file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
elharirymatteo/RANS/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_nut_bolt.yaml
nut_bolt_m4: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m4_tight/factory_nut_m4_tight.usd' width_min: 0.007 # distance from flat surface to flat surface width_max: 0.0080829 # distance from edge to edge height: 0.0032 # height of nut flat_length: 0.00404145 # length of flat surface bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m4_tight/factory_bolt_m4_tight.usd' width: 0.004 # major diameter of bolt head_height: 0.004 # height of bolt head shank_length: 0.016 # length of bolt shank thread_pitch: 0.0007 # distance between threads nut_bolt_m8: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m8_tight/factory_nut_m8_tight.usd' width_min: 0.013 width_max: 0.01501111 height: 0.0065 flat_length: 0.00750555 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m8_tight/factory_bolt_m8_tight.usd' width: 0.008 head_height: 0.008 shank_length: 0.018 thread_pitch: 0.00125 nut_bolt_m12: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m12_tight/factory_nut_m12_tight.usd' width_min: 0.019 width_max: 0.02193931 height: 0.010 flat_length: 0.01096966 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m12_tight/factory_bolt_m12_tight.usd' width: 0.012 head_height: 0.012 shank_length: 0.020 thread_pitch: 0.00175 nut_bolt_m16: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m16_tight/factory_nut_m16_tight.usd' width_min: 0.024 width_max: 0.02771281 height: 0.013 flat_length: 0.01385641 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m16_tight/factory_bolt_m16_tight.usd' width: 0.016 head_height: 0.016 shank_length: 0.025 thread_pitch: 0.002 nut_bolt_m20: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m20_tight/factory_nut_m20_tight.usd' width_min: 0.030 width_max: 0.03464102 height: 0.016 flat_length: 0.01732051 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m20_tight/factory_bolt_m20_tight.usd' width: 0.020 head_height: 0.020 shank_length: 0.045 thread_pitch: 0.0025
2,331
YAML
32.314285
90
0.617332
elharirymatteo/RANS/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_franka_table.yaml
franka_hand_length: 0.0584 # distance from origin of hand to origin of finger franka_finger_length: 0.053671 # distance from origin of finger to bottom of fingerpad franka_fingerpad_length: 0.017608 # distance from top of inner surface of fingerpad to bottom of inner surface of fingerpad franka_gripper_width_max: 0.080 # maximum opening width of gripper table_depth: 0.6 # depth of table table_width: 1.0 # width of table
431
YAML
52.999993
124
0.772622
elharirymatteo/RANS/omniisaacgymenvs/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][: i + 1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size / self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows, self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh( self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"] ) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < 1.0: discrete_obstacles_terrain(terrain, 0.15, 1.0, 2.0, 40, platform_size=3.0) self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice < self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1.0, 2.0, 40, platform_size=3.0) else: stepping_stones_terrain( terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0.0, platform_size=3.0 ) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map += 1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,852
Python
50.47093
119
0.591618
elharirymatteo/RANS/omniisaacgymenvs/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdLux, UsdPhysics def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive( prim_path, drive_type, target_type, target_value, stiffness, damping, max_force ) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force) def create_distant_light(prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.GetPrim().GetAttribute("intensity").Set(intensity)
3,642
Python
36.173469
83
0.739154
elharirymatteo/RANS/omniisaacgymenvs/tasks/utils/fp_utils.py
import torch # Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver from rl_games.algos_torch import torch_ext import torch import numpy as np from typing import Callable def quantize_tensor_values(tensor, n_values): """ Quantizes the values of a tensor into N*2 +1 discrete values in the range [-1,1] using PyTorch's quantization functions. Args: - tensor: a PyTorch tensor of shape (batch_size, num_features) - n_values: an integer indicating the number of discrete values to use Returns: - a new tensor of the same shape as the input tensor, with each value quantized to a discrete value in the range [-1,1] """ assert n_values >= 1, "n_values must be greater than or equal to 1" assert tensor.min() >= -1 and tensor.max() <= 1, "tensor values must be in the range [-1,1]" scale = 1.0 / n_values quantized_tensor = torch.quantize_per_tensor(tensor, scale=scale, zero_point=0, dtype=torch.qint8) quantized_tensor = quantized_tensor.dequantize() return quantized_tensor def quaternion_to_rotation_matrix(Q): """ Covert a quaternion into a full three-dimensional rotation matrix. Input :param Q: A 4 element array representing the quaternion (q0,q1,q2,q3) Output :return: A 3x3 element matrix representing the full 3D rotation matrix. This rotation matrix converts a point in the local reference frame to a point in the global reference frame. """ # Extract the values from Q q0 = Q[0] q1 = Q[1] q2 = Q[2] q3 = Q[3] # First row of the rotation matrix r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) # Second row of the rotation matrix r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) # Third row of the rotation matrix r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 # 3x3 rotation matrix rot_matrix = np.array([[r00, r01, r02], [r10, r11, r12], [r20, r21, r22]]) return rot_matrix
3,896
Python
38.765306
125
0.669148
elharirymatteo/RANS/omniisaacgymenvs/tasks/shared/in_hand_manipulation.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask class InHandManipulationTask(RLTask): def __init__(self, name, env, offset=None) -> None: InHandManipulationTask.update_config(self) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.fall_dist = self._task_cfg["env"]["fallDistance"] self.fall_penalty = self._task_cfg["env"]["fallPenalty"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time / (control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self._assets_root_path = get_assets_root_path() self.get_starting_positions() self.get_hand() self.object_start_translation = self.hand_start_translation.clone() self.object_start_translation[1] += self.pose_dy self.object_start_translation[2] += self.pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.get_object(self.hand_start_translation, self.pose_dy, self.pose_dz) self.get_goal() super().set_up_scene(scene, filter_collisions=False) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087] * self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("shadow_hand_view"): scene.remove_object("shadow_hand_view", registry_only=True) if scene.object_exists("finger_view"): scene.remove_object("finger_view", registry_only=True) if scene.object_exists("allegro_hand_view"): scene.remove_object("allegro_hand_view", registry_only=True) if scene.object_exists("goal_view"): scene.remove_object("goal_view", registry_only=True) if scene.object_exists("object_view"): scene.remove_object("object_view", registry_only=True) self.get_starting_positions() self.object_start_translation = self.hand_start_translation.clone() self.object_start_translation[1] += self.pose_dy self.object_start_translation[2] += self.pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087] * self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) @abstractmethod def get_hand(self): pass @abstractmethod def get_hand_view(self): pass @abstractmethod def get_observations(self): pass def get_object(self, hand_start_translation, pose_dy, pose_dz): self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings( "object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object") ) def get_goal(self): add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings( "goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object") ) def post_reset(self): self.num_hand_dofs = self._hands.num_dof self.actuated_dof_indices = self._hands.actuated_dof_indices self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) dof_limits = self._hands.get_dof_limits() self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.object_init_pos, self.object_init_rot = self._objects.get_world_poses() self.object_init_pos -= self._env_pos self.object_init_velocities = torch.zeros_like( self._objects.get_velocities(), dtype=torch.float, device=self.device ) self.goal_pos = self.object_init_pos.clone() self.goal_pos[:, 2] -= 0.04 self.goal_rot = self.object_init_rot.clone() self.goal_init_pos = self.goal_pos.clone() self.goal_init_rot = self.goal_rot.clone() # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) if self._dr_randomizer.randomize: self._dr_randomizer.set_up_domain_randomization(self) def get_object_goal_observations(self): self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False) self.object_pos -= self._env_pos self.object_velocities = self._objects.get_velocities(clone=False) self.object_linvel = self.object_velocities[:, 0:3] self.object_angvel = self.object_velocities[:, 3:6] def calculate_metrics(self): ( self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:], ) = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras["consecutive_successes"] = self.consecutive_successes.mean() self.randomization_buf += 1 if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print( "Direct average consecutive successes = {:.1f}".format( direct_average_successes / (self.total_resets + self.num_envs) ) ) if self.total_resets > 0: print( "Post-Reset average consecutive successes = {:.1f}".format(self.total_successes / self.total_resets) ) def pre_physics_step(self, actions): if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) reset_buf = self.reset_buf.clone() # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = ( self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( targets, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) else: self.cur_targets[:, self.actuated_dof_indices] = scale( self.actions, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) self.cur_targets[:, self.actuated_dof_indices] = ( self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._hands.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._dr_randomizer.randomize: rand_envs = torch.where( self.randomization_buf >= self._dr_randomizer.min_frequency, torch.ones_like(self.randomization_buf), torch.zeros_like(self.randomization_buf), ) rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf)) self.dr.physics_view.step_randomization(rand_env_ids) self.randomization_buf[rand_env_ids] = 0 def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation( rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3] self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = ( self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids] ) # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset object new_object_pos = ( self.object_init_pos[env_ids] + self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids] ) # add world env pos new_object_rot = randomize_rotation( rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device) self._objects.set_velocities(object_velocities[env_ids], indices) self._objects.set_world_poses(new_object_pos, new_object_rot, indices) # reset hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5 : 5 + self.num_hand_dofs] + 1.0) pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_pos[env_ids, :] = pos dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_vel[env_ids, :] = ( self.hand_dof_default_vel + self.reset_dof_vel_noise * rand_floats[:, 5 + self.num_hand_dofs : 5 + self.num_hand_dofs * 2] ) self.prev_targets[env_ids, : self.num_hand_dofs] = pos self.cur_targets[env_ids, : self.num_hand_dofs] = pos self.hand_dof_targets[env_ids, :] = pos self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices) self._hands.set_joint_positions(dof_pos[env_ids], indices) self._hands.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul( quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor) ) @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float, ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin( torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0) ) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions**2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threashold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where( torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf ) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where( num_resets > 0, av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes, consecutive_successes, ) return reward, resets, goal_resets, progress_buf, successes, cons_successes
23,466
Python
43.110902
126
0.630657
elharirymatteo/RANS/omniisaacgymenvs/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask class LocomotionTask(RLTask): def __init__(self, name, env, offset=None) -> None: LocomotionTask.update_config(self) RLTask.__init__(self, name, env) return def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots.get_measured_joint_forces(joint_indices=self._sensor_indices) ( self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:], ) = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale, ) observations = {self._robots.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp(self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat( self.num_envs ) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio, ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done(obs_buf, termination_height, reset_buf, progress_buf, max_episode_length): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio, ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions**2, dim=-1) electricity_cost = torch.sum( torch.abs(actions * obs_buf[:, 12 + num_dof : 12 + num_dof * 2]) * motor_effort_ratio.unsqueeze(0), dim=-1 ) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
13,243
Python
37.277457
214
0.628861
elharirymatteo/RANS/omniisaacgymenvs/cfg/config_mujoco.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: ${resolve_default:${task.name},${task.experiment}} # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' # multi-GPU training multi_gpu: False ## PhysX arguments num_threads: 4 # Number of worker threads per scene used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # used to set checkpoint path checkpoint: '' wandb_activate: False use_rl: True # set default task and default training config based on task defaults: - task: virtual_floating_platform/MFP2D_Virtual_GoToXY - train: virtual_floating_platform/MFP2D_PPOmulti_dict_MLP - controller: Optimal_LQR_DC - hl_task: GoToXY_Square - hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
1,447
YAML
25.814814
103
0.742225
elharirymatteo/RANS/omniisaacgymenvs/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: ${resolve_default:${task.name},${task.experiment}} # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' # multi-GPU training multi_gpu: False ## PhysX arguments num_threads: 4 # Number of worker threads used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # evaluate checkpoint evaluation: False # disables rendering headless: False # enables native livestream enable_livestream: False # timeout for MT script mt_timeout: 300 # enables viewport recording enable_recording: False # interval between video recordings (in steps) recording_interval: 2000 # length of the recorded video (in steps) recording_length: 100 # fps for writing recorded video recording_fps: 30 # directory to save recordings in recording_dir: '' wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'omniisaacgymenvs' # path to a kit app file kit_app: '' # Warp warp: False # set default task and default training config based on task defaults: - _self_ - task: Cartpole - train: ${task}PPO - override hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
2,055
YAML
22.906976
103
0.745012
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/CartpoleCamera.yaml
defaults: - Cartpole - _self_ name: CartpoleCamera env: numEnvs: ${resolve_default:32,${...num_envs}} envSpacing: 20.0 cameraWidth: 240 cameraHeight: 160 exportImages: False sim: rendering_dt: 0.0166 # 1/60 # set to True if you use camera sensors in the environment enable_cameras: True add_ground_plane: False add_distant_light: True
363
YAML
16.333333
60
0.69697
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/FrankaDeformable.yaml
# used to create the object name: FrankaDeformable physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:1024,${...num_envs}} # 2048#4096 envSpacing: 3.0 episodeLength: 100 # 150 #350 #500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.016 # 1/60s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 # 12 solver_velocity_iteration_count: 0 # 1 contact_offset: 0.02 #0.005 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 #20965884 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 4194304 #2097152 #16777216 #8388608 #2097152 #1048576 gpu_max_particle_contacts: 1048576 #2097152 #1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 beaker: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cube: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 # # per-shape # contact_offset: 0.02 # rest_offset: 0.001
3,418
YAML
25.92126
85
0.691925
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/FrankaCabinet.yaml
# used to create the object name: FrankaCabinet physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 3.0 episodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cabinet: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.0 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,287
YAML
25.304
71
0.695467
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Ant.yaml
# used to create the object name: Ant physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 0.5 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.005 energyCost: 0.05 dofVelocityScale: 0.2 angularVelocityScale: 1.0 contactForceScale: 0.1 jointsAtLimitCost: 0.1 deathCost: -2.0 terminationHeight: 0.31 alive_reward_scale: 0.5 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Ant: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,370
YAML
24.771739
71
0.690717
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/AnymalTerrain.yaml
name: AnymalTerrain physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:2048,${...num_envs}} numObservations: 188 numActions: 12 envSpacing: 3. # [m] terrain: staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] # rough terrain only: curriculum: true maxInitMapLevel: 0 mapLength: 8. mapWidth: 8. numLevels: 10 numTerrains: 20 # terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete] terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2] # tri mesh only: slopeTreshold: 0.5 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [1.0, 0.0, 0.0, 0.0] # w,x,y,z [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: # train linear_x: [-1., 1.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-3.14, 3.14] # min max [rad/s] control: # PD Drive parameters: stiffness: 80.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle actionScale: 0.5 # decimation: Number of control action updates @ sim DT per policy DT decimation: 4 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards terminalReward: 0.0 linearVelocityXYRewardScale: 1.0 linearVelocityZRewardScale: -4.0 angularVelocityXYRewardScale: -0.05 angularVelocityZRewardScale: 0.5 orientationRewardScale: -0. torqueRewardScale: -0.00002 jointAccRewardScale: -0.0005 baseHeightRewardScale: -0.0 actionRateRewardScale: -0.01 fallenOverRewardScale: -1.0 # cosmetics hipRewardScale: -0. #25 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 heightMeasurementScale: 5.0 # noise addNoise: true noiseLevel: 1.0 # scales other values dofPositionNoise: 0.01 dofVelocityNoise: 1.5 linearVelocityNoise: 0.1 angularVelocityNoise: 0.2 gravityNoise: 0.05 heightMeasurementNoise: 0.06 #randomization pushInterval_s: 15 # episode length in seconds episodeLength_s: 20 sim: dt: 0.005 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: False add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: True # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
4,346
YAML
25.345454
82
0.633916
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/BallBalance.yaml
# used to create the object name: BallBalance physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.0 maxEpisodeLength: 600 actionSpeedScale: 20 clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 262144 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 262144 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 table: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 200 max_depenetration_velocity: 1000.0
2,458
YAML
25.728261
71
0.690806
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/FactoryBase.yaml
# See schema in factory_schema_config_base.py for descriptions of parameters. defaults: - _self_ - /factory_schema_config_base sim: add_damping: True disable_contact_processing: False env: env_spacing: 1.5 franka_depth: 0.5 table_height: 0.4 franka_friction: 1.0 table_friction: 0.3
309
YAML
16.222221
77
0.699029
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Humanoid.yaml
# used to create the object name: Humanoid physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.8 alive_reward_scale: 2.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Humanoid: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,335
YAML
24.670329
71
0.693362
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/AllegroHand.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 0.75 episodeLength: 600 clipObservations: 5.0 clipActions: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 4 # 30 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 velObsScale: 0.2 objectType: "block" observationType: "full" # can be "full_no_vel", "full" successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 sim: dt: 0.0083 # 1/120 s add_ground_plane: True add_distant_light: False use_gpu_pipeline: ${eq:${...pipeline},"gpu"} use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: # per-scene use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU worker_thread_count: ${....num_threads} solver_type: ${....solver_type} # 0: PGS, 1: TGS bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 819200 gpu_found_lost_aggregate_pairs_capacity: 819200 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 allegro_hand: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0005 # per-body density: -1 max_depenetration_velocity: 1000.0 object: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0025 # per-body density: 400.0 max_depenetration_velocity: 1000.0 goal_object: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0
3,360
YAML
25.464567
71
0.69881
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/HumanoidSAC.yaml
# used to create the object defaults: - Humanoid - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
168
YAML
20.124997
52
0.678571
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Ingenuity.yaml
# used to create the object name: Ingenuity physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 2000 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -3.721] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ingenuity: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,351
YAML
27
71
0.693322
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Quadcopter.yaml
# used to create the object name: Quadcopter physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 1.25 maxEpisodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 copter: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,452
YAML
25.663043
71
0.690457
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Crazyflie.yaml
# used to create the object name: Crazyflie physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:128,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 700 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 crazyflie: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,349
YAML
26.647059
71
0.692635
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/FactoryEnvNutBolt.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False disable_nut_collisions: False disable_bolt_collisions: False disable_contact_processing: False env: env_name: 'FactoryEnvNutBolt' desired_subassemblies: ['nut_bolt_m16', 'nut_bolt_m16'] nut_lateral_offset: 0.1 # Y-axis offset of nut before initial reset to prevent initial interpenetration with bolt nut_bolt_density: 7850.0 nut_bolt_friction: 0.3 # Subassembly options: # {nut_bolt_m4, nut_bolt_m8, nut_bolt_m12, nut_bolt_m16, nut_bolt_m20}
643
YAML
28.272726
116
0.73717
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/AntSAC.yaml
# used to create the object defaults: - Ant - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
163
YAML
19.499998
52
0.668712
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Cartpole.yaml
# used to create the object name: Cartpole physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 4.0 resetDist: 3.0 maxEffort: 400.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Cartpole: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,124
YAML
26.243589
71
0.686911
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/Anymal.yaml
# used to create the object name: Anymal physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 4. # [m] clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: linear_x: [-2., 2.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-1., 1.] # min max [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards linearVelocityXYRewardScale: 1.0 angularVelocityZRewardScale: 0.5 linearVelocityZRewardScale: -0.03 jointAccRewardScale: -0.0003 actionRateRewardScale: -0.006 cosmeticRewardScale: -0.06 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 # episode length in seconds episodeLength_s: 50 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 Anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
3,270
YAML
24.960317
71
0.626911
elharirymatteo/RANS/omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml
# specifies what the config is when running `ShadowHandOpenAI` in LSTM mode defaults: - ShadowHandOpenAI_FF - _self_ env: numEnvs: ${resolve_default:8192,${...num_envs}}
178
YAML
18.888887
75
0.707865
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_FF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32864 mini_epochs: 4 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True games_num: 100000 print_stats: True
2,215
YAML
20.940594
66
0.577427
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: True # concat_input: True # layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False # True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 48 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:2000,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
1,928
YAML
21.694117
101
0.592842
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/HumanoidPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Humanoid,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,639
YAML
21.465753
101
0.594875
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Crazyflie,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,614
YAML
21.430555
101
0.593556
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,703
YAML
20.56962
62
0.589548
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/HumanoidSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:50000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,165
YAML
21.423077
101
0.603433
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True zero_rnn_on_done: False player: deterministic: True games_num: 100000 print_stats: True
2,402
YAML
20.265487
68
0.562448
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/IngenuityPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ingenuity,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,612
YAML
21.402777
101
0.593052
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Quadcopter,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,613
YAML
21.416666
101
0.593304
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 512 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/BallBalancePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:BallBalance,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:250,${....max_iterations}} save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,593
YAML
21.450704
101
0.593848
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaDeformable,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:6000,${....max_iterations}} save_best_after: 500 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 #2048 #4096 #8192 #16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,665
YAML
22.138889
101
0.600601
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: default # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: False # concat_input: True # layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:CartpoleCamera,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: False normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 #0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 10 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 512 #1024 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
