file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.27
0.93
StanfordVL/OmniGibson/omnigibson/examples/environments/navigation_env_demo.py
import os import yaml import omnigibson as og from omnigibson.utils.ui_utils import choose_from_options def main(random_selection=False, headless=False, short_exec=False): """ Prompts the user to select a type of scene and loads a turtlebot into it, generating a Point-Goal navigation task within the environment. It steps the environment 100 times with random actions sampled from the action space, using the Gym interface, resetting it 10 times. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Load the config config_filename = os.path.join(og.example_config_path, f"turtlebot_nav.yaml") config = yaml.load(open(config_filename, "r"), Loader=yaml.FullLoader) # check if we want to quick load or full load the scene load_options = { "Quick": "Only load the building assets (i.e.: the floors, walls, ceilings)", "Full": "Load all interactive objects in the scene", } load_mode = choose_from_options(options=load_options, name="load mode", random_selection=random_selection) if load_mode == "Quick": config["scene"]["load_object_categories"] = ["floors", "walls", "ceilings"] # Load the environment env = og.Environment(configs=config) # Allow user to move camera more easily og.sim.enable_viewer_camera_teleoperation() # Run a simple loop and reset periodically max_iterations = 10 if not short_exec else 1 for j in range(max_iterations): og.log.info("Resetting environment") env.reset() for i in range(100): action = env.action_space.sample() state, reward, done, info = env.step(action) if done: og.log.info("Episode finished after {} timesteps".format(i + 1)) break # Always close the environment at the end env.close() if __name__ == "__main__": main()
1,944
Python
33.732142
112
0.645062
StanfordVL/OmniGibson/omnigibson/examples/environments/behavior_env_demo.py
import os import yaml import omnigibson as og from omnigibson.macros import gm from omnigibson.utils.ui_utils import choose_from_options # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True def main(random_selection=False, headless=False, short_exec=False): """ Generates a BEHAVIOR Task environment in an online fashion. It steps the environment 100 times with random actions sampled from the action space, using the Gym interface, resetting it 10 times. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Ask the user whether they want online object sampling or not sampling_options = { False: "Use a pre-sampled cached BEHAVIOR activity scene", True: "Sample the BEHAVIOR activity in an online fashion", } should_sample = choose_from_options(options=sampling_options, name="online object sampling", random_selection=random_selection) # Load the pre-selected configuration and set the online_sampling flag config_filename = os.path.join(og.example_config_path, "fetch_behavior.yaml") cfg = yaml.load(open(config_filename, "r"), Loader=yaml.FullLoader) cfg["task"]["online_object_sampling"] = should_sample # Load the environment env = og.Environment(configs=cfg) # Allow user to move camera more easily og.sim.enable_viewer_camera_teleoperation() # Run a simple loop and reset periodically max_iterations = 10 if not short_exec else 1 for j in range(max_iterations): og.log.info("Resetting environment") env.reset() for i in range(100): action = env.action_space.sample() state, reward, done, info = env.step(action) if done: og.log.info("Episode finished after {} timesteps".format(i + 1)) break # Always close the environment at the end env.close() if __name__ == "__main__": main()
2,003
Python
32.966101
131
0.667998
StanfordVL/OmniGibson/omnigibson/examples/object_states/attachment_demo.py
import yaml import numpy as np import omnigibson as og from omnigibson.macros import gm # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of attachment of different parts of a shelf """ cfg = yaml.load(open(f"{og.example_config_path}/default_cfg.yaml", "r"), Loader=yaml.FullLoader) # Add objects that we want to create obj_cfgs = [] obj_cfgs.append(dict( type="LightObject", name="light", light_type="Sphere", radius=0.01, intensity=5000, position=[0, 0, 1.0], )) base_z = 0.2 delta_z = 0.01 idx = 0 obj_cfgs.append(dict( type="DatasetObject", name="shelf_back_panel", category="shelf_back_panel", model="gjsnrt", position=[0, 0, 0.01], fixed_base=True, abilities={"attachable": {}}, )) idx += 1 obj_cfgs.append(dict( type="DatasetObject", name=f"shelf_side_left", category="shelf_side", model="bxfkjj", position=[-0.4, 0, base_z + delta_z * idx], abilities={"attachable": {}}, )) idx += 1 obj_cfgs.append(dict( type="DatasetObject", name=f"shelf_side_right", category="shelf_side", model="yujrmw", position=[0.4, 0, base_z + delta_z * idx], abilities={"attachable": {}}, )) idx += 1 ys = [-0.93, -0.61, -0.29, 0.03, 0.35, 0.68] for i in range(6): obj_cfgs.append(dict( type="DatasetObject", name=f"shelf_shelf_{i}", category="shelf_shelf", model="ymtnqa", position=[0, ys[i], base_z + delta_z * idx], abilities={"attachable": {}}, )) idx += 1 obj_cfgs.append(dict( type="DatasetObject", name="shelf_top_0", category="shelf_top", model="pfiole", position=[0, 1.0, base_z + delta_z * idx], abilities={"attachable": {}}, )) idx += 1 obj_cfgs.append(dict( type="DatasetObject", name=f"shelf_baseboard", category="shelf_baseboard", model="hlhneo", position=[0, -0.97884506, base_z + delta_z * idx], abilities={"attachable": {}}, )) idx += 1 cfg["objects"] = obj_cfgs env = og.Environment(configs=cfg) # Set viewer camera pose og.sim.viewer_camera.set_position_orientation( position=np.array([-1.689292, -2.11718198, 0.93332228]), orientation=np.array([0.57687967, -0.22995655, -0.29022759, 0.72807814]), ) for _ in range(10): env.step([]) shelf_baseboard = og.sim.scene.object_registry("name", "shelf_baseboard") shelf_baseboard.set_position_orientation([0, -0.979, 0.26], [0, 0, 0, 1]) shelf_baseboard.keep_still() shelf_baseboard.set_linear_velocity(np.array([-0.2, 0, 0])) shelf_side_left = og.sim.scene.object_registry("name", "shelf_side_left") shelf_side_left.set_position_orientation([-0.4, 0.0, 0.2], [0, 0, 0, 1]) shelf_side_left.keep_still() input("\n\nShelf parts fall to their correct poses and get automatically attached to the back panel.\n" "You can try to drag (Shift + Left-CLICK + Drag) parts of the shelf to break it apart (you may need to zoom out and drag with a larger force).\n" "Press [ENTER] to continue.\n") for _ in range(5000): og.sim.step() og.shutdown() if __name__ == "__main__": main()
3,567
Python
27.31746
155
0.563218
StanfordVL/OmniGibson/omnigibson/examples/object_states/heat_source_or_sink_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(): # Create the scene config to load -- empty scene with a stove object added cfg = { "scene": { "type": "Scene", }, "objects": [ { "type": "DatasetObject", "name": "stove", "category": "stove", "model": "qbjiva", "bounding_box": [1.611, 0.769, 1.147], "abilities": { "heatSource": {"requires_toggled_on": True}, "toggleable": {}, }, "position": [0, 0, 0.61], } ], } # Create the environment env = og.Environment(configs=cfg) # Get reference to stove object stove = env.scene.object_registry("name", "stove") # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([-0.0792399, -1.30104, 1.51981]), orientation=np.array([0.54897692, 0.00110359, 0.00168013, 0.83583509]), ) # Make sure necessary object states are included with the stove assert object_states.HeatSourceOrSink in stove.states assert object_states.ToggledOn in stove.states # Take a few steps so that visibility propagates for _ in range(5): env.step(np.array([])) # Heat source is off. print("Heat source is OFF.") heat_source_state = stove.states[object_states.HeatSourceOrSink].get_value() assert not heat_source_state # Toggle on stove, notify user input("Heat source will now turn ON: Press ENTER to continue.") stove.states[object_states.ToggledOn].set_value(True) assert stove.states[object_states.ToggledOn].get_value() # Need to take a step to update the state. env.step(np.array([])) # Heat source is on heat_source_state = stove.states[object_states.HeatSourceOrSink].get_value() assert heat_source_state for _ in range(500): env.step(np.array([])) # Toggle off stove, notify user input("Heat source will now turn OFF: Press ENTER to continue.") stove.states[object_states.ToggledOn].set_value(False) assert not stove.states[object_states.ToggledOn].get_value() for _ in range(200): env.step(np.array([])) # Move stove, notify user input("Heat source is now moving: Press ENTER to continue.") stove.set_position(np.array([0, 1.0, 0.61])) for i in range(100): env.step(np.array([])) # Toggle on stove again, notify user input("Heat source will now turn ON: Press ENTER to continue.") stove.states[object_states.ToggledOn].set_value(True) assert stove.states[object_states.ToggledOn].get_value() for i in range(500): env.step(np.array([])) # Shutdown environment at end env.close() if __name__ == "__main__": main()
3,025
Python
29.877551
80
0.611901
StanfordVL/OmniGibson/omnigibson/examples/object_states/onfire_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of on fire state. Loads a stove (toggled on), and two apples. The first apple will be ignited by the stove first, then the second apple will be ignited by the first apple. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Define specific objects we want to load in with the scene directly obj_configs = [] # Light obj_configs.append(dict( type="LightObject", light_type="Sphere", name="light", radius=0.01, intensity=1e8, position=[-2.0, -2.0, 1.0], )) # Stove obj_configs.append(dict( type="DatasetObject", name="stove", category="stove", model="yhjzwg", bounding_box=[1.185, 0.978, 1.387], position=[0, 0, 0.69], )) # 2 Apples for i in range(2): obj_configs.append(dict( type="DatasetObject", name=f"apple{i}", category="apple", model="agveuv", bounding_box=[0.065, 0.065, 0.077], position=[0, i * 0.07, 2.0], abilities={"flammable": {"ignition_temperature": 100, "distance_threshold": 0.5}}, )) # Create the scene config to load -- empty scene with desired objects cfg = { "scene": { "type": "Scene", }, "objects": obj_configs, } # Create the environment env = og.Environment(configs=cfg) # Get reference to relevant objects stove = env.scene.object_registry("name", "stove") apples = list(env.scene.object_registry("category", "apple")) # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([-0.42246569, -0.34745704, 1.56810353]), orientation=np.array([0.50083786, -0.10407796, -0.17482619, 0.84128772]), ) # Let objects settle for _ in range(10): env.step(np.array([])) # Turn on the stove stove.states[object_states.ToggledOn].set_value(True) # The first apple will be affected by the stove apples[0].set_position(stove.states[object_states.HeatSourceOrSink].link.get_position() + np.array([0.11, 0, 0.1])) # The second apple will NOT be affected by the stove, but will be affected by the first apple once it's on fire. apples[1].set_position(stove.states[object_states.HeatSourceOrSink].link.get_position() + np.array([0.32, 0, 0.1])) steps = 0 max_steps = -1 if not short_exec else 1000 # Main recording loop while steps != max_steps: env.step(np.array([])) temps = [f"{apple.states[object_states.Temperature].get_value():>20.2f}" for apple in apples] print(f"{'Apple temperature:':<20}", *temps, end="\r") steps += 1 # Always close env at the end env.close() if __name__ == "__main__": main()
3,147
Python
29.26923
119
0.599619
StanfordVL/OmniGibson/omnigibson/examples/object_states/temperature_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of temperature change Loads a stove, a microwave and an oven, all toggled on, and five frozen apples The user can move the apples to see them change from frozen, to normal temperature, to cooked and burnt This demo also shows how to load objects ToggledOn and how to set the initial temperature of an object """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Define specific objects we want to load in with the scene directly obj_configs = [] # Light obj_configs.append(dict( type="LightObject", light_type="Sphere", name="light", radius=0.01, intensity=1e8, position=[-2.0, -2.0, 1.0], )) # Stove obj_configs.append(dict( type="DatasetObject", name="stove", category="stove", model="yhjzwg", bounding_box=[1.185, 0.978, 1.387], position=[0, 0, 0.69], )) # Microwave obj_configs.append(dict( type="DatasetObject", name="microwave", category="microwave", model="hjjxmi", bounding_box=[0.384, 0.256, 0.196], position=[2.5, 0, 0.10], )) # Oven obj_configs.append(dict( type="DatasetObject", name="oven", category="oven", model="wuinhm", bounding_box=[1.075, 0.926, 1.552], position=[-1.25, 0, 0.88], )) # Tray obj_configs.append(dict( type="DatasetObject", name="tray", category="tray", model="xzcnjq", bounding_box=[0.319, 0.478, 0.046], position=[-0.25, -0.12, 1.26], )) # Fridge obj_configs.append(dict( type="DatasetObject", name="fridge", category="fridge", model="hivvdf", bounding_box=[1.065, 1.149, 1.528], abilities={ "coldSource": { "temperature": -100.0, "requires_inside": True, } }, position=[1.25, 0, 0.81], )) # 5 Apples for i in range(5): obj_configs.append(dict( type="DatasetObject", name=f"apple{i}", category="apple", model="agveuv", bounding_box=[0.065, 0.065, 0.077], position=[0, i * 0.1, 5.0], )) # Create the scene config to load -- empty scene with desired objects cfg = { "scene": { "type": "Scene", }, "objects": obj_configs, } # Create the environment env = og.Environment(configs=cfg) # Get reference to relevant objects stove = env.scene.object_registry("name", "stove") microwave = env.scene.object_registry("name", "microwave") oven = env.scene.object_registry("name", "oven") tray = env.scene.object_registry("name", "tray") fridge = env.scene.object_registry("name", "fridge") apples = list(env.scene.object_registry("category", "apple")) # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.46938863, -3.97887141, 1.64106008]), orientation=np.array([0.63311689, 0.00127259, 0.00155577, 0.77405359]), ) # Let objects settle for _ in range(25): env.step(np.array([])) # Turn on all scene objects stove.states[object_states.ToggledOn].set_value(True) microwave.states[object_states.ToggledOn].set_value(True) oven.states[object_states.ToggledOn].set_value(True) # Set initial temperature of the apples to -50 degrees Celsius, and move the apples to different objects for apple in apples: apple.states[object_states.Temperature].set_value(-50) apples[0].states[object_states.Inside].set_value(oven, True) apples[1].set_position(stove.states[object_states.HeatSourceOrSink].link.get_position() + np.array([0, 0, 0.1])) apples[2].states[object_states.OnTop].set_value(tray, True) apples[3].states[object_states.Inside].set_value(fridge, True) apples[4].states[object_states.Inside].set_value(microwave, True) steps = 0 max_steps = -1 if not short_exec else 1000 # Main recording loop locations = [f'{loc:>20}' for loc in ["Inside oven", "On stove", "On tray", "Inside fridge", "Inside microwave"]] print() print(f"{'Apple location:':<20}", *locations) while steps != max_steps: env.step(np.array([])) temps = [f"{apple.states[object_states.Temperature].get_value():>20.2f}" for apple in apples] print(f"{'Apple temperature:':<20}", *temps, end="\r") steps += 1 # Always close env at the end env.close() if __name__ == "__main__": main()
4,976
Python
29.722222
117
0.590836
StanfordVL/OmniGibson/omnigibson/examples/object_states/sample_kinematics_demo.py
import os import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm from omnigibson.objects import DatasetObject # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo to use the raycasting-based sampler to load objects onTop and/or inside another Loads a cabinet, a microwave open on top of it, and two plates with apples on top, one inside and one on top of the cabinet Then loads a shelf and cracker boxes inside of it """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene cfg = { "scene": { "type": "Scene", }, } # Define objects we want to sample at runtime microwave_cfg = dict( type="DatasetObject", name="microwave", category="microwave", model="hjjxmi", bounding_box=[0.768, 0.512, 0.392], ) cabinet_cfg = dict( type="DatasetObject", name="cabinet", category="bottom_cabinet", model="bamfsz", bounding_box=[1.075, 1.131, 1.355], ) plate_cfgs = [dict( type="DatasetObject", name=f"plate{i}", category="plate", model="iawoof", bounding_box=np.array([0.20, 0.20, 0.05]), ) for i in range(2)] apple_cfgs = [dict( type="DatasetObject", name=f"apple{i}", category="apple", model="agveuv", bounding_box=[0.065, 0.065, 0.077], ) for i in range(4)] shelf_cfg = dict( type="DatasetObject", name=f"shelf", category="shelf", model="pkgbcp", bounding_box=np.array([1.0, 0.4, 2.0]), ) box_cfgs = [dict( type="DatasetObject", name=f"box{i}", category="box_of_crackers", model="cmdigf", bounding_box=np.array([0.2, 0.05, 0.3]), ) for i in range(5)] # Compose objects cfg objects_cfg = [ microwave_cfg, cabinet_cfg, *plate_cfgs, *apple_cfgs, shelf_cfg, *box_cfgs, ] # Update their spawn positions so they don't collide immediately for i, obj_cfg in enumerate(objects_cfg): obj_cfg["position"] = [100 + i, 100 + i, 100 + i] cfg["objects"] = objects_cfg # Create the environment env = og.Environment(configs=cfg) env.step([]) # Sample microwave and boxes sample_boxes_on_shelf(env) sample_microwave_plates_apples(env) max_steps = 100 if short_exec else -1 step = 0 while step != max_steps: env.step(np.array([])) step += 1 # Always close environment at the end env.close() def sample_microwave_plates_apples(env): microwave = env.scene.object_registry("name", "microwave") cabinet = env.scene.object_registry("name", "cabinet") plates = list(env.scene.object_registry("category", "plate")) apples = list(env.scene.object_registry("category", "apple")) # Place the cabinet at a pre-determined location on the floor og.log.info("Placing cabinet on the floor...") cabinet.set_orientation([0, 0, 0, 1.0]) env.step(np.array([])) offset = cabinet.get_position()[2] - cabinet.aabb_center[2] cabinet.set_position(np.array([1.0, 0, cabinet.aabb_extent[2] / 2]) + offset) env.step(np.array([])) # Set microwave on top of the cabinet, open it, and step 100 times og.log.info("Placing microwave OnTop of the cabinet...") assert microwave.states[object_states.OnTop].set_value(cabinet, True) assert microwave.states[object_states.Open].set_value(True) og.log.info("Microwave placed.") for _ in range(50): env.step(np.array([])) og.log.info("Placing plates") n_apples_per_plate = int(len(apples) / len(plates)) for i, plate in enumerate(plates): # Put the 1st plate in the microwave if i == 0: og.log.info(f"Placing plate {i} Inside the microwave...") assert plate.states[object_states.Inside].set_value(microwave, True) else: og.log.info(f"Placing plate {i} OnTop the microwave...") assert plate.states[object_states.OnTop].set_value(microwave, True) og.log.info(f"Plate {i} placed.") for _ in range(50): env.step(np.array([])) og.log.info(f"Placing {n_apples_per_plate} apples OnTop of the plate...") for j in range(n_apples_per_plate): apple_idx = i * n_apples_per_plate + j apple = apples[apple_idx] assert apple.states[object_states.OnTop].set_value(plate, True) og.log.info(f"Apple {apple_idx} placed.") for _ in range(50): env.step(np.array([])) def sample_boxes_on_shelf(env): shelf = env.scene.object_registry("name", "shelf") boxes = list(env.scene.object_registry("category", "box_of_crackers")) # Place the shelf at a pre-determined location on the floor og.log.info("Placing shelf on the floor...") shelf.set_orientation([0, 0, 0, 1.0]) env.step(np.array([])) offset = shelf.get_position()[2] - shelf.aabb_center[2] shelf.set_position(np.array([-1.0, 0, shelf.aabb_extent[2] / 2]) + offset) env.step(np.array([])) # One step is needed for the object to be fully initialized og.log.info("Shelf placed.") for _ in range(50): env.step(np.array([])) og.log.info("Placing boxes...") for i, box in enumerate(boxes): box.states[object_states.Inside].set_value(shelf, True) og.log.info(f"Box {i} placed.") for _ in range(50): env.step(np.array([])) if __name__ == "__main__": main()
5,940
Python
30.94086
127
0.584343
StanfordVL/OmniGibson/omnigibson/examples/object_states/object_state_texture_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm, macros from omnigibson.systems import get_system from omnigibson.utils.constants import ParticleModifyMethod # Make sure object states are enabled, we're using GPU dynamics, and HQ rendering is enabled gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True gm.ENABLE_HQ_RENDERING = True def main(): # Create the scene config to load -- empty scene plus a cabinet cfg = { "scene": { "type": "Scene", "floor_plane_visible": True, }, "objects": [ { "type": "DatasetObject", "name": "cabinet", "category": "bottom_cabinet", "model": "zuwvdo", "bounding_box": [1.595, 0.537, 1.14], "abilities": { "freezable": {}, "cookable": {}, "burnable": {}, "saturable": {}, "particleRemover": { "method": ParticleModifyMethod.ADJACENCY, "conditions": { # For a specific particle system, this specifies what conditions are required in order for the # particle applier / remover to apply / remover particles associated with that system # The list should contain functions with signature condition() --> bool, # where True means the condition is satisfied # In this case, we only allow our cabinet to absorb water, with no conditions needed. # This is needed for the Saturated ("saturable") state so that we can modify the texture # according to the water. # NOTE: This will only change color if gm.ENABLE_HQ_RENDERING and gm.USE_GPU_DYNAMICS is # enabled! "water": [], }, }, }, "position": [0, 0, 0.59], }, ], } # Create the environment env = og.Environment(configs=cfg) # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([ 1.7789 , -1.68822, 1.13551]), orientation=np.array([0.57065614, 0.20331904, 0.267029 , 0.74947212]), ) # Grab reference to object of interest obj = env.scene.object_registry("name", "cabinet") # Make sure all the appropriate states are in the object assert object_states.Frozen in obj.states assert object_states.Cooked in obj.states assert object_states.Burnt in obj.states assert object_states.Saturated in obj.states def report_states(): # Make sure states are propagated before printing for i in range(5): env.step(np.array([])) print("=" * 20) print("temperature:", obj.states[object_states.Temperature].get_value()) print("obj is frozen:", obj.states[object_states.Frozen].get_value()) print("obj is cooked:", obj.states[object_states.Cooked].get_value()) print("obj is burnt:", obj.states[object_states.Burnt].get_value()) print("obj is soaked:", obj.states[object_states.Saturated].get_value(get_system("water"))) print("obj textures:", obj.get_textures()) # Report default states print("==== Initial state ====") report_states() # Notify user that we're about to freeze the object, and then freeze the object input("\nObject will be frozen. Press ENTER to continue.") obj.states[object_states.Temperature].set_value(-50) report_states() # Notify user that we're about to cook the object, and then cook the object input("\nObject will be cooked. Press ENTER to continue.") obj.states[object_states.Temperature].set_value(100) report_states() # Notify user that we're about to burn the object, and then burn the object input("\nObject will be burned. Press ENTER to continue.") obj.states[object_states.Temperature].set_value(250) report_states() # Notify user that we're about to reset the object to its default state, and then reset state input("\nObject will be reset to default state. Press ENTER to continue.") obj.states[object_states.Temperature].set_value(macros.object_states.temperature.DEFAULT_TEMPERATURE) obj.states[object_states.MaxTemperature].set_value(macros.object_states.temperature.DEFAULT_TEMPERATURE) report_states() # Notify user that we're about to soak the object, and then soak the object input("\nObject will be saturated with water. Press ENTER to continue.") obj.states[object_states.Saturated].set_value(get_system("water"), True) report_states() # Notify user that we're about to unsoak the object, and then unsoak the object input("\nObject will be unsaturated with water. Press ENTER to continue.") obj.states[object_states.Saturated].set_value(get_system("water"), False) report_states() # Close environment at the end input("Demo completed. Press ENTER to shutdown environment.") env.close() if __name__ == "__main__": main()
5,330
Python
41.309523
122
0.611257
StanfordVL/OmniGibson/omnigibson/examples/object_states/particle_applier_remover_demo.py
import numpy as np import omnigibson as og from omnigibson.object_states import Covered from omnigibson.objects import DatasetObject from omnigibson.macros import gm, macros from omnigibson.systems import get_system from omnigibson.utils.usd_utils import create_joint from omnigibson.utils.ui_utils import choose_from_options from omnigibson.utils.constants import ParticleModifyMethod # Set macros for this example macros.object_states.particle_modifier.VISUAL_PARTICLES_REMOVAL_LIMIT = 1000 macros.object_states.particle_modifier.PHYSICAL_PARTICLES_REMOVAL_LIMIT = 8000 macros.object_states.particle_modifier.MAX_VISUAL_PARTICLES_APPLIED_PER_STEP = 4 macros.object_states.particle_modifier.MAX_PHYSICAL_PARTICLES_APPLIED_PER_STEP = 40 macros.object_states.covered.MAX_VISUAL_PARTICLES = 300 # Make sure object states and GPU dynamics are enabled (GPU dynamics needed for fluids) gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True gm.ENABLE_HQ_RENDERING = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of ParticleApplier and ParticleRemover object states, which enable objects to either apply arbitrary particles and remove arbitrary particles from the simulator, respectively. Loads an empty scene with a table, and starts clean to allow particles to be applied or pre-covers the table with particles to be removed. The ParticleApplier / ParticleRemover state is applied to an imported cloth object and allowed to interact with the table, applying / removing particles from the table. NOTE: The key difference between ParticleApplier/Removers and ParticleSource/Sinks is that Applier/Removers requires contact (if using ParticleProjectionMethod.ADJACENCY) or overlap (if using ParticleProjectionMethod.PROJECTION) in order to spawn / remove particles, and generally only spawn particles at the contact points. ParticleSource/Sinks are special cases of ParticleApplier/Removers that always use ParticleProjectionMethod.PROJECTION and always spawn / remove particles within their projection volume, irregardless of overlap with other objects! """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Choose what configuration to load modifier_type = choose_from_options( options={ "particleApplier": "Demo object's ability to apply particles in the simulator", "particleRemover": "Demo object's ability to remove particles from the simulator", }, name="particle modifier type", random_selection=random_selection, ) modification_metalink = { "particleApplier": "particleapplier_link", "particleRemover": "particleremover_link", } particle_types = ["stain", "water"] particle_type = choose_from_options( options={name: f"{name} particles will be applied or removed from the simulator" for name in particle_types}, name="particle type", random_selection=random_selection, ) modification_method = { "Adjacency": ParticleModifyMethod.ADJACENCY, "Projection": ParticleModifyMethod.PROJECTION, } projection_mesh_params = { "Adjacency": None, "Projection": { # Either Cone or Cylinder; shape of the projection where particles can be applied / removed "type": "Cone", # Size of the cone "extents": np.array([0.1875, 0.1875, 0.375]), }, } method_type = choose_from_options( options={ "Adjacency": "Close proximity to the object will be used to determine whether particles can be applied / removed", "Projection": "A Cone or Cylinder shape protruding from the object will be used to determine whether particles can be applied / removed", }, name="modifier method type", random_selection=random_selection, ) # Create the ability kwargs to pass to the object state abilities = { modifier_type: { "method": modification_method[method_type], "conditions": { # For a specific particle system, this specifies what conditions are required in order for the # particle applier / remover to apply / remover particles associated with that system # The list should contain functions with signature condition() --> bool, # where True means the condition is satisified particle_type: [], }, "projection_mesh_params": projection_mesh_params[method_type], } } table_cfg = dict( type="DatasetObject", name="table", category="breakfast_table", model="kwmfdg", bounding_box=[3.402, 1.745, 1.175], position=[0, 0, 0.98], ) # Create the scene config to load -- empty scene with a light and table cfg = { "scene": { "type": "Scene", }, "objects": [table_cfg], } # Sanity check inputs: Remover + Adjacency + Fluid will not work because we are using a visual_only # object, so contacts will not be triggered with this object # Load the environment, then immediately stop the simulator since we need to add in the modifier object env = og.Environment(configs=cfg) og.sim.stop() # Grab references to table table = env.scene.object_registry("name", "table") # Set the viewer camera appropriately og.sim.viewer_camera.set_position_orientation( position=np.array([-1.61340969, -1.79803028, 2.53167412]), orientation=np.array([ 0.46291845, -0.12381886, -0.22679218, 0.84790371]), ) # If we're using a projection volume, we manually add in the required metalink required in order to use the volume modifier = DatasetObject( name="modifier", category="dishtowel", model="dtfspn", bounding_box=[0.34245, 0.46798, 0.07], visual_only=method_type == "Projection", # Non-fluid adjacency requires the object to have collision geoms active abilities=abilities, ) modifier_root_link_path = f"{modifier.prim_path}/base_link" modifier._prim = modifier._load() if method_type == "Projection": metalink_path = f"{modifier.prim_path}/{modification_metalink[modifier_type]}" og.sim.stage.DefinePrim(metalink_path, "Xform") create_joint( prim_path=f"{modifier_root_link_path}/{modification_metalink[modifier_type]}_joint", body0=modifier_root_link_path, body1=metalink_path, joint_type="FixedJoint", enabled=True, ) modifier._post_load() modifier._loaded = True og.sim.import_object(modifier) modifier.set_position(np.array([0, 0, 5.0])) # Play the simulator and take some environment steps to let the objects settle og.sim.play() for _ in range(25): env.step(np.array([])) # If we're removing particles, set the table's covered state to be True if modifier_type == "particleRemover": table.states[Covered].set_value(get_system(particle_type), True) # Take a few steps to let particles settle for _ in range(25): env.step(np.array([])) # Enable camera teleoperation for convenience og.sim.enable_viewer_camera_teleoperation() # Set the modifier object to be in position to modify particles if method_type == "Projection": # Higher z to showcase projection volume at work z = 1.85 elif particle_type == "stain": # Lower z needed to allow for adjacency bounding box to overlap properly z = 1.175 else: # Higher z needed for actual physical interaction to accommodate non-negligible particle radius z = 1.22 modifier.keep_still() modifier.set_position_orientation( position=np.array([0, 0.3, z]), orientation=np.array([0, 0, 0, 1.0]), ) # Move object in square around table deltas = [ [130, np.array([-0.01, 0, 0])], [60, np.array([0, -0.01, 0])], [130, np.array([0.01, 0, 0])], [60, np.array([0, 0.01, 0])], ] for t, delta in deltas: for i in range(t): modifier.set_position(modifier.get_position() + delta) env.step(np.array([])) # Always shut down environment at the end env.close() if __name__ == "__main__": main()
8,488
Python
38.85446
149
0.661051
StanfordVL/OmniGibson/omnigibson/examples/object_states/folded_unfolded_state_demo.py
from omnigibson.utils.constants import PrimType from omnigibson.object_states import Folded, Unfolded from omnigibson.macros import gm import numpy as np import omnigibson as og # Make sure object states and GPU dynamics are enabled (GPU dynamics needed for cloth) gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of cloth objects that can potentially be folded. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene + custom cloth object cfg = { "scene": { "type": "Scene", }, "objects": [ { "type": "DatasetObject", "name": "carpet", "category": "carpet", "model": "ctclvd", "bounding_box": [0.897, 0.568, 0.012], "prim_type": PrimType.CLOTH, "abilities": {"cloth": {}}, "position": [0, 0, 0.5], }, { "type": "DatasetObject", "name": "dishtowel", "category": "dishtowel", "model": "dtfspn", "bounding_box": [0.852, 1.1165, 0.174], "prim_type": PrimType.CLOTH, "abilities": {"cloth": {}}, "position": [1, 1, 0.5], }, { "type": "DatasetObject", "name": "shirt", "category": "t_shirt", "model": "kvidcx", "bounding_box": [0.472, 1.243, 1.158], "prim_type": PrimType.CLOTH, "abilities": {"cloth": {}}, "position": [-1, 1, 0.5], "orientation": [0.7071, 0., 0.7071, 0.], }, ], } # Create the environment env = og.Environment(configs=cfg) # Grab object references carpet = env.scene.object_registry("name", "carpet") dishtowel = env.scene.object_registry("name", "dishtowel") shirt = env.scene.object_registry("name", "shirt") objs = [carpet, dishtowel, shirt] # Set viewer camera og.sim.viewer_camera.set_position_orientation( position=np.array([0.46382895, -2.66703958, 1.22616824]), orientation=np.array([0.58779174, -0.00231237, -0.00318273, 0.80900271]), ) def print_state(): folded = carpet.states[Folded].get_value() unfolded = carpet.states[Unfolded].get_value() info = "carpet: [folded] %d [unfolded] %d" % (folded, unfolded) folded = dishtowel.states[Folded].get_value() unfolded = dishtowel.states[Unfolded].get_value() info += " || dishtowel: [folded] %d [unfolded] %d" % (folded, unfolded) folded = shirt.states[Folded].get_value() unfolded = shirt.states[Unfolded].get_value() info += " || tshirt: [folded] %d [unfolded] %d" % (folded, unfolded) print(f"{info}{' ' * (110 - len(info))}", end="\r") for _ in range(100): og.sim.step() print("\nCloth state:\n") if not short_exec: # Fold all three cloths along the x-axis for i in range(3): obj = objs[i] pos = obj.root_link.compute_particle_positions() x_min, x_max = np.min(pos, axis=0)[0], np.max(pos, axis=0)[0] x_extent = x_max - x_min # Get indices for the bottom 10 percent vertices in the x-axis indices = np.argsort(pos, axis=0)[:, 0][:(pos.shape[0] // 10)] start = np.copy(pos[indices]) # lift up a bit mid = np.copy(start) mid[:, 2] += x_extent * 0.2 # move towards x_max end = np.copy(mid) end[:, 0] += x_extent * 0.9 increments = 25 for ctrl_pts in np.concatenate([np.linspace(start, mid, increments), np.linspace(mid, end, increments)]): obj.root_link.set_particle_positions(ctrl_pts, idxs=indices) og.sim.step() print_state() # Fold the t-shirt twice again along the y-axis for direction in [-1, 1]: obj = shirt pos = obj.root_link.compute_particle_positions() y_min, y_max = np.min(pos, axis=0)[1], np.max(pos, axis=0)[1] y_extent = y_max - y_min if direction == 1: indices = np.argsort(pos, axis=0)[:, 1][:(pos.shape[0] // 20)] else: indices = np.argsort(pos, axis=0)[:, 1][-(pos.shape[0] // 20):] start = np.copy(pos[indices]) # lift up a bit mid = np.copy(start) mid[:, 2] += y_extent * 0.2 # move towards y_max end = np.copy(mid) end[:, 1] += direction * y_extent * 0.4 increments = 25 for ctrl_pts in np.concatenate([np.linspace(start, mid, increments), np.linspace(mid, end, increments)]): obj.root_link.set_particle_positions(ctrl_pts, idxs=indices) env.step(np.array([])) print_state() while True: env.step(np.array([])) print_state() # Shut down env at the end print() env.close() if __name__ == "__main__": main()
5,379
Python
33.487179
117
0.5066
StanfordVL/OmniGibson/omnigibson/examples/object_states/overlaid_demo.py
import numpy as np import omnigibson as og from omnigibson.macros import gm from omnigibson.utils.constants import PrimType from omnigibson.object_states import Overlaid # Make sure object states and GPU dynamics are enabled (GPU dynamics needed for cloth) gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of cloth objects that can be overlaid on rigid objects. Loads a carpet on top of a table. Initially Overlaid will be True because the carpet largely covers the table. If you drag the carpet off the table or even just fold it into half, Overlaid will become False. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene + custom cloth object + custom rigid object cfg = { "scene": { "type": "Scene", }, "objects": [ { "type": "DatasetObject", "name": "carpet", "category": "carpet", "model": "ctclvd", "bounding_box": [1.346, 0.852, 0.017], "prim_type": PrimType.CLOTH, "abilities": {"cloth": {}}, "position": [0, 0, 1.0], }, { "type": "DatasetObject", "name": "breakfast_table", "category": "breakfast_table", "model": "rjgmmy", "bounding_box": [1.36, 1.081, 0.84], "prim_type": PrimType.RIGID, "position": [0, 0, 0.58], }, ], } # Create the environment env = og.Environment(configs=cfg) # Grab object references carpet = env.scene.object_registry("name", "carpet") breakfast_table = env.scene.object_registry("name", "breakfast_table") # Set camera pose og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.88215526, -1.40086216, 2.00311063]), orientation=np.array([0.42013364, 0.12342107, 0.25339685, 0.86258043]), ) max_steps = 100 if short_exec else -1 steps = 0 print("\nTry dragging cloth around with CTRL + Left-Click to see the Overlaid state change:\n") while steps != max_steps: print(f"Overlaid {carpet.states[Overlaid].get_value(breakfast_table)} ", end="\r") env.step(np.array([])) # Shut down env at the end env.close() if __name__ == "__main__": main()
2,554
Python
31.341772
114
0.568912
StanfordVL/OmniGibson/omnigibson/examples/object_states/particle_source_sink_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm from omnigibson.utils.constants import ParticleModifyCondition # Make sure object states are enabled and GPU dynamics are used gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True gm.ENABLE_HQ_RENDERING = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of ParticleSource and ParticleSink object states, which enable objects to either spawn arbitrary particles and remove arbitrary particles from the simulator, respectively. Loads an empty scene with a sink, which is enabled with both the ParticleSource and ParticleSink states. The sink's particle source is located at the faucet spout and spawns a continuous stream of water particles, which is then destroyed ("sunk") by the sink's particle sink located at the drain. NOTE: The key difference between ParticleApplier/Removers and ParticleSource/Sinks is that Applier/Removers requires contact (if using ParticleProjectionMethod.ADJACENCY) or overlap (if using ParticleProjectionMethod.PROJECTION) in order to spawn / remove particles, and generally only spawn particles at the contact points. ParticleSource/Sinks are special cases of ParticleApplier/Removers that always use ParticleProjectionMethod.PROJECTION and always spawn / remove particles within their projection volume, irregardless of overlap with other objects! """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene cfg = { "scene": { "type": "Scene", } } # Define objects to load into the environment sink_cfg = dict( type="DatasetObject", name="sink", category="sink", model="egwapq", bounding_box=[2.427, 0.625, 1.2], abilities={ "toggleable": {}, "particleSource": { "conditions": { "water": [(ParticleModifyCondition.TOGGLEDON, True)], # Must be toggled on for water source to be active }, "initial_speed": 0.0, # Water merely falls out of the spout }, "particleSink": { "conditions": { "water": [], # No conditions, always sinking nearby particles }, }, }, position=[0.0, 0, 0.42], ) cfg["objects"] = [sink_cfg] # Create the environment! env = og.Environment(configs=cfg) # Set camera to ideal angle for viewing objects og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.37860532, -0.65396566, 1.4067066 ]), orientation=np.array([0.49909498, 0.15201752, 0.24857062, 0.81609284]), ) # Take a few steps to let the objects settle, and then turn on the sink for _ in range(10): env.step(np.array([])) # Empty action since no robots are in the scene sink = env.scene.object_registry("name", "sink") assert sink.states[object_states.ToggledOn].set_value(True) # Take a step, and save the state env.step(np.array([])) initial_state = og.sim.dump_state() # Main simulation loop. max_steps = 1000 max_iterations = -1 if not short_exec else 1 iteration = 0 try: while iteration != max_iterations: # Keep stepping until table or bowl are clean, or we reach 1000 steps steps = 0 while steps != max_steps: steps += 1 env.step(np.array([])) og.log.info("Max steps reached; resetting.") # Reset to the initial state og.sim.load_state(initial_state) iteration += 1 finally: # Always shut down environment at the end env.close() if __name__ == "__main__": main()
3,985
Python
34.90991
126
0.627353
StanfordVL/OmniGibson/omnigibson/examples/object_states/slicing_demo.py
import numpy as np import omnigibson as og from omnigibson.macros import gm import omnigibson.utils.transform_utils as T # Make sure object states and transition rules are enabled gm.ENABLE_OBJECT_STATES = True gm.ENABLE_TRANSITION_RULES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of slicing an apple into two apple slices """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene with table, knife, and apple table_cfg = dict( type="DatasetObject", name="table", category="breakfast_table", model="rjgmmy", bounding_box=[1.36, 1.081, 0.84], position=[0, 0, 0.58], ) apple_cfg = dict( type="DatasetObject", name="apple", category="apple", model="agveuv", bounding_box=[0.098, 0.098, 0.115], position=[0.085, 0, 0.92], ) knife_cfg = dict( type="DatasetObject", name="knife", category="table_knife", model="lrdmpf", bounding_box=[0.401, 0.044, 0.009], position=[0, 0, 20.0], ) light0_cfg = dict( type="LightObject", name="light0", light_type="Sphere", radius=0.01, intensity=4000.0, position=[1.217, -0.848, 1.388], ) light1_cfg = dict( type="LightObject", name="light1", light_type="Sphere", radius=0.01, intensity=4000.0, position=[-1.217, 0.848, 1.388], ) cfg = { "scene": { "type": "Scene", }, "objects": [table_cfg, apple_cfg, knife_cfg, light0_cfg, light1_cfg] } # Create the environment env = og.Environment(configs=cfg) # Grab reference to apple and knife apple = env.scene.object_registry("name", "apple") knife = env.scene.object_registry("name", "knife") # Update the simulator's viewer camera's pose so it points towards the table og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.544888, -0.412084, 1.11569 ]), orientation=np.array([0.54757518, 0.27792802, 0.35721896, 0.70378409]), ) # Let apple settle for _ in range(50): env.step(np.array([])) knife.keep_still() knife.set_position_orientation( position=apple.get_position() + np.array([-0.15, 0.0, 0.2]), orientation=T.euler2quat([-np.pi / 2, 0, 0]), ) input("The knife will fall on the apple and slice it. Press [ENTER] to continue.") # Step simulation for a bit so that apple is sliced for i in range(1000): env.step(np.array([])) input("Apple has been sliced! Press [ENTER] to terminate the demo.") # Always close environment at the end env.close() if __name__ == "__main__": main()
2,901
Python
25.87037
103
0.577732
StanfordVL/OmniGibson/omnigibson/examples/object_states/dicing_demo.py
import numpy as np import omnigibson as og from omnigibson.macros import gm import omnigibson.utils.transform_utils as T # Make sure object states, GPU dynamics, and transition rules are enabled gm.ENABLE_OBJECT_STATES = True gm.USE_GPU_DYNAMICS = True gm.ENABLE_TRANSITION_RULES = True def main(random_selection=False, headless=False, short_exec=False): """ Demo of dicing an apple into apple dices """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene with table, knife, and apple table_cfg = dict( type="DatasetObject", name="table", category="breakfast_table", model="rjgmmy", bounding_box=[1.36, 1.08, 0.84], position=[0, 0, 0.58], ) apple_cfg = dict( type="DatasetObject", name="apple", category="apple", model="agveuv", bounding_box=[0.098, 0.098, 0.115], position=[0.085, 0, 0.92], abilities={"diceable": {}} ) knife_cfg = dict( type="DatasetObject", name="knife", category="table_knife", model="lrdmpf", bounding_box=[0.401, 0.044, 0.009], position=[0, 0, 20.0], ) light0_cfg = dict( type="LightObject", name="light0", light_type="Sphere", radius=0.01, intensity=1e7, position=[1.217, -0.848, 1.388], ) light1_cfg = dict( type="LightObject", name="light1", light_type="Sphere", radius=0.01, intensity=1e7, position=[-1.217, 0.848, 1.388], ) cfg = { "scene": { "type": "Scene", }, "objects": [table_cfg, apple_cfg, knife_cfg, light0_cfg, light1_cfg] } # Create the environment env = og.Environment(configs=cfg) # Grab reference to apple and knife apple = env.scene.object_registry("name", "apple") knife = env.scene.object_registry("name", "knife") # Update the simulator's viewer camera's pose so it points towards the table og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.544888, -0.412084, 1.11569 ]), orientation=np.array([0.54757518, 0.27792802, 0.35721896, 0.70378409]), ) # Let apple settle for _ in range(50): env.step(np.array([])) knife.keep_still() knife.set_position_orientation( position=apple.get_position() + np.array([-0.15, 0.0, 0.2]), orientation=T.euler2quat([-np.pi / 2, 0, 0]), ) input("The knife will fall on the apple and dice it. Press [ENTER] to continue.") # Step simulation for a bit so that apple is diced for i in range(1000): env.step(np.array([])) input("Apple has been diced! Press [ENTER] to terminate the demo.") # Always close environment at the end env.close() if __name__ == "__main__": main()
2,962
Python
25.936363
103
0.57765
StanfordVL/OmniGibson/omnigibson/examples/object_states/heated_state_demo.py
import numpy as np import omnigibson as og from omnigibson import object_states from omnigibson.macros import gm # Make sure object states are enabled gm.ENABLE_OBJECT_STATES = True def main(): # Define object configurations for objects to load -- we want to load a light and three bowls obj_configs = [] obj_configs.append(dict( type="LightObject", light_type="Sphere", name="light", radius=0.01, intensity=1e8, position=[-2.0, -2.0, 1.0], )) for i, (scale, x) in enumerate(zip([0.5, 1.0, 2.0], [-0.6, 0, 0.8])): obj_configs.append(dict( type="DatasetObject", name=f"bowl{i}", category="bowl", model="ajzltc", bounding_box=np.array([0.329, 0.293, 0.168]) * scale, abilities={"heatable": {}}, position=[x, 0, 0.2], )) # Create the scene config to load -- empty scene with light object and bowls cfg = { "scene": { "type": "Scene", }, "objects": obj_configs, } # Create the environment env = og.Environment(configs=cfg) # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([ 0.182103, -2.07295 , 0.14017 ]), orientation=np.array([0.77787037, 0.00267566, 0.00216149, 0.62841535]), ) # Dim the skybox so we can see the bowls' steam effectively env.scene.skybox.intensity = 100.0 # Grab reference to objects of relevance objs = list(env.scene.object_registry("category", "bowl")) def report_states(objs): for obj in objs: print("=" * 20) print("object:", obj.name) print("temperature:", obj.states[object_states.Temperature].get_value()) print("obj is heated:", obj.states[object_states.Heated].get_value()) # Report default states print("==== Initial state ====") report_states(objs) # Notify user that we're about to heat the object input("Objects will be heated, and steam will slowly rise. Press ENTER to continue.") # Heated. for obj in objs: obj.states[object_states.Temperature].set_value(50) env.step(np.array([])) report_states(objs) # Take a look at the steam effect. # After a while, objects will be below the Steam temperature threshold. print("==== Objects are now heated... ====") print() for _ in range(2000): env.step(np.array([])) # Also print temperatures temps = [f"{obj.states[object_states.Temperature].get_value():>7.2f}" for obj in objs] print(f"obj temps:", *temps, end="\r") print() # Objects are not heated anymore. print("==== Objects are no longer heated... ====") report_states(objs) # Close environment at the end input("Demo completed. Press ENTER to shutdown environment.") env.close() if __name__ == "__main__": main()
2,977
Python
29.080808
97
0.595566
StanfordVL/OmniGibson/omnigibson/examples/objects/draw_bounding_box.py
import matplotlib.pyplot as plt import numpy as np import omnigibson as og def main(random_selection=False, headless=False, short_exec=False): """ Shows how to obtain the bounding box of an articulated object. Draws the bounding box around the loaded object, a cabinet, and writes the visualized image to disk at the current directory named 'bbox_2d_[loose / tight]_img.png'. NOTE: In the GUI, bounding boxes can be natively viewed by clicking on the sensor ((*)) icon at the top, and then selecting the appropriate bounding box modalities, and clicking "Show". See: https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator/visualization.html#the-visualizer """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Specify objects to load banana_cfg = dict( type="DatasetObject", name="banana", category="banana", model="vvyyyv", bounding_box=[0.643, 0.224, 0.269], position=[-0.906661, -0.545106, 0.136824], orientation=[0, 0, 0.76040583, -0.6494482], ) door_cfg = dict( type="DatasetObject", name="door", category="door", model="ohagsq", bounding_box=[1.528, 0.064, 1.299], position=[-2.0, 0, 0.70000001], orientation=[0, 0, -0.38268343, 0.92387953], ) # Create the scene config to load -- empty scene with a few objects cfg = { "scene": { "type": "Scene", }, "objects": [banana_cfg, door_cfg], } # Create the environment env = og.Environment(configs=cfg) # Set camera to appropriate viewing pose cam = og.sim.viewer_camera cam.set_position_orientation( position=np.array([-4.62785 , -0.418575, 0.933943]), orientation=np.array([ 0.52196595, -0.4231939 , -0.46640436, 0.5752612 ]), ) # Add bounding boxes to camera sensor bbox_modalities = ["bbox_3d", "bbox_2d_loose", "bbox_2d_tight"] for bbox_modality in bbox_modalities: cam.add_modality(bbox_modality) # Take a few steps to let objects settle for i in range(100): env.step(np.array([])) # Grab observations from viewer camera and write them to disk obs, _ = cam.get_obs() for bbox_modality in bbox_modalities: # Print out each of the modalities og.log.info(f"Observation modality {bbox_modality}:\n{obs[bbox_modality]}") # Also write the 2d loose bounding box to disk if "3d" not in bbox_modality: from omnigibson.utils.deprecated_utils import colorize_bboxes colorized_img = colorize_bboxes(bboxes_2d_data=obs[bbox_modality], bboxes_2d_rgb=obs["rgb"], num_channels=4) fpath = f"{bbox_modality}_img.png" plt.imsave(fpath, colorized_img) og.log.info(f"Saving modality [{bbox_modality}] image to: {fpath}") # Always close environment down at end env.close() if __name__ == "__main__": main()
3,048
Python
33.647727
120
0.621391
StanfordVL/OmniGibson/omnigibson/examples/objects/highlight_objects.py
import numpy as np import omnigibson as og def main(random_selection=False, headless=False, short_exec=False): """ Highlights visually all object instances of windows and then removes the highlighting It also demonstrates how to apply an action on all instances of objects of a given category """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create the scene config to load -- empty scene cfg = { "scene": { "type": "InteractiveTraversableScene", "scene_model": "Rs_int", } } # Create the environment env = og.Environment(configs=cfg) # Grab all window objects windows = og.sim.scene.object_registry("category", "window") # Step environment while toggling window highlighting i = 0 highlighted = False max_steps = -1 if not short_exec else 1000 while i != max_steps: env.step(np.array([])) if i % 50 == 0: highlighted = not highlighted og.log.info(f"Toggling window highlight to: {highlighted}") for window in windows: # Note that this property is R/W! window.highlighted = highlighted i += 1 # Always close the environment at the end env.close() if __name__ == "__main__": main()
1,359
Python
28.565217
103
0.595291
StanfordVL/OmniGibson/omnigibson/examples/objects/load_object_selector.py
import numpy as np import omnigibson as og from omnigibson.utils.asset_utils import ( get_all_object_categories, get_og_avg_category_specs, get_all_object_category_models, ) from omnigibson.utils.ui_utils import choose_from_options def main(random_selection=False, headless=False, short_exec=False): """ This demo shows how to load any scaled objects from the OG object model dataset The user selects an object model to load The objects can be loaded into an empty scene or an interactive scene (OG) The example also shows how to use the Environment API or directly the Simulator API, loading objects and robots and executing actions """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) scene_options = ["Scene", "InteractiveTraversableScene"] scene_type = choose_from_options(options=scene_options, name="scene type", random_selection=random_selection) # -- Choose the object to load -- # Select a category to load available_obj_categories = get_all_object_categories() obj_category = choose_from_options(options=available_obj_categories, name="object category", random_selection=random_selection) # Select a model to load available_obj_models = get_all_object_category_models(obj_category) obj_model = choose_from_options(options=available_obj_models, name="object model", random_selection=random_selection) # Load the specs of the object categories, e.g., common scaling factor avg_category_spec = get_og_avg_category_specs() # Create and load this object into the simulator obj_cfg = dict( type="DatasetObject", name="obj", category=obj_category, model=obj_model, position=[0, 0, 50.0], ) cfg = { "scene": { "type": scene_type, }, "objects": [obj_cfg], } if scene_type == "InteractiveTraversableScene": cfg["scene"]["scene_model"] = "Rs_int" # Create the environment env = og.Environment(configs=cfg) # Place the object so it rests on the floor obj = env.scene.object_registry("name", "obj") center_offset = obj.get_position() - obj.aabb_center + np.array([0, 0, obj.aabb_extent[2] / 2.0]) obj.set_position(center_offset) # Step through the environment max_steps = 100 if short_exec else 10000 for i in range(max_steps): env.step(np.array([])) # Always close the environment at the end env.close() if __name__ == "__main__": main()
2,553
Python
33.986301
131
0.66275
StanfordVL/OmniGibson/omnigibson/examples/objects/visualize_object.py
import argparse import numpy as np import omnigibson as og from omnigibson.utils.asset_utils import ( get_all_object_categories, get_all_object_category_models, ) from omnigibson.utils.ui_utils import choose_from_options import omnigibson.utils.transform_utils as T def main(random_selection=False, headless=False, short_exec=False): """ Visualizes object as specified by its USD path, @usd_path. If None if specified, will instead result in an object selection from OmniGibson's object dataset """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Assuming that if random_selection=True, headless=True, short_exec=True, we are calling it from tests and we # do not want to parse args (it would fail because the calling function is pytest "testfile.py") usd_path = None if not (random_selection and headless and short_exec): parser = argparse.ArgumentParser() parser.add_argument( "--usd_path", default=None, help="USD Model to load", ) args = parser.parse_args() usd_path = args.usd_path # Define objects to load light0_cfg = dict( type="LightObject", light_type="Sphere", name="sphere_light0", radius=0.01, intensity=1e5, position=[-2.0, -2.0, 2.0], ) light1_cfg = dict( type="LightObject", light_type="Sphere", name="sphere_light1", radius=0.01, intensity=1e5, position=[-2.0, 2.0, 2.0], ) # Make sure we have a valid usd path if usd_path is None: # Select a category to load available_obj_categories = get_all_object_categories() obj_category = choose_from_options(options=available_obj_categories, name="object category", random_selection=random_selection) # Select a model to load available_obj_models = get_all_object_category_models(obj_category) obj_model = choose_from_options(options=available_obj_models, name="object model", random_selection=random_selection) kwargs = { "type": "DatasetObject", "category": obj_category, "model": obj_model, } else: kwargs = { "type": "USDObject", "usd_path": usd_path, } # Import the desired object obj_cfg = dict( **kwargs, name="obj", usd_path=usd_path, visual_only=True, position=[0, 0, 10.0], ) # Create the scene config to load -- empty scene cfg = { "scene": { "type": "Scene", }, "objects": [light0_cfg, light1_cfg, obj_cfg], } # Create the environment env = og.Environment(configs=cfg) # Set camera to appropriate viewing pose og.sim.viewer_camera.set_position_orientation( position=np.array([-0.00913503, -1.95750906, 1.36407314]), orientation=np.array([0.6350064 , 0. , 0. , 0.77250687]), ) # Grab the object references obj = env.scene.object_registry("name", "obj") # Standardize the scale of the object so it fits in a [1,1,1] box -- note that we have to stop the simulator # in order to set the scale extents = obj.aabb_extent og.sim.stop() obj.scale = (np.ones(3) / extents).min() og.sim.play() env.step(np.array([])) # Move the object so that its center is at [0, 0, 1] center_offset = obj.get_position() - obj.aabb_center + np.array([0, 0, 1.0]) obj.set_position(center_offset) # Allow the user to easily move the camera around og.sim.enable_viewer_camera_teleoperation() # Rotate the object in place steps_per_rotate = 360 steps_per_joint = steps_per_rotate / 10 max_steps = 100 if short_exec else 10000 for i in range(max_steps): z_angle = (2 * np.pi * (i % steps_per_rotate) / steps_per_rotate) quat = T.euler2quat(np.array([0, 0, z_angle])) pos = T.quat2mat(quat) @ center_offset if obj.n_dof > 0: frac = (i % steps_per_joint) / steps_per_joint j_frac = -1.0 + 2.0 * frac if (i // steps_per_joint) % 2 == 0 else 1.0 - 2.0 * frac obj.set_joint_positions(positions=j_frac * np.ones(obj.n_dof), normalized=True, drive=False) obj.keep_still() obj.set_position_orientation(position=pos, orientation=quat) env.step(np.array([])) # Shut down at the end og.shutdown() if __name__ == "__main__": main()
