UI elements. Defaults to ["", "", ""]. on_clicked_fn (list, optional): List of call-backs function when clicked. Defaults to [None, None]. Returns: list(ui.Button): List of Buttons """ btns = [] count = len(text) with ui.VStack(): ui.Label(label, width=ui.Fraction(1), alignment=ui.Alignment.CENTER, tooltip=tooltip[0]) ui.Spacer(height=5) for i in range(count): btn = ui.Button( text[i].upper(), name="Button", width=ui.Fraction(1), clicked_fn=on_clicked_fn[i], tooltip=tooltip[i + 1], style=get_style(), alignment=ui.Alignment.LEFT_CENTER, ) if i in [3, 6, 9]: ui.Spacer(height=10) btns.append(btn) if i < count: ui.Spacer(height=5) #add_line_rect_flourish() return btns from string import Template class DeltaTemplate(Template): delimiter = "%" def strfdelta(tdelta, fmt): d = {"D": tdelta.days} hours, rem = divmod(tdelta.seconds, 3600) minutes, seconds = divmod(rem, 60) d["H"] = '{:02d}'.format(hours) d["M"] = '{:02d}'.format(minutes) d["S"] = '{:02d}'.format(seconds) t = DeltaTemplate(fmt) return t.substitute(**d)
7,908
Python
35.615741
185
0.596232
NVlabs/fast-explicit-teleop/srl/teleop/assistance/logging.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import numpy as np import os from omni.kit.widget.filebrowser.filesystem_model import FileSystemItem import h5py SPACEMOUSE_STATE = np.dtype([('trans', '3f'), ('rot', '3f'), ('buttons', 'i')]) POSE_DTYPE = np.dtype([('position', '3f'), ('orientation', '4f') ]) OBJECT_META_DTYPE = np.dtype([("name","S32")]) ROBOT_STATE_DTYPE = np.dtype([('eef_pose', POSE_DTYPE), ('eef_vel_lin', '3f'), ('eef_vel_ang', '3f'), ('joint_positions', '9f'), ('joint_velocities', '9f'), ('applied_joint_positions', '9f'), ('applied_joint_velocities', '9f'), ('target_pose', POSE_DTYPE) ]) UI_STATE_DTYPE = np.dtype([ ('camera_pose', POSE_DTYPE), ('primary_camera', int), ('robot_ghost_joint_positions', '9f'), ('object_ghost_index', int), ('object_ghost_pose', POSE_DTYPE), ('ghost_is_snapped', bool) ]) CONTROLS_STATE_DTYPE = np.dtype([ ('filtered', SPACEMOUSE_STATE), ('raw', SPACEMOUSE_STATE) ]) def get_scene_state_type(n_objects: int): return np.dtype([('poses', POSE_DTYPE, (n_objects,))]) def get_stamped_frame_type(n_objects: int): return np.dtype([('robot_state', ROBOT_STATE_DTYPE), ('scene_state', get_scene_state_type(n_objects)), ('controls_state', CONTROLS_STATE_DTYPE), ('ui_state', UI_STATE_DTYPE), ('step_index', 'i'), ('time', 'f')]) def is_hdf5_file(item: FileSystemItem): _, ext = os.path.splitext(item.path.lower()) return ext in [".hdf5", ".HDF5"] def is_folder(item: FileSystemItem) -> bool: return item.is_folder async def save_log(file_path, frames, metadata, done=lambda: None): num_objects = len(metadata["objects"]) with h5py.File(file_path, 'w') as f: f.attrs.update(metadata) frames_data = np.empty((len(frames),), dtype=get_stamped_frame_type(num_objects)) for i, frame in enumerate(frames): data = frame.data frames_data[i]["robot_state"] = data["robot_state"] frames_data[i]["scene_state"]["poses"] = data["scene_state"] frames_data[i]["controls_state"] = data["controls_state"] frames_data[i]["ui_state"] = data["ui_state"] frames_data[i]["step_index"] = frame.current_time_step frames_data[i]["time"] = frame.current_time f.create_dataset('frames', data=frames_data, compression="gzip") done()
2,717
Python
35.729729
215
0.566434
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/serializable_task.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from typing import Dict, Optional import numpy as np import omni.usd from omni.isaac.core.tasks.base_task import BaseTask from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade import carb import numpy as np import omni.usd from omni.isaac.core.objects import DynamicCylinder, DynamicCone, DynamicCuboid, VisualCuboid, FixedCuboid, GroundPlane from omni.isaac.core.materials import VisualMaterial from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.camera_franka import CameraFranka from srl.teleop.assistance.ghost_franka import GhostFranka from srl.teleop.assistance.ghost_object import make_ghost from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE from srl.teleop.assistance.ghost_object import GhostObject from srl.teleop.assistance.tasks import COLORS class SerializableTask(BaseTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str, offset: Optional[np.ndarray] = None, initial_scene_description = None, ) -> None: self._initial_scene_description = initial_scene_description super().__init__( name=name, offset=offset, ) def get_scene_description(self) -> str: stage = omni.usd.get_context().get_stage() source_layer = stage.GetRootLayer() prim_path = f"/World/{self.name}" export_layer = Sdf.Layer.CreateAnonymous(".usda") paths_map = {} Sdf.CreatePrimInLayer(export_layer, "/Root") Sdf.CopySpec(source_layer, prim_path, export_layer, "/Root") paths_map[prim_path] = "/Root" from srl.teleop.assistance import DATA_DIR for prim in export_layer.rootPrims: update_reference_paths(prim, DATA_DIR, ".") for source_path, target_path in paths_map.items(): update_property_paths(prim, source_path, target_path) return export_layer.ExportToString() def load_scene_description(self, scene_str: str): stage = omni.usd.get_context().get_stage() root_layer = stage.GetRootLayer() import_layer = Sdf.Layer.CreateAnonymous(".usda") import_layer.ImportFromString(scene_str) path_stem = f"/World/{self.name}" # NOTE: The target path _must_ already be an xform prim, or CopySpec below will create # a typeless "over" primspec in this spot, which will cause everything in the tree to not render. paths_map = {} with Sdf.ChangeBlock(): Sdf.CreatePrimInLayer(root_layer, path_stem) Sdf.CopySpec(import_layer, "/Root", root_layer, path_stem) paths_map["/Root"] = path_stem from srl.teleop.assistance import DATA_DIR for created_path in paths_map.values(): prim = root_layer.GetPrimAtPath(created_path) update_reference_paths(prim, ".", DATA_DIR) for source_path, target_path in paths_map.items(): update_property_paths(prim, source_path, target_path) stage.GetPrimAtPath(path_stem).SetTypeName("Scope") def update_property_paths(prim_spec, old_path, new_path): if not prim_spec: return for rel in prim_spec.relationships: rel.targetPathList.explicitItems = [ path.ReplacePrefix(old_path, new_path) for path in rel.targetPathList.explicitItems ] for attr in prim_spec.attributes: attr.connectionPathList.explicitItems = [ path.ReplacePrefix(old_path, new_path) for path in attr.connectionPathList.explicitItems ] for child in prim_spec.nameChildren: update_property_paths(child, old_path, new_path) def update_reference_paths(prim_spec, old_prefix, new_prefix): if prim_spec.HasInfo(Sdf.PrimSpec.ReferencesKey): op = prim_spec.GetInfo(Sdf.PrimSpec.ReferencesKey) items = [] items = op.ApplyOperations(items) prim_spec.ClearReferenceList() new_items = [] for item in items: if item.assetPath.startswith(old_prefix): new_items.append(Sdf.Reference( assetPath=item.assetPath.replace(old_prefix, new_prefix, 1), primPath=item.primPath, layerOffset=item.layerOffset, customData=item.customData, )) else: new_items.append(item) prim_spec.referenceList.Append(new_items[-1]) for child in prim_spec.nameChildren: update_reference_paths(child, old_prefix, new_prefix)
5,488
Python
37.654929
119
0.666545
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/stacking.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Dict, Optional import carb import numpy as np from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.materials import VisualMaterial from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim, RigidContactView from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim, find_matching_prim_paths from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.ghost_object import make_ghost from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE from srl.teleop.assistance.ghost_object import GhostObject from srl.teleop.assistance.tasks import COLORS from srl.teleop.assistance.tasks.serializable_task import SerializableTask from srl.teleop.assistance.tasks.table_task import TableTask from srl.teleop.assistance.tasks.time_limited_task import TimeLimitedTask from srl.teleop.assistance.transforms import get_obj_poses class ContactDebounce: def __init__(self) -> None: self.last_change_timestamp = None self.last_value = None def update(self, contact_matrix, threshold=0.0001): now = time.time() non_zero_contact_forces = np.abs(contact_matrix) > threshold if self.last_value is None: self.last_value = non_zero_contact_forces self.last_change_timestamp = np.zeros_like(self.last_value, dtype=float) self.last_change_timestamp[:] = now return self.last_value changed_mask = non_zero_contact_forces ^ self.last_value expired_mask = (now - self.last_change_timestamp) > 0.3 self.last_value[changed_mask & expired_mask] = non_zero_contact_forces[changed_mask & expired_mask] self.last_change_timestamp[changed_mask & expired_mask] = now return self.last_value class StackingTask(TimeLimitedTask, TableTask, SerializableTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "stacking", n_cuboids=6, varieties=1, offset: Optional[np.ndarray] = None, initial_scene_description = None, max_duration=60 * 2, repeat=False, rng = None ) -> None: self.assets_root_path = get_assets_root_path() self.n_cuboids = n_cuboids self.varieties = varieties self._done = False self.robot = None self._initial_scene_description = initial_scene_description self.repeat = repeat self.contact_debounce = ContactDebounce() if rng is None: rng = np.random.RandomState(0) self._initial_random_state = rng.get_state()[1] self.rng = rng TableTask.__init__(self, name=name, offset=offset, ) SerializableTask.__init__(self, name=name, offset=offset, initial_scene_description=initial_scene_description ) TimeLimitedTask.__init__(self, max_duration) return def get_params(self) -> dict: base = TimeLimitedTask.get_params(self) base.update(TableTask.get_params(self)) base.update({ "n_cuboids" : self.n_cuboids, "varieties": self.varieties, "seed": self._initial_random_state }) return base def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") else: pass UNIT = 0.032 if self._initial_scene_description is not None: self.load_scene_description(self._initial_scene_description) for prim in get_prim_at_path(self.ghosts_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._ghost_objects[name] = GhostObject(prim_path, name=name) for prim in get_prim_at_path(self.task_objects_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._task_objects[name] = RigidPrim(prim_path, name=name) self.add_robot() self.add_ghost_robots() else: from srl.teleop.assistance import DATA_DIR for i, color in enumerate(COLORS): material_raw_prim = add_reference_to_stage(f"{DATA_DIR}/cardboard.usda", f"{self.task_root}/materials/cardboard_color{i}", "Material") raw_material = UsdShade.Material(material_raw_prim) shader = UsdShade.Shader(get_prim_at_path(str(raw_material.GetPath()) + "/Shader")) shader.CreateInput("diffuse_tint", Sdf.ValueTypeNames.Color3f).Set((color[0] * 2, color[1] * 2, color[2] * 2)) self._materials.append(VisualMaterial(material_raw_prim.GetName(), str(raw_material.GetPath()), raw_material, [shader], raw_material)) #self._materials.append((PreviewSurface(prim_path=f"{objects_path}/materials/color{i}", color=np.array(color)))) self._physics_material = PhysicsMaterial( prim_path=f"{self.objects_path}/materials/physics", dynamic_friction=1.0, static_friction=0.2, restitution=0.0, ) sizes = [(UNIT, UNIT, UNIT), (UNIT, UNIT, UNIT * 2), (UNIT, UNIT * 2, UNIT * 2), (UNIT, UNIT, UNIT * 4), (UNIT * 2, UNIT * 2, UNIT * 4)] for i in range(self.n_cuboids): choice = i % self.varieties obj_name = f"cuboid{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.3, .1), (0.5, .3, .1)) new_object = scene.add( DynamicCuboid( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, size=1.0, scale=sizes[choice], visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object new_object._rigid_prim_view.set_sleep_thresholds(np.zeros(2)) meshcollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(new_object.prim) meshcollisionAPI.CreateApproximationAttr().Set("boundingCube") ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) self._ghost_objects[ghost_name] = ghost self.add_robot() self.add_ghost_robots() self._initial_scene_description = self.get_scene_description() self._table_contact_view = RigidContactView(f"{self.task_objects_path}/cuboid*", [self._scene_objects["table_top"].prim_path], name="table_contact_view", apply_rigid_body_api=False) # note self._table_contact_view.name = self._table_contact_view._name self._table_contact_view.is_valid = lambda: True self._table_contact_view.post_reset = lambda: None self._scene.add(self._table_contact_view) self._objects_contact_view = RigidContactView(f"{self.task_objects_path}/cuboid*", find_matching_prim_paths(f"{self.task_objects_path}/cuboid*"), name="objects_contact_view", apply_rigid_body_api=False) self._objects_contact_view.name = self._objects_contact_view._name self._objects_contact_view.is_valid = lambda: True self._objects_contact_view.post_reset = lambda: None self._scene.add(self._objects_contact_view) return def cleanup(self) -> None: return super().cleanup() def rerandomize(self) -> None: for name, object in self._task_objects.items(): object.set_world_pose(self.rng.uniform((.4, -.3, .1), (0.5, .3, .1)), R.random(random_state=self.rng).as_quat()) def pre_step(self, time_step_index: int, simulation_time: float) -> None: TimeLimitedTask.pre_step(self, time_step_index, simulation_time) test = self._objects_contact_view.get_contact_force_matrix() contacts = self.contact_debounce.update(test) Ts = get_obj_poses(self._task_objects.values()) lifted = abs(Ts[0,2,3] - Ts[1,2,3]) > .025 grasping = self.robot.gripper_contents != None in_contact = np.any(contacts[:,:,2]) # Any mutual z forces? if in_contact and lifted and not grasping: if self.repeat: self.rerandomize() else: pass out_of_bounds = np.bitwise_or(Ts[:,:3, 3] > (1.1, .9, 1.5), Ts[:,:3, 3] < (-1.0, -.9, -.75)) if np.any(out_of_bounds): self.rerandomize() return
9,814
Python
44.022936
210
0.606582
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/lifting.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Dict, Optional import carb import numpy as np from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.materials import VisualMaterial from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim, RigidContactView from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.ghost_object import make_ghost from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE from srl.teleop.assistance.ghost_object import GhostObject from srl.teleop.assistance.tasks import COLORS from srl.teleop.assistance.tasks.serializable_task import SerializableTask from srl.teleop.assistance.tasks.table_task import TableTask from srl.teleop.assistance.tasks.time_limited_task import TimeLimitedTask from srl.teleop.assistance.transforms import get_obj_poses class LiftingTask(TimeLimitedTask, TableTask, SerializableTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "lifting", n_cuboids=6, varieties=1, offset: Optional[np.ndarray] = None, initial_scene_description = None, max_duration=60 * 2, repeat=False, rng = None ) -> None: self.assets_root_path = get_assets_root_path() self.n_cuboids = n_cuboids self.varieties = varieties self._done = False self.robot = None self._initial_scene_description = initial_scene_description self.last_settled = 0 self.repeat = repeat if rng is None: rng = np.random.RandomState(0) self._initial_random_state = rng.get_state()[1] self.rng = rng TableTask.__init__(self, name=name, offset=offset, ) SerializableTask.__init__(self, name=name, offset=offset, initial_scene_description=initial_scene_description ) TimeLimitedTask.