2,124
YAML
21.135416
101
0.556026
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/AntPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ant,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,657
YAML
21.405405
101
0.594448
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaCabinet,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:1500,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,636
YAML
21.736111
101
0.598411
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/AntSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AntSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:20000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,160
YAML
21.326923
101
0.601724
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:AllegroHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.02 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,694
YAML
20.455696
62
0.590909
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/AnymalPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Anymal,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.0 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0.001 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 200 score_to_win: 20000 save_frequency: 50 print_stats: True
1,744
YAML
21.960526
101
0.600917
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/CartpolePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Cartpole,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:100,${....max_iterations}} save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,583
YAML
21.628571
101
0.593178
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPick,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:200,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,596
YAML
20.581081
69
0.594612
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_RNN.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_rnn_dict separate: False mlp: first_units: [128] second_units: [128] activation: tanh d2rl: False initializer: name: default regularizer: name: None rnn: units: 128 layers: 1 name: "gru" layer_norm: False concat_input: False space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 48 minibatch_size: 8192 mini_epochs: 4 critic_coef: 2.0 clip_value: True seq_len: 16 bounds_loss_coef: 0.0001
1,845
YAML
20.97619
101
0.588076
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_MLP_dock.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_mlp_dict separate: True mlp: units: [128, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 1024 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,699
YAML
21.972973
101
0.595644
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_MLP.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_mlp_dict separate: True mlp: units: [128, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,700
YAML
21.68
101
0.595294
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_MLP_SE.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_mlp_dict separate: True mlp: units: [128, 128] activation: tanh d2rl: False use_state_encoding: True pe_nfreq: 6 pe_log: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,769
YAML
21.692307
101
0.593556
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_CNN.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_cnn_dict separate: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 normalization: batch_norm mlp: units: [128, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 64 mini_epochs: 4 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
2,147
YAML
21.14433
101
0.564974
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_Transformer.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_transformer_a2c network: name: actor_critic_transformer separate: False space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True transformer: input_sequence_length: 8 pos_embedding: learnt num_head: 2 num_layer: 2 dim_feedforward: 1024 transforms_mlp_dim: [128, 128] state_mlp_dim: [128, 128] critic_mlp_dim: [512, 512, 256] fuse_mlp_dim: [128, 128] d_model: 128 dropout: 0.0 decoder_mlp_dim: [256, 256] embed_init: 0.1 decoder_init: 0.01 activation: tanh initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: transformer min_lr: 0 base_lr: 3e-4 warmup_steps: 15 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
2,067
YAML
22.5
101
0.595065
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP3D_PPOmulti_dict_MLP.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_mlp_dict separate: False mlp: units: [256, 256, 256] activation: tanh d2rl: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,706
YAML
21.76
101
0.595545
elharirymatteo/RANS/omniisaacgymenvs/cfg/train/MFP/MFP2D_PPOmulti_dict_MLP_thruster.yaml
params: seed: ${...seed} algo: name: a2c_discrete model: name: multi_discrete_a2c network: name: actor_critic_mlp_dict_thruster separate: True mlp: units: [128, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None space: multi_discrete: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FloatingPlatform,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_input_keys: ["state"] normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive min_lr: 0 base_lr: 3e-4 warmup_steps: 10 warmup_factor: 0.1 kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 0.5 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,709
YAML
21.8
101
0.59684
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToXY_zero_convergence.yaml
name: "position" run_batch: 1 goals_x: [] goals_y: [] position_distance_threshold: 0.03 save_dir: "mj_runs/position_zero_convergence"
133
YAML
21.33333
45
0.729323
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToXY_Square.yaml
name: "position" run_batch: 0 goals_x: [ 2, 2, 2, 2, 2, 1, 0,-1,-2,-2,-2,-2,-2,-1, 0, 1, 2] goals_y: [-2,-1, 0, 1, 2, 2, 2, 2, 2, 1, 0,-1,-2,-2,-2,-2,-2] position_distance_threshold: 0.03 save_dir: "mj_runs/position_square"
223
YAML
36.333327
61
0.547085
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVel_Circle.yaml
name: "linear_velocity" run_batch: 0 trajectory_type: "circle" x_offset: 0 y_offset: 0 radius: 1.5 closed: True lookahead_dist: 0.10 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_circle"
194
YAML
18.499998
30
0.742268
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVel_Spiral.yaml
name: "linear_velocity" run_batch: 0 trajectory_type: "spiral" x_offset: 0 y_offset: 0 start_radius: 0.5 end_radius: 1.5 num_loops: 4 closed: True lookahead_dist: 0.15 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_spiral"
229
YAML
18.166665
30
0.737991
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVelHeading_Circle.yaml
name: "linear_velocity_heading" run_batch: 0 trajectory_type: "circle" x_offset: 0 y_offset: 0 radius: 1.5 closed: True lookahead_dist: 0.10 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_heading_circle"
210
YAML
20.099998
38
0.752381
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVel_Circle_lab.yaml
name: "linear_velocity" run_batch: 0 trajectory_type: "circle" x_offset: 2.5 y_offset: -1.5 radius: 0.75 closed: True lookahead_dist: 0.15 target_tracking_velocity: 0.3 save_dir: "ros_runs/trackXYVel/vel_circle_run_0"
217
YAML
20.799998
48
0.741935
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToPose_zero_convergence.yaml
name: "pose" run_batch: 1024 goals_x: [0] goals_y: [0] goals_theta: [0] position_distance_threshold: 0.03 orientation_distance_threshold: 0.03 save_dir: "mj_runs/pose_zero_convergence"
184
YAML
22.124997
41
0.73913
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVelHeading_Infinite.yaml
name: "linear_velocity_heading" run_batch: 0 trajectory_type: "infinite" x_offset: 0 y_offset: 0 a: 1.5 # 'a' controls the size of the lemniscate, analogous to 'radius' for the circle closed: True lookahead_dist: 0.1 target_tracking_velocity: 0.2 save_dir: "mj_runs/vel_heading_infinite"
290
YAML
28.099997
87
0.741379
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVel_Infinite.yaml
name: "linear_velocity" run_batch: 0 trajectory_type: "infinite" x_offset: 0 y_offset: 0 a: 1.5 # 'a' controls the size of the lemniscate, analogous to 'radius' for the circle closed: True lookahead_dist: 0.1 target_tracking_velocity: 0.2 save_dir: "mj_runs/vel_infinite"
274
YAML
26.499997
87
0.733577
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVel_Square.yaml
name: "linear_velocity" run_batch: 0 trajectory_type: "square" x_offset: 0 y_offset: 0 height: 3.0 closed: True lookahead_dist: 0.3 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_square"
193
YAML
18.399998
30
0.740933
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVelHeading_Spiral.yaml
name: "linear_velocity_heading" run_batch: 0 trajectory_type: "spiral" x_offset: 0 y_offset: 0 start_radius: 0.5 end_radius: 1.5 num_loops: 4 closed: True lookahead_dist: 0.15 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_heading_spiral"
245
YAML
19.499998
38
0.746939
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToXY_Circle.yaml
name: "position" run_batch: 0 goals_x: [1.5 , 1.37031819, 1.00369591, 0.46352549, -0.15679269, -0.75, -1.21352549, -1.4672214 , -1.4672214 , -1.21352549, -0.75, -0.15679269, 0.46352549, 1.00369591, 1.37031819, 1.5 ] goals_y: [ 0.00000000, 0.610104965, 1.11471724, 1.42658477, 1.49178284, 1.29903811, 0.881677878, 0.311867536, -0.311867536, -0.881677878, -1.29903811, -1.49178284, -1.42658477, -1.11471724, -0.610104965, 0.0] position_distance_threshold: 0.03 save_dir: "mj_runs/position_square"
509
YAML
83.999986
214
0.681729
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToPose_zero_lab.yaml
name: "pose" run_batch: 1024 goals_x: [2.5] goals_y: [-1.5] goals_theta: [0] position_distance_threshold: 0.03 orientation_distance_threshold: 0.03 save_dir: "ros_runs/pose_disturbance/run_1"
191
YAML
22.999997
43
0.727749
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToPose_zero_convergence_lab.yaml
name: "pose" run_batch: 256 goals_x: [2.5] goals_y: [-1.5] goals_theta: [0] position_distance_threshold: 0.03 orientation_distance_threshold: 0.03 save_dir: "mj_runs/pose_zero_convergence"
188
YAML
22.624997
41
0.728723
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/GoToPose_Square.yaml
name: "pose" run_batch: 0 goals_x: [ 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2,-2,-1, 0, 1, 2] goals_y: [ -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1,-2,-2,-2,-2,-2] goals_theta: [1.57,1.57,1.57,1.57,3.14,3.14,3.14,3.14,-1.57,-1.57,-1.57,-1.57, 0, 0, 0, 0, 0] position_distance_threshold: 0.03 orientation_distance_threshold: 0.03 save_dir: "mj_runs/pose_square"
410
YAML
50.374994
93
0.478049
elharirymatteo/RANS/omniisaacgymenvs/cfg/hl_task/TrackXYVelHeading_Square.yaml
name: "linear_velocity_heading" run_batch: 0 trajectory_type: "square" x_offset: 0 y_offset: 0 height: 3.0 closed: True lookahead_dist: 0.3 target_tracking_velocity: 0.25 save_dir: "mj_runs/vel_heading_square"
209
YAML
19.999998
38
0.751196
elharirymatteo/RANS/omniisaacgymenvs/cfg/controller/Optimal_LQR_DAC.yaml
name: Discrete_Adaptive_LQR_Controller # State cost matrix Q: [1,1,5,5,1,1,1] # Control cost matrix R: [0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01] # Disturbance weight matrix W: [0.1,0.1,0.1,0.1,0.1,0.1,0.1] make_planar_compatible: True control_type: LQR update_matrices_every_n_steps: 100
288
YAML
25.272725
44
0.701389
elharirymatteo/RANS/omniisaacgymenvs/cfg/controller/Optimal_LQR_DC.yaml
name: Discrete_LQR_Controller # State cost matrix # pos_x, pos_y, vel_x, vel_y, qw, qz, wz Q: [0.0001,0.00001,100,100,0.000001,0.000001,1] # Control cost matrix R: [0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01] # Disturbance weight matrix W: [0.1,0.1,0.1,0.1,0.1,0.1,0.1] make_planar_compatible: True control_type: LQR
314
YAML
27.636361
47
0.678344
elharirymatteo/RANS/omniisaacgymenvs/scripts/generate_data.py
__author__ = "Antoine Richard, Matteo El Hariry, Junnosuke Kamohara" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" import os import datetime import numpy as np import torch import hydra import carb from omegaconf import DictConfig from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver from rlgames_train import RLGTrainer from rl_games.torch_runner import Runner from omniisaacgymenvs.utils.task_util import initialize_task from omniisaacgymenvs.envs.vec_env_rlgames_mfp import VecEnvRLGames def run_sdg(cfg, horizon, num_ep=1): """ Generate synthetic data using the trained agent. TODO: Discard terminated agents """ root_dir = "./sdg/" + datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") os.makedirs(root_dir, exist_ok=True) rlg_config_dict = omegaconf_to_dict(cfg.train) runner = Runner(RLGPUAlgoObserver()) runner.load(rlg_config_dict) runner.reset() agent = runner.create_player() agent.restore(cfg.checkpoint) agent.has_batch_dimension = True agent.batch_size = 1024 # agent.init_rnn() env = agent.env obs = env.reset() # if conf parameter kill_thrusters is true, print the thrusters that are killed for each episode if cfg.task.env.platform.randomization.kill_thrusters: killed_thrusters_idxs = env._task.virtual_platform.action_masks for n in range(num_ep): evaluation_dir = os.path.join(root_dir, str(n)) os.makedirs(evaluation_dir, exist_ok=True) env._task.reset_idx(env._task.all_indices.long()) obs = env.reset() ep_data = { "act": [], "state": [], "task": [], "rgb": [], "depth": [], "rews": [] } for _ in range(horizon): actions = agent.get_action(obs["obs"], is_deterministic=True) position = env._task.current_state["position"] obs, reward, _, _ = env.step(actions) state = obs["obs"]["state"][:, :5] task_data = obs["obs"]["state"][:, 6:] state = torch.cat([position, state], dim=-1) rgb, depth = env._task.get_rgbd_data() ep_data["act"].append(actions.cpu()) ep_data["state"].append(state.cpu()) ep_data["task"].append(task_data.cpu()) ep_data["rgb"].append(rgb.cpu()) ep_data["depth"].append(depth.cpu()) ep_data["rews"].append(reward.cpu()) ep_data["act"] = torch.stack(ep_data["act"]).transpose(0, 1) ep_data["state"] = torch.stack(ep_data["state"]).transpose(0, 1) ep_data["task"] = torch.stack(ep_data["task"]).transpose(0, 1) ep_data["rews"] = torch.stack(ep_data["rews"]).transpose(0, 1) ep_data["rgb"] = torch.stack(ep_data["rgb"]).transpose(0, 1) ep_data["depth"] = torch.stack(ep_data["depth"]).transpose(0, 1) # if thrusters were killed during the episode, save the action with the mask applied to the thrusters that were killed if cfg.task.env.platform.randomization.kill_thrusters: ep_data["act"] = ep_data["act"] * (1 - killed_thrusters_idxs.cpu().numpy()) # save the episode data torch.save(ep_data["act"], os.path.join(evaluation_dir, "act.pt")) torch.save(ep_data["state"], os.path.join(evaluation_dir, "state.pt")) torch.save(ep_data["task"], os.path.join(evaluation_dir, "task.pt")) torch.save(ep_data["rews"], os.path.join(evaluation_dir, "rews.pt")) torch.save(ep_data["rgb"], os.path.join(evaluation_dir, "rgb.pt")) torch.save(ep_data["depth"], os.path.join(evaluation_dir, "depth.pt")) carb.log_info("Data generation complete") @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): if cfg.checkpoint is None: print("No checkpoint specified. Exiting...") return horizon = 250 #5s(50fps) num_ep = 300 cfg.task.env.maxEpisodeLength = horizon + 2 cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # _____Create environment_____ headless = cfg.headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, ) from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) run_sdg(cfg, horizon, num_ep) env.close() if __name__ == "__main__": parse_hydra_configs()
5,146
Python
35.764285
126
0.629615
elharirymatteo/RANS/omniisaacgymenvs/scripts/rlgames_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import gym import hydra import torch from omegaconf import DictConfig import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.demo_util import initialize_demo from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream) # parse experiment directory module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__))) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == '': videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps} else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_demo(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if cfg.wandb_activate: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
4,814
Python
37.52
109
0.701703
elharirymatteo/RANS/omniisaacgymenvs/scripts/rlgames_play.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames import hydra from omegaconf import DictConfig from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner import datetime import os import torch import numpy as np class RLGTrainer(): def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register('RLGPU', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register('rlgpu', { 'vecenv_type': 'RLGPU', 'env_creator': lambda **kwargs: env }) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() agent = runner.create_player() agent.restore(self.cfg.checkpoint) is_done = False env = agent.env obs = env.reset() print(obs) #input() #prev_screen = env.render(mode='rgb_array') #plt.imshow(prev_screen) total_reward = 0 num_steps = 0 while not is_done: action = agent.get_action(obs['obs'], is_deterministic=True) obs, reward, done, info = env.step(action) print(f'Step {num_steps}: obs={obs["obs"]}, rews={reward}, dones={done}, info={info} \n') total_reward += reward num_steps += 1 is_done = done print(total_reward, num_steps) @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") cfg.checkpoint = "./runs/MFP2DGoToPose/nn/MFP2DGoToPose.pth" headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) task = initialize_task(cfg_dict, env) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if __name__ == '__main__': parse_hydra_configs()
4,935
Python
36.393939
116
0.694428
elharirymatteo/RANS/omniisaacgymenvs/scripts/multi_model_eval.py
import numpy as np import hydra from omegaconf import DictConfig from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver from rlgames_train import RLGTrainer from rl_games.torch_runner import Runner from omniisaacgymenvs.utils.task_util import initialize_task from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from utils.plot_experiment import plot_episode_data_virtual from utils.eval_metrics import get_GoToPose_success_rate_new import os import glob import pandas as pd from tqdm import tqdm # filter out invalid experiments and retrieve valid models def get_valid_models(load_dir, experiments): valid_models = [] invalid_experiments = [] for experiment in experiments: try: file_pattern = os.path.join(load_dir, experiment, "nn", "last_*ep_2000_rew__*.pth") model = glob.glob(file_pattern) if model: valid_models.append(model[0]) except: invalid_experiments.append(experiment) if invalid_experiments: print(f'Invalid experiments: {invalid_experiments}') else: print('All experiments are valid') return valid_models def eval_multi_agents(cfg, agent, models, horizon, plot_intermediate=False): evaluation_dir = "./evaluations/" + models[0].split("/")[1] + "/" os.makedirs(evaluation_dir, exist_ok=True) store_all_agents = True # store all agents generated data, if false only the first agent is stored is_done = False all_success_rate_df = pd.DataFrame() for i, model in enumerate(tqdm(models)): agent.restore(model) env = agent.env obs = env.reset() ep_data = {'act': [], 'obs': [], 'rews': []} # if conf parameter kill_thrusters is true, print the thrusters that are killed for each episode if cfg.task.env.platform.randomization.kill_thrusters: killed_thrusters_idxs = env._task.virtual_platform.action_masks for _ in range(horizon): actions = agent.get_action(obs['obs'], is_deterministic=True) obs, reward, done, info = env.step(actions) if store_all_agents: ep_data['act'].append(actions.cpu().numpy()) ep_data['obs'].append(obs['obs']['state'].cpu().numpy()) ep_data['rews'].append(reward.cpu().numpy()) else: ep_data['act'].append(actions[0].cpu().numpy()) ep_data['obs'].append(obs['obs']['state'][0].cpu().numpy()) ep_data['rews'].append(reward[0].cpu().numpy()) is_done = done.any() ep_data['obs'] = np.array(ep_data['obs']) ep_data['rews'] = np.array(ep_data['rews']) ep_data['act'] = np.array(ep_data['act']) # if thrusters were killed during the episode, save the action with the mask applied to the thrusters that were killed if cfg.task.env.platform.randomization.kill_thrusters: ep_data['act'] = ep_data['act'] * (1 - killed_thrusters_idxs.cpu().numpy()) # Find the episode where the sum of actions has only zeros (no action) for all the time steps broken_episodes = [i for i in range(0,ep_data['act'].shape[1]) if ep_data['act'][:,i,:].sum() == 0] # Remove episodes that are broken by the environment (IsaacGym bug) if broken_episodes: print(f'Broken episodes: {broken_episodes}') print(f'Ep data shape before: {ep_data["act"].shape}') for key in ep_data.keys(): ep_data[key] = np.delete(ep_data[key], broken_episodes, axis=1) print(f'Ep data shape after: {ep_data["act"].shape}') task_flag = ep_data['obs'][0, 0, 5].astype(int) # if task_flag == 0: # GoToXY # success_rate = get_GoToXY_success_rate(ep_data, print_intermediate=True) # success_rate_df = success_rate['position'] # elif task_flag == 1: # GoToPose # success_rate = get_GoToPose_success_rate(ep_data, print_intermediate=True) # success_rate_df = pd.concat([success_rate['position'], success_rate['heading']], axis=1) # elif task_flag == 2: # TrackXYVelocity # success_rate = get_TrackXYVelocity_success_rate(ep_data, print_intermediate=True) # success_rate_df = success_rate['xy_velocity'] # elif task_flag == 3: # TrackXYOVelocity # success_rate = get_TrackXYOVelocity_success_rate(ep_data, print_intermediate=True) # success_rate_df = pd.concat([success_rate['xy_velocity'], success_rate['omega_velocity']], axis=1) success_rate = get_GoToPose_success_rate_new(ep_data, print_intermediate=True) success_rate_df = success_rate['pose'] # Collect the data for the success rate table #success_rate_df['avg_rew'] = [np.mean(ep_data['rews'])] lin_vel_x = ep_data['obs'][:, 2:3] lin_vel_y = ep_data['obs'][:, 3:4] lin_vel = np.linalg.norm(np.array([lin_vel_x, lin_vel_y]), axis=0) success_rate_df['ALV'] = [np.mean(lin_vel.mean(axis=1))] ang_vel_z = np.absolute(ep_data['obs'][:, :, 4:5][:,:,0]) success_rate_df['AAV'] = [np.mean(ang_vel_z.mean(axis=1))] success_rate_df['AAC'] = np.mean(ep_data['act']) all_success_rate_df = pd.concat([all_success_rate_df, success_rate_df], ignore_index=True) # If want to print the latex code for the table use the following line if plot_intermediate: save_dir = evaluation_dir + model.split("/")[2] + "/" plot_episode_data_virtual(ep_data, save_dir, store_all_agents) # create index for the dataframe and save it model_names = [model.split("/")[2] for model in models] all_success_rate_df.insert(loc=0, column="model", value=model_names) all_success_rate_df.to_csv(evaluation_dir + "/new_xy.csv") @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): # specify the experiment load directory load_dir = cfg.checkpoint #"./models/icra24_Pose_new/" #+ "expR_SE/" print(f'Loading models from: {load_dir} ...') experiments = os.listdir(load_dir) print(f'Experiments found in {load_dir} folder: {len(experiments)}') models = get_valid_models(load_dir, experiments) #models = [m for m in models if "BB" in m.split("/")[2]] print(f'Final models: {models}') if not models: print('No valid models found') exit() # _____Create task_____ # customize environment parameters based on model if "BB" in models[0]: print("Using BB model ...") cfg.train.params.network.mlp.units = [256, 256] # if "BBB" in models[0]: # print("Using BBB model ...") # cfg.train.params.network.mlp.units = [256, 256, 256] # if "AN" in models[0]: # print("Adding noise on act ...") # cfg.task.env.add_noise_on_act = True # if "AVN" in models[0]: # print("Adding noise on act and vel ...") #cfg.task.env.add_noise_on_act = True #cfg.task.env.add_noise_on_vel = True # if "UF" in models[0]: # print("Setting uneven floor in the environment ...") # cfg.task.env.use_uneven_floor = True # cfg.task.env.max_floor_force = 0.25 horizon = 250 cfg.task.env.maxEpisodeLength = horizon + 2 cfg.task.env.platform.core.mass = 5.32 cfg.task.env.split_thrust = True cfg.task.env.clipObservations['state'] = 20.0 cfg.task.env.task_parameters['max_spawn_dist'] = 4.0 cfg.task.env.task_parameters['min_spawn_dist'] = 3.0 cfg.task.env.task_parameters['kill_dist'] = 6.0 cfg.task.env.task_parameters['kill_after_n_steps_in_tolerance'] = 250 cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # _____Create environment_____ headless = cfg.headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport) from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_task(cfg_dict, env) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) # _____Create players (model)_____ rlg_config_dict = omegaconf_to_dict(cfg.train) runner = Runner(RLGPUAlgoObserver()) runner.load(rlg_config_dict) runner.reset() agent = runner.create_player() plot_intermediate = False eval_multi_agents(cfg, agent, models, horizon, plot_intermediate) env.close() if __name__ == '__main__': parse_hydra_configs()
8,938
Python
42.604878
142
0.628664
elharirymatteo/RANS/omniisaacgymenvs/scripts/rlgames_train.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import gym import hydra import torch from omegaconf import DictConfig import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import ( retrieve_checkpoint_path, get_experience, ) from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register( "RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv( config_name, num_actors, **kwargs ), ) env_configurations.register( "rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env} ) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self, module_path, experiment_dir): self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join( module_path, "runs" ) # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() print(f" Experiment name: {self.cfg.train.params.config.name}") # dump config dict os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( { "train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None, } ) @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f"cuda:{local_rank}" enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience( headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app, ) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience, ) # parse experiment directory module_path = os.path.abspath( os.path.join(os.path.dirname(omniisaacgymenvs.__file__)) ) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == "": videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = { "render_modes": ["rgb_array"], "render_fps": cfg.recording_fps, } else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length, ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate and global_rank == 0: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, name=run_name, resume="allow", ) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if cfg.wandb_activate and global_rank == 0: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
7,426
Python
34.879227
116
0.655131
elharirymatteo/RANS/omniisaacgymenvs/scripts/rlgames_train_mfp.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.utils.config_utils.path_utils import ( retrieve_checkpoint_path, get_experience, ) from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.envs.vec_env_rlgames_mfp import VecEnvRLGames from omniisaacgymenvs.utils.task_util import initialize_task from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner from omegaconf import DictConfig import omniisaacgymenvs import datetime import hydra import torch import gym import os class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register( "RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv( config_name, num_actors, **kwargs ), ) env_configurations.register( "rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env} ) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self, module_path, experiment_dir): self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join( module_path, "runs" ) # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() print(f" Experiment name: {self.cfg.train.params.config.name}") # dump config dict os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( { "train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None, } ) @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f"cuda:{local_rank}" enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience( headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app, ) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience, ) # parse experiment directory module_path = os.path.abspath( os.path.join(os.path.dirname(omniisaacgymenvs.__file__)) ) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == "": videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = { "render_modes": ["rgb_array"], "render_fps": cfg.recording_fps, } else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length, ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate and global_rank == 0: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, name=run_name, resume="allow", ) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if cfg.wandb_activate and global_rank == 0: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
7,431
Python
34.730769
116
0.655094