4,641
Python
31.921986
113
0.587373
StanfordVL/OmniGibson/omnigibson/examples/renderer_settings/renderer_settings_example.py
import numpy as np import omnigibson as og from omnigibson.renderer_settings.renderer_settings import RendererSettings def main(random_selection=False, headless=False, short_exec=False): """ Shows how to use RendererSettings class """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Specify objects to load banana_cfg = dict( type="DatasetObject", name="banana", category="banana", model="vvyyyv", scale=[3.0, 5.0, 2.0], position=[-0.906661, -0.545106, 0.136824], orientation=[0, 0, 0.76040583, -0.6494482 ], ) door_cfg = dict( type="DatasetObject", name="door", category="door", model="ohagsq", position=[-2.0, 0, 0.70000001], orientation=[0, 0, -0.38268343, 0.92387953], ) # Create the scene config to load -- empty scene with a few objects cfg = { "scene": { "type": "Scene", }, "objects": [banana_cfg, door_cfg], } # Create the environment env = og.Environment(configs=cfg) # Set camera to appropriate viewing pose cam = og.sim.viewer_camera cam.set_position_orientation( position=np.array([-4.62785 , -0.418575, 0.933943]), orientation=np.array([ 0.52196595, -0.4231939 , -0.46640436, 0.5752612 ]), ) def steps(n): for _ in range(n): env.step(np.array([])) # Take a few steps to let objects settle steps(25) # Create renderer settings object. renderer_setting = RendererSettings() # RendererSettings is a singleton. renderer_setting2 = RendererSettings() assert renderer_setting == renderer_setting2 # Set current renderer. input("Setting renderer to Real-Time. Press [ENTER] to continue.") renderer_setting.set_current_renderer("Real-Time") assert renderer_setting.get_current_renderer() == "Real-Time" steps(5) input("Setting renderer to Interactive (Path Tracing). Press [ENTER] to continue.") renderer_setting.set_current_renderer("Interactive (Path Tracing)") assert renderer_setting.get_current_renderer() == "Interactive (Path Tracing)" steps(5) # Get all available settings. print(renderer_setting.settings.keys()) input("Showcasing how to use RendererSetting APIs. Please see example script for more information. " "Press [ENTER] to continue.") # Set setting (2 lines below are equivalent). renderer_setting.set_setting(path="/app/renderer/skipMaterialLoading", value=True) renderer_setting.common_settings.materials_settings.skip_material_loading.set(True) # Get setting (3 lines below are equivalent). assert renderer_setting.get_setting_from_path(path="/app/renderer/skipMaterialLoading") == True assert renderer_setting.common_settings.materials_settings.skip_material_loading.value == True assert renderer_setting.common_settings.materials_settings.skip_material_loading.get() == True # Reset setting (2 lines below are equivalent). renderer_setting.reset_setting(path="/app/renderer/skipMaterialLoading") renderer_setting.common_settings.materials_settings.skip_material_loading.reset() assert renderer_setting.get_setting_from_path(path="/app/renderer/skipMaterialLoading") == False # Set setting to an unallowed value using top-level method. # Examples below will use the "top-level" setting method. try: renderer_setting.set_setting(path="/app/renderer/skipMaterialLoading", value="foo") except AssertionError as e: print(e) # All good. We got an AssertionError. # Set setting to a value out-of-range. try: renderer_setting.set_setting(path="/rtx/fog/fogColorIntensity", value=0.0) except AssertionError as e: print(e) # All good. We got an AssertionError. # Set unallowed setting. try: renderer_setting.set_setting(path="foo", value="bar") except NotImplementedError as e: print(e) # All good. We got a NotImplementedError. # Set setting but the setting group is not enabled. # Setting is successful but there will be a warning message printed. renderer_setting.set_setting(path="/rtx/fog/fogColorIntensity", value=1.0) # Shutdown sim input("Completed demo. Press [ENTER] to shutdown simulation.") og.shutdown() if __name__ == "__main__": main()
4,453
Python
34.919355
104
0.662924
StanfordVL/OmniGibson/omnigibson/examples/robots/grasping_mode_example.py
""" Example script demo'ing robot manipulation control with grasping. """ import numpy as np import omnigibson as og from omnigibson.macros import gm from omnigibson.sensors import VisionSensor from omnigibson.utils.ui_utils import choose_from_options, KeyboardRobotController GRASPING_MODES = dict( sticky="Sticky Mitten - Objects are magnetized when they touch the fingers and a CLOSE command is given", assisted="Assisted Grasping - Objects are magnetized when they touch the fingers, are within the hand, and a CLOSE command is given", physical="Physical Grasping - No additional grasping assistance applied", ) # Don't use GPU dynamics and Use flatcache for performance boost gm.USE_GPU_DYNAMICS = False gm.ENABLE_FLATCACHE = True def main(random_selection=False, headless=False, short_exec=False): """ Robot grasping mode demo with selection Queries the user to select a type of grasping mode """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Choose type of grasping grasping_mode = choose_from_options(options=GRASPING_MODES, name="grasping mode", random_selection=random_selection) # Create environment configuration to use scene_cfg = dict(type="Scene") robot0_cfg = dict( type="Fetch", obs_modalities=["rgb"], # we're just doing a grasping demo so we don't need all observation modalities action_type="continuous", action_normalize=True, grasping_mode=grasping_mode, ) # Define objects to load table_cfg = dict( type="DatasetObject", name="table", category="breakfast_table", model="lcsizg", bounding_box=[0.5, 0.5, 0.8], fixed_base=True, position=[0.7, -0.1, 0.6], orientation=[0, 0, 0.707, 0.707], ) chair_cfg = dict( type="DatasetObject", name="chair", category="straight_chair", model="amgwaw", bounding_box=None, fixed_base=False, position=[0.45, 0.65, 0.425], orientation=[0, 0, -0.9990215, -0.0442276], ) box_cfg = dict( type="PrimitiveObject", name="box", primitive_type="Cube", rgba=[1.0, 0, 0, 1.0], size=0.05, position=[0.53, -0.1, 0.97], ) # Compile config cfg = dict(scene=scene_cfg, robots=[robot0_cfg], objects=[table_cfg, chair_cfg, box_cfg]) # Create the environment env = og.Environment(configs=cfg) # Reset the robot robot = env.robots[0] robot.set_position([0, 0, 0]) robot.reset() robot.keep_still() # Make the robot's camera(s) high-res for sensor in robot.sensors.values(): if isinstance(sensor, VisionSensor): sensor.image_height = 720 sensor.image_width = 720 # Update the simulator's viewer camera's pose so it points towards the robot og.sim.viewer_camera.set_position_orientation( position=np.array([-2.39951, 2.26469, 2.66227]), orientation=np.array([-0.23898481, 0.48475231, 0.75464013, -0.37204802]), ) # Create teleop controller action_generator = KeyboardRobotController(robot=robot) # Print out relevant keyboard info if using keyboard teleop action_generator.print_keyboard_teleop_info() # Other helpful user info print("Running demo with grasping mode {}.".format(grasping_mode)) print("Press ESC to quit") # Loop control until user quits max_steps = -1 if not short_exec else 100 step = 0 while step != max_steps: action = action_generator.get_random_action() if random_selection else action_generator.get_teleop_action() for _ in range(10): env.step(action) step += 1 # Always shut down the environment cleanly at the end env.close() if __name__ == "__main__": main()
3,902
Python
30.731707
137
0.639672
StanfordVL/OmniGibson/omnigibson/examples/robots/all_robots_visualizer.py
import numpy as np import omnigibson as og from omnigibson.robots import REGISTERED_ROBOTS def main(random_selection=False, headless=False, short_exec=False): """ Robot demo Loads all robots in an empty scene, generate random actions """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Create empty scene with no robots in it initially cfg = { "scene": { "type": "Scene", } } env = og.Environment(configs=cfg) # Iterate over all robots and demo their motion for robot_name, robot_cls in REGISTERED_ROBOTS.items(): # Create and import robot robot = robot_cls( prim_path=f"/World/{robot_name}", name=robot_name, obs_modalities=[], # We're just moving robots around so don't load any observation modalities ) og.sim.import_object(robot) # At least one step is always needed while sim is playing for any imported object to be fully initialized og.sim.play() og.sim.step() # Reset robot and make sure it's not moving robot.reset() robot.keep_still() # Log information og.log.info(f"Loaded {robot_name}") og.log.info(f"Moving {robot_name}") if not headless: # Set viewer in front facing robot og.sim.viewer_camera.set_position_orientation( position=np.array([ 2.69918369, -3.63686664, 4.57894564]), orientation=np.array([0.39592411, 0.1348514 , 0.29286304, 0.85982 ]), ) og.sim.enable_viewer_camera_teleoperation() # Hold still briefly so viewer can see robot for _ in range(100): og.sim.step() # Then apply random actions for a bit for _ in range(30): action = np.random.uniform(-1, 1, robot.action_dim) if robot_name == "Tiago": action[robot.base_action_idx] = np.random.uniform(-0.1, 0.1, len(robot.base_action_idx)) for _ in range(10): env.step(action) # Stop the simulator and remove the robot og.sim.stop() og.sim.remove_object(obj=robot) # Always shut down the environment cleanly at the end env.close() if __name__ == "__main__": main()
2,369
Python
30.6
118
0.57577
StanfordVL/OmniGibson/omnigibson/examples/robots/robot_control_example.py
""" Example script demo'ing robot control. Options for random actions, as well as selection of robot action space """ import numpy as np import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import gm from omnigibson.robots import REGISTERED_ROBOTS from omnigibson.utils.ui_utils import choose_from_options, KeyboardRobotController CONTROL_MODES = dict( random="Use autonomous random actions (default)", teleop="Use keyboard control", ) SCENES = dict( Rs_int="Realistic interactive home environment (default)", empty="Empty environment with no objects", ) # Don't use GPU dynamics and use flatcache for performance boost gm.USE_GPU_DYNAMICS = False gm.ENABLE_FLATCACHE = True def choose_controllers(robot, random_selection=False): """ For a given robot, iterates over all components of the robot, and returns the requested controller type for each component. :param robot: BaseRobot, robot class from which to infer relevant valid controller options :param random_selection: bool, if the selection is random (for automatic demo execution). Default False :return dict: Mapping from individual robot component (e.g.: base, arm, etc.) to selected controller names """ # Create new dict to store responses from user controller_choices = dict() # Grab the default controller config so we have the registry of all possible controller options default_config = robot._default_controller_config # Iterate over all components in robot for component, controller_options in default_config.items(): # Select controller options = list(sorted(controller_options.keys())) choice = choose_from_options( options=options, name="{} controller".format(component), random_selection=random_selection ) # Add to user responses controller_choices[component] = choice return controller_choices def main(random_selection=False, headless=False, short_exec=False): """ Robot control demo with selection Queries the user to select a robot, the controllers, a scene and a type of input (random actions or teleop) """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Choose scene to load scene_model = choose_from_options(options=SCENES, name="scene", random_selection=random_selection) # Choose robot to create robot_name = choose_from_options( options=list(sorted(REGISTERED_ROBOTS.keys())), name="robot", random_selection=random_selection ) scene_cfg = dict() if scene_model == "empty": scene_cfg["type"] = "Scene" else: scene_cfg["type"] = "InteractiveTraversableScene" scene_cfg["scene_model"] = scene_model # Add the robot we want to load robot0_cfg = dict() robot0_cfg["type"] = robot_name robot0_cfg["obs_modalities"] = ["rgb", "depth", "seg_instance", "normal", "scan", "occupancy_grid"] robot0_cfg["action_type"] = "continuous" robot0_cfg["action_normalize"] = True # Compile config cfg = dict(scene=scene_cfg, robots=[robot0_cfg]) # Create the environment env = og.Environment(configs=cfg) # Choose robot controller to use robot = env.robots[0] controller_choices = choose_controllers(robot=robot, random_selection=random_selection) # Choose control mode if random_selection: control_mode = "random" else: control_mode = choose_from_options(options=CONTROL_MODES, name="control mode") # Update the control mode of the robot controller_config = {component: {"name": name} for component, name in controller_choices.items()} robot.reload_controllers(controller_config=controller_config) # Because the controllers have been updated, we need to update the initial state so the correct controller state # is preserved env.scene.update_initial_state() # Update the simulator's viewer camera's pose so it points towards the robot og.sim.viewer_camera.set_position_orientation( position=np.array([1.46949, -3.97358, 2.21529]), orientation=np.array([0.56829048, 0.09569975, 0.13571846, 0.80589577]), ) # Reset environment and robot env.reset() robot.reset() # Create teleop controller action_generator = KeyboardRobotController(robot=robot) # Register custom binding to reset the environment action_generator.register_custom_keymapping( key=lazy.carb.input.KeyboardInput.R, description="Reset the robot", callback_fn=lambda: env.reset(), ) # Print out relevant keyboard info if using keyboard teleop if control_mode == "teleop": action_generator.print_keyboard_teleop_info() # Other helpful user info print("Running demo.") print("Press ESC to quit") # Loop control until user quits max_steps = -1 if not short_exec else 100 step = 0 while step != max_steps: action = action_generator.get_random_action() if control_mode == "random" else action_generator.get_teleop_action() env.step(action=action) step += 1 # Always shut down the environment cleanly at the end env.close() if __name__ == "__main__": main()
5,275
Python
33.038709
123
0.68872
StanfordVL/OmniGibson/omnigibson/examples/robots/advanced/ik_example.py
import argparse import time import numpy as np import omnigibson as og import omnigibson.lazy as lazy from omnigibson.objects import PrimitiveObject from omnigibson.robots import Fetch from omnigibson.scenes import Scene from omnigibson.utils.control_utils import IKSolver def main(random_selection=False, headless=False, short_exec=False): """ Minimal example of usage of inverse kinematics solver This example showcases how to construct your own IK functionality using omniverse's native lula library without explicitly utilizing all of OmniGibson's class abstractions, and also showcases how to manipulate the simulator at a lower-level than the main Environment entry point. """ og.log.info(f"Demo {__file__}\n " + "*" * 80 + "\n Description:\n" + main.__doc__ + "*" * 80) # Assuming that if random_selection=True, headless=True, short_exec=True, we are calling it from tests and we # do not want to parse args (it would fail because the calling function is pytest "testfile.py") if not (random_selection and headless and short_exec): parser = argparse.ArgumentParser() parser.add_argument( "--programmatic", "-p", dest="programmatic_pos", action="store_true", help="if the IK solvers should be used with the GUI or programmatically", ) args = parser.parse_args() programmatic_pos = args.programmatic_pos else: programmatic_pos = True # Import scene and robot (Fetch) scene_cfg = {"type": "Scene"} # Create Fetch robot # Note that since we only care about IK functionality, we fix the base (this also makes the robot more stable) # (any object can also have its fixed_base attribute set to True!) # Note that since we're going to be setting joint position targets, we also need to make sure the robot's arm joints # (which includes the trunk) are being controlled using joint positions robot_cfg = { "type": "Fetch", "fixed_base": True, "controller_config": { "arm_0": { "name": "NullJointController", "motor_type": "position", } } } cfg = dict(scene=scene_cfg, robots=[robot_cfg]) env = og.Environment(configs=cfg) # Update the viewer camera's pose so that it points towards the robot og.sim.viewer_camera.set_position_orientation( position=np.array([4.32248, -5.74338, 6.85436]), orientation=np.array([0.39592, 0.13485, 0.29286, 0.85982]), ) robot = env.robots[0] # Set robot base at the origin robot.set_position_orientation(np.array([0, 0, 0]), np.array([0, 0, 0, 1])) # At least one simulation step while the simulator is playing must occur for the robot (or in general, any object) # to be fully initialized after it is imported into the simulator og.sim.play() og.sim.step() # Make sure none of the joints are moving robot.keep_still() # Since this demo aims to showcase how users can directly control the robot with IK, # we will need to disable the built-in controllers in OmniGibson robot.control_enabled = False # Create the IK solver -- note that we are controlling both the trunk and the arm since both are part of the # controllable kinematic chain for the end-effector! control_idx = np.concatenate([robot.trunk_control_idx, robot.arm_control_idx[robot.default_arm]]) ik_solver = IKSolver( robot_description_path=robot.robot_arm_descriptor_yamls[robot.default_arm], robot_urdf_path=robot.urdf_path, reset_joint_pos=robot.get_joint_positions()[control_idx], eef_name=robot.eef_link_names[robot.default_arm], ) # Define a helper function for executing specific end-effector commands using the ik solver def execute_ik(pos, quat=None, max_iter=100): og.log.info("Querying joint configuration to current marker position") # Grab the joint positions in order to reach the desired pose target joint_pos = ik_solver.solve( target_pos=pos, target_quat=quat, tolerance_pos=0.002, tolerance_quat=0.01, weight_pos=20.0, weight_quat=0.05, max_iterations=max_iter, initial_joint_pos=robot.get_joint_positions()[control_idx], ) if joint_pos is not None: og.log.info("Solution found. Setting new arm configuration.") robot.set_joint_positions(joint_pos, indices=control_idx, drive=True) else: og.log.info("EE position not reachable.") og.sim.step() if programmatic_pos or headless: # Sanity check IK using pre-defined hardcoded positions query_positions = [[1, 0, 0.8], [1, 1, 1], [0.5, 0.5, 0], [0.5, 0.5, 0.5]] for query_pos in query_positions: execute_ik(query_pos) time.sleep(2) else: # Create a visual marker to be moved by the user, representing desired end-effector position marker = PrimitiveObject( prim_path=f"/World/marker", name="marker", primitive_type="Sphere", radius=0.03, visual_only=True, rgba=[1.0, 0, 0, 1.0], ) og.sim.import_object(marker) # Get initial EE position and set marker to that location command = robot.get_eef_position() marker.set_position(command) og.sim.step() # Setup callbacks for grabbing keyboard inputs from omni exit_now = False def keyboard_event_handler(event, *args, **kwargs): nonlocal command, exit_now # Check if we've received a key press or repeat if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS \ or event.type == lazy.carb.input.KeyboardEventType.KEY_REPEAT: if event.input == lazy.carb.input.KeyboardInput.ENTER: # Execute the command execute_ik(pos=command) elif event.input == lazy.carb.input.KeyboardInput.ESCAPE: # Quit og.log.info("Quit.") exit_now = True else: # We see if we received a valid delta command, and if so, we update our command and visualized # marker position delta_cmd = input_to_xyz_delta_command(inp=event.input) if delta_cmd is not None: command = command + delta_cmd marker.set_position(command) og.sim.step() # Callback must return True if valid return True # Hook up the callback function with omni's user interface appwindow = lazy.omni.appwindow.get_default_app_window() input_interface = lazy.carb.input.acquire_input_interface() keyboard = appwindow.get_keyboard() sub_keyboard = input_interface.subscribe_to_keyboard_events(keyboard, keyboard_event_handler) # Print out helpful information to the user print_message() # Loop until the user requests an exit while not exit_now: og.sim.step() # Always shut the simulation down cleanly at the end og.app.close() def input_to_xyz_delta_command(inp, delta=0.01): mapping = { lazy.carb.input.KeyboardInput.W: np.array([delta, 0, 0]), lazy.carb.input.KeyboardInput.S: np.array([-delta, 0, 0]), lazy.carb.input.KeyboardInput.DOWN: np.array([0, 0, -delta]), lazy.carb.input.KeyboardInput.UP: np.array([0, 0, delta]), lazy.carb.input.KeyboardInput.A: np.array([0, delta, 0]), lazy.carb.input.KeyboardInput.D: np.array([0, -delta, 0]), } return mapping.get(inp) def print_message(): print("*" * 80) print("Move the marker to a desired position to query IK and press ENTER") print("W/S: move marker further away or closer to the robot") print("A/D: move marker to the left or the right of the robot") print("UP/DOWN: move marker up and down") print("ESC: quit") if __name__ == "__main__": main()
8,259
Python
39.891089
120
0.623683
StanfordVL/OmniGibson/omnigibson/sensors/sensor_noise_base.py
from abc import ABCMeta, abstractmethod from omnigibson.utils.python_utils import classproperty, Registerable # Registered sensor noises REGISTERED_SENSOR_NOISES = dict() class BaseSensorNoise(Registerable, metaclass=ABCMeta): """ Base SensorNoise class. Sensor noise-specific add_noise method is implemented in subclasses Args: enabled (bool): Whether this sensor should be enabled by default """ def __init__(self, enabled=True): # Store whether this noise model is enabled or not self._enabled = enabled def __call__(self, obs): """ If this noise is enabled, corrupts observation @obs by adding sensor noise to sensor reading. This is an identical call to self.corrupt(...) Args: obs (np.array): observation numpy array of values of arbitrary dimension normalized to range [0.0, 1.0] Returns: np.array: Corrupted observation numpy array if self.enabled is True, otherwise this is a pass-through """ return self.corrupt(obs=obs) def corrupt(self, obs): """ If this noise is enabled, corrupts observation @obs by adding sensor noise to sensor reading. Args: obs (np.array): observation numpy array of values of arbitrary dimension normalized to range [0.0, 1.0] Returns: np.array: Corrupted observation numpy array if self.enabled is True, otherwise this is a pass-through """ # Run sanity check to make sure obs is in acceptable range assert len(obs[(obs < 0.0) | (obs > 1.0)]) == 0, "sensor reading has to be between [0.0, 1.0]" return self._corrupt(obs=obs) if self._enabled else obs @abstractmethod def _corrupt(self, obs): """ Corrupts observation @obs by adding sensor noise to sensor reading Args: obs (np.array): observation numpy array of values of arbitrary dimension normalized to range [0.0, 1.0] Returns: np.array: Corrupted observation numpy array """ raise NotImplementedError() @property def enabled(self): """ Returns: bool: Whether this noise model is enabled or not """ return self._enabled @enabled.setter def enabled(self, enabled): """ En/disables this noise model Args: enabled (bool): Whether this noise model should be enabled or not """ self._enabled = enabled @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseSensorNoise") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_SENSOR_NOISES return REGISTERED_SENSOR_NOISES
2,917
Python
30.376344
115
0.633528
StanfordVL/OmniGibson/omnigibson/sensors/dropout_sensor_noise.py
import numpy as np from omnigibson.sensors.sensor_noise_base import BaseSensorNoise class DropoutSensorNoise(BaseSensorNoise): """ Naive dropout sensor noise model Args: dropout_prob (float): Value in [0.0, 1.0] representing fraction of a single observation to be replaced with @dropout_value dropout_value (float): Value in [0.0, 1.0] to replace observations selected to be dropped out enabled (bool): Whether this sensor should be enabled by default """ def __init__( self, dropout_prob=0.05, dropout_value=1.0, enabled=True, ): # Store args, and make sure values are in acceptable range for name, val in zip(("dropout_prob", "dropout_value"), (dropout_prob, dropout_value)): assert 0.0 <= val <= 1.0, f"{name} should be in range [0.0, 1.0], got: {val}" self._dropout_prob = dropout_prob self._dropout_value = dropout_value # Run super method super().__init__(enabled=enabled) def _corrupt(self, obs): # If our noise rate is 0, we just return the obs if self._dropout_prob == 0.0: return obs # Corrupt with randomized dropout valid_mask = np.random.choice(2, obs.shape, p=[self._dropout_prob, 1.0 - self._dropout_prob]) obs[valid_mask == 0] = self._dropout_value return obs @property def dropout_prob(self): """ Returns: float: Value in [0.0, 1.0] representing fraction of a single observation to be replaced with self.dropout_value """ return self._dropout_prob @dropout_prob.setter def dropout_prob(self, p): """ Set the dropout probability for this noise model. Args: p (float): Value in [0.0, 1.0] representing fraction of a single observation to be replaced with self.dropout_value """ assert 0.0 <= p <= 1.0, f"dropout_prob should be in range [0.0, 1.0], got: {p}" self._dropout_prob = p @property def dropout_value(self): """ Returns: float: Value in [0.0, 1.0] to replace observations selected to be dropped out """ return self._dropout_value @dropout_value.setter def dropout_value(self, val): """ Set the dropout value for this noise model. Args: val (float): Value in [0.0, 1.0] to replace observations selected to be dropped out """ assert 0.0 <= val <= 1.0, f"dropout_value should be in range [0.0, 1.0], got: {val}" self._dropout_value = val
2,676
Python
32.049382
110
0.583707
StanfordVL/OmniGibson/omnigibson/sensors/__init__.py
from omnigibson.utils.python_utils import assert_valid_key from omnigibson.sensors.sensor_base import BaseSensor, REGISTERED_SENSORS, ALL_SENSOR_MODALITIES from omnigibson.sensors.scan_sensor import ScanSensor from omnigibson.sensors.vision_sensor import VisionSensor from omnigibson.sensors.sensor_noise_base import BaseSensorNoise, REGISTERED_SENSOR_NOISES from omnigibson.sensors.dropout_sensor_noise import DropoutSensorNoise # Map sensor prim names to corresponding sensor classes SENSOR_PRIMS_TO_SENSOR_CLS = { "Lidar": ScanSensor, "Camera": VisionSensor, } def create_sensor( sensor_type, prim_path, name, modalities="all", enabled=True, sensor_kwargs=None, noise_type=None, noise_kwargs=None ): """ Create a sensor of type @sensor_type with optional keyword args @sensor_kwargs that should be passed to the constructor. Also, additionally send noise of type @noise_type with corresponding keyword args @noise_kwargs that should be passed to the noise constructor. Args: sensor_type (str): Type of sensor to create. Should be either one of SENSOR_PRIM_TO_SENSOR.keys() or one of REGISTERED_SENSORS (i.e.: the string name of the desired class to create) prim_path (str): prim path of the Sensor to encapsulate or create. name (str): Name for the sensor. Names need to be unique per scene. modalities (str or list of str): Modality(s) supported by this sensor. Valid options are part of sensor.all_modalities. Default is "all", which corresponds to all modalities being used enabled (bool): Whether this sensor should be enabled or not sensor_kwargs (dict): Any keyword kwargs to pass to the constructor noise_type (str): Type of sensor to create. Should be one of REGISTERED_SENSOR_NOISES (i.e.: the string name of the desired class to create) noise_kwargs (dict): Any keyword kwargs to pass to the constructor Returns: BaseSensor: Created sensor with specified params """ # Run basic sanity check assert isinstance(sensor_type, str), "Inputted sensor_type must be a string!" # Grab the requested sensor class if sensor_type in SENSOR_PRIMS_TO_SENSOR_CLS: sensor_cls = SENSOR_PRIMS_TO_SENSOR_CLS[sensor_type] elif sensor_type in REGISTERED_SENSORS: sensor_cls = REGISTERED_SENSORS[sensor_type] else: # This is an error, we didn't find the requested sensor ): raise ValueError(f"No sensor found with corresponding sensor_type: {sensor_type}") # Create the noise, and sanity check to make sure it's a valid type noise = None if noise_type is not None: assert_valid_key(key=noise_type, valid_keys=REGISTERED_SENSOR_NOISES, name="sensor noise type") noise_kwargs = dict() if noise_kwargs is None else noise_kwargs noise = REGISTERED_SENSOR_NOISES[noise_type](**noise_kwargs) # Create the sensor sensor_kwargs = dict() if sensor_kwargs is None else sensor_kwargs sensor = sensor_cls( prim_path=prim_path, name=name, modalities=modalities, enabled=enabled, noise=noise, **sensor_kwargs, ) return sensor
3,282
Python
40.556962
112
0.696222
StanfordVL/OmniGibson/omnigibson/sensors/sensor_base.py
from abc import ABCMeta from omnigibson.prims.xform_prim import XFormPrim from omnigibson.utils.python_utils import classproperty, assert_valid_key, Registerable from omnigibson.utils.gym_utils import GymObservable from gym.spaces import Space # Registered sensors REGISTERED_SENSORS = dict() # All possible modalities across all sensors ALL_SENSOR_MODALITIES = set() class BaseSensor(XFormPrim, GymObservable, Registerable, metaclass=ABCMeta): """ Base Sensor class. Sensor-specific get_obs method is implemented in subclasses Args: prim_path (str): prim path of the Sensor to encapsulate or create. name (str): Name for the sensor. Names need to be unique per scene. modalities (str or list of str): Modality(s) supported by this sensor. Default is "all", which corresponds to all modalities being used. Otherwise, valid options should be part of cls.all_modalities. enabled (bool): Whether this sensor should be enabled by default noise (None or BaseSensorNoise): If specified, sensor noise model to apply to this sensor. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this sensor's prim at runtime. """ def __init__( self, prim_path, name, modalities="all", enabled=True, noise=None, load_config=None, ): # Store inputs (and sanity check modalities along the way) if modalities == "all": modalities = self.all_modalities else: modalities = [modalities] if isinstance(modalities, str) else modalities for modality in modalities: assert_valid_key(key=modality, valid_keys=self.all_modalities, name="modality") self._modalities = set(modalities) self._enabled = enabled self._noise = noise # Run super method super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _load(self): # Sub-sensors must implement this class directly! Cannot use parent XForm class by default raise NotImplementedError("Sensor class must implement _load!") def _post_load(self): # Run super first super()._post_load() # Set the enabled property based on the internal value # This is done so that any subclassed sensors which require simulator specific enabling can handle this now self.enabled = self._enabled def get_obs(self): # Get sensor reading, and optionally corrupt the readings with noise using self.noise if # self.noise.enabled is True. # Note that the returned dictionary will only be filled in if this sensor is enabled! if not self._enabled: return dict() obs, info = self._get_obs() if self._noise is not None: for k, v in obs.items(): if k not in self.no_noise_modalities: obs[k] = self._noise(v) return obs, info def _get_obs(self): """ Get sensor reading. Should generally be extended by subclass. Returns: 2-tuple: dict: Keyword-mapped observations mapping modality names to numpy arrays of arbitrary dimension dict: Additional information about the observations. """ # Default is returning an empty dict return dict(), dict() def _load_observation_space(self): # Fill in observation space based on mapping and active modalities obs_space = dict() for modality, space in self._obs_space_mapping.items(): if modality in self._modalities: if isinstance(space, Space): # Directly add this space obs_space[modality] = space else: # Assume we are procedurally generating a box space shape, low, high, dtype = space obs_space[modality] = self._build_obs_box_space(shape=shape, low=low, high=high, dtype=dtype) return obs_space def add_modality(self, modality): """ Add a modality to this sensor. Must be a valid modality (one of self.all_modalities) Args: modality (str): Name of the modality to add to this sensor """ assert_valid_key(key=modality, valid_keys=self.all_modalities, name="modality") if modality not in self._modalities: self._modalities.add(modality) # Update observation space self.load_observation_space() def remove_modality(self, modality): """ Remove a modality from this sensor. Must be a valid modality that is active (one of self.modalities) Args: modality (str): Name of the modality to remove from this sensor """ assert_valid_key(key=modality, valid_keys=self._modalities, name="modality") if modality in self._modalities: self._modalities.remove(modality) # Update observation space self.load_observation_space() @property def modalities(self): """ Returns: set: Name of modalities provided by this sensor. This should correspond to all the keys provided in self.get_obs() """ return self._modalities @property def _obs_space_mapping(self): """ Returns: dict: Keyword-mapped observation space settings for each modality. For each modality in cls.all_modalities, its name should map directly to the corresponding gym space Space for that modality or a 4-tuple entry (shape, low, high, dtype) for procedurally generating the appropriate Box Space for that modality """ raise NotImplementedError() @classproperty def all_modalities(cls): """ Returns: set: All possible valid modalities for this sensor. Should be implemented by subclass. """ raise NotImplementedError() @property def noise(self): """ Returns: None or BaseSensorNoise: Noise model to use for this sensor """ return self._noise @classproperty def no_noise_modalities(cls): """ Returns: set: Modalities that should NOT be passed through noise, irregardless of whether noise is enabled or not. This is useful for some modalities which are not exclusively numerical arrays. """ raise NotImplementedError() @property def enabled(self): """ Returns: bool: Whether this sensor is enabled or not """ # By default, we simply return the internal value. Subclasses may need to extend this functionality, # e.g. by disabling actual sim functionality for better computational efficiency return self._enabled @enabled.setter def enabled(self, enabled): """ Args: enabled (bool): Whether this sensor should be enabled or not """ # By default, we simply store the value internally. Subclasses may need to extend this functionality, # e.g. by disabling actual sim functionality for better computational efficiency self._enabled = enabled @classproperty def sensor_type(cls): """ Returns: str: Type of this sensor. By default, this is the sensor class name """ return cls.__name__ @classmethod def _register_cls(cls): global ALL_SENSOR_MODALITIES # Run super first super()._register_cls() # Also store modalities from this sensor class if we're registering it if cls.__name__ not in cls._do_not_register_classes: ALL_SENSOR_MODALITIES.union(cls.all_modalities) @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseSensor") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_SENSORS return REGISTERED_SENSORS
8,385
Python
34.837607
119
0.620155
StanfordVL/OmniGibson/omnigibson/sensors/scan_sensor.py
import cv2 import numpy as np from collections.abc import Iterable from transforms3d.quaternions import quat2mat import omnigibson.lazy as lazy from omnigibson.sensors.sensor_base import BaseSensor from omnigibson.utils.constants import OccupancyGridState from omnigibson.utils.python_utils import classproperty class ScanSensor(BaseSensor): """ General 2D LiDAR range sensor and occupancy grid sensor. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. modalities (str or list of str): Modality(s) supported by this sensor. Default is "all", which corresponds to all modalities being used. Otherwise, valid options should be part of cls.all_modalities. For this scan sensor, this includes any of: {scan, occupancy_grid} Note that in order for "occupancy_grid" to be used, "scan" must also be included. enabled (bool): Whether this sensor should be enabled by default noise (None or BaseSensorNoise): If specified, sensor noise model to apply to this sensor. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this sensor's prim at runtime. min_range (float): Minimum range to sense in meters max_range (float): Maximum range to sense in meters horizontal_fov (float): Field of view of sensor, in degrees vertical_fov (float): Field of view of sensor, in degrees yaw_offset (float): Degrees for offsetting this sensors horizontal FOV. Useful in cases where this sensor's forward direction is different than expected horizontal_resolution (float): Degrees in between each horizontal scan hit vertical_resolution (float): Degrees in between each vertical scan hit rotation_rate (float): How fast the range sensor is rotating, in rotations per sec. Set to 0 for all scans be to hit at once draw_points (bool): Whether to draw the points hit by this sensor draw_lines (bool): Whether to draw the lines representing the scans from this sensor occupancy_grid_resolution (int): How many discretized nodes in the occupancy grid. This will specify the height == width of the map occupancy_grid_range (float): Range of the occupancy grid, in meters occupancy_grid_inner_radius (float): Inner range of the occupancy grid that will assumed to be empty, in meters occupancy_grid_local_link (None or XFormPrim): XForm prim that represents the "origin" of any generated occupancy grid, e.g.: if this scan sensor is attached to a robot, then this should possibly be the base link for that robot. If None is specified, then this will default to this own sensor's frame as the origin. """ def __init__( self, prim_path, name, modalities="all", enabled=True, noise=None, load_config=None, # Basic LIDAR kwargs min_range=0.05, max_range=10.0, horizontal_fov=360.0, vertical_fov=1.0, yaw_offset=0.0, horizontal_resolution=1.0, vertical_resolution=1.0, rotation_rate=0.0, draw_points=False, draw_lines=False, # Occupancy Grid kwargs occupancy_grid_resolution=128, occupancy_grid_range=5.0, occupancy_grid_inner_radius=0.5, occupancy_grid_local_link=None, ): # Store settings self.occupancy_grid_resolution = occupancy_grid_resolution self.occupancy_grid_range = occupancy_grid_range self.occupancy_grid_inner_radius = int(occupancy_grid_inner_radius * occupancy_grid_resolution / occupancy_grid_range) self.occupancy_grid_local_link = self if occupancy_grid_local_link is None else occupancy_grid_local_link # Create variables that will be filled in at runtime self._rs = None # Range sensor interface, analagous to others, e.g.: dynamic control interface # Create load config from inputs load_config = dict() if load_config is None else load_config load_config["min_range"] = min_range load_config["max_range"] = max_range load_config["horizontal_fov"] = horizontal_fov load_config["vertical_fov"] = vertical_fov load_config["yaw_offset"] = yaw_offset load_config["horizontal_resolution"] = horizontal_resolution load_config["vertical_resolution"] = vertical_resolution load_config["rotation_rate"] = rotation_rate load_config["draw_points"] = draw_points load_config["draw_lines"] = draw_lines # Sanity check modalities -- if we're using occupancy_grid without scan modality, raise an error if isinstance(modalities, Iterable) and not isinstance(modalities, str) and "occupancy_grid" in modalities: assert "scan" in modalities, f"'scan' modality must be included in order to get occupancy_grid modality!" # Run super method super().__init__( prim_path=prim_path, name=name, modalities=modalities, enabled=enabled, noise=noise, load_config=load_config, ) def _load(self): # Define a LIDAR prim at the current stage result, lidar = lazy.omni.kit.commands.execute("RangeSensorCreateLidar", path=self._prim_path) return lidar.GetPrim() def _post_load(self): # run super first super()._post_load() # Set all the lidar kwargs self.min_range = self._load_config["min_range"] self.max_range = self._load_config["max_range"] self.horizontal_fov = self._load_config["horizontal_fov"] self.vertical_fov = self._load_config["vertical_fov"] self.yaw_offset = self._load_config["yaw_offset"] self.horizontal_resolution = self._load_config["horizontal_resolution"] self.vertical_resolution = self._load_config["vertical_resolution"] self.rotation_rate = self._load_config["rotation_rate"] self.draw_points = self._load_config["draw_points"] self.draw_lines = self._load_config["draw_lines"] def _initialize(self): # run super first super()._initialize() # Initialize lidar sensor interface self._rs = lazy.omni.isaac.range_sensor._range_sensor.acquire_lidar_sensor_interface() @property def _obs_space_mapping(self): # Set the remaining modalities' values # (obs modality, shape, low, high) obs_space_mapping = dict( scan=((self.n_horizontal_rays, self.n_vertical_rays), 0.0, 1.0, np.float32), occupancy_grid=((self.occupancy_grid_resolution, self.occupancy_grid_resolution, 1), 0.0, 1.0, np.float32), ) return obs_space_mapping def get_local_occupancy_grid(self, scan): """ Get local occupancy grid based on current 1D scan Args: n-array: 1D LiDAR scan Returns: 2D-array: (occupancy_grid_resolution, occupancy_grid_resolution)-sized numpy array of the local occupancy grid """ # Run sanity checks first assert "occupancy_grid" in self._modalities, "Occupancy grid is not enabled for this range sensor!" assert self.n_vertical_rays == 1, "Occupancy grid is only valid for a 1D range sensor (n_vertical_rays = 1)!" # Grab vector of corresponding angles for each scan line angles = np.arange( -np.radians(self.horizontal_fov / 2), np.radians(self.horizontal_fov / 2), np.radians(self.horizontal_resolution), ) # Convert into 3D unit vectors for each angle unit_vector_laser = np.array([[np.cos(ang), np.sin(ang), 0.0] for ang in angles]) # Scale unit vectors by corresponding laser scan distnaces assert ((scan >= 0.0) & (scan <= 1.0)).all(), "scan out of valid range [0, 1]" scan_laser = unit_vector_laser * (scan * (self.max_range - self.min_range) + self.min_range) # Convert scans from laser frame to world frame pos, ori = self.get_position_orientation() scan_world = quat2mat(ori).dot(scan_laser.T).T + pos # Convert scans from world frame to local base frame base_pos, base_ori = self.occupancy_grid_local_link.get_position_orientation() scan_local = quat2mat(base_ori).T.dot((scan_world - base_pos).T).T scan_local = scan_local[:, :2] scan_local = np.concatenate([np.array([[0, 0]]), scan_local, np.array([[0, 0]])], axis=0) # flip y axis scan_local[:, 1] *= -1 # Initialize occupancy grid -- default is unknown values occupancy_grid = np.zeros((self.occupancy_grid_resolution, self.occupancy_grid_resolution)).astype(np.uint8) occupancy_grid.fill(int(OccupancyGridState.UNKNOWN * 2.0)) # Convert local scans into the corresponding OG square it should belong to (note now all values are > 0, since # OG ranges from [0, resolution] x [0, resolution]) scan_local_in_map = scan_local / self.occupancy_grid_range * self.occupancy_grid_resolution + \ (self.occupancy_grid_resolution / 2) scan_local_in_map = scan_local_in_map.reshape((1, -1, 1, 2)).astype(np.int32) # For each scan hit, for i in range(scan_local_in_map.shape[1]): cv2.circle( img=occupancy_grid, center=(scan_local_in_map[0, i, 0, 0], scan_local_in_map[0, i, 0, 1]), radius=2, color=int(OccupancyGridState.OBSTACLES * 2.0), thickness=-1, ) cv2.fillPoly( img=occupancy_grid, pts=scan_local_in_map, color=int(OccupancyGridState.FREESPACE * 2.0), lineType=1 ) cv2.circle( img=occupancy_grid, center=(self.occupancy_grid_resolution // 2, self.occupancy_grid_resolution // 2), radius=self.occupancy_grid_inner_radius, color=int(OccupancyGridState.FREESPACE * 2.0), thickness=-1, ) return occupancy_grid[:, :, None].astype(np.float32) / 2.0 def _get_obs(self): # Run super first to grab any upstream obs obs, info = super()._get_obs() # Add scan info (normalized to [0.0, 1.0]) if "scan" in self._modalities: raw_scan = self._rs.get_linear_depth_data(self._prim_path) # Sometimes get_linear_depth_data will return values that are slightly out of range, needs clipping raw_scan = np.clip(raw_scan, self.min_range, self.max_range) obs["scan"] = (raw_scan - self.min_range) / (self.max_range - self.min_range) # Optionally add occupancy grid info if "occupancy_grid" in self._modalities: obs["occupancy_grid"] = self.get_local_occupancy_grid(scan=obs["scan"]) return obs, info @property def n_horizontal_rays(self): """ Returns: int: Number of horizontal rays for this range sensor """ return int(self.horizontal_fov // self.horizontal_resolution) @property def n_vertical_rays(self): """ Returns: int: Number of vertical rays for this range sensor """ return int(self.vertical_fov // self.vertical_resolution) @property def min_range(self): """ Gets this range sensor's min_range (minimum distance in meters which will register a hit) Returns: float: minimum range for this range sensor, in meters """ return self.get_attribute("minRange") @min_range.setter def min_range(self, val): """ Sets this range sensor's min_range (minimum distance in meters which will register a hit) Args: val (float): minimum range for this range sensor, in meters """ self.set_attribute("minRange", val) @property def max_range(self): """ Gets this range sensor's max_range (maximum distance in meters which will register a hit) Returns: float: maximum range for this range sensor, in meters """ return self.get_attribute("maxRange") @max_range.setter def max_range(self, val): """ Sets this range sensor's max_range (maximum distance in meters which will register a hit) Args: val (float): maximum range for this range sensor, in meters """ self.set_attribute("maxRange", val) @property def draw_lines(self): """ Gets whether range lines are drawn for this sensor Returns: bool: Whether range lines are drawn for this sensor """ return self.get_attribute("drawLines") @draw_lines.setter def draw_lines(self, draw): """ Sets whether range lines are drawn for this sensor Args: draw (float): Whether range lines are drawn for this sensor """ self.set_attribute("drawLines", draw) @property def draw_points(self): """ Gets whether range points are drawn for this sensor Returns: bool: Whether range points are drawn for this sensor """ return self.get_attribute("drawPoints") @draw_points.setter def draw_points(self, draw): """ Sets whether range points are drawn for this sensor Args: draw (float): Whether range points are drawn for this sensor """ self.set_attribute("drawPoints", draw) @property def horizontal_fov(self): """ Gets this range sensor's horizontal_fov Returns: float: horizontal field of view for this range sensor """ return self.get_attribute("horizontalFov") @horizontal_fov.setter def horizontal_fov(self, fov): """ Sets this range sensor's horizontal_fov Args: fov (float): horizontal field of view to set """ self.set_attribute("horizontalFov", fov) @property def horizontal_resolution(self): """ Gets this range sensor's horizontal_resolution (degrees in between each horizontal hit) Returns: float: horizontal resolution for this range sensor, in degrees """ return self.get_attribute("horizontalResolution") @horizontal_resolution.setter def horizontal_resolution(self, resolution): """ Sets this range sensor's horizontal_resolution (degrees in between each horizontal hit) Args: resolution (float): horizontal resolution to set, in degrees """ self.set_attribute("horizontalResolution", resolution) @property def vertical_fov(self): """ Gets this range sensor's vertical_fov Returns: float: vertical field of view for this range sensor """ return self.get_attribute("verticalFov") @vertical_fov.setter def vertical_fov(self, fov): """ Sets this range sensor's vertical_fov Args: fov (float): vertical field of view to set """ self.set_attribute("verticalFov", fov) @property def vertical_resolution(self): """ Gets this range sensor's vertical_resolution (degrees in between each vertical hit) Returns: float: vertical resolution for this range sensor, in degrees """ return self.get_attribute("verticalResolution") @vertical_resolution.setter def vertical_resolution(self, resolution): """ Sets this range sensor's vertical_resolution (degrees in between each vertical hit) Args: resolution (float): vertical resolution to set, in degrees """ self.set_attribute("verticalResolution", resolution) @property def yaw_offset(self): """ Gets this range sensor's yaw_offset (used in cases where this sensor's forward direction is different than expected) Returns: float: yaw offset for this range sensor in degrees """ return self.get_attribute("yawOffset") @yaw_offset.setter def yaw_offset(self, offset): """ Sets this range sensor's yaw_offset (used in cases where this sensor's forward direction is different than expected) Args: offset (float): yaw offset to set in degrees. """ self.set_attribute("yawOffset", offset) @property def rotation_rate(self): """ Gets this range sensor's rotation_rate, in degrees per second. Note that a 0 value corresponds to no rotation, and all range hits are assumed to be received at the exact same time. Returns: float: rotation rate for this range sensor in degrees per second """ return self.get_attribute("rotationRate") @rotation_rate.setter def rotation_rate(self, rate): """ Sets this range sensor's rotation_rate, in degrees per second. Note that a 0 value corresponds to no rotation, and all range hits are assumed to be received at the exact same time. Args: rate (float): rotation rate for this range sensor in degrees per second """ self.set_attribute("rotationRate", rate) @classproperty def all_modalities(cls): return {"scan", "occupancy_grid"} @classproperty def no_noise_modalities(cls): # Occupancy grid should have no noise return {"occupancy_grid"} @property def enabled(self): # Just use super return super().enabled @enabled.setter def enabled(self, enabled): # We must use super and additionally directly en/disable the sensor in the simulation # Note: weird syntax below required to "extend" super class's implementation, see: # https://stackoverflow.com/a/37663266 super(ScanSensor, self.__class__).enabled.fset(self, enabled) self.set_attribute("enabled", enabled)
18,414
Python
37.205394
124
0.624796
StanfordVL/OmniGibson/omnigibson/sensors/vision_sensor.py