__init__(self, max_duration) return def get_params(self) -> dict: base = TimeLimitedTask.get_params(self) base.update(TableTask.get_params(self)) base.update({ "n_cuboids" : self.n_cuboids, "varieties": self.varieties, "seed": self._initial_random_state }) return base def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") else: pass UNIT = 0.032 if self._initial_scene_description is not None: self.load_scene_description(self._initial_scene_description) for prim in get_prim_at_path(self.ghosts_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._ghost_objects[name] = GhostObject(prim_path, name=name) for prim in get_prim_at_path(self.task_objects_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._task_objects[name] = RigidPrim(prim_path, name=name) self.add_robot() self.add_ghost_robots() else: from srl.teleop.assistance import DATA_DIR for i, color in enumerate(COLORS): material_raw_prim = add_reference_to_stage(f"{DATA_DIR}/cardboard.usda", f"{self.task_root}/materials/cardboard_color{i}", "Material") raw_material = UsdShade.Material(material_raw_prim) shader = UsdShade.Shader(get_prim_at_path(str(raw_material.GetPath()) + "/Shader")) shader.CreateInput("diffuse_tint", Sdf.ValueTypeNames.Color3f).Set((color[0] * 2, color[1] * 2, color[2] * 2)) self._materials.append(VisualMaterial(material_raw_prim.GetName(), str(raw_material.GetPath()), raw_material, [shader], raw_material)) #self._materials.append((PreviewSurface(prim_path=f"{objects_path}/materials/color{i}", color=np.array(color)))) self._physics_material = PhysicsMaterial( prim_path=f"{self.objects_path}/materials/physics", dynamic_friction=1.0, static_friction=0.2, restitution=0.0, ) sizes = [(UNIT, UNIT, UNIT), (UNIT, UNIT, UNIT * 2), (UNIT, UNIT * 2, UNIT * 2), (UNIT, UNIT, UNIT * 4), (UNIT * 2, UNIT * 2, UNIT * 4)] for i in range(self.n_cuboids): choice = i % self.varieties obj_name = f"cuboid{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.3, .1), (0.5, .3, .1)) new_object = scene.add( DynamicCuboid( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, size=1.0, scale=sizes[choice], visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object new_object._rigid_prim_view.set_sleep_thresholds(np.array((0,0))) meshcollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(new_object.prim) meshcollisionAPI.CreateApproximationAttr().Set("boundingCube") ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) self._ghost_objects[ghost_name] = ghost self._contact_view = RigidContactView(f"{self.task_objects_path}/cuboid*", [self._scene_objects["table_top"].prim_path], name="contact_monitor", apply_rigid_body_api=False) # note self._contact_view.name = self._contact_view._name self._contact_view.is_valid = lambda: True self._contact_view.post_reset = lambda: None self._scene.add(self._contact_view) """self._other_view = RigidContactView(self._scene_objects["table_top"].prim_path, [f"{self.task_objects_path}/cuboid*", ], name="contact_monitor2", apply_rigid_body_api=False) self._other_view.name = self._other_view._name self._other_view.is_valid = lambda: True self._other_view.post_reset = lambda: None self._scene.add(self._other_view)""" self.add_robot() self.add_ghost_robots() self._initial_scene_description = self.get_scene_description() return def cleanup(self) -> None: return super().cleanup() def rerandomize(self) -> None: for name, object in self._task_objects.items(): object.set_world_pose(self.rng.uniform((.4, -.3, .1), (0.5, .3, .1)), R.random(random_state=self.rng).as_quat()) def pre_step(self, time_step_index: int, simulation_time: float) -> None: TimeLimitedTask.pre_step(self, time_step_index, simulation_time) Ts = get_obj_poses(self._task_objects.values()) lifted = abs(Ts[0,2,3]) > .025 grasping = self.robot.gripper_contents != None if time_step_index - self.last_settled > 100 and lifted and grasping: if self.repeat: self.rerandomize() self.last_settled = time_step_index else: pass return
8,528
Python
42.963917
188
0.597444
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/__init__.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. COLORS = [(69,119,170),(102,204,238),(34,136,51), (204,187,168), (238,102,119), (170,51,119)] BRIGHT_COLORS = [(0,119,187),(51,187,238),(0,153,136), (238,119,51), (204,51,17), (238,51,119)] COLORS = [(0,1,1),(1,0,1),(1,1,0), (0,0,1), (0,1,0), (1,0,0)] COLORS = [(0,.37,1),(.983,.13,.98),(.873,.24,0), (1,.1,.1), (0.276,.56,.1), (1,.1,.1), (0.2,0.2,0.2)] CUBOID_FACE_COLORS = [(0,0,1), (0,0,1), (0,1,0), (0,1,0), (1,0,0), (1,0,0)]
575
Python
46.999996
101
0.558261
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/table_task.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from typing import Dict, Optional import numpy as np import omni.usd from omni.isaac.core.tasks.base_task import BaseTask from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade import carb import numpy as np import omni.usd from omni.isaac.core.objects import FixedCuboid, GroundPlane from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.camera_franka import CameraFranka from srl.teleop.assistance.ghost_franka import GhostFranka from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE class TableTask(BaseTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "sorting", offset: Optional[np.ndarray] = None, ) -> None: self._task_objects = {} self._scene_objects = {} self._ghost_objects = {} self._ghost_robots = {} self._contact_view = None self.robot = None self._materials = [] self._physics_material = None self._settings = carb.settings.get_settings() # NOTE: Needed for shadows self._settings.set("/rtx/directLighting/sampledLighting/enabled", True) def add_groundplane( self, prim_path: str, z_position: float = 0, name="ground_plane", static_friction: float = 0.5, dynamic_friction: float = 0.5, restitution: float = 0.8, ) -> None: """[summary] Args: z_position (float, optional): [description]. Defaults to 0. name (str, optional): [description]. Defaults to "default_ground_plane". prim_path (str, optional): [description]. Defaults to "/World/defaultGroundPlane". static_friction (float, optional): [description]. Defaults to 0.5. dynamic_friction (float, optional): [description]. Defaults to 0.5. restitution (float, optional): [description]. Defaults to 0.8. Returns: [type]: [description] """ if self.scene.object_exists(name=name): carb.log_info("ground floor already created with name {}.".format(name)) return self.scene.get_object(self, name=name) from srl.teleop.assistance import DATA_DIR add_reference_to_stage(usd_path=f"{DATA_DIR}/ground_plane.usda", prim_path=prim_path) physics_material = PhysicsMaterial( prim_path=f"{prim_path}/materials/physics", static_friction=static_friction, dynamic_friction=dynamic_friction, restitution=restitution, ) plane = GroundPlane(prim_path=prim_path, name=name, z_position=z_position, physics_material=physics_material) self.scene.add(plane) return plane def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) self.task_root = f"/World/{self.name}" self.objects_path = f"{self.task_root}/objects" self.materials_path = f"{self.task_root}/materials" self.task_objects_path = f"{self.objects_path}/task" self.ghosts_path = f"{self.objects_path}/ghosts" self.robots_path = f"{self.objects_path}/robots" stage = omni.usd.get_context().get_stage() stage.DefinePrim(self.objects_path, "Scope") stage.DefinePrim(self.task_objects_path, "Scope") stage.DefinePrim(self.ghosts_path, "Scope") stage.DefinePrim(self.materials_path, "Scope") stage.DefinePrim(self.robots_path, "Scope") from srl.teleop.assistance import DATA_DIR self.add_groundplane(z_position=-0.83, prim_path=f"{self.task_root}/ground_plane") add_reference_to_stage(usd_path=DATA_DIR + "/table.usd", prim_path=f"{self.objects_path}/table") add_reference_to_stage(usd_path=DATA_DIR + "/lighting.usda", prim_path=f"{self.task_root}/lights") table = XFormPrim(f"{self.objects_path}/table") table_top = FixedCuboid(f"{self.objects_path}/table/top/collider", name="table_top_collider") meshcollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(table_top.prim) meshcollisionAPI.CreateApproximationAttr().Set("boundingCube") table_top.set_collision_enabled(True) table.set_world_pose((0.4, 0.0, -0.427), (1,0,0,1)) self._scene_objects["table_top"] = table_top def add_robot(self): """[summary] Returns: Franka: [description] """ env_path = f"/World/{self.name}/robots" contact_paths=[obj.prim_path for obj in self._task_objects.values()] self.robot = self.scene.add(CameraFranka(prim_path=env_path + "/franka", name="franka", contact_paths=None)) def add_ghost_robots(self): env_path = f"/World/{self.name}/robots" for ghost_index in range(1): ghost_name = f"ghost_franka{ghost_index}" ghost_path = f"{env_path}/{ghost_name}" ghost_robot = self.scene.add(GhostFranka(prim_path=ghost_path, name=ghost_name, material_path=f"/World/{self.name}/materials/ghost")) self._ghost_robots[ghost_name] = ghost_robot def get_ghost_objects(self) -> Dict[str, RigidPrim]: return self._ghost_objects def get_scene_objects(self) -> Dict[str, RigidPrim]: return self._scene_objects def get_observations(self) -> np.ndarray: """[summary] Returns: dict: [description] """ observations = np.empty((len(self._task_objects),), dtype=POSE_DTYPE) for i, obj in enumerate(self._task_objects.values()): observations[i] = obj.get_world_pose() return observations def get_params(self) -> dict: object_info = [] for obj in self._task_objects.values(): object_info.append((obj.name)) return { "objects" : np.array(object_info, dtype=OBJECT_META_DTYPE), "robot_name": self.robot.name, "scene_description": self._initial_scene_description, } def set_object_poses(self, poses: np.ndarray): with Sdf.ChangeBlock(): for i, obj in enumerate(self._task_objects.values()): pose = poses[i] obj.set_world_pose(*pose) def post_reset(self) -> None: for name, robot in self._ghost_robots.items(): robot.hide() robot.gripper.open() self.robot.set_joint_positions(np.array([-0.01561307, -1.2717055, -0.02706644, -2.859138, -0.01377442, 2.0233166, 0.7314064, 0.04, 0.04], dtype=np.float32)) self.robot.gripper.open() return super().post_reset()
7,454
Python
39.961538
145
0.632815
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/sorting.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from functools import partial import math from typing import Dict, Optional import carb import numpy as np import omni.usd from omni.isaac.core.objects import DynamicCylinder, DynamicCone, DynamicCuboid, VisualCuboid, FixedCuboid, GroundPlane from omni.isaac.core.materials import VisualMaterial from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.camera_franka import CameraFranka from srl.teleop.assistance.ghost_franka import GhostFranka from srl.teleop.assistance.ghost_object import make_ghost from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE from srl.teleop.assistance.ghost_object import GhostObject from srl.teleop.assistance.tasks import COLORS from srl.teleop.assistance.tasks.serializable_task import SerializableTask from srl.teleop.assistance.tasks.table_task import TableTask class SortingTask(TableTask, SerializableTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "sorting", n_cuboids=18, n_cylinders=6, n_cones=6, varieties=1, offset: Optional[np.ndarray] = None, initial_scene_description = None, rng = None ) -> None: self.assets_root_path = get_assets_root_path() self.n_cuboids = n_cuboids self.n_cylinders = n_cylinders self.n_cones = n_cones self._zones = {} self._initial_scene_description = initial_scene_description if rng is None: rng = np.random.RandomState(0) self.rng = rng TableTask.__init__(self, name=name, offset=offset, ) SerializableTask.__init__(self, name=name, offset=offset, initial_scene_description=initial_scene_description ) def get_params(self) -> dict: object_info = [] for obj in self._task_objects.values(): object_info.append(obj.name) return { "n_cuboids" : self.n_cuboids, "n_cylinders" : self.n_cylinders, "n_cones" : self.n_cones, "objects" : np.array(object_info, dtype=OBJECT_META_DTYPE), "robot_name": self.robot.name, "scene_description": self._initial_scene_description } def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") else: pass UNIT = 0.032 zones_path = f"{self.objects_path}/zones" stage = omni.usd.get_context().get_stage() stage.DefinePrim(zones_path, "Scope") if self._initial_scene_description is not None: self.load_scene_description(self._initial_scene_description) for prim in get_prim_at_path(self.ghosts_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._ghost_objects[name] = GhostObject(prim_path, name=name) for prim in get_prim_at_path(self.task_objects_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._task_objects[name] = RigidPrim(prim_path, name=name) for prim in get_prim_at_path(zones_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._zones[name] = GeometryPrim(prim_path, name=name) self.add_robot() self.add_ghost_robots() else: from srl.teleop.assistance import DATA_DIR for i, color in enumerate(COLORS): material_raw_prim = add_reference_to_stage(f"{DATA_DIR}/cardboard.usda", f"{self.task_root}/materials/cardboard_color{i}", "Material") raw_material = UsdShade.Material(material_raw_prim) shader = UsdShade.Shader(get_prim_at_path(str(raw_material.GetPath()) + "/Shader")) shader.CreateInput("diffuse_tint", Sdf.ValueTypeNames.Color3f).Set((color[0] * 2, color[1] * 2, color[2] * 2)) self._materials.append(VisualMaterial(material_raw_prim.GetName(), str(raw_material.GetPath()), raw_material, [shader], raw_material)) #self._materials.append((PreviewSurface(prim_path=f"{objects_path}/materials/color{i}", color=np.array(color)))) self._physics_material = PhysicsMaterial( prim_path=f"{self.objects_path}/materials/physics", dynamic_friction=1.0, static_friction=0.2, restitution=0.0, ) sizes = [(UNIT, UNIT, UNIT), (UNIT, UNIT, UNIT * 2), (UNIT, UNIT * 2, UNIT * 2), (UNIT, UNIT, UNIT * 4), (UNIT * 2, UNIT * 2, UNIT * 4)] for i in range(self.n_cuboids): choice = i % len(sizes) obj_name = f"cuboid{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.3, .2), (0.5, .3, .4)) new_object = scene.add( DynamicCuboid( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, size=1.0, scale=sizes[choice], visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object """new_object.geom.GetDisplayColorAttr().Set(cube_vert_colors) UsdShade.MaterialBindingAPI(new_object.geom).UnbindAllBindings() UsdGeom.Primvar(new_object.geom.GetDisplayColorAttr()).SetInterpolation("uniform")""" """viz = viz_axis(prim_path + "/axis", None, None) viz.set_local_scale((20, 20, 20))""" meshcollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(new_object.prim) meshcollisionAPI.CreateApproximationAttr().Set("boundingCube") ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) self._ghost_objects[ghost_name] = ghost sizes = [(UNIT / 2., UNIT * 2), (UNIT / 2., UNIT * 4), (UNIT, UNIT * 2), (UNIT, UNIT * 4), (UNIT * 2, UNIT * 4)] for i in range(self.n_cylinders): choice = i % len(sizes) obj_name = f"cylinder{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.3, .2), (0.5, .3, .4)) new_object = scene.add( DynamicCylinder( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, radius=sizes[choice][0], height=sizes[choice][1], visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object # PhysX has custom collision implementations for cones and cylinders new_object.prim.CreateAttribute(PhysxSchema.Tokens.physxCollisionCustomGeometry, Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) ghost.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) ghost.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) self._ghost_objects[ghost_name] = ghost for i in range(self.n_cones): choice = i % len(sizes) obj_name = f"cone{i}" prim_path = f"{self.task_objects_path}/{obj_name}" name = f"cone{i}" rand_pos = self.rng.uniform((.4, -.3, .2), (0.5, .3, .4)) new_object = scene.add( DynamicCone( name=name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, radius=sizes[choice][0], height=sizes[choice][1], visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object new_object.prim.CreateAttribute(PhysxSchema.Tokens.physxCollisionCustomGeometry, Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) ghost.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) ghost.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) self._ghost_objects[ghost_name] = ghost #new_object.prim.SetInstanceable(True) for i in range(len(sizes)): choice = i % len(sizes) prim_path = f"{zones_path}/zone{i}" name = f"zone{i}" zone = scene.add( FixedCuboid( name=name, position=(.3, .3 + (i * -.15), .00125 / 2), orientation=(1.,0.,0.,0.), prim_path=prim_path, size=1.0, scale=(.1, .1, .00125), visual_material=self._materials[choice], physics_material=self._physics_material ) ) self._zones[name] = zone self.add_robot() self.add_ghost_robots() self._initial_scene_description = self.get_scene_description() #delete_prim("/World/sorting/objects") #self.load_scene_description(self._initial_scene_description) self._scene_objects.update(self._zones) def cleanup(self) -> None: return super().cleanup() def is_done(self): return False
12,525
Python
47.929687
150
0.559441