elharirymatteo/RANS/omniisaacgymenvs/scripts/random_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import gym import hydra from omegaconf import DictConfig import os import time import numpy as np import torch import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience( headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app, ) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience, ) # parse experiment directory module_path = os.path.abspath( os.path.join(os.path.dirname(omniisaacgymenvs.__file__)) ) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == "": videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = { "render_modes": ["rgb_array"], "render_fps": cfg.recording_fps, } else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length, ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) num_frames = 0 first_frame = True prev_time = time.time() while env.simulation_app.is_running(): if env.world.is_playing(): if first_frame: env.reset() prev_time = time.time() first_frame = False # get upper and lower bounds of action space, sample actions randomly on this interval action_high = env.action_space.high[0] action_low = env.action_space.low[0] actions = (action_high - action_low) * torch.rand( env.num_envs, env.action_space.shape[0], device=task.rl_device ) - action_high if time.time() - prev_time >= 1: print("FPS:", num_frames, "FPS * num_envs:", env.num_envs * num_frames) num_frames = 0 prev_time = time.time() else: num_frames += 1 env.step(actions) else: env.world.step(render=render) env.simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
5,245
Python
35.685314
98
0.665205
elharirymatteo/RANS/omniisaacgymenvs/scripts/run_experiments.py
import subprocess import argparse import json import sys import os parser = argparse.ArgumentParser("Processes one or more experiments.") parser.add_argument( "--exps", type=str, nargs="+", default=None, help="List of path to the experiments' config to be ran.", ) parser.add_argument( "--isaac_path", type=str, default=None, help="Path to the python exec of isaac." ) args, unknown_args = parser.parse_known_args() WORKINGDIR = os.getcwd() s = WORKINGDIR.split("/")[:3] s = "/".join(s) if args.isaac_path is None: ov_path = os.path.join(s, ".local/share/ov/pkg/isaac_sim-2022.2.1/python.sh") else: ov_path = args.isaac_path for exp in args.exps: # Load the configuration file with open(exp, "r") as f: experiments = json.load(f) # Loop through each experiment and execute it for experiment_name, arguments in experiments.items(): # Construct the command to execute the experiment cmd = [ov_path, "scripts/rlgames_train_mfp.py"] for arg, value in arguments.items(): cmd.extend(["{}".format(arg) + "=" + str(value)]) print(f'Running command: {" ".join(cmd)}') # Execute the command subprocess.run(cmd)
1,222
Python
27.44186
84
0.648118
elharirymatteo/RANS/omniisaacgymenvs/scripts/evaluate_policy.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" import numpy as np import hydra from omegaconf import DictConfig from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver from rlgames_train import RLGTrainer from rl_games.torch_runner import Runner from omniisaacgymenvs.utils.task_util import initialize_task from omniisaacgymenvs.envs.vec_env_rlgames_mfp import VecEnvRLGames from omniisaacgymenvs.utils.plot_experiment import plot_episode_data_virtual from omniisaacgymenvs.utils.eval_metrics import ( get_GoToXY_success_rate, get_GoToPose_results, get_TrackXYVelocity_success_rate, get_TrackXYOVelocity_success_rate, ) import pandas as pd import os def eval_multi_agents(cfg, horizon): """ Evaluate a trained agent for a given number of steps""" base_dir = "./evaluations/" + cfg.checkpoint.split("/")[1] + "/" experiment_name = cfg.checkpoint.split("/")[2] print(f"Experiment name: {experiment_name}") evaluation_dir = base_dir + experiment_name + "/" os.makedirs(evaluation_dir, exist_ok=True) rlg_config_dict = omegaconf_to_dict(cfg.train) runner = Runner(RLGPUAlgoObserver()) runner.load(rlg_config_dict) runner.reset() agent = runner.create_player() agent.restore(cfg.checkpoint) agent.has_batch_dimension = True agent.batch_size = 4096 agent.init_rnn() store_all_agents = ( True # store all agents generated data, if false only the first agent is stored ) is_done = False env = agent.env obs = env.reset() # if conf parameter kill_thrusters is true, print the thrusters that are killed for each episode if cfg.task.env.platform.randomization.kill_thrusters: killed_thrusters_idxs = env._task.virtual_platform.action_masks ep_data = {"act": [], "obs": [], "rews": []} total_reward = 0 num_steps = 0 for _ in range(horizon): actions = agent.get_action(obs["obs"], is_deterministic=True) obs, reward, done, info = env.step(actions) if store_all_agents: ep_data["act"].append(actions.cpu().numpy()) ep_data["obs"].append(obs["obs"]["state"].cpu().numpy()) ep_data["rews"].append(reward.cpu().numpy()) else: ep_data["act"].append(actions[0].cpu().numpy()) ep_data["obs"].append(obs["obs"]["state"][0].cpu().numpy()) ep_data["rews"].append(reward[0].cpu().numpy()) total_reward += reward[0] num_steps += 1 is_done = done.any() ep_data["obs"] = np.array(ep_data["obs"]) ep_data["rews"] = np.array(ep_data["rews"]) ep_data["act"] = np.array(ep_data["act"]) # if thrusters were killed during the episode, save the action with the mask applied to the thrusters that were killed if cfg.task.env.platform.randomization.kill_thrusters: ep_data["act"] = ep_data["act"] * (1 - killed_thrusters_idxs.cpu().numpy()) # Find the episode where the sum of actions has only zeros (no action) for all the time steps broken_episodes = [ i for i in range(0, ep_data["act"].shape[1]) if ep_data["act"][:, i, :].sum() == 0 ] print(broken_episodes) broken_episodes = [] # Remove episodes that are broken by the environment (IsaacGym bug) if broken_episodes: print(f"Broken episodes: {broken_episodes}") # save in csv the broken episodes broken_episodes_df = pd.DataFrame( ep_data[:, broken_episodes, :], index=broken_episodes ) broken_episodes_df.to_csv(evaluation_dir + "broken_episodes.csv", index=False) print(f'Ep data shape before: {ep_data["act"].shape}') for key in ep_data.keys(): ep_data[key] = np.delete(ep_data[key], broken_episodes, axis=1) print(f'Ep data shape after: {ep_data["act"].shape}') print(f"\n Episode: rew_sum={total_reward:.2f}, tot_steps={num_steps} \n") print(f'Episode data obs shape: {ep_data["obs"].shape} \n') task_flag = ep_data["obs"][0, 0, 5].astype(int) if task_flag == 0: # GoToXY success_rate = get_GoToXY_success_rate(ep_data, print_intermediate=True) elif task_flag == 1: # GoToPose success_rate = get_GoToPose_results(ep_data) elif task_flag == 2: # TrackXYVelocity success_rate = get_TrackXYVelocity_success_rate( ep_data, print_intermediate=True ) elif task_flag == 3: # TrackXYOVelocity success_rate = get_TrackXYOVelocity_success_rate( ep_data, print_intermediate=True ) if cfg.headless: plot_episode_data_virtual(ep_data, evaluation_dir, store_all_agents) @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): if cfg.checkpoint is None: print("No checkpoint specified. Exiting...") return # customize environment parameters based on model if "BB" in cfg.checkpoint: print("Using BB model ...") cfg.train.params.network.mlp.units = [256, 256] if "BBB" in cfg.checkpoint: print("Using BBB model ...") cfg.train.params.network.mlp.units = [256, 256, 256] if "AN" in cfg.checkpoint: print("Adding noise on act ...") cfg.task.env.add_noise_on_act = True if "AVN" in cfg.checkpoint: print("Adding noise on act and vel ...") cfg.task.env.add_noise_on_act = True cfg.task.env.add_noise_on_vel = True if "UF" in cfg.checkpoint: print("Setting uneven floor in the environment ...") cfg.task.env.use_uneven_floor = True cfg.task.env.max_floor_force = 0.25 horizon = 500 cfg.task.env.maxEpisodeLength = horizon + 2 cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # _____Create environment_____ headless = cfg.headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, ) from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) # _____Create players (model)_____ # eval_single_agent(cfg_dict, cfg, env) eval_multi_agents(cfg, horizon) env.close() if __name__ == "__main__": parse_hydra_configs()
6,987
Python
34.835897
122
0.643767
elharirymatteo/RANS/omniisaacgymenvs/demos/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import tf_combine import numpy as np import torch import math import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class AnymalTerrainDemo(AnymalTerrainTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120 AnymalTerrainTask.__init__(self, name, sim_config, env) self.add_noise = False self.knee_threshold = 0.05 self.create_camera() self._current_command = [0.0, 0.0, 0.0, 0.0] self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) T = 1 R = 1 self._key_to_control = { "UP": [T, 0.0, 0.0, 0.0], "DOWN": [-T, 0.0, 0.0, 0.0], "LEFT": [0.0, T, 0.0, 0.0], "RIGHT": [0.0, -T, 0.0, 0.0], "Z": [0.0, 0.0, R, 0.0], "X": [0.0, 0.0, -R, 0.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0, 0.0, 0.0, 0.0] def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) if self._previous_selected_id != self._selected_id: self.view_port.set_active_camera(self.camera_path) self._update_camera() else: print("The selected prim was not an Anymal") if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id: self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1]) self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1]) self.commands[self._previous_selected_id, 2] = 0.0 def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def post_physics_step(self): self.progress_buf[:] += 1 self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.update_selected_object() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() if self._selected_id is not None: self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) self.timeout_buf[self._selected_id] = 0 self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,841
Python
44.577319
126
0.636127
elharirymatteo/RANS/omniisaacgymenvs/doc/domain_randomization.md
# Domain Randomization Unlike the regular version of OmniIsaacGymEnv, this modified version chooses to apply domain randomization directly inside the task. This is done so that different parameters can receive different level of noise. For instance, the state is composed of unnormalized angular values and linear velocity values, both of which have largely different scales. Furthermore, the domain randomization we apply here is not limited to noise on actions or observations, but we also offer the possibility to randomize the mass of the system, or apply forces and torques directly onto the system. All the parameters to add domaine randomization onto the system must be added under the `task.env.disturbances` flag inside the configuration file. As of today, we support the following disturbances: - `force_disturbance` it applies random amount of forces at the system origin. - `torque_disturbance` it applies random amount of torque at the system origin. - `mass_disturbance` it changes the mass, and center of mass of the system. - `observations_disturbance` it adds noise onto the obervations. - `actions_disturbance` it adds noise onto the actions. ## Applying disturbances In the following, we will go over the different parameters available for the disturbances and how to set them. All the disturbances build ontop of a scheduler, and a sampler. The scheduler regulates how quickly the disturbances should take effect during the training. The sampler allows to randomly pick the amount of disturbance that should be apply on each environment. A detailed explenation of the schedulers and samplers can be found in the curriculum documentation [LINK]. ### Force disturbance This disturbance applies a force on the system. By default, the force is applied at the root/origin of the body. This behavior can be adjusted by modifying the body on which the force is applied. When setting the parameters for the disturbance the user will select the magnitude of the force. It will then be randomly applied in a plane, or on a sphere. Practically this is done by sampling a radius value (that is the magnitude) using the scheduler and sampler. Then a theta value (for a 2D problem), or a theta and phi value (for a 3D problem), are sampled uniformly projecting the force accordingly. Below, is an example of a configuration, please note that all the parameters have default values. So you do not need to add them unless you want to modify them. In this example, the sampler is following a `truncated_normal` distribution (a normal distribution with extremas) and the scheduler is using a sigmoid growth. We can see that at the begining, there will be almost no force applied, at the end it is almost uniformly sampled on the \[0, 0.5\] range. ```yaml force_disturbance: enable: False # Setting this to True will enable this disturbance use_sinusoidal_patterns: False # Setting this to True will create none-constant forces. min_freq: 0.25 max_freq: 3 min_offset: -6 max_offset: 6 # Scheduling and sampling of the disturbance force_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.5 end_std: 0.5 min_value: 0.0 max_value: 0.5 ``` Setting the `enable` flag to `True` is required for the penalty to be applied. If the flag is left to `False``, the penalty will not be applied onto the platform. Setting the `use_sinusoidal_patterns` flag to `False` will mean that each environment will have a constant force applied on it. If this flag is set to `True`, the force magnitude will be modified depending on the position of the system. This is meant to recreate attraction and repulsion points. The non-constant force means that recurrent networks will struggle more to reliably estimate the disturbance. Sinusoidal pattern, freq = 0.25 | Sinusoidal pattern, freq = 3.0 :------------------------------:|:------------------------------: ![sinusoidal_pattern_0.25](figures/sinusoidal_pattern_025.png) | ![sinusoidal_pattern_3](figures/sinusoidal_pattern_3.png) Please note that the values for the sinusoidal patterns and the magnitude of the force are updated on an environment reset only. This means that the magnitude of the force will not evolve through an episode. ### Torque disturbance This disturbance applies a torque on the system. By default, the torque is applied at the root/origin of the body. This behavior can be adjusted by modifying the body on which the torque is applied. When setting the parameters for the disturbance the user will select the magnitude of the torque. It will then be randomly applied in a plane, or on a sphere. Practically this is done by sampling a radius value (that is the magnitude) using the scheduler and sampler. For a 2D problem, this is the only thing needed, as there is only 1 rotation DoF. For a 3D problem, theta and phi value (for a 3D problem), are sampledcuniformly projecting the torque accordingly. Below, is an example of a configuration, please note that all the parameters have default values. So you do not need to add them unless you want to modify them. In this example, the sampler is following a `truncated_normal` distribution (a normal distribution with extremas) and the scheduler is using a sigmoid growth. We can see that at the begining, there will be almost no torque applied, at the end it is almost uniformly sampled on the [0, 0.1] range. ```yaml torque_disturbance: enable: False # Setting this to True will enable this disturbance use_sinusoidal_patterns: False # Setting this to True will create none-constant forces. min_freq: 0.25 max_freq: 3 min_offset: -6 max_offset: 6 # Scheduling and sampling of the disturbance torque_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.2 min_value: -0.1 max_value: 0.1 ``` Setting the `enable` flag to `True` is required for the penalty to be applied. If the flag is left to `False``, the penalty will not be applied onto the platform. Setting the `use_sinusoidal_patterns` flag to `False` will mean that each environment will have a constant torque applied on it. If this flag is set to `True`, the torque magnitude will be modified depending on the position of the system. This is meant to recreate attraction and repulsion points. The non-constant torque means that recurrent networks will struggle more to reliably estimate the disturbance. Sinusoidal pattern, freq = 0.25 | Sinusoidal pattern, freq = 3.0 :------------------------------:|:------------------------------: ![sinusoidal_pattern_0.25](figures/sinusoidal_pattern_025.png) | ![sinusoidal_pattern_3](figures/sinusoidal_pattern_3.png) Please note that the values for the sinusoidal patterns and the magnitude of the torque are updated on an environment reset only. This means that the magnitude of the torque will not evolve through an episode. ### Mass disturbance The mass disturbances allows to randomize the mass and the CoM of a rigid body. While it is not currently possible to randomize the CoM of a rigid bodies inside omniverse, we solve this issue by adding two prismatic joints to the system, at the end of which lies a fixed mass. All of the other elements inside of the system are changed to have almost no mass such that the only meaningful contribution to the total system mass and CoM comes from this movable body. To randomize the mass value, a scheduler and sampler are used, the mass is directly sampled from it. For the CoM, another set of scheduler and sampler are used, from it a radius is sampled which can then be used to move the CoM in a 2D plane by uniformly sampling a theta value, or using in 3D by uniformly sampling a theta and phi value. Below is an example configuration, please note that all the parameters have default values. So you do not need to add them unless you want to modify them. In this example, we can see that both the mass and the CoM have indepent samplers and rates. ```yaml mass_disturbance: enable: False # Setting this to True will enable this disturbance # Scheduling and sampling of the mass disturbance mass_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 5.32 # Initial mass start_std: 0.0001 # Low std ensures the mass will remain constand during warmup end_mean: 5.32 end_std: 3.0 min_value: 3.32 max_value: 7.32 # Scheduling and sampling of the CoM disturbance com_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 # displacement about the resting position of the CoM joints start_std: 0.0001 # Low std ensures the mass will remain constand during warmup end_mean: 0.25 end_std: 0.25 min_value: 0.0 max_value: 0.25 ``` Setting the `enable` flag to `True` is required for the penalty to be applied. If the flag is left to `False``, the penalty will not be applied onto the platform. ### Observations disturbance The observations disturbance adds a given type of noise onto the different constituting elements of the observation tensor. The noise can be independently controlled and applied or not on 3 type of variables: - positions (meters) - velocities (meters/s or radians/s) - orientation (radians) For each of them, a scheduler and sampler can be set up, enabling fine control over how the system is exposed to observation noise during its training. below is am example configuration, please note that all the parameters have default values. So you do not need to set them unless you want to modify them. ```yaml observations_disturbance: enable_position_noise: False # Setting this to True will enable this disturbance enable_velocity_noise: False # Setting this to True will enable this disturbance enable_orientation_noise: False # Setting this to True will enable this disturbance # Scheduling and sampling of the position disturbance position_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.03 min_value: -0.015 max_value: 0.015 # Scheduling and sampling of the velocity disturbance velocity_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.03 min_value: -0.015 max_value: 0.015 # Scheduling and sampling of the orientation disturbance orientation_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.05 min_value: -0.025 max_value: 0.025 ``` Setting the `enable` flag to `True` is required for the penalty to be applied. If the flag is left to `False``, the penalty will not be applied onto the platform. ### Actions disturbance The actions disturbance adds a given type of noise onto the actions sent by the agent. In our case this is done by adding (or removing) some force to the output of the thrusters. This should be scale accordingly with the maximum thrust that your system is capable of. Similarly to all previous disturbances, it also comes with a scheduler and a sampler. below is am example configuration, please note that all the parameters have default values. So you do not need to set them unless you want to modify them. ```yaml actions_disturbance: enable: False # Setting this to True will enable this disturbance # Scheduling and sampling of the disturbance action_curriculum: rate_parameters: function: sigmoid start: 250 end: 1250 extent: 4.5 sampling_parameters: distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.1 min_value: -0.05 max_value: 0.05 ``` Setting the `enable` flag to `True` is required for the penalty to be applied. If the flag is left to `False``, the penalty will not be applied onto the platform. ## Adding new disturbances To add new disturbances, we would recommend adding them within the file located within `tasks/virtual_floating_platform/MFP2D_disturbances.py`, with its defaut parameters given inside `tasks/virtual_floating_platform/MFP2D_disturbances_parameters.py`. Or its 3D counter part. ### Creating a new set of parameters To create a new set of parameters for a disturbance, you should create a dataclass, with that comes with a scheduler and sampler. An example of such a class is given below: ```python @dataclass class NoisyActionsParameters: """ This class provides an interface to adjust the hyperparameters of the action noise. """ # Note how the default factory is an empty dict. This is leveraged to # enable automatic building of the CurriculumParameters. action_curriculum: CurriculumParameters = field(default_factory=dict) # Here you could add any other parameters as long as they have a # default type and value. enable: bool = False def __post_init__(self): # We transform the dictionary into a CurriculumParameter object. # This action automatically converts the dictionnary. # Note though that this does not support unknown keys. # I.e. if a the user adds a key that does not exist, the # dataclass will complain. self.action_curriculum = CurriculumParameters(**self.action_curriculum) ``` This very simple class creates the required parameters for the scheduler. You can of course add your own set of parameters. Do not forget to specify their type, and assign a default value. This is important as the class disturbance should be instantiable even if no parameter is given. To wrap up the parameters part, you will need to add this disturbance to the list of allowed disturbances. This can be done by adding it to the `DisturbancesParameters` class at the end of the `tasks/virtual_floating_platform/MFP2D_disturbances_parameters.py`. ```python @dataclass class DisturbancesParameters: [...] # Some more disturbances actions_disturbance: NoisyActionsParameters = field(default_factory=dict) def __post_init__(self): [...] # Some more initializations # Here we build the object, note that this will automatically retrieve everything under # `task.env.disturbances.actions_disturbance` inside the configuration file. self.actions_disturbance = NoisyActionsParameters(**self.actions_disturbance) ``` ### Creating a new disturbance With the parameters created you can now create the class that will implement your new disturbance. Below, we provide and example of how this could be done. ```python class NoisyActions: """ Adds noise to the actions of the robot.""" def __init__( self, parameters: NoisyActionsParameters, num_envs: int, device: str, ) -> None: """ Args: parameters (NoisyActionParameters): The task configuration. num_envs (int): The number of environments. device (str): The device on which the tensors are stored. """ # Here the parameters from the sampler are being loaded and transformed # into and object that can be used to sample different noises. self.action_sampler = CurriculumSampler(parameters.action_curriculum) # This is used in case you'd want to access other parameters. self.parameters = parameters # These are used to known how many environments are used, and the device # on which the tensors must be store. self._num_envs = num_envs self._device = device def add_noise_on_act(self, act: torch.Tensor, step: int = 0) -> torch.Tensor: """ Adds noise to the actions of the robot. Args: act (torch.Tensor): The actions of the robot. step (int, optional): The current step of the learning process. Defaults to 0. Returns: torch.Tensor: The actions of the robot with noise. """ if self.parameters.enable: # Note that this depends on the current step / epoch of the training # this is particularly important for the scheduler as it uses this # information to adjust its rate act += self.action_sampler.sample(self._num_envs, step, device=self._device) return act ``` With this done, we now need to instantiate our disturbance, this can be done by adding it to the `Disturbances` class at the end of the `MFP2D_disturbances.py` (or its 3D counterpart). This is done as shown below: ```python class Disturbances: """ Class to create disturbances on the platform. """ def __init__( self, parameters: dict, num_envs: int, device: str, ) -> None: """ Args: parameters (dict): The settings of the domain randomization. num_envs (int): The number of environments. device (str): The device on which the tensors are stored. """ self._num_envs = num_envs self._device = device # Loads all the parameters after `task.env.disturbances` inside the configuration file. self.parameters = DisturbancesParameters(**parameters) [...] # Some more initialization # This builds the object self.noisy_actions = NoisyActions( self.parameters.actions_disturbance, num_envs, device, ) ``` With all this done, your disturbance can be parametrized, and instantiated! All that's left to do is to apply it! ### Applying domain randomization First we need to instantiate the `Disturbances` class. This can be done as shown below: ```python # Get all the parameters inside the task config as a dict self._task_cfg = sim_config.task_config # Get the dict related to the disturbances domain_randomization_cfg = self._task_cfg["env"]["disturbances"] # Initializes the disturbances self.DR = Disturbances( domain_randomization_cfg, num_envs=self._num_envs, device=self._device, ) ``` This should be done in the `__init__` method of your task. With this done you can apply it as you see fit. In this example this would be done like so: ```python thrusts = self.DR.noisy_actions.add_noise_on_act(thrusts) ```
19,160
Markdown
41.019737
143
0.719729
elharirymatteo/RANS/omniisaacgymenvs/doc/curriculum.md