import numpy as np import time import gym import omnigibson as og import omnigibson.lazy as lazy from omnigibson.sensors.sensor_base import BaseSensor from omnigibson.systems.system_base import REGISTERED_SYSTEMS from omnigibson.utils.constants import MAX_CLASS_COUNT, MAX_INSTANCE_COUNT, MAX_VIEWER_SIZE, semantic_class_name_to_id, semantic_class_id_to_name from omnigibson.utils.python_utils import assert_valid_key, classproperty from omnigibson.utils.sim_utils import set_carb_setting from omnigibson.utils.ui_utils import dock_window from omnigibson.utils.vision_utils import Remapper # Duplicate of simulator's render method, used so that this can be done before simulator is created! def render(): """ Refreshes the Isaac Sim app rendering components including UI elements and view ports..etc. """ set_carb_setting(og.app._carb_settings, "/app/player/playSimulations", False) og.app.update() set_carb_setting(og.app._carb_settings, "/app/player/playSimulations", True) class VisionSensor(BaseSensor): """ Vision sensor that handles a variety of modalities, including: - RGB (normal) - Depth (normal, linear) - Normals - Segmentation (semantic, instance) - Optical flow - 2D Bounding boxes (tight, loose) - 3D Bounding boxes - Camera state Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. modalities (str or list of str): Modality(s) supported by this sensor. Default is "all", which corresponds to all modalities being used. Otherwise, valid options should be part of cls.all_modalities. For this vision sensor, this includes any of: {rgb, depth, depth_linear, normal, seg_semantic, seg_instance, flow, bbox_2d_tight, bbox_2d_loose, bbox_3d, camera} enabled (bool): Whether this sensor should be enabled by default noise (None or BaseSensorNoise): If specified, sensor noise model to apply to this sensor. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this sensor's prim at runtime. image_height (int): Height of generated images, in pixels image_width (int): Width of generated images, in pixels focal_length (float): Focal length to set clipping_range (2-tuple): (min, max) viewing range of this vision sensor viewport_name (None or str): If specified, will link this camera to the specified viewport, overriding its current camera. Otherwise, creates a new viewport """ ALL_MODALITIES = ( "rgb", "depth", "depth_linear", "normal", "seg_semantic", # Semantic segmentation shows the category each pixel belongs to "seg_instance", # Instance segmentation shows the name of the object each pixel belongs to "seg_instance_id", # Instance ID segmentation shows the prim path of the visual mesh each pixel belongs to "flow", "bbox_2d_tight", "bbox_2d_loose", "bbox_3d", "camera_params", ) # Documentation for the different types of segmentation for particle systems: # - Cloth (e.g. `dishtowel`): # - semantic: all shows up under one semantic label (e.g. `"4207839377": "dishtowel"`) # - instance: entire cloth shows up under one label (e.g. `"87": "dishtowel_0"`) # - instance id: entire cloth shows up under one label (e.g. `"31": "/World/dishtowel_0/base_link_cloth"`) # - MicroPhysicalParticleSystem - FluidSystem (e.g. `water`): # - semantic: all shows up under one semantic label (e.g. `"3330677804": "water"`) # - instance: all shows up under one instance label (e.g. `"21": "water"`) # - instance id: all shows up under one instance ID label (e.g. `"36": "water"`) # - MicroPhysicalParticleSystem - GranularSystem (e.g. `sesame seed`): # - semantic: all shows up under one semantic label (e.g. `"2975304485": "sesame_seed"`) # - instance: all shows up under one instance label (e.g. `"21": "sesame_seed"`) # - instance id: all shows up under one instance ID label (e.g. `"36": "sesame_seed"`) # - MacroPhysicalParticleSystem (e.g. `diced__carrot`): # - semantic: all shows up under one semantic label (e.g. `"2419487146": "diced__carrot"`) # - instance: all shows up under one instance label (e.g. `"21": "diced__carrot"`) # - instance id: all shows up under one instance ID label (e.g. `"36": "diced__carrot"`) # - MacroVisualParticleSystem (e.g. `stain`): # - semantic: all shows up under one semantic label (e.g. `"884110082": "stain"`) # - instance: all shows up under one instance label (e.g. `"21": "stain"`) # - instance id: all shows up under one instance ID label (e.g. `"36": "stain"`) # Persistent dictionary of sensors, mapped from prim_path to sensor SENSORS = dict() SEMANTIC_REMAPPER = Remapper() INSTANCE_REMAPPER = Remapper() INSTANCE_ID_REMAPPER = Remapper() INSTANCE_REGISTRY = {0: "background", 1: "unlabelled"} INSTANCE_ID_REGISTRY = {0: "background"} def __init__( self, prim_path, name, modalities="all", enabled=True, noise=None, load_config=None, image_height=128, image_width=128, focal_length=17.0, # Default 17.0 since this is roughly the human eye focal length clipping_range=(0.001, 10000000.0), viewport_name=None, ): # Create load config from inputs load_config = dict() if load_config is None else load_config load_config["image_height"] = image_height load_config["image_width"] = image_width load_config["focal_length"] = focal_length load_config["clipping_range"] = clipping_range load_config["viewport_name"] = viewport_name # Create variables that will be filled in later at runtime self._viewport = None # Viewport from which to grab data self._annotators = None self._render_product = None self._RAW_SENSOR_TYPES = dict( rgb="rgb", depth="distance_to_camera", depth_linear="distance_to_image_plane", normal="normals", # Semantic segmentation shows the category each pixel belongs to seg_semantic="semantic_segmentation", # Instance segmentation shows the name of the object each pixel belongs to seg_instance="instance_segmentation", # Instance ID segmentation shows the prim path of the visual mesh each pixel belongs to seg_instance_id="instance_id_segmentation", flow="motion_vectors", bbox_2d_tight="bounding_box_2d_tight", bbox_2d_loose="bounding_box_2d_loose", bbox_3d="bounding_box_3d", camera_params="camera_params", ) assert {key for key in self._RAW_SENSOR_TYPES.keys() if key != "camera_params"} == set(self.all_modalities), \ "VisionSensor._RAW_SENSOR_TYPES must have the same keys as VisionSensor.all_modalities!" modalities = set([modalities]) if isinstance(modalities, str) else modalities # 1) seg_instance and seg_instance_id require seg_semantic to be enabled (for rendering particle systems) # 2) bounding box observations require seg_semantic to be enabled (for remapping bounding box semantic IDs) semantic_dependent_modalities = {"seg_instance", "seg_instance_id", "bbox_2d_loose", "bbox_2d_tight", "bbox_3d"} # if any of the semantic dependent modalities are enabled, then seg_semantic must be enabled if semantic_dependent_modalities.intersection(modalities) and "seg_semantic" not in modalities: modalities.add("seg_semantic") # Run super method super().__init__( prim_path=prim_path, name=name, modalities=modalities, enabled=enabled, noise=noise, load_config=load_config, ) def _load(self): # Define a new camera prim at the current stage # Note that we can't use og.sim.stage here because the vision sensors get loaded first return lazy.pxr.UsdGeom.Camera.Define(lazy.omni.isaac.core.utils.stage.get_current_stage(), self._prim_path).GetPrim() def _post_load(self): # run super first super()._post_load() # Add this sensor to the list of global sensors self.SENSORS[self._prim_path] = self resolution = (self._load_config["image_width"], self._load_config["image_height"]) self._render_product = lazy.omni.replicator.core.create.render_product(self._prim_path, resolution) # Create a new viewport to link to this camera or link to a pre-existing one viewport_name = self._load_config["viewport_name"] if viewport_name is not None: vp_names_to_handles = {vp.name: vp for vp in lazy.omni.kit.viewport.window.get_viewport_window_instances()} assert_valid_key(key=viewport_name, valid_keys=vp_names_to_handles, name="viewport name") viewport = vp_names_to_handles[viewport_name] else: viewport = lazy.omni.kit.viewport.utility.create_viewport_window() # Take a render step to make sure the viewport is generated before docking it render() # Grab the newly created viewport and dock it to the GUI # The first viewport is always the "main" global camera, and any additional cameras are auxiliary views # These auxiliary views will be stacked in a single column # Thus, the first auxiliary viewport should be generated to the left of the main dockspace, and any # subsequent viewports should be equally spaced according to the number of pre-existing auxiliary views n_auxiliary_sensors = len(self.SENSORS) - 1 if n_auxiliary_sensors == 1: # This is the first auxiliary viewport, dock to the left of the main dockspace dock_window(space=lazy.omni.ui.Workspace.get_window("DockSpace"), name=viewport.name, location=lazy.omni.ui.DockPosition.LEFT, ratio=0.25) elif n_auxiliary_sensors > 1: # This is any additional auxiliary viewports, dock equally-spaced in the auxiliary column # We also need to re-dock any prior viewports! for i in range(2, n_auxiliary_sensors + 1): dock_window(space=lazy.omni.ui.Workspace.get_window(f"Viewport {i - 1}"), name=f"Viewport {i}", location=lazy.omni.ui.DockPosition.BOTTOM, ratio=(1 + n_auxiliary_sensors - i) / (2 + n_auxiliary_sensors - i)) self._viewport = viewport # Link the camera and viewport together self._viewport.viewport_api.set_active_camera(self._prim_path) # Requires 3 render updates to propagate changes for i in range(3): render() # Set the viewer size (requires taking one render step afterwards) self._viewport.viewport_api.set_texture_resolution(resolution) # Also update focal length and clipping range self.focal_length = self._load_config["focal_length"] self.clipping_range = self._load_config["clipping_range"] # Requires 3 render updates to propagate changes for i in range(3): render() def _initialize(self): # Run super first super()._initialize() self._annotators = {modality: None for modality in self._modalities} # Initialize sensors self.initialize_sensors(names=self._modalities) for _ in range(3): render() def initialize_sensors(self, names): """Initializes a raw sensor in the simulation. Args: names (str or list of str): Name of the raw sensor(s) to initialize. If they are not part of self._RAW_SENSOR_TYPES' keys, we will simply pass over them """ names = {names} if isinstance(names, str) else set(names) for name in names: self._add_modality_to_backend(modality=name) def _get_obs(self): # Make sure we're initialized assert self.initialized, "Cannot grab vision observations without first initializing this VisionSensor!" # Run super first to grab any upstream obs obs, info = super()._get_obs() # Reorder modalities to ensure that seg_semantic is always ran before seg_instance or seg_instance_id if "seg_semantic" in self._modalities: reordered_modalities = ["seg_semantic"] + [modality for modality in self._modalities if modality != "seg_semantic"] else: reordered_modalities = self._modalities for modality in reordered_modalities: raw_obs = self._annotators[modality].get_data() # Obs is either a dictionary of {"data":, ..., "info": ...} or a direct array obs[modality] = raw_obs["data"] if isinstance(raw_obs, dict) else raw_obs if modality == "seg_semantic": id_to_labels = raw_obs["info"]["idToLabels"] obs[modality], info[modality] = self._remap_semantic_segmentation(obs[modality], id_to_labels) elif modality == "seg_instance": id_to_labels = raw_obs["info"]["idToLabels"] obs[modality], info[modality] = self._remap_instance_segmentation( obs[modality], id_to_labels, obs["seg_semantic"], info["seg_semantic"], id=False) elif modality == "seg_instance_id": id_to_labels = raw_obs["info"]["idToLabels"] obs[modality], info[modality] = self._remap_instance_segmentation( obs[modality], id_to_labels, obs["seg_semantic"], info["seg_semantic"], id=True) elif "bbox" in modality: obs[modality] = self._remap_bounding_box_semantic_ids(obs[modality]) return obs, info def _remap_semantic_segmentation(self, img, id_to_labels): """ Remap the semantic segmentation image to the class IDs defined in semantic_class_name_to_id(). Also, correct the id_to_labels input with the labels from semantic_class_name_to_id() and return it. Args: img (np.ndarray): Semantic segmentation image to remap id_to_labels (dict): Dictionary of semantic IDs to class labels Returns: np.ndarray: Remapped semantic segmentation image dict: Corrected id_to_labels dictionary """ # Preprocess id_to_labels to feed into the remapper replicator_mapping = {} for key, val in id_to_labels.items(): key = int(key) replicator_mapping[key] = val["class"].lower() if "," in replicator_mapping[key]: # If there are multiple class names, grab the one that is a registered system # This happens with MacroVisual particles, e.g. {"11": {"class": "breakfast_table,stain"}} categories = [cat for cat in replicator_mapping[key].split(",") if cat in REGISTERED_SYSTEMS] assert len(categories) == 1, "There should be exactly one category that belongs to REGISTERED_SYSTEMS" replicator_mapping[key] = categories[0] assert replicator_mapping[key] in semantic_class_id_to_name().values(), f"Class {val['class']} does not exist in the semantic class name to id mapping!" assert set(np.unique(img)).issubset(set(replicator_mapping.keys())), "Semantic segmentation image does not match the original id_to_labels mapping." return VisionSensor.SEMANTIC_REMAPPER.remap(replicator_mapping, semantic_class_id_to_name(), img) def _remap_instance_segmentation(self, img, id_to_labels, semantic_img, semantic_labels, id=False): """ Remap the instance segmentation image to our own instance IDs. Also, correct the id_to_labels input with our new labels and return it. Args: img (np.ndarray): Instance segmentation image to remap id_to_labels (dict): Dictionary of instance IDs to class labels semantic_img (np.ndarray): Semantic segmentation image to use for instance registry semantic_labels (dict): Dictionary of semantic IDs to class labels id (bool): Whether to remap for instance ID segmentation Returns: np.ndarray: Remapped instance segmentation image dict: Corrected id_to_labels dictionary """ # Sometimes 0 and 1 show up in the image, but they are not in the id_to_labels mapping id_to_labels.update({"0": "BACKGROUND"}) if not id: id_to_labels.update({"1": "UNLABELLED"}) # Preprocess id_to_labels and update instance registry replicator_mapping = {} for key, value in id_to_labels.items(): key = int(key) if value in ["BACKGROUND", "UNLABELLED"]: value = value.lower() else: assert "/" in value, f"Instance segmentation (ID) label {value} is not a valid prim path!" prim_name = value.split("/")[-1] # Hacky way to get the particles of MacroVisual/PhysicalParticleSystem # Remap instance segmentation and instance segmentation ID labels to system name if "Particle" in prim_name: category_name = prim_name.split("Particle")[0] assert category_name in REGISTERED_SYSTEMS, f"System name {category_name} is not in the registered systems!" value = category_name else: # Remap instance segmentation labels to object name if not id: # value is the prim path of the object if value == "/World/groundPlane": value = "groundPlane" else: obj = og.sim.scene.object_registry("prim_path", value) # Remap instance segmentation labels from prim path to object name assert obj is not None, f"Object with prim path {value} cannot be found in objct registry!" value = obj.name # Keep the instance segmentation ID labels intact (prim paths of visual meshes) else: pass self._register_instance(value, id=id) replicator_mapping[key] = value # Handle the cases for MicroPhysicalParticleSystem (FluidSystem, GranularSystem). # They show up in the image, but not in the info (id_to_labels). # We identify these values, find the corresponding semantic label (system name), and add the mapping. for key, img_idx in zip(*np.unique(img, return_index=True)): if str(key) not in id_to_labels: semantic_label = semantic_img.flatten()[img_idx] assert semantic_label in semantic_labels, f"Semantic map value {semantic_label} is not in the semantic labels!" category_name = semantic_labels[semantic_label] if category_name in REGISTERED_SYSTEMS: value = category_name self._register_instance(value, id=id) # If the category name is not in the registered systems, # which happens because replicator sometimes returns segmentation map and id_to_labels that are not in sync, # we will label this as "unlabelled" for now else: value = "unlabelled" replicator_mapping[key] = value registry = VisionSensor.INSTANCE_ID_REGISTRY if id else VisionSensor.INSTANCE_REGISTRY remapper = VisionSensor.INSTANCE_ID_REMAPPER if id else VisionSensor.INSTANCE_REMAPPER assert set(np.unique(img)).issubset(set(replicator_mapping.keys())), "Instance segmentation image does not match the original id_to_labels mapping." return remapper.remap(replicator_mapping, registry, img) def _register_instance(self, instance_name, id=False): registry = VisionSensor.INSTANCE_ID_REGISTRY if id else VisionSensor.INSTANCE_REGISTRY if instance_name not in registry.values(): registry[len(registry)] = instance_name def _remap_bounding_box_semantic_ids(self, bboxes): """ Remap the semantic IDs of the bounding boxes to our own semantic IDs. Args: bboxes (list of dict): List of bounding boxes to remap Returns: list of dict: Remapped list of bounding boxes """ for bbox in bboxes: bbox["semanticId"] = VisionSensor.SEMANTIC_REMAPPER.remap_bbox(bbox["semanticId"]) return bboxes def add_modality(self, modality): # Check if we already have this modality (if so, no need to initialize it explicitly) should_initialize = modality not in self._modalities # Run super super().add_modality(modality=modality) # We also need to initialize this new modality if should_initialize: self.initialize_sensors(names=modality) def remove_modality(self, modality): # Check if we don't have this modality (if not, no need to remove it explicitly) should_remove = modality in self._modalities # Run super super().remove_modality(modality=modality) if should_remove: self._remove_modality_from_backend(modality=modality) def _add_modality_to_backend(self, modality): """ Helper function to add specified modality @modality to the omniverse Replicator backend so that its data is generated during get_obs() Args: modality (str): Name of the modality to add to the Replicator backend """ if self._annotators.get(modality, None) is None: self._annotators[modality] = lazy.omni.replicator.core.AnnotatorRegistry.get_annotator(self._RAW_SENSOR_TYPES[modality]) self._annotators[modality].attach([self._render_product]) def _remove_modality_from_backend(self, modality): """ Helper function to remove specified modality @modality from the omniverse Replicator backend so that its data is no longer generated during get_obs() Args: modality (str): Name of the modality to remove from the Replicator backend """ if self._annotators.get(modality, None) is not None: self._annotators[modality].detach([self._render_product]) self._annotators[modality] = None def remove(self): # Remove from global sensors dictionary self.SENSORS.pop(self._prim_path) # Remove viewport self._viewport.destroy() # Run super super().remove() @property def camera_parameters(self): """ Returns a dictionary of keyword-mapped relevant intrinsic and extrinsic camera parameters for this vision sensor. The returned dictionary includes the following keys and their corresponding data types: - "cameraAperture": np.ndarray (float32) - Camera aperture dimensions. - "cameraApertureOffset": np.ndarray (float32) - Offset of the camera aperture. - "cameraFisheyeLensP": np.ndarray (float32) - Fisheye lens P parameter. - "cameraFisheyeLensS": np.ndarray (float32) - Fisheye lens S parameter. - "cameraFisheyeMaxFOV": float - Maximum field of view for fisheye lens. - "cameraFisheyeNominalHeight": int - Nominal height for fisheye lens. - "cameraFisheyeNominalWidth": int - Nominal width for fisheye lens. - "cameraFisheyeOpticalCentre": np.ndarray (float32) - Optical center for fisheye lens. - "cameraFisheyePolynomial": np.ndarray (float32) - Polynomial parameters for fisheye lens distortion. - "cameraFocalLength": float - Focal length of the camera. - "cameraFocusDistance": float - Focus distance of the camera. - "cameraFStop": float - F-stop value of the camera. - "cameraModel": str - Camera model identifier. - "cameraNearFar": np.ndarray (float32) - Near and far plane distances. - "cameraProjection": np.ndarray (float32) - Camera projection matrix. - "cameraViewTransform": np.ndarray (float32) - Camera view transformation matrix. - "metersPerSceneUnit": float - Scale factor from scene units to meters. - "renderProductResolution": np.ndarray (int32) - Resolution of the rendered product. Returns: dict: Keyword-mapped relevant intrinsic and extrinsic camera parameters for this vision sensor. """ # Add the camera params modality if it doesn't already exist if "camera_params" not in self._annotators: self.initialize_sensors(names="camera_params") # Requires 3 render updates for camera params annotator to decome active for _ in range(3): render() # Grab and return the parameters return self._annotators["camera_params"].get_data() @property def viewer_visibility(self): """ Returns: bool: Whether the viewer is visible or not """ return self._viewport.visible @viewer_visibility.setter def viewer_visibility(self, visible): """ Sets whether the viewer should be visible or not in the Omni UI Args: visible (bool): Whether the viewer should be visible or not """ self._viewport.visible = visible # Requires 1 render update to propagate changes render() @property def image_height(self): """ Returns: int: Image height of this sensor, in pixels """ return self._viewport.viewport_api.get_texture_resolution()[1] @image_height.setter def image_height(self, height): """ Sets the image height @height for this sensor Args: height (int): Image height of this sensor, in pixels """ width, _ = self._viewport.viewport_api.get_texture_resolution() self._viewport.viewport_api.set_texture_resolution((width, height)) # Requires 3 updates to propagate changes for i in range(3): render() @property def image_width(self): """ Returns: int: Image width of this sensor, in pixels """ return self._viewport.viewport_api.get_texture_resolution()[0] @image_width.setter def image_width(self, width): """ Sets the image width @width for this sensor Args: width (int): Image width of this sensor, in pixels """ _, height = self._viewport.viewport_api.get_texture_resolution() self._viewport.viewport_api.set_texture_resolution((width, height)) # Requires 3 updates to propagate changes for i in range(3): render() @property def clipping_range(self): """ Returns: 2-tuple: [min, max] value of the sensor's clipping range, in meters """ return np.array(self.get_attribute("clippingRange")) @clipping_range.setter def clipping_range(self, limits): """ Sets the clipping range @limits for this sensor Args: limits (2-tuple): [min, max] value of the sensor's clipping range, in meters """ self.set_attribute(attr="clippingRange", val=lazy.pxr.Gf.Vec2f(*limits)) # In order for sensor changes to propagate, we must toggle its visibility self.visible = False # A single update step has to happen here before we toggle visibility for changes to propagate render() self.visible = True @property def horizontal_aperture(self): """ Returns: float: horizontal aperture of this sensor, in mm """ return self.get_attribute("horizontalAperture") @horizontal_aperture.setter def horizontal_aperture(self, length): """ Sets the focal length @length for this sensor Args: length (float): horizontal aperture of this sensor, in meters """ self.set_attribute("horizontalAperture", length) @property def focal_length(self): """ Returns: float: focal length of this sensor, in mm """ return self.get_attribute("focalLength") @focal_length.setter def focal_length(self, length): """ Sets the focal length @length for this sensor Args: length (float): focal length of this sensor, in mm """ self.set_attribute("focalLength", length) @property def intrinsic_matrix(self): """ Returns: n-array: (3, 3) camera intrinsic matrix. Transforming point p (x,y,z) in the camera frame via K * p will produce p' (x', y', w) - the point in the image plane. To get pixel coordiantes, divide x' and y' by w """ projection_matrix = self.camera_parameters["cameraProjection"] projection_matrix = np.array(projection_matrix).reshape(4, 4) fx = projection_matrix[0, 0] fy = projection_matrix[1, 1] cx = projection_matrix[0, 2] cy = projection_matrix[1, 2] s = projection_matrix[0, 1] # Skew factor intrinsic_matrix = np.array([[fx, s, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]]) return intrinsic_matrix @property def _obs_space_mapping(self): # Generate the complex space types for special modalities: # {"bbox_2d_tight", "bbox_2d_loose", "bbox_3d"} bbox_3d_space = gym.spaces.Sequence(space=gym.spaces.Tuple(( gym.spaces.Box(low=0, high=MAX_CLASS_COUNT, shape=(), dtype=np.uint32), # semanticId gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # x_min gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # y_min gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # z_min gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # x_max gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # y_max gym.spaces.Box(low=-np.inf, high=np.inf, shape=(), dtype=np.float32), # z_max gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4, 4), dtype=np.float32), # transform gym.spaces.Box(low=-1.0, high=1.0, shape=(), dtype=np.float32), # occlusion ratio ))) bbox_2d_space = gym.spaces.Sequence(space=gym.spaces.Tuple(( gym.spaces.Box(low=0, high=MAX_CLASS_COUNT, shape=(), dtype=np.uint32), # semanticId gym.spaces.Box(low=0, high=MAX_VIEWER_SIZE, shape=(), dtype=np.int32), # x_min gym.spaces.Box(low=0, high=MAX_VIEWER_SIZE, shape=(), dtype=np.int32), # y_min gym.spaces.Box(low=0, high=MAX_VIEWER_SIZE, shape=(), dtype=np.int32), # x_max gym.spaces.Box(low=0, high=MAX_VIEWER_SIZE, shape=(), dtype=np.int32), # y_max gym.spaces.Box(low=-1.0, high=1.0, shape=(), dtype=np.float32), # occlusion ratio ))) obs_space_mapping = dict( rgb=((self.image_height, self.image_width, 4), 0, 255, np.uint8), depth=((self.image_height, self.image_width), 0.0, np.inf, np.float32), depth_linear=((self.image_height, self.image_width), 0.0, np.inf, np.float32), normal=((self.image_height, self.image_width, 4), -1.0, 1.0, np.float32), seg_semantic=((self.image_height, self.image_width), 0, MAX_CLASS_COUNT, np.uint32), seg_instance=((self.image_height, self.image_width), 0, MAX_INSTANCE_COUNT, np.uint32), seg_instance_id=((self.image_height, self.image_width), 0, MAX_INSTANCE_COUNT, np.uint32), flow=((self.image_height, self.image_width, 4), -np.inf, np.inf, np.float32), bbox_2d_tight=bbox_2d_space, bbox_2d_loose=bbox_2d_space, bbox_3d=bbox_3d_space, ) return obs_space_mapping @classmethod def clear(cls): """ Clears all cached sensors that have been generated. Should be used when the simulator is completely reset; i.e.: all objects on the stage are destroyed """ for sensor in cls.SENSORS.values(): # Destroy any sensor that is not attached to the main viewport window if sensor._viewport.name != "Viewport": sensor._viewport.destroy() # Render to update render() cls.SENSORS = dict() cls.KNOWN_SEMANTIC_IDS = set() cls.KEY_ARRAY = None cls.INSTANCE_REGISTRY = {0: "background", 1: "unlabelled"} cls.INSTANCE_ID_REGISTRY = {0: "background"} @classproperty def all_modalities(cls): return {modality for modality in cls.ALL_MODALITIES if modality != "camera_params"} @classproperty def no_noise_modalities(cls): # bounding boxes and camera state should not have noise return {"bbox_2d_tight", "bbox_2d_loose", "bbox_3d"}
33,871
Python
46.175487
164
0.62059
StanfordVL/OmniGibson/omnigibson/envs/__init__.py
from omnigibson.envs.env_base import Environment from omnigibson.envs.env_wrapper import EnvironmentWrapper, create_wrapper, REGISTERED_ENV_WRAPPERS
149
Python
48.999984
99
0.85906
StanfordVL/OmniGibson/omnigibson/envs/env_base.py
import gym import numpy as np from copy import deepcopy import omnigibson as og from omnigibson.objects import REGISTERED_OBJECTS from omnigibson.robots import REGISTERED_ROBOTS from omnigibson.scene_graphs.graph_builder import SceneGraphBuilder from omnigibson.simulator import launch_simulator from omnigibson.tasks import REGISTERED_TASKS from omnigibson.scenes import REGISTERED_SCENES from omnigibson.sensors import create_sensor from omnigibson.utils.gym_utils import GymObservable, recursively_generate_flat_dict, recursively_generate_compatible_dict from omnigibson.utils.config_utils import parse_config from omnigibson.utils.ui_utils import create_module_logger from omnigibson.utils.python_utils import assert_valid_key, merge_nested_dicts, create_class_from_registry_and_config,\ Recreatable from omnigibson.macros import gm # Create module logger log = create_module_logger(module_name=__name__) class Environment(gym.Env, GymObservable, Recreatable): """ Core environment class that handles loading scene, robot(s), and task, following OpenAI Gym interface. """ def __init__(self, configs): """ Args: configs (str or dict or list of str or dict): config_file path(s) or raw config dictionaries. If multiple configs are specified, they will be merged sequentially in the order specified. This allows procedural generation of a "full" config from small sub-configs. For valid keys, please see @default_config below """ # Call super first super().__init__() # Launch Isaac Sim launch_simulator() # Initialize other placeholders that will be filled in later self._task = None self._external_sensors = None self._loaded = None self._current_episode = 0 # Variables reset at the beginning of each episode self._current_step = 0 # Convert config file(s) into a single parsed dict configs = configs if isinstance(configs, list) or isinstance(configs, tuple) else [configs] # Initial default config self.config = self.default_config # Merge in specified configs for config in configs: merge_nested_dicts(base_dict=self.config, extra_dict=parse_config(config), inplace=True) # Store settings and other initialized values self._automatic_reset = self.env_config["automatic_reset"] self._flatten_action_space = self.env_config["flatten_action_space"] self._flatten_obs_space = self.env_config["flatten_obs_space"] self.physics_frequency = self.env_config["physics_frequency"] self.action_frequency = self.env_config["action_frequency"] self.device = self.env_config["device"] self._initial_pos_z_offset = self.env_config["initial_pos_z_offset"] # how high to offset object placement to account for one action step of dropping # Create the scene graph builder self._scene_graph_builder = None if "scene_graph" in self.config and self.config["scene_graph"] is not None: self._scene_graph_builder = SceneGraphBuilder(**self.config["scene_graph"]) # Load this environment self.load() def reload(self, configs, overwrite_old=True): """ Reload using another set of config file(s). This allows one to change the configuration and hot-reload the environment on the fly. Args: configs (dict or str or list of dict or list of str): config_file dict(s) or path(s). If multiple configs are specified, they will be merged sequentially in the order specified. This allows procedural generation of a "full" config from small sub-configs. overwrite_old (bool): If True, will overwrite the internal self.config with @configs. Otherwise, will merge in the new config(s) into the pre-existing one. Setting this to False allows for minor modifications to be made without having to specify entire configs during each reload. """ # Convert config file(s) into a single parsed dict configs = [configs] if isinstance(configs, dict) or isinstance(configs, str) else configs # Initial default config new_config = self.default_config # Merge in specified configs for config in configs: merge_nested_dicts(base_dict=new_config, extra_dict=parse_config(config), inplace=True) # Either merge in or overwrite the old config if overwrite_old: self.config = new_config else: merge_nested_dicts(base_dict=self.config, extra_dict=new_config, inplace=True) # Load this environment again self.load() def reload_model(self, scene_model): """ Reload another scene model. This allows one to change the scene on the fly. Args: scene_model (str): new scene model to load (eg.: Rs_int) """ self.scene_config["model"] = scene_model self.load() def _load_variables(self): """ Load variables from config """ # Store additional variables after config has been loaded fully self._initial_pos_z_offset = self.env_config["initial_pos_z_offset"] # Reset bookkeeping variables self._reset_variables() self._current_episode = 0 # Manually set this to 0 since resetting actually increments this # - Potentially overwrite the USD entry for the scene if none is specified and we're online sampling - # Make sure the requested scene is valid scene_type = self.scene_config["type"] assert_valid_key(key=scene_type, valid_keys=REGISTERED_SCENES, name="scene type") # Verify scene and task configs are valid for the given task type REGISTERED_TASKS[self.task_config["type"]].verify_scene_and_task_config( scene_cfg=self.scene_config, task_cfg=self.task_config, ) # - Additionally run some sanity checks on these values - # Check to make sure our z offset is valid -- check that the distance travelled over 1 action timestep is # less than the offset we set (dist = 0.5 * gravity * (t^2)) drop_distance = 0.5 * 9.8 * ((1. / self.action_frequency) ** 2) assert drop_distance < self._initial_pos_z_offset, "initial_pos_z_offset is too small for collision checking" def _load_task(self, task_config=None): """ Load task Args: task_confg (None or dict): If specified, custom task configuration to use. Otherwise, will use self.task_config. Note that if a custom task configuration is specified, the internal task config will be updated as well """ # Update internal config if specified if task_config is not None: # Copy task config, in case self.task_config and task_config are the same! task_config = deepcopy(task_config) self.task_config.clear() self.task_config.update(task_config) # Sanity check task to make sure it's valid task_type = self.task_config["type"] assert_valid_key(key=task_type, valid_keys=REGISTERED_TASKS, name="task type") # Grab the kwargs relevant for the specific task and create the task self._task = create_class_from_registry_and_config( cls_name=self.task_config["type"], cls_registry=REGISTERED_TASKS, cfg=self.task_config, cls_type_descriptor="task", ) assert og.sim.is_stopped(), "Simulator must be stopped before loading tasks!" # Load task. Should load additional task-relevant objects and configure the scene into its default initial state self._task.load(env=self) assert og.sim.is_stopped(), "Simulator must be stopped after loading tasks!" def _load_scene(self): """ Load the scene and robot specified in the config file. """ assert og.sim.is_stopped(), "Simulator must be stopped before loading scene!" # Set the simulator settings # NOTE: This must be done BEFORE the scene is loaded, or else all vision sensors can't retrieve observations og.sim.set_simulation_dt(physics_dt=(1. / self.physics_frequency), rendering_dt=(1. / self.action_frequency)) # Create the scene from our scene config scene = create_class_from_registry_and_config( cls_name=self.scene_config["type"], cls_registry=REGISTERED_SCENES, cfg=self.scene_config, cls_type_descriptor="scene", ) og.sim.import_scene(scene) # Set the rendering settings if gm.RENDER_VIEWER_CAMERA: og.sim.viewer_width = self.render_config["viewer_width"] og.sim.viewer_height = self.render_config["viewer_height"] og.sim.device = self.device assert og.sim.is_stopped(), "Simulator must be stopped after loading scene!" def _load_robots(self): """ Load robots into the scene """ # Only actually load robots if no robot has been imported from the scene loading directly yet if len(self.scene.robots) == 0: assert og.sim.is_stopped(), "Simulator must be stopped before loading robots!" # Iterate over all robots to generate in the robot config for i, robot_config in enumerate(self.robots_config): # Add a name for the robot if necessary if "name" not in robot_config: robot_config["name"] = f"robot{i}" position, orientation = robot_config.pop("position", None), robot_config.pop("orientation", None) # Make sure robot exists, grab its corresponding kwargs, and create / import the robot robot = create_class_from_registry_and_config( cls_name=robot_config["type"], cls_registry=REGISTERED_ROBOTS, cfg=robot_config, cls_type_descriptor="robot", ) # Import the robot into the simulator og.sim.import_object(robot) robot.set_position_orientation(position=position, orientation=orientation) if len(self.robots_config) > 0: # Auto-initialize all robots og.sim.play() self.scene.reset() self.scene.update_initial_state() og.sim.stop() assert og.sim.is_stopped(), "Simulator must be stopped after loading robots!" def _load_objects(self): """ Load any additional custom objects into the scene """ assert og.sim.is_stopped(), "Simulator must be stopped before loading objects!" for i, obj_config in enumerate(self.objects_config): # Add a name for the object if necessary if "name" not in obj_config: obj_config["name"] = f"obj{i}" # Pop the desired position and orientation position, orientation = obj_config.pop("position", None), obj_config.pop("orientation", None) # Make sure robot exists, grab its corresponding kwargs, and create / import the robot obj = create_class_from_registry_and_config( cls_name=obj_config["type"], cls_registry=REGISTERED_OBJECTS, cfg=obj_config, cls_type_descriptor="object", ) # Import the robot into the simulator and set the pose og.sim.import_object(obj) obj.set_position_orientation(position=position, orientation=orientation) if len(self.objects_config) > 0: # Auto-initialize all objects og.sim.play() self.scene.reset() self.scene.update_initial_state() og.sim.stop() assert og.sim.is_stopped(), "Simulator must be stopped after loading objects!" def _load_external_sensors(self): """ Load any additional custom external sensors into the scene """ assert og.sim.is_stopped(), "Simulator must be stopped before loading external sensors!" sensors_config = self.env_config["external_sensors"] if sensors_config is not None: self._external_sensors = dict() for i, sensor_config in enumerate(sensors_config): # Add a name for the object if necessary if "name" not in sensor_config: sensor_config["name"] = f"external_sensor{i}" # Determine prim path if not specified if "prim_path" not in sensor_config: sensor_config["prim_path"] = f"/World/{sensor_config['name']}" # Pop the desired position and orientation local_position, local_orientation = sensor_config.pop("local_position", None), sensor_config.pop("local_orientation", None) # Make sure sensor exists, grab its corresponding kwargs, and create the sensor sensor = create_sensor(**sensor_config) # Load an initialize this sensor sensor.load() sensor.initialize() sensor.set_local_pose(local_position, local_orientation) self._external_sensors[sensor.name] = sensor assert og.sim.is_stopped(), "Simulator must be stopped after loading external sensors!" def _load_observation_space(self): # Grab robot(s) and task obs spaces obs_space = dict() for robot in self.robots: # Load the observation space for the robot obs_space[robot.name] = robot.load_observation_space() # Also load the task obs space obs_space["task"] = self._task.load_observation_space() # Also load any external sensors if self._external_sensors is not None: external_obs_space = dict() for sensor_name, sensor in self._external_sensors.items(): # Load the sensor observation space external_obs_space[sensor_name] = sensor.load_observation_space() obs_space["external"] = gym.spaces.Dict(external_obs_space) return obs_space def load_observation_space(self): # Call super first obs_space = super().load_observation_space() # If we want to flatten it, modify the observation space by recursively searching through all if self._flatten_obs_space: self.observation_space = gym.spaces.Dict(recursively_generate_flat_dict(dic=obs_space)) return self.observation_space def _load_action_space(self): """ Load action space for each robot """ action_space = gym.spaces.Dict({robot.name: robot.action_space for robot in self.robots}) # Convert into flattened 1D Box space if requested if self._flatten_action_space: lows = [] highs = [] for space in action_space.values(): assert isinstance(space, gym.spaces.Box), \ "Can only flatten action space where all individual spaces are gym.space.Box instances!" assert len(space.shape) == 1, \ "Can only flatten action space where all individual spaces are 1D instances!" lows.append(space.low) highs.append(space.high) action_space = gym.spaces.Box(np.concatenate(lows), np.concatenate(highs), dtype=np.float32) # Store action space self.action_space = action_space def load(self): """ Load the scene and robot specified in the config file. """ # This environment is not loaded self._loaded = False # Load config variables self._load_variables() # Load the scene, robots, and task self._load_scene() self._load_robots() self._load_objects() self._load_task() self._load_external_sensors() og.sim.play() self.reset() # Load the obs / action spaces self.load_observation_space() self._load_action_space() # Start the scene graph builder if self._scene_graph_builder: self._scene_graph_builder.start(self.scene) # Denote that the scene is loaded self._loaded = True def update_task(self, task_config): """ Updates the internal task using @task_config. NOTE: This will internally reset the environment as well! Args: task_config (dict): Task configuration for updating the new task """ # Make sure sim is playing assert og.sim.is_playing(), "Update task should occur while sim is playing!" # Denote scene as not loaded yet self._loaded = False og.sim.stop() self._load_task(task_config=task_config) og.sim.play() self.reset() # Load obs / action spaces self.load_observation_space() self._load_action_space() # Scene is now loaded again self._loaded = True def close(self): """ Clean up the environment and shut down the simulation. """ og.shutdown() def get_obs(self): """ Get the current environment observation. Returns: 2-tuple: dict: Keyword-mapped observations, which are possibly nested dict: Additional information about the observations """ obs = dict() info = dict() # Grab all observations from each robot for robot in self.robots: obs[robot.name], info[robot.name] = robot.get_obs() # Add task observations obs["task"] = self._task.get_obs(env=self) # Add external sensor observations if they exist if self._external_sensors is not None: external_obs = dict() external_info = dict() for sensor_name, sensor in self._external_sensors.items(): external_obs[sensor_name], external_info[sensor_name] = sensor.get_obs() obs["external"] = external_obs info["external"] = external_info # Possibly flatten obs if requested if self._flatten_obs_space: obs = recursively_generate_flat_dict(dic=obs) return obs, info def get_scene_graph(self): """ Get the current scene graph. Returns: SceneGraph: Current scene graph """ assert self._scene_graph_builder is not None, "Scene graph builder must be specified in config!" return self._scene_graph_builder.get_scene_graph() def _populate_info(self, info): """ Populate info dictionary with any useful information. Args: info (dict): Information dictionary to populate Returns: dict: Information dictionary with added info """ info["episode_length"] = self._current_step if self._scene_graph_builder is not None: info["scene_graph"] = self.get_scene_graph() def step(self, action): """ Apply robot's action and return the next state, reward, done and info, following OpenAI Gym's convention Args: action (gym.spaces.Dict or dict or np.array): robot actions. If a dict is specified, each entry should map robot name to corresponding action. If a np.array, it should be the flattened, concatenated set of actions Returns: 4-tuple: - dict: state, i.e. next observation - float: reward, i.e. reward at this current timestep - bool: done, i.e. whether this episode is terminated - dict: info, i.e. dictionary with any useful information """ try: # If the action is not a dictionary, convert into a dictionary if not isinstance(action, dict) and not isinstance(action, gym.spaces.Dict): action_dict = dict() idx = 0 for robot in self.robots: action_dim = robot.action_dim action_dict[robot.name] = action[idx: idx + action_dim] idx += action_dim else: # Our inputted action is the action dictionary action_dict = action # Iterate over all robots and apply actions for robot in self.robots: robot.apply_action(action_dict[robot.name]) # Run simulation step og.sim.step() # Grab observations obs, obs_info = self.get_obs() # Step the scene graph builder if necessary if self._scene_graph_builder is not None: self._scene_graph_builder.step(self.scene) # Grab reward, done, and info, and populate with internal info reward, done, info = self.task.step(self, action) self._populate_info(info) info["obs_info"] = obs_info if done and self._automatic_reset: # Add lost observation to our information dict, and reset info["last_observation"] = obs obs = self.reset() # Increment step self._current_step += 1 return obs, reward, done, info except: raise ValueError(f"Failed to execute environment step {self._current_step} in episode {self._current_episode}") def _reset_variables(self): """ Reset bookkeeping variables for the next new episode. """ self._current_episode += 1 self._current_step = 0 # TODO: Match super class signature? def reset(self): """ Reset episode. """ # Reset the task self.task.reset(self) # Reset internal variables self._reset_variables() # Run a single simulator step to make sure we can grab updated observations og.sim.step() # Grab and return observations obs, _ = self.get_obs() if self._loaded: # Sanity check to make sure received observations match expected observation space check_obs = recursively_generate_compatible_dict(dic=obs) if not self.observation_space.contains(check_obs): exp_obs = dict() for key, value in recursively_generate_flat_dict(dic=self.observation_space).items(): exp_obs[key] = ("obs_space", key, value.dtype, value.shape) real_obs = dict() for key, value in recursively_generate_flat_dict(dic=check_obs).items(): if isinstance(value, np.ndarray): real_obs[key] = ("obs", key, value.dtype, value.shape) else: real_obs[key] = ("obs", key, type(value), "()") exp_keys = set(exp_obs.keys()) real_keys = set(real_obs.keys()) shared_keys = exp_keys.intersection(real_keys) missing_keys = exp_keys - real_keys extra_keys = real_keys - exp_keys if missing_keys: log.error("MISSING OBSERVATION KEYS:") log.error(missing_keys) if extra_keys: log.error("EXTRA OBSERVATION KEYS:") log.error(extra_keys) mismatched_keys = [] for k in shared_keys: if exp_obs[k][2:] != real_obs[k][2:]: # Compare dtypes and shapes mismatched_keys.append(k) log.error(f"MISMATCHED OBSERVATION FOR KEY '{k}':") log.error(f"Expected: {exp_obs[k]}") log.error(f"Received: {real_obs[k]}") raise ValueError("Observation space does not match returned observations!") return obs @property def episode_steps(self): """ Returns: int: Current number of steps in episode """ return self._current_step @property def initial_pos_z_offset(self): """ Returns: float: how high to offset object placement to test valid pose & account for one action step of dropping """ return self._initial_pos_z_offset @property def task(self): """ Returns: BaseTask: Active task instance """ return self._task @property def scene(self): """ Returns: Scene: Active scene in this environment """ return og.sim.scene @property def robots(self): """ Returns: list of BaseRobot: Robots in the current scene """ return self.scene.robots @property def external_sensors(self): """ Returns: None or dict: If self.env_config["external_sensors"] is specified, returns the dict mapping sensor name to instantiated sensor. Otherwise, returns None """ return self._external_sensors @property def env_config(self): """ Returns: dict: Environment-specific configuration kwargs """ return self.config["env"] @property def render_config(self): """ Returns: dict: Render-specific configuration kwargs """ return self.config["render"] @property def scene_config(self): """ Returns: dict: Scene-specific configuration kwargs """ return self.config["scene"] @property def robots_config(self): """ Returns: dict: Robot-specific configuration kwargs """ return self.config["robots"] @property def objects_config(self): """ Returns: dict: Object-specific configuration kwargs """ return self.config["objects"] @property def task_config(self): """ Returns: dict: Task-specific configuration kwargs """ return self.config["task"] @property def wrapper_config(self): """ Returns: dict: Wrapper-specific configuration kwargs """ return self.config["wrapper"] @property def default_config(self): """ Returns: dict: Default configuration for this environment. May not be fully specified (i.e.: still requires @config to be specified during environment creation) """ return { # Environment kwargs "env": { "action_frequency": 30, "physics_frequency": 120, "device": None, "automatic_reset": False, "flatten_action_space": False, "flatten_obs_space": False, "initial_pos_z_offset": 0.1, "external_sensors": None, }, # Rendering kwargs "render": { "viewer_width": 1280, "viewer_height": 720, }, # Scene kwargs "scene": { # Traversibility map kwargs "waypoint_resolution": 0.2, "num_waypoints": 10, "trav_map_resolution": 0.1, "default_erosion_radius": 0.0, "trav_map_with_objects": True, "scene_instance": None, "scene_file": None, }, # Robot kwargs "robots": [], # no robots by default # Object kwargs "objects": [], # no objects by default # Task kwargs "task": { "type": "DummyTask", }, # Wrapper kwargs "wrapper": { "type": None, }, }
28,380
Python
36.147906
160
0.583298
StanfordVL/OmniGibson/omnigibson/envs/env_wrapper.py
from omnigibson.utils.python_utils import Wrapper from omnigibson.utils.python_utils import Registerable, classproperty, create_class_from_registry_and_config from omnigibson.utils.ui_utils import create_module_logger from copy import deepcopy # Global dicts that will contain mappings REGISTERED_ENV_WRAPPERS = dict() # Create module logger log = create_module_logger(module_name=__name__) def create_wrapper(env): """ Wraps environment @env with wrapper defined by env.wrapper_config """ wrapper_cfg = deepcopy(env.wrapper_config) wrapper_type = wrapper_cfg.pop("type") wrapper_cfg["env"] = env return create_class_from_registry_and_config( cls_name=wrapper_type, cls_registry=REGISTERED_ENV_WRAPPERS, cfg=wrapper_cfg, cls_type_descriptor="wrapper", ) class EnvironmentWrapper(Wrapper, Registerable): """ Base class for all environment wrappers in OmniGibson. In general, reset(), step(), and observation_spec() should be overwritten Args: env (OmniGibsonEnv): The environment to wrap. """ def __init__(self, env): self.env = env # Run super super().__init__(obj=env) def step(self, action): """ By default, run the normal environment step() function Args: action (np.array): action to take in environment Returns: 4-tuple: - (dict) observations from the environment - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) misc information """ return self.env.step(action) def reset(self): """ By default, run the normal environment reset() function Returns: dict: Environment observation space after reset occurs """ return self.env.reset() def observation_spec(self): """ By default, grabs the normal environment observation_spec Returns: dict: Observations from the environment """ return self.env.observation_spec() @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("EnvironmentWrapper") return classes @classproperty def _cls_registry(cls): # Global robot registry global REGISTERED_ENV_WRAPPERS return REGISTERED_ENV_WRAPPERS
2,560
Python
27.455555
117
0.633984
StanfordVL/OmniGibson/omnigibson/reward_functions/potential_reward.py
from omnigibson.reward_functions.reward_function_base import BaseRewardFunction class PotentialReward(BaseRewardFunction): """ Potential reward Assume task has get_potential implemented; Low potential is preferred (e.g. a common potential for goal-directed task is the distance to goal) Args: potential_fcn (method): function for calculating potential. Function signature should be: potential = potential_fcn(env) where @env is a Environment instance, and @potential is a float value representing the calculated potential r_potential (float): Reward weighting to give proportional to the potential difference calculated in between env timesteps """ def __init__(self, potential_fcn, r_potential=1.0): # Store internal vars self._potential_fcn = potential_fcn self._r_potential = r_potential # Store internal vars that will be filled in at runtime self._potential = None # Run super super().__init__() def reset(self, task, env): """ Compute the initial potential after episode reset :param task: task instance :param env: environment instance """ # Reset potential self._potential = self._potential_fcn(env) def _step(self, task, env, action): # Reward is proportional to the potential difference between the current and previous timestep new_potential = self._potential_fcn(env) reward = (self._potential - new_potential) * self._r_potential # Update internal potential self._potential = new_potential return reward, {}
1,683
Python
32.019607
119
0.660131
StanfordVL/OmniGibson/omnigibson/reward_functions/__init__.py
from omnigibson.reward_functions.reward_function_base import BaseRewardFunction, REGISTERED_REWARD_FUNCTIONS from omnigibson.reward_functions.collision_reward import CollisionReward from omnigibson.reward_functions.point_goal_reward import PointGoalReward from omnigibson.reward_functions.potential_reward import PotentialReward from omnigibson.reward_functions.reaching_goal_reward import ReachingGoalReward
409
Python
67.333322
108
0.885086
StanfordVL/OmniGibson/omnigibson/reward_functions/reward_function_base.py
from abc import ABCMeta, abstractmethod from copy import deepcopy from omnigibson.utils.python_utils import classproperty, Registerable REGISTERED_REWARD_FUNCTIONS = dict() class BaseRewardFunction(Registerable, metaclass=ABCMeta): """ Base RewardFunction class Reward-specific reset and get_reward methods are implemented in subclasses """ def __init__(self): # Store internal vars that will be filled in at runtime self._reward = None self._info = None @abstractmethod def _step(self, task, env, action): """ Step the reward function and compute the reward at the current timestep. Overwritten by subclasses. Args: task (BaseTask): Task instance env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment Returns: 2-tuple: - bool: computed reward - dict: any reward-related information for this specific reward """ raise NotImplementedError() def step(self, task, env, action): """ Step the reward function and compute the reward at the current timestep. Args: task (BaseTask): Task instance env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment Returns: 2-tuple: - bool: computed reward - dict: any reward-related information for this specific reward """ # Step internally and store output self._reward, self._info = self._step(task=task, env=env, action=action) # Return reward and a copy of the info return self._reward, deepcopy(self._info) def reset(self, task, env): """ Reward function-specific reset Args: task (BaseTask): Task instance env (Environment): Environment instance """ # Reset internal vars self._reward = None self._info = None @property def reward(self): """ Returns: float: Current reward for this reward function """ assert self._reward is not None, "At least one step() must occur before reward can be calculated!" return self._reward @property def info(self): """ Returns: dict: Current info for this reward function """ assert self._info is not None, "At least one step() must occur before info can be calculated!" return self._info @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseRewardFunction") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_REWARD_FUNCTIONS return REGISTERED_REWARD_FUNCTIONS
3,066
Python
30.618556
107
0.61546
StanfordVL/OmniGibson/omnigibson/reward_functions/point_goal_reward.py
from omnigibson.reward_functions.reward_function_base import BaseRewardFunction class PointGoalReward(BaseRewardFunction): """ Point goal reward Success reward for reaching the goal with the robot's base Args: pointgoal (PointGoal): Termination condition for checking whether a point goal is reached r_pointgoal (float): Reward for reaching the point goal """ def __init__(self, pointgoal, r_pointgoal=10.0): # Store internal vars self._pointgoal = pointgoal self._r_pointgoal = r_pointgoal # Run super super().__init__() def _step(self, task, env, action): # Reward received the pointgoal success condition is met reward = self._r_pointgoal if self._pointgoal.success else 0.0 return reward, {}
811
Python
29.074073
97
0.664612
StanfordVL/OmniGibson/omnigibson/reward_functions/collision_reward.py
from omnigibson.reward_functions.reward_function_base import BaseRewardFunction from omnigibson.object_states.contact_bodies import ContactBodies class CollisionReward(BaseRewardFunction): """ Collision reward Penalize robot collision. Typically collision_reward_weight is negative. Note that we ignore collisions with any floor objects. Args: robot_idn (int): robot identifier to evaluate collision penalty with. Default is 0, corresponding to the first robot added to the scene ignore_self_collisions (bool): Whether to ignore robot self-collisions or not r_collision (float): Penalty value (>0) to penalize collisions """ def __init__(self, robot_idn=0, ignore_self_collisions=True, r_collision=0.1): # Store internal vars assert r_collision > 0, f"r_collision must be positive, got: {r_collision}!" self._robot_idn = robot_idn self._ignore_self_collisions = ignore_self_collisions self._r_collision = r_collision # Run super super().__init__() def _step(self, task, env, action): # Penalty is Reward is -self._r_collision if there were any collisions in the last timestep robot = env.robots[self._robot_idn] # Ignore floors and potentially robot's own prims as well floors = list(env.scene.object_registry("category", "floors", [])) ignore_objs = floors if self._ignore_self_collisions is None else floors + [robot] in_contact = len(env.robots[self._robot_idn].states[ContactBodies].get_value(ignore_objs=tuple(ignore_objs))) > 0 reward = float(in_contact) * -self._r_collision return reward, {}
1,694
Python
44.81081
121
0.681818
StanfordVL/OmniGibson/omnigibson/reward_functions/reaching_goal_reward.py
from omnigibson.reward_functions.reward_function_base import BaseRewardFunction import omnigibson.utils.transform_utils as T class ReachingGoalReward(BaseRewardFunction): """ Reaching goal reward Success reward for reaching the goal with the robot's end-effector Args: robot_idn (int): robot identifier to evaluate point goal with. Default is 0, corresponding to the first robot added to the scene r_reach (float): reward for succeeding to reach the goal distance_tol (float): Distance (m) tolerance between goal position and @robot_idn's robot eef position that is accepted as a success """ def __init__(self, robot_idn=0, r_reach=10.0, distance_tol=0.1): # Store internal vars self._robot_idn = robot_idn self._r_reach = r_reach self._distance_tol = distance_tol # Run super super().__init__() def _step(self, task, env, action): # Sparse reward is received if distance between robot_idn robot's eef and goal is below the distance threshold success = T.l2_distance(env.robots[self._robot_idn].get_eef_position(), task.goal_pos) < \ self._distance_tol reward = self._r_reach if success else 0.0 return reward, {}
1,289
Python
36.941175
118
0.660978
StanfordVL/OmniGibson/omnigibson/tasks/point_reaching_task.py
import numpy as np from omnigibson.tasks.point_navigation_task import PointNavigationTask from omnigibson.termination_conditions.point_goal import PointGoal import omnigibson.utils.transform_utils as T # Valid point navigation reward types POINT_NAVIGATION_REWARD_TYPES = {"l2", "geodesic"} class PointReachingTask(PointNavigationTask): """ Point Reaching Task The goal is to reach a random goal position with the robot's end effector Args: robot_idn (int): Which robot that this task corresponds to floor (int): Which floor to navigate on initial_pos (None or 3-array): If specified, should be (x,y,z) global initial position to place the robot at the start of each task episode. If None, a collision-free value will be randomly sampled initial_quat (None or 3-array): If specified, should be (r,p,y) global euler orientation to place the robot at the start of each task episode. If None, a value will be randomly sampled about the z-axis goal_pos (None or 3-array): If specified, should be (x,y,z) global goal position to reach for the given task episode. If None, a collision-free value will be randomly sampled goal_tolerance (float): Distance between goal position and current position below which is considered a task success goal_in_polar (bool): Whether to represent the goal in polar coordinates or not when capturing task observations path_range (None or 2-array): If specified, should be (min, max) values representing the range of valid total path lengths that are valid when sampling initial / goal positions height_range (None or 2-array): If specified, should be (min, max) values representing the range of valid total heights that are valid when sampling goal positions visualize_goal (bool): Whether to visualize the initial / goal locations visualize_path (bool): Whether to visualize the path from initial to goal location, as represented by discrete waypoints goal_height (float): If visualizing, specifies the height of the visual goals (m) waypoint_height (float): If visualizing, specifies the height of the visual waypoints (m) waypoint_width (float): If visualizing, specifies the width of the visual waypoints (m) n_vis_waypoints (int): If visualizing, specifies the number of waypoints to generate termination_config (None or dict): Keyword-mapped configuration to use to generate termination conditions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_termination_config for default values used reward_config (None or dict): Keyword-mapped configuration to use to generate reward functions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_reward_config for default values used """ def __init__( self, robot_idn=0, floor=0, initial_pos=None, initial_quat=None, goal_pos=None, goal_tolerance=0.1, goal_in_polar=False, path_range=None, height_range=None, visualize_goal=False, visualize_path=False, goal_height=0.06, waypoint_height=0.05, waypoint_width=0.1, n_vis_waypoints=10, reward_config=None, termination_config=None, ): # Store inputs self._height_range = height_range # Run super super().__init__( robot_idn=robot_idn, floor=floor, initial_pos=initial_pos, initial_quat=initial_quat, goal_pos=goal_pos, goal_tolerance=goal_tolerance, goal_in_polar=goal_in_polar, path_range=path_range, visualize_goal=visualize_goal, visualize_path=visualize_path, goal_height=goal_height, waypoint_height=waypoint_height, waypoint_width=waypoint_width, n_vis_waypoints=n_vis_waypoints, reward_type="l2", # Must use l2 for reaching task reward_config=reward_config, termination_config=termination_config, ) def _create_termination_conditions(self): # Run super first terminations = super()._create_termination_conditions() # We replace the pointgoal condition with a new one, specifying xyz instead of only xy as the axes to measure # distance to the goal terminations["pointgoal"] = PointGoal( robot_idn=self._robot_idn, distance_tol=self._goal_tolerance, distance_axes="xyz", ) return terminations def _sample_initial_pose_and_goal_pos(self, env, max_trials=100): # Run super first initial_pos, initial_ori, goal_pos = super()._sample_initial_pose_and_goal_pos(env=env, max_trials=max_trials) # Sample goal position to be within requested height range if specified if self._height_range is not None: goal_pos[2] += np.random.uniform(*self._height_range) return initial_pos, initial_ori, goal_pos def _get_l2_potential(self, env): # Distance calculated from robot EEF, not base! return T.l2_distance(env.robots[self._robot_idn].get_eef_position(), self._goal_pos) def _get_obs(self, env): # Get obs from super low_dim_obs, obs = super()._get_obs(env=env) # Remove xy-pos and replace with full xyz relative distance between current and goal pos low_dim_obs.pop("xy_pos_to_goal") low_dim_obs["eef_to_goal"] = self._global_pos_to_robot_frame(env=env, pos=self._goal_pos) # Add local eef position as well low_dim_obs["eef_local_pos"] = self._global_pos_to_robot_frame(env=env, pos=env.robots[self._robot_idn].get_eef_position()) return low_dim_obs, obs def get_current_pos(self, env): # Current position is the robot's EEF, not base! return env.robots[self._robot_idn].get_eef_position()