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/subset_stacking.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from functools import partial import math import time from typing import Dict, Optional import carb import numpy as np import omni.usd from omni.isaac.core.objects import DynamicCuboid, DynamicCylinder from omni.isaac.core.materials import VisualMaterial from omni.isaac.core.prims import RigidPrim, XFormPrim, GeometryPrim, RigidContactView from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, add_reference_to_stage, delete_prim, find_matching_prim_paths from pxr import Usd, UsdPhysics, Sdf, PhysxSchema, UsdShade from scipy.spatial.transform import Rotation as R from omni.isaac.core.materials import PreviewSurface, PhysicsMaterial from srl.teleop.assistance.ghost_object import make_ghost from srl.teleop.assistance.logging import OBJECT_META_DTYPE, POSE_DTYPE from srl.teleop.assistance.ghost_object import GhostObject from srl.teleop.assistance.tasks import COLORS from srl.teleop.assistance.tasks.serializable_task import SerializableTask from srl.teleop.assistance.tasks.table_task import TableTask from srl.teleop.assistance.tasks.time_limited_task import TimeLimitedTask class SubsetStackingTask(TimeLimitedTask, TableTask, SerializableTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "subset_stacking", n_cuboids=36, n_cylinders=0, varieties=4, n_stackable=3, n_stacks=2, offset: Optional[np.ndarray] = None, initial_scene_description = None, rng = None ) -> None: self.assets_root_path = get_assets_root_path() self.n_cuboids = n_cuboids self.n_cylinders = n_cylinders self.n_stackable = n_stackable self.n_stacks = n_stacks self.varieties = varieties self.robot = None self._initial_scene_description = initial_scene_description if rng is None: rng = np.random.RandomState(0) self._initial_random_state = rng.get_state()[1] self.rng = rng TableTask.__init__(self, name=name, offset=offset, ) SerializableTask.__init__(self, name=name, offset=offset, initial_scene_description=initial_scene_description ) TimeLimitedTask.__init__(self, 60 * 7) return def get_params(self) -> dict: base = TimeLimitedTask.get_params(self) base.update(TableTask.get_params(self)) base.update({ "n_cuboids" : self.n_cuboids, "n_cylinders": self.n_cylinders, "n_stackable": self.n_stackable, "n_stacks": self.n_stacks, "varieties": self.varieties, "seed": self._initial_random_state }) return base def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") else: pass UNIT = 0.032 if self._initial_scene_description is not None: self.load_scene_description(self._initial_scene_description) for prim in get_prim_at_path(self.ghosts_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._ghost_objects[name] = GhostObject(prim_path, name=name) for prim in get_prim_at_path(self.task_objects_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._task_objects[name] = RigidPrim(prim_path, name=name) table_top = GeometryPrim(f"{self.objects_path}/table/top") self.add_robot() self.add_ghost_robots() else: from srl.teleop.assistance import DATA_DIR for i, color in enumerate(COLORS): material_raw_prim = add_reference_to_stage(f"{DATA_DIR}/cardboard.usda", f"{self.task_root}/materials/cardboard_color{i}", "Material") raw_material = UsdShade.Material(material_raw_prim) shader = UsdShade.Shader(get_prim_at_path(str(raw_material.GetPath()) + "/Shader")) shader.CreateInput("diffuse_tint", Sdf.ValueTypeNames.Color3f).Set((color[0] * 2, color[1] * 2, color[2] * 2)) self._materials.append(VisualMaterial(material_raw_prim.GetName(), str(raw_material.GetPath()), raw_material, [shader], raw_material)) #self._materials.append((PreviewSurface(prim_path=f"{objects_path}/materials/color{i}", color=np.array(color)))) self._physics_material = PhysicsMaterial( prim_path=f"{self.objects_path}/materials/physics", dynamic_friction=1.0, static_friction=0.2, restitution=0.0, ) sizes = [(UNIT, UNIT, UNIT), (UNIT, UNIT, UNIT * 2), (UNIT, UNIT * 2, UNIT * 2), (UNIT, UNIT, UNIT * 4), (UNIT * 2, UNIT * 2, UNIT * 4)] for i in range(self.n_cuboids): choice = i % self.varieties material = self._materials[-1] if i < self.n_stackable * self.n_stacks: material = self._materials[i // self.n_stackable] obj_name = f"cuboid{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.35, .2), (0.5, .35, .4)) new_object = scene.add( DynamicCuboid( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, size=1.0, scale=sizes[choice], visual_material=material, physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object new_object._rigid_prim_view.set_sleep_thresholds(np.zeros(2)) meshcollisionAPI = UsdPhysics.MeshCollisionAPI.Apply(new_object.prim) meshcollisionAPI.CreateApproximationAttr().Set("boundingCube") ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) self._ghost_objects[ghost_name] = ghost sizes = [(UNIT / 2., UNIT * 2), (UNIT / 2., UNIT * 4)] for i in range(self.n_cylinders): choice = i % len(sizes) obj_name = f"cylinder{i}" prim_path = f"{self.task_objects_path}/{obj_name}" rand_pos = self.rng.uniform((.4, -.35, .2), (0.5, .35, .4)) new_object = scene.add( DynamicCylinder( name=obj_name, position=rand_pos, orientation=R.random(random_state=self.rng).as_quat(), prim_path=prim_path, radius=sizes[choice][0], height=sizes[choice][1], visual_material=self._materials[-1], physics_material=self._physics_material ) ) self._task_objects[obj_name] = new_object # PhysX has custom collision implementations for cones and cylinders new_object.prim.CreateAttribute(PhysxSchema.Tokens.physxCollisionCustomGeometry, Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) new_object.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) ghost_name = obj_name + "_ghost" ghost_path = f"{self.ghosts_path}/{ghost_name}" ghost = scene.add(make_ghost(prim_path, ghost_path, ghost_name, material_path=f"{self.task_root}/materials/ghost")) ghost.prim.CreateAttribute("refinementEnableOverride", Sdf.ValueTypeNames.Bool, True).Set(True) ghost.prim.CreateAttribute("refinementLevel", Sdf.ValueTypeNames.Int, True).Set(2) self._ghost_objects[ghost_name] = ghost self.add_robot() self.add_ghost_robots() self._initial_scene_description = self.get_scene_description() """self._objects_contact_view = RigidContactView(f"{self.task_objects_path}/cuboid*", find_matching_prim_paths(f"{self.task_objects_path}/cuboid*"), name="objects_contact_view", apply_rigid_body_api=False) self._objects_contact_view.name = self._objects_contact_view._name self._objects_contact_view.is_valid = lambda: True self._objects_contact_view.post_reset = lambda: None self._scene.add(self._objects_contact_view)""" #delete_prim("/World/sorting/objects") #self.load_scene_description(self._initial_scene_description) def pre_step(self, time_step_index: int, simulation_time: float) -> None: TimeLimitedTask.pre_step(self, time_step_index, simulation_time)
10,043
Python
47.057416
217
0.590561
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/reaching.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Dict, Optional import numpy as np from omni.isaac.core.objects import VisualSphere from omni.isaac.core.prims import RigidPrim, XFormPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from srl.teleop.assistance.logging import OBJECT_META_DTYPE from srl.teleop.assistance.tasks.serializable_task import SerializableTask from srl.teleop.assistance.tasks.table_task import TableTask from srl.teleop.assistance.tasks.time_limited_task import TimeLimitedTask from srl.teleop.assistance.transforms import T2pq, make_rotation_matrix, pack_Rp, pq2T, transform_dist from omni.isaac.franka import KinematicsSolver TARGET_POSES = [ pack_Rp(make_rotation_matrix((0,0,-1), (-1,0,0)), [.3, -.2, .35]), pack_Rp(make_rotation_matrix((0,0,-1), (-1,0,0)), [.3, .2, .35]), pack_Rp(make_rotation_matrix((0,0,-1), (-1,0,0)), [.3, 0, .07]), pack_Rp(make_rotation_matrix((0,0,-1), (.5,.5,0)), [.3, 0, .07]), pack_Rp(make_rotation_matrix((0,.1,-1), (-.5,.5,0)), [.35, .10, .12]), pack_Rp(make_rotation_matrix((1,0,-1), (-1,0,-1)), [.80, 0, .10])] class ReachingTask(TimeLimitedTask, TableTask, SerializableTask): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "reaching", n_targets=6, offset: Optional[np.ndarray] = None, initial_scene_description = None, rng = None, max_duration=60 * 5 ) -> None: self.assets_root_path = get_assets_root_path() self.n_targets = n_targets self._done = False self._current_target = 0 self._current_target_T = None self._scene_objects = {} self._ghost_objects = {} self._ghost_robots = {} self.robot = None self._initial_scene_description = initial_scene_description if rng is None: rng = np.random.RandomState(0) self.rng = rng TableTask.__init__(self, name=name, offset=offset, ) SerializableTask.__init__(self, name=name, offset=offset, initial_scene_description=initial_scene_description ) TimeLimitedTask.__init__(self, max_duration=max_duration) def get_params(self) -> dict: base = TimeLimitedTask.get_params(self) base.update(TableTask.get_params(self)) base.update({ "n_targets" : self.n_targets, }) return base def set_up_scene(self, scene: Scene) -> None: super().set_up_scene(scene) if self._initial_scene_description is not None: self.load_scene_description(self._initial_scene_description) for prim in get_prim_at_path(self.task_objects_path).GetChildren(): prim_path = prim.GetPath() name = prim.GetName() self._task_objects[name] = XFormPrim(prim_path, name=name) self.add_robot() self.add_ghost_robots() else: from srl.teleop.assistance import DATA_DIR obj_name = f"target0" prim_path = f"{self.task_objects_path}/{obj_name}" target_p, target_q = T2pq(TARGET_POSES[0], as_float_array=True) target_prim = VisualSphere(prim_path, name=obj_name, position=target_p, orientation=target_q, radius=0.005, color=np.array((1.,1.,1.))) #target_prim = add_reference_to_stage(usd_path=DATA_DIR + "/axis.usda", prim_path=prim_path) #target_prim = XFormPrim(str(target_prim.GetPath()), name=obj_name, position=target_p, orientation=target_q, scale=(0.3,0.3,0.3)) new_object = scene.add( target_prim ) self._task_objects[obj_name] = new_object self.add_robot() self.add_ghost_robots() self._initial_scene_description = self.get_scene_description() self.solver = KinematicsSolver(self.robot) return def cleanup(self) -> None: return super().cleanup() def post_reset(self) -> None: self._current_target = 0 return super().post_reset() def set_target(self, T): pq = T2pq(T, as_float_array=True) self._task_objects["target0"].set_world_pose(*pq) actions, success = self.solver.compute_inverse_kinematics( *pq ) display_config = np.empty(9) display_config[:7] = actions.joint_positions[:7] # IK Doesn't solve for the fingers. Manually set open values display_config[7] = 0.04 display_config[8] = 0.04 self._ghost_robots['ghost_franka0'].set_joint_positions(display_config) self._ghost_robots['ghost_franka0'].show(gripper_only=True) self._current_target_T = T def pre_step(self, sim_step, sim_time): TimeLimitedTask.pre_step(self, sim_step, sim_time) if self._current_target_T is None: self.set_target(TARGET_POSES[self._current_target]) eff_prim = XFormPrim(self.robot.prim_path + "/panda_hand/eff") ee_p, ee_q = eff_prim.get_world_pose() ee_T = pq2T(ee_p, ee_q) #print(rot_diff) if transform_dist(ee_T, self._current_target_T, .15) < .03: # advance to next target self._current_target = (self._current_target + 1) % len(TARGET_POSES) self.set_target(TARGET_POSES[self._current_target])
5,982
Python
38.104575
147
0.608492
NVlabs/fast-explicit-teleop/srl/teleop/assistance/tasks/time_limited_task.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Optional class TimeLimitedTask(): """[summary] Args: name (str, optional): [description]. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, max_duration: Optional[int] ) -> None: self.max_duration = max_duration self._start_wallclock_stamp = None self._done = False def get_params(self) -> dict: non_optional = self.max_duration if self.max_duration is not None else -1 return { "max_duration": non_optional, } @property def time_remaining(self): if not self.max_duration: return None return self.max_duration - (time.time() - self._start_wallclock_stamp) def is_done(self): return self._done def pre_step(self, time_step_index: int, simulation_time: float) -> None: now = time.time() if self._start_wallclock_stamp is None: self._start_wallclock_stamp = time.time() if self.max_duration and now - self._start_wallclock_stamp > self.max_duration: self._done = True
1,512
Python
29.87755
94
0.609127
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/motion.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.assistance.motion_commander import MotionCommand, PlannedMoveCommand from srl.teleop.assistance.transforms import T2pq, pq2T, transform_dist from omni.isaac.cortex.df import DfAction, DfSetLockState, DfStateMachineDecider, DfStateSequence import numpy as np import quaternion class PullTowardConfig(DfAction): def enter(self): pass def step(self): ctx = self.context joint_config = self.params ctx.tools.commander.set_command(PlannedMoveCommand(joint_config)) def exit(self): pass class SetUserTarget(DfAction): def step(self): ctx = self.context new_target = self.params ctx.tools.commander.set_command(MotionCommand(*new_target)) current_target_pose = ctx.tools.commander.target_prim.get_world_pose() error = transform_dist(pq2T(*current_target_pose), pq2T(*new_target), .15) if error < .02: return None else: return self class Reset(DfStateMachineDecider): def __init__(self): # This behavior uses the locking feature of the decision framework to run a state machine # sequence as an atomic unit. super().__init__( DfStateSequence( [ DfSetLockState(set_locked_to=True, decider=self), SetUserTarget(), DfSetLockState(set_locked_to=False, decider=self), ] ) ) self.is_locked = False
1,648
Python
30.113207
97
0.64017
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/select.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import itertools import numpy as np from omni.isaac.cortex.df import DfAction, DfDecision, DfDecider, DfLogicalState from srl.teleop.assistance.behavior.scene import ContextTools, SceneContext from srl.teleop.assistance.behavior.control import ControlContext from srl.teleop.assistance.proposals import GraspNormalProposalTable, GroupedPoseProposalTable, InvalidReason, PlanePlaneProposal, GraspProposal, \ PlacementProposal from srl.teleop.assistance.suggestions import check_grasp_orientation_similarity from srl.teleop.assistance.transforms import R_to_angle, orthogonalize, pack_Rp, transform_dist, unpack_T from srl.teleop.assistance.transforms import T2pq, make_rotation_matrix, pq2T, invert_T, normalized import time import carb from srl.teleop.assistance.profiling import profile from srl.teleop.assistance.viz import viz_axis_named_T, viz_axis_named_Ts class SelectionContext(DfLogicalState): def __init__(self, tools: ContextTools, scene_context: SceneContext, control_context: ControlContext, use_surrogates: bool, use_snapping: bool): super().