# Curriculum To prevent penalties, disturbances, or tasks from being to hard from the beginning, we use simple fixed curriculum strategies. Here fixed denotes that the rate at which the task becomes harder is not dynamically adapting to the agent's current capacities. Instead, it relies on the current step to set the difficulty accordingly. ## Parametrizing the curriculum In the following we present how to setup the different components of our curriculum objects. A curriculum object is always composed of a scheduler and a sampler: ```yaml curriculum_parameters: rate_parameters: [...] sampler_parameters: [...] ``` The objects come with default parameters which will result in the rate/scheduler always outputing 1.0. ### Setting up the scheduling/rate of the curriculum To set the schedule or rate, of the curriculum we provide three main functions: - a `sigmoid` style growth. - a `power` style growth. - a `linear` style growth. - `none`, the scheduler always returns 1.0. Below, we provide 4 sample configuration for each of these functions. ```yaml rate_parameters: # Sigmoid function: sigmoid start: 0 end: 1000 extent: 4.5 # Must be larger than 0. ``` ```yaml rate_parameters: # Power function: power start: 0 end: 1000 alpha: 2.0 # Can be smaller than 1! Must be larger than 0. ``` ```yaml rate_parameters: # Linear function: linear start: 0 end: 1000 ``` ```yaml rate_parameters: # None function: none ``` How the different parameters impact the scheduling of the curiculum is given in the figure below. Note than once the scheduler reaches 1.0 it means that the highest difficulty has been reached. The value outputed by the scheduler is always comprised between \[0,1\]. ![curriculum_schedulers](figures/curriculum_schedulers.png) We can see that for the `sigmoid`, large extent, for instance 12, generate sigmoid with a steeper slope, while smaller extent get closer to the `linear`. Similarly, creating a `power` function with parameter `alpha` set to 1.0 will generate the exact same curve as the `linear` function. When `alpha` larger than 1.0 will have a small slope at the beginning and a high slope at the end, and `alpha` smaller than 1.0 will have the opposite. ### Setting up the sampler of the curriculum As of now, we provide 3 basic distribution to sample from: - `uniform`, a uniform distribution between a max and a min. - `normal`, a normal distribution around a mean with a given sigma. - `truncated_normal`, a normal distribution with hard boundaries. Below, we provide 3 sample configurations: ```yaml sampling_parameters: # Uniform distribution: uniform start_min_value: -0.1 start_max_value: 0.1 end_min_value: -0.3 end_max_value: 0.3 ``` ```yaml sampling_parameters: # Normal distribution: normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.2 ``` ```yaml sampling_parameters: # Truncated normal distribution: truncated_normal start_mean: 0.0 start_std: 0.0001 end_mean: 0.0 end_std: 0.2 min_value: -0.1 max_value: 0.1 ``` In the above example, we can see that there is always a start, and an end parameter, be it for the mean, std, or max and min value of the uniform distribution. Start denotes the distribution as it will be when the scheduler/rate output is 0. End denotes the distribution as it will be when the scheduler/rate output is 1. In between, the distribution will transition from one to the other following the function given to the scheduler. ## Modifying the curriculum In the following we explain how to add new samplers and schedulers to the current set of curriculum. In the futur we plan on expanding the curriculum to support non-fixed steps. ### Modifying the scheduler Adding a new scheduler is relatively easy and straight forward. Create a new function inside `tasks.virtual_floating_platform.curriculum_helpers.py`. Make sure this function has the following header: ```python def your_new_function(step: int = 0, start: int = 0, end: int = 1000, **kwargs) -> float ``` Note that in practice step can be a float. Below is our linear function: ```python def curriculum_linear_growth(step: int = 0, start: int = 0, end: int = 1000, **kwargs) -> float: """ Generates a curriculum with a linear growth rate. Args: step (int): Current step. start (int): Start step. end (int): End step. **kwargs: Additional arguments. Returns: float: Rate of growth. """ if step < start: return 0.0 if step > end: return 1.0 current = step - start relative_end = end - start rate = current / (relative_end) return rate ``` Then add this function to the RateFunctionDict, here is an example. ```python RateFunctionDict = { "none": lambda step, start, end, **kwargs: 1.0, "linear": curriculum_linear_growth, "sigmoid": curriculum_sigmoid_growth, "pow": curriculum_pow_growth, } ``` Finally to call your own function, use the key you set inside the dictionary as the `function` parameter in the rate/scheduler config. But what if you wanted to add more parameters? In theory, there is an automatic parameter collector. That means that as long as you create functions with named variables, and that these named variables match the name of the parameters given to the dataclass, everything should be seemless. With the notable exception of functions. Below is the automatic parameter collector: ```python self.kwargs = { key: value for key, value in self.__dict__.items() if not isfunction(value) } ``` This is then process inside the following: ```python def get(self, step: int) -> float: """ Gets the difficulty for the given step. Args: step (int): Current step. Returns: float: Current difficulty. """ return self.function( step=step, **self.kwargs, ) ``` ### Modifying the sampler Similarly, a new sampler can be added in the same fashion. Create a new function inside `tasks.virtual_floating_platform.curriculum_helpers.py`. This function must follow the following header style: ```python def your_new_function(n: int = 1, device: str = "cpu", **kwargs) -> torch.Tensor: ``` You can add arguments as you see fit. Below is our implementation of the uniform sampling: ```python def uniform( n: int = 1, min_value: float = 0.0, max_value: float = 1.1, device: str = "cpu", **kwargs, ) -> torch.Tensor: """ Generates a tensor with values from a uniform distribution. Args: n (int, optional): Number of samples to generate. min_value (float, optional): Minimum value of the uniform distribution. max_value (float, optional): Maximum value of the uniform distribution. device (str, optional): Device to use for the tensor. **kwargs: Additional arguments. Returns: torch.Tensor: Tensor with values from a uniform distribution. """ return torch.rand((n), device=device) * (max_value - min_value) + min_value ``` Proceed to add this function inside the `SampleFunctionDict`: ```python SampleFunctionDict = { "uniform": uniform, "normal": normal, "truncated_normal": truncated_normal, } ``` With this done, all that's left to is to define the routine to update the different parameters given the rate. While this operation could be automated this would likely lead to the overall code being less flexible. Thus, we require to update the `CurriculumSampler` class. Inside the `sample` function, you will need to add an if statement that matches your distribution's name. An example is given below: ```python elif self.sp.distribution == "normal": mean = self.sp.start_mean + (self.sp.end_mean - self.sp.start_mean) * rate std = self.sp.start_std + (self.sp.end_std - self.sp.start_std) * rate return self.sp.function(n=n, mean=mean, std=std, device=device) ```
7,926
Markdown
30.835341
113
0.713348
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/__init__.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development"
290
Python
28.099997
79
0.648276
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/run_mujoco.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omegaconf import DictConfig, OmegaConf import hydra import os from omniisaacgymenvs.mujoco_envs.controllers.discrete_LQR_controller import ( DiscreteController, parseControllerConfig, ) from omniisaacgymenvs.mujoco_envs.controllers.RL_games_model_4_mujoco import ( RLGamesModel, ) from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import ( MuJoCoFloatingPlatform, parseEnvironmentConfig, ) from omniisaacgymenvs.mujoco_envs.controllers.hl_controllers import hlControllerFactory @hydra.main(config_name="config_mujoco", config_path="../cfg") def run(cfg: DictConfig): """ " Run the simulation. Args: cfg (DictConfig): A dictionary containing the configuration of the simulation. """ # print_dict(cfg) cfg_dict = omegaconf_to_dict(cfg) # Create the environment env = MuJoCoFloatingPlatform(**parseEnvironmentConfig(cfg_dict)) # Get the low-level controller if cfg_dict["use_rl"]: assert os.path.exists( cfg_dict["checkpoint"] ), "A correct path to a neural network must be provided to infer an RL agent." ll_controller = RLGamesModel( config=cfg_dict["train"], model_path=cfg_dict["checkpoint"] ) else: ll_controller = DiscreteController(**parseControllerConfig(cfg_dict, env)) dt = cfg_dict["task"]["sim"]["dt"] # Get the high-level controller hl_controller = hlControllerFactory(cfg_dict, ll_controller, dt) env.runLoop(hl_controller) if __name__ == "__main__": run()
1,987
Python
29.121212
87
0.698037
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/controllers/discrete_LQR_controller.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from typing import Callable, NamedTuple, Optional, Union, List, Dict from scipy.linalg import solve_discrete_are import numpy as np import mujoco import cvxpy as cp from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import ( MuJoCoFloatingPlatform, ) def parseControllerConfig( cfg_dict: Dict, env: MuJoCoFloatingPlatform ) -> Dict[str, Union[List[float], int, float, str, MuJoCoFloatingPlatform]]: """ Parse the controller configuration. Args: cfg_dict (Dict): A dictionary containing the configuration. env (MuJoCoFloatingPlatform): A MuJoCoFloatingPlatform object. Returns: Dict[str, Union[List[float], int, float, str, MuJoCoFloatingPlatform]]: A dictionary containing the parsed configuration. """ config = {} config["target_position"] = [0, 0, 0] config["target_orientation"] = [1, 0, 0, 0] config["target_linear_velocity"] = [0, 0, 0] config["target_angular_velocity"] = [0, 0, 0] config["thruster_count"] = ( cfg_dict["task"]["env"]["platform"]["configuration"]["num_anchors"] * 2 ) config["dt"] = cfg_dict["task"]["sim"]["dt"] config["Mod"] = env config["control_type"] = cfg_dict["controller"]["control_type"] config["Q"] = cfg_dict["controller"]["Q"] config["R"] = cfg_dict["controller"]["R"] config["W"] = cfg_dict["controller"]["W"] return config class DiscreteController: """ Discrete pose controller for the Floating Platform.""" def __init__( self, target_position: List[float] = [0, 0, 0], target_orientation: List[float] = [1, 0, 0, 0], target_linear_velocity: List[float] = [0, 0, 0], target_angular_velocity: List[float] = [0, 0, 0], thruster_count: int = 8, dt: float = 0.02, Mod: MuJoCoFloatingPlatform = None, control_type: str = "LQR", Q: List[float] = [1, 1, 5, 5, 1, 1, 1], W: List[float] = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], R: List[float] = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], **kwargs ) -> None: """ Initialize the discrete controller. Args: target_position (List[float], optional): A list containing the target position. Defaults to [0,0,0]. target_orientation (List[float], optional): A list containing the target orientation. Defaults to [1,0,0,0]. target_linear_velocity (List[float], optional): A list containing the target linear velocity. Defaults to [0,0,0]. target_angular_velocity (List[float], optional): A list containing the target angular velocity. Defaults to [0,0,0]. thruster_count (int, optional): An integer containing the number of thrusters. Defaults to 8. dt (float, optional): A float containing the time step. Defaults to 0.02. Mod (MuJoCoFloatingPlatform, optional): A MuJoCoFloatingPlatform object. Used to compute the linearized system matrices. Defaults to None. control_type (str, optional): A string containing the type of control. Either 'H-inf' or 'LQR'. Defaults to 'LQR'. Q (List[float], optional): A list containing the state cost matrix. Defaults to [1,1,5,5,1,1,1]. W (List[float], optional): A list containing the disturbance weight matrix. Defaults to [0.01,0.01,0.01,0.01,0.01,0.01,0.01]. R (List[float], optional): A list containing the control cost matrix. Defaults to [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]. **kwargs: Additional arguments.""" self.thruster_count = thruster_count self.thrusters = np.zeros(thruster_count) # Initialize all thrusters to off self.dt = dt self.FP = Mod self.control_type = control_type self.opti_states = None # Instantiate goals to be null self.target_position = target_position self.target_orientation = target_orientation self.target_linear_velocity = target_linear_velocity self.target_angular_velocity = target_angular_velocity # Control parameters # State cost matrix self.Q = np.diag(Q) # Control cost matrix self.R = np.diag(R) # Disturbance weight matrix self.W = np.diag(W) self.findGains() def findGains(self, r0=None) -> None: """ Find the gains for the controller. Args: r0 (np.ndarray, optional): An array containing the initial state. Defaults to None. """ # Compute linearized system matrices A and B based on your system dynamics self.A, self.B = self.computeLinearizedSystem( r0 ) # Compute linearized system matrices self.makePlanarCompatible() if self.control_type == "H-inf": self.computeHInfinityGains() elif self.control_type == "LQR": self.computeLQRGains() else: raise ValueError("Invalid control type specified.") def computeLQRGains(self) -> None: """ Compute the LQR gains.""" self.P = solve_discrete_are(self.A, self.B, self.Q, self.R) self.L = ( np.linalg.inv(self.R + self.B.T @ self.P @ self.B) @ self.B.T @ self.P @ self.A ) def computeHInfinityGains(self) -> None: """ Compute the H-infinity gains.""" X = cp.Variable((self.A.shape[0], self.A.shape[0]), symmetric=True) gamma = cp.Parameter(nonneg=True) # Define gamma as a parameter regularization_param = 1e-6 # Regularize matrix using the pseudo-inverse A_regularized = self.A @ np.linalg.inv( self.A.T @ self.A + regularization_param * np.eye(self.A.shape[1]) ) B_regularized = self.B @ np.linalg.inv( self.B.T @ self.B + regularization_param * np.eye(self.B.shape[1]) ) # Define the constraints using regularized matrices constraints = [X >> np.eye(A_regularized.shape[1])] # X >= 0 # Define a relaxation factor relaxation_factor = 1 # Adjust this value based on your experimentation # Linear matrix inequality constraint with relaxation constraints += [ cp.bmat( [ [ A_regularized.T @ X @ A_regularized - X + self.Q, A_regularized.T @ X @ B_regularized, ], [ B_regularized.T @ X @ A_regularized, B_regularized.T @ X @ B_regularized - (gamma**2) * relaxation_factor * np.eye(B_regularized.shape[1]), ], ] ) << 0 ] objective = cp.Minimize(gamma) prob = cp.Problem(objective, constraints) # Set the value of the parameter gamma gamma.value = 1.0 # You can set the initial value based on your problem prob.solve() if prob.status == cp.OPTIMAL: self.L = ( np.linalg.inv( self.B.T @ X.value @ self.B + gamma.value**2 * np.eye(self.B.shape[1]) ) @ self.B.T @ X.value @ self.A ) breakpoint() else: raise Exception("H-infinity control design failed.") def setTarget( self, target_position: List[float] = None, target_heading: List[float] = None, target_linear_velocity: List[float] = None, target_angular_velocity: List[float] = None, ) -> None: """ Sets the target position, orientation, and velocities. Args: target_position (List[float], optional): A list containing the target position. Defaults to None. target_heading (List[float], optional): A list containing the target heading. Defaults to None. target_linear_velocity (List[float], optional): A list containing the target linear velocity. Defaults to None. target_angular_velocity (List[float], optional): A list containing the target angular velocity. Defaults to None. """ if target_position is not None: self.target_position = np.array(target_position) if target_heading is not None: self.target_orientation = np.array(target_heading) if target_linear_velocity is not None: self.target_linear_velocity = np.array(target_linear_velocity) if target_angular_velocity is not None: self.target_angular_velocity = np.array(target_angular_velocity) def computeLinearizedSystem(self, r0: np.ndarray = None) -> None: """ Compute linearized system matrices A and B. With A the state transition matrix. With B the control input matrix. Args: r0 (np.ndarray, optional): An array containing the initial state. Defaults to None. """ if r0 is None: r0 = np.concatenate( ( self.FP.data.qpos[:3], self.FP.data.qvel[:3], self.FP.data.qpos[3:], self.FP.data.qvel[3:], ), axis=None, ) t_int = 0.2 # time-interval at 5Hz A = self.f_STM(r0, t_int, self.FP.model, self.FP.data, self.FP.body_id) B = self.f_B( r0, t_int, self.FP.model, self.FP.data, self.FP.body_id, self.thruster_count ) return A, B def makePlanarCompatible(self) -> None: """ Remove elements of the STM to make it planar compatible. Required states #[x,y,vx,vy,qw,qz,wz].""" a = self.A b = self.B a = np.delete(a, 11, axis=0) # Remove row: wy a = np.delete(a, 10, axis=0) # Remove row: wx a = np.delete(a, 8, axis=0) # Remove row: qy a = np.delete(a, 7, axis=0) # Remove row: qz a = np.delete(a, 5, axis=0) # Remove row: vz a = np.delete(a, 2, axis=0) # Remove row: z a = np.delete(a, 11, axis=1) # Remove col: wy a = np.delete(a, 10, axis=1) # Remove col: wx a = np.delete(a, 8, axis=1) # Remove col: qy a = np.delete(a, 7, axis=1) # Remove col: qz a = np.delete(a, 5, axis=1) # Remove col: vz a = np.delete(a, 2, axis=1) # Remove col: z b = np.delete(b, 11, axis=0) # Remove row: wy b = np.delete(b, 10, axis=0) # Remove row: wx b = np.delete(b, 8, axis=0) # Remove row: qy b = np.delete(b, 7, axis=0) # Remove row: qz b = np.delete(b, 5, axis=0) # Remove row: vz b = np.delete(b, 2, axis=0) # Remove row: z b[b == 0] = 1e-4 self.A = a self.B = b return None def f_STM(self, r0: np.ndarray, t_int: float, model, data, body_id) -> None: """ Identify A matrix of linearized system through finite differencing. Args: r0 (np.ndarray): An array containing the initial state. t_int (float): A float containing the time interval. model: A MuJoCo model object. data: A MuJoCo data object. body_id: An integer containing the body id.""" IC_temp0 = r0 force = [0.0, 0.0, 0.0] torque = [0.0, 0.0, 0.0] default_tstep = model.opt.timestep model.opt.timestep = t_int current_time = data.time for k in range(np.size(r0)): delta = max(1e-3, IC_temp0[k] / 100) delta_vec = np.zeros(np.size(r0)) delta_vec[k] = delta IC_temp_pos = np.add(IC_temp0, delta_vec) IC_temp_neg = np.subtract(IC_temp0, delta_vec) # Positive direction data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp_pos[0:3] data.qvel[:3] = IC_temp_pos[3:6] data.qpos[3:] = IC_temp_pos[6:10] data.qvel[3:] = IC_temp_pos[10:13] mujoco.mj_applyFT( model, data, force, torque, data.qpos[:3], body_id, data.qfrc_applied ) mujoco.mj_step(model, data) ans_pos = np.concatenate( (data.qpos[:3], data.qvel[:3], data.qpos[3:], data.qvel[3:]), axis=None ) # print('final_time', data.time) # Negative direction data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp_neg[0:3] data.qvel[:3] = IC_temp_neg[3:6] data.qpos[3:] = IC_temp_neg[6:10] data.qvel[3:] = IC_temp_neg[10:13] mujoco.mj_applyFT( model, data, force, torque, data.qpos[:3], body_id, data.qfrc_applied ) mujoco.mj_step(model, data) ans_neg = np.concatenate( (data.qpos[:3], data.qvel[:3], data.qpos[3:], data.qvel[3:]), axis=None ) # print('final_time', data.time) if k == 0: STM = np.subtract(ans_pos, ans_neg) / (2 * delta) else: temp = np.subtract(ans_pos, ans_neg) / (2 * delta) STM = np.vstack((STM, temp)) STM = STM.transpose() STM[6, 6] = 1.0 data.time = current_time model.opt.timestep = default_tstep return STM def f_STM_analytical( self, r0: np.ndarray, t_int: float, model, data, body_id ) -> None: """ Identify A matrix of linearized system through finite differencing. Args: r0 (np.ndarray): An array containing the initial state. t_int (float): A float containing the time interval. model: A MuJoCo model object. data: A MuJoCo data object. body_id: An integer containing the body id.""" IC_temp0 = r0 STM = np.eye(np.size(r0)) w1 = IC_temp0[10] w2 = IC_temp0[11] w3 = IC_temp0[12] qw = IC_temp0[6] qx = IC_temp0[7] qy = IC_temp0[8] qz = IC_temp0[9] STM[0, 3] = t_int STM[1, 4] = t_int STM[2, 5] = t_int STM[6, 6] = 1 STM[6, 7] = -0.5 * w1 * t_int STM[6, 8] = -0.5 * w2 * t_int STM[6, 9] = -0.5 * w3 * t_int STM[6, 10] = -0.5 * qx * t_int STM[6, 11] = -0.5 * qy * t_int STM[6, 12] = -0.5 * qz * t_int STM[7, 6] = 0.5 * w1 * t_int STM[7, 7] = 1 STM[7, 8] = 0.5 * w3 * t_int STM[7, 9] = -0.5 * w2 * t_int STM[7, 10] = 0.5 * qw * t_int STM[7, 11] = -0.5 * qz * t_int STM[7, 12] = 0.5 * qy * t_int STM[8, 6] = 0.5 * w2 * t_int STM[8, 7] = -0.5 * w3 * t_int STM[8, 8] = 1 STM[8, 9] = 0.5 * w1 * t_int STM[8, 10] = 0.5 * qz * t_int STM[8, 11] = 0.5 * qw * t_int STM[8, 12] = -0.5 * qx * t_int STM[9, 6] = 0.5 * w3 * t_int STM[9, 7] = -0.5 * w2 * t_int STM[9, 8] = -0.5 * w1 * t_int STM[9, 9] = 1 STM[9, 10] = -0.5 * qy * t_int STM[9, 11] = 0.5 * qx * t_int STM[9, 12] = 0.5 * qw * t_int return STM def f_B( self, r0: np.ndarray, t_int: float, model, data, body_id, number_thrust: int ) -> None: """ Identify B matrix of linearized system through finite differencing. Args: r0 (np.ndarray): An array containing the initial state. t_int (float): A float containing the time interval. model: A MuJoCo model object. data: A MuJoCo data object. body_id: An integer containing the body id. number_thrust (int): An integer containing the number of thrusters.""" IC_temp0 = r0 force = [0.0, 0.0, 0.0] torque = [0.0, 0.0, 0.0] default_tstep = model.opt.timestep model.opt.timestep = t_int u = np.zeros(number_thrust) current_time = data.time # for k in range(np.size(u)): for k in range(np.size(u)): delta = 0.01 delta_vec = np.zeros(np.size(u)) delta_vec[k] = delta # Positive direction u_plus = np.add(u, delta_vec) force_plus = u_plus[k] * self.FP.forces[k] # * np.sqrt(0.5) rmat = data.xmat[body_id].reshape(3, 3) # Rotation matrix. p = data.xpos[body_id] # Position of the body. force_plus = np.matmul( rmat, force_plus ) # Rotate the force to the body frame. p2 = ( np.matmul(rmat, self.FP.positions[k]) + p ) # Compute the position of the force. data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp0[0:3] data.qvel[:3] = IC_temp0[3:6] data.qpos[3:] = IC_temp0[6:10] data.qvel[3:] = IC_temp0[10:13] mujoco.mj_applyFT( model, data, force_plus, torque, p2, body_id, data.qfrc_applied ) # Apply the force. mujoco.mj_step(model, data) ans_pos = np.concatenate( (data.qpos[:3], data.qvel[:3], data.qpos[3:], data.qvel[3:]), axis=None ) # Negative direction u_minus = np.subtract(u, delta_vec) force_minus = u_minus[k] * self.FP.forces[k] * np.sqrt(0.5) rmat = data.xmat[body_id].reshape(3, 3) # Rotation matrix. p = data.xpos[body_id] # Position of the body. force_minus = np.matmul( rmat, force_minus ) # Rotate the force to the body frame. p2 = ( np.matmul(rmat, self.FP.positions[k]) + p ) # Compute the position of the force. data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp0[0:3] data.qvel[:3] = IC_temp0[3:6] data.qpos[3:] = IC_temp0[6:10] data.qvel[3:] = IC_temp0[10:13] mujoco.mj_applyFT( model, data, force_minus, torque, p2, body_id, data.qfrc_applied ) # Apply the force. mujoco.mj_step(model, data) ans_neg = np.concatenate( (data.qpos[:3], data.qvel[:3], data.qpos[3:], data.qvel[3:]), axis=None ) if k == 0: B = np.subtract(ans_pos, ans_neg) / (2 * delta) else: temp = np.subtract(ans_pos, ans_neg) / (2 * delta) B = np.vstack((B, temp)) B = B.transpose() model.opt.timestep = default_tstep data.time = current_time return B def controlCost(self) -> np.ndarray: """ Compute the control cost. Returns: np.ndarray: An array containing the control cost.""" # Cost function to be minimized for control input optimization if self.control_type == "H-inf": control_input = np.array(self.L @ self.state) + self.disturbance elif self.control_type == "LQR": self.findGains(r0=self.opti_states) control_input = np.array(self.L @ self.state) else: raise ValueError("Invalid control type specified.") return control_input def makeState4Controller(self, state: Dict[str, np.ndarray]) -> List[np.ndarray]: """ Make the state compatible with the controller. Args: state (Dict[str, np.ndarray]): A dictionary containing the state. Returns: List[np.ndarray]: A list containing the current position, current orientation, current linear velocity, and current angular velocity. """ current_position = state["position"] current_position[-1] = 0 current_orientation = state["quaternion"] current_linear_velocity = state["linear_velocity"] current_angular_velocity = state["angular_velocity"] return ( current_position, current_orientation, current_linear_velocity, current_angular_velocity, ) def getAction( self, obs_state: Dict[str, np.ndarray], is_deterministic: bool = True, mute: bool = True, **kwargs ) -> np.ndarray: """ Get the action. Args: obs_state (Dict[str, np.ndarray]): A dictionary containing the state. is_deterministic (bool, optional): A boolean containing whether the action is deterministic. Defaults to True. Returns: np.ndarray: An array containing the action. """ return self.update(*self.makeState4Controller(obs_state)) def update( self, current_position: np.ndarray, current_orientation: np.ndarray, current_velocity: np.ndarray, current_angular_velocity: np.ndarray, disturbance: np.ndarray = None, ) -> None: """ Update the controller. Args: current_position (np.ndarray): An array containing the current position. current_orientation (np.ndarray): An array containing the current orientation. current_velocity (np.ndarray): An array containing the current linear velocity. current_angular_velocity (np.ndarray): An array containing the current angular velocity. disturbance (np.ndarray, optional): An array containing the disturbance. Defaults to None. """ # Calculate errors position_error = self.target_position - current_position orientation_error = self.target_orientation - current_orientation velocity_error = self.target_linear_velocity - current_velocity angvel_error = self.target_angular_velocity - current_angular_velocity self.opti_states = np.concatenate( ( current_position, current_velocity, current_orientation, current_angular_velocity, ), axis=None, ) if disturbance == None: disturbance = np.random.rand(8) * 0.000 self.disturbance = disturbance # Combine errors into the state vector (planar) self.state = np.array( [ position_error[0], position_error[1], velocity_error[0], velocity_error[1], orientation_error[0], orientation_error[3], angvel_error[2], ] ) # Optimal U original_u = self.controlCost() # filter to zero values of u that are less than 0.5 intermediate_u = np.where(np.abs(original_u) < 0.25, 0.0, original_u) if np.max(intermediate_u) == 0.0: normalized_array = np.zeros(self.thruster_count) else: normalized_array = (intermediate_u - np.min(intermediate_u)) / ( np.max(intermediate_u) - np.min(intermediate_u) ) # ROund the normalized array to the nearest integer biasing the center to 0.25 final_U = np.round(normalized_array - 0.25).astype(int) # Round the normalized array to the nearest integer self.thrusters = final_U return self.thrusters
23,820
Python
35.760802
150
0.540638
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/controllers/__init__.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development"
290
Python
28.099997
79
0.648276
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/controllers/RL_games_model_4_mujoco.py
__author__ = "Antoine Richard, Matteo El Hariry, Junnosuke Kamohara" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from typing import Dict from gym import spaces import numpy as np import torch import yaml from rl_games.algos_torch.players import ( BasicPpoPlayerContinuous, BasicPpoPlayerDiscrete, ) class RLGamesModel: """ This class implements a wrapper for the RLGames model. It is used to interface the RLGames model with the MuJoCo environment. It currently only supports PPO agents.""" def __init__( self, config: Dict = None, config_path: str = None, model_path: str = None, **kwargs ): """ Initialize the RLGames model. Args: config (Dict, optional): A dictionary containing the configuration of the RLGames model. Defaults to None. config_path (str, optional): A string containing the path to the configuration file of the RLGames model. Defaults to None. model_path (str, optional): A string containing the path to the model of the RLGames model. Defaults to None. **kwargs: Additional arguments.""" self.obs = dict( { "state": torch.zeros((1, 10), dtype=torch.float32, device="cuda"), "transforms": torch.zeros(5, 8, device="cuda"), "masks": torch.zeros(8, dtype=torch.float32, device="cuda"), "masses": torch.zeros(3, dtype=torch.float32, device="cuda"), } ) # Build model using the configuration files if config is None: self.loadConfig(config_path) else: self.cfg = config self.buildModel() self.restore(model_path) # Default target and task values self.mode = 0 self.position_target = [0, 0, 0] self.orientation_target = [1, 0, 0, 0] self.linear_velocity_target = [0, 0, 0] self.angular_velocity_target = [0, 0, 0] self.obs_state = torch.zeros((1, 10), dtype=torch.float32, device="cuda") def buildModel(self) -> None: """ Build the RLGames model.""" act_space = spaces.Tuple([spaces.Discrete(2)] * 8) obs_space = spaces.Dict( { "state": spaces.Box(np.ones(10) * -np.Inf, np.ones(10) * np.Inf), "transforms": spaces.Box(low=-1, high=1, shape=(8, 5)), "masks": spaces.Box(low=0, high=1, shape=(8,)), "masses": spaces.Box(low=-np.Inf, high=np.Inf, shape=(3,)), } ) self.player = BasicPpoPlayerDiscrete( self.cfg, obs_space, act_space, clip_actions=False, deterministic=True ) def loadConfig(self, config_name: str) -> None: """ Load the configuration file of the RLGames model. Args: config_name (str): A string containing the path to the configuration file of the RLGames model. """ with open(config_name, "r") as stream: self.cfg = yaml.safe_load(stream) def restore(self, model_name: str) -> None: """ Restore the weights of the RLGames model. Args: model_name (str): A string containing the path to the checkpoint of an RLGames model matching the configuation file. """ self.player.restore(model_name) def setTarget( self, target_position=None, target_heading=None, target_linear_velocity=None, target_angular_velocity=None, mode=None, ) -> None: """ Set the targets of the agent. mode is task flag. Args: target_position (list, optional): A list containing the target position. Defaults to None. target_heading (list, optional): A list containing the target heading. Defaults to None. target_linear_velocity (list, optional): A list containing the target linear velocity. Defaults to None. target_angular_velocity (list, optional): A list containing the target angular velocity. Defaults to None. mode (int, optional): An integer indicating the agent's task. Defaults to None. """ if mode == 0: self.position_target = target_position self.mode = mode elif mode == 1: self.position_target = target_position self.orientation_target = target_heading self.mode = mode elif mode == 2: self.linear_velocity_target = target_linear_velocity self.mode = mode elif mode == 3: self.linear_velocity_target = target_linear_velocity self.angular_velocity_target = target_angular_velocity self.mode = mode elif mode == 4: self.linear_velocity_target = target_linear_velocity self.orientation_target = target_heading self.mode = mode elif mode == 6: #TODO: remove hardcoding fp_footprint_radius = 0.31+0.01 siny_cosp = 2 * target_heading[0] * target_heading[3] cosy_cosp = 1 - 2 * (target_heading[3] * target_heading[3]) target_heading_angle = np.arctan2(siny_cosp, cosy_cosp) target_position_clone = target_position.copy() target_position_clone[0] += fp_footprint_radius * np.cos(target_heading_angle) target_position_clone[1] += fp_footprint_radius * np.sin(target_heading_angle) self.position_target = target_position_clone self.orientation_target = target_heading self.mode = mode else: raise ValueError("Please specify a task flag.") def generate_task_data(self, state: Dict[str, np.ndarray]) -> None: """ Generate the task data used by the agent. The task flag is used to determine the format of the task data. Args: state (Dict[str, np.ndarray]): A dictionary containing the state of the environment. """ if self.mode == 0: self.target = [ self.position_target[0] - state["position"][0], self.position_target[1] - state["position"][1], 