6,615
Python
46.942029
131
0.654271
StanfordVL/OmniGibson/omnigibson/tasks/task_base.py
from abc import ABCMeta, abstractmethod from copy import deepcopy import numpy as np from omnigibson.utils.python_utils import classproperty, Registerable from omnigibson.utils.gym_utils import GymObservable REGISTERED_TASKS = dict() class BaseTask(GymObservable, Registerable, metaclass=ABCMeta): """ Base Task class. Task-specific reset_scene, reset_agent, step methods are implemented in subclasses Args: termination_config (None or dict): Keyword-mapped configuration to use to generate termination conditions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_termination_config for default values used reward_config (None or dict): Keyword-mapped configuration to use to generate reward functions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_reward_config for default values used """ def __init__(self, termination_config=None, reward_config=None): # Make sure configs are dictionaries termination_config = dict() if termination_config is None else termination_config reward_config = dict() if reward_config is None else reward_config # Sanity check termination and reward conditions -- any keys found in the inputted config but NOT # found in the default config should raise an error unknown_termination_keys = set(termination_config.keys()) - set(self.default_termination_config.keys()) assert len(unknown_termination_keys) == 0, \ f"Got unknown termination config keys inputted: {unknown_termination_keys}" unknown_reward_keys = set(reward_config.keys()) - set(self.default_reward_config.keys()) assert len(unknown_reward_keys) == 0, f"Got unknown reward config keys inputted: {unknown_reward_keys}" # Combine with defaults and store internally self._termination_config = self.default_termination_config self._termination_config.update(termination_config) self._reward_config = self.default_reward_config self._reward_config.update(reward_config) # Generate reward and termination functions self._termination_conditions = self._create_termination_conditions() self._reward_functions = self._create_reward_functions() # Store other internal vars that will be populated at runtime self._loaded = False self._reward = None self._done = None self._success = None self._info = None self._low_dim_obs_dim = None # Run super init super().__init__() @abstractmethod def _load(self, env): """ Load this task. Should be implemented by subclass. Can include functionality, e.g.: loading dynamic objects into the environment """ raise NotImplementedError() @abstractmethod def _load_non_low_dim_observation_space(self): """ Loads any non-low dim observation spaces for this task. Returns: dict: Keyword-mapped observation space for this object mapping non low dim task observation name to observation space """ raise NotImplementedError() @classmethod def verify_scene_and_task_config(cls, scene_cfg, task_cfg): """ Runs any necessary sanity checks on the scene and task configs passed; and possibly modifies them in-place Args: scene_cfg (dict): Scene configuration task_cfg (dict): Task configuration """ # Default is no-op pass def _load_observation_space(self): # Create the non low dim obs space obs_space = self._load_non_low_dim_observation_space() # Create the low dim obs space and add to the main obs space dict -- make sure we're flattening low dim obs obs_space["low_dim"] = self._build_obs_box_space(shape=(self._low_dim_obs_dim,), low=-np.inf, high=np.inf, dtype=np.float64) return obs_space def load(self, env): """ Load this task """ # Make sure the scene is of the correct type! assert any([issubclass(env.scene.__class__, valid_cls) for valid_cls in self.valid_scene_types]), \ f"Got incompatible scene type {env.scene.__class__.__name__} for task {self.__class__.__name__}! " \ f"Scene class must be a subclass of at least one of: " \ f"{[cls_type.__name__ for cls_type in self.valid_scene_types]}" # Run internal method self._load(env=env) # We're now initialized self._loaded = True @abstractmethod def _create_termination_conditions(self): """ Creates the termination functions in the environment Returns: dict of BaseTerminationCondition: Termination functions created for this task """ raise NotImplementedError() @abstractmethod def _create_reward_functions(self): """ Creates the reward functions in the environment Returns: dict of BaseRewardFunction: Reward functions created for this task """ raise NotImplementedError() def _reset_scene(self, env): """ Task-specific scene reset. Default is the normal scene reset Args: env (Environment): environment instance """ env.scene.reset() def _reset_agent(self, env): """ Task-specific agent reset Args: env (Environment): environment instance """ # Default is no-op pass def _reset_variables(self, env): """ Task-specific internal variable reset Args: env (Environment): environment instance """ # By default, reset reward, done, and info self._reward = None self._done = False self._success = False self._info = None def reset(self, env): """ Resets this task in the environment Args: env (Environment): environment instance to reset """ # Reset the scene, agent, and variables self._reset_scene(env) self._reset_agent(env) self._reset_variables(env) # Also reset all termination conditions and reward functions for termination_condition in self._termination_conditions.values(): termination_condition.reset(self, env) for reward_function in self._reward_functions.values(): reward_function.reset(self, env) # Fill in low dim obs dim so we can use this to create the observation space later self._low_dim_obs_dim = len(self.get_obs(env=env, flatten_low_dim=True)["low_dim"]) def _step_termination(self, env, action, info=None): """ Step and aggregate termination conditions Args: env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment info (None or dict): Any info to return Returns: 2-tuple: - float: aggregated termination at the current timestep - dict: any information passed through this function or generated by this function """ # Get all dones and successes from individual termination conditions dones = [] successes = [] for termination_condition in self._termination_conditions.values(): d, s = termination_condition.step(self, env, action) dones.append(d) successes.append(s) # Any True found corresponds to a done / success done = sum(dones) > 0 success = sum(successes) > 0 # Populate info info = dict() if info is None else info info["success"] = success return done, info def _step_reward(self, env, action, info=None): """ Step and aggregate reward functions Args: env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment info (None or dict): Any info to return Returns: 2-tuple: - float: aggregated reward at the current timestep - dict: any information passed through this function or generated by this function """ # Make sure info is a dict total_info = dict() if info is None else info # We'll also store individual reward split as well breakdown_dict = dict() # Aggregate rewards over all reward functions total_reward = 0.0 for reward_name, reward_function in self._reward_functions.items(): reward, reward_info = reward_function.step(self, env, action) total_reward += reward breakdown_dict[reward_name] = reward total_info[reward_name] = reward_info # Store breakdown dict total_info["reward_breakdown"] = breakdown_dict return total_reward, total_info @abstractmethod def _get_obs(self, env): """ Get task-specific observation Args: env (Environment): Environment instance Returns: 2-tuple: - dict: Keyword-mapped low dimensional observations from this task - dict: All other keyword-mapped observations from this task """ raise NotImplementedError() def _flatten_low_dim_obs(self, obs): """ Flattens dictionary containing low-dimensional observations @obs and converts it from a dictionary into a 1D numpy array Args: obs (dict): Low-dim observation dictionary where each value is a 1D array Returns: n-array: 1D-numpy array of flattened low-dim observations """ # By default, we simply concatenate all values in our obs dict return np.concatenate([ob for ob in obs.values()]) if len(obs.values()) > 0 else np.array([]) def get_obs(self, env, flatten_low_dim=True): # Args: env (Environment): environment instance # Args: flatten_low_dim (bool): Whether to flatten low-dimensional observations # Grab obs internally low_dim_obs, obs = self._get_obs(env=env) # Possibly flatten low dim and add to main observation dictionary obs["low_dim"] = self._flatten_low_dim_obs(obs=low_dim_obs) if flatten_low_dim else low_dim_obs return obs def step(self, env, action): """ Perform task-specific step for every timestep Args: env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment Returns: 3-tuple: - float: reward calculated after this step - bool: whether task is done or not - dict: nested dictionary of reward- and done-related info """ # Make sure we're initialized assert self._loaded, "Task must be loaded using load() before calling step()!" # We calculate termination conditions first and then rewards # (since some rewards can rely on termination conditions to update) done, done_info = self._step_termination(env=env, action=action) reward, reward_info = self._step_reward(env=env, action=action) # Update the internal state of this task self._reward = reward self._done = done self._success = done_info["success"] self._info = { "reward": reward_info, "done": done_info, } return self._reward, self._done, deepcopy(self._info) @property def name(self): """ Returns: str: Name of this task. Defaults to class name """ return self.__class__.__name__ @property def reward(self): """ Returns: float: Current reward for this task """ assert self._reward is not None, "At least one step() must occur before reward can be calculated!" return self._reward @property def done(self): """ Returns: bool: Whether this task is done or not """ assert self._done is not None, "At least one step() must occur before done can be calculated!" return self._done @property def success(self): """ Returns: bool: Whether this task has succeeded or not """ assert self._success is not None, "At least one step() must occur before success can be calculated!" return self._success @property def info(self): """ Returns: dict: Nested dictionary of information for this task, including reward- and done-specific information """ assert self._info is not None, "At least one step() must occur before info can be calculated!" return self._info @classproperty def valid_scene_types(cls): """ Returns: set of Scene: Scene type(s) that are valid (i.e.: compatible) with this specific task. This will be used to sanity check the task + scene combination at runtime """ raise NotImplementedError() @classproperty def default_reward_config(cls): """ Returns: dict: Default reward configuration for this class. Should include any kwargs necessary for any of the reward classes generated in self._create_rewards(). Note: this default config should be fully verbose -- any keys inputted in the constructor but NOT found in this default config will raise an error! """ raise NotImplementedError() @classproperty def default_termination_config(cls): """ Returns: dict: Default termination configuration for this class. Should include any kwargs necessary for any of the termination classes generated in self._create_terminations(). Note: this default config should be fully verbose -- any keys inputted in the constructor but NOT found in this default config will raise an error! """ raise NotImplementedError() @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseTask") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_TASKS return REGISTERED_TASKS
15,225
Python
36.046229
132
0.622266
StanfordVL/OmniGibson/omnigibson/tasks/point_navigation_task.py
import numpy as np import omnigibson as og from omnigibson.object_states import Pose from omnigibson.objects.primitive_object import PrimitiveObject from omnigibson.reward_functions.collision_reward import CollisionReward from omnigibson.reward_functions.point_goal_reward import PointGoalReward from omnigibson.reward_functions.potential_reward import PotentialReward from omnigibson.scenes.traversable_scene import TraversableScene from omnigibson.tasks.task_base import BaseTask from omnigibson.termination_conditions.max_collision import MaxCollision from omnigibson.termination_conditions.falling import Falling from omnigibson.termination_conditions.point_goal import PointGoal from omnigibson.termination_conditions.timeout import Timeout from omnigibson.utils.python_utils import classproperty, assert_valid_key from omnigibson.utils.sim_utils import land_object, test_valid_pose import omnigibson.utils.transform_utils as T from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) # Valid point navigation reward types POINT_NAVIGATION_REWARD_TYPES = {"l2", "geodesic"} class PointNavigationTask(BaseTask): """ Point Navigation Task The task is to navigate to a goal position Args: robot_idn (int): Which robot that this task corresponds to floor (int): Which floor to navigate on initial_pos (None or 3-array): If specified, should be (x,y,z) global initial position to place the robot at the start of each task episode. If None, a collision-free value will be randomly sampled initial_quat (None or 4-array): If specified, should be (x,y,z,w) global quaternion orientation to place the robot at the start of each task episode. If None, a value will be randomly sampled about the z-axis goal_pos (None or 3-array): If specified, should be (x,y,z) global goal position to reach for the given task episode. If None, a collision-free value will be randomly sampled goal_tolerance (float): Distance between goal position and current position below which is considered a task success goal_in_polar (bool): Whether to represent the goal in polar coordinates or not when capturing task observations path_range (None or 2-array): If specified, should be (min, max) values representing the range of valid total path lengths that are valid when sampling initial / goal positions visualize_goal (bool): Whether to visualize the initial / goal locations visualize_path (bool): Whether to visualize the path from initial to goal location, as represented by discrete waypoints goal_height (float): If visualizing, specifies the height of the visual goals (m) waypoint_height (float): If visualizing, specifies the height of the visual waypoints (m) waypoint_width (float): If visualizing, specifies the width of the visual waypoints (m) n_vis_waypoints (int): If visualizing, specifies the number of waypoints to generate reward_type (str): Type of reward to use. Valid options are: {"l2", "geodesic"} termination_config (None or dict): Keyword-mapped configuration to use to generate termination conditions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_termination_config for default values used reward_config (None or dict): Keyword-mapped configuration to use to generate reward functions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_reward_config for default values used """ def __init__( self, robot_idn=0, floor=0, initial_pos=None, initial_quat=None, goal_pos=None, goal_tolerance=0.5, goal_in_polar=False, path_range=None, visualize_goal=False, visualize_path=False, goal_height=0.06, waypoint_height=0.05, waypoint_width=0.1, n_vis_waypoints=10, reward_type="l2", termination_config=None, reward_config=None, ): # Store inputs self._robot_idn = robot_idn self._floor = floor self._initial_pos = initial_pos if initial_pos is None else np.array(initial_pos) self._initial_quat = initial_quat if initial_quat is None else np.array(initial_quat) self._goal_pos = goal_pos if goal_pos is None else np.array(goal_pos) self._goal_tolerance = goal_tolerance self._goal_in_polar = goal_in_polar self._path_range = path_range self._randomize_initial_pos = initial_pos is None self._randomize_initial_quat = initial_quat is None self._randomize_goal_pos = goal_pos is None self._visualize_goal = visualize_goal self._visualize_path = visualize_path self._goal_height = goal_height self._waypoint_height = waypoint_height self._waypoint_width = waypoint_width self._n_vis_waypoints = n_vis_waypoints assert_valid_key(key=reward_type, valid_keys=POINT_NAVIGATION_REWARD_TYPES, name="reward type") self._reward_type = reward_type # Create other attributes that will be filled in at runtime self._initial_pos_marker = None self._goal_pos_marker = None self._waypoint_markers = None self._path_length = None self._current_robot_pos = None self._geodesic_dist = None # Run super super().__init__(termination_config=termination_config, reward_config=reward_config) def _create_termination_conditions(self): # Initialize termination conditions dict and fill in with MaxCollision, Timeout, Falling, and PointGoal terminations = dict() terminations["max_collision"] = MaxCollision(max_collisions=self._termination_config["max_collisions"]) terminations["timeout"] = Timeout(max_steps=self._termination_config["max_steps"]) terminations["falling"] = Falling(robot_idn=self._robot_idn, fall_height=self._termination_config["fall_height"]) terminations["pointgoal"] = PointGoal( robot_idn=self._robot_idn, distance_tol=self._goal_tolerance, distance_axes="xy", ) return terminations def _create_reward_functions(self): # Initialize reward functions dict and fill in with Potential, Collision, and PointGoal rewards rewards = dict() rewards["potential"] = PotentialReward( potential_fcn=self.get_potential, r_potential=self._reward_config["r_potential"], ) rewards["collision"] = CollisionReward(r_collision=self._reward_config["r_collision"]) rewards["pointgoal"] = PointGoalReward( pointgoal=self._termination_conditions["pointgoal"], r_pointgoal=self._reward_config["r_pointgoal"], ) return rewards def _load(self, env): # Load visualization self._load_visualization_markers(env=env) # Auto-initialize all markers og.sim.play() env.scene.reset() env.scene.update_initial_state() og.sim.stop() def _load_visualization_markers(self, env): """ Load visualization, such as initial and target position, shortest path, etc Args: env (Environment): Active environment instance """ if self._visualize_goal: self._initial_pos_marker = PrimitiveObject( prim_path="/World/task_initial_pos_marker", primitive_type="Cylinder", name="task_initial_pos_marker", radius=self._goal_tolerance, height=self._goal_height, visual_only=True, rgba=np.array([1, 0, 0, 0.3]), ) self._goal_pos_marker = PrimitiveObject( prim_path="/World/task_goal_pos_marker", primitive_type="Cylinder", name="task_goal_pos_marker", radius=self._goal_tolerance, height=self._goal_height, visual_only=True, rgba=np.array([0, 0, 1, 0.3]), ) # Load the objects into the simulator og.sim.import_object(self._initial_pos_marker) og.sim.import_object(self._goal_pos_marker) # Additionally generate waypoints along the path if we're building the map in the environment if self._visualize_path: waypoints = [] for i in range(self._n_vis_waypoints): waypoint = PrimitiveObject( prim_path=f"/World/task_waypoint_marker{i}", primitive_type="Cylinder", name=f"task_waypoint_marker{i}", radius=self._waypoint_width, height=self._waypoint_height, visual_only=True, rgba=np.array([0, 1, 0, 0.3]), ) og.sim.import_object(waypoint) waypoints.append(waypoint) # Store waypoints self._waypoint_markers = waypoints def _sample_initial_pose_and_goal_pos(self, env, max_trials=100): """ Potentially sample the robot initial pos / ori and target pos, based on whether we're using randomized initial and goal states. If not randomzied, then this value will return the corresponding values inputted during this task initialization. Args: env (Environment): Environment instance max_trials (int): Number of trials to attempt to sample valid poses and positions Returns: 3-tuple: - 3-array: (x,y,z) global sampled initial position - 4-array: (x,y,z,w) global sampled initial orientation in quaternion form - 3-array: (x,y,z) global sampled goal position """ # Possibly sample initial pos if self._randomize_initial_pos: _, initial_pos = env.scene.get_random_point(floor=self._floor, robot=env.robots[self._robot_idn]) else: initial_pos = self._initial_pos # Possibly sample initial ori initial_quat = T.euler2quat(np.array([0, 0, np.random.uniform(0, np.pi * 2)])) if \ self._randomize_initial_quat else self._initial_quat # Possibly sample goal pos if self._randomize_goal_pos: dist, in_range_dist = 0.0, False for _ in range(max_trials): _, goal_pos = env.scene.get_random_point(floor=self._floor, reference_point=initial_pos, robot=env.robots[self._robot_idn]) _, dist = env.scene.get_shortest_path(self._floor, initial_pos[:2], goal_pos[:2], entire_path=False, robot=env.robots[self._robot_idn]) # If a path range is specified, make sure distance is valid if dist is not None and (self._path_range is None or self._path_range[0] < dist < self._path_range[1]): in_range_dist = True break # Notify if we weren't able to get a valid start / end point sampled in the requested range if not in_range_dist: log.warning("Failed to sample initial and target positions within requested path range") else: goal_pos = self._goal_pos # Add additional logging info log.info("Sampled initial pose: {}, {}".format(initial_pos, initial_quat)) log.info("Sampled goal position: {}".format(goal_pos)) return initial_pos, initial_quat, goal_pos def _get_geodesic_potential(self, env): """ Get potential based on geodesic distance Args: env: environment instance Returns: float: geodesic distance to the target position """ _, geodesic_dist = self.get_shortest_path_to_goal(env=env) return geodesic_dist def _get_l2_potential(self, env): """ Get potential based on L2 distance Args: env: environment instance Returns: float: L2 distance to the target position """ return T.l2_distance(env.robots[self._robot_idn].states[Pose].get_value()[0][:2], self._goal_pos[:2]) def get_potential(self, env): """ Compute task-specific potential: distance to the goal Args: env (Environment): Environment instance Returns: float: Computed potential """ if self._reward_type == "l2": reward = self._get_l2_potential(env) elif self._reward_type == "geodesic": reward = self._get_geodesic_potential(env) else: raise ValueError(f"Invalid reward type! {self._reward_type}") return reward def _reset_agent(self, env): # Reset agent env.robots[self._robot_idn].reset() # We attempt to sample valid initial poses and goal positions success, max_trials = False, 100 initial_pos, initial_quat, goal_pos = None, None, None for i in range(max_trials): initial_pos, initial_quat, goal_pos = self._sample_initial_pose_and_goal_pos(env) # Make sure the sampled robot start pose and goal position are both collision-free success = test_valid_pose( env.robots[self._robot_idn], initial_pos, initial_quat, env.initial_pos_z_offset ) and test_valid_pose(env.robots[self._robot_idn], goal_pos, None, env.initial_pos_z_offset) # Don't need to continue iterating if we succeeded if success: break # Notify user if we failed to reset a collision-free sampled pose if not success: log.warning("Failed to reset robot without collision") # Land the robot land_object(env.robots[self._robot_idn], initial_pos, initial_quat, env.initial_pos_z_offset) # Store the sampled values internally self._initial_pos = initial_pos self._initial_quat = initial_quat self._goal_pos = goal_pos # Update visuals if requested if self._visualize_goal: self._initial_pos_marker.set_position(self._initial_pos) self._goal_pos_marker.set_position(self._goal_pos) def _reset_variables(self, env): # Run super first super()._reset_variables(env=env) # Reset internal variables self._path_length = 0.0 self._current_robot_pos = self._initial_pos self._geodesic_dist = self._get_geodesic_potential(env) def _step_termination(self, env, action, info=None): # Run super first done, info = super()._step_termination(env=env, action=action, info=info) # Add additional info info["path_length"] = self._path_length info["spl"] = float(info["success"]) * min(1.0, self._geodesic_dist / self._path_length) if done and self._path_length != 0.0 else 0.0 return done, info def _global_pos_to_robot_frame(self, env, pos): """ Convert a 3D point in global frame to agent's local frame Args: env (TraversableEnv): Environment instance pos (3-array): global (x,y,z) position Returns: 3-array: (x,y,z) position in self._robot_idn agent's local frame """ delta_pos_global = np.array(pos) - env.robots[self._robot_idn].states[Pose].get_value()[0] return T.quat2mat(env.robots[self._robot_idn].states[Pose].get_value()[1]).T @ delta_pos_global def _get_obs(self, env): # Get relative position of goal with respect to the current agent position xy_pos_to_goal = self._global_pos_to_robot_frame(env, self._goal_pos)[:2] if self._goal_in_polar: xy_pos_to_goal = np.array(T.cartesian_to_polar(*xy_pos_to_goal)) # linear velocity and angular velocity ori_t = T.quat2mat(env.robots[self._robot_idn].states[Pose].get_value()[1]).T lin_vel = ori_t @ env.robots[self._robot_idn].get_linear_velocity() ang_vel = ori_t @ env.robots[self._robot_idn].get_angular_velocity() # Compose observation dict low_dim_obs = dict( xy_pos_to_goal=xy_pos_to_goal, robot_lin_vel=lin_vel, robot_ang_vel=ang_vel, ) # We have no non-low-dim obs, so return empty dict for those return low_dim_obs, dict() def _load_non_low_dim_observation_space(self): # No non-low dim observations so we return an empty dict return dict() def get_goal_pos(self): """ Returns: 3-array: (x,y,z) global current goal position """ return self._goal_pos def get_current_pos(self, env): """ Returns: 3-array: (x,y,z) global current position representing the robot """ return env.robots[self._robot_idn].states[Pose].get_value()[0] def get_shortest_path_to_goal(self, env, start_xy_pos=None, entire_path=False): """ Get the shortest path and geodesic distance from @start_pos to the target position Args: env (TraversableEnv): Environment instance start_xy_pos (None or 2-array): If specified, should be the global (x,y) start position from which to calculate the shortest path to the goal position. If None (default), the robot's current xy position will be used entire_path (bool): Whether to return the entire shortest path Returns: 2-tuple: - list of 2-array: List of (x,y) waypoints representing the path # TODO: is this true? - float: geodesic distance of the path to the goal position """ start_xy_pos = env.robots[self._robot_idn].states[Pose].get_value()[0][:2] if start_xy_pos is None else start_xy_pos return env.scene.get_shortest_path(self._floor, start_xy_pos, self._goal_pos[:2], entire_path=entire_path, robot=env.robots[self._robot_idn]) def _step_visualization(self, env): """ Step visualization Args: env (Environment): Environment instance """ if self._visualize_path: shortest_path, _ = self.get_shortest_path_to_goal(env=env, entire_path=True) floor_height = env.scene.get_floor_height(self._floor) num_nodes = min(self._n_vis_waypoints, shortest_path.shape[0]) for i in range(num_nodes): self._waypoint_markers[i].set_position( position=np.array([shortest_path[i][0], shortest_path[i][1], floor_height]) ) for i in range(num_nodes, self._n_vis_waypoints): self._waypoint_markers[i].set_position(position=np.array([0.0, 0.0, 100.0])) def step(self, env, action): # Run super method first reward, done, info = super().step(env=env, action=action) # Step visualization self._step_visualization(env=env) # Update other internal variables new_robot_pos = env.robots[self._robot_idn].states[Pose].get_value()[0] self._path_length += T.l2_distance(self._current_robot_pos[:2], new_robot_pos[:2]) self._current_robot_pos = new_robot_pos return reward, done, info @classproperty def valid_scene_types(cls): # Must be a traversable scene return {TraversableScene} @classproperty def default_termination_config(cls): return { "max_collisions": 500, "max_steps": 500, "fall_height": 0.03, } @classproperty def default_reward_config(cls): return { "r_potential": 1.0, "r_collision": 0.1, "r_pointgoal": 10.0, }
20,626
Python
42.06263
151
0.617667
StanfordVL/OmniGibson/omnigibson/tasks/__init__.py
from omnigibson.tasks.task_base import REGISTERED_TASKS from omnigibson.tasks.dummy_task import DummyTask from omnigibson.tasks.point_navigation_task import PointNavigationTask from omnigibson.tasks.point_reaching_task import PointReachingTask from omnigibson.tasks.behavior_task import BehaviorTask
300
Python
49.166658
70
0.873333
StanfordVL/OmniGibson/omnigibson/tasks/dummy_task.py
import numpy as np from omnigibson.tasks.task_base import BaseTask from omnigibson.scenes.scene_base import Scene from omnigibson.utils.python_utils import classproperty from omnigibson.utils.sim_utils import land_object class DummyTask(BaseTask): """ Dummy task """ def _load(self, env): # Do nothing here pass def _create_termination_conditions(self): # Do nothing return dict() def _create_reward_functions(self): # Do nothing return dict() def _get_obs(self, env): # No task-specific obs of any kind return dict(), dict() def _load_non_low_dim_observation_space(self): # No non-low dim observations so we return an empty dict return dict() @classproperty def valid_scene_types(cls): # Any scene works return {Scene} @classproperty def default_termination_config(cls): # Empty dict return {} @classproperty def default_reward_config(cls): # Empty dict return {}
1,060
Python
21.104166
64
0.627358
StanfordVL/OmniGibson/omnigibson/tasks/behavior_task.py
import numpy as np import os from bddl.activity import ( Conditions, evaluate_goal_conditions, get_goal_conditions, get_ground_goal_state_options, get_natural_initial_conditions, get_initial_conditions, get_natural_goal_conditions, get_object_scope, ) import omnigibson as og from omnigibson.macros import gm from omnigibson.object_states import Pose from omnigibson.reward_functions.potential_reward import PotentialReward from omnigibson.robots.robot_base import BaseRobot from omnigibson.systems.system_base import get_system, add_callback_on_system_init, add_callback_on_system_clear, \ REGISTERED_SYSTEMS from omnigibson.scenes.scene_base import Scene from omnigibson.scenes.interactive_traversable_scene import InteractiveTraversableScene from omnigibson.utils.bddl_utils import OmniGibsonBDDLBackend, BDDLEntity, BEHAVIOR_ACTIVITIES, BDDLSampler from omnigibson.tasks.task_base import BaseTask from omnigibson.termination_conditions.predicate_goal import PredicateGoal from omnigibson.termination_conditions.timeout import Timeout import omnigibson.utils.transform_utils as T from omnigibson.utils.python_utils import classproperty, assert_valid_key from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) class BehaviorTask(BaseTask): """ Task for BEHAVIOR Args: activity_name (None or str): Name of the Behavior Task to instantiate activity_definition_id (int): Specification to load for the desired task. For a given Behavior Task, multiple task specifications can be used (i.e.: differing goal conditions, or "ways" to complete a given task). This ID determines which specification to use activity_instance_id (int): Specific pre-configured instance of a scene to load for this BehaviorTask. This will be used only if @online_object_sampling is False. predefined_problem (None or str): If specified, specifies the raw string definition of the Behavior Task to load. This will automatically override @activity_name and @activity_definition_id. online_object_sampling (bool): whether to sample object locations online at runtime or not debug_object_sampling (bool): whether to debug placement functionality highlight_task_relevant_objects (bool): whether to overlay task-relevant objects in the scene with a colored mask termination_config (None or dict): Keyword-mapped configuration to use to generate termination conditions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_termination_config for default values used reward_config (None or dict): Keyword-mapped configuration to use to generate reward functions. This should be specific to the task class. Default is None, which corresponds to a default config being usd. Note that any keyword required by a specific task class but not specified in the config will automatically be filled in with the default config. See cls.default_reward_config for default values used """ def __init__( self, activity_name=None, activity_definition_id=0, activity_instance_id=0, predefined_problem=None, online_object_sampling=False, debug_object_sampling=False, highlight_task_relevant_objects=False, termination_config=None, reward_config=None, ): # Make sure object states are enabled assert gm.ENABLE_OBJECT_STATES, "Must set gm.ENABLE_OBJECT_STATES=True in order to use BehaviorTask!" # Make sure task name is valid if not specifying a predefined problem if predefined_problem is None: assert activity_name is not None, \ "Activity name must be specified if no predefined_problem is specified for BehaviorTask!" assert_valid_key(key=activity_name, valid_keys=BEHAVIOR_ACTIVITIES, name="Behavior Task") else: # Infer activity name activity_name = predefined_problem.split("problem ")[-1].split("-")[0] # Initialize relevant variables # BDDL self.backend = OmniGibsonBDDLBackend() # Activity info self.activity_name = None self.activity_definition_id = activity_definition_id self.activity_instance_id = activity_instance_id self.activity_conditions = None self.activity_initial_conditions = None self.activity_goal_conditions = None self.ground_goal_state_options = None self.feedback = None # None or str self.sampler = None # BDDLSampler # Object info self.debug_object_sampling = debug_object_sampling # bool self.online_object_sampling = online_object_sampling # bool self.highlight_task_relevant_objs = highlight_task_relevant_objects # bool self.object_scope = None # Maps str to BDDLEntity self.object_instance_to_category = None # Maps str to str self.future_obj_instances = None # set of str # Info for demonstration collection self.instruction_order = None # np.array of int self.currently_viewed_index = None # int self.currently_viewed_instruction = None # tuple of str self.activity_natural_language_goal_conditions = None # str # Load the initial behavior configuration self.update_activity(activity_name=activity_name, activity_definition_id=activity_definition_id, predefined_problem=predefined_problem) # Run super init super().__init__(termination_config=termination_config, reward_config=reward_config) @classmethod def get_cached_activity_scene_filename(cls, scene_model, activity_name, activity_definition_id, activity_instance_id): """ Helper method to programmatically construct the scene filename for a given pre-cached task configuration Args: scene_model (str): Name of the scene (e.g.: Rs_int) activity_name (str): Name of the task activity (e.g.: putting_away_halloween_decorations) activity_definition_id (int): ID of the task definition activity_instance_id (int): ID of the task instance Returns: str: Filename which, if exists, should include the cached activity scene """ return f"{scene_model}_task_{activity_name}_{activity_definition_id}_{activity_instance_id}_template" @classmethod def verify_scene_and_task_config(cls, scene_cfg, task_cfg): # Run super first super().verify_scene_and_task_config(scene_cfg=scene_cfg, task_cfg=task_cfg) # Possibly modify the scene to load if we're using online_object_sampling scene_instance, scene_file = scene_cfg["scene_instance"], scene_cfg["scene_file"] activity_name = task_cfg["predefined_problem"].split("problem ")[-1].split("-")[0] if \ task_cfg.get("predefined_problem", None) is not None else task_cfg["activity_name"] if scene_file is None and scene_instance is None and not task_cfg["online_object_sampling"]: scene_instance = cls.get_cached_activity_scene_filename( scene_model=scene_cfg.get("scene_model", "Scene"), activity_name=activity_name, activity_definition_id=task_cfg.get("activity_definition_id", 0), activity_instance_id=task_cfg.get("activity_instance_id", 0), ) # Update the value in the scene config scene_cfg["scene_instance"] = scene_instance def write_task_metadata(self): # Store mapping from entity name to its corresponding BDDL instance name metadata = dict( inst_to_name={inst: entity.name for inst, entity in self.object_scope.items() if entity.exists}, ) # Write to sim og.sim.write_metadata(key="task", data=metadata) def load_task_metadata(self): # Load from sim return og.sim.get_metadata(key="task") def _create_termination_conditions(self): # Initialize termination conditions dict and fill in with Timeout and PredicateGoal terminations = dict() terminations["timeout"] = Timeout(max_steps=self._termination_config["max_steps"]) terminations["predicate"] = PredicateGoal(goal_fcn=lambda: self.activity_goal_conditions) return terminations def _create_reward_functions(self): # Initialize reward functions dict and fill in with Potential reward rewards = dict() rewards["potential"] = PotentialReward( potential_fcn=self.get_potential, r_potential=self._reward_config["r_potential"], ) return rewards def _load(self, env): # Initialize the current activity success, self.feedback = self.initialize_activity(env=env) # assert success, f"Failed to initialize Behavior Activity. Feedback:\n{self.feedback}" # Highlight any task relevant objects if requested if self.highlight_task_relevant_objs: for entity in self.object_scope.values(): if entity.synset == "agent": continue if not entity.is_system and entity.exists: entity.highlighted = True # Add callbacks to handle internal processing when new systems / objects are added / removed to the scene callback_name = f"{self.activity_name}_refresh" og.sim.add_callback_on_import_obj(name=callback_name, callback=self._update_bddl_scope_from_added_obj) og.sim.add_callback_on_remove_obj(name=callback_name, callback=self._update_bddl_scope_from_removed_obj) add_callback_on_system_init(name=callback_name, callback=self._update_bddl_scope_from_system_init) add_callback_on_system_clear(name=callback_name, callback=self._update_bddl_scope_from_system_clear) def _load_non_low_dim_observation_space(self): # No non-low dim observations so we return an empty dict return dict() def update_activity(self, activity_name, activity_definition_id, predefined_problem=None): """ Update the active Behavior activity being deployed Args: activity_name (None or str): Name of the Behavior Task to instantiate activity_definition_id (int): Specification to load for the desired task. For a given Behavior Task, multiple task specifications can be used (i.e.: differing goal conditions, or "ways" to complete a given task). This ID determines which specification to use predefined_problem (None or str): If specified, specifies the raw string definition of the Behavior Task to load. This will automatically override @activity_name and @activity_definition_id. """ # Update internal variables based on values # Activity info self.activity_name = activity_name self.activity_definition_id = activity_definition_id self.activity_conditions = Conditions( activity_name, activity_definition_id, simulator_name="omnigibson", predefined_problem=predefined_problem, ) # Get scope, making sure agent is the first entry self.object_scope = {"agent.n.01_1": None} self.object_scope.update(get_object_scope(self.activity_conditions)) # Object info self.object_instance_to_category = { obj_inst: obj_cat for obj_cat in self.activity_conditions.parsed_objects for obj_inst in self.activity_conditions.parsed_objects[obj_cat] } # Generate initial and goal conditions self.activity_initial_conditions = get_initial_conditions(self.activity_conditions, self.backend, self.object_scope) self.activity_goal_conditions = get_goal_conditions(self.activity_conditions, self.backend, self.object_scope) self.ground_goal_state_options = get_ground_goal_state_options( self.activity_conditions, self.backend, self.object_scope, self.activity_goal_conditions ) # Demo attributes self.instruction_order = np.arange(len(self.activity_conditions.parsed_goal_conditions)) np.random.shuffle(self.instruction_order) self.currently_viewed_index = 0 self.currently_viewed_instruction = self.instruction_order[self.currently_viewed_index] self.activity_natural_language_initial_conditions = get_natural_initial_conditions(self.activity_conditions) self.activity_natural_language_goal_conditions = get_natural_goal_conditions(self.activity_conditions) def get_potential(self, env): """ Compute task-specific potential: distance to the goal Args: env (Environment): Current active environment instance Returns: float: Computed potential """ # Evaluate the first ground goal state option as the potential _, satisfied_predicates = evaluate_goal_conditions(self.ground_goal_state_options[0]) success_score = len(satisfied_predicates["satisfied"]) / ( len(satisfied_predicates["satisfied"]) + len(satisfied_predicates["unsatisfied"]) ) return -success_score def initialize_activity(self, env): """ Initializes the desired activity in the current environment @env Args: env (Environment): Current active environment instance Returns: 2-tuple: - bool: Whether the generated scene activity should be accepted or not - dict: Any feedback from the sampling / initialization process """ accept_scene = True feedback = None # Generate sampler self.sampler = BDDLSampler( env=env, activity_conditions=self.activity_conditions, object_scope=self.object_scope, backend=self.backend, debug=self.debug_object_sampling, ) # Compose future objects self.future_obj_instances = \ {init_cond.body[1] for init_cond in self.activity_initial_conditions if init_cond.body[0] == "future"} if self.online_object_sampling: # Sample online accept_scene, feedback = self.sampler.sample() if not accept_scene: return accept_scene, feedback else: # Load existing scene cache and assign object scope accordingly self.assign_object_scope_with_cache(env) # Generate goal condition with the fully populated self.object_scope self.activity_goal_conditions = get_goal_conditions(self.activity_conditions, self.backend, self.object_scope) self.ground_goal_state_options = get_ground_goal_state_options( self.activity_conditions, self.backend, self.object_scope, self.activity_goal_conditions ) return accept_scene, feedback def get_agent(self, env): """ Grab the 0th agent from @env Args: env (Environment): Current active environment instance Returns: BaseRobot: The 0th robot from the environment instance """ # We assume the relevant agent is the first agent in the scene return env.robots[0] def assign_object_scope_with_cache(self, env): """ Assigns objects within the current object scope Args: env (Environment): Current active environment instance """ # Load task metadata inst_to_name = self.load_task_metadata()["inst_to_name"] # Assign object_scope based on a cached scene for obj_inst in self.object_scope: if obj_inst in self.future_obj_instances: entity = None else: assert obj_inst in inst_to_name, f"BDDL object instance {obj_inst} should exist in cached metadata " \ f"from loaded scene, but could not be found!" name = inst_to_name[obj_inst] is_system = name in REGISTERED_SYSTEMS entity = get_system(name) if is_system else og.sim.scene.object_registry("name", name) self.object_scope[obj_inst] = BDDLEntity( bddl_inst=obj_inst, entity=entity, ) def _get_obs(self, env): low_dim_obs = dict() # Batch rpy calculations for much better efficiency objs_exist = {obj: obj.exists for obj in self.object_scope.values() if not obj.is_system} objs_rpy = T.quat2euler(np.array([obj.states[Pose].get_value()[1] if obj_exist else np.array([0, 0, 0, 1.0]) for obj, obj_exist in objs_exist.items()])) objs_rpy_cos = np.cos(objs_rpy) objs_rpy_sin = np.sin(objs_rpy) # Always add agent info first agent = self.get_agent(env=env) for (obj, obj_exist), obj_rpy, obj_rpy_cos, obj_rpy_sin in zip(objs_exist.items(), objs_rpy, objs_rpy_cos, objs_rpy_sin): # TODO: May need to update checking here to USDObject? Or even baseobject? # TODO: How to handle systems as part of obs? if obj_exist: low_dim_obs[f"{obj.bddl_inst}_real"] = np.array([1.0]) low_dim_obs[f"{obj.bddl_inst}_pos"] = obj.states[Pose].get_value()[0] low_dim_obs[f"{obj.bddl_inst}_ori_cos"] = obj_rpy_cos low_dim_obs[f"{obj.bddl_inst}_ori_sin"] = obj_rpy_sin if obj.name != agent.name: for arm in agent.arm_names: grasping_object = agent.is_grasping(arm=arm, candidate_obj=obj.wrapped_obj) low_dim_obs[f"{obj.bddl_inst}_in_gripper_{arm}"] = np.array([float(grasping_object)]) else: low_dim_obs[f"{obj.bddl_inst}_real"] = np.zeros(1) low_dim_obs[f"{obj.bddl_inst}_pos"] = np.zeros(3) low_dim_obs[f"{obj.bddl_inst}_ori_cos"] = np.zeros(3) low_dim_obs[f"{obj.bddl_inst}_ori_sin"] = np.zeros(3) for arm in agent.arm_names: low_dim_obs[f"{obj.bddl_inst}_in_gripper_{arm}"] = np.zeros(1) return low_dim_obs, dict() def _step_termination(self, env, action, info=None): # Run super first done, info = super()._step_termination(env=env, action=action, info=info) # Add additional info info["goal_status"] = self._termination_conditions["predicate"].goal_status return done, info def _update_bddl_scope_from_added_obj(self, obj): """ Internal callback function to be called when sim.import_object() is called to potentially update internal bddl object scope Args: obj (BaseObject): Newly imported object """ # Iterate over all entities, and if they don't exist, check if any category matches @obj's category, and set it # if it does, and immediately return for inst, entity in self.object_scope.items(): if not entity.exists and not entity.is_system and obj.category in set(entity.og_categories): entity.set_entity(entity=obj) return def _update_bddl_scope_from_removed_obj(self, obj): """ Internal callback function to be called when sim.remove_object() is called to potentially update internal bddl object scope Args: obj (BaseObject): Newly removed object """ # Iterate over all entities, and if they exist, check if any name matches @obj's name, and remove it # if it does, and immediately return for entity in self.object_scope.values(): if entity.exists and not entity.is_system and obj.name == entity.name: entity.clear_entity() return def _update_bddl_scope_from_system_init(self, system): """ Internal callback function to be called when system.initialize() is called to potentially update internal bddl object scope Args: system (BaseSystem): Newly initialized system """ # Iterate over all entities, and potentially match the system to the scope for inst, entity in self.object_scope.items(): if not entity.exists and entity.is_system and entity.og_categories[0] == system.name: entity.set_entity(entity=system) return def _update_bddl_scope_from_system_clear(self, system): """ Internal callback function to be called when system.clear() is called to potentially update internal bddl object scope Args: system (BaseSystem): Newly cleared system """ # Iterate over all entities, and potentially remove the matched system from the scope for inst, entity in self.object_scope.items(): if entity.exists and entity.is_system and system.name == entity.name: entity.clear_entity() return def show_instruction(self): """ Get current instruction for user Returns: 3-tuple: - str: Current goal condition in natural language - 3-tuple: (R,G,B) color to assign to text - list of BaseObject: Relevant objects for the current instruction """ satisfied = self.currently_viewed_instruction in self._termination_conditions["predicate"].goal_status["satisfied"] natural_language_condition = self.activity_natural_language_goal_conditions[self.currently_viewed_instruction] objects = self.activity_goal_conditions[self.currently_viewed_instruction].get_relevant_objects() text_color = ( [83.0 / 255.0, 176.0 / 255.0, 72.0 / 255.0] if satisfied else [255.0 / 255.0, 51.0 / 255.0, 51.0 / 255.0] ) return natural_language_condition, text_color, objects def iterate_instruction(self): """ Increment the instruction """ self.currently_viewed_index = (self.currently_viewed_index + 1) % len(self.activity_conditions.parsed_goal_conditions) self.currently_viewed_instruction = self.instruction_order[self.currently_viewed_index] def save_task(self, path=None, override=False): """ Writes the current scene configuration to a .json file Args: path (None or str): If specified, absolute fpath to the desired path to write the .json. Default is <gm.DATASET_PATH/scenes/<SCENE_MODEL>/json/...> override (bool): Whether to override any files already found at the path to write the task .json """ if path is None: fname = self.get_cached_activity_scene_filename( scene_model=og.sim.scene.scene_model, activity_name=self.activity_name, activity_definition_id=self.activity_definition_id, activity_instance_id=self.activity_instance_id, ) path = os.path.join(gm.DATASET_PATH, "scenes", og.sim.scene.scene_model, "json", f"{fname}.json") if os.path.exists(path) and not override: log.warning(f"Scene json already exists at {path}. Use override=True to force writing of new json.") return # Write metadata and then save self.write_task_metadata() og.sim.save(json_path=path) @property def name(self): """ Returns: str: Name of this task. Defaults to class name """ name_base = super().name # Add activity name, def id, and inst id return f"{name_base}_{self.activity_name}_{self.activity_definition_id}_{self.activity_instance_id}" @classproperty def valid_scene_types(cls): # Any scene can be used return {Scene} @classproperty def default_termination_config(cls): return { "max_steps": 500, } @classproperty def default_reward_config(cls): return { "r_potential": 1.0, }
25,013
Python
45.151291
143
0.633431
StanfordVL/OmniGibson/omnigibson/maps/traversable_map.py
import os import cv2 import numpy as np from PIL import Image # Accommodate large maps (e.g. 10k x 10k) while suppressing DecompressionBombError Image.MAX_IMAGE_PIXELS = None from omnigibson.maps.map_base import BaseMap from omnigibson.utils.ui_utils import create_module_logger from omnigibson.utils.motion_planning_utils import astar # Create module logger log = create_module_logger(module_name=__name__) class TraversableMap(BaseMap): """ Traversable scene class. Contains the functionalities for navigation such as shortest path computation """ def __init__( self, map_resolution=0.1, default_erosion_radius=0.0, trav_map_with_objects=True, num_waypoints=10, waypoint_resolution=0.2, ): """ Args: map_resolution (float): map resolution in meters, each pixel represents this many meters; normally, this should be between 0.01 and 0.1 default_erosion_radius (float): default map erosion radius in meters trav_map_with_objects (bool): whether to use objects or not when constructing graph num_waypoints (int): number of way points returned waypoint_resolution (float): resolution of adjacent way points """ # Set internal values self.map_default_resolution = 0.01 # each pixel == 0.01m in the dataset representation self.default_erosion_radius = default_erosion_radius self.trav_map_with_objects = trav_map_with_objects self.num_waypoints = num_waypoints self.waypoint_interval = int(waypoint_resolution / map_resolution) # Values loaded at runtime self.trav_map_original_size = None self.trav_map_size = None self.mesh_body_id = None self.floor_heights = None self.floor_map = None # Run super method super().__init__(map_resolution=map_resolution) def _load_map(self, maps_path, floor_heights=(0.0,)): """ Loads the traversability maps for all floors Args: maps_path (str): Path to the folder containing the traversability maps floor_heights (n-array): Height(s) of the floors for this map Returns: int: Size of the loaded map """ if not os.path.exists(maps_path): log.warning("trav map does not exist: {}".format(maps_path)) return self.floor_heights = floor_heights self.floor_map = [] map_size = None for floor in range(len(self.floor_heights)): if self.trav_map_with_objects: # TODO: Shouldn't this be generated dynamically? trav_map = np.array(Image.open(os.path.join(maps_path, "floor_trav_{}.png".format(floor)))) else: trav_map = np.array(Image.open(os.path.join(maps_path, "floor_trav_no_obj_{}.png".format(floor)))) # If we do not initialize the original size of the traversability map, we obtain it from the image # Then, we compute the final map size as the factor of scaling (default_resolution/resolution) times the # original map size if self.trav_map_original_size is None: height, width = trav_map.shape assert height == width, "trav map is not a square" self.trav_map_original_size = height map_size = int( self.trav_map_original_size * self.map_default_resolution / self.map_resolution ) # We resize the traversability map to the new size computed before trav_map = cv2.resize(trav_map, (map_size, map_size)) # We make the pixels of the image to be either 0 or 255 trav_map[trav_map < 255] = 0 self.floor_map.append(trav_map) return map_size @property def n_floors(self): """ Returns: int: Number of floors belonging to this map's associated scene """ return len(self.floor_heights) def _erode_trav_map(self, trav_map, robot=None): # Erode the traversability map to account for the robot's size if robot: robot_chassis_extent = robot.reset_joint_pos_aabb_extent[:2] radius = np.linalg.norm(robot_chassis_extent) / 2.0 else: radius = self.default_erosion_radius radius_pixel = int(np.ceil(radius / self.map_resolution)) trav_map = cv2.erode(trav_map, np.ones((radius_pixel, radius_pixel))) return trav_map def get_random_point(self, floor=None, reference_point=None, robot=None): """ Sample a random point on the given floor number. If not given, sample a random floor number. If @reference_point is given, sample a point in the same connected component as the previous point. Args: floor (None or int): floor number. None means the floor is randomly sampled Warning: if @reference_point is given, @floor must be given; otherwise, this would lead to undefined behavior reference_point (3-array): (x,y,z) if given, sample a point in the same connected component as this point Returns: 2-tuple: - int: floor number. This is the sampled floor number if @floor is None - 3-array: (x,y,z) randomly sampled point """ if reference_point is not None: assert floor is not None, "floor must be given if reference_point is given" # If nothing is given, sample a random floor and a random point on that floor if floor is None and reference_point is None: floor = np.random.randint(0, self.n_floors) # create a deep copy so that we don't erode the original map trav_map = self.floor_map[floor].copy() trav_map = self._erode_trav_map(trav_map, robot=robot) if reference_point is not None: # Find connected component _, component_labels = cv2.connectedComponents(trav_map, connectivity=4) # If previous point is given, sample a point in the same connected component prev_xy_map = self.world_to_map(reference_point[:2]) prev_label = component_labels[prev_xy_map[0]][prev_xy_map[1]] trav_space = np.where(component_labels == prev_label) else: trav_space = np.where(trav_map == 255) idx = np.random.randint(0, high=trav_space[0].shape[0]) xy_map = np.array([trav_space[0][idx], trav_space[1][idx]]) x, y = self.map_to_world(xy_map) z = self.floor_heights[floor] return floor, np.array([x, y, z]) def get_shortest_path(self, floor, source_world, target_world, entire_path=False, robot=None): """ Get the shortest path from one point to another point. If any of the given point is not in the graph, add it to the graph and create an edge between it to its closest node. Args: floor (int): floor number source_world (2-array): (x,y) 2D source location in world reference frame (metric) target_world (2-array): (x,y) 2D target location in world reference frame (metric) entire_path (bool): whether to return the entire path robot (None or BaseRobot): if given, erode the traversability map to account for the robot's size Returns: 2-tuple: - (N, 2) array: array of path waypoints, where N is the number of generated waypoints - float: geodesic distance of the path """ source_map = tuple(self.world_to_map(source_world)) target_map = tuple(self.world_to_map(target_world)) # create a deep copy so that we don't erode the original map trav_map = self.floor_map[floor].copy() trav_map = self._erode_trav_map(trav_map, robot=robot) path_map = astar(trav_map, source_map, target_map) if path_map is None: # No traversable path found return None, None path_world = self.map_to_world(path_map) geodesic_distance = np.sum(np.linalg.norm(path_world[1:] - path_world[:-1], axis=1)) path_world = path_world[:: self.waypoint_interval] if not entire_path: path_world = path_world[: self.num_waypoints] num_remaining_waypoints = self.num_waypoints - path_world.shape[0] if num_remaining_waypoints > 0: remaining_waypoints = np.tile(target_world, (num_remaining_waypoints, 1)) path_world = np.concatenate((path_world, remaining_waypoints), axis=0) return path_world, geodesic_distance