__init__() self.tools = tools self.scene_context = scene_context self.control_context = control_context self.grasp_distribution = None self.placement_distribution = None self.plane_distribution = None self.current_grasp_proposal = None self.current_placement_proposal = None self.cursor_ray = None self.use_surrogates = use_surrogates self.use_snapping = use_snapping self.scene_mesh_dirty = False self.time_at_last_placement_update = None self.fixed_proposal = None self.monitors = [ SelectionContext.monitor_grasp_proposals, SelectionContext.monitor_placement_proposals ] def has_grasp_proposal(self): return self.current_grasp_proposal is not None @property def suggestion_is_snap(self): if self.current_grasp_proposal and isinstance(self.current_grasp_proposal._table, GroupedPoseProposalTable): return True return False def has_placement_proposal(self): return self.current_placement_proposal is not None def get_current_proposal(self): if self.fixed_proposal is not None: return self.fixed_proposal if self.has_grasp_proposal(): return self.current_grasp_proposal elif self.has_placement_proposal(): return self.current_placement_proposal def reset_placement_proposal(self): self.current_placement_proposal = None def reset_grasp_proposal(self): self.current_grasp_proposal = None def monitor_grasp_proposals(self): scene_ctx = self.scene_context self.scene_mesh_dirty |= scene_ctx.scene_mesh_changed if self.tools.grasp_table: self.tools.grasp_table.objects_dirty |= scene_ctx.moving_objects else: return if scene_ctx.object_in_gripper is not None: return # Wait until we have an initial collision env if scene_ctx.scene_mesh is None: return table = self.tools.grasp_table dirty_mask = np.full_like(table._owners, False, dtype=bool) moving_mask = np.full_like(table._owners, False, dtype=bool) in_gripper_mask = np.full_like(table._owners, False, dtype=bool) for i, (dirty, moving) in enumerate(zip(table.objects_dirty, scene_ctx.moving_objects)): mask = table.mask_by_owner(i) if dirty: dirty_mask |= mask if moving: moving_mask |= mask if i == scene_ctx.object_in_gripper_i: in_gripper_mask = mask if dirty and not moving: # We're only going to update this object if it isn't moving! table.objects_dirty[i] = False # This object moved! That means any cached IK solves are no longer valid. Clear them out table._configs[dirty_mask] = np.nan table.invalidate(moving_mask, InvalidReason.MOVING) check_mask = dirty_mask & ~moving_mask & ~in_gripper_mask if check_mask.sum() == 0 and self.scene_mesh_dirty: check_mask = np.full_like(table._owners, True, dtype=bool) self.scene_mesh_dirty = False candidate_Ts_world = scene_ctx.obj_Ts[table._owners[check_mask]] @ table._poses[check_mask] dists = np.linalg.norm(candidate_Ts_world[:,:3,3], axis=1) sideness = np.linalg.norm(candidate_Ts_world[:, :3, 2] @ np.array([[1,0,0],[0,1,0]]).T, axis=1) # Start by assuming the suggestion is valid table._valid[check_mask] = InvalidReason.VALID.value table.invalidate_submask(check_mask, dists > 1.0, InvalidReason.UNREACHABLE) # No side grasps table.invalidate_submask(check_mask, (sideness > .6) & (candidate_Ts_world[:,2,3] < .3), InvalidReason.UNREACHABLE) proposable_check_indices, = np.where(table.proposable[check_mask]) proposable_checked_mask = np.zeros(check_mask.sum(), dtype=bool) proposable_checked_mask[proposable_check_indices] = True world_col_res = self.tools.geometry_scene.query(candidate_Ts_world[proposable_check_indices], from_mesh=self.tools.gripper_collision_mesh, to_mesh=scene_ctx.scene_mesh, render=False, query_name=f"grasp_scene") table.invalidate_submask(proposable_checked_mask, world_col_res != 0, InvalidReason.SCENE_COLLISION) table.update_world_poses_masked(check_mask,candidate_Ts_world) def monitor_placement_proposals(self): now = time.time() scene_ctx = self.scene_context if self.tools.placement_table: for table in self.tools.placement_table: table.objects_dirty |= scene_ctx.moving_objects if scene_ctx.object_in_gripper is None: return obj_to_ee_T = invert_T(scene_ctx.ee_to_obj_T) # Check whether any current proposals became invalid gripper_obj_i = scene_ctx.object_in_gripper_i gripper_obj = scene_ctx.object_in_gripper # We rate limit this to avoid jumpiness, and reduce CPU burden if self.time_at_last_placement_update is None or (now - self.time_at_last_placement_update) > 1.: table = self.tools.placement_table[gripper_obj_i] moving_mask = np.full_like(table._owners, False, dtype=bool) in_gripper_mask = np.full_like(table._owners, False, dtype=bool) for i, moving in enumerate(scene_ctx.moving_objects): mask = table.mask_by_owner(i) if moving: moving_mask |= mask if i == gripper_obj_i: in_gripper_mask = mask table.objects_dirty[i] = False # Give a heads up that we can't vouch for proposal quality while the object is moving table.invalidate(moving_mask, InvalidReason.MOVING) check_mask = ~moving_mask & ~in_gripper_mask support_T = scene_ctx.obj_Ts candidate_Ts = table._poses[check_mask] #wrt to the support obj ee_Ts_support = candidate_Ts @ obj_to_ee_T world_Ts = support_T[table._owners[check_mask]] @ ee_Ts_support placement_Ts = world_Ts @ invert_T(obj_to_ee_T) dists = np.linalg.norm(world_Ts[:,:3,3], axis=1) sideness = np.linalg.norm(world_Ts[:, :3, 2] @ np.array([[1,0,0],[0,1,0]]).T, axis=1) is_top_grasp = check_grasp_orientation_similarity(world_Ts, axis_z_filter=np.array((0.,0.,-1.)), axis_z_filter_thresh=.3) # Start by assuming the suggestion is valid table._valid[:] = InvalidReason.VALID.value table.invalidate_submask(check_mask, dists > 1.0, InvalidReason.UNREACHABLE) table.invalidate_submask(check_mask, (sideness > .6) & (world_Ts[:,2,3] < .3), InvalidReason.UNREACHABLE) #suggestions_table.invalidate_submask(check_mask, ~is_top_grasp, InvalidReason.UNREACHABLE) proposable_check_indices, = np.where(table.proposable[check_mask]) proposable_checked_mask = np.zeros(check_mask.sum(), dtype=bool) proposable_checked_mask[proposable_check_indices] = True # Would the gripper collide with the support object? Happens often with side alignments gripper_collisions = self.tools.geometry_scene.query(world_Ts[proposable_check_indices], from_mesh=self.tools.gripper_collision_mesh, to_mesh=scene_ctx.scene_mesh) table.invalidate_submask(proposable_checked_mask, gripper_collisions != 0, InvalidReason.SCENE_COLLISION) # Shrink the gripper object mesh back a bit to see if the volume where it needs to go is roughly empty proposable_check_indices, = np.where(table.proposable[check_mask]) proposable_checked_mask[:] = False proposable_checked_mask[proposable_check_indices] = True scene_collisions = scene_ctx.tools.geometry_scene.query(placement_Ts[proposable_check_indices], gripper_obj.prim, scene_ctx.scene_mesh, from_mesh_scale=0.95, query_name="place") table.invalidate_submask(proposable_checked_mask, scene_collisions != 0, InvalidReason.SCENE_COLLISION) table.update_world_poses_masked(check_mask, world_Ts) self.time_at_last_placement_update = now class SelectDispatch(DfDecider): """ Responsible for deciding whether to update the current suggestion """ def enter(self): self.add_child("select_grasp_suggestion", SelectGraspProposal()) self.add_child("select_placement_suggestion", SelectPlacementProposal()) self.add_child("select_grasp_normal_suggestion", SelectGraspNormalProposal()) self.add_child("select_placement_plane_suggestion", SelectPlacementPlaneProposal()) self.add_child("do_nothing", DfAction()) def decide(self): ctx = self.context scene_ctx = self.context.scene_context control_ctx = self.context.control_context obj_in_gripper = scene_ctx.object_in_gripper if len(scene_ctx.objects) == 0 or not control_ctx.user_gave_motion or control_ctx.assistance_in_use: # No objects to provide assistance for # If user isn't driving, we won't change the selection. Makes it easy to "rest" the system if control_ctx.assistance_in_use: # If user is opting into assistance, don't change the selection out from under them, and hide the cursor ctx.cursor_ray = None return DfDecision("do_nothing") elif not scene_ctx.should_suggest_placements: return DfDecision("do_nothing") elif obj_in_gripper is not None: ctx.reset_grasp_proposal() if ctx.use_surrogates: return DfDecision("select_placement_plane_suggestion", (obj_in_gripper)) else: table = scene_ctx.tools.placement_table[scene_ctx.object_in_gripper_i] if table and not table.empty(): return DfDecision("select_placement_suggestion", (obj_in_gripper, table)) elif scene_ctx.should_suggest_grasps: ctx.reset_placement_proposal() if ctx.use_surrogates: return DfDecision("select_grasp_normal_suggestion") else: grasp_proposals = ctx.tools.grasp_table if grasp_proposals and not grasp_proposals.empty(): return DfDecision("select_grasp_suggestion", (ctx.tools.grasp_table)) return DfDecision("do_nothing") class SelectPlacementPlaneProposal(DfAction): def step(self): from srl.teleop.assistance.behavior.display import AVAILABLE_COLOR_KEY, AVAILABLE_DOT_COLOR_KEY, SNAPPABLE_COLOR_KEY, SNAPPED_COLOR_KEY, UNAVAILABLE_COLOR_KEY ctx = self.context scene_ctx = self.context.scene_context ctx.current_placement_proposal = None gripper_obj = self.params gripper_obj_i = scene_ctx.objects.index(gripper_obj) gripper_obj_T = pq2T(*gripper_obj.get_world_pose()) plane_table = scene_ctx.tools.plane_table scene_ctx.tools.plane_table._object_poses[gripper_obj_i] = gripper_obj_T if ctx.use_snapping and ctx.tools.placement_table: snaps_table = ctx.tools.placement_table[gripper_obj_i] if snaps_table._poses_world is not None: ctx.placement_distribution = np.full(len(snaps_table), AVAILABLE_DOT_COLOR_KEY) ctx.placement_distribution[~snaps_table.proposable] = UNAVAILABLE_COLOR_KEY else: ctx.placement_distribution = None elif not ctx.use_snapping: snaps_table = None ctx.placement_distribution = None # Support geometry is in object frame # Mask to only look at the object we're holding object_mask = np.empty((len(plane_table.facet_object_owner), 3), dtype=bool) object_mask[:] = (plane_table.facet_object_owner != gripper_obj_i)[:, None] support_normals = np.ma.masked_where(object_mask, plane_table.support_normals, copy=False) #support_centroids = ma.masked_where(object_mask, self.tools.plane_table.support_centroids, copy=False) # Figure out what way Z axis of end effector is pointing in the object frmae ee_dir_in_obj = scene_ctx.ee_to_obj_T[:3,:3].T[:,2] scores = support_normals.dot(ee_dir_in_obj) closest_to_normal = scores.argmax() in_gripper_support_face = closest_to_normal ee_p, ee_q = ctx.tools.commander.get_fk_pq() in_gripper_support_face_i = in_gripper_support_face in_gripper_support_centroid = plane_table.get_centroids_world(in_gripper_support_face_i) in_gripper_support_normal_world = plane_table.get_normals_world(in_gripper_support_face_i) hit_path, hit_pos, _, hit_dist = ctx.tools.ray_cast(in_gripper_support_centroid, in_gripper_support_normal_world, ignore_obj_handler=lambda path: ctx.tools.should_ignore_in_raycast(path, gripper_obj.prim_path)) ctx.cursor_ray = in_gripper_support_centroid, in_gripper_support_normal_world, hit_dist dists = np.linalg.norm(plane_table.get_centroids_world() - ee_p, axis=1) dists[plane_table._valid != InvalidReason.VALID.value] = float('inf') dists[plane_table.facet_object_owner == gripper_obj_i] = float('inf') if hit_path: hit_obj = None for i, obj in enumerate(itertools.chain(scene_ctx.objects, scene_ctx.tools.scene_objects.values())): if obj.prim_path == hit_path: hit_obj = obj hit_obj_i = i #print(hit_obj) break if hit_obj: # Take the object we hit by default dists[plane_table.facet_object_owner != hit_obj_i] = float('inf') closest_i = np.argmin(dists) if dists[closest_i] == float("inf") or hit_pos is None: # No valid plane ctx.current_placement_proposal = None return plane_table.update_object_poses(np.vstack((scene_ctx.obj_Ts, scene_ctx.fixed_Ts))) if ctx.current_placement_proposal is None or (isinstance(ctx.current_placement_proposal, PlanePlaneProposal) and ctx.current_placement_proposal.place_obj != gripper_obj): proposal = PlanePlaneProposal(plane_table, closest_i, in_gripper_support_face) elif ctx.current_placement_proposal and isinstance(ctx.current_placement_proposal, PlanePlaneProposal): proposal = ctx.current_placement_proposal if proposal.support_index != closest_i: proposal = PlanePlaneProposal(plane_table, closest_i, in_gripper_support_face) else: proposal = PlanePlaneProposal(plane_table, closest_i, in_gripper_support_face) # Alternative point solution from projecting straight down #current_in_plane_p = proposal.project_to_constraint(proposal.place_centroid_world, proposal.place_centroid) current_in_plane_p = proposal.project_to_constraint(hit_pos, proposal.place_centroid) #proposal.T_world = proposal.support_obj_T @ proposal.get_placement_T() @ invert_T(assist_ctx.ee_to_obj_T) #viz_axis_named_T("placement", proposal.get_placement_T(), (.2,.2,.2)) ee_T = ctx.tools.commander.get_fk_T() ee_ax = ee_T[:3, 0] ee_ay = ee_T[:3,1] # Try to project X and Y axes onto the placement plane # NOTE: This assumes that the robot is at (0,0,0) vec_to_base = -proposal.support_centroid_world # Strategy: Project end effector X and Y to be orthogonal to the current placement normal and then again # to be orthogonal to the support normal. Then we'll have two fully specified rotations which we can # rotate into alignment which minimize the amount of twisting that needs to happen # Define a new world rotation: z out of the placement surface, other two axes as projections of gripper axes proposed_face_R = np.array([ee_ax, ee_ay, proposal.place_normal_world]).T try: face_R = orthogonalize(proposed_face_R, prioritize=(2,0,1)) except np.linalg.LinAlgError as e: face_R = make_rotation_matrix(proposal.place_normal_world, vec_to_base) #viz_axis_named_Rp("on_obj", face_R, proposal.place_centroid_world, scale=(.2,.2,.2)) proposed_solution_R = np.array([ee_ax, ee_ay, -proposal.support_normal_world]).T try: solution_R = orthogonalize(proposed_solution_R, prioritize=(2,0,1)) except np.linalg.LinAlgError as e: solution_R = make_rotation_matrix(-proposal.support_normal_world, vec_to_base) #viz_axis_named_Rp("proj_sol", solution_R, current_in_plane_p, scale=(.2,.2,.2)) # Subtract out the original object orientation, leaving just the rotation that takes us from the object to the new frame obj_to_sol_R = gripper_obj_T[:3,:3].T @ face_R proposal.T_world = pack_Rp(solution_R @ obj_to_sol_R.T, current_in_plane_p) @ invert_T(scene_ctx.ee_to_obj_T) if ctx.use_snapping and snaps_table and snaps_table._poses_world is not None: snap_Ts = snaps_table._poses_world snap_scores = transform_dist(snap_Ts, proposal.T_world, R_weight=.15) snap_scores[~snaps_table.proposable] = float('inf') closest_point_snap_i = np.argmin(snap_scores) if snap_scores[closest_point_snap_i] < 0.05: ctx.placement_distribution[:] = AVAILABLE_COLOR_KEY ctx.placement_distribution[~snaps_table.proposable] = UNAVAILABLE_COLOR_KEY ctx.placement_distribution[closest_point_snap_i] = SNAPPED_COLOR_KEY proposal = PlacementProposal(closest_point_snap_i, snaps_table, scene_ctx.objects[snaps_table._owners[closest_point_snap_i]], gripper_obj) offset_T = proposal.T_world.copy() offset_T = offset_T @ scene_ctx.ee_to_obj_T offset_T[2,3] += 0.005 collisions = scene_ctx.tools.geometry_scene.query(offset_T[None], gripper_obj.prim, scene_ctx.scene_mesh, render=False, query_name="place") if collisions[0] > 0: if isinstance(proposal, PlacementProposal): proposal.mark_invalid(InvalidReason.SCENE_COLLISION) return #viz_axis_named_T("final", proposal.T_world, scale=(.15,.15,.15)) ctx.current_placement_proposal = proposal return class SelectPlacementProposal(DfAction): def __init__(self): self.start_T = None self.start_T_stamp = None self.memory = None self.prior = None def step(self): from srl.teleop.assistance.behavior.display import AVAILABLE_COLOR_KEY, AVAILABLE_DOT_COLOR_KEY, SNAPPABLE_COLOR_KEY, SNAPPED_COLOR_KEY, UNAVAILABLE_COLOR_KEY ctx = self.context scene_ctx = self.context.scene_context gripper_obj, table = self.params Ts = table._poses_world if Ts is None: return if self.memory is None or len(self.prior) != len(Ts): self.memory = np.zeros((len(Ts)), dtype=float) if self.prior is None or len(self.prior) != len(Ts): self.prior = np.zeros((len(Ts)), dtype=float) mask = table.proposable ee_p, ee_q = ctx.tools.commander.get_fk_pq() ee_T = pq2T(ee_p, ee_q) now = time.time() if self.start_T_stamp is None or now - self.start_T_stamp > 2.: self.start_T = ee_T self.start_T_stamp = now pairwise_dist = transform_dist(ee_T, Ts[mask], .15) self.prior[mask] = np.exp(-pairwise_dist) self.prior[mask] /= self.prior[mask].sum() self.prior[~mask] = 0 s_to_u_cost = approx_traj_cost(self.start_T, ee_T) u_to_g_costs = approx_traj_cost(ee_T, Ts[mask]) s_to_g_costs = approx_traj_cost(self.start_T, Ts[mask]) # Eq. 9 in Formalizing Assitive Teleop, because # above is using a quadratic cost self.memory[mask] = (np.exp(-s_to_u_cost - u_to_g_costs) / np.exp(-s_to_g_costs)) self.memory[~mask] = 0 if self.context.placement_distribution is None or len(self.context.placement_distribution) != len(Ts): ctx.placement_distribution = np.ones(len(Ts)) #ctx.tools.viewport_scene.manipulator.set_grasp_distribution(ctx.grasp_distribution) ctx.placement_distribution[:] = AVAILABLE_DOT_COLOR_KEY ctx.placement_distribution[~table.proposable] = UNAVAILABLE_COLOR_KEY placement_scores = self.memory * self.prior best_i = np.argmax(placement_scores) if placement_scores[best_i] == float("-inf"): ctx.current_placement_proposal = None return ctx.placement_distribution[best_i] = SNAPPED_COLOR_KEY support_obj = scene_ctx.objects[table._owners[best_i]] current_prop = ctx.current_placement_proposal if current_prop: if current_prop.identifier == best_i and current_prop.support_obj == support_obj: return ctx.current_placement_proposal = PlacementProposal(best_i, table, support_obj, gripper_obj) def approx_traj_cost(T1, T2, R_weight=.1): # eq 7 from 10.1007/978-3-319-33714-2_10, squared R1_inv = np.swapaxes(T1[...,:3,:3], -1, -2) R2 = T2[...,:3,:3] return np.linalg.norm(T2[..., :3, 3] - T1[...,:3,3], axis=-1) + (2 * R_weight ** 2 * (1 - (np.trace(R1_inv @ R2, axis1=-1, axis2=-2) / 3))) class SelectGraspProposal(DfAction): def __init__(self): self.memory = None self.prior = None self.start_T = None self.start_T_stamp = None def step(self): from srl.teleop.assistance.behavior.display import AVAILABLE_COLOR_KEY, SNAPPABLE_COLOR_KEY, SNAPPED_COLOR_KEY, UNAVAILABLE_COLOR_KEY ctx = self.context table = self.params scene_ctx = self.context.scene_context Ts = table._poses_world if Ts is None: return if