0, 0, ] elif self.mode == 1: siny_cosp_target = 2 * ( self.orientation_target[0] * self.orientation_target[3] + self.orientation_target[1] * self.orientation_target[2] ) cosy_cosp_target = 1 - 2 * ( self.orientation_target[2] * self.orientation_target[2] + self.orientation_target[3] * self.orientation_target[3] ) heading_target = np.arctan2(siny_cosp_target, cosy_cosp_target) siny_cosp_system = 2 * ( state["quaternion"][0] * state["quaternion"][3] + state["quaternion"][1] * state["quaternion"][2] ) cosy_cosp_system = 1 - 2 * ( state["quaternion"][2] * state["quaternion"][2] + state["quaternion"][3] * state["quaternion"][3] ) heading_system = np.arctan2(siny_cosp_system, cosy_cosp_system) heading_error = np.arctan2( np.sin(heading_target - heading_system), np.cos(heading_target - heading_system), ) self.target = [ self.position_target[0] - state["position"][0], self.position_target[1] - state["position"][1], np.cos(heading_error), np.sin(heading_error), ] elif self.mode == 2: self.target = [ self.linear_velocity_target[0] - state["linear_velocity"][0], self.linear_velocity_target[1] - state["linear_velocity"][1], 0, 0, ] elif self.mode == 3: self.target = [ self.linear_velocity_target[0] - state["linear_velocity"][0], self.linear_velocity_target[1] - state["linear_velocity"][1], self.angular_velocity_target[2] - state["angular_velocity"][2], 0, ] elif self.mode == 4: siny_cosp_target = 2 * ( self.orientation_target[0] * self.orientation_target[3] + self.orientation_target[1] * self.orientation_target[2] ) cosy_cosp_target = 1 - 2 * ( self.orientation_target[2] * self.orientation_target[2] + self.orientation_target[3] * self.orientation_target[3] ) heading_target = np.arctan2(siny_cosp_target, cosy_cosp_target) siny_cosp_system = 2 * ( state["quaternion"][0] * state["quaternion"][3] + state["quaternion"][1] * state["quaternion"][2] ) cosy_cosp_system = 1 - 2 * ( state["quaternion"][2] * state["quaternion"][2] + state["quaternion"][3] * state["quaternion"][3] ) heading_system = np.arctan2(siny_cosp_system, cosy_cosp_system) heading_error = np.arctan2( np.sin(heading_target - heading_system), np.cos(heading_target - heading_system), ) self.target = [ self.linear_velocity_target[0] - state["linear_velocity"][0], self.linear_velocity_target[1] - state["linear_velocity"][1], np.cos(heading_error), np.sin(heading_error), ] elif self.mode == 6: #TODO: remove hardcoding target_to_cone_dist = -2.0 siny_cosp_target = 2 * ( self.orientation_target[0] * self.orientation_target[3] + self.orientation_target[1] * self.orientation_target[2] ) cosy_cosp_target = 1 - 2 * ( self.orientation_target[2] * self.orientation_target[2] + self.orientation_target[3] * self.orientation_target[3] ) heading_target = np.arctan2(siny_cosp_target, cosy_cosp_target) anchor_positions = self.position_target.copy() anchor_positions[0] += target_to_cone_dist * np.cos(heading_target) anchor_positions[1] += target_to_cone_dist * np.sin(heading_target) goal_headings = np.arctan2( anchor_positions[1] - state["position"][1], anchor_positions[0] - state["position"][0] ) siny_cosp_system = 2 * ( state["quaternion"][0] * state["quaternion"][3] + state["quaternion"][1] * state["quaternion"][2] ) cosy_cosp_system = 1 - 2 * ( state["quaternion"][2] * state["quaternion"][2] + state["quaternion"][3] * state["quaternion"][3] ) heading_system = np.arctan2(siny_cosp_system, cosy_cosp_system) heading_error = np.abs( np.arctan2( np.sin(goal_headings - heading_system), np.cos(goal_headings - heading_system), ) ) self.target = [ self.position_target[0] - state["position"][0], self.position_target[1] - state["position"][1], np.cos(heading_error), np.sin(heading_error), ] def makeObservationBuffer(self, state: Dict[str, np.ndarray]) -> None: """ Make the observation buffer used by the agent. Args: state (Dict[str, np.ndarray]): A dictionary containing the state of the environment. """ self.generate_task_data(state) siny_cosp = 2 * ( state["quaternion"][0] * state["quaternion"][3] + state["quaternion"][1] * state["quaternion"][2] ) cosy_cosp = 1 - 2 * ( state["quaternion"][2] * state["quaternion"][2] + state["quaternion"][3] * state["quaternion"][3] ) self.obs_state[0, :2] = torch.tensor( [cosy_cosp, siny_cosp], dtype=torch.float32, device="cuda" ) self.obs_state[0, 2:4] = torch.tensor( state["linear_velocity"][:2], dtype=torch.float32, device="cuda" ) self.obs_state[0, 4] = state["angular_velocity"][2] self.obs_state[0, 5] = self.mode self.obs_state[0, 6:] = torch.tensor( self.target, dtype=torch.float32, device="cuda" ) def getAction(self, state, is_deterministic=True, **kwargs) -> np.ndarray: """ Get the action of the agent. Args: state (Dict[str, np.ndarray]): A dictionary containing the state of the environment. is_deterministic (bool): A boolean indicating whether the action should be deterministic or not. **kwargs: Additional arguments. Returns: np.ndarray: The action of the agent.""" self.makeObservationBuffer(state) self.obs["state"] = self.obs_state actions = ( self.player.get_action(self.obs.copy(), is_deterministic=is_deterministic) .cpu() .numpy() ) return actions
13,598
Python
38.64723
135
0.542874
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/controllers/hl_controllers.py
__author__ = "Antoine Richard, Matteo El Hariry, Junnosuke Kamohara" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from typing import List, Tuple, Dict, Union from matplotlib import pyplot as plt import pandas as pd import numpy as np import os import datetime from mujoco_envs.controllers.discrete_LQR_controller import ( DiscreteController, ) from mujoco_envs.controllers.RL_games_model_4_mujoco import ( RLGamesModel, ) class BaseController: """ Base class for high-level controllers.""" def __init__(self, dt: float, save_dir: str = "mujoco_experiment") -> None: """ Initializes the controller. Args: dt (float): Simulation time step. save_dir (str, optional): Directory to save the simulation data. Defaults to "mujoco_experiment". """ self.save_dir = os.path.join(save_dir, datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) self.dt = dt self.time = 0 self.initializeLoggers() self.csv_datas = [] def initializeLoggers(self) -> None: """ Initializes the loggers for the simulation. Allowing for the simulation to be replayed/plotted.""" self.logs = {} self.logs["timevals"] = [] self.logs["angular_velocity"] = [] self.logs["linear_velocity"] = [] self.logs["position"] = [] self.logs["quaternion"] = [] self.logs["actions"] = [] def updateLoggers( self, state: Dict[str, np.ndarray], action: np.ndarray, time: float = None ) -> None: """ Updates the loggers for the simulation. Args: state (Dict[str, np.ndarray]): State of the system. action (np.ndarray): Action taken by the controller.""" self.logs["timevals"].append(self.time) self.logs["position"].append(state["position"]) self.logs["quaternion"].append(state["quaternion"]) self.logs["angular_velocity"].append(state["angular_velocity"]) self.logs["linear_velocity"].append(state["linear_velocity"]) self.logs["actions"].append(action) if time is not None: self.time = time else: self.time += self.dt def isDone(self) -> bool: """ Checks if the simulation is done. Returns: bool: True if the simulation is done, False otherwise.""" return False def getGoal(self) -> None: """ Returns the current goal of the controller.""" raise NotImplementedError def setGoal(self) -> None: """ Sets the goal of the controller.""" raise NotImplementedError def getAction(self, **kwargs) -> np.ndarray: """ Gets the action from the controller.""" raise NotImplementedError def plotSimulation( self, dpi: int = 120, width: int = 600, height: int = 800 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 120. width (int, optional): Width of the figure. Defaults to 600. height (int, optional): Height of the figure. Defaults to 800.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title("angular velocity") ax[0].set_ylabel("radians / second") ax[1].plot(self.logs["timevals"], self.logs["linear_velocity"]) ax[1].set_xlabel("time (seconds)") ax[1].set_ylabel("meters / second") _ = ax[1].set_title("linear_velocity") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], np.abs(self.logs["position"])) ax[0].set_xlabel("time (seconds)") ax[0].set_ylabel("meters") _ = ax[0].set_title("position") ax[0].set_yscale("log") ax[1].plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1] ) ax[1].set_xlabel("meters") ax[1].set_ylabel("meters") _ = ax[1].set_title("x y coordinates") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) def saveSimulationData(self, suffix: str = "") -> None: """ Saves the simulation data. Args: suffix (str, optional): Suffix to add to the file name. Defaults to "".""" xyz = ["x", "y", "z"] wxyz = ["w", "x", "y", "z"] try: os.makedirs(self.save_dir, exist_ok=True) csv_data = pd.DataFrame() for key in self.logs.keys(): if len(self.logs[key]) != 0: if key == "actions": data = np.array(self.logs[key]) for i in range(data.shape[1]): csv_data["t_" + str(i)] = data[:, i] else: data = np.array(self.logs[key]) if len(data.shape) > 1: if data.shape[1] == 4: var_name = wxyz else: var_name = xyz for i in range(data.shape[1]): csv_data[var_name[i] + "_" + key] = data[:, i] else: csv_data[key] = data csv_data.to_csv(os.path.join(self.save_dir, "exp_logs" + suffix + ".csv")) self.csv_datas.append(csv_data) except Exception as e: print("Saving failed: ", e) def plotBatch(self, dpi: int = 120, width: int = 600, height: int = 800) -> None: """ Plots a batch of simulations. Args: dpi (int, optional): Dots per inch. Defaults to 120. width (int, optional): Width of the figure. Defaults to 600. height (int, optional): Height of the figure. Defaults to 800.""" figsize = (width / dpi, height / dpi) fig = plt.figure(figsize=figsize) for csv_data in self.csv_datas: plt.plot(csv_data["x_position"], csv_data["y_position"]) plt.axis("equal") plt.xlabel("meters") plt.ylabel("meters") plt.tight_layout() fig.savefig(os.path.join(self.save_dir, "positions.png")) class PositionController(BaseController): def __init__( self, dt: float, model: Union[RLGamesModel, DiscreteController], goals_x: List[float], goals_y: List[float], position_distance_threshold: float = 0.03, save_dir: str = "mujoco_experiment", **kwargs ) -> None: """ Initializes the controller. Args: dt (float): Simulation time step. model (Union[RLGamesModel, DiscreteController]): Low-level controller. goals_x (List[float]): List of x coordinates of the goals. goals_y (List[float]): List of y coordinates of the goals. position_distance_threshold (float, optional): Distance threshold for the position. Defaults to 0.03. save_dir (str, optional): Directory to save the simulation data. Defaults to "mujoco_experiment". **kwargs: Additional arguments.""" super().__init__(dt, save_dir) self.model = model self.goals = np.array([goals_x, goals_y, [0] * len(goals_x)]).T self.current_goal = self.goals[0] self.distance_threshold = position_distance_threshold def initializeLoggers(self) -> None: """ Initializes the loggers.""" super().initializeLoggers() self.logs["position_target"] = [] def updateLoggers(self, state, actions, time: float) -> None: """ Updates the loggers. Args: state (Dict[str, np.ndarray]): State of the system. actions (np.ndarray): Action taken by the controller.""" super().updateLoggers(state, actions, time=time) self.logs["position_target"].append(self.current_goal[:2]) def isGoalReached(self, state: Dict[str, np.ndarray]) -> bool: """ Checks if the goal is reached. Args: state (Dict[str, np.ndarray]): State of the system. Returns: bool: True if the goal is reached, False otherwise.""" dist = np.linalg.norm(self.current_goal[:2] - state["position"][:2]) if dist < self.distance_threshold: return True def getGoal(self) -> np.ndarray: """ Returns the current goal.""" return self.current_goal def setGoal(self, goal) -> None: """ Sets the goal of the controller. Args: goal (np.ndarray): Goal to set.""" self.current_goal = goal self.goals = np.array([goal]) def isDone(self) -> bool: """ Checks if the simulation is done. Returns: bool: True if the simulation is done, False otherwise.""" return len(self.goals) == 0 def setTarget(self) -> None: """ Sets the target of the low-level controller.""" self.model.setTarget(target_position=self.current_goal, mode=0) def getAction( self, state, is_deterministic: bool = True, mute: bool = False, time: float = None, ) -> np.ndarray: """ Gets the action from the controller. Args: state (Dict[str, np.ndarray]): State of the system. is_deterministic (bool, optional): Whether the action is deterministic or not. Defaults to True. mute (bool, optional): Whether to print the goal reached or not. Defaults to False. Returns: np.ndarray: Action taken by the controller.""" if self.isGoalReached(state): if not mute: print("Goal reached!") if len(self.goals) > 1: self.current_goal = self.goals[1] self.goals = self.goals[1:] else: self.goals = [] self.setTarget() actions = self.model.getAction(state, is_deterministic=is_deterministic) self.updateLoggers(state, actions, time=time) return actions def plotSimulation( self, dpi: int = 90, width: int = 1000, height: int = 1000 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 90. width (int, optional): Width of the figure. Defaults to 1000. height (int, optional): Height of the figure. Defaults to 1000.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title("angular velocity") ax[0].set_ylabel("radians / second") ax[1].plot( self.logs["timevals"], self.logs["linear_velocity"], label="system velocities", ) ax[1].legend() ax[1].set_xlabel("time (seconds)") ax[1].set_ylabel("meters / second") _ = ax[1].set_title("linear_velocity") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter( np.array(self.logs["position_target"])[:, 0], np.array(self.logs["position_target"])[:, 1], label="position goals", ) ax.plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1], label="system position", ) ax.legend() ax.set_xlabel("meters") ax.set_ylabel("meters") ax.axis("equal") _ = ax.set_title("x y coordinates") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot( self.logs["timevals"], np.array(self.logs["actions"]), label="system action" ) plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "actions.png")) except Exception as e: print("Saving failed: ", e) class PoseController(BaseController): """ Controller for the pose of the robot.""" def __init__( self, dt: float, model: Union[RLGamesModel, DiscreteController], goals_x: List[float], goals_y: List[float], goals_theta: List[float], position_distance_threshold: float = 0.03, orientation_distance_threshold: float = 0.03, save_dir: str = "mujoco_experiment", **kwargs ) -> None: """ Initializes the controller. Args: dt (float): Simulation time step. model (Union[RLGamesModel, DiscreteController]): Low-level controller. goals_x (List[float]): List of x coordinates of the goals. goals_y (List[float]): List of y coordinates of the goals. goals_theta (List[float]): List of theta coordinates of the goals. position_distance_threshold (float, optional): Distance threshold for the position. Defaults to 0.03. orientation_distance_threshold (float, optional): Distance threshold for the orientation. Defaults to 0.03. save_dir (str, optional): Directory to save the simulation data. Defaults to "mujoco_experiment". **kwargs: Additional arguments.""" super().__init__(dt, save_dir) # Discrete controller self.model = model # Creates an array goals if goals_theta is None: goals_theta = np.zeros_like(goals_x) self.goals = np.array([goals_x, goals_y, goals_theta]).T self.current_goal = self.goals[0] self.current_goal_controller = np.zeros((3), dtype=np.float32) self.current_goal_controller = self.current_goal self.position_distance_threshold = position_distance_threshold self.orientation_distance_threshold = orientation_distance_threshold def initializeLoggers(self) -> None: """ Initializes the loggers.""" super().initializeLoggers() self.logs["position_target"] = [] self.logs["heading_target"] = [] def updateLoggers(self, state, actions, time: float = None) -> None: """ Updates the loggers. Args: state (Dict[str, np.ndarray]): State of the system. actions (np.ndarray): Action taken by the controller.""" super().updateLoggers(state, actions, time=time) self.logs["position_target"].append(self.current_goal[:2]) self.logs["heading_target"].append(self.current_goal[-1]) def isGoalReached(self, state: Dict[str, np.ndarray]) -> bool: """ Checks if the goal is reached. Args: state (Dict[str, np.ndarray]): State of the system. Returns: bool: True if the goal is reached, False otherwise.""" dist = np.linalg.norm(self.current_goal[:2] - state["position"][:2]) if dist < self.position_distance_threshold: return True def getGoal(self) -> np.ndarray: """ Returns the current goal. Returns: np.ndarray: Current goal.""" return self.current_goal def setGoal(self, goal: np.ndarray) -> None: """ Sets the goal of the controller. Args: goal (np.ndarray): Goal to set.""" self.current_goal = goal self.goals = np.array([goal]) def isDone(self) -> bool: """ Checks if the simulation is done. Returns: bool: True if the simulation is done, False otherwise.""" return len(self.goals) == 0 def setTarget(self) -> None: """ Sets the target of the low-level controller.""" position_goal = self.current_goal yaw = self.current_goal[2] q = [np.cos(yaw / 2), 0, 0, np.sin(yaw / 2)] orientation_goal = q self.model.setTarget( target_position=position_goal, target_heading=orientation_goal, mode=1 ) def getAction( self, state: Dict[str, np.ndarray], is_deterministic: bool = True, mute: bool = False, time: float = None, ) -> np.ndarray: """ Gets the action from the controller. Args: state (Dict[str, np.ndarray]): State of the system. is_deterministic (bool, optional): Whether the action is deterministic or not. Defaults to True. mute (bool, optional): Whether to print the goal reached or not. Defaults to False. Returns: np.ndarray: Action taken by the controller.""" if self.isGoalReached(state): if not mute: print("Goal reached!") if len(self.goals) > 1: self.current_goal = self.goals[1] self.goals = self.goals[1:] else: self.goals = [] self.setTarget() actions = self.model.getAction( state, is_deterministic=is_deterministic, mute=mute ) self.updateLoggers(state, actions, time=time) return actions def plotSimulation( self, dpi: int = 90, width: int = 1000, height: int = 1000 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 90. width (int, optional): Width of the figure. Defaults to 1000. height (int, optional): Height of the figure. Defaults to 1000.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title("angular velocity") ax[0].set_ylabel("radians / second") ax[1].plot( self.logs["timevals"], self.logs["linear_velocity"], label="system velocities", ) ax[1].legend() ax[1].set_xlabel("time (seconds)") ax[1].set_ylabel("meters / second") _ = ax[1].set_title("linear_velocity") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter( np.array(self.logs["position_target"])[:, 0], np.array(self.logs["position_target"])[:, 1], label="position goals", ) ax.plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1], label="system position", ) ax.legend() ax.set_xlabel("meters") ax.set_ylabel("meters") ax.axis("equal") _ = ax.set_title("x y coordinates") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot( self.logs["timevals"], np.array(self.logs["actions"]), label="system action" ) plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "actions.png")) except Exception as e: print("Saving failed: ", e) class DockController(PoseController): def setTarget(self) -> None: """ Sets the target of the low-level controller.""" position_goal = self.current_goal yaw = self.current_goal[2] q = [np.cos(yaw / 2), 0, 0, np.sin(yaw / 2)] orientation_goal = q self.model.setTarget( target_position=position_goal, target_heading=orientation_goal, mode=6 ) def plotSimulation( self, dpi: int = 90, width: int = 1000, height: int = 1000 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 90. width (int, optional): Width of the figure. Defaults to 1000. height (int, optional): Height of the figure. Defaults to 1000.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title("angular velocity") ax[0].set_ylabel("radians / second") ax[1].plot( self.logs["timevals"], self.logs["linear_velocity"], label="system velocities", ) ax[1].legend() ax[1].set_xlabel("time (seconds)") ax[1].set_ylabel("meters / second") _ = ax[1].set_title("linear_velocity") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter( np.array(self.logs["position_target"])[:, 0], np.array(self.logs["position_target"])[:, 1], label="position goals", ) ax.plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1], label="system position", ) ax.legend() ax.set_xlabel("meters") ax.set_ylabel("meters") ax.axis("equal") _ = ax.set_title("x y coordinates") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot( self.logs["timevals"], np.array(self.logs["actions"]), label="system action" ) plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "actions.png")) except Exception as e: print("Saving failed: ", e) class TrajectoryTracker: """ A class to generate and track trajectories.""" def __init__( self, lookahead: float = 0.25, closed: bool = False, offset=(0, 0), **kwargs ): """ Initializes the trajectory tracker. Args: lookahead (float, optional): Lookahead distance. Defaults to 0.25. closed (bool, optional): Whether the trajectory is closed or not. Defaults to False. offset (tuple, optional): Offset of the trajectory. Defaults to (0,0). **kwargs: Additional arguments.""" self.current_point = -1 self.lookhead = lookahead self.closed = closed self.is_done = False self.offset = np.array(offset) def generateCircle(self, radius: float = 2, num_points: int = 360 * 10): """ Generates a circle trajectory. Args: radius (float, optional): Radius of the circle. Defaults to 2. num_points (int, optional): Number of points. Defaults to 360*10.""" theta = np.linspace(0, 2 * np.pi, num_points, endpoint=(not self.closed)) self.positions = ( np.array([np.cos(theta) * radius, np.sin(theta) * radius]).T + self.offset ) self.angles = np.array([-np.sin(theta), np.cos(theta)]).T self.angles = np.arctan2(self.angles[:, 1], self.angles[:, 0]) def generateSquare(self, h: float = 2, num_points: int = 360 * 10) -> None: """ Generates a square trajectory. Args: h (float, optional): Height of the square. Defaults to 2. num_points (int, optional): Number of points. Defaults to 360*10.""" points_per_side = num_points // 4 s1y = np.linspace(-h / 2, h / 2, num_points, endpoint=False) s1x = np.ones_like(s1y) * h / 2 u1 = np.ones_like(s1y) v1 = np.zeros_like(s1y) s2x = np.linspace(h / 2, -h / 2, num_points, endpoint=False) s2y = np.ones_like(s2x) * h / 2 u2 = np.zeros_like(s2x) v2 = -np.ones_like(s2x) s3y = np.linspace(h / 2, -h / 2, num_points, endpoint=False) s3x = np.ones_like(s3y) * (-h / 2) u3 = -np.ones_like(s3y) v3 = np.zeros_like(s3y) s4x = np.linspace(-h / 2, h / 2, num_points, endpoint=False) s4y = np.ones_like(s4x) * (-h / 2) u4 = np.zeros_like(s4x) v4 = np.ones_like(s4x) self.positions = ( np.vstack( [np.hstack([s1x, s2x, s3x, s4x]), np.hstack([s1y, s2y, s3y, s4y])] ).T + self.offset ) self.u = np.hstack([u1, u2, u3, u4]).T self.v = np.hstack([v1, v2, v3, v4]).T self.angles = np.arctan2(self.u, self.v) def generateSpiral( self, start_radius: float = 0.5, end_radius: float = 2, num_loop: float = 5, num_points: int = 360 * 20, ) -> None: """ Generates a spiral trajectory. Args: start_radius (float, optional): Start radius of the spiral. Defaults to 0.5. end_radius (float, optional): End radius of the spiral. Defaults to 2. num_loop (float, optional): Number of loops. Defaults to 5. num_points (int, optional): Number of points. Defaults to 360*20.""" radius = np.linspace( start_radius, end_radius, num_points, endpoint=(not self.closed) ) theta = np.linspace( 0, 2 * np.pi * num_loop, num_points, endpoint=(not self.closed) ) self.positions = ( np.array([np.cos(theta) * radius, np.sin(theta) * radius]).T + self.offset ) self.angles = np.array([-np.sin(theta), np.cos(theta)]).T self.angles = np.arctan2(self.angles[:, 1], self.angles[:, 0]) def generateInfinite(self, a: float = 2, num_points: int = 360 * 10) -> None: """ Generates an infinite (lemniscate of Bernoulli) trajectory. Args: a (float, optional): Controls the size of the lemniscate. Defaults to 2. num_points (int, optional): Number of points. Defaults to 360*10. """ t = np.linspace(0, 2 * np.pi, num_points, endpoint=(not self.closed)) x = (a * np.cos(t)) / (1 + np.sin(t) ** 2) y = (a * np.sin(t) * np.cos(t)) / (1 + np.sin(t) ** 2) self.positions = np.array([x, y]).T + self.offset # Derive angles based on the direction of movement across points for consistency with other functions directions = np.diff(self.positions, axis=0, append=self.positions[0:1]) self.angles = ( np.array([directions[:, 1], -directions[:, 0]]).T / np.linalg.norm(directions, axis=1)[:, None] ) self.angles = np.arctan2(self.angles[:, 0], self.angles[:, 1]) def generateInfinite(self, a: float = 2, num_points: int = 360 * 10) -> None: """ Generates an infinite (lemniscate of Bernoulli) trajectory. Args: a (float, optional): Controls the size of the lemniscate. Defaults to 2. num_points (int, optional): Number of points. Defaults to 360*10. """ t = np.linspace(0, 2 * np.pi, num_points, endpoint=(not self.closed)) x = (a * np.cos(t)) / (1 + np.sin(t) ** 2) y = (a * np.sin(t) * np.cos(t)) / (1 + np.sin(t) ** 2) self.positions = np.array([x, y]).T + self.offset # Derive angles based on the direction of movement across points for consistency with other functions directions = np.diff(self.positions, axis=0, append=self.positions[0:1]) self.angles = ( np.array([directions[:, 1], -directions[:, 0]]).T / np.linalg.norm(directions, axis=1)[:, None] ) def getTrackingPointIdx(self, position: np.ndarray) -> None: """ Gets the tracking point index. The tracking point is the point the robot is currently locked on. Args: position (np.ndarray): Current position of the robot.""" distances = np.linalg.norm(self.positions - position, axis=1) if self.current_point == -1: self.current_point = 0 else: indices = np.where(distances < self.lookhead)[0] if len(indices) > 0: indices = indices[indices < 60] if len(indices) > 0: self.current_point = np.max(indices) def rollTrajectory(self) -> None: """ Rolls the trajectory, so that the current point is the first point.""" if self.closed: self.positions = np.roll(self.positions, -self.current_point, axis=0) self.angles = np.roll(self.angles, -self.current_point, axis=0) self.current_point = 0 else: self.positions = self.positions[self.current_point :] self.angles = self.angles[self.current_point :] self.current_point = 0 if self.positions.shape[0] <= 1: self.is_done = True def isDone(self): """ Checks if the trajectory is done.""" return self.is_done def getPointForTracking(self) -> List[np.ndarray]: """ Gets the position the tracker is currently locked on. Returns: List[np.ndarray]: Position being tracked.""" position = self.positions[self.current_point] angle = self.angles[self.current_point] self.rollTrajectory() return position, angle def get_target_position(self) -> np.ndarray: """ Gets the target position. Returns: np.ndarray: Target position.""" return self.target_position def computeVelocityVector( self, target_position: np.ndarray, position: np.ndarray ) -> np.ndarray: """ Computes the velocity vector. That is the vector that will enable the robot to reach the position being tracked. Args: target_position (np.ndarray): Position being tracked. position (np.ndarray): Current position of the robot.""" diff = target_position - position return diff / np.linalg.norm(diff) def getVelocityVector(self, position: np.ndarray) -> np.ndarray: """ Gets the velocity vector. Args: position (np.ndarray): Current position of the robot. Returns: np.ndarray: Velocity vector.""" self.getTrackingPointIdx(position) self.target_position, target_angle = self.getPointForTracking() velocity_vector = self.computeVelocityVector(self.target_position, position) return velocity_vector, target_angle class VelocityTracker(BaseController): def __init__( self, dt: float, model: Union[RLGamesModel, DiscreteController], target_tracking_velocity: float = 0.25, lookahead_dist: float = 0.15, closed: bool = True, x_offset: float = 0, y_offset: float = 0, radius: float = 1.5, height: float = 1.5, start_radius: float = 0.5, end_radius: float = 2.0, num_loops: int = 4, trajectory_type: str = "circle", save_dir: str = "mujoco_experiment", **kwargs ) -> None: """ Initializes the controller. Args: dt (float): Simulation time step. model (Union[RLGamesModel, DiscreteController]): Low-level controller. target_tracking_velocity (float, optional): Target tracking velocity. Defaults to 0.25. lookahead_dist (float, optional): Lookahead distance. Defaults to 0.15. closed (bool, optional): Whether the trajectory is closed or not. Defaults to True. x_offset (float, optional): x offset of the trajectory. Defaults to 0. y_offset (float, optional): y offset of the trajectory. Defaults to 0. radius (float, optional): Radius of the trajectory. Defaults to 1.5. height (float, optional): Height of the trajectory. Defaults to 1.5. start_radius (float, optional): Start radius of the trajectory. Defaults to 0.5. end_radius (float, optional): End radius of the trajectory. Defaults to 2.0. num_loops (int, optional): Number of loops. Defaults to 4. trajectory_type (str, optional): Type of trajectory. Defaults to "circle". save_dir (str, optional): Directory to save the simulation data. Defaults to "mujoco_experiment". **kwargs: Additional arguments.""" super().