8,862
Python
41.816425
117
0.61081
StanfordVL/OmniGibson/omnigibson/maps/map_base.py
import numpy as np class BaseMap: """ Base map class. Contains basic interface for converting from map to world frame, and vise-versa """ def __init__( self, map_resolution=0.1, ): """ Args: map_resolution (float): map resolution """ # Set internal values self.map_resolution = map_resolution self.map_size = None def load_map(self, *args, **kwargs): """ Load's this map internally """ # Run internal method and store map size self.map_size = self._load_map(*args, **kwargs) def _load_map(self, *args, **kwargs): """ Arbitrary function to load this map. Should be implemented by subclass Returns: int: Size of the loaded map """ raise NotImplementedError() def map_to_world(self, xy): """ Transforms a 2D point in map reference frame into world (simulator) reference frame Args: xy (2-array or (N, 2)-array): 2D location(s) in map reference frame (in image pixel space) Returns: 2-array or (N, 2)-array: 2D location(s) in world reference frame (in metric space) """ axis = 0 if len(xy.shape) == 1 else 1 return np.flip((xy - self.map_size / 2.0) * self.map_resolution, axis=axis) def world_to_map(self, xy): """ Transforms a 2D point in world (simulator) reference frame into map reference frame xy: 2D location in world reference frame (metric) :return: 2D location in map reference frame (image) """ return np.flip((np.array(xy) / self.map_resolution + self.map_size / 2.0)).astype(np.int)
1,751
Python
28.694915
102
0.571102
StanfordVL/OmniGibson/omnigibson/maps/__init__.py
from omnigibson.maps.map_base import BaseMap from omnigibson.maps.traversable_map import TraversableMap from omnigibson.maps.segmentation_map import SegmentationMap
165
Python
40.49999
60
0.872727
StanfordVL/OmniGibson/omnigibson/maps/segmentation_map.py
import os import numpy as np from PIL import Image # Accommodate large maps (e.g. 10k x 10k) while suppressing DecompressionBombError Image.MAX_IMAGE_PIXELS = None import omnigibson as og from omnigibson.macros import gm from omnigibson.maps.map_base import BaseMap from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) class SegmentationMap(BaseMap): """ Segmentation map for computing connectivity within the scene """ def __init__( self, scene_dir, map_resolution=0.1, floor_heights=(0.0,), ): """ Args: scene_dir (str): path to the scene directory from which segmentation info will be extracted map_resolution (float): map resolution floor_heights (list of float): heights of the floors for this segmentation map """ # Store internal values self.scene_dir = scene_dir self.map_default_resolution = 0.01 self.floor_heights = floor_heights # Other values that will be loaded at runtime self.room_sem_name_to_sem_id = None self.room_sem_id_to_sem_name = None self.room_ins_name_to_ins_id = None self.room_ins_id_to_ins_name = None self.room_sem_name_to_ins_name = None self.room_ins_map = None self.room_sem_map = None # Run super call super().__init__(map_resolution=map_resolution) # Load the map self.load_map() def _load_map(self): layout_dir = os.path.join(self.scene_dir, "layout") room_seg_imgs = os.path.join(layout_dir, "floor_insseg_0.png") img_ins = Image.open(room_seg_imgs) room_seg_imgs = os.path.join(layout_dir, "floor_semseg_0.png") img_sem = Image.open(room_seg_imgs) height, width = img_ins.size assert height == width, "room seg map is not a square" assert img_ins.size == img_sem.size, "semantic and instance seg maps have different sizes" map_size = int(height * self.map_default_resolution / self.map_resolution) img_ins = np.array(img_ins.resize((map_size, map_size), Image.NEAREST)) img_sem = np.array(img_sem.resize((map_size, map_size), Image.NEAREST)) room_categories = os.path.join(gm.DATASET_PATH, "metadata", "room_categories.txt") with open(room_categories, "r") as fp: room_cats = [line.rstrip() for line in fp.readlines()] sem_id_to_ins_id = {} unique_ins_ids = np.unique(img_ins) unique_ins_ids = np.delete(unique_ins_ids, 0) for ins_id in unique_ins_ids: # find one pixel for each ins id x, y = np.where(img_ins == ins_id) # retrieve the correspounding sem id sem_id = img_sem[x[0], y[0]] if sem_id not in sem_id_to_ins_id: sem_id_to_ins_id[sem_id] = [] sem_id_to_ins_id[sem_id].append(ins_id) room_sem_name_to_sem_id = {} room_ins_name_to_ins_id = {} room_sem_name_to_ins_name = {} for sem_id, ins_ids in sem_id_to_ins_id.items(): sem_name = room_cats[sem_id - 1] room_sem_name_to_sem_id[sem_name] = sem_id for i, ins_id in enumerate(ins_ids): # valid class start from 1 ins_name = "{}_{}".format(sem_name, i) room_ins_name_to_ins_id[ins_name] = ins_id if sem_name not in room_sem_name_to_ins_name: room_sem_name_to_ins_name[sem_name] = [] room_sem_name_to_ins_name[sem_name].append(ins_name) self.room_sem_name_to_sem_id = room_sem_name_to_sem_id self.room_sem_id_to_sem_name = {value: key for key, value in room_sem_name_to_sem_id.items()} self.room_ins_name_to_ins_id = room_ins_name_to_ins_id self.room_ins_id_to_ins_name = {value: key for key, value in room_ins_name_to_ins_id.items()} self.room_sem_name_to_ins_name = room_sem_name_to_ins_name self.room_ins_map = img_ins self.room_sem_map = img_sem return map_size def get_random_point_by_room_type(self, room_type): """ Sample a random point on the given a specific room type @room_type. Args: room_type (str): Room type to sample random point (e.g.: "bathroom") Returns: 2-tuple: - int: floor number. This is always 0 - 3-array: (x,y,z) randomly sampled point in a room of type @room_type """ if room_type not in self.room_sem_name_to_sem_id: log.warning("room_type [{}] does not exist.".format(room_type)) return None, None sem_id = self.room_sem_name_to_sem_id[room_type] valid_idx = np.array(np.where(self.room_sem_map == sem_id)) random_point_map = valid_idx[:, np.random.randint(valid_idx.shape[1])] x, y = self.map_to_world(random_point_map) # assume only 1 floor floor = 0 z = self.floor_heights[floor] return floor, np.array([x, y, z]) def get_random_point_by_room_instance(self, room_instance): """ Sample a random point on the given a specific room instance @room_instance. Args: room_instance (str): Room instance to sample random point (e.g.: "bathroom_1") Returns: 2-tuple: - int: floor number. This is always 0 - 3-array: (x,y,z) randomly sampled point in room @room_instance """ if room_instance not in self.room_ins_name_to_ins_id: log.warning("room_instance [{}] does not exist.".format(room_instance)) return None, None ins_id = self.room_ins_name_to_ins_id[room_instance] valid_idx = np.array(np.where(self.room_ins_map == ins_id)) random_point_map = valid_idx[:, np.random.randint(valid_idx.shape[1])] x, y = self.map_to_world(random_point_map) # assume only 1 floor floor = 0 z = self.floor_heights[floor] return floor, np.array([x, y, z]) def get_room_type_by_point(self, xy): """ Return the room type given a point Args: xy (2-array): 2D location in world reference frame (in metric space) Returns: None or str: room type that this point is in or None, if this point is not on the room segmentation map """ x, y = self.world_to_map(xy) if x < 0 or x >= self.room_sem_map.shape[0] or y < 0 or y >= self.room_sem_map.shape[1]: return None sem_id = self.room_sem_map[x, y] # room boundary if sem_id == 0: return None else: return self.room_sem_id_to_sem_name[sem_id] def get_room_instance_by_point(self, xy): """ Return the room type given a point Args: xy (2-array): 2D location in world reference frame (in metric space) Returns: None or str: room instance that this point is in or None, if this point is not on the room segmentation map """ x, y = self.world_to_map(xy) if x < 0 or x >= self.room_ins_map.shape[0] or y < 0 or y >= self.room_ins_map.shape[1]: return None ins_id = self.room_ins_map[x, y] # room boundary if ins_id == 0: return None else: return self.room_ins_id_to_ins_name[ins_id]
7,535
Python
36.869347
119
0.580889
StanfordVL/OmniGibson/omnigibson/controllers/joint_controller.py
import numpy as np from omnigibson.controllers import IsGraspingState, ControlType, LocomotionController, ManipulationController, \ GripperController from omnigibson.utils.python_utils import assert_valid_key import omnigibson.utils.transform_utils as T from omnigibson.macros import create_module_macros # Create settings for this module m = create_module_macros(module_path=__file__) m.DEFAULT_JOINT_POS_KP = 50.0 m.DEFAULT_JOINT_POS_DAMPING_RATIO = 1.0 # critically damped m.DEFAULT_JOINT_VEL_KP = 2.0 class JointController(LocomotionController, ManipulationController, GripperController): """ Controller class for joint control. Because omniverse can handle direct position / velocity / effort control signals, this is merely a pass-through operation from command to control (with clipping / scaling built in). Each controller step consists of the following: 1. Clip + Scale inputted command according to @command_input_limits and @command_output_limits 2a. If using delta commands, then adds the command to the current joint state 2b. Clips the resulting command by the motor limits """ def __init__( self, control_freq, motor_type, control_limits, dof_idx, command_input_limits="default", command_output_limits="default", kp=None, damping_ratio=None, use_impedances=False, use_delta_commands=False, compute_delta_in_quat_space=None, ): """ Args: control_freq (int): controller loop frequency motor_type (str): type of motor being controlled, one of {position, velocity, effort} control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type kp (None or float): If @motor_type is "position" or "velocity" and @use_impedances=True, this is the proportional gain applied to the joint controller. If None, a default value will be used. damping_ratio (None or float): If @motor_type is "position" and @use_impedances=True, this is the damping ratio applied to the joint controller. If None, a default value will be used. use_impedances (bool): If True, will use impedances via the mass matrix to modify the desired efforts applied use_delta_commands (bool): whether inputted commands should be interpreted as delta or absolute values compute_delta_in_quat_space (None or List[(rx_idx, ry_idx, rz_idx), ...]): if specified, groups of joints that need to be processed in quaternion space to avoid gimbal lock issues normally faced by 3 DOF rotation joints. Each group needs to consist of three idxes corresponding to the indices in the input space. This is only used in the delta_commands mode. """ # Store arguments assert_valid_key(key=motor_type.lower(), valid_keys=ControlType.VALID_TYPES_STR, name="motor_type") self._motor_type = motor_type.lower() self._use_delta_commands = use_delta_commands self._compute_delta_in_quat_space = [] if compute_delta_in_quat_space is None else compute_delta_in_quat_space # Store control gains if self._motor_type == "position": kp = m.DEFAULT_JOINT_POS_KP if kp is None else kp damping_ratio = m.DEFAULT_JOINT_POS_DAMPING_RATIO if damping_ratio is None else damping_ratio elif self._motor_type == "velocity": kp = m.DEFAULT_JOINT_VEL_KP if kp is None else kp assert damping_ratio is None, "Cannot set damping_ratio for JointController with motor_type=velocity!" else: # effort assert kp is None, "Cannot set kp for JointController with motor_type=effort!" assert damping_ratio is None, "Cannot set damping_ratio for JointController with motor_type=effort!" self.kp = kp self.kd = None if damping_ratio is None else 2 * np.sqrt(self.kp) * damping_ratio self._use_impedances = use_impedances # When in delta mode, it doesn't make sense to infer output range using the joint limits (since that's an # absolute range and our values are relative). So reject the default mode option in that case. assert not (self._use_delta_commands and command_output_limits == "default"), \ "Cannot use 'default' command output limits in delta commands mode of JointController. Try None instead." # Run super init super().__init__( control_freq=control_freq, control_limits=control_limits, dof_idx=dof_idx, command_input_limits=command_input_limits, command_output_limits=command_output_limits, ) def _update_goal(self, command, control_dict): # Compute the base value for the command base_value = control_dict[f"joint_{self._motor_type}"][self.dof_idx] # If we're using delta commands, add this value if self._use_delta_commands: # Apply the command to the base value. target = base_value + command # Correct any gimbal lock issues using the compute_delta_in_quat_space group. for rx_ind, ry_ind, rz_ind in self._compute_delta_in_quat_space: # Grab the starting rotations of these joints. start_rots = base_value[[rx_ind, ry_ind, rz_ind]] # Grab the delta rotations. delta_rots = command[[rx_ind, ry_ind, rz_ind]] # Compute the final rotations in the quaternion space. _, end_quat = T.pose_transform(np.zeros(3), T.euler2quat(delta_rots), np.zeros(3), T.euler2quat(start_rots)) end_rots = T.quat2euler(end_quat) # Update the command target[[rx_ind, ry_ind, rz_ind]] = end_rots # Otherwise, goal is simply the command itself else: target = command # Clip the command based on the limits target = target.clip( self._control_limits[ControlType.get_type(self._motor_type)][0][self.dof_idx], self._control_limits[ControlType.get_type(self._motor_type)][1][self.dof_idx], ) return dict(target=target) def compute_control(self, goal_dict, control_dict): """ Converts the (already preprocessed) inputted @command into deployable (non-clipped!) joint control signal Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: target: desired N-dof absolute joint values used as setpoint control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions joint_velocity: Array of current joint velocities joint_effort: Array of current joint effort Returns: Array[float]: outputted (non-clipped!) control signal to deploy """ base_value = control_dict[f"joint_{self._motor_type}"][self.dof_idx] target = goal_dict["target"] # Convert control into efforts if self._use_impedances: if self._motor_type == "position": # Run impedance controller -- effort = pos_err * kp + vel_err * kd position_error = target - base_value vel_pos_error = -control_dict[f"joint_velocity"][self.dof_idx] u = position_error * self.kp + vel_pos_error * self.kd elif self._motor_type == "velocity": # Compute command torques via PI velocity controller plus gravity compensation torques velocity_error = target - base_value u = velocity_error * self.kp else: # effort u = target dof_idxs_mat = tuple(np.meshgrid(self.dof_idx, self.dof_idx)) mm = control_dict["mass_matrix"][dof_idxs_mat] u = np.dot(mm, u) # Add gravity compensation u += control_dict["gravity_force"][self.dof_idx] + control_dict["cc_force"][self.dof_idx] else: # Desired is the exact goal u = target # Return control return u def compute_no_op_goal(self, control_dict): # Compute based on mode if self._motor_type == "position": # Maintain current qpos target = control_dict[f"joint_{self._motor_type}"][self.dof_idx] else: # For velocity / effort, directly set to 0 target = np.zeros(self.control_dim) return dict(target=target) def _get_goal_shapes(self): return dict(target=(self.control_dim,)) def is_grasping(self): # No good heuristic to determine grasping, so return UNKNOWN return IsGraspingState.UNKNOWN @property def use_delta_commands(self): """ Returns: bool: Whether this controller is using delta commands or not """ return self._use_delta_commands @property def motor_type(self): """ Returns: str: The type of motor being simulated by this controller. One of {"position", "velocity", "effort"} """ return self._motor_type @property def control_type(self): return ControlType.EFFORT if self._use_impedances else ControlType.get_type(type_str=self._motor_type) @property def command_dim(self): return len(self.dof_idx)
11,270
Python
46.357143
120
0.624224
StanfordVL/OmniGibson/omnigibson/controllers/ik_controller.py
import numpy as np from omnigibson.macros import gm, create_module_macros import omnigibson.utils.transform_utils as T from omnigibson.controllers import ControlType, ManipulationController from omnigibson.controllers.joint_controller import JointController from omnigibson.utils.processing_utils import MovingAverageFilter from omnigibson.utils.control_utils import IKSolver from omnigibson.utils.python_utils import assert_valid_key from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) # Set some macros m = create_module_macros(module_path=__file__) m.IK_POS_TOLERANCE = 0.002 m.IK_POS_WEIGHT = 20.0 m.IK_ORN_TOLERANCE = 0.01 m.IK_ORN_WEIGHT = 0.05 m.IK_MAX_ITERATIONS = 100 # Different modes IK_MODE_COMMAND_DIMS = { "absolute_pose": 6, # 6DOF (x,y,z,ax,ay,az) control of pose, whether both position and orientation is given in absolute coordinates "pose_absolute_ori": 6, # 6DOF (dx,dy,dz,ax,ay,az) control over pose, where the orientation is given in absolute axis-angle coordinates "pose_delta_ori": 6, # 6DOF (dx,dy,dz,dax,day,daz) control over pose "position_fixed_ori": 3, # 3DOF (dx,dy,dz) control over position, with orientation commands being kept as fixed initial absolute orientation "position_compliant_ori": 3, # 3DOF (dx,dy,dz) control over position, with orientation commands automatically being sent as 0s (so can drift over time) } IK_MODES = set(IK_MODE_COMMAND_DIMS.keys()) class InverseKinematicsController(JointController, ManipulationController): """ Controller class to convert (delta) EEF commands into joint velocities using Inverse Kinematics (IK). Each controller step consists of the following: 1. Clip + Scale inputted command according to @command_input_limits and @command_output_limits 2. Run Inverse Kinematics to back out joint velocities for a desired task frame command 3. Clips the resulting command by the motor (velocity) limits """ def __init__( self, task_name, robot_description_path, robot_urdf_path, eef_name, control_freq, reset_joint_pos, control_limits, dof_idx, command_input_limits="default", command_output_limits=((-0.2, -0.2, -0.2, -0.5, -0.5, -0.5), (0.2, 0.2, 0.2, 0.5, 0.5, 0.5)), kp=None, damping_ratio=None, use_impedances=True, mode="pose_delta_ori", smoothing_filter_size=None, workspace_pose_limiter=None, condition_on_current_position=True, ): """ Args: task_name (str): name assigned to this task frame for computing IK control. During control calculations, the inputted control_dict should include entries named <@task_name>_pos_relative and <@task_name>_quat_relative. See self._command_to_control() for what these values should entail. robot_description_path (str): path to robot descriptor yaml file robot_urdf_path (str): path to robot urdf file eef_name (str): end effector frame name control_freq (int): controller loop frequency reset_joint_pos (Array[float]): reset joint positions, used as part of nullspace controller in IK. Note that this should correspond to ALL the joints; the exact indices will be extracted via @dof_idx control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type kp (None or float): The proportional gain applied to the joint controller. If None, a default value will be used. Only relevant if @use_impedances=True damping_ratio (None or float): The damping ratio applied to the joint controller. If None, a default value will be used. Only relevant if @use_impedances=True use_impedances (bool): If True, will use impedances via the mass matrix to modify the desired efforts applied mode (str): mode to use when computing IK. In all cases, position commands are 3DOF delta (dx,dy,dz) cartesian values, relative to the robot base frame. Valid options are: - "absolute_pose": 6DOF (dx,dy,dz,ax,ay,az) control over pose, where both the position and the orientation is given in absolute axis-angle coordinates - "pose_absolute_ori": 6DOF (dx,dy,dz,ax,ay,az) control over pose, where the orientation is given in absolute axis-angle coordinates - "pose_delta_ori": 6DOF (dx,dy,dz,dax,day,daz) control over pose - "position_fixed_ori": 3DOF (dx,dy,dz) control over position, with orientation commands being kept as fixed initial absolute orientation - "position_compliant_ori": 3DOF (dx,dy,dz) control over position, with orientation commands automatically being sent as 0s (so can drift over time) smoothing_filter_size (None or int): if specified, sets the size of a moving average filter to apply on all outputted IK joint positions. workspace_pose_limiter (None or function): if specified, callback method that should clip absolute target (x,y,z) cartesian position and absolute quaternion orientation (x,y,z,w) to a specific workspace range (i.e.: this can be unique to each robot, and implemented by each embodiment). Function signature should be: def limiter(target_pos: Array[float], target_quat: Array[float], control_dict: Dict[str, Any]) --> Tuple[Array[float], Array[float]] where target_pos is (x,y,z) cartesian position values, target_quat is (x,y,z,w) quarternion orientation values, and the returned tuple is the processed (pos, quat) command. condition_on_current_position (bool): if True, will use the current joint position as the initial guess for the IK algorithm. Otherwise, will use the reset_joint_pos as the initial guess. """ # Store arguments control_dim = len(dof_idx) self.control_filter = ( None if smoothing_filter_size in {None, 0} else MovingAverageFilter(obs_dim=control_dim, filter_width=smoothing_filter_size) ) assert mode in IK_MODES, f"Invalid ik mode specified! Valid options are: {IK_MODES}, got: {mode}" self.mode = mode self.workspace_pose_limiter = workspace_pose_limiter self.task_name = task_name self.reset_joint_pos = reset_joint_pos[dof_idx] self.condition_on_current_position = condition_on_current_position # Create the lula IKSolver self.solver = IKSolver( robot_description_path=robot_description_path, robot_urdf_path=robot_urdf_path, eef_name=eef_name, reset_joint_pos=self.reset_joint_pos, ) # Other variables that will be filled in at runtime self._fixed_quat_target = None # If the mode is set as absolute orientation and using default config, # change input and output limits accordingly. # By default, the input limits are set as 1, so we modify this to have a correct range. # The output orientation limits are also set to be values assuming delta commands, so those are updated too if self.mode == "pose_absolute_ori": if command_input_limits is not None: if command_input_limits == "default": command_input_limits = [ [-1.0, -1.0, -1.0, -np.pi, -np.pi, -np.pi], [1.0, 1.0, 1.0, np.pi, np.pi, np.pi], ] else: command_input_limits[0][3:] = -np.pi command_input_limits[1][3:] = np.pi if command_output_limits is not None: if command_output_limits == "default": command_output_limits = [ [-1.0, -1.0, -1.0, -np.pi, -np.pi, -np.pi], [1.0, 1.0, 1.0, np.pi, np.pi, np.pi], ] else: command_output_limits[0][3:] = -np.pi command_output_limits[1][3:] = np.pi # Run super init super().__init__( control_freq=control_freq, control_limits=control_limits, dof_idx=dof_idx, kp=kp, damping_ratio=damping_ratio, motor_type="position", use_delta_commands=False, use_impedances=use_impedances, command_input_limits=command_input_limits, command_output_limits=command_output_limits, ) def reset(self): # Call super first super().reset() # Reset the filter and clear internal control state if self.control_filter is not None: self.control_filter.reset() self._fixed_quat_target = None @property def state_size(self): # Add state size from the control filter return super().state_size + self.control_filter.state_size def _dump_state(self): # Run super first state = super()._dump_state() # Add internal quaternion target and filter state state["control_filter"] = self.control_filter.dump_state(serialized=False) return state def _load_state(self, state): # Run super first super()._load_state(state=state) # If self._goal is populated, then set fixed_quat_target as well if the mode uses it if self.mode == "position_fixed_ori" and self._goal is not None: self._fixed_quat_target = self._goal["target_quat"] # Load relevant info for this controller self.control_filter.load_state(state["control_filter"], serialized=False) def _serialize(self, state): # Run super first state_flat = super()._serialize(state=state) # Serialize state for this controller return np.concatenate([ state_flat, self.control_filter.serialize(state=state["control_filter"]), ]).astype(float) def _deserialize(self, state): # Run super first state_dict, idx = super()._deserialize(state=state) # Deserialize state for this controller state_dict["control_filter"] = self.control_filter.deserialize(state=state[idx: idx + self.control_filter.state_size]) return state_dict, idx + self.control_filter.state_size def _update_goal(self, command, control_dict): # Grab important info from control dict pos_relative = np.array(control_dict[f"{self.task_name}_pos_relative"]) quat_relative = np.array(control_dict[f"{self.task_name}_quat_relative"]) # Convert position command to absolute values if needed if self.mode == "absolute_pose": target_pos = command[:3] else: dpos = command[:3] target_pos = pos_relative + dpos # Compute orientation if self.mode == "position_fixed_ori": # We need to grab the current robot orientation as the commanded orientation if there is none saved if self._fixed_quat_target is None: self._fixed_quat_target = quat_relative.astype(np.float32) \ if (self._goal is None) else self._goal["target_quat"] target_quat = self._fixed_quat_target elif self.mode == "position_compliant_ori": # Target quat is simply the current robot orientation target_quat = quat_relative elif self.mode == "pose_absolute_ori" or self.mode == "absolute_pose": # Received "delta" ori is in fact the desired absolute orientation target_quat = T.axisangle2quat(command[3:6]) else: # pose_delta_ori control # Grab dori and compute target ori dori = T.quat2mat(T.axisangle2quat(command[3:6])) target_quat = T.mat2quat(dori @ T.quat2mat(quat_relative)) # Possibly limit to workspace if specified if self.workspace_pose_limiter is not None: target_pos, target_quat = self.workspace_pose_limiter(target_pos, target_quat, control_dict) goal_dict = dict( target_pos=target_pos, target_quat=target_quat, ) return goal_dict def compute_control(self, goal_dict, control_dict): """ Converts the (already preprocessed) inputted @command into deployable (non-clipped!) joint control signal. This processes the command based on self.mode, possibly clips the command based on self.workspace_pose_limiter, Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: target_pos: robot-frame (x,y,z) desired end effector position target_quat: robot-frame (x,y,z,w) desired end effector quaternion orientation control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions base_pos: (x,y,z) cartesian position of the robot's base relative to the static global frame base_quat: (x,y,z,w) quaternion orientation of the robot's base relative to the static global frame <@self.task_name>_pos_relative: (x,y,z) relative cartesian position of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_quat_relative: (x,y,z,w) relative quaternion orientation of the desired task frame to control, computed in its local frame (e.g.: robot base frame) Returns: Array[float]: outputted (non-clipped!) velocity control signal to deploy """ # Grab important info from control dict pos_relative = np.array(control_dict[f"{self.task_name}_pos_relative"]) quat_relative = np.array(control_dict[f"{self.task_name}_quat_relative"]) target_pos = goal_dict["target_pos"] target_quat = goal_dict["target_quat"] # Calculate and return IK-backed out joint angles current_joint_pos = control_dict["joint_position"][self.dof_idx] # If the delta is really small, we just keep the current joint position. This avoids joint # drift caused by IK solver inaccuracy even when zero delta actions are provided. if np.allclose(pos_relative, target_pos, atol=1e-4) and np.allclose(quat_relative, target_quat, atol=1e-4): target_joint_pos = current_joint_pos else: # Otherwise we try to solve for the IK configuration. if self.condition_on_current_position: target_joint_pos = self.solver.solve( target_pos=target_pos, target_quat=target_quat, tolerance_pos=m.IK_POS_TOLERANCE, tolerance_quat=m.IK_ORN_TOLERANCE, weight_pos=m.IK_POS_WEIGHT, weight_quat=m.IK_ORN_WEIGHT, max_iterations=m.IK_MAX_ITERATIONS, initial_joint_pos=current_joint_pos, ) else: target_joint_pos = self.solver.solve( target_pos=target_pos, target_quat=target_quat, tolerance_pos=m.IK_POS_TOLERANCE, tolerance_quat=m.IK_ORN_TOLERANCE, weight_pos=m.IK_POS_WEIGHT, weight_quat=m.IK_ORN_WEIGHT, max_iterations=m.IK_MAX_ITERATIONS, ) if target_joint_pos is None: # Print warning that we couldn't find a valid solution, and return the current joint configuration # instead so that we execute a no-op control if gm.DEBUG: log.warning(f"Could not find valid IK configuration! Returning no-op control instead.") target_joint_pos = current_joint_pos # Optionally pass through smoothing filter for better stability if self.control_filter is not None: target_joint_pos = self.control_filter.estimate(target_joint_pos) # Run super to reach desired position / velocity setpoint return super().compute_control(goal_dict=dict(target=target_joint_pos), control_dict=control_dict) def compute_no_op_goal(self, control_dict): # No-op is maintaining current pose return dict( target_pos=np.array(control_dict[f"{self.task_name}_pos_relative"]), target_quat=np.array(control_dict[f"{self.task_name}_quat_relative"]), ) def _get_goal_shapes(self): return dict( target_pos=(3,), target_quat=(4,), ) @property def command_dim(self): return IK_MODE_COMMAND_DIMS[self.mode]
18,891
Python
49.784946
158
0.616802
StanfordVL/OmniGibson/omnigibson/controllers/osc_controller.py
import numpy as np from numba import jit import omnigibson.utils.transform_utils as T from omnigibson.controllers import ControlType, ManipulationController from omnigibson.utils.control_utils import orientation_error from omnigibson.utils.processing_utils import MovingAverageFilter from omnigibson.utils.python_utils import nums2array, assert_valid_key from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) # Different modes OSC_MODE_COMMAND_DIMS = { "absolute_pose": 6, # 6DOF (x,y,z,ax,ay,az) control of pose, whether both position and orientation is given in absolute coordinates "pose_absolute_ori": 6, # 6DOF (dx,dy,dz,ax,ay,az) control over pose, where the orientation is given in absolute axis-angle coordinates "pose_delta_ori": 6, # 6DOF (dx,dy,dz,dax,day,daz) control over pose "position_fixed_ori": 3, # 3DOF (dx,dy,dz) control over position, with orientation commands being kept as fixed initial absolute orientation "position_compliant_ori": 3, # 3DOF (dx,dy,dz) control over position, with orientation commands automatically being sent as 0s (so can drift over time) } OSC_MODES = set(OSC_MODE_COMMAND_DIMS.keys()) class OperationalSpaceController(ManipulationController): """ Controller class to convert (delta or absolute) EEF commands into joint efforts using Operational Space Control This controller expects 6DOF delta commands (dx, dy, dz, dax, day, daz), where the delta orientation commands are in axis-angle form, and outputs low-level torque commands. Gains may also be considered part of the action space as well. In this case, the action space would be: ( dx, dy, dz, dax, day, daz <-- 6DOF delta eef commands [, kpx, kpy, kpz, kpax, kpay, kpaz] <-- kp gains [, drx dry, drz, drax, dray, draz] <-- damping ratio gains [, kpnx, kpny, kpnz, kpnax, kpnay, kpnaz] <-- kp null gains ) Note that in this case, we ASSUME that the inputted gains are normalized to be in the range [-1, 1], and will be mapped appropriately to their respective ranges, as defined by XX_limits Alternatively, parameters (in this case, kp or damping_ratio) can either be set during initialization or provided from an external source; if the latter, the control_dict should include the respective parameter(s) as a part of its keys Each controller step consists of the following: 1. Clip + Scale inputted command according to @command_input_limits and @command_output_limits 2. Run OSC to back out joint efforts for a desired task frame command 3. Clips the resulting command by the motor (effort) limits """ def __init__( self, task_name, control_freq, reset_joint_pos, control_limits, dof_idx, command_input_limits="default", command_output_limits=((-0.2, -0.2, -0.2, -0.5, -0.5, -0.5), (0.2, 0.2, 0.2, 0.5, 0.5, 0.5)), kp=150.0, kp_limits=(10.0, 300.), damping_ratio=1.0, damping_ratio_limits=(0.0, 2.0), kp_null=10.0, kp_null_limits=(0.0, 50.0), mode="pose_delta_ori", decouple_pos_ori=False, workspace_pose_limiter=None, ): """ Args: task_name (str): name assigned to this task frame for computing OSC control. During control calculations, the inputted control_dict should include entries named <@task_name>_pos_relative and <@task_name>_quat_relative. See self._command_to_control() for what these values should entail. control_freq (int): controller loop frequency reset_joint_pos (Array[float]): reset joint positions, used as part of nullspace controller in IK. Note that this should correspond to ALL the joints; the exact indices will be extracted via @dof_idx control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type kp (None, int, float, or array): Gain values to apply to 6DOF error. If None, will be variable (part of action space) kp_limits (2-array): (min, max) values of kp damping_ratio (None, int, float, or array): Damping ratio to apply to 6DOF error controller gain If None, will be variable (part of action space) damping_ratio_limits (2-array): (min, max) values of damping ratio kp_null (None, int, float, or array): Gain applied when calculating null torques If None, will be variable (part of action space) kp_null_limits (2-array): (min, max) values of kp_null mode (str): mode to use when computing IK. In all cases, position commands are 3DOF delta (dx,dy,dz) cartesian values, relative to the robot base frame. Valid options are: - "pose_absolute_ori": 6DOF (dx,dy,dz,ax,ay,az) control over pose, where the orientation is given in absolute axis-angle coordinates - "pose_delta_ori": 6DOF (dx,dy,dz,dax,day,daz) control over pose - "position_fixed_ori": 3DOF (dx,dy,dz) control over position, with orientation commands being kept as fixed initial absolute orientation - "position_compliant_ori": 3DOF (dx,dy,dz) control over position, with orientation commands automatically being sent as 0s (so can drift over time) decouple_pos_ori (bool): Whether to decouple position and orientation control or not workspace_pose_limiter (None or function): if specified, callback method that should clip absolute target (x,y,z) cartesian position and absolute quaternion orientation (x,y,z,w) to a specific workspace range (i.e.: this can be unique to each robot, and implemented by each embodiment). Function signature should be: def limiter(target_pos: Array[float], target_quat: Array[float], control_dict: Dict[str, Any]) --> Tuple[Array[float], Array[float]] where target_pos is (x,y,z) cartesian position values, target_quat is (x,y,z,w) quarternion orientation values, and the returned tuple is the processed (pos, quat) command. """ # Store arguments control_dim = len(dof_idx) # Store gains self.kp = nums2array(nums=kp, dim=6, dtype=np.float32) if kp is not None else None self.damping_ratio = damping_ratio self.kp_null = nums2array(nums=kp_null, dim=control_dim, dtype=np.float32) if kp_null is not None else None self.kd_null = 2 * np.sqrt(self.kp_null) if kp_null is not None else None # critically damped self.kp_limits = np.array(kp_limits, dtype=np.float32) self.damping_ratio_limits = np.array(damping_ratio_limits, dtype=np.float32) self.kp_null_limits = np.array(kp_null_limits, dtype=np.float32) # Store settings for whether we're learning gains or not self.variable_kp = self.kp is None self.variable_damping_ratio = self.damping_ratio is None self.variable_kp_null = self.kp_null is None # TODO: Add support for variable gains -- for now, just raise an error assert True not in {self.variable_kp, self.variable_damping_ratio, self.variable_kp_null}, \ "Variable gains with OSC is not supported yet!" # If the mode is set as absolute orientation and using default config, # change input and output limits accordingly. # By default, the input limits are set as 1, so we modify this to have a correct range. # The output orientation limits are also set to be values assuming delta commands, so those are updated too assert_valid_key(key=mode, valid_keys=OSC_MODES, name="OSC mode") self.mode = mode if self.mode == "pose_absolute_ori": if command_input_limits is not None: if command_input_limits == "default": command_input_limits = [ [-1.0, -1.0, -1.0, -np.pi, -np.pi, -np.pi], [1.0, 1.0, 1.0, np.pi, np.pi, np.pi], ] else: command_input_limits[0][3:] = -np.pi command_input_limits[1][3:] = np.pi if command_output_limits is not None: if command_output_limits == "default": command_output_limits = [ [-1.0, -1.0, -1.0, -np.pi, -np.pi, -np.pi], [1.0, 1.0, 1.0, np.pi, np.pi, np.pi], ] else: command_output_limits[0][3:] = -np.pi command_output_limits[1][3:] = np.pi is_input_limits_numeric = not (command_input_limits is None or isinstance(command_input_limits, str)) is_output_limits_numeric = not (command_output_limits is None or isinstance(command_output_limits, str)) command_input_limits = [nums2array(lim, dim=6, dtype=np.float32) for lim in command_input_limits] if is_input_limits_numeric else command_input_limits command_output_limits = [nums2array(lim, dim=6, dtype=np.float32) for lim in command_output_limits] if is_output_limits_numeric else command_output_limits # Modify input / output scaling based on whether we expect gains to be part of the action space self._command_dim = OSC_MODE_COMMAND_DIMS[self.mode] for variable_gain, gain_limits, dim in zip( (self.variable_kp, self.variable_damping_ratio, self.variable_kp_null), (self.kp_limits, self.damping_ratio_limits, self.kp_null_limits), (6, 6, control_dim), ): if variable_gain: # Add this to input / output limits if is_input_limits_numeric: command_input_limits = [np.concatenate([lim, nums2array(nums=val, dim=dim, dtype=np.float32)]) for lim, val in zip(command_input_limits, (-1, 1))] if is_output_limits_numeric: command_output_limits = [np.concatenate([lim, nums2array(nums=val, dim=dim, dtype=np.float32)]) for lim, val in zip(command_output_limits, gain_limits)] # Update command dim self._command_dim += dim # Other values self.decouple_pos_ori = decouple_pos_ori self.workspace_pose_limiter = workspace_pose_limiter self.task_name = task_name self.reset_joint_pos = reset_joint_pos[dof_idx].astype(np.float32) # Other variables that will be filled in at runtime self._fixed_quat_target = None # Run super init super().__init__( control_freq=control_freq, control_limits=control_limits, dof_idx=dof_idx, command_input_limits=command_input_limits, command_output_limits=command_output_limits, ) def reset(self): # Call super first super().reset() # Clear internal variables self._fixed_quat_target = None self._clear_variable_gains() def _load_state(self, state): # Run super first super()._load_state(state=state) # If self._goal is populated, then set fixed_quat_target as well if the mode uses it if self.mode == "position_fixed_ori" and self._goal is not None: self._fixed_quat_target = self._goal["target_quat"] def _clear_variable_gains(self): """ Helper function to clear any gains that are variable and considered part of actions """ if self.variable_kp: self.kp = None if self.variable_damping_ratio: self.damping_ratio = None if self.variable_kp_null: self.kp_null = None self.kd_null = None def _update_variable_gains(self, gains): """ Helper function to update any gains that are variable and considered part of actions Args: gains (n-array): array where n dim is parsed based on which gains are being learned """ idx = 0 if self.variable_kp: self.kp = gains[:, idx:idx + 6].astype(np.float32) idx += 6 if self.variable_damping_ratio: self.damping_ratio = gains[:, idx:idx + 6].astype(np.float32) idx += 6 if self.variable_kp_null: self.kp_null = gains[:, idx:idx + self.control_dim].astype(np.float32) self.kd_null = 2 * np.sqrt(self.kp_null) # critically damped idx += self.control_dim def _update_goal(self, command, control_dict): """ Updates the internal goal (ee pos and ee ori mat) based on the inputted delta command Args: command (n-array): Preprocessed command control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions <@self.task_name>_pos_relative: (x,y,z) relative cartesian position of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_quat_relative: (x,y,z,w) relative quaternion orientation of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_lin_vel_relative: (x,y,z) relative linear velocity of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_ang_vel_relative: (ax, ay, az) relative angular velocity of the desired task frame to control, computed in its local frame (e.g.: robot base frame) """ # Grab important info from control dict pos_relative = np.array(control_dict[f"{self.task_name}_pos_relative"]) quat_relative = np.array(control_dict[f"{self.task_name}_quat_relative"]) # Convert position command to absolute values if needed if self.mode == "absolute_pose": target_pos = command[:3] else: dpos = command[:3] target_pos = pos_relative + dpos # Compute orientation if self.mode == "position_fixed_ori": # We need to grab the current robot orientation as the commanded orientation if there is none saved if self._fixed_quat_target is None: self._fixed_quat_target = quat_relative.astype(np.float32) \ if (self._goal is None) else self._goal["target_quat"] target_quat = self._fixed_quat_target elif self.mode == "position_compliant_ori": # Target quat is simply the current robot orientation target_quat = quat_relative elif self.mode == "pose_absolute_ori" or self.mode == "absolute_pose": # Received "delta" ori is in fact the desired absolute orientation target_quat = T.axisangle2quat(command[3:6]) else: # pose_delta_ori control # Grab dori and compute target ori dori = T.quat2mat(T.axisangle2quat(command[3:6])) target_quat = T.mat2quat(dori @ T.quat2mat(quat_relative)) # Possibly limit to workspace if specified if self.workspace_pose_limiter is not None: target_pos, target_quat = self.workspace_pose_limiter(target_pos, target_quat, control_dict) gains = None # TODO! command[OSC_MODE_COMMAND_DIMS[self.mode]:] if gains is not None: self._update_variable_gains(gains=gains) # Set goals and return return dict( target_pos=target_pos.astype(np.float32), target_ori_mat=T.quat2mat(target_quat).astype(np.float32), ) def compute_control(self, goal_dict, control_dict): """ Computes low-level torque controls using internal eef goal pos / ori. Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: target_pos: robot-frame (x,y,z) desired end effector position target_quat: robot-frame (x,y,z,w) desired end effector quaternion orientation control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions joint_velocity: Array of current joint velocities mass_matrix: (N_dof, N_dof) Current mass matrix <@self.task_name>_jacobian_relative: (6, N_dof) Current jacobian matrix for desired task frame <@self.task_name>_pos_relative: (x,y,z) relative cartesian position of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_quat_relative: (x,y,z,w) relative quaternion orientation of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_lin_vel_relative: (x,y,z) relative linear velocity of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_ang_vel_relative: (ax, ay, az) relative angular velocity of the desired task frame to control, computed in its local frame (e.g.: robot base frame) control_dict (dict): Dictionary of state tensors including relevant info for controller computation Returns: n-array: low-level effort control actions, NOT post-processed """ # TODO: Update to possibly grab parameters from dict # For now, always use internal values kp = self.kp damping_ratio = self.damping_ratio kd = 2 * np.sqrt(kp) * damping_ratio # Extract relevant values from the control dict dof_idxs_mat = tuple(np.meshgrid(self.dof_idx, self.dof_idx)) q = control_dict["joint_position"][self.dof_idx] qd = control_dict["joint_velocity"][self.dof_idx] mm = control_dict["mass_matrix"][dof_idxs_mat] j_eef = control_dict[f"{self.task_name}_jacobian_relative"][:, self.dof_idx] ee_pos = control_dict[f"{self.task_name}_pos_relative"] ee_quat = control_dict[f"{self.task_name}_quat_relative"] ee_vel = np.concatenate([control_dict[f"{self.task_name}_lin_vel_relative"], control_dict[f"{self.task_name}_ang_vel_relative"]]) base_lin_vel = control_dict["root_rel_lin_vel"] base_ang_vel = control_dict["root_rel_ang_vel"] # Calculate torques u = _compute_osc_torques( q=q, qd=qd, mm=mm, j_eef=j_eef, ee_pos=ee_pos.astype(np.float32), ee_mat=T.quat2mat(ee_quat).astype(np.float32), ee_vel=ee_vel.astype(np.float32), goal_pos=goal_dict["target_pos"], goal_ori_mat=goal_dict["target_ori_mat"], kp=kp, kd=kd, kp_null=self.kp_null, kd_null=self.kd_null, rest_qpos=self.reset_joint_pos, control_dim=self.control_dim, decouple_pos_ori=self.decouple_pos_ori, base_lin_vel=base_lin_vel.astype(np.float32), base_ang_vel=base_ang_vel.astype(np.float32), ).flatten() # Apply gravity compensation from the control dict u += control_dict["gravity_force"][self.dof_idx] + control_dict["cc_force"][self.dof_idx] # Return the control torques return u def compute_no_op_goal(self, control_dict): # No-op is maintaining current pose target_pos = np.array(control_dict[f"{self.task_name}_pos_relative"]) target_quat = np.array(control_dict[f"{self.task_name}_quat_relative"]) # Convert quat into eef ori mat return dict( target_pos=target_pos.astype(np.float32), target_ori_mat=T.quat2mat(target_quat).astype(np.float32), ) def _get_goal_shapes(self): return dict( target_pos=(3,), target_ori_mat=(3, 3), ) @property def control_type(self): return ControlType.EFFORT @property def command_dim(self): return self._command_dim # Use numba since faster @jit(nopython=True) def _compute_osc_torques( q, qd, mm, j_eef, ee_pos, ee_mat, ee_vel, goal_pos, goal_ori_mat, kp, kd, kp_null, kd_null, rest_qpos, control_dim, decouple_pos_ori, base_lin_vel, base_ang_vel, ): # Compute the inverse mm_inv = np.linalg.inv(mm) # Calculate error pos_err = goal_pos - ee_pos ori_err = orientation_error(goal_ori_mat, ee_mat).astype(np.float32) err = np.concatenate((pos_err, ori_err)) # Vel target is the base velocity as experienced by the end effector # For angular velocity, this is just the base angular velocity # For linear velocity, this is the base linear velocity PLUS the net linear velocity experienced # due to the base linear velocity lin_vel_err = base_lin_vel + np.cross(base_ang_vel, ee_pos) vel_err = np.concatenate((lin_vel_err, base_ang_vel)) - ee_vel # Determine desired wrench err = np.expand_dims(kp * err + kd * vel_err, axis=-1) m_eef_inv = j_eef @ mm_inv @ j_eef.T m_eef = np.linalg.inv(m_eef_inv) if decouple_pos_ori: # # More efficient, but numba doesn't support 3D tensor operations yet # j_eef_batch = j_eef.reshape(2, 3, -1) # m_eef_pose_inv = np.matmul(np.matmul(j_eef_batch, np.expand_dims(mm_inv, axis=0)), np.transpose(j_eef_batch, (0, 2, 1))) # m_eef_pose = np.linalg.inv(m_eef_pose_inv) # Shape (2, 3, 3) # wrench = np.matmul(m_eef_pose, err.reshape(2, 3, 1)).flatten() m_eef_pos_inv = j_eef[:3, :] @ mm_inv @ j_eef[:3, :].T m_eef_ori_inv = j_eef[3:, :] @ mm_inv @ j_eef[3:, :].T m_eef_pos = np.linalg.inv(m_eef_pos_inv) m_eef_ori = np.linalg.inv(m_eef_ori_inv) wrench_pos = m_eef_pos @ err[:3, :] wrench_ori = m_eef_ori @ err[3:, :] wrench = np.concatenate((wrench_pos, wrench_ori)) else: wrench = m_eef @ err # Compute OSC torques u = j_eef.T @ wrench # Nullspace control torques `u_null` prevents large changes in joint configuration # They are added into the nullspace of OSC so that the end effector orientation remains constant # roboticsproceedings.org/rss07/p31.pdf if rest_qpos is not None: j_eef_inv = m_eef @ j_eef @ mm_inv u_null = kd_null * -qd + kp_null * ((rest_qpos - q + np.pi) % (2 * np.pi) - np.pi) u_null = mm @ np.expand_dims(u_null, axis=-1).astype(np.float32) u += (np.eye(control_dim, dtype=np.float32) - j_eef.T @ j_eef_inv) @ u_null return u
25,020
Python
49.649797
172
0.611791
StanfordVL/OmniGibson/omnigibson/controllers/null_joint_controller.py
import numpy as np from omnigibson.controllers import JointController class NullJointController(JointController): """ Dummy Controller class for a null-type of joint control (i.e.: no control or constant pass-through control). This class has a zero-size command space, and returns either an empty array for control if dof_idx is None else constant values as specified by @default_command (if not specified, uses zeros) """ def __init__( self, control_freq, motor_type, control_limits, dof_idx, command_input_limits="default", command_output_limits="default", default_command=None, kp=None, damping_ratio=None, use_impedances=False, ): """ Args: control_freq (int): controller loop frequency control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type default_command (None or n-array): if specified, should be the same length as @dof_idx, specifying the default control for this controller to output kp (None or float): If @motor_type is "position" or "velocity" and @use_impedances=True, this is the proportional gain applied to the joint controller. If None, a default value will be used. damping_ratio (None or float): If @motor_type is "position" and @use_impedances=True, this is the damping ratio applied to the joint controller. If None, a default value will be used. use_impedances (bool): If True, will use impedances via the mass matrix to modify the desired efforts applied """ # Store values self._default_command = np.zeros(len(dof_idx)) if default_command is None else np.array(default_command) # Run super init super().__init__( control_freq=control_freq, motor_type=motor_type, control_limits=control_limits, dof_idx=dof_idx, command_input_limits=command_input_limits, command_output_limits=command_output_limits, kp=kp, damping_ratio=damping_ratio, use_impedances=use_impedances, use_delta_commands=False, ) def compute_no_op_goal(self, control_dict): # Set the goal to be internal stored default value return dict(target=self._default_command) def _preprocess_command(self, command): # Override super and force the processed command to be internal stored default value return np.array(self._default_command) def update_default_goal(self, target): """ Updates the internal default command value. Args: target (n-array): New default command values to set for this controller. Should be of dimension @command_dim """ assert len(target) == self.control_dim, \ f"Default control must be length: {self.control_dim}, got length: {len(target)}" self._default_command = np.array(target)
4,495
Python
46.829787
116
0.625362
StanfordVL/OmniGibson/omnigibson/controllers/__init__.py
from omnigibson.controllers.controller_base import ( REGISTERED_CONTROLLERS, REGISTERED_LOCOMOTION_CONTROLLERS, REGISTERED_MANIPULATION_CONTROLLERS, IsGraspingState, ControlType, LocomotionController, ManipulationController, GripperController, ) from omnigibson.controllers.dd_controller import DifferentialDriveController from omnigibson.controllers.osc_controller import OperationalSpaceController from omnigibson.controllers.ik_controller import InverseKinematicsController from omnigibson.controllers.joint_controller import JointController from omnigibson.controllers.multi_finger_gripper_controller import MultiFingerGripperController from omnigibson.controllers.null_joint_controller import NullJointController from omnigibson.utils.python_utils import assert_valid_key def create_controller(name, **kwargs): """ Creates a controller of type @name with corresponding necessary keyword arguments @kwargs Args: name (str): type of controller to use (e.g. JointController, InverseKinematicsController, etc.) **kwargs: Any relevant keyword arguments to pass to the controller Returns: Controller: created controller """ assert_valid_key(key=name, valid_keys=REGISTERED_CONTROLLERS, name="controller") controller_cls = REGISTERED_CONTROLLERS[name] return controller_cls(**kwargs)
1,375
Python
38.314285
103
0.794182
StanfordVL/OmniGibson/omnigibson/controllers/dd_controller.py
import numpy as np from omnigibson.controllers import ControlType, LocomotionController class DifferentialDriveController(LocomotionController): """ Differential drive (DD) controller for controlling two independently controlled wheeled joints. Each controller step consists of the following: 1. Clip + Scale inputted command according to @command_input_limits and @command_output_limits 2. Convert desired (lin_vel, ang_vel) command into (left, right) wheel joint velocity control signals 3. Clips the resulting command by the joint velocity limits """ def __init__( self, wheel_radius, wheel_axle_length, control_freq, control_limits, dof_idx, command_input_limits="default", command_output_limits="default", ): """ Args: wheel_radius (float): radius of the wheels (both assumed to be same radius) wheel_axle_length (float): perpendicular distance between the two wheels control_freq (int): controller loop frequency control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the maximum linear and angular velocities calculated from @wheel_radius, @wheel_axle_length, and @control_limits velocity limits entry """ # Store internal variables self._wheel_radius = wheel_radius self._wheel_axle_halflength = wheel_axle_length / 2.0 # If we're using default command output limits, map this to maximum linear / angular velocities if command_output_limits == "default": min_vels = control_limits["velocity"][0][dof_idx] assert ( min_vels[0] == min_vels[1] ), "Differential drive requires both wheel joints to have same min velocities!" max_vels = control_limits["velocity"][1][dof_idx] assert ( max_vels[0] == max_vels[1] ), "Differential drive requires both wheel joints to have same max velocities!" assert abs(min_vels[0]) == abs( max_vels[0] ), "Differential drive requires both wheel joints to have same min and max absolute velocities!" max_lin_vel = max_vels[0] * wheel_radius max_ang_vel = max_lin_vel * 2.0 / wheel_axle_length command_output_limits = ((-max_lin_vel, -max_ang_vel), (max_lin_vel, max_ang_vel)) # Run super init super().__init__( control_freq=control_freq, control_limits=control_limits, dof_idx=dof_idx, command_input_limits=command_input_limits, command_output_limits=command_output_limits, ) def _update_goal(self, command, control_dict): # Directly store command as the velocity goal return dict(vel=command) def compute_control(self, goal_dict, control_dict): """ Converts the (already preprocessed) inputted @command into deployable (non-clipped!) joint control signal. This processes converts the desired (lin_vel, ang_vel) command into (left, right) wheel joint velocity control signals. Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: vel: desired (lin_vel, ang_vel) of the controlled body control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: Returns: Array[float]: outputted (non-clipped!) velocity control signal to deploy to the [left, right] wheel joints """ lin_vel, ang_vel = goal_dict["vel"] # Convert to wheel velocities left_wheel_joint_vel = (lin_vel - ang_vel * self._wheel_axle_halflength) / self._wheel_radius right_wheel_joint_vel = (lin_vel + ang_vel * self._wheel_axle_halflength) / self._wheel_radius # Return desired velocities return np.array([left_wheel_joint_vel, right_wheel_joint_vel]) def compute_no_op_goal(self, control_dict): # This is zero-vector, since we want zero linear / angular velocity return dict(vel=np.zeros(2)) def _get_goal_shapes(self): # Add (2, )-array representing linear, angular velocity return dict(vel=(2,)) @property def control_type(self): return ControlType.VELOCITY @property def command_dim(self): # [lin_vel, ang_vel] return 2