self.memory is None: self.memory = np.ones((len(Ts)), dtype=float) if self.prior is None: self.prior = np.ones((len(Ts)), dtype=float) # viz_axis_named_Ts("grasp_props", Ts) ee_T = scene_ctx.tools.commander.get_fk_T() now = time.time() if self.start_T_stamp is None or now - self.start_T_stamp > 2.: self.start_T = ee_T self.memory[:] = 1 self.start_T_stamp = now # pairwise_dist = transform_dist(ee_T, Ts, .15) s_to_u_cost = approx_traj_cost(self.start_T, ee_T) u_to_g_costs = approx_traj_cost(ee_T, Ts) s_to_g_costs = approx_traj_cost(self.start_T, Ts) # Eq. 9 in Formalizing Assitive Teleop, because # above is using a quadratic cost self.memory[:] = (np.exp(-s_to_u_cost - u_to_g_costs) / np.exp(-s_to_g_costs)) if ctx.grasp_distribution is None: ctx.grasp_distribution = np.ones_like(self.prior) self.prior[:] = np.exp(-pairwise_dist) self.prior[:] /= self.prior[:].sum() scores = self.memory * self.prior scores[~table.proposable] = float("-inf") ctx.grasp_distribution[:] = AVAILABLE_COLOR_KEY ctx.grasp_distribution[~table.proposable] = UNAVAILABLE_COLOR_KEY # Pick the max best_i = np.argmax(scores) #print(i, highest_prob) if scores[best_i] == float("-inf"): ctx.current_grasp_proposal = None return ctx.grasp_distribution[best_i] = SNAPPED_COLOR_KEY current_prop = ctx.current_grasp_proposal # Don't override accepted proposals if current_prop is not None: if best_i != current_prop.identifier: #viz_axis_named_T("cur_grasp_prop", grasp_proposals[i].T_world) ctx.current_grasp_proposal = GraspProposal(best_i, table) else: # No current proposal to take care of ctx.current_grasp_proposal = GraspProposal(best_i, table) class SelectGraspNormalProposal(DfAction): def get_cursor_T(self, body, point, normal, distance): scene_ctx = self.context.scene_context if not body: return None target_obj = None target_obj_i = None for i, obj in enumerate(scene_ctx.objects): if obj.prim_path == body: target_obj = obj target_obj_i = i break if target_obj is None: return None ee_T = scene_ctx.tools.commander.get_fk_T() ee_R, ee_p = unpack_T(ee_T) carb.profiler.begin(1, "select_grasp_normal(make_table)", active=True) table = GraspNormalProposalTable(target_obj, ee_T, point, normal) table._valid[:] = InvalidReason.VALID.value sideness = np.linalg.norm(table.grasp_Ts[:, :3, 2] @ np.array([[1,0,0],[0,1,0]]).T, axis=1) # No side grasps beneath 30cm table.invalidate((sideness > .6) & (table.grasp_Ts[:,2,3] < .3), InvalidReason.UNREACHABLE) carb.profiler.end(1, True) if scene_ctx.scene_mesh is None: return initial_check_mask = table.proposable with profile("initial_collision_check"): collisions, contact_points = scene_ctx.tools.geometry_scene.query_grasp_contacts(table.grasp_Ts[initial_check_mask], scene_ctx.tools.gripper_collision_mesh, scene_ctx.scene_mesh, render=False, query_name="normal") table.invalidate_submask(table.proposable, collisions > 0, InvalidReason.SCENE_COLLISION) """left_T = table.grasp_Ts[best_i].copy() right_T = table.grasp_Ts[best_i].copy() left_T[:3, 3] += left_T[:3, 1] * (.04 - contact_points[best_i, 0]) right_T[:3, 3] -= right_T[:3, 1] * (.04 - contact_points[best_i, 1]) viz_axis_named_T("left_t", left_T, scale=(.2,.2,.2)) viz_axis_named_T("right_t", right_T,scale=(.2,.2,.2))""" #viz_axis_named_T("old", table.grasp_Ts[0], scale=(.1,.1,.1)) if table.proposable.sum() == 0: return None collision_free_mask = collisions == 0 left_shift_amount = (.04 - contact_points[collision_free_mask,1]) - (.04 - contact_points[collision_free_mask, 0]) / 2 recheck_ind = np.where(initial_check_mask)[0][collision_free_mask] to_check_again = table.grasp_Ts[recheck_ind].copy() to_check_again[:, :3, 3] -= to_check_again[:, :3, 1] * left_shift_amount[:, None] #viz_axis_named_T("new", table.grasp_Ts[0], scale=(.1,.1,.1)) with profile("collision_check_post_adjust"): new_collisions = scene_ctx.tools.geometry_scene.query(to_check_again, scene_ctx.tools.gripper_collision_mesh, scene_ctx.scene_mesh, render=False, query_name="normal") successfully_moved_ind = recheck_ind[new_collisions == 0] table.grasp_Ts[successfully_moved_ind] = to_check_again[new_collisions == 0] carb.profiler.begin(1, "select_grasp_normal(calcs)", active=True) rot_to_grasp = ee_R.T @ table.grasp_Ts[table.proposable, :3, :3] rot_diff = R_to_angle(rot_to_grasp) # Show equally good (wrt z axis rotation) grasps #viz_axis_named_Ts("best_rots", table.grasp_Ts[best_rot_i], scale=(0.01, 0.01, 0.01)) best_rot_i = np.where(rot_diff == rot_diff.min())[0] standoff_subset = contact_points[collision_free_mask][best_rot_i, 2] best_subset_standoff_i = np.where(standoff_subset == standoff_subset.min())[0] best_i = np.where(table.proposable)[0][best_rot_i[best_subset_standoff_i][0]] carb.profiler.end(1, True) if not table.valid[best_i]: return None return best_i, table def step(self): from srl.teleop.assistance.behavior.display import AVAILABLE_COLOR_KEY, SNAPPABLE_COLOR_KEY, SNAPPED_COLOR_KEY, UNAVAILABLE_COLOR_KEY ctx = self.context scene_ctx = self.context.scene_context ee_T = scene_ctx.tools.commander.get_fk_T() ee_R, ee_p = unpack_T(ee_T) # Where is the tip of the gripper pointing ee_az = ee_T[:3, 2] snaps = ctx.tools.grasp_table if ctx.grasp_distribution is None and ctx.use_snapping and snaps._poses_world is not None: ctx.grasp_distribution = np.full(len(snaps), -4.) ctx.grasp_distribution[~snaps.proposable] = float('-inf') elif not ctx.use_snapping: ctx.grasp_distribution = None if snaps._poses_world is not None: snap_Ts = snaps._poses_world else: snap_Ts = np.empty((0,4,4)) disp_to_snap = snap_Ts[:, :3, 3] - ee_p dist_to_snap = np.linalg.norm(disp_to_snap, axis=1) dir_to_snap = disp_to_snap / np.expand_dims(dist_to_snap, axis=1) # Angle between z axis of gripper (point dir) and each grasp position point_dir_scores = np.arccos(dir_to_snap.dot(ee_az)) body, point, normal, distance = ctx.tools.ray_cast(ee_p, ee_az, ignore_obj_handler=ctx.tools.should_ignore_in_raycast) target_obj = None target_obj_i = None for i, obj in enumerate(scene_ctx.objects): if obj.prim_path == body: target_obj = obj target_obj_i = i break ctx.cursor_ray = ee_p, ee_az, distance cursor_results = self.get_cursor_T(body, point, normal, distance) cone_cutoff = .2 if cursor_results: cursor_i, table = cursor_results cursor_T = table.grasp_Ts[cursor_i] if snaps._poses_world is None or not ctx.use_snapping: # The snaps haven't loaded yet ctx.current_grasp_proposal = GraspProposal(cursor_i, table) return #viz_axis_named_T("cursor_T", cursor_T) snap_scores = transform_dist(snap_Ts, cursor_T, R_weight=.15) snap_scores[~snaps.proposable] = float('inf') closest_snap_i = np.argmin(snap_scores) ctx.grasp_distribution[:] = AVAILABLE_COLOR_KEY ctx.grasp_distribution[snaps._owners == target_obj_i] = SNAPPABLE_COLOR_KEY ctx.grasp_distribution[~snaps.proposable] = UNAVAILABLE_COLOR_KEY if snap_scores[closest_snap_i] < 0.05: ctx.grasp_distribution[closest_snap_i] = SNAPPED_COLOR_KEY ctx.current_grasp_proposal = GraspProposal(closest_snap_i, snaps) else: ctx.current_grasp_proposal = GraspProposal(cursor_i, table) elif ctx.use_snapping and target_obj is None and snaps._poses_world is not None: # Missed the object (so no cursor results). Try to provide a snap snap_scores = transform_dist(snap_Ts, ee_T, .15) # Only select amongst those we are pointing at snap_scores[point_dir_scores > cone_cutoff] = float('inf') snap_scores[~snaps.proposable] = float('inf') closest_snap_i = np.argmin(snap_scores) ctx.grasp_distribution[point_dir_scores <= cone_cutoff] = SNAPPABLE_COLOR_KEY ctx.grasp_distribution[point_dir_scores > cone_cutoff] = AVAILABLE_COLOR_KEY ctx.grasp_distribution[~snaps.proposable] = UNAVAILABLE_COLOR_KEY if snap_scores[closest_snap_i] == float('inf'): ctx.current_grasp_proposal = None else: ctx.grasp_distribution[closest_snap_i] = SNAPPED_COLOR_KEY ctx.current_grasp_proposal = GraspProposal(closest_snap_i, snaps) else: # Keep the old proposal if it's close enough to the current collision point if ctx.current_grasp_proposal and isinstance(ctx.current_grasp_proposal._table, GraspNormalProposalTable) and np.linalg.norm(point - ctx.current_grasp_proposal._table.point) < 0.1: pass else: ctx.current_grasp_proposal = None if ctx.grasp_distribution is not None: ctx.grasp_distribution[:] = AVAILABLE_COLOR_KEY ctx.grasp_distribution[~snaps.proposable] = UNAVAILABLE_COLOR_KEY
33,511
Python
47.357864
225
0.630778
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/control.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import time from typing import Callable import numpy as np from omni.isaac.cortex.df import DfAction, DfDecider, DfDecision, DfLogicalState from srl.teleop.assistance.proposals import PlacementProposal, make_approach_params_for_proposal, sigmoid from .scene import ContextTools, SceneContext from .motion import PullTowardConfig, Reset from srl.teleop.assistance.motion_commander import VelocityMotionCommand, MotionCommand, calc_shifted_approach_target from srl.teleop.assistance.transforms import T2pq, invert_T, normalized, pq2T, R_to_rot_vector from srl.teleop.assistance.ui import AssistanceMode, ControlFrame from srl.spacemouse.buttons import SpaceMouseButtonDebouncer, DEVICE_BUTTON_STRUCT_INDICES from srl.spacemouse.spacemouse import SpaceMouse from omni.isaac.core.utils.rotations import euler_angles_to_quat import quaternion class ControlContext(DfLogicalState): CONTROL_MAPPING = { # Pro Mouse "CTRL": "ASSIST", "ALT": "ASSIST", "ESC": "ASSIST", "SHIFT": "GRIPPER", "ROLL CLOCKWISE": "SWAP VIEW", "F": "SWAP VIEW", "T": "SWAP VIEW", "R": "SWAP VIEW", "ROTATION": "SWAP VIEW", "FIT": "HOME", "MENU": "HOME", # 2 Button Mouse "LEFT": "GRIPPER", "RIGHT": "ASSIST" } COMMAND_TO_BUTTONS = {} def __init__(self, tools: ContextTools, spacemouse: SpaceMouse, control_frame: ControlFrame, assistance_mode: AssistanceMode, scene_context: SceneContext, avoid_obstacles: bool): super().__init__() for k, v in ControlContext.CONTROL_MAPPING.items(): ControlContext.COMMAND_TO_BUTTONS[v] = ControlContext.COMMAND_TO_BUTTONS.get(v, []) + [k] self.tools = tools self.command = None self.button_command_names = ("GRIPPER", None, "ASSIST", None, None, "HOME", "SWAP VIEW") self.button_command = False, False, False, False, False, False, None self.spacemouse = spacemouse self.spacemouse_debouncer = SpaceMouseButtonDebouncer(DEVICE_BUTTON_STRUCT_INDICES[self.spacemouse.name], {"SHIFT", "LEFT", "RIGHT"}, False, 0.3) self.scene_context = scene_context self.gripper_opened = np.sum(tools.robot.gripper.get_joint_positions()) > .05 self.monitors = [ ControlContext.monitor_control_received, ] self.assistance_in_use = False self.user_gave_motion = False self.avoid_obstacles = avoid_obstacles self.current_command_text = "" self.control_frame = control_frame self.assistance_mode = assistance_mode # Needs to be provided after construction self.selection_context = None def monitor_control_received(self): control = self.spacemouse.get_controller_state() if control is None: return self.command = None stamp, trans, rot, raw_buttons = control buttons = self.spacemouse_debouncer.update(raw_buttons) self.update_current_command_text(buttons) def buttons_mapped(command): value = False for button_name in ControlContext.COMMAND_TO_BUTTONS[command]: value |= buttons[button_name] return value values = [] for i, command_name in enumerate(self.button_command_names): if isinstance(command_name, tuple): hit = False for sub_control in command_name: if buttons_mapped(sub_control): values.append(sub_control) hit = True if not hit: values.append(None) elif command_name is None: values.append(False) else: values.append(buttons_mapped(command_name)) self.button_command = tuple(values) if not np.allclose(np.hstack((trans, rot)), np.array([0,0,0,0,0,0]), atol=1e-4): self.command = trans, rot else: self.command = None def control_to_twist(self, trans, rot): step = self.tools.world.get_physics_dt() # Normalize control by sim step size so increasing sim frequency doesn't make controller more sensitive trans = np.array(trans) rot = np.array(rot) trans *= step rot *= step # Flip X and Y to match sim trans[[0,1]] = trans[[1,0]] trans[1] *= -1 dori_world = quaternion.from_float_array(euler_angles_to_quat(rot)) return trans, quaternion.as_rotation_vector(dori_world) def update_current_command_text(self, buttons): if buttons.value == 0: # Nothing is being pressed right now self.current_command_text = "" else: active_controls = set() for button_name, command_name in ControlContext.CONTROL_MAPPING.items(): if buttons[button_name]: active_controls.add(command_name) self.current_command_text = " ".join(list(active_controls)) def get_control_frames(self, frame_preference: ControlFrame): perm_rot = np.identity(3) perm_rot[:, 0] *= -1 if frame_preference is ControlFrame.END_EFFECTOR: perm = np.identity(3) perm[:, 0] *= -1 perm[:, 2] *= -1 return perm, perm_rot elif frame_preference is ControlFrame.MIXED: ee_R = self.tools.commander.get_fk_R() return ee_R.T, perm_rot elif frame_preference is ControlFrame.WORLD: ee_R = self.tools.commander.get_fk_R() camera_rotated_R = ee_R.T.copy() camera_rotated_R[:, 0] *= -1 camera_rotated_R[:, 1] *= -1 perm_rot = np.identity(3) perm_rot[:, 1] *= 1 perm_rot[:, 2] *= -1 return camera_rotated_R, camera_rotated_R @ perm_rot class ControlDispatch(DfDecider): def __init__(self, view_change_callback: Callable): super().__init__() self.view_change_callback = view_change_callback def enter(self): self.add_child("reset", Reset()) self.add_child("pull_toward_config", PullTowardConfig()) self.add_child("do_nothing", DfAction()) def decide(self): ctx = self.context scene_ctx = self.context.scene_context selection_ctx = self.context.selection_context robot = ctx.tools.robot ctx.assistance_in_use = False ctx.user_gave_motion = False gripper, cancel, pull, reset, bypass, modifier1, view_change = ctx.button_command # Gripper and view change should apply no matter what other buttons are currently being held if gripper: # Have we already tried to open? If so, interpret as request to close if ctx.gripper_opened: robot.gripper.close() else: robot.gripper.open() # User expressed intent to close, and we tried ctx.gripper_opened = not ctx.gripper_opened if view_change is not None and self.view_change_callback is not None: self.view_change_callback(view_change) current_proposal = selection_ctx.get_current_proposal() if modifier1: # Pull back to home config return DfDecision("pull_toward_config", (robot.HOME_CONFIG)) # When we're driving the robot, repel from objects if ctx.command is not None and ctx.avoid_obstacles: scene_ctx.disable_near_obstacles() else: scene_ctx.disable_all_obstacles() if ctx.command is not None: if current_proposal and not bypass and \ (ctx.assistance_mode == AssistanceMode.FORCED_FIXTURE or ctx.assistance_mode == AssistanceMode.VIRTUAL_FIXTURE): # Interface is in a mode where we're going to limit their velocities trans, rot = ctx.command trans = current_proposal.map_velocity_input(ctx.tools.commander.get_current_p(), trans) else: trans, rot = ctx.command if ctx.assistance_mode == AssistanceMode.FORCED_FIXTURE and current_proposal: # TODO: Move this forcing into the map_velocity_input implementation and make amount of forcing a float param pose_T = current_proposal.T_world pose = T2pq(pose_T) # FIXME: no effect until I can enhance the motion command interface frame_trans, frame_rot = ctx.get_control_frames(ctx.control_frame) linear_vel, angular_vel = ctx.control_to_twist(trans, rot) approach_params = None # Shape control towards the suggestion if the user is holding that button if pull and current_proposal: ctx.assistance_in_use = True prop_T = current_proposal.T_world ee_T = ctx.tools.commander.get_fk_T() approach_params = make_approach_params_for_proposal(current_proposal) if approach_params: offset_T = prop_T.copy() offset_T[:3, 3] = calc_shifted_approach_target(prop_T, ee_T, approach_params) else: offset_T = prop_T target_T = invert_T(ee_T) @ offset_T dist_to_prop = np.linalg.norm(target_T[:3,3]) lin_to_prop = normalized(target_T[:3,3]) * np.linalg.norm(linear_vel) #min(dist_to_prop, 1/20, np.linalg.norm(linear_vel)) aa_to_prop = R_to_rot_vector(target_T[:3,:3]) theta_to_prop = np.linalg.norm(aa_to_prop) aa_to_prop = normalized(aa_to_prop) * np.linalg.norm(angular_vel) #min(theta_to_prop, 1/20, np.linalg.norm(angular_vel)) alpha = sigmoid(-dist_to_prop, -.3, 5) #viz_axis_named_T("twist", ee_T @ integrate_twist(lin_to_prop, aa_to_prop, 1)) #linear_vel = (1 - alpha) * linear_vel + (alpha * (lin_to_prop @ frame_trans)) #angular_vel = (1 - alpha) * angular_vel + (alpha * (aa_to_prop @ frame_rot)) linear_vel = linear_vel + (alpha * (lin_to_prop @ frame_trans)) angular_vel = angular_vel + (alpha * (aa_to_prop @ frame_rot)) ctx.tools.commander.set_command( VelocityMotionCommand( linear_vel, angular_vel, frame_trans, frame_rot ) ) if not pull: # We only consider updating the proposals if the user is moving the robot. # But if they're asking to be pulled, we won't pull the current suggestion out from under you. # This makes the system easy to "put to rest" by simply taking your hands off the controls. ctx.user_gave_motion = True return DfDecision("do_nothing") elif pull: # No command, just pull toward the current target current_proposal = selection_ctx.get_current_proposal() if current_proposal is not None: current_proposal.T_world ctx.assistance_in_use = True approach_params = make_approach_params_for_proposal(current_proposal) # current_proposal.T_obj @ invert_T(pq2T(*scene_ctx.object_in_gripper.get_world_pose())) """if isinstance(current_proposal, PlacementProposal): # For some reason placements are sometimes slightly offset at the end of the pull. It seems # to be a controller issue... ee_delta = current_proposal.T_world @ invert_T(ctx.tools.commander.get_eef_T()) obj_delta = current_proposal.get_placement_T() @ invert_T(pq2T(*scene_ctx.object_in_gripper.get_world_pose())) offsets = np.linalg.norm(ee_delta[:3,3]), np.linalg.norm(obj_delta[:3,3])""" ctx.tools.commander.set_command(MotionCommand( *T2pq(current_proposal.T_world), approach_params=approach_params )) else: ctx.tools.commander.set_command( VelocityMotionCommand( np.array((0, 0, 0)), np.array((0, 0, 0)) ) ) else: ctx.tools.commander.set_command( VelocityMotionCommand( np.array((0,0,0)), np.array((0,0,0)) ) ) return DfDecision("do_nothing")