__init__(dt, save_dir) self.tracker = TrajectoryTracker( lookahead=lookahead_dist, closed=closed, offset=(x_offset, y_offset) ) if trajectory_type.lower() == "square": self.tracker.generateSquare(h=height) elif trajectory_type.lower() == "circle": self.tracker.generateCircle(radius=radius) elif trajectory_type.lower() == "spiral": self.tracker.generateSpiral( start_radius=start_radius, end_radius=end_radius, num_loop=num_loops ) elif trajectory_type.lower() == "infinite": self.tracker.generateInfinite(a=radius) else: raise ValueError( "Unknown trajectory type. Must be square, circle or spiral." ) self.model = model self.target_tracking_velocity = target_tracking_velocity self.velocity_goal = [0, 0, 0] def initializeLoggers(self) -> None: """ Initializes the loggers.""" super().initializeLoggers() self.logs["velocity_goal"] = [] self.logs["position_target"] = [] def updateLoggers(self, state, actions, time: float = None) -> None: """ Updates the loggers. Args: state (Dict[str, np.ndarray]): State of the system. actions (np.ndarray): Action taken by the controller.""" super().updateLoggers(state, actions, time=time) self.logs["velocity_goal"].append(self.velocity_goal[:2]) self.logs["position_target"].append(self.getTargetPosition()) def getGoal(self) -> np.ndarray: """ Returns the current goal. Returns: np.ndarray: Current goal.""" return self.velocity_goal def setGoal(self, goal: np.ndarray) -> None: """ Sets the goal of the controller. Args: goal (np.ndarray): Goal to set.""" self.target_tracking_velocity = goal def getTargetPosition(self) -> np.ndarray: """ Gets the target position. Returns: np.ndarray: Target position.""" return self.tracker.get_target_position() def isDone(self) -> bool: """ Checks if the simulation is done. Returns: bool: True if the simulation is done, False otherwise.""" return self.tracker.is_done def setTarget(self) -> None: """ Sets the target of the low-level controller.""" self.model.setTarget(target_linear_velocity=self.velocity_goal, mode=2) def getAction( self, state: Dict[str, np.ndarray], is_deterministic: bool = True, mute: bool = False, time: float = None, ) -> np.ndarray: """ Gets the action from the controller. Args: state (Dict[str, np.ndarray]): State of the system. is_deterministic (bool, optional): Whether the action is deterministic or not. Defaults to True. mute (bool, optional): Whether to print the goal reached or not. Defaults to False. """ self.velocity_vector, _ = self.tracker.getVelocityVector(state["position"][:2]) self.velocity_goal[0] = self.velocity_vector[0] * self.target_tracking_velocity self.velocity_goal[1] = self.velocity_vector[1] * self.target_tracking_velocity self.setTarget() actions = self.model.getAction( state, is_deterministic=is_deterministic, mute=mute ) self.updateLoggers(state, actions, time=time) return actions def plotSimulation( self, dpi: int = 135, width: int = 1000, height: int = 1000 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 135. width (int, optional): Width of the figure. Defaults to 1000. height (int, optional): Height of the figure. Defaults to 1000.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) linear_velocity = np.array(self.logs["linear_velocity"]) target_velocity = np.array(self.logs["velocity_goal"]) ax.plot( self.logs["timevals"], linear_velocity[:, 0], label="x linear velocity", ) ax.plot( self.logs["timevals"], linear_velocity[:, 1], label="y linear velocity", ) ax.plot( self.logs["timevals"], target_velocity[:, 0], label="x target velocity", ) ax.plot( self.logs["timevals"], target_velocity[:, 1], label="y target velocity", ) ax.legend() ax.set_xlabel("time (seconds)") ax.set_ylabel("Linear velocities (m/s)") _ = ax.set_title("Linear velocity tracking") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot( np.array(self.logs["position_target"])[:, 0], np.array(self.logs["position_target"])[:, 1], label="trajectory", ) ax.plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1], label="system position", ) ax.legend() ax.set_xlabel("x (meters)") ax.set_ylabel("y (meters)") ax.axis("equal") _ = ax.set_title("Trajectory in xy plane") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) class VelocityHeadingTracker(BaseController): def __init__( self, dt: float, model: Union[RLGamesModel, DiscreteController], target_tracking_velocity: float = 0.25, lookahead_dist: float = 0.15, closed: bool = True, x_offset: float = 0, y_offset: float = 0, radius: float = 1.5, height: float = 1.5, start_radius: float = 0.5, end_radius: float = 2.0, num_loops: int = 4, trajectory_type: str = "circle", save_dir: str = "mujoco_experiment", **kwargs ) -> None: """ Initializes the controller. Args: dt (float): Simulation time step. model (Union[RLGamesModel, DiscreteController]): Low-level controller. target_tracking_velocity (float, optional): Target tracking velocity. Defaults to 0.25. lookahead_dist (float, optional): Lookahead distance. Defaults to 0.15. closed (bool, optional): Whether the trajectory is closed or not. Defaults to True. x_offset (float, optional): x offset of the trajectory. Defaults to 0. y_offset (float, optional): y offset of the trajectory. Defaults to 0. radius (float, optional): Radius of the trajectory. Defaults to 1.5. height (float, optional): Height of the trajectory. Defaults to 1.5. start_radius (float, optional): Start radius of the trajectory. Defaults to 0.5. end_radius (float, optional): End radius of the trajectory. Defaults to 2.0. num_loops (int, optional): Number of loops. Defaults to 4. trajectory_type (str, optional): Type of trajectory. Defaults to "circle". save_dir (str, optional): Directory to save the simulation data. Defaults to "mujoco_experiment". **kwargs: Additional arguments.""" super().__init__(dt, save_dir) self.tracker = TrajectoryTracker( lookahead=lookahead_dist, closed=closed, offset=(x_offset, y_offset) ) if trajectory_type.lower() == "square": self.tracker.generateSquare(h=height) elif trajectory_type.lower() == "circle": self.tracker.generateCircle(radius=radius) elif trajectory_type.lower() == "spiral": self.tracker.generateSpiral( start_radius=start_radius, end_radius=end_radius, num_loop=num_loops ) elif trajectory_type.lower() == "infinite": self.tracker.generateInfinite(a=radius) else: raise ValueError( "Unknown trajectory type. Must be square, circle or spiral." ) self.model = model self.target_tracking_velocity = target_tracking_velocity self.velocity_goal = [0, 0, 0] self.target_heading = [0] def initializeLoggers(self) -> None: """ Initializes the loggers.""" super().initializeLoggers() self.logs["velocity_goal"] = [] self.logs["heading_target"] = [] self.logs["position_target"] = [] def updateLoggers(self, state, actions, time=None) -> None: """ Updates the loggers. Args: state (Dict[str, np.ndarray]): State of the system. actions (np.ndarray): Action taken by the controller.""" super().updateLoggers(state, actions, time=time) self.logs["velocity_goal"].append(self.velocity_goal[:2]) self.logs["heading_target"].append(self.target_heading[0]) self.logs["position_target"].append(self.getTargetPosition()) def getGoal(self) -> np.ndarray: """ Returns the current goal. Returns: np.ndarray: Current goal.""" return self.velocity_goal + self.target_heading def setGoal(self, goal: np.ndarray) -> None: """ Sets the goal of the controller. Args: goal (np.ndarray): Goal to set.""" self.target_tracking_velocity = goal[:3] self.target_heading = goal[3] def getTargetPosition(self) -> np.ndarray: """ Gets the target position. Returns: np.ndarray: Target position.""" return self.tracker.get_target_position() def isDone(self) -> bool: """ Checks if the simulation is done. Returns: bool: True if the simulation is done, False otherwise.""" return self.tracker.is_done def setTarget(self) -> None: """ Sets the target of the low-level controller.""" yaw = self.target_heading[0] q = [np.cos(yaw / 2), 0, 0, np.sin(yaw / 2)] orientation_goal = q self.model.setTarget( target_linear_velocity=self.velocity_goal, target_heading=orientation_goal, mode=4 ) def getAction( self, state: Dict[str, np.ndarray], is_deterministic: bool = True, mute: bool = False, time: float = None, ) -> np.ndarray: """ Gets the action from the controller. Args: state (Dict[str, np.ndarray]): State of the system. is_deterministic (bool, optional): Whether the action is deterministic or not. Defaults to True. mute (bool, optional): Whether to print the goal reached or not. Defaults to False. """ self.velocity_vector, target_heading = self.tracker.getVelocityVector( state["position"][:2] ) self.velocity_goal[0] = self.velocity_vector[0] * self.target_tracking_velocity self.velocity_goal[1] = self.velocity_vector[1] * self.target_tracking_velocity self.target_heading[0] = target_heading self.setTarget() actions = self.model.getAction( state, is_deterministic=is_deterministic, mute=mute ) self.updateLoggers(state, actions, time=time) return actions def plotSimulation( self, dpi: int = 135, width: int = 1000, height: int = 1000 ) -> None: """ Plots the simulation. Args: dpi (int, optional): Dots per inch. Defaults to 135. width (int, optional): Width of the figure. Defaults to 1000. height (int, optional): Height of the figure. Defaults to 1000.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) linear_velocity = np.array(self.logs["linear_velocity"]) target_velocity = np.array(self.logs["velocity_goal"]) ax.plot( self.logs["timevals"], linear_velocity[:, 0], label="x linear velocity", ) ax.plot( self.logs["timevals"], linear_velocity[:, 1], label="y linear velocity", ) ax.plot( self.logs["timevals"], target_velocity[:, 0], label="x target velocity", ) ax.plot( self.logs["timevals"], target_velocity[:, 1], label="y target velocity", ) ax.legend() ax.set_xlabel("time (seconds)") ax.set_ylabel("Linear velocities (m/s)") _ = ax.set_title("Linear velocity tracking") try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot( np.array(self.logs["position_target"])[:, 0], np.array(self.logs["position_target"])[:, 1], label="trajectory", ) ax.plot( np.array(self.logs["position"])[:, 0], np.array(self.logs["position"])[:, 1], label="system position", ) ax.legend() ax.set_xlabel("x (meters)") ax.set_ylabel("y (meters)") ax.axis("equal") _ = ax.set_title("Trajectory in xy plane") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) orientations = np.array(self.logs["quaternion"]) positions = np.array(self.logs["position"]) target_positions = np.array(self.logs["position_target"]) v = 2 * ( orientations[:, 0] * orientations[:, 3] + orientations[:, 1] * orientations[:, 2] ) u = 1 - 2 * ( orientations[:, 2] * orientations[:, 2] + orientations[:, 3] * orientations[:, 3] ) target_headings = np.array(self.logs["heading_target"]) u_target = np.cos(target_headings) v_target = np.sin(target_headings) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.quiver( target_positions[:, 0], target_positions[:, 1], u_target, v_target, label="reference_trajectory", color="r", ) ax.quiver( positions[:, 0], positions[:, 1], u, v, label="system trajectory", color="b", ) ax.legend() ax.set_xlabel("x (meters)") ax.set_ylabel("y (meters)") ax.axis("equal") _ = ax.set_title("Trajectory in xy plane") plt.tight_layout() try: os.makedirs(self.save_dir, exist_ok=True) fig.savefig(os.path.join(self.save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) class HLControllerFactory: """ Factory for high-level controllers.""" def __init__(self): self.registered_controllers = {} def registerController( self, name: str, controller: Union[PositionController, PoseController, VelocityTracker], ): """ Registers a controller. Args: name (str): Name of the controller. controller (Union[PositionController, PoseController, VelocityTracker]): Controller class. """ self.registered_controllers[name] = controller def parseControllerConfiguration(self, cfg: Dict): """ Parses the controller configuration. Args: cfg (Dict): Configuration dictionary.""" return cfg["hl_task"], cfg["hl_task"]["name"] def __call__( self, cfg: Dict, model: Union[RLGamesModel, DiscreteController], dt: float ): """ Creates a controller. Args: cfg (Dict): Configuration dictionary. model (Union[RLGamesModel, DiscreteController]): Low-level controller. dt (float): Simulation time step.""" new_cfg, mode = self.parseControllerConfiguration(cfg) assert mode in list(self.registered_controllers.keys()), "Unknown hl_task mode." return self.registered_controllers[mode](dt, model, **new_cfg) """ Register the controllers.""" hlControllerFactory = HLControllerFactory() hlControllerFactory.registerController("position", PositionController) hlControllerFactory.registerController("pose", PoseController) hlControllerFactory.registerController("dock", DockController) hlControllerFactory.registerController("linear_velocity", VelocityTracker) hlControllerFactory.registerController( "linear_velocity_heading", VelocityHeadingTracker )
51,795
Python
33.692565
119
0.561
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/environments/disturbances.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from typing import Dict, Tuple import numpy as np import math from omniisaacgymenvs.tasks.MFP.MFP2D_disturbances_parameters import ( DisturbancesParameters, MassDistributionDisturbanceParameters, ForceDisturbanceParameters, TorqueDisturbanceParameters, NoisyObservationsParameters, NoisyActionsParameters, ) from omniisaacgymenvs.tasks.MFP.curriculum_helpers import ( CurriculumSampler, ) class RandomSpawn: """ Randomly spawns the robot in the environment.""" def __init__(self, cfg: Dict[str, float]) -> None: """ Initialize the random spawn strategy. Args: cfg (dict): A dictionary containing the configuration of the random spawn disturbance. """ self._rng = np.random.default_rng(seed=cfg["seed"]) self._max_spawn_dist = cfg["max_spawn_dist"] self._min_spawn_dist = cfg["min_spawn_dist"] self._kill_dist = cfg["kill_dist"] def getInitialCondition(self) -> Tuple[np.ndarray, np.ndarray]: """ Generates a random initial condition for the robot. Returns: Tuple[np.ndarray, np.ndarray]: A tuple containing the initial position and orientation of the robot. """ theta = self._rng.uniform(-np.pi, np.pi, 1) r = self._rng.uniform(self._min_spawn_dist, self._max_spawn_dist) initial_position = [np.cos(theta) * r, np.sin(theta) * r] heading = self._rng.uniform(-np.pi, np.pi, 1) initial_orientation = [np.cos(heading * 0.5), 0, 0, np.sin(heading * 0.5)] return initial_position, initial_orientation class RandomKillThrusters: """ Randomly kills thrusters.""" def __init__(self, cfg: Dict[str, float]) -> None: """ Initialize the random kill thrusters strategy. Args: cfg (dict): A dictionary containing the configuration of the random kill thrusters disturbance. """ self._rng = np.random.default_rng(seed=42) # cfg["seed"]) self._num_thrusters_to_kill = cfg["num_thrusters_to_kill"] self.killed_thrusters_id = [] self.killed_mask = np.ones([8]) def generate_thruster_kills(self) -> None: """ Generates the thrusters to kill.""" self.killed_thrusters_id = self._rng.choice( 8, self._num_thrusters_to_kill, replace=False ) class MassDistributionDisturbances: """ Creates disturbances on the platform by simulating a mass distribution on the platform. """ def __init__( self, rng: np.random.default_rng, parameters: MassDistributionDisturbanceParameters, ) -> None: """ Args: parameters (MassDistributionDisturbanceParameters): The settings of the domain randomization. """ self.rng = rng self.mass_sampler = CurriculumSampler(parameters.mass_curriculum) self.CoM_sampler = CurriculumSampler(parameters.com_curriculum) self.parameters = parameters self.platforms_mass = 5.32 self.platforms_CoM = np.zeros((2), dtype=np.float32) def randomize_masses(self, step: int = 100000) -> None: """ Randomizes the masses of the platforms. Args: env_ids (torch.Tensor): The ids of the environments to reset. step (int): The current step of the learning process. """ self.platforms_mass = self.mass_sampler.sample(1, step).numpy()[0] r = self.CoM_sampler.sample(1, step).numpy()[0] theta = self.rand.uniform((1), dtype=np.float32) * math.pi * 2 self.platforms_CoM[0] = np.cos(theta) * r self.platforms_CoM[1] = np.sin(theta) * r def get_masses(self) -> Tuple[float, np.ndarray]: """ Returns the masses and CoM of the platforms. Returns: Tuple(float, np.ndarray): The masses and CoM of the platforms. """ return (self.platforms_mass, self.platforms_CoM) class ForceDisturbance: """ Creates disturbances by applying random forces. """ def __init__( self, rng: np.random.default_rng, parameters: ForceDisturbanceParameters, ) -> None: """ Args: parameters (ForceDisturbanceParameters): The settings of the domain randomization. """ self.rng = rng self.parameters = parameters self.force_sampler = CurriculumSampler(self.parameters.force_curriculum) self.forces = np.zeros(3, dtype=np.float32) self.max_forces = 0 self._floor_x_freq = 0 self._floor_y_freq = 0 self._floor_x_offset = 0 self._floor_y_offset = 0 def generate_forces(self, step: int = 100000) -> None: """ Generates the forces using a sinusoidal pattern or not. Args: step (int, optional): The current training step. Defaults to 0. """ if self.parameters.enable: if self.parameters.use_sinusoidal_patterns: self._floor_x_freq = self.rng.uniform( self.parameters.min_freq, self.parameters.max_freq, 1 ) self._floor_y_freq = self.rng.uniform( self.parameters.min_freq, self.parameters.max_freq, 1 ) self._floor_x_offset = self.rng.uniform( self.parameters.min_offset, self.parameters.max_offset, 1 ) self._floor_y_offset = self.rng.uniform( self.parameters.min_offset, self.parameters.max_offset, 1 ) self._max_forces = self.force_sampler.sample(1, step).numpy()[0] else: r = self.force_sampler.sample(1, step).numpy()[0] theta = self.rng.uniform(0, 1, 1) * math.pi * 2 self.forces[0] = np.cos(theta) * r self.forces[1] = np.sin(theta) * r def get_floor_forces(self, root_pos: np.ndarray) -> np.ndarray: """ Computes the forces given the current state of the robot. Args: root_pos (np.ndarray): The position of the root of the robot. Returns: np.ndarray: The floor forces. """ if self.parameters.use_sinusoidal_patterns: self.forces[0] = ( np.sin(root_pos[0] * self._floor_x_freq + self._floor_x_offset) * self._max_forces ) self.forces[1] = ( np.sin(root_pos[1] * self._floor_y_freq + self._floor_y_offset) * self._max_forces ) return self.forces class TorqueDisturbance: """ Creates disturbances by applying a torque to its center. """ def __init__( self, rng: np.random.default_rng, parameters: TorqueDisturbanceParameters, ) -> None: """ Args: parameters (TorqueDisturbanceParameters): The settings of the domain randomization. """ self.rng = rng self.parameters = parameters self.torque_sampler = CurriculumSampler(self.parameters.torque_curriculum) self.torques = np.zeros(3, dtype=np.float32) self.max_torques = 0 self._freq = 0 self._offset = 0 def generate_torques(self, step: int = 100000) -> None: """ Generates the torques using a sinusoidal pattern or not. Args: step (int, optional): The current training step. Defaults to 0. """ if self.parameters.enable: if self.parameters.use_sinusoidal_patterns: self._floor_x_freq = self.rng.uniform( self.parameters.min_freq, self.parameters.max_freq, 1 ) self._floor_x_offset = self.rng.uniform( self.parameters.min_offset, self.parameters.max_offset, 1 ) self._max_torques = self.torque_sampler.sample(1, step).numpy()[0] else: r = self.torque_sampler.sample(1, step).numpy()[0] self.torques[2] = r def get_torque_disturbance(self, root_pos: np.ndarray) -> np.ndarray: """ Computes the torques given the current state of the robot. Args: root_pos (torch.Tensor): The position of the root of the robot. Returns: torch.Tensor: The torque disturbance.""" if self.parameters.use_sinusoidal_patterns: self.torques[:, 2] = ( np.sin(root_pos * self._freq + self._offset) * self._max_torques ) return self.torques class NoisyObservations: """ Adds noise to the observations of the robot. """ def __init__( self, rng: np.random.default_rng, parameters: NoisyObservationsParameters, ) -> None: """ Args: task_cfg (NoisyObservationParameters): The settings of the domain randomization. num_envs (int): The number of environments. device (str): The device on which the tensors are stored. """ self.rng = rng self.position_sampler = CurriculumSampler(parameters.position_curriculum) self.velocity_sampler = CurriculumSampler(parameters.velocity_curriculum) self.orientation_sampler = CurriculumSampler(parameters.orientation_curriculum) self.parameters = parameters def add_noise_on_pos(self, pos: np.ndarray, step: int = 100000) -> np.ndarray: """ Adds noise to the position of the robot. Args: pos (np.ndarray): The position of the robot. step (int, optional): The current step of the learning process. Defaults to 0. Returns: np.ndarray: The position of the robot with noise. """ if self.parameters.enable_position_noise: pos += self.position_sampler.sample(1, step).numpy()[0] return pos def add_noise_on_vel(self, vel: np.ndarray, step: int = 100000) -> np.ndarray: """ Adds noise to the velocity of the robot. Args: vel (np.ndarray): The velocity of the robot. step (int, optional): The current step of the learning process. Defaults to 0. Returns: np.ndarray: The velocity of the robot with noise. """ if self.parameters.enable_velocity_noise: vel += self.velocity_sampler.sample(1, step).numpy()[0] return vel def add_noise_on_heading(self, heading: np.ndarray, step: int = 0) -> np.ndarray: """ Adds noise to the heading of the robot. Args: heading (np.ndarray): The heading of the robot. step (int, optional): The current step of the learning process. Defaults to 0. Returns: np.ndarray: The heading of the robot with noise. """ if self.parameters.enable_orientation_noise: heading += self.orientation_sampler.sample(1, step).numpy()[0] return heading class NoisyActions: """ Adds noise to the actions of the robot.""" def __init__( self, rng: np.random.default_rng, parameters: NoisyActionsParameters, ) -> None: """ Args: parameters (NoisyActionParameters): The task configuration. """ self.rng = rng self.action_sampler = CurriculumSampler(parameters.action_curriculum) self.parameters = parameters def add_noise_on_act(self, act: np.ndarray, step: int = 100000) -> np.ndarray: """ Adds noise to the actions of the robot. Args: act (np.ndarray): The actions of the robot. step (int, optional): The current step of the learning process. Defaults to 0. Returns: np.ndarray: The actions of the robot with noise. """ if self.parameters.enable: act += self.action_sampler.sample(1, step).numpy()[0] return act class Disturbances: """ Class to create disturbances on the platform. """ def __init__(self, parameters: dict, seed: int = 42) -> None: """ Args: parameters (dict): The settings of the domain randomization. """ self.rng = np.random.default_rng(seed=seed) self.parameters = DisturbancesParameters(**parameters) self.mass_disturbances = MassDistributionDisturbances( self.rng, self.parameters.mass_disturbance, ) self.force_disturbances = ForceDisturbance( self.rng, self.parameters.force_disturbance, ) self.torque_disturbances = TorqueDisturbance( self.rng, self.parameters.torque_disturbance, ) self.noisy_observations = NoisyObservations( self.rng, self.parameters.observations_disturbance, ) self.noisy_actions = NoisyActions( self.rng, self.parameters.actions_disturbance, )
13,434
Python
30.912114
112
0.585901
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/environments/__init__.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development"
290
Python
28.099997
79
0.648276
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/environments/mujoco_base_env.py
__author__ = "Antoine Richard, Matteo El Hariry" __copyright__ = ( "Copyright 2023, Space Robotics Lab, SnT, University of Luxembourg, SpaceR" ) __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Antoine Richard" __email__ = "[email protected]" __status__ = "development" from typing import Dict, Union, List, Tuple import matplotlib.pyplot as plt import pandas as pd import numpy as np import mujoco import math import os from omniisaacgymenvs.mujoco_envs.environments.disturbances import ( Disturbances, RandomKillThrusters, RandomSpawn, ) def parseEnvironmentConfig( cfg: Dict[str, Union[float, int, Dict]] ) -> Dict[str, Union[float, int, Dict]]: """ Parses the environment configuration from the config file. Args: cfg (Dict[str, Union[float, int, Dict]]): The configuration dictionary. Returns: Dict[str, Union[float, int, Dict]]: The parsed configuration dictionary.""" new_cfg = {} new_cfg["disturbances"] = cfg["task"]["env"]["disturbances"] new_cfg["spawn_parameters"] = {} new_cfg["spawn_parameters"]["seed"] = cfg["seed"] try: new_cfg["spawn_parameters"]["max_spawn_dist"] = cfg["task"]["env"][ "task_parameters" ]["max_spawn_dist"] except: new_cfg["spawn_parameters"]["max_spawn_dist"] = 5.0 try: new_cfg["spawn_parameters"]["min_spawn_dist"] = cfg["task"]["env"][ "task_parameters" ]["min_spawn_dist"] except: new_cfg["spawn_parameters"]["min_spawn_dist"] = 5.0 new_cfg["spawn_parameters"]["kill_dist"] = cfg["task"]["env"]["task_parameters"][ "kill_dist" ] new_cfg["step_time"] = cfg["task"]["sim"]["dt"] new_cfg["duration"] = ( cfg["task"]["env"]["maxEpisodeLength"] * cfg["task"]["sim"]["dt"] * cfg["task"]["env"]["controlFrequencyInv"] ) new_cfg["inv_play_rate"] = cfg["task"]["env"]["controlFrequencyInv"] new_cfg["platform"] = cfg["task"]["env"]["platform"] new_cfg["platform"]["seed"] = cfg["seed"] new_cfg["run_batch"] = cfg["hl_task"]["run_batch"] new_cfg["max_episode_length"] = cfg["task"]["env"]["maxEpisodeLength"] return new_cfg class MuJoCoFloatingPlatform: """ A class for the MuJoCo Floating Platform environment.""" def __init__( self, step_time: float = 0.02, duration: float = 60.0, inv_play_rate: int = 10, spawn_parameters: Dict[str, float] = None, platform: Dict[str, Union[bool, dict, float, str, int]] = None, disturbances: Dict[str, Union[bool, float]] = None, run_batch: int = 1, max_episode_length: int = 500, **kwargs ) -> None: """ Initializes the MuJoCo Floating Platform environment. Args: step_time (float, optional): The time between steps in the simulation (seconds). Defaults to 0.02. duration (float, optional): The duration of the simulation (seconds). Defaults to 60.0. inv_play_rate (int, optional): The inverse of the play rate. Defaults to 10. spawn_parameters (Dict[str, float], optional): A dictionary containing the spawn parameters. Defaults to None. platform (Dict[str, Union[bool,dict,float,str,int]], optional): A dictionary containing the platform parameters. Defaults to None. disturbances (Dict[str, Union[bool, float]], optional): A dictionary containing the disturbances parameters. Defaults to None. **kwargs: Additional arguments.""" self.inv_play_rate = inv_play_rate self.platform = platform self.run_batch = run_batch self.max_episode_length = max_episode_length self.DR = Disturbances(disturbances, platform["seed"]) self.TK = RandomKillThrusters( { "num_thrusters_to_kill": platform["randomization"]["max_thruster_kill"] * platform["randomization"]["kill_thrusters"], "seed": platform["seed"], } ) self.RS = RandomSpawn(spawn_parameters) self.createModel() self.initializeModel() self.setupPhysics(step_time, duration) self.initForceAnchors() self.reset() self.csv_datas = [] def reset( self, initial_position: List[float] = [0, 0, 0], initial_orientation: List[float] = [1, 0, 0, 0], ) -> None: """ Resets the simulation. Args: initial_position (list, optional): The initial position of the body. Defaults to [0,0,0]. initial_orientation (list, optional): The initial orientation of the body. Defaults to [1,0,0,0]. """ self.initializeModel() self.resetPosition( initial_position=initial_position, initial_orientation=initial_orientation ) self.DR.force_disturbances.generate_forces() self.DR.torque_disturbances.generate_torques() self.TK.generate_thruster_kills() def initializeModel(self) -> None: """ Initializes the mujoco model for the simulation.""" self.data = mujoco.MjData(self.model) mujoco.mj_forward(self.model, self.data) self.body_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_BODY, "top") def setupPhysics(self, step_time: float, duration: float) -> None: """ Sets up the physics parameters for the simulation. Args: step_time (float): The time between steps in the simulation (seconds). duration (float): The duration of the simulation (seconds).""" self.model.opt.timestep = step_time self.model.opt.gravity = [0, 0, 0] self.duration = duration def createModel(self) -> None: """ A YAML style string that defines the MuJoCo model for the simulation. The mass is set to 5.32 kg, the radius is set to 0.31 m. The initial position is set to (3, 3, 0.4) m.""" self.radius = self.platform["core"]["radius"] self.mass = self.platform["core"]["mass"] sphere_p1 = """ <mujoco model="tippe top"> <option integrator="RK4"/> <asset> <texture name="grid" type="2d" builtin="checker" rgb1=".1 .2 .3" rgb2=".2 .3 .4" width="300" height="300"/> <material name="grid" texture="grid" texrepeat="8 8" reflectance=".2"/> </asset> <worldbody> <geom size="10.0 10.0 .01" type="plane" material="grid"/> <light pos="0 0 10.0"/> <camera name="closeup" pos="0 -3 2" xyaxes="1 0 0 0 1 2"/> <body name="top" pos="0 0 .4"> <freejoint/> """ sphere_p2 = ( '<geom name="ball" type="sphere" size="' + str(self.radius) + '" mass="' + str(self.mass) + '"/>' ) sphere_p3 = """ </body> </worldbody> <keyframe> <key name="idle" qpos="3 3 0.4 1 0 0 0" qvel="0 0 0 0 0 0" /> </keyframe> </mujoco> """ sphere = "\n".join([sphere_p1, sphere_p2, sphere_p3]) self.model = mujoco.MjModel.from_xml_string(sphere) def initForceAnchors(self) -> None: """ " Defines where the forces are applied