6,042
Python
46.210937
118
0.625455
StanfordVL/OmniGibson/omnigibson/controllers/multi_finger_gripper_controller.py
import numpy as np from omnigibson.macros import create_module_macros from omnigibson.controllers import IsGraspingState, ControlType, GripperController from omnigibson.utils.python_utils import assert_valid_key VALID_MODES = { "binary", "smooth", "independent", } # Create settings for this module m = create_module_macros(module_path=__file__) # is_grasping heuristics parameters m.POS_TOLERANCE = 0.002 # arbitrary heuristic m.VEL_TOLERANCE = 0.01 # arbitrary heuristic class MultiFingerGripperController(GripperController): """ Controller class for multi finger gripper control. This either interprets an input as a binary command (open / close), continuous command (open / close with scaled velocities), or per-joint continuous command Each controller step consists of the following: 1. Clip + Scale inputted command according to @command_input_limits and @command_output_limits 2a. Convert command into gripper joint control signals 2b. Clips the resulting control by the motor limits """ def __init__( self, control_freq, motor_type, control_limits, dof_idx, command_input_limits="default", command_output_limits="default", inverted=False, mode="binary", open_qpos=None, closed_qpos=None, limit_tolerance=0.001, ): """ Args: control_freq (int): controller loop frequency motor_type (str): type of motor being controlled, one of {position, velocity, effort} control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type inverted (bool): whether or not the command direction (grasp is negative) and the control direction are inverted, e.g. to grasp you need to move the joint in the positive direction. mode (str): mode for this controller. Valid options are: "binary": 1D command, if preprocessed value > 0 is interpreted as an max open (send max pos / vel / tor signal), otherwise send max close control signals "smooth": 1D command, sends symmetric signal to both finger joints equal to the preprocessed commands "independent": 2D command, sends independent signals to each finger joint equal to the preprocessed command open_qpos (None or Array[float]): If specified, the joint positions representing a fully-opened gripper. This is to allow representing the open state as a partially opened gripper, rather than the full opened gripper. If None, will simply use the native joint limits of the gripper joints. Only relevant if using @mode=binary and @motor_type=position closed_qpos (None or Array[float]): If specified, the joint positions representing a fully-closed gripper. This is to allow representing the closed state as a partially closed gripper, rather than the full closed gripper. If None, will simply use the native joint limits of the gripper joints. Only relevant if using @mode=binary and @motor_type=position limit_tolerance (float): sets the tolerance from the joint limit ends, below which controls will be zeroed out if the control is using velocity or torque control """ # Store arguments assert_valid_key(key=motor_type.lower(), valid_keys=ControlType.VALID_TYPES_STR, name="motor_type") self._motor_type = motor_type.lower() assert_valid_key(key=mode, valid_keys=VALID_MODES, name="mode for multi finger gripper") self._inverted = inverted self._mode = mode self._limit_tolerance = limit_tolerance self._open_qpos = open_qpos if open_qpos is None else np.array(open_qpos) self._closed_qpos = closed_qpos if closed_qpos is None else np.array(closed_qpos) # Create other args to be filled in at runtime self._is_grasping = IsGraspingState.FALSE # If we're using binary signal, we override the command output limits if mode == "binary": command_output_limits = (-1.0, 1.0) # Run super init super().__init__( control_freq=control_freq, control_limits=control_limits, dof_idx=dof_idx, command_input_limits=command_input_limits, command_output_limits=command_output_limits, ) def reset(self): # Call super first super().reset() # reset grasping state self._is_grasping = IsGraspingState.FALSE def _preprocess_command(self, command): # We extend this method to make sure command is always 2D if self._mode != "independent": command = ( np.array([command] * self.command_dim) if type(command) in {int, float} else np.array([command[0]] * self.command_dim) ) # Flip the command if the direction is inverted. if self._inverted: command = self._command_input_limits[1] - (command - self._command_input_limits[0]) # Return from super method return super()._preprocess_command(command=command) def _update_goal(self, command, control_dict): # Directly store command as the goal return dict(target=command) def compute_control(self, goal_dict, control_dict): """ Converts the (already preprocessed) inputted @command into deployable (non-clipped!) gripper joint control signal Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: target: desired gripper target control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions joint_velocity: Array of current joint velocities Returns: Array[float]: outputted (non-clipped!) control signal to deploy """ target = goal_dict["target"] joint_pos = control_dict["joint_position"][self.dof_idx] # Choose what to do based on control mode if self._mode == "binary": # Use max control signal if target[0] >= 0.0: u = self._control_limits[ControlType.get_type(self._motor_type)][1][self.dof_idx] \ if self._open_qpos is None else self._open_qpos else: u = self._control_limits[ControlType.get_type(self._motor_type)][0][self.dof_idx] \ if self._closed_qpos is None else self._closed_qpos else: # Use continuous signal u = target # If we're near the joint limits and we're using velocity / torque control, we zero out the action if self._motor_type in {"velocity", "torque"}: violate_upper_limit = ( joint_pos > self._control_limits[ControlType.POSITION][1][self.dof_idx] - self._limit_tolerance ) violate_lower_limit = ( joint_pos < self._control_limits[ControlType.POSITION][0][self.dof_idx] + self._limit_tolerance ) violation = np.logical_or(violate_upper_limit * (u > 0), violate_lower_limit * (u < 0)) u *= ~violation # Update whether we're grasping or not self._update_grasping_state(control_dict=control_dict) # Return control return u def _update_grasping_state(self, control_dict): """ Updates internal inferred grasping state of the gripper being controlled by this gripper controller Args: control_dict (dict): dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions joint_velocity: Array of current joint velocities """ # Calculate grasping state based on mode of this controller # Independent mode of MultiFingerGripperController does not have any good heuristics to determine is_grasping if self._mode == "independent": is_grasping = IsGraspingState.UNKNOWN # No control has been issued before -- we assume not grasping elif self._control is None: is_grasping = IsGraspingState.FALSE else: assert np.all( self._control == self._control[0] ), f"MultiFingerGripperController has different values in the command for non-independent mode: {self._control}" assert m.POS_TOLERANCE > self._limit_tolerance, ( "Joint position tolerance for is_grasping heuristics checking is smaller than or equal to the " "gripper controller's tolerance of zero-ing out velocities, which makes the heuristics invalid." ) finger_pos = control_dict["joint_position"][self.dof_idx] # For joint position control, if the desired positions are the same as the current positions, is_grasping unknown if ( self._motor_type == "position" and np.mean(np.abs(finger_pos - self._control)) < m.POS_TOLERANCE ): is_grasping = IsGraspingState.UNKNOWN # For joint velocity / torque control, if the desired velocities / torques are zeros, is_grasping unknown elif ( self._motor_type in {"velocity", "torque"} and np.mean(np.abs(self._control)) < m.VEL_TOLERANCE ): is_grasping = IsGraspingState.UNKNOWN # Otherwise, the last control signal intends to "move" the gripper else: finger_vel = control_dict["joint_velocity"][self.dof_idx] min_pos = self._control_limits[ControlType.POSITION][0][self.dof_idx] max_pos = self._control_limits[ControlType.POSITION][1][self.dof_idx] # Make sure we don't have any invalid values (i.e.: fingers should be within the limits) assert np.all( (min_pos <= finger_pos) * (finger_pos <= max_pos) ), f"Got invalid finger joint positions when checking for grasp! " \ f"min: {min_pos}, max: {max_pos}, finger_pos: {finger_pos}" # Check distance from both ends of the joint limits dist_from_lower_limit = finger_pos - min_pos dist_from_upper_limit = max_pos - finger_pos # If the joint positions are not near the joint limits with some tolerance (m.POS_TOLERANCE) valid_grasp_pos = ( np.mean(dist_from_lower_limit) > m.POS_TOLERANCE and np.mean(dist_from_upper_limit) > m.POS_TOLERANCE ) # And the joint velocities are close to zero with some tolerance (m.VEL_TOLERANCE) valid_grasp_vel = np.all(np.abs(finger_vel) < m.VEL_TOLERANCE) # Then the gripper is grasping something, which stops the gripper from reaching its desired state is_grasping = ( IsGraspingState.TRUE if valid_grasp_pos and valid_grasp_vel else IsGraspingState.FALSE ) # Store calculated state self._is_grasping = is_grasping def compute_no_op_goal(self, control_dict): # Just use a zero vector return dict(target=np.zeros(self.command_dim)) def _get_goal_shapes(self): return dict(target=(self.command_dim,)) def is_grasping(self): # Return cached value return self._is_grasping @property def control_type(self): return ControlType.get_type(type_str=self._motor_type) @property def command_dim(self): return len(self.dof_idx) if self._mode == "independent" else 1
13,703
Python
46.255172
125
0.619353
StanfordVL/OmniGibson/omnigibson/controllers/controller_base.py
from collections.abc import Iterable from enum import IntEnum import numpy as np from omnigibson.utils.python_utils import classproperty, assert_valid_key, Serializable, Registerable, Recreatable # Global dicts that will contain mappings REGISTERED_CONTROLLERS = dict() REGISTERED_LOCOMOTION_CONTROLLERS = dict() REGISTERED_MANIPULATION_CONTROLLERS = dict() REGISTERED_GRIPPER_CONTROLLERS = dict() def register_locomotion_controller(cls): if cls.__name__ not in REGISTERED_LOCOMOTION_CONTROLLERS: REGISTERED_LOCOMOTION_CONTROLLERS[cls.__name__] = cls def register_manipulation_controller(cls): if cls.__name__ not in REGISTERED_MANIPULATION_CONTROLLERS: REGISTERED_MANIPULATION_CONTROLLERS[cls.__name__] = cls def register_gripper_controller(cls): if cls.__name__ not in REGISTERED_GRIPPER_CONTROLLERS: REGISTERED_GRIPPER_CONTROLLERS[cls.__name__] = cls class IsGraspingState(IntEnum): TRUE = 1 UNKNOWN = 0 FALSE = -1 # Define macros class ControlType: NONE = -1 POSITION = 0 VELOCITY = 1 EFFORT = 2 _MAPPING = { "none": NONE, "position": POSITION, "velocity": VELOCITY, "effort": EFFORT, } VALID_TYPES = set(_MAPPING.values()) VALID_TYPES_STR = set(_MAPPING.keys()) @classmethod def get_type(cls, type_str): """ Args: type_str (str): One of "position", "velocity", or "effort" (any case), and maps it to the corresponding type Returns: ControlType: control type corresponding to the associated string """ assert_valid_key(key=type_str.lower(), valid_keys=cls._MAPPING, name="control type") return cls._MAPPING[type_str.lower()] class BaseController(Serializable, Registerable, Recreatable): """ An abstract class with interface for mapping specific types of commands to deployable control signals. """ def __init__( self, control_freq, control_limits, dof_idx, command_input_limits="default", command_output_limits="default", ): """ Args: control_freq (int): controller loop frequency control_limits (Dict[str, Tuple[Array[float], Array[float]]]): The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.: "position": [[min], [max]] "velocity": [[min], [max]] "effort": [[min], [max]] "has_limit": [...bool...] Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. dof_idx (Array[int]): specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations command_input_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) command_output_limits (None or "default" or Tuple[float, float] or Tuple[Array[float], Array[float]]): if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type """ # Store arguments self._control_freq = control_freq self._control_limits = {} for motor_type in {"position", "velocity", "effort"}: if motor_type not in control_limits: continue self._control_limits[ControlType.get_type(motor_type)] = [ np.array(control_limits[motor_type][0]), np.array(control_limits[motor_type][1]), ] assert "has_limit" in control_limits, "Expected has_limit specified in control_limits, but does not exist." self._dof_has_limits = control_limits["has_limit"] self._dof_idx = np.array(dof_idx, dtype=int) # Generate goal information self._goal_shapes = self._get_goal_shapes() self._goal_dim = int(np.sum([np.product(shape) for shape in self._goal_shapes.values()])) # Initialize some other variables that will be filled in during runtime self._control = None self._goal = None self._command_scale_factor = None self._command_output_transform = None self._command_input_transform = None # Standardize command input / output limits to be (min_array, max_array) command_input_limits = (-1.0, 1.0) if command_input_limits == "default" else command_input_limits command_output_limits = ( ( np.array(self._control_limits[self.control_type][0])[self.dof_idx], np.array(self._control_limits[self.control_type][1])[self.dof_idx], ) if command_output_limits == "default" else command_output_limits ) self._command_input_limits = ( None if command_input_limits is None else ( self.nums2array(command_input_limits[0], self.command_dim), self.nums2array(command_input_limits[1], self.command_dim), ) ) self._command_output_limits = ( None if command_output_limits is None else ( self.nums2array(command_output_limits[0], self.command_dim), self.nums2array(command_output_limits[1], self.command_dim), ) ) def _preprocess_command(self, command): """ Clips + scales inputted @command according to self.command_input_limits and self.command_output_limits. If self.command_input_limits is None, then no clipping will occur. If either self.command_input_limits or self.command_output_limits is None, then no scaling will occur. Args: command (Array[float] or float): Inputted command vector Returns: Array[float]: Processed command vector """ # Make sure command is a np.array command = np.array([command]) if type(command) in {int, float} else np.array(command) # We only clip and / or scale if self.command_input_limits exists if self._command_input_limits is not None: # Clip command = command.clip(*self._command_input_limits) if self._command_output_limits is not None: # If we haven't calculated how to scale the command, do that now (once) if self._command_scale_factor is None: self._command_scale_factor = abs( self._command_output_limits[1] - self._command_output_limits[0] ) / abs(self._command_input_limits[1] - self._command_input_limits[0]) self._command_output_transform = ( self._command_output_limits[1] + self._command_output_limits[0] ) / 2.0 self._command_input_transform = (self._command_input_limits[1] + self._command_input_limits[0]) / 2.0 # Scale command command = ( command - self._command_input_transform ) * self._command_scale_factor + self._command_output_transform # Return processed command return command def update_goal(self, command, control_dict): """ Updates inputted @command internally, writing any necessary internal variables as needed. Args: command (Array[float]): inputted command to preprocess and extract relevant goal(s) to store internally in this controller control_dict (dict): Current state """ # Sanity check the command assert len(command) == self.command_dim, \ f"Commands must be dimension {self.command_dim}, got dim {len(command)} instead." # Preprocess and run internal command self._goal = self._update_goal(command=self._preprocess_command(np.array(command)), control_dict=control_dict) def _update_goal(self, command, control_dict): """ Updates inputted @command internally, writing any necessary internal variables as needed. Args: command (Array[float]): inputted (preprocessed!) command and extract relevant goal(s) to store internally in this controller control_dict (dict): Current state Returns: dict: Keyword-mapped goals to store internally in this controller """ raise NotImplementedError def compute_control(self, goal_dict, control_dict): """ Converts the (already preprocessed) inputted @command into deployable (non-clipped!) control signal. Should be implemented by subclass. Args: goal_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped goals necessary for controller computation control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation Returns: Array[float]: outputted (non-clipped!) control signal to deploy """ raise NotImplementedError def clip_control(self, control): """ Clips the inputted @control signal based on @control_limits. Args: control (Array[float]): control signal to clip Returns: Array[float]: Clipped control signal """ clipped_control = control.clip( self._control_limits[self.control_type][0][self.dof_idx], self._control_limits[self.control_type][1][self.dof_idx], ) idx = ( self._dof_has_limits[self.dof_idx] if self.control_type == ControlType.POSITION else [True] * self.control_dim ) control[idx] = clipped_control[idx] return control def step(self, control_dict): """ Take a controller step. Args: control_dict (Dict[str, Any]): dictionary that should include any relevant keyword-mapped states necessary for controller computation Returns: Array[float]: numpy array of outputted control signals """ # Generate no-op goal if not specified if self._goal is None: self._goal = self.compute_no_op_goal(control_dict=control_dict) # Compute control, then clip and return control = self.compute_control(goal_dict=self._goal, control_dict=control_dict) self._control = self.clip_control(control=control) return self._control def reset(self): """ Resets this controller. Can be extended by subclass """ self._goal = None def compute_no_op_goal(self, control_dict): """ Compute no-op goal given the current state @control_dict Args: control_dict (dict): Current state Returns: dict: Maps relevant goal keys (from self._goal_shapes.keys()) to relevant goal data to be used in controller computations """ raise NotImplementedError def _dump_state(self): # Default is just the command return dict( goal_is_valid=self._goal is not None, goal=self._goal, ) def _load_state(self, state): # Make sure every entry in goal is a numpy array # Load goal self._goal = None if state["goal"] is None else {name: np.array(goal_state) for name, goal_state in state["goal"].items()} def _serialize(self, state): # Make sure size of the state is consistent, even if we have no goal goal_state_flattened = np.concatenate([goal_state.flatten() for goal_state in self._goal.values()]) if ( state)["goal_is_valid"] else np.zeros(self.goal_dim) return np.concatenate([ [state["goal_is_valid"]], goal_state_flattened, ]) def _deserialize(self, state): goal_is_valid = bool(state[0]) if goal_is_valid: # Un-flatten all the keys idx = 1 goal = dict() for key, shape in self._goal_shapes.items(): length = np.product(shape) goal[key] = state[idx:idx+length].reshape(shape) idx += length else: goal = None state_dict = dict( goal_is_valid=goal_is_valid, goal=goal, ) return state_dict, self.goal_dim + 1 def _get_goal_shapes(self): """ Returns: dict: Maps keyword in @self.goal to its corresponding numerical shape. This should be static and analytically computed prior to any controller steps being taken """ raise NotImplementedError @staticmethod def nums2array(nums, dim): """ Convert input @nums into numpy array of length @dim. If @nums is a single number, broadcasts it to the corresponding dimension size @dim before converting into a numpy array Args: nums (numeric or Iterable): Either single value or array of numbers dim (int): Size of array to broadcast input to Returns: np.array: Array filled with values specified in @nums """ # First run sanity check to make sure no strings are being inputted if isinstance(nums, str): raise TypeError("Error: Only numeric inputs are supported for this function, nums2array!") # Check if input is an Iterable, if so, we simply convert the input to np.array and return # Else, input is a single value, so we map to a numpy array of correct size and return return np.array(nums) if isinstance(nums, Iterable) else np.ones(dim) * nums @property def state_size(self): # Default is goal dim + 1 (for whether the goal is valid or not) return self.goal_dim + 1 @property def goal(self): """ Returns: dict: Current goal for this controller. Maps relevant goal keys to goal values to be used during controller step computations """ return self._goal @property def goal_dim(self): """ Returns: int: Expected size of flattened, internal goals """ return self._goal_dim @property def control(self): """ Returns: n-array: Array of most recent controls deployed by this controller """ return self._control @property def control_freq(self): """ Returns: float: Control frequency (Hz) of this controller """ return self._control_freq @property def control_dim(self): """ Returns: int: Expected size of outputted controls """ return len(self.dof_idx) @property def control_type(self): """ Returns: ControlType: Type of control returned by this controller """ raise NotImplementedError @property def command_input_limits(self): """ Returns: None or 2-tuple: If specified, returns (min, max) command input limits for this controller, where @min and @max are numpy float arrays of length self.command_dim. Otherwise, returns None """ return self._command_input_limits @property def command_output_limits(self): """ Returns: None or 2-tuple: If specified, returns (min, max) command output limits for this controller, where @min and @max are numpy float arrays of length self.command_dim. Otherwise, returns None """ return self._command_output_limits @property def command_dim(self): """ Returns: int: Expected size of inputted commands """ raise NotImplementedError @property def dof_idx(self): """ Returns: Array[int]: DOF indices corresponding to the specific DOFs being controlled by this robot """ return np.array(self._dof_idx) @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseController") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_CONTROLLERS return REGISTERED_CONTROLLERS class LocomotionController(BaseController): """ Controller to control locomotion. All implemented controllers that encompass locomotion capabilities should extend from this class. """ def __init_subclass__(cls, **kwargs): # Register as part of locomotion controllers super().__init_subclass__(**kwargs) register_locomotion_controller(cls) @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("LocomotionController") return classes class ManipulationController(BaseController): """ Controller to control manipulation. All implemented controllers that encompass manipulation capabilities should extend from this class. """ def __init_subclass__(cls, **kwargs): # Register as part of manipulation controllers super().__init_subclass__(**kwargs) register_manipulation_controller(cls) @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("ManipulationController") return classes class GripperController(BaseController): """ Controller to control a gripper. All implemented controllers that encompass gripper capabilities should extend from this class. """ def __init_subclass__(cls, **kwargs): # Register as part of gripper controllers super().__init_subclass__(**kwargs) register_gripper_controller(cls) def is_grasping(self): """ Checks whether the current state of this gripper being controlled is in a grasping state. Should be implemented by subclass. Returns: IsGraspingState: Grasping state of gripper """ raise NotImplementedError() @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("GripperController") return classes
19,354
Python
35.313321
130
0.608195
StanfordVL/OmniGibson/omnigibson/systems/macro_particle_system.py
import os import matplotlib.pyplot as plt import trimesh import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import gm, create_module_macros from omnigibson.prims.xform_prim import XFormPrim from omnigibson.systems.system_base import BaseSystem, VisualParticleSystem, PhysicalParticleSystem, REGISTERED_SYSTEMS from omnigibson.utils.constants import PrimType from omnigibson.utils.python_utils import classproperty, subclass_factory, snake_case_to_camel_case from omnigibson.utils.sampling_utils import sample_cuboid_on_object_symmetric_bimodal_distribution import omnigibson.utils.transform_utils as T from omnigibson.utils.usd_utils import FlatcacheAPI from omnigibson.prims.geom_prim import VisualGeomPrim, CollisionVisualGeomPrim import numpy as np from scipy.spatial.transform import Rotation as R from omnigibson.utils.ui_utils import create_module_logger, suppress_omni_log # Create module logger log = create_module_logger(module_name=__name__) # Create settings for this module m = create_module_macros(module_path=__file__) m.MIN_PARTICLE_RADIUS = 0.01 # Minimum particle radius for physical macro particles -- this reduces the chance of omni physx crashing class MacroParticleSystem(BaseSystem): """ Global system for modeling "macro" level particles, e.g.: dirt, dust, etc. """ # Template object to use -- class particle objet is assumed to be the first and only visual mesh belonging to the # root link of this template object, which symbolizes a single particle, and will be duplicated to generate the # particle system. Note that this object is NOT part of the actual particle system itself! _particle_template = None # dict, array of particle objects, mapped by their prim names particles = None # Counter to increment monotonically as we add more particles _particle_counter = None # Color associated with this system (NOTE: external queries should call cls.color) _color = None @classmethod def initialize(cls): # Run super method first super().initialize() # Initialize mutable class variables so they don't automatically get overridden by children classes cls.particles = dict() cls._particle_counter = 0 # Create the system prim -- this is merely a scope prim og.sim.stage.DefinePrim(f"/World/{cls.name}", "Scope") # Load the particle template, and make it kinematic only because it's not interacting with anything particle_template = cls._create_particle_template() og.sim.import_object(obj=particle_template, register=False) # Make sure template scaling is [1, 1, 1] -- any particle scaling should be done via cls.min/max_scale assert np.all(particle_template.scale == 1.0) # Make sure there is no ambiguity about which mesh to use as the particle from this template assert len(particle_template.links) == 1, "MacroParticleSystem particle template has more than one link" assert len(particle_template.root_link.visual_meshes) == 1, "MacroParticleSystem particle template has more than one visual mesh" cls._particle_template = particle_template # Class particle objet is assumed to be the first and only visual mesh belonging to the root link cls.particle_object.material.shader_force_populate(render=True) cls.process_particle_object() @classproperty def particle_object(cls): return list(cls._particle_template.root_link.visual_meshes.values())[0] @classproperty def particle_idns(cls): """ Returns: set: idn of all the particles across all groups. """ return {cls.particle_name2idn(particle_name) for particle_name in cls.particles} @classproperty def next_available_particle_idn(cls): """ Returns: int: the next available particle idn across all groups. """ return cls._particle_counter @classmethod def _create_particle_template(cls): """ Creates the particle template to be used for this system. NOTE: The loaded particle template is expected to be a non-articulated, single-link object with a single visual mesh attached to its root link, since this will be the actual visual mesh used Returns: EntityPrim: Particle template that will be duplicated when generating future particle groups """ raise NotImplementedError() @classmethod def remove_all_particles(cls): # Use list explicitly to prevent mid-loop mutation of dict for particle_name in tuple(cls.particles.keys()): cls.remove_particle_by_name(name=particle_name) @classmethod def reset(cls): # Call super first super().reset() # Reset the particle counter cls._particle_counter = 0 @classmethod def _clear(cls): # Clear all internal state og.sim.remove_object(cls._particle_template) super()._clear() cls._particle_template = None cls.particles = None cls._color = None @classproperty def n_particles(cls): return len(cls.particles) @classproperty def material(cls): return cls.particle_object.material @classproperty def particle_name_prefix(cls): """ Returns: str: Naming prefix used for all generated particles. This is coupled with the unique particle ID to generate the full particle name """ return f"{cls.name}Particle" @classproperty def state_size(cls): # In additon to super, we have: # scale (3*n), and particle counter (1) return super().state_size + 3 * cls.n_particles + 1 @classmethod def _dump_state(cls): state = super()._dump_state() state["scales"] = np.array([particle.scale for particle in cls.particles.values()]) state["particle_counter"] = cls._particle_counter return state @classmethod def _load_state(cls, state): # Run super first super()._load_state(state=state) # Set particle scales for particle, scale in zip(cls.particles.values(), state["scales"]): particle.scale = scale # Set particle counter cls._particle_counter = state["particle_counter"] @classmethod def _serialize(cls, state): # Run super first states_flat = super()._serialize(state=state) # Add particle scales, then the template info return np.concatenate([ states_flat, state["scales"].flatten(), [state["particle_counter"]], ], dtype=float) @classmethod def _deserialize(cls, state): # Run super first state_dict, idx = super()._deserialize(state=state) # Infer how many scales we have, then deserialize n_particles = state_dict["n_particles"] len_scales = n_particles * 3 state_dict["scales"] = state[idx:idx+len_scales].reshape(-1, 3) state_dict["particle_counter"] = int(state[idx+len_scales]) return state_dict, idx + len_scales + 1 @classmethod def process_particle_object(cls): """ Perform any necessary processing on the particle object to extract further information. """ # Update color if the particle object has any material color = np.ones(3) if cls.particle_object.has_material(): if cls.particle_object.material.is_glass: color = cls.particle_object.material.glass_color else: diffuse_texture = cls.particle_object.material.diffuse_texture color = plt.imread(diffuse_texture).mean(axis=(0, 1)) if diffuse_texture else cls.particle_object.material.diffuse_color_constant cls._color = color @classmethod def add_particle(cls, prim_path, scale, idn=None): """ Adds a particle to this system. Args: prim_path (str): Absolute path to the newly created particle, minus the name for this particle scale (3-array): (x,y,z) scale to set for the added particle idn (None or int): If specified, should be unique identifier to assign to this particle. If not, will automatically generate a new unique one Returns: XFormPrim: Newly created particle instance, which is added internally as well """ # Generate the new particle name = cls.particle_idn2name(idn=cls.next_available_particle_idn if idn is None else idn) # Make sure name doesn't already exist assert name not in cls.particles.keys(), f"Cannot create particle with name {name} because it already exists!" new_particle = cls._load_new_particle(prim_path=f"{prim_path}/{name}", name=name) # Set the scale and make sure the particle is visible new_particle.scale *= scale new_particle.visible = True # Track this particle as well cls.particles[new_particle.name] = new_particle # Increment counter cls._particle_counter += 1 return new_particle @classmethod def remove_particle_by_name(cls, name): assert name in cls.particles, f"Got invalid name for particle to remove {name}" particle = cls.particles.pop(name) og.sim.remove_prim(particle) @classmethod def remove_particles( cls, idxs, **kwargs, ): particle_names = tuple(cls.particles.keys()) for idx in idxs: cls.remove_particle_by_name(particle_names[idx]) @classmethod def generate_particles( cls, positions, orientations=None, scales=None, **kwargs, ): # Grab pre-existing tfs current_positions, current_orientations = cls.get_particles_position_orientation() # Update the tensors n_particles = len(positions) orientations = R.random(num=n_particles).as_quat() if orientations is None else orientations scales = cls.sample_scales(n=n_particles) if scales is None else scales positions = np.concatenate([current_positions, positions], axis=0) orientations = np.concatenate([current_orientations, orientations], axis=0) # Add particles for scale in scales: cls.add_particle(prim_path=f"{cls.prim_path}/particles", scale=scale) # Set the tfs cls.set_particles_position_orientation(positions=positions, orientations=orientations) @classmethod def _load_new_particle(cls, prim_path, name): """ Loads a new particle into the current stage, leveraging @cls.particle_object as a template for the new particle to load. This function should be implemented by any subclasses. Args: prim_path (str): The absolute stage path at which to create the new particle name (str): The name to assign to this new particle at the path Returns: XFormPrim: Loaded particle """ raise NotImplementedError() @classmethod def particle_name2idn(cls, name): """ Args: name (str): Particle name to grab its corresponding unique id number for Returns: int: Unique ID assigned to the particle based on its name """ assert cls.particle_name_prefix in name, \ f"Particle name should have '{cls.particle_name_prefix}' in it when checking ID! Got: {name}" return int(name.split(cls.particle_name_prefix)[-1]) @classmethod def particle_idn2name(cls, idn): """ Args: idn (int): Unique ID number assigned to the particle to grab the name for Returns: str: Particle name corresponding to its unique id number """ assert isinstance(idn, int), \ f"Particle idn must be an integer when checking name! Got: {idn}. Type: {type(idn)}" return f"{cls.particle_name_prefix}{idn}" @classproperty def color(cls): return np.array(cls._color) class MacroVisualParticleSystem(MacroParticleSystem, VisualParticleSystem): """ Particle system class that procedurally generates individual particles that are not subject to physics """ # Maps particle name to dict of {obj, link, face_id} # NOTE: link will only exist for particles on rigid bodies # NOTE: face_id will only exist for particles on cloths _particles_info = None # Pre-cached information about visual particles so that we have efficient runtime computations # Maps particle name to local pose matrix for computing global poses for the particle _particles_local_mat = None # Maps group name to array of face_ids where particles are located if the group object is a cloth type # Maps group name to np.array of face IDs (int) that particles are attached to _cloth_face_ids = None # Default behavior for this class -- whether to clip generated particles halfway into objects when sampling # their locations on the surface of the given object _CLIP_INTO_OBJECTS = False # Default parameters for sampling particle locations # See omnigibson/utils/sampling_utils.py for how they are used. _SAMPLING_AXIS_PROBABILITIES = (0.25, 0.25, 0.5) _SAMPLING_AABB_OFFSET = 0.01 _SAMPLING_BIMODAL_MEAN_FRACTION = 0.9 _SAMPLING_BIMODAL_STDEV_FRACTION = 0.2 _SAMPLING_MAX_ATTEMPTS = 20 _SAMPLING_HIT_PROPORTION = 0.4 @classmethod def initialize(cls): # Run super method first super().initialize() # Initialize mutable class variables so they don't automatically get overridden by children classes cls._particles_info = dict() cls._particles_local_mat = dict() cls._cloth_face_ids = dict() @classmethod def update(cls): # Run super first super().update() z_extent = cls.particle_object.aabb_extent[2] # Iterate over all objects, and update all particles belonging to any cloth objects for name, obj in cls._group_objects.items(): group = cls.get_group_name(obj=obj) if obj.prim_type == PrimType.CLOTH and cls.num_group_particles(group=group) > 0: # Update the transforms cloth = obj.root_link face_ids = cls._cloth_face_ids[group] idxs = cloth.faces[face_ids].flatten() positions = cloth.compute_particle_positions(idxs=idxs).reshape(-1, 3, 3) normals = cloth.compute_face_normals_from_particle_positions(positions=positions) # The actual positions we want are the face centroids, or the mean of all the positions positions = positions.mean(axis=1) # Orientations are the normals z_up = np.zeros_like(normals) z_up[:, 2] = 1.0 orientations = T.axisangle2quat(T.vecs2axisangle(z_up, normals)) if not cls._CLIP_INTO_OBJECTS and z_extent > 0: z_offsets = np.array([z_extent * particle.scale[2] for particle in cls._group_particles[group].values()]) / 2.0 # Shift the particles halfway up positions += normals * z_offsets.reshape(-1, 1) # Set the group particle poses cls.set_group_particles_position_orientation(group=group, positions=positions, orientations=orientations) @classmethod def _load_new_particle(cls, prim_path, name): # We copy the template prim and generate the new object if the prim doesn't already exist, otherwise we # reference the pre-existing one if not lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path): lazy.omni.kit.commands.execute( "CopyPrim", path_from=cls.particle_object.prim_path, path_to=prim_path, ) prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path) lazy.omni.isaac.core.utils.semantics.add_update_semantics( prim=prim, semantic_label=cls.name, type_label="class", ) return VisualGeomPrim(prim_path=prim_path, name=name) @classmethod def _clear(cls): # Run super method first super()._clear() # Clear all groups as well cls._particles_info = dict() cls._particles_local_mat = dict() cls._cloth_face_ids = dict() @classmethod def remove_attachment_group(cls, group): # Call super first super().remove_attachment_group(group=group) # If the group is a cloth, also remove the cloth face ids if group in cls._cloth_face_ids: cls._cloth_face_ids.pop(group) return group @classmethod def remove_particle_by_name(cls, name): # Run super first super().remove_particle_by_name(name=name) # Remove this particle from its respective group as well parent_obj = cls._particles_info[name]["obj"] group = cls.get_group_name(obj=parent_obj) cls._group_particles[group].pop(name) cls._particles_local_mat.pop(name) particle_info = cls._particles_info.pop(name) if cls._is_cloth_obj(obj=parent_obj): # Also remove from cloth face ids face_ids = cls._cloth_face_ids[group] idx_mapping = {face_id: i for i, face_id in enumerate(face_ids)} cls._cloth_face_ids[group] = np.delete(face_ids, idx_mapping[particle_info["face_id"]]) @classmethod def generate_group_particles( cls, group, positions, orientations=None, scales=None, link_prim_paths=None, ): # Make sure the group exists cls._validate_group(group=group) # Standardize orientations and links obj = cls._group_objects[group] is_cloth = cls._is_cloth_obj(obj=obj) # If cloth, run the following sanity checks: # (1) make sure link prim paths are not specified -- we can ONLY apply particles under the object xform prim # (2) make sure object prim path exists at /World/<NAME> -- global pose inference assumes this is the case if is_cloth: assert link_prim_paths is None, "link_prim_paths should not be specified for cloth object group!" assert obj.prim.GetParent().GetPath().pathString == "/World", \ "cloth object should exist as direct child of /World prim!" n_particles = positions.shape[0] if orientations is None: orientations = np.zeros((n_particles, 4)) orientations[:, -1] = 1.0 link_prim_paths = [None] * n_particles if is_cloth else link_prim_paths scales = cls.sample_scales_by_group(group=group, n=n_particles) if scales is None else scales bbox_extents_local = [(cls.particle_object.aabb_extent * scale).tolist() for scale in scales] # If we're using flatcache, we need to update the object's pose on the USD manually if gm.ENABLE_FLATCACHE: FlatcacheAPI.sync_raw_object_transforms_in_usd(prim=obj) # Generate particles z_up = np.zeros((3, 1)) z_up[-1] = 1.0 for position, orientation, scale, bbox_extent_local, link_prim_path in \ zip(positions, orientations, scales, bbox_extents_local, link_prim_paths): link = None if is_cloth else obj.links[link_prim_path.split("/")[-1]] # Possibly shift the particle slightly away from the object if we're not clipping into objects # Note: For particles tied to rigid objects, the given position is on the surface of the object, # so clipping would move the particle INTO the object surface, whereas for particles tied to cloth objects, # the given position is at the particle location (i.e.: already clipped), so NO clipping would move the # particle AWAY from the object surface if (is_cloth and not cls._CLIP_INTO_OBJECTS) or (not is_cloth and cls._CLIP_INTO_OBJECTS): # Shift the particle halfway down base_to_center = bbox_extent_local[2] / 2.0 normal = (T.quat2mat(orientation) @ z_up).flatten() offset = normal * base_to_center if is_cloth else -normal * base_to_center position += offset # Create particle particle = cls.add_particle( prim_path=obj.prim_path if is_cloth else link_prim_path, scale=scale, ) # Add to group cls._group_particles[group][particle.name] = particle cls._particles_info[particle.name] = dict(obj=cls._group_objects[group], link=link) # Set the pose cls.set_particle_position_orientation(idx=-1, position=position, orientation=orientation) @classmethod def generate_group_particles_on_object(cls, group, max_samples=None, min_samples_for_success=1): # This function does not support max_samples=None. Must be explicitly specified assert max_samples is not None, f"max_samples must be specified for {cls.name}'s generate_group_particles_on_object!" assert max_samples >= min_samples_for_success, "number of particles to sample should exceed the min for success" # Make sure the group exists cls._validate_group(group=group) # Remove all stale particles cls.remove_all_group_particles(group=group) # Generate requested number of particles obj = cls._group_objects[group] # Sample scales and corresponding bbox extents scales = cls.sample_scales_by_group(group=group, n=max_samples) # For sampling particle positions, we need the global bbox extents, NOT the local extents # which is what we would get naively if we directly use @scales avg_scale = np.cbrt(np.product(obj.scale)) bbox_extents_global = scales * cls.particle_object.aabb_extent.reshape(1, 3) * avg_scale if obj.prim_type == PrimType.CLOTH: # Sample locations based on randomly sampled keyfaces cloth = obj.root_link n_faces = len(cloth.faces) face_ids = np.random.choice(n_faces, min(max_samples, n_faces), replace=False) # Positions are the midpoints of each requested face normals = cloth.compute_face_normals(face_ids=face_ids) positions = cloth.compute_particle_positions(idxs=cloth.faces[face_ids].flatten()).reshape(-1, 3, 3).mean(axis=1) # Orientations are the normals z_up = np.zeros_like(normals) z_up[:, 2] = 1.0 orientations = T.axisangle2quat(T.vecs2axisangle(z_up, normals)) link_prim_paths = None cls._cloth_face_ids[group] = face_ids else: # Sample locations for all particles results = sample_cuboid_on_object_symmetric_bimodal_distribution( obj=obj, num_samples=max_samples, cuboid_dimensions=bbox_extents_global, bimodal_mean_fraction=cls._SAMPLING_BIMODAL_MEAN_FRACTION, bimodal_stdev_fraction=cls._SAMPLING_BIMODAL_STDEV_FRACTION, axis_probabilities=cls._SAMPLING_AXIS_PROBABILITIES, undo_cuboid_bottom_padding=True, verify_cuboid_empty=False, aabb_offset=cls._SAMPLING_AABB_OFFSET, max_sampling_attempts=cls._SAMPLING_MAX_ATTEMPTS, refuse_downwards=True, hit_proportion=cls._SAMPLING_HIT_PROPORTION, ) # Use sampled points positions, orientations, particle_scales, link_prim_paths = [], [], [], [] for result, scale in zip(results, scales): position, normal, quaternion, hit_link, reasons = result if position is not None: positions.append(position) orientations.append(quaternion) particle_scales.append(scale) link_prim_paths.append(hit_link) scales = particle_scales success = len(positions) >= min_samples_for_success # If we generated a sufficient number of points, generate them in the simulator if success: cls.generate_group_particles( group=group, positions=np.array(positions), orientations=np.array(orientations), scales=np.array(scales), link_prim_paths=link_prim_paths, ) # If we're a cloth, store the face_id as well if obj.prim_type == PrimType.CLOTH: for particle_name, face_id in zip(cls._group_particles[group].keys(), cls._cloth_face_ids[group]): cls._particles_info[particle_name]["face_id"] = int(face_id) return success @classmethod def _compute_batch_particles_position_orientation(cls, particles, local=False): """ Computes all @particles' positions and orientations Args: particles (Iterable of str): Names of particles to compute batched position orientation for local (bool): Whether to compute particles' poses in local frame or not Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ n_particles = len(particles) if n_particles == 0: return (np.array([]).reshape(0, 3), np.array([]).reshape(0, 4)) if local: poses = np.zeros((n_particles, 4, 4)) for i, name in enumerate(particles): poses[i] = T.pose2mat(cls.particles[name].get_local_pose()) else: # Iterate over all particles and compute link tfs programmatically, then batch the matrix transform link_tfs = dict() link_tfs_batch = np.zeros((n_particles, 4, 4)) particle_local_poses_batch = np.zeros_like(link_tfs_batch) for i, name in enumerate(particles): obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=obj) if is_cloth: if obj not in link_tfs: # We want World --> obj transform, NOT the World --> root_link transform, since these particles # do NOT exist under a link but rather the object prim itself. So we use XFormPrim to directly # get the transform, and not obj.get_local_pose() which will give us the local pose of the # root link! link_tfs[obj] = T.pose2mat(XFormPrim.get_local_pose(obj)) link = obj else: link = cls._particles_info[name]["link"] if link not in link_tfs: link_tfs[link] = T.pose2mat(link.get_position_orientation()) link_tfs_batch[i] = link_tfs[link] particle_local_poses_batch[i] = cls._particles_local_mat[name] # Compute once poses = np.matmul(link_tfs_batch, particle_local_poses_batch) # Decompose back into positions and orientations return poses[:, :3, 3], T.mat2quat(poses[:, :3, :3]) @classmethod def get_particles_position_orientation(cls): return cls._compute_batch_particles_position_orientation(particles=cls.particles, local=False) @classmethod def get_particles_local_pose(cls): return cls._compute_batch_particles_position_orientation(particles=cls.particles, local=True) @classmethod def get_group_particles_position_orientation(cls, group): return cls._compute_batch_particles_position_orientation(particles=cls._group_particles[group], local=False) @classmethod def get_group_particles_local_pose(cls, group): return cls._compute_batch_particles_position_orientation(particles=cls._group_particles[group], local=True) @classmethod def get_particle_position_orientation(cls, idx): name = list(cls.particles.keys())[idx] # First, get local pose, scale it by the parent link's scale, and then convert into a matrix # Note that particles_local_mat already takes the parent scale into account when computing the transform! parent_obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=parent_obj) local_mat = cls._particles_local_mat[name] link_tf = T.pose2mat(XFormPrim.get_local_pose(parent_obj)) if is_cloth else \ T.pose2mat(cls._particles_info[name]["link"].get_position_orientation()) # Multiply the local pose by the link's global transform, then return as pos, quat tuple return T.mat2pose(link_tf @ local_mat) @classmethod def get_particle_local_pose(cls, idx): name = list(cls.particles.keys())[idx] return cls.particles[name].get_local_pose() @classmethod def _modify_batch_particles_position_orientation(cls, particles, positions=None, orientations=None, local=False): """ Modifies all @particles' positions and orientations with @positions and @orientations Args: particles (Iterable of str): Names of particles to modify positions (None or (n, 3)-array): New positions to set for the particles orientations (None or (n, 4)-array): New orientations to set for the particles local (bool): Whether to modify particles' poses in local frame or not Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ n_particles = len(particles) if n_particles == 0: return if positions is None or orientations is None: pos, ori = cls._compute_batch_particles_position_orientation(particles=particles, local=local) positions = pos if positions is None else positions orientations = ori if orientations is None else orientations lens = np.array([len(particles), len(positions), len(orientations)]) assert lens.min() == lens.max(), "Got mismatched particles, positions, and orientations!" particle_local_poses_batch = np.zeros((n_particles, 4, 4)) particle_local_poses_batch[:, -1, -1] = 1.0 particle_local_poses_batch[:, :3, 3] = positions particle_local_poses_batch[:, :3, :3] = T.quat2mat(orientations) if not local: # Iterate over all particles and compute link tfs programmatically, then batch the matrix transform link_tfs = dict() link_tfs_batch = np.zeros((n_particles, 4, 4)) for i, name in enumerate(particles): obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=obj) if is_cloth: if obj not in link_tfs: # We want World --> obj transform, NOT the World --> root_link transform, since these particles # do NOT exist under a link but rather the object prim itself. So we use XFormPrim to directly # get the transform, and not obj.get_local_pose() which will give us the local pose of the # root link! link_tfs[obj] = T.pose2mat(XFormPrim.get_local_pose(obj)) link_tf = link_tfs[obj] else: link = cls._particles_info[name]["link"] if link not in link_tfs: link_tfs[link] = T.pose2mat(link.get_position_orientation()) link_tf = link_tfs[link] link_tfs_batch[i] = link_tf # particle_local_poses_batch = np.matmul(np.linalg.inv(link_tfs_batch), particle_local_poses_batch) particle_local_poses_batch = np.linalg.solve(link_tfs_batch, particle_local_poses_batch) for i, name in enumerate(particles): cls._modify_particle_local_mat(name=name, mat=particle_local_poses_batch[i], ignore_scale=local) @classmethod def set_particles_position_orientation(cls, positions=None, orientations=None): return cls._modify_batch_particles_position_orientation(particles=cls.particles, positions=positions, orientations=orientations, local=False) @classmethod def set_particles_local_pose(cls, positions=None, orientations=None): return cls._modify_batch_particles_position_orientation(particles=cls.particles, positions=positions, orientations=orientations, local=True) @classmethod def set_group_particles_position_orientation(cls, group, positions=None, orientations=None): return cls._modify_batch_particles_position_orientation(particles=cls._group_particles[group], positions=positions, orientations=orientations, local=False) @classmethod def set_group_particles_local_pose(cls, group, positions=None, orientations=None): return cls._modify_batch_particles_position_orientation(particles=cls._group_particles[group], positions=positions, orientations=orientations, local=True) @classmethod def set_particle_position_orientation(cls, idx, position=None, orientation=None): if position is None or orientation is None: pos, ori = cls.get_particle_position_orientation(idx=idx) position = pos if position is None else position orientation = ori if orientation is None else orientation name = list(cls.particles.keys())[idx] global_mat = np.zeros((4, 4)) global_mat[-1, -1] = 1.0 global_mat[:3, 3] = position global_mat[:3, :3] = T.quat2mat(orientation) # First, get global pose, scale it by the parent link's scale, and then convert into a matrix parent_obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=parent_obj) link_tf = T.pose2mat(XFormPrim.get_local_pose(parent_obj)) if is_cloth else \ T.pose2mat(cls._particles_info[name]["link"].get_position_orientation()) local_mat = np.linalg.inv(link_tf) @ global_mat cls._modify_particle_local_mat(name=name, mat=local_mat, ignore_scale=False) @classmethod def set_particle_local_pose(cls, idx, position=None, orientation=None): if position is None or orientation is None: pos, ori = cls.get_particle_local_pose(idx=idx) position = pos if position is None else position orientation = ori if orientation is None else orientation name = list(cls.particles.keys())[idx] local_mat = np.zeros((4, 4)) local_mat[-1, -1] = 1.0 local_mat[:3, 3] = position local_mat[:3, :3] = T.quat2mat(orientation) cls._modify_particle_local_mat(name=name, mat=local_mat, ignore_scale=True) @classmethod def _is_cloth_obj(cls, obj): """ Checks whether object @obj is a cloth or not Args: obj (BaseObject): Object to check Returns: bool: True if the object is cloth type, otherwise False """ return obj.prim_type == PrimType.CLOTH @classmethod def _compute_particle_local_mat(cls, name, ignore_scale=False): """ Computes particle @name's local transform as a homogeneous 4x4 matrix Args: name (str): Name of the particle to compute local transform matrix for ignore_scale (bool): Whether to ignore the parent_link scale when computing the local transform Returns: np.array: (4, 4) homogeneous transform matrix """ particle = cls.particles[name] parent_obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=parent_obj) scale = np.ones(3) if is_cloth else cls._particles_info[name]["link"].scale local_pos, local_quat = particle.get_local_pose() local_pos = local_pos if ignore_scale else local_pos * scale return T.pose2mat((local_pos, local_quat)) @classmethod def _modify_particle_local_mat(cls, name, mat, ignore_scale=False): """ Sets particle @name's local transform as a homogeneous 4x4 matrix Args: name (str): Name of the particle to compute local transform matrix for mat (n-array): (4, 4) homogeneous transform matrix ignore_scale (bool): Whether to ignore the parent_link scale when setting the local transform """ particle = cls.particles[name] parent_obj = cls._particles_info[name]["obj"] is_cloth = cls._is_cloth_obj(obj=parent_obj) scale = np.ones(3) if is_cloth else cls._particles_info[name]["link"].scale local_pos, local_quat = T.mat2pose(mat) local_pos = local_pos if ignore_scale else local_pos / scale particle.set_local_pose(local_pos, local_quat) # Store updated value cls._particles_local_mat[name] = mat @classmethod def _sync_particle_groups( cls, group_objects, particle_idns, particle_attached_references, ): """ Synchronizes the particle groups based on desired identification numbers @group_idns Args: group_objects (list of BaseObject): Desired unique group objects that should be active for this particle system. particle_idns (list of list of int): Per-group unique id numbers for the particles assigned to that group. List should be same length as @group_idns with sub-entries corresponding to the desired number of particles assigned to that group particle_attached_references (list of list of str or int): Per-group reference info relevant for each particle. List should be same length as @group_idns with sub-entries corresponding to the desired number of particles assigned to that group. If a given group is a cloth object, the entries should be integers corresponding to the individual face IDs that each particle is attached to for the group. Otherwise, the group is assumed to be a rigid object, in which case the entries should be link names corresponding to the specific links each particle is attached for each group. """ # We have to be careful here -- some particle groups may have been deleted / are mismatched, so we need # to update accordingly, potentially deleting stale groups and creating new groups as needed name_to_info_mapping = {obj.name: { "n_particles": len(p_idns), "particle_idns": p_idns, "references": references, } for obj, p_idns, references in zip(group_objects, particle_idns, particle_attached_references)} current_group_names = cls.groups desired_group_names = set(obj.name for obj in group_objects) groups_to_delete = current_group_names - desired_group_names groups_to_create = desired_group_names - current_group_names common_groups = current_group_names.intersection(desired_group_names) # Sanity check the common groups, we will recreate any where there is a mismatch for name in common_groups: info = name_to_info_mapping[name] if cls.num_group_particles(group=name) != info["n_particles"]: log.debug(f"Got mismatch in particle group {name} when syncing, " f"deleting and recreating group now.") # Add this group to both the delete and creation pile groups_to_delete.add(name) groups_to_create.add(name) # Delete any groups we no longer want for name in groups_to_delete: cls.remove_attachment_group(group=name) # Create any groups we don't already have for name in groups_to_create: obj = og.sim.scene.object_registry("name", name) info = name_to_info_mapping[name] cls.create_attachment_group(obj=obj) is_cloth = cls._is_cloth_obj(obj=obj) for particle_idn, reference in zip(info["particle_idns"], info["references"]): # Reference is either the face ID (int) if cloth group or link name (str) if rigid body group # Create the necessary particles # Use scale (1,1,1) since it will get overridden anyways when loading state particle = cls.add_particle( prim_path=obj.prim_path if is_cloth else obj.links[reference].prim_path, scale=np.ones(3), idn=int(particle_idn), ) cls._group_particles[name][particle.name] = particle cls._particles_info[particle.name] = dict(obj=obj) # Add face_id if is_cloth, otherwise, add link if is_cloth: cls._particles_info[particle.name]["face_id"] = int(reference) else: cls._particles_info[particle.name]["link"] = obj.links[reference] # Also store the cloth face IDs as a vector if is_cloth: cls._cloth_face_ids[cls.get_group_name(obj)] = \ np.array([cls._particles_info[particle_name]["face_id"] for particle_name in cls._group_particles[name]]) @classmethod def create(cls, name, create_particle_template, min_scale=None, max_scale=None, scale_relative_to_parent=False, **kwargs): """ Utility function to programmatically generate monolithic visual particle system classes. Note: If using super() calls in any functions, we have to use slightly esoteric syntax in order to accommodate this procedural method for using super calls cf. https://stackoverflow.com/questions/22403897/what-does-it-mean-by-the-super-object-returned-is-unbound-in-python Use: super(cls).