12,838
Python
41.939799
182
0.584281
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/scene.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. import itertools import time from typing import Dict, List import carb import numpy as np from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.cortex.dfb import DfLogicalState from omni.isaac.debug_draw import _debug_draw from omni.isaac.franka import KinematicsSolver from omni.physx import get_physx_scene_query_interface from srl.teleop.assistance.check_collision import WarpGeometeryScene from srl.teleop.assistance.motion_commander import MotionCommander from srl.teleop.assistance.proposals import InvalidReason, PlanePlaneProposalTable, GroupedPoseProposalTable from srl.teleop.assistance.transforms import get_obj_poses, invert_T, pq2T, transform_dist, FrameVelocityEstimator from srl.teleop.assistance.scene import AssistanceManipulator class ContextTools: def __init__(self, world, viewport_manipulator: AssistanceManipulator, objects: Dict[str, RigidPrim], scene_objects: Dict[str, RigidPrim], obstacles, object_ghosts: List[RigidPrim], robot, robot_ghosts, commander: MotionCommander, grasp_table: GroupedPoseProposalTable, placement_table: GroupedPoseProposalTable, plane_table: PlanePlaneProposalTable, geometry_scene: WarpGeometeryScene, gripper_collision_mesh): self.world = world self.viewport_manipulator = viewport_manipulator self.objects = objects self.scene_objects = scene_objects self.obstacles = obstacles self.object_ghosts = object_ghosts self.robot_ghosts = robot_ghosts self.robot = robot self.commander = commander self.solver = KinematicsSolver(self.robot) self.grasp_table = grasp_table self.placement_table = placement_table self.plane_table = plane_table self.geometry_scene = geometry_scene self.gripper_collision_mesh = gripper_collision_mesh self.draw = _debug_draw.acquire_debug_draw_interface() self.physx_query_interface = get_physx_scene_query_interface() self._obj_paths_set = set([obj.prim_path for obj in self.objects.values()]) self._raycastable_paths_set = set([obj.prim_path for obj in self.scene_objects.values()]).union(self._obj_paths_set) self.robot.set_contact_path_filter(lambda path: str(path) in self._obj_paths_set) def ray_cast(self, position, direction, max_dist=10, offset=np.array((0,0,0)), ignore_obj_handler=lambda x: False): origin = (position[0], position[1], position[2]) ray_dir = (direction[0], direction[1], direction[2]) last_hit = None last_hit_dist = float("inf") def report_all_hits(hit): if ignore_obj_handler(hit.rigid_body): return True nonlocal last_hit nonlocal last_hit_dist if hit.distance < last_hit_dist: last_hit_dist = hit.distance last_hit = hit return True self.physx_query_interface.raycast_all(origin, ray_dir, max_dist, report_all_hits) if last_hit: distance = last_hit.distance return last_hit.rigid_body, np.array(last_hit.position), np.array(last_hit.normal), distance return None, None, None, 10000.0 def should_ignore_in_raycast(self, path, also_ignore=None): if also_ignore and path == also_ignore: return True if path not in self._raycastable_paths_set: return True return False class SceneContext(DfLogicalState): def __init__(self, tools: ContextTools, should_suggest_grasps, should_suggest_placements): super().__init__() self.tools = tools self.objects = [] for _, obj in self.tools.objects.items(): self.objects.append(obj) self.obstacle_enabled = {} for obs in itertools.chain(self.tools.objects.values(), self.tools.scene_objects.values()): try: self.tools.commander.add_obstacle(obs) self.obstacle_enabled[obs.name] = True except: pass self.disable_all_obstacles() self.should_suggest_grasps = should_suggest_grasps self.should_suggest_placements = should_suggest_placements self.obj_Ts = get_obj_poses(self.objects) self.fixed_Ts = get_obj_poses(list(self.tools.scene_objects.values())) self.scene_mesh_object_dirty = np.full((len(self.objects),), False, dtype=bool) self.scene_mesh_changed = False # Conservative initialization. Takes us a sim step to be able to see what's actually moving self.moving_objects = np.full((len(self.objects),), True, dtype=bool) self.last_movement_stamps = np.array([time.time() for _ in range(len(self.objects))]) self.object_gripper_rel_T_trackers = FrameVelocityEstimator(tools.world.get_physics_dt()) self.object_in_gripper = None self.object_in_gripper_i = None self.ee_vel_tracker = FrameVelocityEstimator(tools.world.get_physics_dt()) self.ee_to_obj_T = None self.scene_mesh = None self.last_scene_mesh_update = time.time() self.monitors = [ SceneContext.monitor_object_movement, SceneContext.monitor_object_in_gripper, SceneContext.monitor_scene_mesh, SceneContext.monitor_plane_table, SceneContext.monitor_relative_object_dist_vel, ] def get_obj_relative_metrics(self): # These can be used to make heuristic decisions about which object the user is trying to interact with metrics = [] assert False for _, obj_tracker in enumerate(self.object_gripper_rel_T_trackers): T = obj_tracker.T_prev # Check displacement dist = np.linalg.norm(T[:3, 3]) vel = obj_tracker.T_vel[:3, 3] metrics.append((dist,vel)) return metrics def monitor_object_movement(self): obj_poses = get_obj_poses(self.objects) now = time.time() dists = transform_dist(obj_poses, self.obj_Ts, .15) time_deltas = now - self.last_movement_stamps close_mask = dists < 0.005 last_move_timedout_mask = time_deltas > .3 self.moving_objects[close_mask & last_move_timedout_mask] = False self.moving_objects[~close_mask] = True self.obj_Ts[~close_mask] = obj_poses[~close_mask] self.last_movement_stamps[~close_mask] = now def monitor_scene_mesh(self): self.scene_mesh_changed = False self.scene_mesh_object_dirty |= self.moving_objects except_gripper_obj_mask = np.full((len(self.objects)), True) if self.object_in_gripper: except_gripper_obj_mask[self.object_in_gripper_i] = False if np.any(self.scene_mesh_object_dirty[except_gripper_obj_mask]) and not any(self.moving_objects) and (time.time() - self.last_scene_mesh_update) > 1.5: obj_poses = get_obj_poses(self.objects) self.last_scene_mesh_update = time.time() carb.profiler.begin(1, "make_scene_mesh", active=True) to_combine = [] to_combine_xforms = [] for obj, xform in itertools.chain(zip(self.objects, obj_poses), zip(self.tools.scene_objects.values(), self.fixed_Ts)): if self.object_in_gripper == obj: continue if not hasattr(obj, 'geom'): continue to_combine.append(obj.geom) to_combine_xforms.append(xform) self.scene_mesh = self.tools.geometry_scene.combine_geometries_to_mesh(to_combine, to_combine_xforms) carb.profiler.end(1, True) self.scene_mesh_object_dirty[except_gripper_obj_mask] = False # Let scene mesh consumers know they need to revalidate self.scene_mesh_changed = True def monitor_plane_table(self): if not self.tools.plane_table: return self.tools.plane_table.update_object_poses(np.vstack((self.obj_Ts, self.fixed_Ts))) # Let's see which facets of the object look good for placement now # Support geometry is in object frame self.tools.plane_table._valid[:] = InvalidReason.VALID.value support_normals = self.tools.plane_table.get_normals_world() scores = np.arccos(support_normals.dot((0,0,1))) self.tools.plane_table._valid[scores > 0.25] = InvalidReason.UNREACHABLE.value #self.tools.viewport_manipulator.manipulator.invalidate() def monitor_relative_object_dist_vel(self): eef_T = self.tools.commander.get_fk_T() in_gripper_frame = invert_T(eef_T) @ self.obj_Ts self.object_gripper_rel_T_trackers.update(in_gripper_frame) self.ee_vel_tracker.update(eef_T) def monitor_object_in_gripper(self): path_in_hard = self.tools.robot.gripper_contents for i, obj in enumerate(self.objects): if obj.prim_path != path_in_hard: continue if self.object_in_gripper != obj: # Gripper object changed, force the scene mesh to regenerate self.scene_mesh_object_dirty[:] = True self.object_in_gripper = obj self.object_in_gripper_i = i break else: self.object_in_gripper = None self.object_in_gripper_i = None return in_gripper_pos, in_gripper_rot = self.object_in_gripper.get_world_pose() ee_T = self.tools.commander.get_eef_T() #viz_axis_named_T("ee_T", ee_T) gripper_obj_T = pq2T(in_gripper_pos, in_gripper_rot) # "subtract" out the part of the transform that goes to the ee, leaving relative transform ee_to_obj_T = invert_T(ee_T).dot(gripper_obj_T) self.ee_to_obj_T = ee_to_obj_T def disable_near_obstacles(self): ee_T = self.tools.commander.get_fk_T() ee_p = ee_T[:3, 3] ee_point_dir = ee_T[:3, 2] obj_centroids = self.obj_Ts[:, :3,3] # Displacement to each grasp (in world frame) disp_to_grasp = obj_centroids - ee_p dist_to_grasp = np.linalg.norm(disp_to_grasp, axis=1) dir_to_obj = disp_to_grasp / dist_to_grasp[:, None] # Angle between z axis of gripper (point dir) and each grasp position point_dir_scores = dir_to_obj.dot(ee_point_dir) should_disable_collision = ((dist_to_grasp < 0.25) & (point_dir_scores > 0.3)) | (dist_to_grasp < 0.05) for i, should_disable in enumerate(should_disable_collision): obj = self.objects[i] if obj.name not in self.obstacle_enabled: continue active = self.obstacle_enabled[obj.name] if should_disable and active: self.tools.commander.disable_obstacle(self.objects[i]) self.obstacle_enabled[obj.name] = False elif not should_disable and not active: self.tools.commander.enable_obstacle(self.objects[i]) self.obstacle_enabled[obj.name] = True def disable_all_obstacles(self): for obj in self.objects: if obj.name not in self.obstacle_enabled: continue active = self.obstacle_enabled[obj.name] if active: self.tools.commander.disable_obstacle(obj) self.obstacle_enabled[obj.name] = False
11,573
Python
43.344827
160
0.634494
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/network.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from omni.isaac.cortex.dfb import DfNetwork from srl.spacemouse.spacemouse import SpaceMouse from ..ui import AssistanceMode, ControlFrame from .scene import ContextTools, SceneContext from .control import ControlDispatch, ControlContext from .display import DispatchDisplay, DisplayContext from .select import SelectDispatch, SelectionContext from typing import Callable def build_suggestion_display_behavior(tools: ContextTools, scene_context: SceneContext, control_context: ControlContext, selection_context: SelectionContext, label): return DfNetwork(root=DispatchDisplay(), context=DisplayContext(tools, scene_context, control_context, selection_context, label)) def build_control_behavior(tools: ContextTools, spacemouse: SpaceMouse, control_frame: ControlFrame, scene_context: SceneContext, assistance_mode: AssistanceMode, view_change_callback: Callable, avoid_obstacles: bool): return DfNetwork(root=ControlDispatch(view_change_callback), context=ControlContext(tools, spacemouse, control_frame, assistance_mode, scene_context, avoid_obstacles)) def build_suggestion_selection_behavior(tools: ContextTools, scene_context: SceneContext, control_context: ControlContext, use_surrogates: bool, use_snapping: bool): return DfNetwork(root=SelectDispatch(), context=SelectionContext(tools, scene_context, control_context, use_surrogates, use_snapping))
1,680
Python
53.225805
171
0.738095
NVlabs/fast-explicit-teleop/srl/teleop/assistance/behavior/display.py
# Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the MIT License [see LICENSE for details]. from srl.teleop.assistance.behavior.scene import ContextTools, SceneContext from srl.teleop.assistance.behavior.control import ControlContext from srl.teleop.assistance.behavior.select import SelectionContext from srl.teleop.assistance.proposals import InvalidReason, PlanePlaneProposal from srl.teleop.assistance.transforms import invert_T, transform_dist, unpack_T from omni.isaac.cortex.df import DfAction, DfDecider, DfDecision, DfLogicalState import numpy as np import quaternion import carb from srl.teleop.assistance.transforms import T2pq, integrate_twist_stepwise, normalized from omni.isaac.debug_draw import _debug_draw import time import matplotlib.cm as cm from matplotlib.colors import LinearSegmentedColormap from ..profiling import profile GRASP_FORK_START_POINTS = np.array( [[0, -.04, -.04, 1], [0, 0, -.08, 1], [0, -.04, -.04, 1], [0, .04, -.04, 1], [0, 0, -.08, 1]]) GRASP_FORK_END_POINTS = np.array([[0, .04, -.04, 1], [0, 0, -.04, 1], [0., -.04, 0, 1], [0, .04, 0, 1], [0, 0, -.09, 1]]) AXIS_MARKER_STARTS = np.array([[0,0,0, 1], [0,0,0, 1], [0,0,0, 1]]) AXIS_MARKER_ENDS = np.array([[.05,0,0, 1], [0,.05,0, 1], [0,0,.05, 1]]) SNAPPED_COLOR_KEY = np.log(1.0) SNAPPABLE_COLOR_KEY = np.log(0.6) AVAILABLE_COLOR_KEY = np.log(0.1) AVAILABLE_DOT_COLOR_KEY = np.log(0.2) UNAVAILABLE_COLOR_KEY = float("-inf") class DisplayContext(DfLogicalState): def __init__(self, tools: ContextTools, scene_context: SceneContext, control_context: ControlContext, selection_context: SelectionContext, label): super().__init__() self.tools = tools self.scene_context = scene_context self.control_context = control_context self.selection_context = selection_context self.label = label def get_current_robot_ghost_joint_positions(self) -> np.ndarray: if not self.tools.robot_ghosts[0].visible: return np.full((9,), np.NaN) return self.tools.robot_ghosts[0].get_joint_positions() def get_current_object_ghost_index_and_pose(self): for i, obj in enumerate(self.tools.object_ghosts.values()): if obj.visible: return i, obj.get_world_pose() return -1, (np.full((3,), np.NaN), np.full((4,), np.NaN)) class DispatchDisplay(DfDecider): def __init__(self): super().