relatively to the center of mass of the body. self.forces: 8x3 array of forces, indicating the direction of the force. self.positions: 8x3 array of positions, indicating the position of the force.""" self.max_thrust = self.platform["configuration"]["thrust_force"] self.forces = np.array( [ [1, -1, 0], [-1, 1, 0], [1, 1, 0], [-1, -1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 1, 0], ] ) # Normalize the forces. self.forces = self.forces / np.linalg.norm(self.forces, axis=1).reshape(-1, 1) # Multiply by the max thrust. self.forces = self.forces * self.max_thrust self.positions = ( np.array( [ [1, 1, 0], [1, 1, 0], [-1, 1, 0], [-1, 1, 0], [-1, -1, 0], [-1, -1, 0], [1, -1, 0], [1, -1, 0], ] ) * 0.2192 ) def resetPosition( self, initial_position: List[float] = [0, 0], initial_orientation: List[float] = [1, 0, 0, 0], ) -> None: """ Resets the position of the body and sets its velocity to 0. Resets the timer as well. Args: initial_position (list, optional): The initial position of the body. Defaults to [0,0]. initial_orientation (list, optional): The initial orientation of the body. Defaults to [1,0,0,0]. """ mujoco.mj_resetDataKeyframe(self.model, self.data, 0) self.data.qpos[:2] = initial_position[:2] self.data.qpos[3:7] = initial_orientation self.data.qvel = 0 def applyForces(self, action: np.ndarray) -> None: """ Applies the forces to the body. Args: action (np.ndarray): The actions to apply to the body.""" self.data.qfrc_applied[...] = 0 # Clear applied forces. rmat = self.data.xmat[self.body_id].reshape(3, 3) # Rotation matrix. p = self.data.xpos[self.body_id] # Position of the body. # Compute the number of thrusters fired, split the pressure between the nozzles. factor = max(np.sum(action), 1) # For each thruster, apply a force if needed. for i in range(8): if ( self.TK.killed_thrusters_id is not None and i in self.TK.killed_thrusters_id ): continue # The force applied is the action value (1 or 0), divided by the number of thrusters fired (factor), force = self.DR.noisy_actions.add_noise_on_act(action[i]) force = force * (1.0 / factor) * self.forces[i] # If the force is not zero, apply the force. if np.sum(np.abs(force)) > 0: force = np.matmul(rmat, force) # Rotate the force to the global frame. p2 = ( np.matmul(rmat, self.positions[i]) + p ) # Compute the position of the force. mujoco.mj_applyFT( self.model, self.data, force, [0, 0, 0], p2, self.body_id, self.data.qfrc_applied, ) # Apply the force. uf_forces = self.DR.force_disturbances.get_floor_forces(self.data.qpos[:2]) td_forces = self.DR.torque_disturbances.get_torque_disturbance( self.data.qpos[:2] ) mujoco.mj_applyFT( self.model, self.data, uf_forces, td_forces, self.data.qpos[:3], self.body_id, self.data.qfrc_applied, ) # Apply the force. def getObs(self) -> Dict[str, np.ndarray]: """ returns an up to date observation buffer. Returns: Dict[str, np.ndarray]: A dictionary containing the state of the simulation. """ state = {} state["angular_velocity"] = self.DR.noisy_observations.add_noise_on_vel( self.data.qvel[3:6].copy() ) state["linear_velocity"] = self.DR.noisy_observations.add_noise_on_vel( self.data.qvel[0:3].copy() ) state["position"] = self.DR.noisy_observations.add_noise_on_pos( self.data.qpos[0:3].copy() ) state["quaternion"] = self.data.qpos[3:].copy() return state def runLoop( self, model, initial_position: List[float] = [0, 0], initial_orientation: List[float] = [1, 0, 0, 0], ): """ Runs the simulation loop. Args: model (object): The model of the controller. initial_position (list, optional): The initial position of the body. Defaults to [0,0]. initial_orientation (list, optional): The initial orientation of the body. Defaults to [1,0,0,0]. """ print(self.run_batch) if self.run_batch > 1: self.run_batch_evaluation(model) else: self.run_single_evaluation(model, initial_position, initial_orientation) def run_single_evaluation(self, model, initial_position, initial_orientation): self.reset( initial_position=initial_position, initial_orientation=initial_orientation ) done = False while (self.duration > self.data.time) and (not done): state = self.getObs() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) done = model.isDone() model.saveSimulationData() model.plotSimulation() def run_batch_evaluation(self, model): """ Runs the simulation loop. Args: model (object): The model of the controller. """ print("Running the simulations.") for i in range(self.run_batch): # Runs the simulation print("Running simulation " + str(i) + " of " + str(self.run_batch) + ".") initial_position, initial_orientation = self.RS.getInitialCondition() self.reset( initial_position=initial_position, initial_orientation=initial_orientation, ) model.initializeLoggers() step = 0 while self.max_episode_length > step: state = self.getObs() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state, mute=True) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) step += 1 # Saves the simulation data model.saveSimulationData(suffix=str(i)) model.plotBatch()
14,827
Python
34.389021
142
0.547177
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/legacy/position_controller_RL.py
from typing import Callable, NamedTuple, Optional, Union, List import matplotlib.pyplot as plt import numpy as np import argparse import mujoco import torch import os from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import MuJoCoFloatingPlatform from omniisaacgymenvs.mujoco_envs.controllers.RL_games_model_4_mujoco import RLGamesModel class MuJoCoPositionControl(MuJoCoFloatingPlatform): def __init__(self, step_time:float = 0.02, duration:float = 60.0, inv_play_rate:int = 10, mass:float = 5.32, max_thrust:float = 1.0, radius:float = 0.31) -> None: super().__init__(step_time, duration, inv_play_rate, mass, max_thrust, radius) def initializeLoggers(self) -> None: super().initializeLoggers() self.logs["position_target"] = [] def updateLoggers(self, target) -> None: super().updateLoggers() self.logs["position_target"].append(target) def applyFriction(self, fdyn=0.1, fstat=0.1, tdyn=0.05, tstat=0.0): lin_vel = self.data.qvel[:3] lin_vel_norm = np.linalg.norm(lin_vel) ang_vel = self.data.qvel[-1] forces = self.data.qfrc_applied[:3] forces_norm = np.linalg.norm(forces) torques = self.data.qfrc_applied[3:] torques_norm = np.linalg.norm(torques) #if (forces_norm > fstat) or (torques_norm > tstat): if lin_vel_norm > 0.001: lin_vel_normed = np.array(lin_vel) / lin_vel_norm force = -lin_vel_normed * fdyn force[-1] = 0 mujoco.mj_applyFT(self.model, self.data, list(force), [0,0,0], self.data.qpos[:3], self.body_id, self.data.qfrc_applied) if ang_vel > 0.001: torque = - np.sign(ang_vel) * tdyn mujoco.mj_applyFT(self.model, self.data, [0,0,0], [0,0,torque], self.data.qpos[:3], self.body_id, self.data.qfrc_applied) #else: # self.data.qfrc_applied[:3] = 0 def runLoop(self, model, xy: np.ndarray) -> None: """ Runs the simulation loop. model: the agent. xy: 2D position of the body.""" self.resetPosition() # Resets the position of the body. self.data.qpos[:2] = xy # Sets the position of the body. while (self.duration > self.data.time) and (model.isDone() == False): state = self.updateState() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) self.updateLoggers(model.getGoal()) def plotSimulation(self, dpi:int = 90, width:int = 1000, height:int = 1000, save:bool = True, save_dir:str = "position_exp") -> None: """ Plots the simulation.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title('angular velocity') ax[0].set_ylabel('radians / second') ax[1].plot(self.logs["timevals"], self.logs["linear_velocity"], label="system velocities") ax[1].legend() ax[1].set_xlabel('time (seconds)') ax[1].set_ylabel('meters / second') _ = ax[1].set_title('linear_velocity') if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter(np.array(self.logs["position_target"])[:,0], np.array(self.logs["position_target"])[:,1], label="position goals") ax.plot(np.array(self.logs["position"])[:,0], np.array(self.logs["position"])[:,1], label="system position") ax.legend() ax.set_xlabel('meters') ax.set_ylabel('meters') ax.axis("equal") _ = ax.set_title('x y coordinates') plt.tight_layout() if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) class PositionController: def __init__(self, model: RLGamesModel, goal_x: List[float], goal_y: List[float], distance_threshold: float = 0.03) -> None: self.model = model self.goals = np.array([goal_x, goal_y]).T self.current_goal = self.goals[0] self.distance_threshold = distance_threshold self.obs_state = torch.zeros((1,10), dtype=torch.float32, device="cuda") def isGoalReached(self, state): dist = np.linalg.norm(self.current_goal - state["position"]) if dist < self.distance_threshold: return True def getGoal(self): return self.current_goal def setGoal(self, goal): self.current_goal = goal self.goals = np.array([goal]) def isDone(self): return len(self.goals) == 0 def getObs(self): return self.obs_state.cpu().numpy() def makeObservationBuffer(self, state): self.obs_state[0,:2] = torch.tensor(state["orientation"], dtype=torch.float32, device="cuda") self.obs_state[0,2:4] = torch.tensor(state["linear_velocity"], dtype=torch.float32, device="cuda") self.obs_state[0,4] = state["angular_velocity"] self.obs_state[0,5] = 0 self.obs_state[0,6:8] = torch.tensor(self.current_goal - state["position"], dtype=torch.float32, device="cuda") def getAction(self, state, is_deterministic: bool = True): if self.isGoalReached(state): print("Goal reached!") if len(self.goals) > 1: self.current_goal = self.goals[1] self.goals = self.goals[1:] else: self.goals = [] self.makeObservationBuffer(state) return self.model.getAction(self.obs_state, is_deterministic=is_deterministic) def parseArgs(): parser = argparse.ArgumentParser("Generates meshes out of Digital Elevation Models (DEMs) or Heightmaps.") parser.add_argument("--model_path", type=str, default=None, help="The path to the model to be loaded. It must be a velocity tracking model.") parser.add_argument("--config_path", type=str, default=None, help="The path to the network configuration to be loaded.") parser.add_argument("--goal_x", type=float, nargs="+", default=None, help="List of x coordinates for the goals to be reached by the platform. In world frame, meters.") parser.add_argument("--goal_y", type=float, nargs="+", default=None, help="List of y coordinates for the goals to be reached by the platform. In world frame, meters.") parser.add_argument("--sim_duration", type=float, default=240, help="The length of the simulation. In seconds.") parser.add_argument("--play_rate", type=float, default=5.0, help="The frequency at which the agent will played. In Hz. Note, that this depends on the sim_rate, the agent my not be able to play at this rate depending on the sim_rate value. To be consise, the agent will play at: sim_rate / int(sim_rate/play_rate)") parser.add_argument("--sim_rate", type=float, default=50.0, help="The frequency at which the simulation will run. In Hz.") parser.add_argument("--save_dir", type=str, default="position_exp", help="The path to the folder in which the results will be stored.") parser.add_argument("--platform_mass", type=float, default=5.32, help="The mass of the floating platform. In Kg.") parser.add_argument("--platform_radius", type=float, default=0.31, help="The radius of the floating platform. In meters.") parser.add_argument("--platform_max_thrust", type=float, default=1.0, help="The maximum thrust of the floating platform. In newtons.") args, unknown_args = parser.parse_known_args() return args, unknown_args if __name__ == "__main__": # Collects args args, _ = parseArgs() # Checks args assert os.path.exists(args.model_path), "The model file does not exist." assert os.path.exists(args.config_path), "The configuration file does not exist." assert not args.goal_x is None, "The x coordinates of the goals must be specified." assert not args.goal_y is None, "The y coordinates of the goals must be specified." assert args.sim_rate > args.play_rate, "The simulation rate must be greater than the play rate." assert args.sim_duration > 0, "The simulation duration must be greater than 0." assert args.play_rate > 0, "The play rate must be greater than 0." assert args.sim_rate > 0, "The simulation rate must be greater than 0." assert args.platform_mass > 0, "The mass of the platform must be greater than 0." assert args.platform_radius > 0, "The radius of the platform must be greater than 0." assert args.platform_max_thrust > 0, "The maximum thrust of the platform must be greater than 0." assert len(args.goal_x) == len(args.goal_y), "The number of x coordinates must be equal to the number of y coordinates." # Try to create the save directory try: os.makedirs(args.save_dir, exist_ok=True) except: raise ValueError("Could not create the save directory.") # Instantiates the RL agent model = RLGamesModel(args.config_path, args.model_path) # Creates the velocity tracker position_controller = PositionController(model, args.goal_x, args.goal_y) # Creates the environment env = MuJoCoPositionControl(step_time=1.0/args.sim_rate, duration=args.sim_duration, inv_play_rate=int(args.sim_rate/args.play_rate), mass=args.platform_mass, radius=args.platform_radius, max_thrust=args.platform_max_thrust) # Runs the simulation env.runLoop(position_controller, [0,0]) # Plots the simulation env.plotSimulation(save_dir = args.save_dir) # Saves the simulation data env.saveSimulationData(save_dir = args.save_dir)
10,188
Python
50.459596
318
0.642226
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/legacy/pose_controller_DC.py
from typing import Callable, NamedTuple, Optional, Union, List, Dict from scipy.linalg import solve_discrete_are from scipy.optimize import minimize import matplotlib.pyplot as plt import numpy as np import argparse import scipy.io import mujoco import torch import os import cvxpy as cp from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import MuJoCoFloatingPlatform class MuJoCoPoseControl(MuJoCoFloatingPlatform): def __init__(self, step_time:float = 0.02, duration:float = 60.0, inv_play_rate:int = 10, mass:float = 5.32, max_thrust:float = 1.0, radius:float = 0.31) -> None: super().__init__(step_time, duration, inv_play_rate, mass, max_thrust, radius) def initializeLoggers(self) -> None: super().initializeLoggers() self.logs["position_target"] = [] self.logs["heading_target"] = [] def updateLoggers(self, target) -> None: super().updateLoggers() self.logs["position_target"].append(target[:2]) self.logs["heading_target"].append(target[-1]) def updateState(self) -> Dict[str, np.ndarray]: """ Updates the loggers with the current state of the simulation.""" state = {} state["angular_velocity"] = self.ON.add_noise_on_vel(self.data.qvel[3:6].copy()) state["linear_velocity"] = self.ON.add_noise_on_vel(self.data.qvel[0:3].copy()) state["position"] = self.ON.add_noise_on_pos(self.data.qpos[0:3].copy()) state["quaternion"] = self.data.qpos[3:].copy() return state def runLoop(self, model, xy: np.ndarray) -> None: """ Runs the simulation loop. model: the agent. xy: 2D position of the body.""" self.resetPosition() # Resets the position of the body. self.data.qpos[:2] = xy # Sets the position of the body. while (self.duration > self.data.time) and (model.isDone() == False): state = self.updateState() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) self.updateLoggers(model.getGoal()) def plotSimulation(self, dpi:int = 90, width:int = 1000, height:int = 1000, save:bool = True, save_dir:str = "position_exp") -> None: """ Plots the simulation.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title('angular velocity') ax[0].set_ylabel('radians / second') ax[1].plot(self.logs["timevals"], self.logs["linear_velocity"], label="system velocities") ax[1].legend() ax[1].set_xlabel('time (seconds)') ax[1].set_ylabel('meters / second') _ = ax[1].set_title('linear_velocity') if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter(np.array(self.logs["position_target"])[:,0], np.array(self.logs["position_target"])[:,1], label="position goals") ax.plot(np.array(self.logs["position"])[:,0], np.array(self.logs["position"])[:,1], label="system position") ax.legend() ax.set_xlabel('meters') ax.set_ylabel('meters') ax.axis("equal") _ = ax.set_title('x y coordinates') plt.tight_layout() if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot(self.logs["timevals"], np.array(self.logs["actions"]), label="system action") plt.tight_layout() if save: #try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "actions.png")) #except Exception as e: #print("Saving failed: ", e) class DiscreteController: """ Discrete pose controller for the Floating Platform.""" def __init__(self, target_position: List[float], target_orientation: List[float], thruster_count:int=8, dt:float=0.02, Mod:MuJoCoFloatingPlatform=None, control_type = 'LQR') -> None: self.target_position = np.array(target_position) self.target_orientation = np.array(target_orientation) self.thruster_count = thruster_count self.thrusters = np.zeros(thruster_count) # Initialize all thrusters to off self.dt = dt self.FP = Mod self.control_type = control_type self.opti_states = None # control parameters self.Q = np.diag([1,1,5,5,1,1,1]) # State cost matrix self.R = np.diag([0.01] * self.thruster_count) # Control cost matrix self.W = np.diag([0.1] * 7) # Disturbance weight matrix self.find_gains() def find_gains(self,r0=None): # Compute linearized system matrices A and B based on your system dynamics self.A, self.B = self.compute_linearized_system(r0) # Compute linearized system matrices self.make_planar_compatible() if self.control_type == 'H-inf': self.compute_hinfinity_gains() elif self.control_type == 'LQR': self.compute_lqr_gains() else: raise ValueError("Invalid control type specified.") def compute_lqr_gains(self): self.P = solve_discrete_are(self.A, self.B, self.Q, self.R) self.L = np.linalg.inv(self.R + self.B.T @ self.P @ self.B) @ self.B.T @ self.P @ self.A def compute_hinfinity_gains(self): X = cp.Variable((self.A.shape[0], self.A.shape[0]), symmetric=True) gamma = cp.Parameter(nonneg=True) # Define gamma as a parameter regularization_param = 1e-6 # Regularize matrix using the pseudo-inverse A_regularized = self.A @ np.linalg.inv(self.A.T @ self.A + regularization_param * np.eye(self.A.shape[1])) B_regularized = self.B @ np.linalg.inv(self.B.T @ self.B + regularization_param * np.eye(self.B.shape[1])) # Define the constraints using regularized matrices constraints = [X >> np.eye(A_regularized.shape[1])] # X >= 0 # Define a relaxation factor relaxation_factor = 1 # Adjust this value based on your experimentation # Linear matrix inequality constraint with relaxation constraints += [cp.bmat([[A_regularized.T @ X @ A_regularized - X + self.Q, A_regularized.T @ X @ B_regularized], [B_regularized.T @ X @ A_regularized, B_regularized.T @ X @ B_regularized - (gamma**2) * relaxation_factor * np.eye(B_regularized.shape[1])]]) << 0] objective = cp.Minimize(gamma) prob = cp.Problem(objective, constraints) # Set the value of the parameter gamma gamma.value = 1.0 # You can set the initial value based on your problem prob.solve() if prob.status == cp.OPTIMAL: self.L = np.linalg.inv(self.B.T @ X.value @ self.B + gamma.value**2 * np.eye(self.B.shape[1])) @ self.B.T @ X.value @ self.A breakpoint() else: raise Exception("H-infinity control design failed.") def set_target(self, target_position: List[float], target_orientation: List[float]) -> None: """ Sets the target position and orientation.""" self.target_position = np.array(target_position) self.target_orientation = np.array(target_orientation) def compute_linearized_system(self, r0=None) -> None: """ Compute linearized system matrices A and B. With A the state transition matrix. With B the control input matrix.""" if r0 is None: r0 = np.concatenate((self.FP.data.qpos[:3],self.FP.data.qvel[:3], self.FP.data.qpos[3:], self.FP.data.qvel[3:]),axis =None) t_int = 0.2 # time-interval at 5Hz A = self.f_STM(r0,t_int,self.FP.model,self.FP.data,self.FP.body_id) #Aan = self.f_STM(r0,t_int,self.FP.model,self.FP.data,self.FP.body_id) B = self.f_B(r0,t_int,self.FP.model,self.FP.data,self.FP.body_id,self.thruster_count) return A, B def make_planar_compatible(self) -> None: """ Remove elements of the STM to make it planar compatible. Required states #[x,y,vx,vy,qw,qz,wz].""" a = self.A b = self.B a = np.delete(a, 11, axis=0) # Remove row: wy a = np.delete(a, 10, axis=0) # Remove row: wx a = np.delete(a, 8, axis=0) # Remove row: qy a = np.delete(a, 7, axis=0) # Remove row: qz a = np.delete(a, 5, axis=0) # Remove row: vz a = np.delete(a, 2, axis=0) # Remove row: z a = np.delete(a, 11, axis=1) # Remove col: wy a = np.delete(a, 10, axis=1) # Remove col: wx a = np.delete(a, 8, axis=1) # Remove col: qy a = np.delete(a, 7, axis=1) # Remove col: qz a = np.delete(a, 5, axis=1) # Remove col: vz a = np.delete(a, 2, axis=1) # Remove col: z b = np.delete(b, 11, axis=0) # Remove row: wy b = np.delete(b, 10, axis=0) # Remove row: wx b = np.delete(b, 8, axis=0) # Remove row: qy b = np.delete(b, 7, axis=0) # Remove row: qz b = np.delete(b, 5, axis=0) # Remove row: vz b = np.delete(b, 2, axis=0) # Remove row: z b[b == 0] = 1e-4 self.A = a self.B = b return None def f_STM(self, r0:np.ndarray, t_int: float, model, data, body_id) -> None: """ Identify A matrix of linearized system through finite differencing.""" IC_temp0 = r0 force = [0.0,0.0,0.0] torque = [0.0,0.0,0.0] default_tstep = model.opt.timestep model.opt.timestep = t_int current_time = data.time for k in range(np.size(r0)): delta = max(1e-3,IC_temp0[k]/100) delta_vec = np.zeros(np.size(r0)) delta_vec[k] = delta IC_temp_pos = np.add(IC_temp0,delta_vec) IC_temp_neg = np.subtract(IC_temp0,delta_vec) # Positive direction data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp_pos[0:3] data.qvel[:3] = IC_temp_pos[3:6] data.qpos[3:] = IC_temp_pos[6:10] data.qvel[3:] = IC_temp_pos[10:13] mujoco.mj_applyFT(model, data, force, torque, data.qpos[:3], body_id, data.qfrc_applied) mujoco.mj_step(model, data) ans_pos = np.concatenate((data.qpos[:3],data.qvel[:3], data.qpos[3:], data.qvel[3:]),axis =None) #print('final_time', data.time) # Negative direction data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp_neg[0:3] data.qvel[:3] = IC_temp_neg[3:6] data.qpos[3:] = IC_temp_neg[6:10] data.qvel[3:] = IC_temp_neg[10:13] mujoco.mj_applyFT(model, data, force, torque, data.qpos[:3], body_id, data.qfrc_applied) mujoco.mj_step(model, data) ans_neg = np.concatenate((data.qpos[:3],data.qvel[:3], data.qpos[3:], data.qvel[3:]),axis =None) #print('final_time', data.time) if k==0: STM = np.subtract(ans_pos,ans_neg)/(2*delta) else : temp = np.subtract(ans_pos,ans_neg)/(2*delta) STM = np.vstack((STM,temp)) STM = STM.transpose() STM[6,6] = 1.0 data.time = current_time model.opt.timestep = default_tstep return STM def f_STM_analytical(self, r0:np.ndarray, t_int:float, model, data, body_id) -> None: """ Identify A matrix of linearized system through finite differencing.""" IC_temp0 = r0 STM = np.eye(np.size(r0)) w1 = IC_temp0[10] w2 = IC_temp0[11] w3 = IC_temp0[12] qw = IC_temp0[6] qx = IC_temp0[7] qy = IC_temp0[8] qz = IC_temp0[9] STM[0,3] = t_int STM[1,4] = t_int STM[2,5] = t_int STM[6,6] = 1 STM[6,7] = -0.5*w1*t_int STM[6,8] = -0.5*w2*t_int STM[6,9] = -0.5*w3*t_int STM[6,10] = -0.5*qx*t_int STM[6,11] = -0.5*qy*t_int STM[6,12] = -0.5*qz*t_int STM[7,6] = 0.5*w1*t_int STM[7,7] = 1 STM[7,8] = 0.5*w3*t_int STM[7,9] = -0.5*w2*t_int STM[7,10] = 0.5*qw*t_int STM[7,11] = -0.5*qz*t_int STM[7,12] = 0.5*qy*t_int STM[8,6] = 0.5*w2*t_int STM[8,7] = -0.5*w3*t_int STM[8,8] = 1 STM[8,9] = 0.5*w1*t_int STM[8,10] = 0.5*qz*t_int STM[8,11] = 0.5*qw*t_int STM[8,12] = -0.5*qx*t_int STM[9,6] = 0.5*w3*t_int STM[9,7] = -0.5*w2*t_int STM[9,8] = -0.5*w1*t_int STM[9,9] = 1 STM[9,10] = -0.5*qy*t_int STM[9,11] = 0.5*qx*t_int STM[9,12] = 0.5*qw*t_int return STM def f_B(self, r0: np.ndarray, t_int: float, model, data, body_id, number_thrust: int) -> None: """ Identify B matrix of linearized system through finite differencing.""" IC_temp0 = r0 force = [0.0,0.0,0.0] torque = [0.0,0.0,0.0] default_tstep = model.opt.timestep model.opt.timestep = t_int u = np.zeros(number_thrust) current_time = data.time #for k in range(np.size(u)): for k in range(np.size(u)): delta = 0.01 delta_vec = np.zeros(np.size(u)) delta_vec[k] = delta # Positive direction u_plus = np.add(u,delta_vec) force_plus = u_plus[k] * self.FP.forces[k]# * np.sqrt(0.5) rmat = data.xmat[body_id].reshape(3,3) # Rotation matrix. p = data.xpos[body_id] # Position of the body. force_plus = np.matmul(rmat, force_plus) # Rotate the force to the body frame. p2 = np.matmul(rmat, self.FP.positions[k]) + p # Compute the position of the force. data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp0[0:3] data.qvel[:3] = IC_temp0[3:6] data.qpos[3:] = IC_temp0[6:10] data.qvel[3:] = IC_temp0[10:13] mujoco.mj_applyFT(model, data, force_plus, torque, p2, body_id, data.qfrc_applied) # Apply the force. mujoco.mj_step(model, data) ans_pos = np.concatenate((data.qpos[:3],data.qvel[:3], data.qpos[3:], data.qvel[3:]),axis =None) # Negative direction u_minus = np.subtract(u,delta_vec) force_minus = u_minus[k] * self.FP.forces[k] * np.sqrt(0.5) rmat = data.xmat[body_id].reshape(3,3) # Rotation matrix. p = data.xpos[body_id] # Position of the body. force_minus = np.matmul(rmat, force_minus) # Rotate the force to the body frame. p2 = np.matmul(rmat, self.FP.positions[k]) + p # Compute the position of the force. data.time = 0.0 data.qfrc_applied[...] = 0.0 data.qpos[:3] = IC_temp0[0:3] data.qvel[:3] = IC_temp0[3:6] data.qpos[3:] = IC_temp0[6:10] data.qvel[3:] = IC_temp0[10:13] mujoco.mj_applyFT(model, data, force_minus, torque, p2, body_id, data.qfrc_applied) # Apply the force. mujoco.mj_step(model, data) ans_neg = np.concatenate((data.qpos[:3],data.qvel[:3], data.qpos[3:], data.qvel[3:]),axis =None) if k==0: B = np.subtract(ans_pos,ans_neg)/(2*delta) else : temp = np.subtract(ans_pos,ans_neg)/(2*delta) B = np.vstack((B,temp)) B = B.transpose() model.opt.timestep = default_tstep data.time = current_time return B def control_cost(self) -> np.ndarray: # Cost function to be minimized for control input optimization if self.control_type == 'H-inf': control_input = np.array(self.L @ self.state) + self.disturbance elif self.control_type == 'LQR': self.find_gains(r0=self.opti_states) control_input = np.array(self.L @ self.state) else: raise ValueError("Invalid control type specified.") return control_input def update(self, current_position: np.ndarray, current_orientation: np.ndarray, current_velocity: np.ndarray, current_angular_velocity:np.ndarray, disturbance:np.ndarray = None): # Calculate errors position_error = self.target_position - current_position orientation_error = self.target_orientation - current_orientation velocity_error = np.array([0.0, 0.0, 0.0]) - current_velocity angvel_error = np.array([0.0, 0.0, 0.0]) - current_angular_velocity self.opti_states = np.concatenate((current_position, current_velocity, current_orientation, current_angular_velocity), axis=None) if disturbance == None: disturbance = np.random.rand(8) * 0.000 # Example disturbance self.disturbance = disturbance # Combine errors into the state vector self.state = np.array([position_error[0], position_error[1], velocity_error[0], velocity_error[1], orientation_error[0], orientation_error[3], angvel_error[2]]) # Optimal U original_u = self.control_cost() # filter to zero values of u that are less than 0.5 intermediate_u = np.where(np.abs(original_u) < .25, 0.0, original_u) if np.max(intermediate_u) == 0.0: normalized_array = np.zeros(self.thruster_count) else: normalized_array = (intermediate_u - np.min(intermediate_u)) / (np.max(intermediate_u) - np.min(intermediate_u)) # ROund the normalized array to the nearest integer biasing the center to 0.25 final_U = np.round(normalized_array - 0.25).astype(int) # Round the normalized array to the nearest integer self.thrusters = final_U return self.thrusters class PoseController: """ Controller for the pose of the robot.""" def __init__(self, model: DiscreteController, goal_x: List[float], goal_y: List[float], goal_theta: List[float], distance_threshold: float = 0.03) -> None: # Discrete controller self.model = model # Creates an array goals if goal_theta is None: goal_theta = np.zeros_like(goal_x) self.goals = np.array([goal_x, goal_y, goal_theta]).T self.current_goal = self.goals[0] self.current_goal_controller = np.zeros((3), dtype=np.float32) self.current_goal_controller[:2] = self.current_goal[:2] self.distance_threshold = distance_threshold self.obs_state = torch.zeros((1,10), dtype=torch.float32, device="cuda") def isGoalReached(self, state: Dict[str, np.ndarray]) -> bool: dist = np.linalg.norm(self.current_goal[:2] - state["position"][:2]) if dist < self.distance_threshold: return True def getGoal(self) -> np.ndarray: return self.current_goal def setGoal(self, goal:np.ndarray) -> None: self.current_goal = goal self.goals = np.array([goal]) def isDone(self) -> bool: return len(self.goals) == 0 def getObs(self): return self.obs_state.cpu().numpy() def makeObservationBuffer(self, state): q = state["quaternion"] siny_cosp = 2 * (q[0] * q[3] + q[1] * q[2]) cosy_cosp = 1 - 2 * (q[2] * q[2] + q[3] * q[3]) self.obs_state[0,:2] = torch.tensor([cosy_cosp, siny_cosp], dtype=torch.float32, device="cuda") self.obs_state[0,2:4] = torch.tensor(state["linear_velocity"][:2], dtype=torch.float32, device="cuda") self.obs_state[0,4] = state["angular_velocity"][-1] self.obs_state[0,5] = 1 self.obs_state[0,6:8] = torch.tensor(self.current_goal[:2] - state["position"][:2], dtype=torch.float32, device="cuda") heading = np.arctan2(siny_cosp, cosy_cosp) heading_error = np.arctan2(np.sin(self.current_goal[-1] - heading), np.cos(self.current_goal[-1] - heading)) self.obs_state[0,8] = torch.tensor(np.cos(heading_error), dtype=torch.float32, device="cuda") self.obs_state[0,9] = torch.tensor(np.sin(heading_error), dtype=torch.float32, device="cuda") def makeState4Controller(self, state: Dict[str, np.ndarray]) -> List[np.ndarray]: self.makeObservationBuffer(state) current_position = state["position"] current_position[-1] = 0 current_orientation = state["quaternion"] current_linear_velocity = state["linear_velocity"] current_angular_velocity = state["angular_velocity"] return current_position, current_orientation, current_linear_velocity, current_angular_velocity def getAction(self, state: Dict[str, np.ndarray], **kwargs) -> np.ndarray: if self.isGoalReached(state): print("Goal reached!") if len(self.goals) > 1: self.current_goal = self.goals[1,:2] self.current_goal_controller[:2] = self.current_goal self.goals = self.goals[1:] self.model.find_gains(r0=self.opti_states) else: self.goals = [] current_position, current_orientation, current_linear_velocity, current_angular_velocity = self.makeState4Controller(state) self.model.set_target(self.current_goal_controller, [1,0,0,0]) return self.model.update(current_position, current_orientation, current_linear_velocity, current_angular_velocity) def parseArgs(): parser = argparse.ArgumentParser("Generates meshes out of Digital Elevation Models (DEMs) or Heightmaps.") parser.add_argument("--goal_x", type=float, nargs="+", default=None, help="List of x coordinates for the goals to be reached by the platform.") parser.add_argument("--goal_y", type=float, nargs="+", default=None, help="List of y coordinates for the goals to be reached by the platform.") parser.add_argument("--goal_theta", type=float, nargs="+", default=None, help="List of headings for the goals to be reached by the platform. In world frame, radiants.") parser.add_argument("--sim_duration", type=float, default=240, help="The length of the simulation. In seconds.") parser.add_argument("--play_rate", type=float, default=5.0, help="The frequency at which the agent will played. In Hz. Note, that this depends on the sim_rate, the agent my not be able to play at this rate depending on the sim_rate value. To be consise, the agent will play at: sim_rate / int(sim_rate/play_rate)") parser.add_argument("--sim_rate", type=float, default=50.0, help="The frequency at which the simulation will run. In Hz.") parser.add_argument("--save_dir", type=str, default="position_exp", help="The path to the folder in which the results will be stored.") parser.add_argument("--platform_mass", type=float, default=5.32, help="The mass of the floating platform. In Kg.") parser.add_argument("--platform_radius", type=float, default=0.31, help="The radius of the floating platform. In meters.") parser.add_argument("--platform_max_thrust", type=float, default=1.0, help="The maximum thrust of the floating platform. In newtons.") args, unknown_args = parser.parse_known_args() return args, unknown_args if __name__ == "__main__": # Collects args args, _ = parseArgs() # Checks args assert not args.goal_x is None, "The x coordinates of the goals must be specified." assert not args.goal_y is None, "The y coordinates of the goals must be specified." assert args.sim_rate > args.play_rate, "The simulation rate must be greater than the play rate." assert args.sim_duration > 0, "The simulation duration must be greater than 0." assert args.play_rate > 0, "The play rate must be greater than 0." assert args.sim_rate > 0, "The simulation rate must be greater than 0." assert args.platform_mass > 0, "The mass of the platform must be greater than 0." assert args.platform_radius > 0, "The radius of the platform must be greater than 0." assert args.platform_max_thrust > 0, "The maximum thrust of the platform must be greater than 0." assert len(args.goal_x) == len(args.goal_y), "The number of x coordinates must be equal to the number of y coordinates." # Try to create the save directory try: os.makedirs(args.save_dir, exist_ok=True) except: raise ValueError("Could not create the save directory.") # Creates the environment print(1.0/args.sim_rate) env = MuJoCoPoseControl(step_time=1.0/args.sim_rate, duration=args.sim_duration, inv_play_rate=int(args.sim_rate/args.play_rate), mass=args.platform_mass, radius=args.platform_radius, max_thrust=args.platform_max_thrust) # Instantiates the Discrete Controller (DC) model = DiscreteController([2.5,-1.5,0.],[1,0,0,0], Mod=env, control_type='LQR') # control type: 'H-inf' or 'LQR' | H-inf not stable at many locations # Creates the velocity tracker position_controller = PoseController(model, args.goal_x, args.goal_y, args.goal_theta) # Runs the simulation env.runLoop(position_controller, [0,0]) # Plots the simulation env.plotSimulation(save_dir = args.save_dir) # Saves the simulation data env.saveSimulationData(save_dir = args.save_dir)
26,942
Python
45.373494
318
0.575644
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/legacy/linear_velocity_tracker_RL.py
from typing import Callable, NamedTuple, Optional, Union, List import matplotlib.pyplot as plt import numpy as np import argparse import mujoco import torch import os from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import MuJoCoFloatingPlatform from omniisaacgymenvs.mujoco_envs.controllers.RL_games_model_4_mujoco import RLGamesModel class MuJoCoVelTracking(MuJoCoFloatingPlatform): """ The environment for the velocity tracking task inside Mujoco.""" def __init__(self, step_time:float = 0.02, duration:float = 60.0, inv_play_rate:int = 10, mass:float = 5.32, max_thrust:float = 1.0, radius:float = 0.31) -> None: super().__init__(step_time, duration, inv_play_rate, mass, max_thrust, radius) def initializeLoggers(self) -> None: """ Initializes the loggers.""" super().initializeLoggers() self.logs["velocity_goal"] = [] self.logs["position_target"] = [] def updateLoggers(self, goal: np.ndarray, target: np.ndarray) -> None: """ Updates the loggers.""" super().updateLoggers() self.logs["velocity_goal"].append(goal) self.logs["position_target"].append(target) def runLoop(self, model, xy: np.ndarray) -> None: """ Runs the simulation loop.""" self.resetPosition() # Resets the position of the body. self.data.qpos[:2] = xy # Sets the position of the body. while (self.duration > self.data.time) and (model.isDone() == False): state = self.updateState() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) self.updateLoggers(model.getGoal(), model.getTargetPosition()) def plotSimulation(self, dpi:int = 135, width:int = 1000, height:int = 1000, save:bool = False, save_dir:str = "velocity_exp") -> None: """ Plots the simulation.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot(self.logs["timevals"], self.logs["linear_velocity"], label="system velocities") ax.plot(self.logs["timevals"], self.logs["velocity_goal"], label="target velocities") ax.legend() ax.set_xlabel('time (seconds)') ax.set_ylabel('Linear velocities (m/s)') _ = ax.set_title('Linear velocity tracking') if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir,"velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.plot(np.array(self.logs["position_target"])[:,0], np.array(self.logs["position_target"])[:,1], label="trajectory") ax.plot(np.array(self.logs["position"])[:,0], np.array(self.logs["position"])[:,1], label="system position") ax.legend() ax.set_xlabel('x (meters)') ax.set_ylabel('y (meters)') ax.axis("equal") _ = ax.set_title('Trajectory in xy plane') plt.tight_layout() if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) class TrajectoryTracker: """ A class to generate and track trajectories.""" def __init__(self, lookahead:float = 0.25, closed:bool = False, offset = (0,0)): self.current_point = -1 self.lookhead = lookahead self.closed = closed self.is_done = False self.offset = np.array(offset) def generateCircle(self, radius:float = 2, num_points:int = 360*10): theta = np.linspace(0, 2*np.pi, num_points, endpoint=(not self.closed)) self.positions = np.array([np.cos(theta) * radius, np.sin(theta) * radius]).T + self.offset self.angles = np.array([-np.sin(theta), np.cos(theta)]).T def generateSquare(self, h:float = 2, num_points:int = 360*10) -> None: points_per_side = num_points // 4 s1y = np.linspace(-h/2,h/2, num_points, endpoint=False) s1x = np.ones_like(s1y)*h/2 s2x = np.linspace(h/2,-h/2, num_points, endpoint=False) s2y = np.ones_like(s2x) * h/2 s3y = np.linspace(h/2,-h/2, num_points, endpoint=False) s3x = np.ones_like(s3y) * (-h/2) s4x = np.linspace(-h/2,h/2, num_points, endpoint=False) s4y = np.ones_like(s4x) * (-h/2) self.positions = np.vstack([np.hstack([s1x,s2x,s3x,s4x]), np.hstack([s1y,s2y,s3y,s4y])]).T + self.offset self.angles = np.ones_like(self.positions)#np.array([-np.sin(theta), np.cos(theta)]).T def generateSpiral(self, start_radius:float = 0.5, end_radius:float = 2, num_loop:float = 5, num_points: int = 360*20) -> None: radius = np.linspace(start_radius, end_radius, num_points, endpoint=(not self.closed)) theta = np.linspace(0, 2*np.pi*num_loop, num_points, endpoint=(not self.closed)) self.positions = np.array([np.cos(theta) * radius, np.sin(theta) * radius]).T + self.offset self.angles = np.array([-np.sin(theta), np.cos(theta)]).T def getTrackingPointIdx(self, position:np.ndarray) -> None: distances = np.linalg.norm(self.positions - position, axis=1) if self.current_point == -1: self.current_point = 0 else: indices = np.where(distances < self.lookhead)[0] if len(indices) > 0: indices = indices[indices < 60] if len(indices) > 0: self.current_point = np.max(indices) def rollTrajectory(self) -> None: if self.closed: self.positions = np.roll(self.positions, -self.current_point, axis=0) self.angles = np.roll(self.angles, -self.current_point, axis=0) self.current_point = 0 else: self.positions = self.positions[self.current_point:] self.angles = self.angles[self.current_point:] self.current_point = 0 if self.positions.shape[0] <= 1: self.is_done = True def getPointForTracking(self) -> List[np.ndarray]: position = self.positions[self.current_point] angle = self.angles[self.current_point] self.rollTrajectory() return position, angle def get_target_position(self) -> np.ndarray: return self.target_position def computeVelocityVector(self, target_position:np.ndarray, position:np.ndarray) -> np.ndarray: diff = target_position - position return diff / np.linalg.norm(diff) def getVelocityVector(self, position:np.ndarray) -> np.ndarray: self.getTrackingPointIdx(position) self.target_position, target_angle = self.getPointForTracking() velocity_vector = self.computeVelocityVector(self.target_position, position) return velocity_vector class VelocityTracker: def __init__(self, trajectory_tracker: TrajectoryTracker, model: RLGamesModel, target_tracking_velocity:float = 0.25): self.trajectory_tracker = trajectory_tracker self.model = model self.target_tracking_velocity = target_tracking_velocity self.obs_state = torch.zeros((1,10), dtype=torch.float32, device="cuda") def getGoal(self): return self.velocity_vector*self.target_tracking_velocity def setGoal(self, goal): self.target_tracking_velocity = goal def getObs(self): return self.obs_state.cpu().numpy() def getTargetPosition(self): return self.trajectory_tracker.get_target_position() def isDone(self): return self.trajectory_tracker.is_done def makeObservationBuffer(self, state, velocity_vector): self.obs_state[0,:2] = torch.tensor(state["orientation"], dtype=torch.float32, device="cuda") self.obs_state[0,2:4] = torch.tensor(state["linear_velocity"], dtype=torch.float32, device="cuda") self.obs_state[0,4] = state["angular_velocity"] self.obs_state[0,5] = 2 self.obs_state[0,6:8] = torch.tensor(velocity_vector, dtype=torch.float32, device="cuda") def getAction(self, state, is_deterministic=True): self.velocity_vector = self.trajectory_tracker.getVelocityVector(state["position"]) velocity_goal = self.velocity_vector*self.target_tracking_velocity - state["linear_velocity"] self.makeObservationBuffer(state, velocity_goal) action = self.model.getAction(self.obs_state, is_deterministic=is_deterministic) return action def parseArgs(): parser = argparse.ArgumentParser("Generates meshes out of Digital Elevation Models (DEMs) or Heightmaps.") parser.add_argument("--model_path", type=str, default=None, help="The path to the model to be loaded. It must be a velocity tracking model.") parser.add_argument("--config_path", type=str, default=None, help="The path to the network configuration to be loaded.") parser.add_argument("--trajectory_type", type=str, default="Circle", help="The type of trajectory to be generated. Options are: Circle, Square, Spiral.") parser.add_argument("--trajectory_x_offset", type=float, default=0, help="The offset of the trajectory along the x axis. In meters.") parser.add_argument("--trajectory_y_offset", type=float, default=0, help="The offset of the trajectory along the y axis. In meters.") parser.add_argument("--radius", type=float, default=1.5, help="The radius of the circle trajectory. In meters.") parser.add_argument("--height", type=float, default=3.0, help="The height of the square trajectory. In meters.") parser.add_argument("--start_radius", type=float, default=0.5, help="The starting radius for the spiral for the spiral trajectory. In meters.") parser.add_argument("--end_radius", type=float, default=2.0, help="The final radius for the spiral trajectory. In meters.") parser.add_argument("--num_loop", type=float, default=5.0, help="The number of loops the spiral trajectory should make. Must be greater than 0.") parser.add_argument("--closed", type=bool, default=True, help="Whether the trajectory is closed (it forms a loop) or not.") parser.add_argument("--lookahead_dist", type=float, default=0.15, help="How far the velocity tracker looks to generate the velocity vector that will track the trajectory. In meters.") parser.add_argument("--sim_duration", type=float, default=240, help="The length of the simulation. In seconds.") parser.add_argument("--play_rate", type=float, default=5.0, help="The frequency at which the agent will played. In Hz. Note, that this depends on the sim_rate, the agent my not be able to play at this rate depending on the sim_rate value. To be consise, the agent will play at: sim_rate / int(sim_rate/play_rate)") parser.add_argument("--sim_rate", type=float, default=50.0, help="The frequency at which the simulation will run. In Hz.") parser.add_argument("--tracking_velocity", type=float, default=0.25, help="The tracking velocity. In meters per second.") parser.add_argument("--save_dir", type=str, default="velocity_exp", help="The path to the folder in which the results will be stored.") parser.add_argument("--platform_mass", type=float, default=5.32, help="The mass of the floating platform. In Kg.") parser.add_argument("--platform_radius", type=float, default=0.31, help="The radius of the floating platform. In meters.") parser.add_argument("--platform_max_thrust", type=float, default=1.0, help="The maximum thrust of the floating platform. In newtons.") args, unknown_args = parser.parse_known_args() return args, unknown_args if __name__ == "__main__": # Collects args args, _ = parseArgs() # Checks args assert os.path.exists(args.model_path), "The model file does not exist." assert os.path.exists(args.config_path), "The configuration file does not exist." assert args.sim_rate > args.play_rate, "The simulation rate must be greater than the play rate." assert args.num_loop > 0, "The number of loops must be greater than 0." assert args.lookahead_dist > 0, "The lookahead distance must be greater than 0." assert args.radius > 0, "The radius must be greater than 0." assert args.start_radius > 0, "The start radius must be greater than 0." assert args.end_radius > 0, "The end radius must be greater than 0." assert args.height > 0, "The height must be greater than 0." assert args.sim_duration > 0, "The simulation duration must be greater than 0." assert args.play_rate > 0, "The play rate must be greater than 0." assert args.sim_rate > 0, "The simulation rate must be greater than 0." assert args.tracking_velocity > 0, "The tracking velocity must be greater than 0." assert args.platform_mass > 0, "The mass of the platform must be greater than 0." assert args.platform_radius > 0, "The radius of the platform must be greater than 0." assert args.platform_max_thrust > 0, "The maximum thrust of the platform must be greater than 0." # Try to create the save directory try: os.makedirs(args.save_dir, exist_ok=True) except: raise ValueError("Could not create the save directory.") # Creates the trajectory tracker tracker = TrajectoryTracker(lookahead=args.lookahead_dist, closed=args.closed, offset=(args.trajectory_x_offset, args.trajectory_y_offset)) if args.trajectory_type.lower() == "square": tracker.generateSquare(h=args.height) elif args.trajectory_type.lower() == "circle": tracker.generateCircle(radius=args.radius) elif args.trajectory_type.lower() == "spiral": tracker.generateSpiral(start_radius=args.start_radius, end_radius=args.end_radius, num_loop=args.num_loop) else: raise ValueError("Unknown trajectory type. Must be square, circle or spiral.") # Instantiates the RL agent model = RLGamesModel(args.config_path, args.model_path) # Creates the velocity tracker velocity_tracker = VelocityTracker(tracker, model) # Creates the environment env = MuJoCoVelTracking(step_time=1.0/args.sim_rate, duration=args.sim_duration, inv_play_rate=int(args.sim_rate/args.play_rate), mass=args.platform_mass, radius=args.platform_radius, max_thrust=args.platform_max_thrust) # Runs the simulation env.runLoop(velocity_tracker, [0,0]) # Plots the simulation env.plotSimulation(save=True, save_dir = args.save_dir) # Saves the simulation data env.saveSimulationData(args.save_dir)
14,937
Python
53.123188
318
0.659035
elharirymatteo/RANS/omniisaacgymenvs/mujoco_envs/legacy/pose_controller_RL.py
from typing import Callable, NamedTuple, Optional, Union, List import matplotlib.pyplot as plt import numpy as np import argparse import mujoco import torch import os from omniisaacgymenvs.mujoco_envs.environments.mujoco_base_env import MuJoCoFloatingPlatform from omniisaacgymenvs.mujoco_envs.controllers.RL_games_model_4_mujoco import RLGamesModel class MuJoCoPositionControl(MuJoCoFloatingPlatform): def __init__(self, step_time:float = 0.02, duration:float = 60.0, inv_play_rate:int = 10, mass:float = 5.32, max_thrust:float = 1.0, radius:float = 0.31) -> None: super().__init__(step_time, duration, inv_play_rate, mass, max_thrust, radius) def initializeLoggers(self) -> None: super().initializeLoggers() self.logs["position_target"] = [] self.logs["heading_target"] = [] def updateLoggers(self, target) -> None: super().updateLoggers() self.logs["position_target"].append(target[:2]) self.logs["heading_target"].append(target[-1]) def runLoop(self, model, initial_position=[0,0], initial_orientation=[1,0,0,0]) -> None: """ Runs the simulation loop. model: the agent. xy: 2D position of the body.""" self.reset(initial_position=initial_position, initial_orientation=initial_orientation) while (self.duration > self.data.time) and (model.isDone() == False): state = self.updateState() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) self.updateLoggers(model.getGoal()) def runLoopForNSteps(self, model, initial_position=[0,0], initial_orientation=[1,0,0,0], max_steps=502) -> None: """ Runs the simulation loop. model: the agent. xy: 2D position of the body.""" self.reset(initial_position=initial_position, initial_orientation=initial_orientation) i = 0 while i < max_steps: state = self.updateState() # Updates the state of the simulation. # Get the actions from the controller self.actions = model.getAction(state) # Plays only once every self.inv_play_rate steps. for _ in range(self.inv_play_rate): self.applyForces(self.actions) mujoco.mj_step(self.model, self.data) self.updateLoggers(model.getGoal()) i += 1 def plotSimulation(self, dpi:int = 90, width:int = 1000, height:int = 1000, save:bool = True, save_dir:str = "position_exp") -> None: """ Plots the simulation.""" figsize = (width / dpi, height / dpi) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=dpi) ax[0].plot(self.logs["timevals"], self.logs["angular_velocity"]) ax[0].set_title('angular velocity') ax[0].set_ylabel('radians / second') ax[1].plot(self.logs["timevals"], self.logs["linear_velocity"], label="system velocities") ax[1].legend() ax[1].set_xlabel('time (seconds)') ax[1].set_ylabel('meters / second') _ = ax[1].set_title('linear_velocity') print(save_dir) if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "velocities.png")) except Exception as e: print("Saving failed: ", e) fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) ax.scatter(np.array(self.logs["position_target"])[:,0], np.array(self.logs["position_target"])[:,1], label="position goals") ax.plot(np.array(self.logs["position"])[:,0], np.array(self.logs["position"])[:,1], label="system position") ax.legend() ax.set_xlabel('meters') ax.set_ylabel('meters') ax.axis("equal") _ = ax.set_title('x y coordinates') plt.tight_layout() if save: try: os.makedirs(save_dir, exist_ok=True) fig.savefig(os.path.join(save_dir, "positions.png")) except Exception as e: print("Saving failed: ", e) class PoseController: def __init__(self, model: RLGamesModel, goal_x: List[float], goal_y: List[float], goal_theta: List[float], distance_threshold: float = 0.03, heading_threshold: float = 0.03) -> None: self.model = model self.goals = np.array([goal_x, goal_y, goal_theta]).T if goal_theta is None: goal_theta = np.zeros_like(goal_x) self.current_goal = self.goals[0] self.distance_threshold = distance_threshold self.heading_threshold = heading_threshold self.obs_state = torch.zeros((1,10), dtype=torch.float32, device="cuda") def isGoalReached(self, state): dist = np.linalg.norm(self.current_goal[:2] - state["position"]) ang = np.linalg.norm(self.current_goal[2:] - state["orientation"]) heading = np.arctan2(state["orientation"][1], state["orientation"][0]) ang = np.arctan2(np.sin(self.current_goal[-1] - heading), np.cos(self.current_goal[-1] - heading)) dist_cd = False ang_cd = False if dist < self.distance_threshold: dist_cd = True if ang < self.heading_threshold: ang_cd = True return dist_cd and ang_cd def getGoal(self): return self.current_goal def setGoal(self, goal): self.current_goal = goal self.goals = np.array([goal]) def isDone(self): return len(self.goals) == 0 def getObs(self): return self.obs_state.cpu().numpy() def makeObservationBuffer(self, state): self.obs_state[0,:2] = torch.tensor(state["orientation"], dtype=torch.float32, device="cuda") self.obs_state[0,2:4] = torch.tensor(state["linear_velocity"], dtype=torch.float32, device="cuda") self.obs_state[0,4] = state["angular_velocity"] self.obs_state[0,5] = 1 self.obs_state[0,6:8] = torch.tensor(self.current_goal[:2] - state["position"], dtype=torch.float32, device="cuda") heading = np.arctan2(state["orientation"][1], state["orientation"][0]) heading_error = np.arctan2(np.sin(self.current_goal[-1] - heading), np.cos(self.current_goal[-1] - heading)) self.obs_state[0,8] = torch.tensor(np.cos(heading_error), dtype=torch.float32, device="cuda") self.obs_state[0,9] = torch.tensor(np.sin(heading_error), dtype=torch.float32, device="cuda") def getAction(self, state, is_deterministic: bool = True): if self.isGoalReached(state): #print("Goal reached!") if len(self.goals) > 1: self.current_goal = self.goals[1] self.goals = self.goals[1:] else: self.goals = [] self.makeObservationBuffer(state) return self.model.getAction(self.obs_state,is_deterministic=is_deterministic) def runBatchEvaluation(args, cfg=default_cfg): horizon = 500 #cfg["maxEpisodeLength"] = horizon + 2 #cfg["platform_mass"] = 5.32 #cfg["clipObservations"]["state"] = 20.0 cfg["max_spawn_dist"] = 4.0 cfg["min_spawn_dist"] = 3.0 #cfg["kill_dist"] = 6.0 cfg["num_envs"] = 256 # Try to create the save directory try: os.makedirs(args.save_dir, exist_ok=True) except: raise ValueError("Could not create the save directory.") # Instantiates the RL agent model = RLGamesModel(args.config_path, args.model_path) # Creates the velocity tracker position_controller = PoseController(model, [0], [0], [0]) # Creates the environment env = MuJoCoPositionControl(step_time=1.0/args.sim_rate, duration=args.sim_duration, inv_play_rate=int(args.sim_rate/args.play_rate), mass=args.platform_mass, radius=args.platform_radius, max_thrust=args.platform_max_thrust) for i in range(cfg["num_envs"]): # Runs the simulation initial_position, initial_orientation = env.RS.getInitialCondition() env.runLoopForNSteps(position_controller, initial_position=initial_position, initial_orientation=initial_orientation) # Plots the simulation # Saves the simulation data env.saveSimulationData(save_dir = args.save_dir, suffix=str(i)) env.plotBatch(save_dir = args.save_dir) def runSingleEvaluation(args): try: os.makedirs(args.save_dir, exist_ok=True) except: raise ValueError("Could not create the save directory.") # Instantiates the RL agent model = RLGamesModel(args.config_path, args.model_path) # Creates the velocity tracker position_controller = PoseController(model, args.goal_x, args.goal_y, args.goal_theta) # Creates the environment env = MuJoCoPositionControl(step_time=1.0/args.sim_rate, duration=args.sim_duration, inv_play_rate=int(args.sim_rate/args.play_rate), mass=args.platform_mass, radius=args.platform_radius, max_thrust=args.platform_max_thrust) # Runs the simulation env.runLoop(position_controller, [0,0]) # Plots the simulation env.plotSimulation(save_dir = args.save_dir) # Saves the simulation data env.saveSimulationData(save_dir = args.save_dir) def parseArgs(): parser = argparse.ArgumentParser("Generates meshes out of Digital Elevation Models (DEMs) or Heightmaps.") parser.add_argument("--model_path", type=str, default=None, help="The path to the model to be loaded. It must be a velocity tracking model.") parser.add_argument("--config_path", type=str, default=None, help="The path to the network configuration to be loaded.") parser.add_argument("--goal_x", type=float, nargs="+", default=None, help="List of x coordinates for the goals to be reached by the platform.") parser.add_argument("--goal_y", type=float, nargs="+", default=None, help="List of y coordinates for the goals to be reached by the platform.") parser.add_argument("--goal_theta", type=float, nargs="+", default=None, help="List of headings for the goals to be reached by the platform. In world frame, radiants.") parser.add_argument("--sim_duration", type=float, default=240, help="The length of the simulation. In seconds.") parser.add_argument("--play_rate", type=float, default=5.0, help="The frequency at which the agent will played. In Hz. Note, that this depends on the sim_rate, the agent my not be able to play at this rate depending on the sim_rate value. To be consise, the agent will play at: sim_rate / int(sim_rate/play_rate)") parser.add_argument("--sim_rate", type=float, default=50.0, help="The frequency at which the simulation will run. In Hz.") parser.add_argument("--save_dir", type=str, default="position_exp", help="The path to the folder in which the results will be stored.") parser.add_argument("--platform_mass", type=float, default=5.32, help="The mass of the floating platform. In Kg.") parser.add_argument("--platform_radius", type=float, default=0.31, help="The radius of the floating platform. In meters.") parser.add_argument("--platform_max_thrust", type=float, default=1.0, help="The maximum thrust of the floating platform. In newtons.") parser.add_argument("--run_batch", type=bool, default=False, help="If mujoco should be run in batch mode, it's useful to evaluate models. True will enable batch mode.") parser.add_argument("--num_evals", type=int, default=256, help="The number of experiments that should be ran when in batch mode.") parser.add_argument("--num_steps", type=int, default=502, help="The number of steps the simulation should run for in batch mode.") args, unknown_args = parser.parse_known_args() return args, unknown_args if __name__ == "__main__": # Collects args args, _ = parseArgs() # Checks args assert os.path.exists(args.model_path), "The model file does not exist." assert os.path.exists(args.config_path), "The configuration file does not exist." assert not args.goal_x is None, "The x coordinates of the goals must be specified." assert not args.goal_y is None, "The y coordinates of the goals must be specified." assert not args.goal_theta is None, "The theta coordinates of the goals must be specified." assert args.sim_rate > args.play_rate, "The simulation rate must be greater than the play rate." assert args.sim_duration > 0, "The simulation duration must be greater than 0." assert args.play_rate > 0, "The play rate must be greater than 0." assert args.sim_rate > 0, "The simulation rate must be greater than 0." assert args.platform_mass > 0, "The mass of the platform must be greater than 0." assert args.platform_radius > 0, "The radius of the platform must be greater than 0." assert args.platform_max_thrust > 0, "The maximum thrust of the platform must be greater than 0." assert len(args.goal_x) == len(args.goal_y), "The number of x coordinates must be equal to the number of y coordinates." assert len(args.goal_x) == len(args.goal_theta), "The number of x coordinates must be equal to the number of headings." # Try to create the save directory if args.run_batch: runBatchEvaluation(args) else: runSingleEvaluation(args)
13,511
Python
50.376426
318
0.650877
elharirymatteo/RANS/omniisaacgymenvs/tests/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .runner import *
1,580
Python
53.51724
80
0.783544