__get__(cls).<METHOD_NAME>(<KWARGS>) Args: name (str): Name of the visual particles, in snake case. min_scale (None or 3-array): If specified, sets the minumum bound for the visual particles' relative scale. Else, defaults to 1 max_scale (None or 3-array): If specified, sets the maximum bound for the visual particles' relative scale. Else, defaults to 1 scale_relative_to_parent (bool): If True, will scale generated particles relative to the corresponding group's object create_particle_template (function): Method for generating the visual particle template that will be duplicated when generating groups of particles. Expected signature: create_particle_template(prim_path: str, name: str) --> EntityPrim where @prim_path and @name are the parameters to assign to the generated EntityPrim. NOTE: The loaded particle template is expected to be a non-articulated, single-link object with a single visual mesh attached to its root link, since this will be the actual visual mesh used **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: VisualParticleSystem: Generated visual particle system class """ # Override the necessary parameters @classproperty def cp_register_system(cls): # We should register this system since it's an "actual" system (not an intermediate class) return True @classproperty def cp_scale_relative_to_parent(cls): return scale_relative_to_parent @classmethod def cm_create_particle_template(cls): return create_particle_template(prim_path=f"{cls.prim_path}/template", name=f"{cls.name}_template") # Add to any other params specified kwargs["_register_system"] = cp_register_system kwargs["scale_relative_to_parent"] = cp_scale_relative_to_parent kwargs["_create_particle_template"] = cm_create_particle_template # Run super return super().create(name=name, min_scale=min_scale, max_scale=max_scale, **kwargs) @classmethod def _dump_state(cls): state = super()._dump_state() particle_names = list(cls.particles.keys()) # Add in per-group information groups_dict = dict() name2idx = {name: idx for idx, name in enumerate(particle_names)} for group_name, group_particles in cls._group_particles.items(): obj = cls._group_objects[group_name] is_cloth = cls._is_cloth_obj(obj=obj) groups_dict[group_name] = dict( particle_attached_obj_uuid=obj.uuid, n_particles=cls.num_group_particles(group=group_name), particle_idns=[cls.particle_name2idn(name=name) for name in group_particles.keys()], particle_indices=[name2idx[name] for name in group_particles.keys()], # If the attached object is a cloth, store the face_id, otherwise, store the link name particle_attached_references=[cls._particles_info[name]["face_id"] for name in group_particles.keys()] if is_cloth else [cls._particles_info[name]["link"].prim_path.split("/")[-1] for name in group_particles.keys()], ) state["n_groups"] = len(cls._group_particles) state["groups"] = groups_dict return state @classmethod def _load_state(cls, state): # First, we sync our particle systems """ Load the internal state to this object as specified by @state. Should be implemented by subclass. Args: state (dict): Keyword-mapped states of this object to set """ # Synchronize particle groups group_objects = [] particle_idns = [] particle_attached_references = [] indices_to_remove = np.array([], dtype=int) for info in state["groups"].values(): obj = og.sim.scene.object_registry("uuid", info["particle_attached_obj_uuid"]) # obj will be None if an object with an attachment group is removed between dump_state() and load_state() if obj is not None: group_objects.append(obj) particle_idns.append(info["particle_idns"]) particle_attached_references.append(info["particle_attached_references"]) else: indices_to_remove = np.append(indices_to_remove, np.array(info["particle_indices"], dtype=int)) cls._sync_particle_groups( group_objects=group_objects, particle_idns=particle_idns, particle_attached_references=particle_attached_references, ) state["n_particles"] -= len(indices_to_remove) state["positions"] = np.delete(state["positions"], indices_to_remove, axis=0) state["orientations"] = np.delete(state["orientations"], indices_to_remove, axis=0) state["scales"] = np.delete(state["scales"], indices_to_remove, axis=0) # Run super super()._load_state(state=state) @classmethod def _serialize(cls, state): # Run super first state_flat = super()._serialize(state=state) groups_dict = state["groups"] state_group_flat = [[state["n_groups"]]] for group_name, group_dict in groups_dict.items(): obj = cls._group_objects[group_name] is_cloth = cls._is_cloth_obj(obj=obj) group_obj_link2id = {link_name: i for i, link_name in enumerate(obj.links.keys())} state_group_flat += [ [group_dict["particle_attached_obj_uuid"]], [group_dict["n_particles"]], group_dict["particle_idns"], group_dict["particle_indices"], (group_dict["particle_attached_references"] if is_cloth else [group_obj_link2id[reference] for reference in group_dict["particle_attached_references"]]), ] return np.concatenate([*state_group_flat, state_flat]).astype(float) @classmethod def _deserialize(cls, state): # Synchronize the particle groups n_groups = int(state[0]) groups_dict = dict() group_objs = [] # Index starts at 1 because index 0 is n_groups idx = 1 for i in range(n_groups): obj_uuid, n_particles = int(state[idx]), int(state[idx + 1]) obj = og.sim.scene.object_registry("uuid", obj_uuid) assert obj is not None, f"Object with UUID {obj_uuid} not found in the scene" is_cloth = cls._is_cloth_obj(obj=obj) group_obj_id2link = {i: link_name for i, link_name in enumerate(obj.links.keys())} group_objs.append(obj) groups_dict[obj.name] = dict( particle_attached_obj_uuid=obj_uuid, n_particles=n_particles, particle_idns=[int(idn) for idn in state[idx + 2 : idx + 2 + n_particles]], # Idx + 2 because the first two are obj_uuid and n_particles particle_indices=[int(idn) for idn in state[idx + 2 + n_particles: idx + 2 + n_particles * 2]], particle_attached_references=[int(idn) for idn in state[idx + 2 + n_particles * 2: idx + 2 + n_particles * 3]] if is_cloth else [group_obj_id2link[int(idn)] for idn in state[idx + 2 + n_particles * 2: idx + 2 + n_particles * 3]], ) idx += 2 + n_particles * 3 log.debug(f"Syncing {cls.name} particles with {n_groups} groups..") cls._sync_particle_groups( group_objects=group_objs, particle_idns=[group_info["particle_idns"] for group_info in groups_dict.values()], particle_attached_references=[group_info["particle_attached_references"] for group_info in groups_dict.values()], ) # Get super method state_dict, idx_super = super()._deserialize(state=state[idx:]) state_dict["n_groups"] = n_groups state_dict["groups"] = groups_dict return state_dict, idx + idx_super class MacroPhysicalParticleSystem(MacroParticleSystem, PhysicalParticleSystem): """ Particle system class that procedurally generates individual particles that are subject to physics """ # Physics rigid body view for keeping track of all particles' state particles_view = None # Approximate radius of the macro particle, and distance from particle frame to approximate center _particle_radius = None _particle_offset = None @classmethod def initialize(cls): # Run super method first super().initialize() # Create the particles head prim -- this is merely a scope prim og.sim.stage.DefinePrim(f"{cls.prim_path}/particles", "Scope") # A new view needs to be created every time once sim is playing, so we add a callback now og.sim.add_callback_on_play(name=f"{cls.name}_particles_view", callback=cls.refresh_particles_view) # If sim is already playing, refresh particles immediately if og.sim.is_playing(): cls.refresh_particles_view() @classmethod def _load_new_particle(cls, prim_path, name): # We copy the template prim and generate the new object if the prim doesn't already exist, otherwise we # reference the pre-existing one if not lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path): lazy.omni.kit.commands.execute( "CopyPrim", path_from=cls.particle_object.prim_path, path_to=prim_path, ) # Apply RigidBodyAPI to it so it is subject to physics prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path) lazy.pxr.UsdPhysics.RigidBodyAPI.Apply(prim) lazy.omni.isaac.core.utils.semantics.add_update_semantics( prim=prim, semantic_label=cls.name, type_label="class", ) return CollisionVisualGeomPrim(prim_path=prim_path, name=name) @classmethod def process_particle_object(cls): # Run super method super().process_particle_object() # Compute particle radius vertices = np.array(cls.particle_object.get_attribute("points")) * cls.particle_object.scale * cls.max_scale.reshape(1, 3) particle_offset, particle_radius = trimesh.nsphere.minimum_nsphere(trimesh.Trimesh(vertices=vertices)) if particle_radius < m.MIN_PARTICLE_RADIUS: ratio = m.MIN_PARTICLE_RADIUS / particle_radius cls.particle_object.scale *= ratio particle_offset *= ratio particle_radius = m.MIN_PARTICLE_RADIUS cls._particle_offset = particle_offset cls._particle_radius = particle_radius @classmethod def refresh_particles_view(cls): """ Internal helper method to refresh the particles' rigid body view to grab state Should be called every time sim.play() is called """ og.sim.pi.update_simulation(elapsedStep=0, currentTime=og.sim.current_time) with suppress_omni_log(channels=["omni.physx.tensors.plugin"]): cls.particles_view = og.sim.physics_sim_view.create_rigid_body_view(pattern=f"{cls.prim_path}/particles/*") @classmethod def _clear(cls): # Run super method first super()._clear() # Clear internal variables cls.particles_view = None cls._particle_radius = None cls._particle_offset = None @classmethod def remove_particle_by_name(cls, name): # Run super first super().remove_particle_by_name(name=name) # Refresh particles view cls.refresh_particles_view() @classmethod def add_particle(cls, prim_path, scale, idn=None): # Run super first particle = super().add_particle(prim_path=prim_path, scale=scale, idn=idn) # Refresh particles view cls.refresh_particles_view() return particle @classmethod def get_particles_position_orientation(cls): # Note: This gets the center of the sphere approximation of the particles, NOT the actual particle frames! if cls.n_particles > 0: tfs = cls.particles_view.get_transforms() pos, ori = tfs[:, :3], tfs[:, 3:] pos = pos + T.quat2mat(ori) @ cls._particle_offset else: pos, ori = np.array([]).reshape(0, 3), np.array([]).reshape(0, 4) return pos, ori @classmethod def get_particles_local_pose(cls): return cls.get_particles_position_orientation() @classmethod def get_particle_position_orientation(cls, idx): assert idx <= cls.n_particles, \ f"Got invalid idx for getting particle pose! N particles: {cls.n_particles}, got idx: {idx}" positions, orientations = cls.get_particles_position_orientation() return (positions[idx], orientations[idx]) if cls.n_particles > 0 else (positions, orientations) @classmethod def get_particle_local_pose(cls, idx): return cls.get_particle_position_orientation(idx=idx) @classmethod def set_particles_position_orientation(cls, positions=None, orientations=None): if cls.n_particles == 0: return # Note: This sets the center of the sphere approximation of the particles, NOT the actual particle frames! if positions is None or orientations is None: pos, ori = cls.get_particles_position_orientation() orientations = ori if orientations is None else orientations positions = pos if positions is None else (positions - T.quat2mat(orientations) @ cls._particle_offset) cls.particles_view.set_transforms(np.concatenate([positions, orientations], axis=1), indices=np.arange(len(positions))) @classmethod def set_particles_local_pose(cls, positions=None, orientations=None): cls.set_particles_position_orientation(positions=positions, orientations=orientations) @classmethod def set_particle_position_orientation(cls, idx, position=None, orientation=None): assert idx <= cls.n_particles, \ f"Got invalid idx for setting particle pose! N particles: {cls.n_particles}, got idx: {idx}" if position is None or orientation is None: pos, ori = cls.get_particle_position_orientation(idx=idx) orientation = ori if orientation is None else orientation position = pos if position is None else (position - T.quat2mat(orientation) @ cls._particle_offset) cls.particles_view.set_transforms(np.concatenate([position, orientation]).reshape(1, -1), indices=np.array([idx])) @classmethod def set_particle_local_pose(cls, idx, position=None, orientation=None): cls.set_particle_position_orientation(idx=idx, position=position, orientation=orientation) @classmethod def get_particles_velocities(cls): """ Grab particles' global linear and angular velocities Returns: 2-tuple: - (n, 3)-array: per-particle (x, y, z) linear velocities in the world frame - (n, 3)-array: per-particle (ax, ay, az) angular velocities in the world frame """ if cls.n_particles > 0: vels = cls.particles_view.get_velocities() lin_vel, ang_vel = vels[:, :3], vels[:, 3:] else: lin_vel, ang_vel = np.array([]).reshape(0, 3), np.array([]).reshape(0, 3) return lin_vel, ang_vel @classmethod def get_particle_velocities(cls, idx): """ Grab particle @idx's global linear and angular velocities Returns: 2-tuple: - 3-array: particle (x, y, z) linear velocity in the world frame - 3-array: particle (ax, ay, az) angular velocity in the world frame """ assert idx <= cls.n_particles, \ f"Got invalid idx for getting particle velocity! N particles: {cls.n_particles}, got idx: {idx}" lin_vel, ang_vel = cls.get_particles_velocities() return (lin_vel[idx], ang_vel[idx]) if cls.n_particles > 0 else lin_vel, ang_vel @classmethod def set_particles_velocities(cls, lin_vels=None, ang_vels=None): if cls.n_particles == 0: return if lin_vels is None or ang_vels is None: l_vels, a_vels = cls.get_particles_velocities() lin_vels = l_vels if lin_vels is None else lin_vels ang_vels = a_vels if ang_vels is None else ang_vels cls.particles_view.set_velocities(np.concatenate([lin_vels, ang_vels], axis=1), indices=np.arange(len(lin_vels))) @classmethod def set_particle_velocities(cls, idx, lin_vel=None, ang_vel=None): assert idx <= cls.n_particles, \ f"Got invalid idx for setting particle velocity! N particles: {cls.n_particles}, got idx: {idx}" if lin_vel is None or ang_vel is None: l_vel, a_vel = cls.get_particles_velocities() lin_vel = l_vel if lin_vel is None else lin_vel ang_vel = a_vel if ang_vel is None else ang_vel cls.particles_view.set_velocities(np.concatenate([lin_vel, ang_vel]).reshape(1, -1), indices=np.array([idx])) @classproperty def particle_radius(cls): return cls._particle_radius @classproperty def particle_contact_radius(cls): # This is simply the normal radius return cls.particle_radius @classmethod def generate_particles( cls, positions, orientations=None, velocities=None, angular_velocities=None, scales=None, **kwargs, ): """ Generates new particles Args: positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be sampled randomly velocities (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) velocities. If not specified, all will be set to 0 angular_velocities (None or np.array): (n_particles, 3) shaped array specifying per-particle (ax,ay,az) angular velocities. If not specified, all will be set to 0 scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scales. If not specified, will be uniformly randomly sampled from (cls.min_scale, cls.max_scale) **kwargs (dict): Any additional keyword-specific arguments required by subclass implementation """ # Call super first super().generate_particles( positions=positions, orientations=orientations, scales=scales, **kwargs, ) # Grab pre-existing vels -- note that this already includes the newly included particles, so we will only # keep the first (N - n_new) values current_lin_vels, current_ang_vels = cls.get_particles_velocities() # Update the tensors n_particles = len(positions) velocities = np.zeros((n_particles, 3)) if velocities is None else velocities angular_velocities = np.zeros_like(velocities) if angular_velocities is None else angular_velocities velocities = np.concatenate([current_lin_vels[:-n_particles], velocities], axis=0) angular_velocities = np.concatenate([current_ang_vels[:-n_particles], angular_velocities], axis=0) # Set the vels cls.set_particles_velocities(lin_vels=velocities, ang_vels=angular_velocities) @classmethod def create(cls, name, create_particle_template, particle_density, scale=None, **kwargs): """ Utility function to programmatically generate monolithic visual particle system classes. Note: If using super() calls in any functions, we have to use slightly esoteric syntax in order to accommodate this procedural method for using super calls cf. https://stackoverflow.com/questions/22403897/what-does-it-mean-by-the-super-object-returned-is-unbound-in-python Use: super(cls).__get__(cls).<METHOD_NAME>(<KWARGS>) Args: name (str): Name of the macro physical particles, in snake case. particle_density (float): Particle density for the generated system create_particle_template (function): Method for generating the visual particle template that will be duplicated when generating groups of particles. Expected signature: create_particle_template(prim_path: str, name: str) --> EntityPrim where @prim_path and @name are the parameters to assign to the generated EntityPrim. NOTE: The loaded particle template is expected to be a non-articulated, single-link object with a single visual mesh attached to its root link, since this will be the actual mesh used for duplication scale (None or 3-array): If specified, sets the scaling factor for the particles' relative scale. Else, defaults to 1 **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: VisualParticleSystem: Generated visual particle system class """ # Override the necessary parameters @classproperty def cp_register_system(cls): # We should register this system since it's an "actual" system (not an intermediate class) return True @classproperty def cp_particle_density(cls): return particle_density @classmethod def cm_create_particle_template(cls): return create_particle_template(prim_path=f"{cls.prim_path}/template", name=f"{cls.name}_template") # Add to any other params specified kwargs["_register_system"] = cp_register_system kwargs["particle_density"] = cp_particle_density kwargs["_create_particle_template"] = cm_create_particle_template # Run super return super().create(name=name, min_scale=scale, max_scale=scale, **kwargs) @classmethod def _sync_particles(cls, n_particles): """ Synchronizes the number of particles seen in the scene with @n_particles Args: n_particles (int): Desired number of particles to force simulator to have """ # Get the difference between current and desired particles n_particles_to_generate = n_particles - cls.n_particles # If positive, add particles if n_particles_to_generate > 0: for i in range(n_particles_to_generate): # Min scale == max scale, so no need for sampling cls.add_particle(prim_path=f"{cls.prim_path}/particles", scale=cls.max_scale) else: # Remove excess particles cls.remove_particles(idxs=np.arange(-n_particles_to_generate)) @classproperty def state_size(cls): # In additon to super, we have: # velocities (6*n) return super().state_size + 6 * cls.n_particles @classmethod def _dump_state(cls): state = super()._dump_state() # Store all particles' velocities as well state["lin_velocities"], state["ang_velocities"] = cls.get_particles_velocities() return state @classmethod def _load_state(cls, state): # Sync the number of particles first cls._sync_particles(n_particles=state["n_particles"]) super()._load_state(state=state) # Make sure view is refreshed cls.refresh_particles_view() # Make sure we update all the velocities cls.set_particles_velocities(state["lin_velocities"], state["ang_velocities"]) @classmethod def _serialize(cls, state): # Run super first state_flat = super()._serialize(state=state) # Add velocities return np.concatenate([state_flat, state["lin_velocities"].flatten(), state["ang_velocities"].flatten()], dtype=float) @classmethod def _deserialize(cls, state): # Sync the number of particles first cls._sync_particles(n_particles=int(state[0])) # Run super first state_dict, idx = super()._deserialize(state=state) # Deserialize velocities len_velocities = 3 * state_dict["n_particles"] for vel in ("lin_velocities", "ang_velocities"): state_dict[vel] = state[idx:idx+len_velocities].reshape(-1, 3) idx += len_velocities return state_dict, idx
68,091
Python
43.650492
163
0.62885
StanfordVL/OmniGibson/omnigibson/systems/system_base.py
import os import json import numpy as np import omnigibson as og from omnigibson.macros import gm, create_module_macros from omnigibson.utils.asset_utils import get_all_system_categories from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function from omnigibson.utils.python_utils import classproperty, assert_valid_key, get_uuid, camel_case_to_snake_case, \ snake_case_to_camel_case, subclass_factory, SerializableNonInstance, UniquelyNamedNonInstance from omnigibson.utils.registry_utils import SerializableRegistry from omnigibson.utils.sampling_utils import sample_cuboid_on_object_full_grid_topdown from omnigibson.utils.ui_utils import create_module_logger import omnigibson.lazy as lazy # Create module logger log = create_module_logger(module_name=__name__) # Create settings for this module m = create_module_macros(module_path=__file__) # Parameters used if scaling particles relative to its parent object's scale m.BBOX_LOWER_LIMIT_FRACTION_OF_AABB = 0.06 m.BBOX_LOWER_LIMIT_MIN = 0.002 m.BBOX_LOWER_LIMIT_MAX = 0.02 m.BBOX_UPPER_LIMIT_FRACTION_OF_AABB = 0.1 m.BBOX_UPPER_LIMIT_MIN = 0.01 m.BBOX_UPPER_LIMIT_MAX = 0.1 _CALLBACKS_ON_SYSTEM_INIT = dict() _CALLBACKS_ON_SYSTEM_CLEAR = dict() # Modifiers denoting a semantic difference in the system SYSTEM_PREFIXES = {"diced", "cooked", "melted"} class BaseSystem(SerializableNonInstance, UniquelyNamedNonInstance): """ Base class for all systems. These are non-instance objects that should be used globally for a given environment. This is useful for items in a scene that are non-discrete / cannot be distinguished into individual instances, e.g.: water, particles, etc. While we keep the python convention of the system class name being camel case (e.g. StrawberrySmoothie), we adopt the snake case for the system registry to unify with the category of BaseObject. For example, get_system("strawberry_smoothie") will return the StrawberrySmoothie class. """ # Scaling factor to sample from when generating a new particle min_scale = None # (x,y,z) scaling max_scale = None # (x,y,z) scaling # Whether this system has been initialized or not initialized = False # Internal variables used for bookkeeping _uuid = None _snake_case_name = None def __init_subclass__(cls, **kwargs): # While class names are camel case, we convert them to snake case to be consistent with object categories. name = camel_case_to_snake_case(cls.__name__) # Make sure prefixes preserve their double underscore for prefix in SYSTEM_PREFIXES: name = name.replace(f"{prefix}_", f"{prefix}__") cls._snake_case_name = name cls.min_scale = np.ones(3) cls.max_scale = np.ones(3) # Run super init super().__init_subclass__(**kwargs) # Register this system if requested if cls._register_system: global REGISTERED_SYSTEMS, UUID_TO_SYSTEMS REGISTERED_SYSTEMS[cls._snake_case_name] = cls cls._uuid = get_uuid(cls._snake_case_name) UUID_TO_SYSTEMS[cls._uuid] = cls @classproperty def name(cls): # Class name is the unique name assigned return cls._snake_case_name @classproperty def uuid(cls): return cls._uuid @classproperty def prim_path(cls): """ Returns: str: Path to this system's prim in the scene stage """ return f"/World/{cls.name}" @classproperty def n_particles(cls): """ Returns: int: Number of particles belonging to this system """ raise NotImplementedError() @classproperty def material(cls): """ Returns: None or MaterialPrim: Material belonging to this system, if there is any """ return None @classproperty def _register_system(cls): """ Returns: bool: True if this system should be registered (i.e.: it is not an intermediate class but a "final" subclass representing a system we'd actually like to use, e.g.: water, dust, etc. Should be set by the subclass """ # We assume we aren't registering by default return False @classproperty def _store_local_poses(cls): """ Returns: bool: Whether to store local particle poses or not when state is saved. Default is False """ return False @classmethod def initialize(cls): """ Initializes this system """ global _CALLBACKS_ON_SYSTEM_INIT assert not cls.initialized, f"Already initialized system {cls.name}!" og.sim.stage.DefinePrim(cls.prim_path, "Scope") cls.initialized = True # Add to registry SYSTEM_REGISTRY.add(obj=cls) # Avoid circular import if og.sim.is_playing(): from omnigibson.transition_rules import TransitionRuleAPI TransitionRuleAPI.refresh_all_rules() # Run any callbacks for callback in _CALLBACKS_ON_SYSTEM_INIT.values(): callback(cls) @classmethod def update(cls): """ Executes any necessary system updates, once per og.sim._non_physics_step """ # Default is no-op pass @classmethod def remove_all_particles(cls): """ Removes all particles and deletes them from the simulator """ raise NotImplementedError() @classmethod def remove_particles( cls, idxs, **kwargs, ): """ Removes pre-existing particles Args: idxs (np.array): (n_particles,) shaped array specifying IDs of particles to delete **kwargs (dict): Any additional keyword-specific arguments required by subclass implementation """ raise NotImplementedError() @classmethod def generate_particles( cls, positions, orientations=None, scales=None, **kwargs, ): """ Generates new particles Args: positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be set to canonical orientation (0, 0, 0, 1) scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scales. If not specified, will be uniformly randomly sampled from (cls.min_scale, cls.max_scale) **kwargs (dict): Any additional keyword-specific arguments required by subclass implementation """ raise NotImplementedError() @classmethod def clear(cls): """ Clears this system, so that it may possibly be re-initialized. Useful for, e.g., when loading from a new scene during the same sim instance """ if cls.initialized: cls._clear() @classmethod def _clear(cls): global SYSTEM_REGISTRY, _CALLBACKS_ON_SYSTEM_CLEAR # Run any callbacks for callback in _CALLBACKS_ON_SYSTEM_CLEAR.values(): callback(cls) cls.reset() lazy.omni.isaac.core.utils.prims.delete_prim(cls.prim_path) cls.initialized = False # Remove from active registry SYSTEM_REGISTRY.remove(obj=cls) # Avoid circular import if og.sim.is_playing(): from omnigibson.transition_rules import TransitionRuleAPI TransitionRuleAPI.refresh_all_rules() @classmethod def reset(cls): """ Reset this system """ cls.remove_all_particles() @classmethod def create(cls, name, min_scale=None, max_scale=None, **kwargs): """ Helper function to programmatically generate systems Args: name (str): Name of the visual particles, in snake case. min_scale (None or 3-array): If specified, sets the minumum bound for particles' relative scale. Else, defaults to 1 max_scale (None or 3-array): If specified, sets the maximum bound for particles' relative scale. Else, defaults to 1 **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: BaseSystem: Generated system class given input arguments """ @classmethod def cm_initialize(cls): # Potentially override the min / max scales if min_scale is not None: cls.min_scale = np.array(min_scale) if max_scale is not None: cls.max_scale = np.array(max_scale) # Run super (we have to use a bit esoteric syntax in order to accommodate this procedural method for # using super calls -- cf. https://stackoverflow.com/questions/22403897/what-does-it-mean-by-the-super-object-returned-is-unbound-in-python super(cls).__get__(cls).initialize() kwargs["initialize"] = cm_initialize # Create and return the class return subclass_factory(name=snake_case_to_camel_case(name), base_classes=cls, **kwargs) @classmethod def get_active_systems(cls): """ Returns: dict: Mapping from system name to system for all systems that are subclasses of this system AND active (initialized) """ return {system.name: system for system in SYSTEM_REGISTRY.objects if issubclass(system, cls)} @classmethod def sample_scales(cls, n): """ Samples scales uniformly based on @cls.min_scale and @cls.max_scale Args: n (int): Number of scales to sample Returns: (n, 3) array: Array of sampled scales """ return np.random.uniform(cls.min_scale, cls.max_scale, (n, 3)) @classmethod def get_particles_position_orientation(cls): """ Computes all particles' positions and orientations that belong to this system in the world frame Note: This is more optimized than doing a for loop with self.get_particle_position_orientation() Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def get_particle_position_orientation(cls, idx): """ Compute particle's position and orientation. This automatically takes into account the relative pose w.r.t. its parent link and the global pose of that parent link. Args: idx (int): Index of the particle to compute position and orientation for. Note: this is equivalent to grabbing the corresponding idx'th entry from @get_particles_position_orientation() Returns: 2-tuple: - 3-array: (x,y,z) position - 4-array: (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def set_particles_position_orientation(cls, positions=None, orientations=None): """ Sets all particles' positions and orientations that belong to this system in the world frame Note: This is more optimized than doing a for loop with self.set_particle_position_orientation() Args: positions (n-array): (n, 3) per-particle (x,y,z) position orientations (n-array): (n, 4) per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def set_particle_position_orientation(cls, idx, position=None, orientation=None): """ Sets particle's position and orientation. This automatically takes into account the relative pose w.r.t. its parent link and the global pose of that parent link. Args: idx (int): Index of the particle to set position and orientation for. Note: this is equivalent to setting the corresponding idx'th entry from @set_particles_position_orientation() position (3-array): particle (x,y,z) position orientation (4-array): particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def get_particles_local_pose(cls): """ Computes all particles' positions and orientations that belong to this system in the particles' parent frames Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def get_particle_local_pose(cls, idx): """ Compute particle's position and orientation in the particle's parent frame Args: idx (int): Index of the particle to compute position and orientation for. Note: this is equivalent to grabbing the corresponding idx'th entry from @get_particles_local_pose() Returns: 2-tuple: - 3-array: (x,y,z) position - 4-array: (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def set_particles_local_pose(cls, positions=None, orientations=None): """ Sets all particles' positions and orientations that belong to this system in the particles' parent frames Args: positions (n-array): (n, 3) per-particle (x,y,z) position orientations (n-array): (n, 4) per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() @classmethod def set_particle_local_pose(cls, idx, position=None, orientation=None): """ Sets particle's position and orientation in the particle's parent frame Args: idx (int): Index of the particle to set position and orientation for. Note: this is equivalent to setting the corresponding idx'th entry from @set_particles_local_pose() position (3-array): particle (x,y,z) position orientation (4-array): particle (x,y,z,w) quaternion orientation """ raise NotImplementedError() def __init__(self): raise ValueError("System classes should not be created!") @classproperty def state_size(cls): # We have n_particles (1), min / max scale (3*2), each particle pose (7*n) return 7 + 7 * cls.n_particles @classmethod def _dump_state(cls): positions, orientations = cls.get_particles_local_pose() if \ cls._store_local_poses else cls.get_particles_position_orientation() return dict( n_particles=cls.n_particles, min_scale=cls.min_scale, max_scale=cls.max_scale, positions=positions, orientations=orientations, ) @classmethod def _load_state(cls, state): # Sanity check loading particles assert cls.n_particles == state["n_particles"], f"Inconsistent number of particles found when loading " \ f"particles state! Current number: {cls.n_particles}, " \ f"loaded number: {state['n_particles']}" # Load scale cls.min_scale = state["min_scale"] cls.max_scale = state["max_scale"] # Load the poses setter = cls.set_particles_local_pose if cls._store_local_poses else cls.set_particles_position_orientation setter(positions=state["positions"], orientations=state["orientations"]) @classmethod def _serialize(cls, state): # Array is n_particles, then min_scale and max_scale, then poses for all particles return np.concatenate([ [state["n_particles"]], state["min_scale"], state["max_scale"], state["positions"].flatten(), state["orientations"].flatten(), ], dtype=float) @classmethod def _deserialize(cls, state): # First index is number of particles, then min_scale and max_scale, then the individual particle poses state_dict = dict() n_particles = int(state[0]) len_positions = n_particles * 3 len_orientations = n_particles * 4 state_dict["n_particles"] = n_particles state_dict["min_scale"] = state[1:4] state_dict["max_scale"] = state[4:7] state_dict["positions"] = state[7:7+len_positions].reshape(-1, 3) state_dict["orientations"] = state[7+len_positions:7+len_positions+len_orientations].reshape(-1, 4) return state_dict, 7 + len_positions + len_orientations # Global dict that contains mappings of all the systems REGISTERED_SYSTEMS = dict() UUID_TO_SYSTEMS = dict() # Serializable registry of systems that are active on the stage (initialized) SYSTEM_REGISTRY = SerializableRegistry( name="system_registry", class_types=BaseSystem, default_key="name", unique_keys=["name", "prim_path", "uuid"], ) class VisualParticleSystem(BaseSystem): """ Particle system class for generating particles not subject to physics, and are attached to individual objects """ # Maps group name to the particles associated with it # This is an ordered dict of ordered dict (nested ordered dict maps particle names to particle instance) _group_particles = None # Maps group name to the parent object (the object with particles attached to it) of the group _group_objects = None # Maps group name to tuple (min_scale, max_scale) to apply to sampled particles for that group _group_scales = None @classmethod def initialize(cls): # Run super method first super().initialize() # Initialize mutable class variables so they don't automatically get overridden by children classes cls._group_particles = dict() cls._group_objects = dict() cls._group_scales = dict() @classproperty def particle_object(cls): """ Returns: XFormPrim: Particle object to be used as a template for duplication """ raise NotImplementedError() @classproperty def groups(cls): """ Returns: set of str: Current attachment particle group names """ return set(cls._group_particles.keys()) @classproperty def _store_local_poses(cls): # Store local poses since particles are attached to moving bodies return True @classproperty def scale_relative_to_parent(cls): """ Returns: bool: Whether or not particles should be scaled relative to the group's parent object. NOTE: If True, this will OVERRIDE cls.min_scale and cls.max_scale when sampling particles! """ return False @classproperty def state_size(cls): # Get super size first state_size = super().state_size # Additionally, we have n_groups (1), with m_particles for each group (n), attached_obj_uuids (n), and # particle ids, particle indices, and corresponding link info for each particle (m * 3) return state_size + 1 + 2 * len(cls._group_particles) + \ sum(3 * cls.num_group_particles(group) for group in cls.groups) @classmethod def _clear(cls): super()._clear() # Clear all groups as well cls._group_particles = dict() cls._group_objects = dict() cls._group_scales = dict() @classmethod def remove_all_group_particles(cls, group): """ Remove particle with name @name from both the simulator as well as internally Args: group (str): Name of the attachment group to remove all particles from """ # Make sure the group exists cls._validate_group(group=group) # Remove all particles from the group for particle_name in tuple(cls._group_particles[group].keys()): cls.remove_particle_by_name(name=particle_name) @classmethod def num_group_particles(cls, group): """ Gets the number of particles for the given group in the simulator Args: group (str): Name of the attachment group to remove all particles from. Returns: int: Number of particles allocated to this group in the scene. Note that if @group does not exist, this will return 0 """ # Make sure the group exists cls._validate_group(group=group) return len(cls._group_particles[group]) @classmethod def get_group_name(cls, obj): """ Grabs the corresponding group name for object @obj Args: obj (BaseObject): Object for which its procedurally generated particle attachment name should be grabbed Returns: str: Name of the attachment group to use when executing commands from this class on that specific attachment group """ return obj.name @classmethod def create_attachment_group(cls, obj): """ Creates an attachment group internally for object @obj. Note that this does NOT automatically generate particles for this object (should call generate_group_particles(...) ). Args: obj (BaseObject): Object for which a new particle attachment group will be created for Returns: str: Name of the attachment group to use when executing commands from this class on that specific attachment group """ group = cls.get_group_name(obj=obj) # This should only happen once for a single attachment group, so we explicitly check to make sure the object # doesn't already exist assert group not in cls.groups, \ f"Cannot create new attachment group because group with name {group} already exists!" # Create the group cls._group_particles[group] = dict() cls._group_objects[group] = obj # Compute the group scale if we're scaling relative to parent if cls.scale_relative_to_parent: cls._group_scales[group] = cls._compute_relative_group_scales(group=group) return group @classmethod def remove_attachment_group(cls, group): """ Removes an attachment group internally for object @obj. Note that this will automatically remove any particles currently assigned to that group Args: group (str): Name of the attachment group to remove Returns: str: Name of the attachment group to use when executing commands from this class on that specific attachment group """ # Make sure the group exists cls._validate_group(group=group) # Remove all particles from the group cls.remove_all_group_particles(group=group) # Remove the actual groups cls._group_particles.pop(group) cls._group_objects.pop(group) if cls.scale_relative_to_parent: cls._group_scales.pop(group) return group @classmethod def _compute_relative_group_scales(cls, group): """ Computes relative particle scaling for group @group required when @cls.scale_relative_to_parent is True Args: group (str): Specific group for which to compute the relative particle scaling Returns: 2-tuple: - 3-array: min scaling factor - 3-array: max scaling factor """ # First set the bbox ranges -- depends on the object's bounding box obj = cls._group_objects[group] median_aabb_dim = np.median(obj.aabb_extent) # Compute lower and upper limits to bbox bbox_lower_limit_from_aabb = m.BBOX_LOWER_LIMIT_FRACTION_OF_AABB * median_aabb_dim bbox_lower_limit = np.clip( bbox_lower_limit_from_aabb, m.BBOX_LOWER_LIMIT_MIN, m.BBOX_LOWER_LIMIT_MAX, ) bbox_upper_limit_from_aabb = m.BBOX_UPPER_LIMIT_FRACTION_OF_AABB * median_aabb_dim bbox_upper_limit = np.clip( bbox_upper_limit_from_aabb, m.BBOX_UPPER_LIMIT_MIN, m.BBOX_UPPER_LIMIT_MAX, ) # Convert these into scaling factors for the x and y axes for our particle object particle_bbox = cls.particle_object.aabb_extent minimum = np.array([bbox_lower_limit / particle_bbox[0], bbox_lower_limit / particle_bbox[1], 1.0]) maximum = np.array([bbox_upper_limit / particle_bbox[0], bbox_upper_limit / particle_bbox[1], 1.0]) return minimum, maximum @classmethod def sample_scales_by_group(cls, group, n): """ Samples @n particle scales for group @group. Args: group (str): Specific group for which to sample scales n (int): Number of scales to sample Returns: (n, 3) array: Array of sampled scales """ # Make sure the group exists cls._validate_group(group=group) # Sample based on whether we're scaling relative to parent or not scales = np.random.uniform(*cls._group_scales[group], (n, 3)) if cls.scale_relative_to_parent else cls.sample_scales(n=n) # Since the particles will be placed under the object, it will be affected/stretched by obj.scale. In order to # preserve the absolute size of the particles, we need to scale the particle by obj.scale in some way. However, # since the particles have a relative rotation w.r.t the object, the scale between the two don't align. As a # heuristics, we divide it by the avg_scale, which is the cubic root of the product of the scales along 3 axes. obj = cls._group_objects[group] avg_scale = np.cbrt(np.product(obj.scale)) return scales / avg_scale @classmethod def generate_particles( cls, positions, orientations=None, scales=None, **kwargs, ): # Should not be called, since particles must be tied to a group! raise ValueError("Cannot call generate_particles for a VisualParticleSystem! " "Call generate_group_particles() instead.") @classmethod def generate_group_particles( cls, group, positions, orientations=None, scales=None, link_prim_paths=None, ): """ Generates new particle objects within group @group at the specified pose (@positions, @orientations) with corresponding scales @scales. NOTE: Assumes positions are the exact contact point on @group object's surface. If cls._CLIP_INTO_OBJECTS is not True, then the positions will be offset away from the object by half of its bbox Args: group (str): Object on which to sample particle locations positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be set to canonical orientation (0, 0, 0, 1) scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scaling in its local frame. If not specified, all we randomly sampled based on @cls.min_scale and @cls.max_scale link_prim_paths (None or list of str): Determines which link each generated particle will be attached to. If not specified, all will be attached to the group object's prim, NOT a link """ raise NotImplementedError @classmethod def generate_group_particles_on_object(cls, group, max_samples=None, min_samples_for_success=1): """ Generates @max_samples new particle objects and samples their locations on the surface of object @obj. Note that if any particles are in the group already, they will be removed Args: group (str): Object on which to sample particle locations max_samples (None or int): If specified, maximum number of particles to sample min_samples_for_success (int): Minimum number of particles required to be sampled successfully in order for this generation process to be considered successful Returns: bool: True if enough particles were generated successfully (number of successfully sampled points >= min_samples_for_success), otherwise False """ raise NotImplementedError @classmethod def get_group_particles_position_orientation(cls, group): """ Computes all particles' positions and orientations that belong to @group Note: This is more optimized than doing a for loop with self.get_particle_position_orientation() Args: group (str): Group name whose particle positions and orientations should be computed Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError @classmethod def set_group_particles_position_orientation(cls, group, positions=None, orientations=None): """ Sets all particles' positions and orientations that belong to @group Note: This is more optimized than doing a for loop with self.set_particle_position_orientation() Args: group (str): Group name whose particle positions and orientations should be computed positions (n-array): (n, 3) per-particle (x,y,z) position orientations (n-array): (n, 4) per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError @classmethod def get_group_particles_local_pose(cls, group): """ Computes all particles' positions and orientations that belong to @group in the particles' parent frame Args: group (str): Group name whose particle positions and orientations should be computed Returns: 2-tuple: - (n, 3)-array: per-particle (x,y,z) position - (n, 4)-array: per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError @classmethod def set_group_particles_local_pose(cls, group, positions=None, orientations=None): """ Sets all particles' positions and orientations that belong to @group in the particles' parent frame Args: group (str): Group name whose particle positions and orientations should be computed positions (n-array): (n, 3) per-particle (x,y,z) position orientations (n-array): (n, 4) per-particle (x,y,z,w) quaternion orientation """ raise NotImplementedError @classmethod def _validate_group(cls, group): """ Checks if particle attachment group @group exists. (If not, can create the group via create_attachment_group). This will raise a ValueError if it doesn't exist. Args: group (str): Name of the group to check for """ if group not in cls.groups: raise ValueError(f"Particle attachment group {group} does not exist!") class PhysicalParticleSystem(BaseSystem): """ System whose generated particles are subject to physics """ @classmethod def initialize(cls): # Run super first super().initialize() # Make sure min and max scale are identical assert np.all(cls.min_scale == cls.max_scale), \ "Min and max scale should be identical for PhysicalParticleSystem!" @classproperty def particle_density(cls): """ Returns: float: The per-particle density, in kg / m^3 """ raise NotImplementedError() @classproperty def particle_radius(cls): """ Returns: float: Radius for the particles to be generated, for the purpose of sampling """ raise NotImplementedError() @classproperty def particle_contact_radius(cls): """ Returns: float: Contact radius for the particles to be generated, for the purpose of estimating contacts """ raise NotImplementedError() @classproperty def particle_particle_rest_distance(cls): """ Returns: The minimum distance between individual particles at rest """ return cls.particle_radius * 2.0 @classmethod def check_in_contact(cls, positions): """ Checks whether each particle specified by @particle_positions are in contact with any rigid body. NOTE: This is a rough proxy for contact, given @positions. Should not be taken as ground truth. This is because for efficiency and underlying physics reasons, it's easier to treat particles as spheres for fast checking. For particles directly spawned from Omniverse's underlying ParticleSystem API, it is a rough proxy semantically, though it is accurate in sim-physics since all spawned particles interact as spheres. For particles spawned manually as rigid bodies, it is a rough proxy both semantically and physically, as the object physically interacts with its non-uniform geometry. Args: positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions Returns: n-array: (n_particles,) boolean array, True if in contact, otherwise False """ in_contact = np.zeros(len(positions), dtype=bool) for idx, pos in enumerate(positions): # TODO: Maybe multiply particle contact radius * 2? in_contact[idx] = og.sim.psqi.overlap_sphere_any(cls.particle_contact_radius, pos) return in_contact @classmethod def generate_particles_from_link( cls, obj, link, use_visual_meshes=True, mesh_name_prefixes=None, check_contact=True, sampling_distance=None, max_samples=None, **kwargs, ): """ Generates a new particle instancer with unique identification number @idn, with particles sampled from the mesh located at @mesh_prim_path, and registers it internally. This will also check for collision with other rigid objects before spawning in individual particles Args: obj (EntityPrim): Object whose @link's visual meshes will be converted into sampled particles link (RigidPrim): @obj's link whose visual meshes will be converted into sampled particles use_visual_meshes (bool): Whether to use visual meshes of the link to generate particles mesh_name_prefixes (None or str): If specified, specifies the substring that must exist in @link's mesh names in order for that mesh to be included in the particle generator function. If None, no filtering will be used. check_contact (bool): If True, will only spawn in particles that do not collide with other rigid bodies sampling_distance (None or float): If specified, sets the distance between sampled particles. If None, a simulator autocomputed value will be used max_samples (None or int): If specified, maximum number of particles to sample **kwargs (dict): Any additional keyword-mapped arguments required by subclass implementation """ # Run sanity checks assert cls.initialized, "Must initialize system before generating particle instancers!" # Generate a checker function to see if particles are within the link's volumes check_in_volume, _ = generate_points_in_volume_checker_function( obj=obj, volume_link=link, use_visual_meshes=use_visual_meshes, mesh_name_prefixes=mesh_name_prefixes, ) # Grab the link's AABB (or fallback to obj AABB if link does not have a valid AABB), # and generate a grid of points based on the sampling distance try: low, high = link.visual_aabb extent = link.visual_aabb_extent except ValueError: low, high = obj.aabb extent = obj.aabb_extent # We sample the range of each extent minus sampling_distance = 2 * cls.particle_radius if sampling_distance is None else sampling_distance n_particles_per_axis = (extent / sampling_distance).astype(int) assert np.all(n_particles_per_axis), f"link {link.name} is too small to sample any particle of radius {cls.particle_radius}." # 1e-10 is added because the extent might be an exact multiple of particle radius arrs = [np.arange(l + cls.particle_radius, h - cls.particle_radius + 1e-10, cls.particle_particle_rest_distance) for l, h, n in zip(low, high, n_particles_per_axis)] # Generate 3D-rectangular grid of points particle_positions = np.stack([arr.flatten() for arr in np.meshgrid(*arrs)]).T # Check which points are inside the volume and only keep those particle_positions = particle_positions[np.where(check_in_volume(particle_positions))[0]] # Also prune any that in contact with anything if requested if check_contact: particle_positions = particle_positions[np.where(cls.check_in_contact(particle_positions) == 0)[0]] # Also potentially sub-sample if we're past our limit if max_samples is not None and len(particle_positions) > max_samples: particle_positions = particle_positions[ np.random.choice(len(particle_positions), size=(int(max_samples),), replace=False)] return cls.generate_particles( positions=particle_positions, **kwargs, ) @classmethod def generate_particles_on_object( cls, obj, sampling_distance=None, max_samples=None, min_samples_for_success=1, **kwargs, ): """ Generates @n_particles new particle objects and samples their locations on the top surface of object @obj Args: obj (BaseObject): Object on which to generate a particle instancer with sampled particles on the object's top surface sampling_distance (None or float): If specified, sets the distance between sampled particles. If None, a simulator autocomputed value will be used max_samples (None or int): If specified, maximum number of particles to sample min_samples_for_success (int): Minimum number of particles required to be sampled successfully in order for this generation process to be considered successful **kwargs (dict): Any additional keyword-mapped arguments required by subclass implementation Returns: bool: True if enough particles were generated successfully (number of successfully sampled points >= min_samples_for_success), otherwise False """ assert max_samples >= min_samples_for_success, "number of particles to sample should exceed the min for success" # We densely sample a grid of points by ray-casting from top to bottom to find the valid positions radius = cls.particle_radius results = sample_cuboid_on_object_full_grid_topdown( obj, # the grid is fully dense - particles are sitting next to each other ray_spacing=radius * 2 if sampling_distance is None else sampling_distance, # assume the particles are extremely small - sample cuboids of size 0 for better performance cuboid_dimensions=np.zeros(3), # raycast start inside the aabb in x-y plane and outside the aabb in the z-axis aabb_offset=np.array([-radius, -radius, radius]), # bottom padding should be the same as the particle radius cuboid_bottom_padding=radius, # undo_cuboid_bottom_padding should be False - the sampled positions are above the surface by its radius undo_cuboid_bottom_padding=False, ) particle_positions = np.array([result[0] for result in results if result[0] is not None]) # Also potentially sub-sample if we're past our limit if max_samples is not None and len(particle_positions) > max_samples: particle_positions = particle_positions[ np.random.choice(len(particle_positions), size=(max_samples,), replace=False)] n_particles = len(particle_positions) success = n_particles >= min_samples_for_success # If we generated a sufficient number of points, generate them in the simulator if success: cls.generate_particles( positions=particle_positions, **kwargs, ) return success def _create_system_from_metadata(system_name): """ Internal helper function to programmatically create a system from dataset metadata NOTE: This only creates the system, and does NOT initialize the system Args: system_name (str): Name of the system to create, e.g.: "water", "stain", etc. Returns: BaseSystem: Created system class """ # Avoid circular imports from omnigibson import systems # Search for the appropriate system, if not found, fallback # TODO: Once dataset is fully constructed, DON'T fallback, and assert False instead all_systems = set(get_all_system_categories()) if system_name not in all_systems: # Use default config -- assume @system_name is a fluid that uses the same params as water return systems.FluidSystem.create( name=system_name.replace("-", "_"), particle_contact_offset=0.012, particle_density=500.0, is_viscous=False, material_mtl_name="DeepWater", ) else: """ This is not defined yet, but one proposal: Metadata = .json dict, with format: { "type": one of {"visual", "fluid", "granular"}, } if visual, include: "relative_particle_scaling" : ..., if visual or granular, also includes: --> note: create_particle_template should be deterministic, configured via: lambda prim_path, name: og.objects.DatasetObject( prim_path=prim_path, name=name, usd_path=os.path.join(gm.DATASET_PATH, "systems", system_name, f"{system_name}.usd"), category=system_name, visible=False, fixed_base=False, visual_only=True, include_default_states=False, abilities={}, ) if fluid / granular, also include: "particle_contact_offset": ..., "particle_density": ..., if fluid, also include: "is_viscous": bool "material_mtl_name": ..., # Base material config to use "customize_particle_kwargs": { # Maps property/ies from @MaterialPrim to value to set "opacity_constant": ..., "albedo_add": ..., "diffuse_color_constant": ..., ..., } --> This will be programmatically constructed into a function: def _customize_particle_material(mat: MaterialPrim): --> None for attr, val in metadata["customize_particle_kwargs"].items(): mat.__setattr__(attr, val) Then, compile the necessary kwargs and generate the requested system """ # Parse information system_dir = os.path.join(gm.DATASET_PATH, "systems", system_name) with open(os.path.join(system_dir, "metadata.json"), "r") as f: metadata = json.load(f) system_type = metadata["type"] system_kwargs = dict(name=system_name) particle_assets = set(os.listdir(system_dir)) particle_assets.remove("metadata.json") has_asset = len(particle_assets) > 0 if has_asset: model = sorted(particle_assets)[0] asset_path = os.path.join(system_dir, model, "usd", f"{model}.usd") else: asset_path = None if not has_asset: if system_type == "macro_visual_particle": # Fallback to stain asset asset_path = os.path.join(gm.DATASET_PATH, "systems", "stain", "ahkjul", "usd", "ahkjul.usd") has_asset = True if has_asset: def generate_particle_template_fcn(): return lambda prim_path, name: \ og.objects.USDObject( prim_path=prim_path, name=name, usd_path=asset_path, encrypted=True, category=system_name, visible=False, fixed_base=True, visual_only=True, kinematic_only=True, include_default_states=False, abilities={}, ) else: def generate_particle_template_fcn(): return lambda prim_path, name: \ og.objects.PrimitiveObject( prim_path=prim_path, name=name, primitive_type="Sphere", category=system_name, radius=0.015, visible=False, fixed_base=True, visual_only=True, kinematic_only=True, include_default_states=False, abilities={}, ) def generate_customize_particle_material_fcn(mat_kwargs): def customize_mat(mat): for attr, val in mat_kwargs.items(): setattr(mat, attr, np.array(val) if isinstance(val, list) else val) return customize_mat if system_type == "macro_visual_particle": system_kwargs["create_particle_template"] = generate_particle_template_fcn() system_kwargs["scale_relative_to_parent"] = metadata["relative_particle_scaling"] elif system_type == "granular" or system_type == "macro_physical_particle": system_kwargs["create_particle_template"] = generate_particle_template_fcn() system_kwargs["particle_density"] = metadata["particle_density"] elif system_type == "fluid": system_kwargs["particle_contact_offset"] = metadata["particle_contact_offset"] system_kwargs["particle_density"] = metadata["particle_density"] system_kwargs["is_viscous"] = metadata["is_viscous"] system_kwargs["material_mtl_name"] = metadata["material_mtl_name"] system_kwargs["customize_particle_material"] = \ generate_customize_particle_material_fcn(mat_kwargs=metadata["customize_material_kwargs"]) else: raise ValueError(f"{system_name} system's type {system_type} is invalid! Must be one of " f"{{ 'macro_visual_particle', 'macro_physical_particle', 'granular', or 'fluid' }}") # Generate the requested system system_cls = "".join([st.capitalize() for st in system_type.split("_")]) return getattr(systems, f"{system_cls}System").create(**system_kwargs) def import_og_systems(): system_dir = os.path.join(gm.DATASET_PATH, "systems") if os.path.exists(system_dir): system_names = os.listdir(system_dir) for system_name in system_names: if system_name not in REGISTERED_SYSTEMS: _create_system_from_metadata(system_name=system_name) def is_system_active(system_name): if system_name not in REGISTERED_SYSTEMS: return False # assert system_name in REGISTERED_SYSTEMS, f"System {system_name} not in REGISTERED_SYSTEMS." system = REGISTERED_SYSTEMS[system_name] return system.initialized def is_visual_particle_system(system_name): assert system_name in REGISTERED_SYSTEMS, f"System {system_name} not in REGISTERED_SYSTEMS." system = REGISTERED_SYSTEMS[system_name] return issubclass(system, VisualParticleSystem) def is_physical_particle_system(system_name): assert system_name in REGISTERED_SYSTEMS, f"System {system_name} not in REGISTERED_SYSTEMS." system = REGISTERED_SYSTEMS[system_name] return issubclass(system, PhysicalParticleSystem) def is_fluid_system(system_name): assert system_name in REGISTERED_SYSTEMS, f"System {system_name} not in REGISTERED_SYSTEMS." system = REGISTERED_SYSTEMS[system_name] # Avoid circular imports from omnigibson.systems.micro_particle_system import FluidSystem return issubclass(system, FluidSystem) def get_system(system_name, force_active=True): # Make sure scene exists assert og.sim.scene is not None, "Cannot get systems until scene is imported!" # If system_name is not in REGISTERED_SYSTEMS, create from metadata system = REGISTERED_SYSTEMS[system_name] if system_name in REGISTERED_SYSTEMS \ else _create_system_from_metadata(system_name=system_name) if not system.initialized and force_active: system.initialize() return system def clear_all_systems(): global _CALLBACKS_ON_SYSTEM_INIT, _CALLBACKS_ON_SYSTEM_CLEAR _CALLBACKS_ON_SYSTEM_INIT = dict() _CALLBACKS_ON_SYSTEM_CLEAR = dict() for system in SYSTEM_REGISTRY.objects: system.clear() def add_callback_on_system_init(name, callback): global _CALLBACKS_ON_SYSTEM_INIT _CALLBACKS_ON_SYSTEM_INIT[name] = callback def add_callback_on_system_clear(name, callback): global _CALLBACKS_ON_SYSTEM_CLEAR _CALLBACKS_ON_SYSTEM_CLEAR[name] = callback def remove_callback_on_system_init(name): global _CALLBACKS_ON_SYSTEM_INIT _CALLBACKS_ON_SYSTEM_INIT.pop(name) def remove_callback_on_system_clear(name): global _CALLBACKS_ON_SYSTEM_CLEAR _CALLBACKS_ON_SYSTEM_CLEAR.pop(name)