__init__() self.draw = _debug_draw.acquire_debug_draw_interface() ncolors = 256 color_array = cm.hot(np.linspace(0.,1., ncolors)) # change alpha values color_array[:,-1] = np.linspace(0.05,0.7,ncolors) # create a colormap object self.cm = LinearSegmentedColormap.from_list(name='hot_alpha',colors=color_array) self.axes_prim = None self._last_non_empty_command_text = None self._last_non_empty_command_stamp = -1 def enter(self): self.add_child("show_grasp", GraspSuggestionDisplayDispatch()) self.add_child("show_placement", PlacementSuggestionDisplayDispatch()) self.add_child("show_plane_placement", PlaneSuggestionDisplayDispatch()) self.add_child("do_nothing", DfAction()) #UsdGeom.Imageable(self.context.tools.commander.target_prim.prim).MakeInvisible() def draw_cursor_ray(self): scene_ctx = self.context.scene_context selection_ctx = self.context.selection_context if not selection_ctx.cursor_ray: ee_T = selection_ctx.tools.commander.get_fk_T() ee_R, ee_p = unpack_T(ee_T) # Where is the tip of the gripper pointing ee_az = ee_T[:3, 2] gripper_obj_path = scene_ctx.object_in_gripper.prim_path if scene_ctx.object_in_gripper else None dir = ee_az origin = ee_p body, point, normal, dist = selection_ctx.tools.ray_cast(ee_p, ee_az, ignore_obj_handler=lambda path: self.context.tools.should_ignore_in_raycast(path, gripper_obj_path)) else: origin, dir, dist = selection_ctx.cursor_ray hit_pos = np.array(origin) + np.array(dir) * dist self.draw.draw_lines([np.array(origin)], [hit_pos], [(.2,.2,.2, .3)], [4]) self.draw.draw_points([hit_pos], [(1, 1, 1, .6)], [16]) def draw_control_trajectory(self, v, w, v_frame, w_frame): v_goal = v_frame @ v w_goal = w_frame @ w points = integrate_twist_stepwise(v_goal* 3, w_goal * 12, 2, 10) v_dir = normalized(v_goal) w_dir = normalized(w_goal) twist_true = self.context.scene_context.ee_vel_tracker.get_twist() if twist_true is None: return v_true = twist_true[:3] w_true = twist_true[3:] v_true_dir = normalized(v_true) w_true_dir = normalized(w_true) v_agreement = v_true_dir.dot(v_dir) w_agreement = w_true_dir.dot(w_dir) disagreement = 0 if not (np.allclose(v_dir, (0,0,0)) or np.allclose(v_true, (0,0,0))): disagreement += 1 - np.abs(v_agreement) else: # No v goal, disagreement is just magnitude of vel disagreement += np.linalg.norm(v_true) + np.linalg.norm(v_goal) if not (np.allclose(w_dir, (0,0,0)) or np.allclose(w_true, (0,0,0))): disagreement += 1 - np.abs(w_agreement) else: disagreement += np.linalg.norm(w_true) + np.linalg.norm(w_goal) points_h = np.empty((len(points), 4)) points_h[:, :3] = points points_h[:, 3] = 1 points = (self.context.tools.commander.get_eef_T() @ points_h.T).T[:, :3] self.draw.draw_lines_spline(points.tolist(), (1.,1. - disagreement,1. - disagreement,.5), 5, False) def update_command_text_overlay(self, label_models, new_text): label, bg = label_models orig_style = label.style orig_bg_style = bg.style if new_text == "": # No command right now. Dim the text, but don't clear it # until a few seconds have passed orig_style["color"] = 0x66FFFFFF if time.time() - self._last_non_empty_command_stamp > 3.0: self._last_non_empty_command_text = "" orig_bg_style["background_color"] = 0x22000000 elif new_text != self._last_non_empty_command_text: self._last_non_empty_command_stamp = time.time() self._last_non_empty_command_text = new_text orig_style["color"] = 0xFFFFFFFF orig_bg_style["background_color"] = 0x33000000 else: self._last_non_empty_command_stamp = time.time() label.text = self._last_non_empty_command_text label.set_style(orig_style) bg.set_style(orig_bg_style) def draw_grasp_candidate_distribution(self, Ts, dist, standardize=True): if dist is None: return score_probs = np.exp(dist) max_prob = np.max(np.abs(score_probs), axis=0) if max_prob == 0: return non_zero_mask = score_probs != 0 if standardize: pass n_grasps = sum(non_zero_mask) n_points = len(GRASP_FORK_START_POINTS) starts = Ts[non_zero_mask][:,None] @ GRASP_FORK_START_POINTS[None,:, :, None] starts = np.reshape(starts, (-1, 4))[..., :3] ends = Ts[non_zero_mask][:,None] @ GRASP_FORK_END_POINTS[None,:, :, None] ends = np.reshape(ends, (-1, 4))[..., :3] colors = self.cm(score_probs[non_zero_mask]) colors = np.repeat(colors, n_points, axis=0) sizes = np.full(n_grasps * n_points, 3) with profile("draw_call", True): self.context.tools.draw.draw_lines(starts.tolist(), ends.tolist(), colors.tolist(), sizes.tolist()) def draw_grasp_candidate_distribution_aggregated(self, Ts, dist, max_aggregation=True): if dist is None or Ts is None: return if np.max(dist) == float("-inf"): return nonzero_mask = dist > float("-inf") aggregated_Ts = Ts[nonzero_mask].copy() # Going to aggregate grasps that only differ by flip of the palm aggregated_Ts[:, :,(0,1)] = np.abs(aggregated_Ts[:, :,(0,1)]) aggregated_Ts[:,:,(0,1,2)] = aggregated_Ts[:,:,(0,1,2)].round(1) # Round position to 1cm aggregated_Ts[:,:,3] = aggregated_Ts[:,:,3].round(2) if max_aggregation: # Sort before unique to ensure that unique values are in contiguous blocks sorted_indices = np.lexsort((aggregated_Ts[:,0,3], aggregated_Ts[:,2,3], aggregated_Ts[:,3,3])) unique,unique_index, unique_inv_ind, unique_counts = np.unique(aggregated_Ts[sorted_indices[:,None], :3, np.array((0,2,3))[None,:]], return_index=True, return_inverse=True, return_counts=True, axis=0) # Unique counts is the number of repetitions of the returned unique items to, but we want to know the number of repetitions # for our original lexsorted input sorted_unique_inv_ind = unique_inv_ind[np.sort(unique_index)] # Take a max over the contiguous blocks slice_indices = np.empty((len(unique_counts + 1)), dtype=int) slice_indices[0] = 0 slice_indices[1:] = unique_counts[sorted_unique_inv_ind].cumsum()[:-1] score_probs = np.maximum.reduceat(np.exp(dist[nonzero_mask][sorted_indices]),slice_indices) unique_Ts = Ts[nonzero_mask][sorted_indices][np.sort(unique_index)] else: unique,unique_index, unique_inv_ind = np.unique(aggregated_Ts[sorted_indices[:,None], :3, np.array((0,2,3))[None,:]], return_index=True, return_inverse=True, axis=0) score_probs = np.zeros(len(unique), dtype=float) # Obscure but useful capability explained here: # https://stackoverflow.com/questions/55735716/how-to-sum-up-for-each-distinct-value-c-in-array-x-all-elements-yi-where-xi np.add.at(score_probs, unique_inv_ind, np.exp(dist[nonzero_mask])) unique_Ts = Ts[nonzero_mask][unique_index] n_grasps = len(unique_Ts) n_points = len(GRASP_FORK_START_POINTS) starts = unique_Ts[:,None] @ GRASP_FORK_START_POINTS[None,:, :, None] starts = np.reshape(starts, (-1, 4))[..., :3] ends = unique_Ts[:,None] @ GRASP_FORK_END_POINTS[None,:, :, None] ends = np.reshape(ends, (-1, 4))[..., :3] colors = self.cm(score_probs) colors = np.repeat(colors, n_points, axis=0) sizes = np.full(n_grasps * n_points, 4) with profile("draw_call", True): self.context.tools.draw.draw_lines(starts.tolist(), ends.tolist(), colors.tolist(), sizes.tolist()) def draw_placement_distribution_aggregated(self, Ts, dist, max_aggregation=True): if dist is None or Ts is None: return if np.max(dist) == float("-inf"): return nonzero_mask = dist > float("-inf") aggregated_Ts = Ts[nonzero_mask].copy() @ self.context.scene_context.ee_to_obj_T # Round position to 1cm aggregated_Ts[:,:,3] = aggregated_Ts[:,:,3].round(2) if max_aggregation: sorted_indices = np.lexsort((aggregated_Ts[:,0,3], aggregated_Ts[:,1,3], aggregated_Ts[:,2,3])) unique,unique_index, unique_inv_ind, unique_counts = np.unique(aggregated_Ts[sorted_indices, :3, 3], return_index=True, return_inverse=True, return_counts=True, axis=0) # Unique counts is the number of repetitions of the returned unique items to, but we want to know the number of repetitions # for our original lexsorted input sorted_unique_inv_ind = unique_inv_ind[np.sort(unique_index)] slice_indices = np.empty((len(unique_counts + 1)), dtype=int) slice_indices[0] = 0 slice_indices[1:] = unique_counts[sorted_unique_inv_ind].cumsum()[:-1] score_probs = np.maximum.reduceat(np.exp(dist[nonzero_mask][sorted_indices]),slice_indices) unique_Ts = Ts[nonzero_mask][sorted_indices][np.sort(unique_index)] else: unique,unique_index, unique_inv_ind = np.unique(aggregated_Ts[sorted_indices :3, 3], return_index=True, return_inverse=True, axis=0) score_probs = np.zeros(len(unique), dtype=float) # Obscure but useful capability explained here: # https://stackoverflow.com/questions/55735716/how-to-sum-up-for-each-distinct-value-c-in-array-x-all-elements-yi-where-xi np.add.at(score_probs, unique_inv_ind, np.exp(dist[nonzero_mask])) unique_Ts = Ts[nonzero_mask][unique_index] n_grasps = len(unique_Ts) points = unique_Ts[:200,:3, 3] colors = np.array(self.cm(score_probs)[:200]) sizes = np.full(len(points), 12) with profile("draw_call", True): self.context.tools.draw.draw_points(points.tolist(), colors.tolist(), sizes.tolist()) def draw_motion_target_axis(self, T): starts = np.squeeze(T @ AXIS_MARKER_STARTS[:,:,None]) ends = np.squeeze(T @ AXIS_MARKER_ENDS[:,:,None]) colors = np.array([[1,0,0, .8], [0,1,0, .8], [0,0,1,.8]]) sizes = np.full(len(AXIS_MARKER_STARTS), 10) self.draw.draw_lines(starts.tolist(), ends.tolist(), colors.tolist(), sizes.tolist()) self.draw.draw_points([T[:3,3].tolist()], [[0.3,0.3,0.3,.8]], [16]) def decide(self): ctx = self.context scene_ctx = self.context.scene_context control_ctx = self.context.control_context selection_ctx = self.context.selection_context self.update_command_text_overlay(ctx.label, control_ctx.current_command_text) self.draw_cursor_ray() #self.draw_motion_target_axis(pq2T(*ctx.tools.commander.target_prim.get_world_pose())) placement_proposal = selection_ctx.current_placement_proposal is_plane_proposal = isinstance(placement_proposal, PlanePlaneProposal) if control_ctx.user_gave_motion: trans, rot = control_ctx.command frame_trans, frame_rot = control_ctx.get_control_frames(control_ctx.control_frame) linear_vel, angular_vel = control_ctx.control_to_twist(trans, rot) self.draw_control_trajectory(linear_vel, angular_vel, frame_trans, frame_rot) if scene_ctx.object_in_gripper is not None: if scene_ctx.should_suggest_placements: with profile("viz_placement_dist", True): props = scene_ctx.tools.placement_table[scene_ctx.object_in_gripper_i] self.draw_placement_distribution_aggregated(props._poses_world, selection_ctx.placement_distribution, max_aggregation=True) if placement_proposal is not None: if is_plane_proposal: return DfDecision("show_plane_placement", placement_proposal) else: return DfDecision("show_placement", placement_proposal) # There's something in the gripper but no proposal yet. else: if scene_ctx.should_suggest_grasps: with profile("viz_dist", True): self.draw_grasp_candidate_distribution_aggregated(ctx.tools.grasp_table._poses_world, selection_ctx.grasp_distribution, max_aggregation=True) return DfDecision("show_grasp") return DfDecision("do_nothing") class DisplayGripperSuggestionGhost(DfAction): def enter(self): self.currently_showing = None, None def step(self): ghost, display_config, color, opacity = self.params _, current_config = self.currently_showing if current_config is None or not np.allclose(display_config, current_config): ghost.set_joint_positions(display_config) ghost.show(gripper_only=True) self.currently_showing = ghost, display_config ghost.set_color(color, opacity) def exit(self): ghost, _, _, _ = self.params ghost.hide() class DisplayObjectSuggestionGhost(DfAction): def __init__(self): self._currently_showing = (None, None) def enter(self): pass def step(self): ghost, T, color, opacity = self.params self.set_currently_showing(ghost, T) ghost.set_color(color, opacity) def exit(self): self.set_currently_showing(None, None) def set_currently_showing(self, ghost, T): to_show = (ghost, T) current = self._currently_showing if to_show == (None, None): if current != (None, None): current[0].hide() else: # We're trying to show something if current != (None, None): # Are we setting the same values as we're currently showing? if ghost == current[0] and transform_dist(T, current[1], 0.15) < 0.005: # Idempotent return elif ghost != current[0]: # We're setting a different object so hide the old one current[0].hide() p, q = T2pq(T) ghost.set_world_pose(p, quaternion.as_float_array(q)) ghost.show() self._currently_showing = to_show class GraspSuggestionDisplayDispatch(DfDecider): """ Governs rendering of an existing grasp proposal """ def enter(self): self.add_child("display_grasp_suggestion", DisplayGripperSuggestionGhost()) self.add_child("do_nothing", DfAction()) def decide(self): ctx = self.context selection_ctx = self.context.selection_context proposal = selection_ctx.current_grasp_proposal if proposal is None or not proposal.valid: return DfDecision("do_nothing") T = proposal.T_world if np.any(np.isnan(proposal.joint_config)): carb.profiler.begin(1, "grasp_display.ik", active=True) p,q = T2pq(T) actions, success = ctx.tools.solver.compute_inverse_kinematics( target_position=p, target_orientation=quaternion.as_float_array(q), ) carb.profiler.end(1, True) if not success: proposal.mark_invalid(InvalidReason.UNREACHABLE) return DfDecision("do_nothing") else: proposal.update_eff_goal(T, actions.joint_positions.astype(float)[:-2]) display_config = np.empty(9) display_config[:7] = proposal.joint_config # IK Doesn't solve for the fingers. Manually set open values display_config[7] = 0.04 display_config[8] = 0.04 # First time showing this one? color = "white" return DfDecision("display_grasp_suggestion", (ctx.tools.robot_ghosts[0], display_config, color, .4)) class PlacementSuggestionDisplayDispatch(DfDecider): """ Governs rendering of existing placement proposal """ def enter(self): self.add_child("display_placement_suggestion", DisplayObjectSuggestionGhost()) self.add_child("do_nothing", DfAction()) def decide(self): ctx = self.context scene_ctx = self.context.scene_context proposal = self.params placement_T = proposal.get_placement_T() eff_T_goal = placement_T @ invert_T(scene_ctx.ee_to_obj_T) eff_pq = T2pq(eff_T_goal) actions, success = ctx.tools.solver.compute_inverse_kinematics( target_position=eff_pq[0], target_orientation=quaternion.as_float_array(eff_pq[1]), ) if not success: proposal.mark_invalid(InvalidReason.UNREACHABLE) return DfDecision("do_nothing") eef_T = ctx.tools.commander.get_fk_T() dist_to_placement = transform_dist(eef_T, eff_T_goal, 0.15) if dist_to_placement < .02: return DfDecision("do_nothing") object_ghost = ctx.tools.object_ghosts[scene_ctx.object_in_gripper.name + "_ghost"] color = "white" return DfDecision("display_placement_suggestion", (object_ghost, placement_T, color, .4)) class PlaneSuggestionDisplayDispatch(DfDecider): """ Governs rendering of existing placement proposal """ def enter(self): self.add_child("display_placement_suggestion", DisplayObjectSuggestionGhost()) self.add_child("do_nothing", DfAction()) def decide(self): ctx = self.context scene_ctx = self.context.scene_context proposal = self.params eff_T_goal = proposal.T_world placement_T = eff_T_goal @ scene_ctx.ee_to_obj_T eef_T = ctx.tools.commander.get_eef_T() dist_to_placement = transform_dist(eef_T, eff_T_goal, 0.15) eff_pq = T2pq(eff_T_goal) """actions, success = ctx.tools.solver.compute_inverse_kinematics( target_position=eff_pq[0], target_orientation=quaternion.as_float_array(eff_pq[1]), ) if not success: proposal.mark_invalid(InvalidReason.UNREACHABLE) return DfDecision("do_nothing")""" if dist_to_placement < .02: return DfDecision("do_nothing") object_ghost = ctx.tools.object_ghosts[scene_ctx.object_in_gripper.name + "_ghost"] color = "white" return DfDecision("display_placement_suggestion", (object_ghost, placement_T, color, .2))
21,459
Python
44.952891
212
0.613356
NVlabs/fast-explicit-teleop/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "SRL Teleop Assist" description = "Extension for Fast Explicit-Input Assistance for Teleoperation in Clutter" authors = ["NVIDIA"] repository = "" keywords = ["isaac", "teleoperation", "manipulation"] changelog = "docs/CHANGELOG.md" readme = "README.md" preview_image = "data/preview.png" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.kit.uiapp" = {} "omni.kit.quicklayout" = {} "omni.usd" = [] "omni.ui.scene" = {} "omni.kit.viewport.utility" = {} "omni.physx" = {} "omni.isaac.dynamic_control" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.cortex" = {} "omni.isaac.franka" = {} "omni.isaac.motion_generation" = {} "srl.spacemouse" = {} [[python.module]] name = "srl.teleop.base_sample" [[python.module]] name = "srl.teleop.assistance" [[python.module]] name = "srl.teleop.analysis" [[test]] timeout = 960 [python.pipapi] requirements = ["numpy", "rtree", "scipy", "trimesh", "h5py"] use_online_index = true
1,047
TOML
20.387755
89
0.671442
NVlabs/fast-explicit-teleop/docs/CHANGELOG.md
********** CHANGELOG **********
34
Markdown
4.833333
10
0.264706
Kaedim/omniverse-extension/README.md
# Extension Project Template This project is the kaedim omniverse plugin It currently supports login functionality and file import Documentation on how to ise the plugin is linked here: https://docs.google.com/document/d/1fqclE2bfRH_RgXyCNmCKX2DZF5y6ZT9OYANDNyyiY5M/edit?usp=sharing
286
Markdown
39.999994
151
0.835664
Kaedim/omniverse-extension/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
Kaedim/omniverse-extension/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
Kaedim/omniverse-extension/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
Kaedim/omniverse-extension/exts/kaedim.extension/kaedim/extension/extension.py
import omni.ext import omni.ui as ui import json import os import omni.kit.commands import omni.usd from pxr import Sdf from urllib.request import Request, urlretrieve, urlopen from urllib.error import URLError import http.client # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class KaedimExtensionExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def load_credentials(self): filepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'credentials.json') # Check if the file exists if os.path.isfile(filepath): # File exists, open it and try to read 'devID' with open(filepath, 'r') as file: data = json.load(file) self.devID = data.get('devID', None) self.apiKey = data.get('apiKey', None) self.refreshToken = data.get('refreshToken', None) self.jwt = data.get('jwt', None) def update_json_file(self, kv_pairs): filepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'credentials.json') data = {} if os.path.isfile(filepath): with open(filepath, 'r') as f: data = json.load(f) # Replace existing keys with new values, or add new keys for key, value in kv_pairs.items(): data[key] = value with open(filepath, 'w') as f: json.dump(data, f, indent=4) def login(self, devID, apiKey): conn = http.client.HTTPSConnection("api.kaedim3d.com") payload = json.dumps({ "devID": devID, "destination": "https://nvidia.kaedim3d.com/hook" }) headers = { 'X-API-Key': apiKey, 'Content-Type': 'application/json' } conn.request("POST", "/api/v1/registerHook", payload, headers) res = conn.getresponse() data = res.read() print(data) data = json.loads(data) if data["status"] == "success": self.jwt = data["jwt"] return True return False def refresh_jwt(self, devID, apiKey, rToken): print(rToken) payload = json.dumps({ "devID": devID }) headers = { 'X-API-Key': apiKey, 'refresh-token': rToken, 'Content-Type': 'application/json' } conn = http.client.HTTPSConnection("api.kaedim3d.com") conn.request("POST", "/api/v1/refreshJWT", payload, headers) res = conn.getresponse() data = res.read() print(data) data = json.loads(data) if data["status"] == "success": return data["jwt"] return None def login_panel(self, ext_id): with self._window.frame: devID = ui.SimpleStringModel() apiKey = ui.SimpleStringModel() rToken = ui.SimpleStringModel() def on_connect(): jwt = '' res = self.login(devID.as_string, apiKey.as_string) if res: label.text = 'Successfully logged in' jwt = self.refresh_jwt(devID.as_string, apiKey.as_string, rToken.as_string) if res and jwt is not None: credentials = { "devID" : devID.as_string, "apiKey": apiKey.as_string, "refreshToken": rToken.as_string, "jwt": jwt } self.devID = devID.as_string self.apiKey = apiKey.as_string self.refreshToken = rToken.as_string self.jwt = jwt self.update_json_file(credentials) self.load_ui(ext_id) label.text = 'Successfully logged in' else: label.text = 'Oops! Something went wrong please try' with ui.VStack(): ui.Label("Please enter your credentials:") ui.Spacer(height=10) ui.Label("DevID:") ui.Spacer(height=5) ui.StringField(model=devID, alignment=ui.Alignment.H_CENTER) ui.Spacer(height=10) ui.Label("Api-Key:") ui.Spacer(height=5) ui.StringField(model=apiKey, alignment=ui.Alignment.H_CENTER) ui.Spacer(height=10) ui.Label("Refresh-Token:") ui.Spacer(height=5) ui.StringField(model=rToken, alignment=ui.Alignment.H_CENTER) ui.Spacer(height=5) label = ui.Label("") ui.Spacer(height=10) ui.Button("Conect", clicked_fn=on_connect) def asset_library(self, ext_id): def import_asset(): asset = self.selected_asset if not asset or asset is None: return valid_iterations = [i for i in asset['iterations'] if i['status'] == 'completed' or i['status']=='uploaded'] latest_version = max(valid_iterations, key=lambda x: x['iterationID']) results = latest_version['results'] name = asset['image_tags'][0] requestID = asset['requestID'] if type(results) == dict: file_path = check_and_download_file(requestID, results['obj'], 'obj') omni.kit.commands.execute("CreateReference", path_to=Sdf.Path("/World/"+name), # Prim path for where to create the reference asset_path=file_path, # The file path to reference. Relative paths are accepted too. usd_context=omni.usd.get_context() ) def fetch_assets(): conn = http.client.HTTPSConnection("api.kaedim3d.com") print('data', self.devID, self.apiKey, self.jwt) payload = json.dumps({ "devID": self.devID }) headers = { 'X-API-Key': self.apiKey, 'Authorization': self.jwt, 'Content-Type': 'application/json' } conn.request("GET", "/api/v1/fetchAll/", payload, headers) res = conn.getresponse() data = res.read() print(data) jwt = '' if res.status == 401: self.jwt = self.refresh_jwt(self.devID, self.apiKey, self.refreshToken) headers["Authorization"] = self.jwt conn.request("GET", "/api/v1/fetchAll/", payload, headers) res = conn.getresponse() data = res.read() if res.status == 200: if jwt: credentials = {"jwt": self.jwt} self.update_json_file(credentials) data = json.loads(data) assets = data["assets"] asset_library_ui(assets) if len(assets) <= 0: print('No assets') else: print('Ok') else: print('Error') def check_and_download_file(filename, url, filetype): # Make sure the folder path exists ext_manager = omni.kit.app.get_app().get_extension_manager() ext_path = ext_manager.get_extension_path(ext_id) folder_path = ext_path + "/data" if not os.path.exists(folder_path): print(f"The folder {folder_path} does not exist.") return file_path = os.path.join(folder_path, filename + '.' + filetype) # # Check if the file exists if not os.path.isfile(file_path): # Download and save the file from the url try: urlretrieve(url, file_path) # print(f"File downloaded and saved as {filename} in the folder {folder_path}.") except Exception as e: print(f"Error occurred while downloading the file: {e}") return file_path def select_asset(asset): self.selected_asset = asset def isCompleted(asset): completedIterations = [i for i in asset['iterations'] if i['status']=='completed' or i['status']=='uploaded'] return len(completedIterations) > 0 def logout(): emptyCredentials = {'devID':'','apiKey':'','jwt':'','refreshToken':''} self.update_json_file(emptyCredentials) self.login_panel(ext_id) def asset_library_ui(assets): self.selected_asset = None with self._window.frame: with ui.VStack(): with ui.HStack(height=20): ui.Button('Refresh', height=20, clicked_fn=fetch_assets) ui.Button('Logout', height=20, clicked_fn=logout) with ui.ScrollingFrame(): with ui.Grid(ui.Direction(2), column_width=120, row_height=120): for asset in assets: url = asset['image'][0] source_url = check_and_download_file(asset['requestID'], url, 'png') name = asset['image_tags'][0] completed = isCompleted(asset) if not completed: name = name + '\n' + asset['iterations'][len(asset['iterations'])-1]['status'] ui.Button(name, enabled=completed, image_url=source_url, clicked_fn=lambda asset=asset: select_asset(asset)) ui.Button('Import', height=20, clicked_fn=import_asset) fetch_assets() def load_ui(self, ext_id): with self._window.frame: ui.Button('Load assets', clicked_fn=lambda ext_id=ext_id: self.asset_library(ext_id)) def on_startup(self, ext_id): self._window = ui.Window("Kaedim Extension", width=300, height=300) self.jwt = '' self.load_credentials() if not self.devID or not self.apiKey or not self.refreshToken: self.login_panel(ext_id) else: print('User already logged in', self.devID) self.asset_library(ext_id) def on_shutdown(self): print("kaedim extension shutdown") return
10,793
Python
40.675676
140
0.523765
Kaedim/omniverse-extension/exts/kaedim.extension/kaedim/extension/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
Kaedim/omniverse-extension/exts/kaedim.extension/kaedim/extension/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
Kaedim/omniverse-extension/exts/kaedim.extension/kaedim/extension/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import kaedim.extension # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = kaedim.extension.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,668
Python
34.510638
142
0.682254
Kaedim/omniverse-extension/exts/kaedim.extension/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.1" # Lists people or organizations that are considered the "authors" of the package. authors = ["Kaedim"] # The title and description fields are primarily for displaying extension info in UI title = "Kaedim Extension" description="A simple python extension example to use as a starting point for your extensions." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "omni.kit.kaedim_importer" # Keywords for the extension keywords = ["kit", "example"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/icon.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import kaedim.extension". [[python.module]] name = "kaedim.extension" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,588
TOML
32.104166
118
0.746222
Kaedim/omniverse-extension/exts/kaedim.extension/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of kaedim omniverse extension with Login and Asset Library functionalities
214
Markdown
22.888886
92
0.738318
Kaedim/omniverse-extension/exts/kaedim.extension/docs/README.md
# Kaedim Omniverse Etesion [kaedim.extension] This project is the kaedim omniverse plugin It currently supports login functionality and file import Documentation on how to ise the plugin is linked here: https://docs.google.com/document/d/1fqclE2bfRH_RgXyCNmCKX2DZF5y6ZT9OYANDNyyiY5M/edit?usp=sharing
304
Markdown
37.124995
151
0.828947
Kaedim/omniverse-extension/exts/kaedim.extension/docs/index.rst
kaedim.extension ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"kaedim.extension" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
333
reStructuredText
14.904761
43
0.618619
SoulVisionCreations/avataar_omniverse_ext/README.md
# Omniverse Extension This extension enables users to seamlessly integrate 3D objects created using Avataar Incarnate App on the Omniverse platform. ## Install & Enable the Avataar Extension https://github.com/SoulVisionCreations/avataar_omniverse_ext/assets/117340215/4f632c56-9236-4a68-b9b1-be225e381f77 ## Instructions to add this Extension To add this extension to your Omniverse app: 1. Go into: `Extension Manager` -> `Hamburger Icon` -> `Settings` -> `Extension Search Path` 2. Add this as a search path: `git://github.com/SoulVisionCreations/avataar_omniverse_ext.git?branch=master&dir=exts` Alternatively: 1. Download or Clone the extension, unzip the file if downloaded 2. Copy the `exts` folder path within the extension folder - i.e. `/home/.../avataar_omniverse_ext/exts` (Linux) or `C:/.../avataar_omniverse_ext/ext` (Windows) 3. Go into: `Extension Manager` -> `Hamburger Icon` -> `Settings` -> `Extension Search Path` 4. Add the `exts` folder path as a search path Make sure no filter is enabled and in both cases you should be able to find the new extension in the `Third Party` tab list. ## Usage https://github.com/SoulVisionCreations/avataar_omniverse_ext/assets/117340215/c3bf6f78-14c8-4543-ae00-833b643b12d7
1,241
Markdown
48.679998
126
0.768735
SoulVisionCreations/avataar_omniverse_ext/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
SoulVisionCreations/avataar_omniverse_ext/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
SoulVisionCreations/avataar_omniverse_ext/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/incarnate/omniverse/extension.py
import asyncio import os from os.path import abspath from inspect import getsourcefile from pathlib import Path import shutil import urllib.request import zipfile import carb import omni.ext import omni.ui as ui import omni.kit.asset_converter import omni.usd from pxr import Sdf import warnings import usdrt import time warnings.filterwarnings("ignore") class IncarnateOmniverseExtension(omni.ext.IExt): def progress_callback(self, current_step: int, total: int): print(f"{current_step} of {total}") async def convert_asset_to_usd(self, input_asset: str, output_usd: str): converter_context = omni.kit.asset_converter.AssetConverterContext() # ... (other configurations) instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(input_asset, output_usd, self.progress_callback, converter_context) success = await task.wait_until_finished() if not success: carb.log_error(task.get_status(), task.get_detailed_error()) print("converting done") async def on_click_async(self, input_url): newfolder = os.path.join(self.download_path, input_url.model.get_value_as_string().split("/")[-1][:-4]) os.makedirs(newfolder, exist_ok=True) self.destination_path = os.path.join(newfolder, input_url.model.get_value_as_string().split("/")[-1]) with urllib.request.urlopen(input_url.model.get_value_as_string()) as response, open(self.destination_path, 'wb') as out_file: shutil.copyfileobj(response, out_file) with zipfile.ZipFile(self.destination_path, 'r') as zip_ref: zip_ref.extractall(newfolder) await self.convert_asset_to_usd(os.path.join(newfolder,'obj', input_url.model.get_value_as_string().split("/")[-1][:-4] + ".obj"), os.path.join(newfolder, input_url.model.get_value_as_string().split("/")[-1][:-4] + ".usd")) object_id = input_url.model.get_value_as_string().split("/")[-1][:-4] asset_path = os.path.join(self.download_path, object_id, f'{object_id}.usd') omni.kit.commands.execute( 'CreatePayloadCommand', usd_context=omni.usd.get_context(), path_to=Sdf.Path(f'/World/{object_id}'), asset_path=asset_path, instanceable=False) self.objects.append(object_id) def on_startup(self, ext_id): print("[incarnate.omniverse] incarnate omniverse startup") self.objects = [] self._count = 0 cur_path = Path(abspath(getsourcefile(lambda:1))) self.currentdirectory = str(cur_path.parent.absolute()) self.download_path = os.path.join(self.currentdirectory,"downloads") os.makedirs(self.download_path, exist_ok=True) self._window = ui.Window("Incarnate Avataar Extension", width=300, height=200) with self._window.frame: with ui.VStack(): ui.Label("Enter mesh link from Avataar Creator") self.user_profile = os.path.expanduser("~") input_f = ui.StringField() ui.Button("Import and View", clicked_fn=lambda: asyncio.ensure_future(self.on_click_async(input_f))) def on_shutdown(self): omni.kit.commands.execute( 'DeletePrimsCommand', paths=[Sdf.Path(f'/World/{object_id}') for object_id in self.objects]) objs = os.listdir(self.download_path) for obj in objs: try: shutil.rmtree(os.path.join(self.download_path,obj)) except: print("Unable to delete") print("[incarnate.omniverse] incarnate omniverse shutdown")
3,677
Python
39.417582
231
0.643731
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/incarnate/omniverse/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/incarnate/omniverse/assetconverter.py
import carb import omni import omni.kit.asset_converter # Progress of processing. def progress_callback (current_step: int, total: int): # Show progress print(f"{current_step} of {total}") # Convert asset file(obj/fbx/glTF, etc) to usd. async def convert_asset_to_usd (input_asset: str, output_usd: str): # Input options are defaults. converter_context = omni.kit.asset_converter.AssetConverterContext() converter_context.ignore_materials = False converter_context.ignore_camera = False converter_context.ignore_animations = False converter_context.ignore_light = False converter_context.export_preview_surface = False converter_context.use_meter_as_world_unit = False converter_context.create_world_as_default_root_prim = True converter_context.embed_textures = True converter_context.convert_fbx_to_y_up = False converter_context.convert_fbx_to_z_up = False converter_context.merge_all_meshes = False converter_context.use_double_precision_to_usd_transform_op = False converter_context.ignore_pivots = False converter_context.keep_all_materials = True converter_context.smooth_normals = True instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(input_asset, output_usd, progress_callback, converter_context) # Wait for completion. success = await task.wait_until_finished() if not success: carb.log_error(task.get_status(), task.get_detailed_error()) print("converting done")
1,501
Python
39.594594
103
0.746835
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/incarnate/omniverse/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/incarnate/omniverse/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import incarnate.omniverse # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = incarnate.omniverse.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,674
Python
34.638297
142
0.683393
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["Avataar"] # The title and description fields are primarily for displaying extension info in UI title = "incarnate avataar extension" description="A python extension to view to view object captures made via incarnate onto Omniverse" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Capture App" # Keywords for the extension keywords = ["capture app", "incarnate", "mesh"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/new_icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import incarnate.omniverse". [[python.module]] name = "incarnate.omniverse" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,621
TOML
32.791666
118
0.74892
SoulVisionCreations/avataar_omniverse_ext/exts/incarnate.omniverse/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247