51,397
Python
39.092044
151
0.623694
StanfordVL/OmniGibson/omnigibson/systems/__init__.py
from omnigibson.systems.system_base import get_system, is_system_active, is_visual_particle_system, \ is_physical_particle_system, SYSTEM_REGISTRY, add_callback_on_system_init, add_callback_on_system_clear, \ remove_callback_on_system_init, remove_callback_on_system_clear, import_og_systems from omnigibson.systems.micro_particle_system import * from omnigibson.systems.macro_particle_system import * # Import all OG systems from dataset import_og_systems()
468
Python
51.111105
110
0.792735
StanfordVL/OmniGibson/omnigibson/systems/micro_particle_system.py
import uuid import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import gm, create_module_macros from omnigibson.prims.prim_base import BasePrim from omnigibson.prims.geom_prim import VisualGeomPrim from omnigibson.prims.material_prim import MaterialPrim from omnigibson.systems.system_base import BaseSystem, PhysicalParticleSystem, REGISTERED_SYSTEMS from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function from omnigibson.utils.python_utils import classproperty, assert_valid_key, subclass_factory, snake_case_to_camel_case from omnigibson.utils.sampling_utils import sample_cuboid_on_object_full_grid_topdown from omnigibson.utils.usd_utils import mesh_prim_to_trimesh_mesh, PoseAPI from omnigibson.utils.physx_utils import create_physx_particle_system, create_physx_particleset_pointinstancer from omnigibson.utils.ui_utils import disclaimer, create_module_logger from pathlib import Path import os import tempfile import datetime import trimesh import pymeshlab import numpy as np from collections import defaultdict # Create module logger log = create_module_logger(module_name=__name__) # Create settings for this module m = create_module_macros(module_path=__file__) # TODO: Tune these default values! # TODO (eric): figure out whether one offset can fit all m.MAX_CLOTH_PARTICLES = 20000 # Comes from a limitation in physx - do not increase m.CLOTH_PARTICLE_CONTACT_OFFSET = 0.0075 m.CLOTH_REMESHING_ERROR_THRESHOLD = 0.05 m.CLOTH_STRETCH_STIFFNESS = 10000.0 m.CLOTH_BEND_STIFFNESS = 200.0 m.CLOTH_SHEAR_STIFFNESS = 100.0 m.CLOTH_DAMPING = 0.2 m.CLOTH_FRICTION = 0.4 m.CLOTH_DRAG = 0.001 m.CLOTH_LIFT = 0.003 m.MIN_PARTICLE_CONTACT_OFFSET = 0.005 # Minimum particle contact offset for physical micro particles m.FLUID_PARTICLE_PARTICLE_DISTANCE_SCALE = 0.8 # How much overlap expected between fluid particles at rest m.MICRO_PARTICLE_SYSTEM_MAX_VELOCITY = None # If set, the maximum particle velocity for micro particle systems def set_carb_settings_for_fluid_isosurface(): """ Sets relevant rendering settings in the carb settings in order to use isosurface effectively """ # Settings for Isosurface isregistry = lazy.carb.settings.acquire_settings_interface() # disable grid and lights dOptions = isregistry.get_as_int("persistent/app/viewport/displayOptions") dOptions &= ~(1 << 6 | 1 << 8) isregistry.set_int("persistent/app/viewport/displayOptions", dOptions) isregistry.set_bool(lazy.omni.physx.bindings._physx.SETTING_UPDATE_TO_USD, True) isregistry.set_int(lazy.omni.physx.bindings._physx.SETTING_NUM_THREADS, 8) isregistry.set_bool(lazy.omni.physx.bindings._physx.SETTING_UPDATE_VELOCITIES_TO_USD, True) isregistry.set_bool(lazy.omni.physx.bindings._physx.SETTING_UPDATE_PARTICLES_TO_USD, True) # TODO: Why does setting this value --> True result in no isosurface being rendered? isregistry.set_int("persistent/simulation/minFrameRate", 60) isregistry.set_bool("rtx-defaults/pathtracing/lightcache/cached/enabled", False) isregistry.set_bool("rtx-defaults/pathtracing/cached/enabled", False) isregistry.set_int("rtx-defaults/pathtracing/fireflyFilter/maxIntensityPerSample", 10000) isregistry.set_int("rtx-defaults/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse", 50000) isregistry.set_float("rtx-defaults/pathtracing/optixDenoiser/blendFactor", 0.09) isregistry.set_int("rtx-defaults/pathtracing/aa/op", 2) isregistry.set_int("rtx-defaults/pathtracing/maxBounces", 32) isregistry.set_int("rtx-defaults/pathtracing/maxSpecularAndTransmissionBounces", 16) isregistry.set_int("rtx-defaults/post/dlss/execMode", 1) isregistry.set_int("rtx-defaults/translucency/maxRefractionBounces", 12) class PhysxParticleInstancer(BasePrim): """ Simple class that wraps the raw omniverse point instancer prim and provides convenience functions for particle access """ def __init__(self, prim_path, name, idn): """ Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. idn (int): Unique identification number to assign to this particle instancer. This is used to deterministically reproduce individual particle instancer states dynamically, even if we delete / add additional ones at runtime during simulation. """ # Store inputs self._idn = idn # Run super method directly super().__init__(prim_path=prim_path, name=name) self._parent_prim = BasePrim(prim_path=self.prim.GetParent().GetPath().pathString, name=f"{name}_parent") def _load(self): # We raise an error, this should NOT be created from scratch raise NotImplementedError("PhysxPointInstancer should NOT be loaded via this class! Should be created before.") def remove(self): super().remove() self._parent_prim.remove() def add_particles( self, positions, velocities=None, orientations=None, scales=None, prototype_indices=None, ): """ Adds particles to this particle instancer. positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions. velocities (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) velocities. If not specified, all will be set to 0 orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be set to canonical orientation (0, 0, 0, 1) scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scales. If not specified, will be scale [1, 1, 1] by default prototype_indices (None or list of int): If specified, should specify which prototype should be used for each particle. If None, will use all 0s (i.e.: the first prototype created) """ n_new_particles = len(positions) velocities = np.zeros((n_new_particles, 3)) if velocities is None else velocities if orientations is None: orientations = np.zeros((n_new_particles, 4)) orientations[:, -1] = 1.0 scales = np.ones((n_new_particles, 3)) * np.ones((1, 3)) if scales is None else scales prototype_indices = np.zeros(n_new_particles, dtype=int) if prototype_indices is None else prototype_indices self.particle_positions = np.vstack([self.particle_positions, positions]) self.particle_velocities = np.vstack([self.particle_velocities, velocities]) self.particle_orientations = np.vstack([self.particle_orientations, orientations]) self.particle_scales = np.vstack([self.particle_scales, scales]) self.particle_prototype_ids = np.hstack([self.particle_prototype_ids, prototype_indices]) def remove_particles(self, idxs): """ Remove particles from this instancer, specified by their indices @idxs in the data array Args: idxs (list or np.array of int): IDs corresponding to the indices of specific particles to remove from this instancer """ if len(idxs) > 0: # Remove all requested indices and write to all the internal data arrays self.particle_positions = np.delete(self.particle_positions, idxs, axis=0) self.particle_velocities = np.delete(self.particle_velocities, idxs, axis=0) self.particle_orientations = np.delete(self.particle_orientations, idxs, axis=0) self.particle_scales = np.delete(self.particle_scales, idxs, axis=0) self.particle_prototype_ids = np.delete(self.particle_prototype_ids, idxs, axis=0) def remove_all_particles(self): self.remove_particles(idxs=np.arange(self.n_particles)) @property def n_particles(self): """ Returns: int: Number of particles owned by this instancer """ return len(self.particle_positions) @property def idn(self): """ Returns: int: Identification number of this particle instancer """ return self._idn @property def particle_group(self): """ Returns: int: Particle group this instancer belongs to """ return self.get_attribute(attr="physxParticle:particleGroup") @particle_group.setter def particle_group(self, group): """ Args: group (int): Particle group this instancer belongs to """ self.set_attribute(attr="physxParticle:particleGroup", val=group) @property def particle_positions(self): """ Returns: np.array: (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ return np.array(self.get_attribute(attr="positions")) @particle_positions.setter def particle_positions(self, pos): """ Set the particle positions for this instancer Args: np.array: (N, 3) numpy array, where each of the N particles' desired positions are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ self.set_attribute(attr="positions", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(pos.astype(float))) @property def particle_orientations(self): """ Returns: np.array: (N, 4) numpy array, where each of the N particles' orientations are expressed in (x,y,z,w) quaternion coordinates relative to this instancer's parent prim """ return np.array(self.get_attribute(attr="orientations")) @particle_orientations.setter def particle_orientations(self, quat): """ Set the particle positions for this instancer Args: np.array: (N, 4) numpy array, where each of the N particles' desired orientations are expressed in (x,y,z,w) quaternion coordinates relative to this instancer's parent prim """ assert quat.shape[0] == self.n_particles, \ f"Got mismatch in particle setting size: {quat.shape[0]}, vs. number of particles {self.n_particles}!" # If the number of particles is nonzero, swap w position, since Quath takes (w,x,y,z) quat = quat.astype(float) if self.n_particles > 0: quat = quat[:, [3, 0, 1, 2]] self.set_attribute(attr="orientations", val=lazy.pxr.Vt.QuathArray.FromNumpy(quat)) @property def particle_velocities(self): """ Returns: np.array: (N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ return np.array(self.get_attribute(attr="velocities")) @particle_velocities.setter def particle_velocities(self, vel): """ Set the particle velocities for this instancer Args: np.array: (N, 3) numpy array, where each of the N particles' desired velocities are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ assert vel.shape[0] == self.n_particles, \ f"Got mismatch in particle setting size: {vel.shape[0]}, vs. number of particles {self.n_particles}!" self.set_attribute(attr="velocities", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(vel.astype(float))) @property def particle_scales(self): """ Returns: np.array: (N, 3) numpy array, where each of the N particles' scales are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ return np.array(self.get_attribute(attr="scales")) @particle_scales.setter def particle_scales(self, scales): """ Set the particle scales for this instancer Args: np.array: (N, 3) numpy array, where each of the N particles' desired scales are expressed in (x,y,z) cartesian coordinates relative to this instancer's parent prim """ assert scales.shape[0] == self.n_particles, \ f"Got mismatch in particle setting size: {scales.shape[0]}, vs. number of particles {self.n_particles}!" self.set_attribute(attr="scales", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(scales.astype(float))) @property def particle_prototype_ids(self): """ Returns: np.array: (N,) numpy array, where each of the N particles' prototype_id (i.e.: which prototype is being used for that particle) """ return np.array(self.get_attribute(attr="protoIndices")) @particle_prototype_ids.setter def particle_prototype_ids(self, prototype_ids): """ Set the particle prototype_ids for this instancer Args: np.array: (N,) numpy array, where each of the N particles' desired prototype_id (i.e.: which prototype is being used for that particle) """ assert prototype_ids.shape[0] == self.n_particles, \ f"Got mismatch in particle setting size: {prototype_ids.shape[0]}, vs. number of particles {self.n_particles}!" self.set_attribute(attr="protoIndices", val=prototype_ids.astype(np.int32)) @property def state_size(self): # idn (1), particle_group (1), n_particles (1), and the corresponding states for each particle # N * (pos (3) + vel (3) + orn (4) + scale (3) + prototype_id (1)) return 3 + self.n_particles * 14 def _dump_state(self): return dict( idn=self._idn, particle_group=self.particle_group, n_particles=self.n_particles, particle_positions=self.particle_positions, particle_velocities=self.particle_velocities, particle_orientations=self.particle_orientations, particle_scales=self.particle_scales, particle_prototype_ids=self.particle_prototype_ids, ) def _load_state(self, state): # Sanity check the identification number and particle group assert self._idn == state["idn"], f"Got mismatch in identification number for this particle instancer when " \ f"loading state! Should be: {self._idn}, got: {state['idn']}." assert self.particle_group == state["particle_group"], f"Got mismatch in particle group for this particle " \ f"instancer when loading state! Should be: {self.particle_group}, got: {state['particle_group']}." # Set values appropriately keys = ("particle_positions", "particle_velocities", "particle_orientations", "particle_scales", "particle_prototype_ids") for key in keys: # Make sure the loaded state is a numpy array, it could have been accidentally casted into a list during # JSON-serialization val = np.array(state[key]) if not isinstance(state[key], np.ndarray) else state[key] setattr(self, key, val) def _serialize(self, state): # Compress into a 1D array return np.concatenate([ [state["idn"], state["particle_group"], state["n_particles"]], state["particle_positions"].reshape(-1), state["particle_velocities"].reshape(-1), state["particle_orientations"].reshape(-1), state["particle_scales"].reshape(-1), state["particle_prototype_ids"], ]).astype(float) def _deserialize(self, state): # Sanity check the identification number assert self._idn == state[0], f"Got mismatch in identification number for this particle instancer when " \ f"deserializing state! Should be: {self._idn}, got: {state[0]}." assert self.particle_group == state[1], f"Got mismatch in particle group for this particle " \ f"instancer when deserializing state! Should be: {self.particle_group}, got: {state[1]}." # De-compress from 1D array n_particles = int(state[2]) state_dict = dict( idn=int(state[0]), particle_group=int(state[1]), n_particles=n_particles, ) # Process remaining keys and reshape automatically keys = ("particle_positions", "particle_velocities", "particle_orientations", "particle_scales", "particle_prototype_ids") sizes = ((n_particles, 3), (n_particles, 3), (n_particles, 4), (n_particles, 3), (n_particles,)) idx = 3 for key, size in zip(keys, sizes): length = np.product(size) state_dict[key] = state[idx: idx + length].reshape(size) idx += length return state_dict, idx class MicroParticleSystem(BaseSystem): """ Global system for modeling "micro" level particles, e.g.: water, seeds, cloth. This system leverages Omniverse's native physx particle systems """ # Particle system prim in the scene, should be generated at runtime system_prim = None # Material -- MaterialPrim associated with this particle system _material = None # Color of the generated material. Default is white [1.0, 1.0, 1.0] # (NOTE: external queries should call cls.color) _color = np.array([1.0, 1.0, 1.0]) @classmethod def initialize(cls): # Run super first super().initialize() # Run sanity checks if not gm.USE_GPU_DYNAMICS: raise ValueError(f"Failed to initialize {cls.name} system. Please set gm.USE_GPU_DYNAMICS to be True.") # Make sure flatcache is not being used OR isosurface is enabled -- otherwise, raise an error, since # non-isosurface particles don't get rendered properly when flatcache is enabled assert cls.use_isosurface or not gm.ENABLE_FLATCACHE, \ f"Cannot use flatcache with MicroParticleSystem {cls.name} when no isosurface is used!" cls.system_prim = cls._create_particle_system() # Get material material = cls._get_particle_material_template() # Load the material if it's newly created and has never been loaded before if not material.loaded: material.load() material.add_user(cls) cls._material = material # Bind the material to the particle system (for isosurface) and the prototypes (for non-isosurface) cls._material.bind(cls.system_prim_path) # Also apply physics to this material lazy.omni.physx.scripts.particleUtils.add_pbd_particle_material(og.sim.stage, cls.mat_path, **cls._pbd_material_kwargs) # Force populate inputs and outputs of the shader cls._material.shader_force_populate() # Potentially modify the material cls._customize_particle_material() @classmethod def _clear(cls): cls._material.remove_user(cls) super()._clear() cls.system_prim = None cls._material = None cls._color = np.array([1.0, 1.0, 1.0]) @classproperty def particle_radius(cls): # Magic number from omni tutorials # See https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#offset-autocomputation # Also https://nvidia-omniverse.github.io/PhysX/physx/5.1.3/docs/ParticleSystem.html#particle-system-configuration return 0.99 * cls.particle_contact_offset @classproperty def color(cls): """ Returns: None or 3-array: If @cls._material exists, this will be its corresponding RGB color. Otherwise, will return None """ return cls._color @classproperty def material(cls): return cls._material @classproperty def mat_path(cls): """ Returns: str: Path to this system's material in the scene stage """ return f"{cls.prim_path}/material" @classproperty def mat_name(cls): """ Returns: str: Name of this system's material """ return f"{cls.name}:material" @classproperty def _pbd_material_kwargs(cls): """ Returns: dict: Any PBD material kwargs to pass to the PBD material method particleUtils.add_pbd_particle_material used to define physical properties associated with this particle system """ # Default is empty dictionary return dict() @classmethod def _get_particle_material_template(cls): """ Creates the particle material template to be used for this particle system. Prim path does not matter, as it will be overridden internally such that it is a child prim of this particle system's prim. NOTE: This material is a template because it is loading an Omni material preset. It can then be customized (in addition to modifying its physical material properties) via @_customize_particle_material Returns: MaterialPrim: The material to apply to all particles """ # Default is PBR material return MaterialPrim.get_material( prim_path=cls.mat_path, name=cls.mat_name, load_config={ "mdl_name": f"OmniPBR.mdl", "mtl_name": f"OmniPBR", } ) @classmethod def _customize_particle_material(cls): """ Modifies this particle system's particle material once it is loaded. Default is a no-op """ pass @classproperty def system_prim_path(cls): return f"{cls.prim_path}/system" @classproperty def visual_only(cls): """ Returns: bool: Whether this particle system should be visual-only, i.e.: not subject to collisions and physics. If True, the generated particles will not move or collide """ return False @classproperty def particle_contact_offset(cls): """ Returns: float: Contact offset value to use for this particle system. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html?highlight=isosurface#particle-system-configuration for more information """ raise NotImplementedError() @classproperty def use_smoothing(cls): """ Returns: bool: Whether to use smoothing or not for this particle system. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html?highlight=isosurface#smoothing for more information """ return False @classproperty def use_anisotropy(cls): """ Returns: bool: Whether to use anisotropy or not for this particle system. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html?highlight=isosurface#anisotropy for more information """ return False @classproperty def use_isosurface(cls): """ Returns: bool: Whether to use isosurface or not for this particle system. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html?highlight=isosurface#isosurface for more information """ return False @classmethod def _create_particle_system(cls): """ Creates the single, global particle system. This should only be ever called once, and during initialize() Returns: Usd.Prim: Particle system prim created """ return create_physx_particle_system( prim_path=cls.system_prim_path, physics_scene_path=og.sim.get_physics_context().get_current_physics_scene_prim().GetPrimPath().pathString, particle_contact_offset=cls.particle_contact_offset, visual_only=cls.visual_only, smoothing=cls.use_smoothing and gm.ENABLE_HQ_RENDERING, anisotropy=cls.use_anisotropy and gm.ENABLE_HQ_RENDERING, isosurface=cls.use_isosurface and gm.ENABLE_HQ_RENDERING, ).GetPrim() class MicroPhysicalParticleSystem(MicroParticleSystem, PhysicalParticleSystem): """ Global system for modeling physical "micro" level particles, e.g.: water, seeds, rice, etc. This system leverages Omniverse's native physx particle systems """ # Particle prototypes -- will be list of mesh prims to use as particle prototypes for this system particle_prototypes = None # Particle instancers -- maps name to particle instancer prims (dict) particle_instancers = None @classproperty def n_particles(cls): return sum([instancer.n_particles for instancer in cls.particle_instancers.values()]) @classproperty def n_instancers(cls): """ Returns: int: Number of active particles in this system """ return len(cls.particle_instancers) @classproperty def instancer_idns(cls): """ Returns: int: Number of active particles in this system """ return [inst.idn for inst in cls.particle_instancers.values()] @classproperty def self_collision(cls): """ Returns: bool: Whether this system's particle should have self collisions enabled or not """ # Default is True return True @classmethod def _sync_particle_prototype_ids(cls): """ Synchronizes the particle prototype IDs across all particle instancers when sim is stopped. Omniverse has a bug where all particle positions, orientations, velocities, and scales are correctly reset when sim is stopped, but not the prototype IDs. This function is a workaround for that. """ if cls.initialized: for instancer in cls.particle_instancers.values(): instancer.particle_prototype_ids = np.zeros(instancer.n_particles, dtype=np.int32) @classmethod def initialize(cls): # Create prototype before running super! cls.particle_prototypes = cls._create_particle_prototypes() # Run super super().initialize() # Potentially set system prim's max velocity value if m.MICRO_PARTICLE_SYSTEM_MAX_VELOCITY is not None: cls.system_prim.GetProperty("maxVelocity").Set(m.MICRO_PARTICLE_SYSTEM_MAX_VELOCITY) # Initialize class variables that are mutable so they don't get overridden by children classes cls.particle_instancers = dict() # TODO: remove this hack once omniverse fixes the issue (now we assume prototype IDs are all 0 always) og.sim.add_callback_on_stop(name=f"{cls.name}_sync_particle_prototype_ids", callback=cls._sync_particle_prototype_ids) @classmethod def _clear(cls): for prototype in cls.particle_prototypes: og.sim.remove_prim(prototype) super()._clear() cls.particle_prototypes = None cls.particle_instancers = None @classproperty def next_available_instancer_idn(cls): """ Updates the max instancer identification number based on the current internal state """ if cls.n_instancers == 0: return cls.default_instancer_idn else: for idn in range(max(cls.instancer_idns) + 2): if idn not in cls.instancer_idns: return idn @classproperty def default_instancer_idn(cls): return 0 @classproperty def state_size(cls): # We have the number of particle instancers (1), the instancer groups, particle groups, and, # number of particles in each instancer (3n), # and the corresponding states in each instancer (X) return 1 + 3 * len(cls.particle_instancers) + sum(inst.state_size for inst in cls.particle_instancers.values()) @classproperty def default_particle_instancer(cls): """ Returns: PhysxParticleInstancer: Default particle instancer for this particle system """ # Default instancer is the 0th ID instancer name = cls.particle_instancer_idn_to_name(idn=cls.default_instancer_idn) # NOTE: Cannot use dict.get() call for some reason; it messes up IDE introspection return cls.particle_instancers[name] if name in cls.particle_instancers \ else cls.generate_particle_instancer(n_particles=0, idn=cls.default_instancer_idn) @classproperty def particle_contact_radius(cls): # This is simply the contact offset return cls.particle_contact_offset @classproperty def is_fluid(cls): """ Returns: bool: Whether this system is modeling fluid or not """ raise NotImplementedError() @classmethod def _create_particle_prototypes(cls): """ Creates any relevant particle prototypes to be used by this particle system. Returns: list of VisualGeomPrim: Visual mesh prim(s) to use as this system's particle prototype(s) """ raise NotImplementedError() @classmethod def remove_particles( cls, idxs, instancer_idn=None, ): """ Removes pre-existing particles from instancer @instancer_idn Args: idxs (np.array): (n_particles,) shaped array specifying IDs of particles to delete instancer_idn (None or int): Unique identification number of the particle instancer to delete the particles from. If None, this system will delete particles from the default particle instancer """ # Create a new particle instancer if a new idn is requested, otherwise use the pre-existing one inst = cls.default_particle_instancer if instancer_idn is None else \ cls.particle_instancers.get(cls.particle_instancer_idn_to_name(idn=instancer_idn), None) assert inst is not None, f"No instancer with ID {inst} exists!" inst.remove_particles(idxs=idxs) @classmethod def generate_particles( cls, positions, instancer_idn=None, particle_group=0, velocities=None, orientations=None, scales=None, prototype_indices=None, ): """ Generates new particles, either as part of a pre-existing instancer corresponding to @instancer_idn or as part of a newly generated instancer. Args: positions (np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions instancer_idn (None or int): Unique identification number of the particle instancer to assign the generated particles to. This is used to deterministically reproduce individual particle instancer states dynamically, even if we delete / add additional ones at runtime during simulation. If there is no active instancer that matches the requested idn, a new one will be created. If None, this system will add particles to the default particle instancer particle_group (int): ID for this particle set. Particles from different groups will automatically collide with each other. Particles in the same group will have collision behavior dictated by @cls.self_collision velocities (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) velocities. If not specified, all will be set to 0 orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be set to canonical orientation (0, 0, 0, 1) scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scales. If not specified, will be uniformly randomly sampled from (cls.min_scale, cls.max_scale) prototype_indices (None or list of int): If specified, should specify which prototype should be used for each particle. If None, will randomly sample from all available prototypes Returns: PhysxParticleInstancer: Particle instancer that includes the generated particles """ # Create a new particle instancer if a new idn is requested, otherwise use the pre-existing one inst = cls.default_particle_instancer if instancer_idn is None else \ cls.particle_instancers.get(cls.particle_instancer_idn_to_name(idn=instancer_idn), None) n_particles = len(positions) if prototype_indices is not None: prototype_indices = np.ones(n_particles, dtype=int) * prototype_indices if \ isinstance(prototype_indices, int) else np.array(prototype_indices, dtype=int) else: prototype_indices = np.random.choice(np.arange(len(cls.particle_prototypes)), size=(n_particles,)) if inst is None: inst = cls.generate_particle_instancer( idn=instancer_idn, particle_group=particle_group, n_particles=len(positions), positions=positions, velocities=velocities, orientations=orientations, scales=scales, prototype_indices=prototype_indices, ) else: inst.add_particles( positions=positions, velocities=velocities, orientations=orientations, scales=scales, prototype_indices=prototype_indices, ) # Update semantics lazy.omni.isaac.core.utils.semantics.add_update_semantics( prim=lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path=cls.prim_path), semantic_label=cls.name, type_label="class", ) return inst @classmethod def generate_particle_instancer( cls, n_particles, idn=None, particle_group=0, positions=None, velocities=None, orientations=None, scales=None, prototype_indices=None, ): """ Generates a new particle instancer with unique identification number @idn, and registers it internally Args: n_particles (int): Number of particles to generate for this instancer idn (None or int): Unique identification number to assign to this particle instancer. This is used to deterministically reproduce individual particle instancer states dynamically, even if we delete / add additional ones at runtime during simulation. If None, this system will generate a unique identifier automatically. particle_group (int): ID for this particle set. Particles from different groups will automatically collide with each other. Particles in the same group will have collision behavior dictated by @cls.self_collision positions (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) positions. If not specified, will be set to the origin by default velocities (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) velocities. If not specified, all will be set to 0 orientations (None or np.array): (n_particles, 4) shaped array specifying per-particle (x,y,z,w) quaternion orientations. If not specified, all will be set to canonical orientation (0, 0, 0, 1) scales (None or np.array): (n_particles, 3) shaped array specifying per-particle (x,y,z) scales. If not specified, will be uniformly randomly sampled from (cls.min_scale, cls.max_scale) prototype_indices (None or list of int): If specified, should specify which prototype should be used for each particle. If None, will use all 0s (i.e.: the first prototype created) Returns: PhysxParticleInstancer: Generated particle instancer """ # Run sanity checks assert cls.initialized, "Must initialize system before generating particle instancers!" # Multiple particle instancers is NOT supported currently, since there is no clear use case for multiple assert cls.n_instancers == 0, f"Cannot create multiple instancers for the same system! " \ f"There is already {cls.n_instancers} pre-existing instancers." # Automatically generate an identification number for this instancer if none is specified if idn is None: idn = cls.next_available_instancer_idn assert idn not in cls.instancer_idns, f"instancer idn {idn} already exists." # Generate standardized prim path for this instancer name = cls.particle_instancer_idn_to_name(idn=idn) # Create the instancer instance = create_physx_particleset_pointinstancer( name=name, particle_system_path=cls.prim_path, physx_particle_system_path=cls.system_prim_path, particle_group=particle_group, positions=np.zeros((n_particles, 3)) if positions is None else positions, self_collision=cls.self_collision, fluid=cls.is_fluid, particle_mass=None, particle_density=cls.particle_density, orientations=orientations, velocities=velocities, angular_velocities=None, scales=cls.sample_scales(n=n_particles) if scales is None else scales, prototype_prim_paths=[pp.prim_path for pp in cls.particle_prototypes], prototype_indices=prototype_indices, enabled=not cls.visual_only, ) # Create the instancer object that wraps the raw prim instancer = PhysxParticleInstancer( prim_path=instance.GetPrimPath().pathString, name=name, idn=idn, ) instancer.initialize() cls.particle_instancers[name] = instancer return instancer @classmethod def generate_particles_from_link( cls, obj, link, use_visual_meshes=True, mesh_name_prefixes=None, check_contact=True, instancer_idn=None, particle_group=0, sampling_distance=None, max_samples=None, prototype_indices=None, ): """ Generates a new particle instancer with unique identification number @idn, with particles sampled from the mesh located at @mesh_prim_path, and registers it internally. This will also check for collision with other rigid objects before spawning in individual particles Args: obj (EntityPrim): Object whose @link's visual meshes will be converted into sampled particles link (RigidPrim): @obj's link whose visual meshes will be converted into sampled particles use_visual_meshes (bool): Whether to use visual meshes of the link to generate particles mesh_name_prefixes (None or str): If specified, specifies the substring that must exist in @link's mesh names in order for that mesh to be included in the particle generator function. If None, no filtering will be used. check_contact (bool): If True, will only spawn in particles that do not collide with other rigid bodies instancer_idn (None or int): Unique identification number of the particle instancer to assign the generated particles to. This is used to deterministically reproduce individual particle instancer states dynamically, even if we delete / add additional ones at runtime during simulation. If there is no active instancer that matches the requested idn, a new one will be created. If None, this system will add particles to the default particle instancer particle_group (int): ID for this particle set. Particles from different groups will automatically collide with each other. Particles in the same group will have collision behavior dictated by @cls.self_collision. Only used if a new particle instancer is created! sampling_distance (None or float): If specified, sets the distance between sampled particles. If None, a simulator autocomputed value will be used max_samples (None or int): If specified, maximum number of particles to sample prototype_indices (None or list of int): If specified, should specify which prototype should be used for each particle. If None, will randomly sample from all available prototypes """ return super().generate_particles_from_link( obj=obj, link=link, use_visual_meshes=use_visual_meshes, mesh_name_prefixes=mesh_name_prefixes, check_contact=check_contact, instancer_idn=instancer_idn, particle_group=particle_group, sampling_distance=sampling_distance, max_samples=max_samples, prototype_indices=prototype_indices, ) @classmethod def generate_particles_on_object( cls, obj, instancer_idn=None, particle_group=0, sampling_distance=None, max_samples=None, min_samples_for_success=1, prototype_indices=None, ): """ Generates @n_particles new particle objects and samples their locations on the top surface of object @obj Args: obj (BaseObject): Object on which to generate a particle instancer with sampled particles on the object's top surface instancer_idn (None or int): Unique identification number of the particle instancer to assign the generated particles to. This is used to deterministically reproduce individual particle instancer states dynamically, even if we delete / add additional ones at runtime during simulation. If there is no active instancer that matches the requested idn, a new one will be created. If None, this system will add particles to the default particle instancer particle_group (int): ID for this particle set. Particles from different groups will automatically collide. Only used if a new particle instancer is created! sampling_distance (None or float): If specified, sets the distance between sampled particles. If None, a simulator autocomputed value will be used max_samples (None or int): If specified, maximum number of particles to sample min_samples_for_success (int): Minimum number of particles required to be sampled successfully in order for this generation process to be considered successful prototype_indices (None or list of int): If specified, should specify which prototype should be used for each particle. If None, will randomly sample from all available prototypes Returns: bool: True if enough particles were generated successfully (number of successfully sampled points >= min_samples_for_success), otherwise False """ return super().generate_particles_on_object( obj=obj, instancer_idn=instancer_idn, particle_group=particle_group, sampling_distance=sampling_distance, max_samples=max_samples, min_samples_for_success=min_samples_for_success, prototype_indices=prototype_indices, ) @classmethod def remove_particle_instancer(cls, name): """ Removes particle instancer with name @name from this system. Args: name (str): Particle instancer name to remove. If it does not exist, then an error will be raised """ # Make sure the instancer actually exists assert_valid_key(key=name, valid_keys=cls.particle_instancers, name="particle instancer") # Remove instancer from our tracking and delete its prim instancer = cls.particle_instancers.pop(name) og.sim.remove_prim(instancer) @classmethod def particle_instancer_name_to_idn(cls, name): """ Args: name (str): Particle instancer name Returns: int: Particle instancer identification number """ return int(name.split(f"{cls.name}Instancer")[-1]) @classmethod def particle_instancer_idn_to_name(cls, idn): """ Args: idn (idn): Particle instancer identification number Returns: str: Name of the particle instancer auto-generated from its unique identification number """ return f"{cls.name}Instancer{idn}" @classmethod def get_particles_position_orientation(cls): return cls.default_particle_instancer.particle_positions, cls.default_particle_instancer.particle_orientations @classmethod def get_particles_local_pose(cls): return cls.get_particles_position_orientation() @classmethod def get_particle_position_orientation(cls, idx): pos, ori = cls.get_particles_position_orientation() return pos[idx], ori[idx] @classmethod def get_particle_local_pose(cls, idx): return cls.get_particle_position_orientation(idx=idx) @classmethod def set_particles_position_orientation(cls, positions=None, orientations=None): if positions is not None: cls.default_particle_instancer.particle_positions = positions if orientations is not None: cls.default_particle_instancer.particle_orientations = orientations @classmethod def set_particles_local_pose(cls, positions=None, orientations=None): cls.set_particles_position_orientation(positions=positions, orientations=orientations) @classmethod def set_particle_position_orientation(cls, idx, position=None, orientation=None): if position is not None: positions = cls.default_particle_instancer.particle_positions positions[idx] = position cls.default_particle_instancer.particle_positions = positions if orientation is not None: orientations = cls.default_particle_instancer.particle_orientations orientations[idx] = orientation cls.default_particle_instancer.particle_orientations = orientations @classmethod def set_particle_local_pose(cls, idx, position=None, orientation=None): cls.set_particle_position_orientation(idx=idx, position=position, orientation=orientation) @classmethod def _sync_particle_instancers(cls, idns, particle_groups, particle_counts): """ Synchronizes the particle instancers based on desired identification numbers @idns Args: idns (list of int): Desired unique instancers that should be active for this particle system particle_groups (list of int): Desired particle groups that each instancer should be. Length of this list should be the same length as @idns particle_counts (list of int): Desired particle counts that should exist per instancer. Length of this list should be the same length as @idns """ # We have to be careful here -- some particle instancers may have been deleted / are mismatched, so we need # to update accordingly, potentially deleting stale instancers and creating new instancers as needed idn_to_info_mapping = {idn: {"group": group, "count": count} for idn, group, count in zip(idns, particle_groups, particle_counts)} current_instancer_names = set(cls.particle_instancers.keys()) desired_instancer_names = set(cls.particle_instancer_idn_to_name(idn=idn) for idn in idns) instancers_to_delete = current_instancer_names - desired_instancer_names instancers_to_create = desired_instancer_names - current_instancer_names common_instancers = current_instancer_names.intersection(desired_instancer_names) # Sanity check the common instancers, we will recreate any where there is a mismatch for name in common_instancers: idn = cls.particle_instancer_name_to_idn(name=name) info = idn_to_info_mapping[idn] instancer = cls.particle_instancers[name] if instancer.particle_group != info["group"]: instancer.particle_group = info["group"] count_diff = info["count"] - instancer.n_particles if count_diff > 0: # We need to add more particles to this group instancer.add_particles(positions=np.zeros((count_diff, 3))) elif count_diff < 0: # We need to remove particles from this group instancer.remove_particles(idxs=np.arange(-count_diff)) # Delete any instancers we no longer want for name in instancers_to_delete: cls.remove_particle_instancer(name=name) # Create any instancers we don't already have for name in instancers_to_create: idn = cls.particle_instancer_name_to_idn(name=name) info = idn_to_info_mapping[idn] cls.generate_particle_instancer(idn=idn, particle_group=info["group"], n_particles=info["count"]) @classmethod def _dump_state(cls): return dict( n_instancers=cls.n_instancers, instancer_idns=cls.instancer_idns, instancer_particle_groups=[inst.particle_group for inst in cls.particle_instancers.values()], instancer_particle_counts=[inst.n_particles for inst in cls.particle_instancers.values()], particle_states=dict(((name, inst.dump_state(serialized=False)) for name, inst in cls.particle_instancers.items())), ) @classmethod def _load_state(cls, state): # Synchronize the particle instancers cls._sync_particle_instancers( idns=state["instancer_idns"], particle_groups=state["instancer_particle_groups"], particle_counts=state["instancer_particle_counts"], ) # Iterate over all particle states and load their respective states for name, inst_state in state["particle_states"].items(): cls.particle_instancers[name].load_state(inst_state, serialized=False) @classmethod def _serialize(cls, state): # Array is number of particle instancers, then the corresponding states for each particle instancer return np.concatenate([ [state["n_instancers"]], state["instancer_idns"], state["instancer_particle_groups"], state["instancer_particle_counts"], *[cls.particle_instancers[name].serialize(inst_state) for name, inst_state in state["particle_states"].items()], ]).astype(float) @classmethod def _deserialize(cls, state): # Synchronize the particle instancers n_instancers = int(state[0]) instancer_info = dict() idx = 1 for info_name in ("instancer_idns", "instancer_particle_groups", "instancer_particle_counts"): instancer_info[info_name] = state[idx: idx + n_instancers].astype(int).tolist() idx += n_instancers # Syncing is needed so that each particle instancer can further deserialize its own state log.debug(f"Syncing {cls.name} particles with {n_instancers} instancers..") cls._sync_particle_instancers( idns=instancer_info["instancer_idns"], particle_groups=instancer_info["instancer_particle_groups"], particle_counts=instancer_info["instancer_particle_counts"], ) # Procedurally deserialize the particle states particle_states = dict() for idn in instancer_info["instancer_idns"]: name = cls.particle_instancer_idn_to_name(idn=idn) state_size = cls.particle_instancers[name].state_size particle_states[name] = cls.particle_instancers[name].deserialize(state[idx: idx + state_size]) idx += state_size return dict( n_instancers=n_instancers, **instancer_info, particle_states=particle_states, ), idx @classmethod def remove_all_particles(cls): cls._sync_particle_instancers(idns=[], particle_groups=[], particle_counts=[]) @classmethod def create( cls, name, particle_density, min_scale=None, max_scale=None, **kwargs, ): """ Utility function to programmatically generate monolithic fluid system classes. Args: name (str): Name of the system, in snake case. particle_density (float): Particle density for the generated system min_scale (None or 3-array): If specified, sets the minumum bound for particles' relative scale. Else, defaults to 1 max_scale (None or 3-array): If specified, sets the maximum bound for particles' relative scale. Else, defaults to 1 **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: MicroPhysicalParticleSystem: Generated system class """ # Override the necessary parameters @classproperty def cp_register_system(cls): # We should register this system since it's an "actual" system (not an intermediate class) return True @classproperty def cp_particle_density(cls): return particle_density # Add to any other params specified kwargs["_register_system"] = cp_register_system kwargs["particle_density"] = cp_particle_density # Run super return super().create(name=name, min_scale=min_scale, max_scale=max_scale, **kwargs) class FluidSystem(MicroPhysicalParticleSystem): """ Particle system class simulating fluids, leveraging isosurface feature in omniverse to render nice PBR fluid texture. Individual particles are composed of spheres. """ @classmethod def initialize(cls): # Run super first super().initialize() # Bind the material to the particle system (for isosurface) and the prototypes (for non-isosurface) cls._material.bind(cls.system_prim_path) for prototype in cls.particle_prototypes: cls._material.bind(prototype.prim_path) # Apply the physical material preset based on whether or not this fluid is viscous apply_mat_physics = lazy.omni.physx.scripts.particleUtils.AddPBDMaterialViscous if cls.is_viscous else lazy.omni.physx.scripts.particleUtils.AddPBDMaterialWater apply_mat_physics(p=cls._material.prim) # Compute the overall color of the fluid system base_color_weight = cls._material.diffuse_reflection_weight transmission_weight = cls._material.enable_specular_transmission * cls._material.specular_transmission_weight total_weight = base_color_weight + transmission_weight if total_weight == 0.0: # If the fluid doesn't have any color, we add a "blue" tint by default color = np.array([0.0, 0.0, 1.0]) else: base_color_weight /= total_weight transmission_weight /= total_weight # Weighted sum of base color and transmission color color = base_color_weight * cls._material.diffuse_reflection_color + \ transmission_weight * (0.5 * cls._material.specular_transmission_color + \ 0.5 * cls._material.specular_transmission_scattering_color) cls._color = color # Set custom isosurface rendering settings if we are using high-quality rendering if gm.ENABLE_HQ_RENDERING: set_carb_settings_for_fluid_isosurface() # We also modify the grid smoothing radius to avoid "blobby" appearances cls.system_prim.GetAttribute("physxParticleIsosurface:gridSmoothingRadius").Set(0.0001) @classproperty def is_fluid(cls): return True @classproperty def use_isosurface(cls): return True @classproperty def is_viscous(cls): """ Returns: bool: True if this material is viscous or not. Default is False """ raise NotImplementedError() @classproperty def particle_radius(cls): # Magic number from omni tutorials # See https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#offset-autocomputation return 0.99 * 0.6 * cls.particle_contact_offset @classproperty def particle_particle_rest_distance(cls): # Magic number, based on intuition from https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/physics-particles.html#particle-particle-interaction return cls.particle_radius * 2.0 * m.FLUID_PARTICLE_PARTICLE_DISTANCE_SCALE @classproperty def _material_mtl_name(cls): """ Returns: None or str: Material mdl preset name to use for generating this fluid material. NOTE: Should be an entry from OmniSurfacePresets.mdl, minus the "OmniSurface_" string. If None if specified, will default to the generic OmniSurface material """ return None @classmethod def _create_particle_prototypes(cls): # Simulate particles with simple spheres prototype = lazy.pxr.UsdGeom.Sphere.Define(og.sim.stage, f"{cls.prim_path}/prototype0") prototype.CreateRadiusAttr().Set(cls.particle_radius) prototype = VisualGeomPrim(prim_path=prototype.GetPath().pathString, name=prototype.GetPath().pathString) prototype.visible = False lazy.omni.isaac.core.utils.semantics.add_update_semantics( prim=prototype.prim, semantic_label=cls.name, type_label="class", ) return [prototype] @classmethod def _get_particle_material_template(cls): # We use a template from OmniPresets if @_material_mtl_name is specified, else the default OmniSurface return MaterialPrim.get_material( prim_path=cls.mat_path, name=cls.mat_name, load_config={ "mdl_name": f"OmniSurface{'' if cls._material_mtl_name is None else 'Presets'}.mdl", "mtl_name": f"OmniSurface{'' if cls._material_mtl_name is None else ('_' + cls._material_mtl_name)}" } ) @classmethod def create( cls, name, particle_contact_offset, particle_density, is_viscous=False, material_mtl_name=None, customize_particle_material=None, **kwargs, ): """ Utility function to programmatically generate monolithic fluid system classes. Args: name (str): Name of the system particle_contact_offset (float): Contact offset for the generated system particle_density (float): Particle density for the generated system is_viscous (bool): Whether or not the generated fluid system should be viscous material_mtl_name (None or str): Material mdl preset name to use for generating this fluid material. NOTE: Should be an entry from OmniSurfacePresets.mdl, minus the "OmniSurface_" string. If None if specified, will default to the generic OmniSurface material customize_particle_material (None or function): Method for customizing the particle material for the fluid after it has been loaded. Default is None, which will produce a no-op. If specified, expected signature: _customize_particle_material(mat: MaterialPrim) --> None where @MaterialPrim is the material to modify in-place **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: FluidSystem: Generated system class """ @classproperty def cp_particle_contact_offset(cls): return particle_contact_offset @classproperty def cp_material_mtl_name(cls): return material_mtl_name @classproperty def cp_is_viscous(cls): return is_viscous @classmethod def cm_customize_particle_material(cls): if customize_particle_material is not None: customize_particle_material(mat=cls._material) # Add to any other params specified kwargs["particle_contact_offset"] = cp_particle_contact_offset kwargs["_material_mtl_name"] = cp_material_mtl_name kwargs["is_viscous"] = cp_is_viscous kwargs["_customize_particle_material"] = cm_customize_particle_material # Create and return the class return super().create( name=name, particle_density=particle_density, **kwargs, ) def customize_particle_material_factory(attr, value): def func(mat): setattr(mat, attr, np.array(value)) return func class GranularSystem(MicroPhysicalParticleSystem): """ Particle system class simulating granular materials. Individual particles are composed of custom USD objects. """ # Cached particle contact offset determined from loaded prototype _particle_contact_offset = None _particle_template = None @classproperty def self_collision(cls): # Don't self-collide to improve physics stability # For whatever reason, granular (non-fluid) particles tend to explode when sampling Filled states, and it seems # the only way to avoid this unstable behavior is to disable self-collisions. This actually enables the granular # particles to converge to zero velocity. return False @classmethod def _clear(cls): og.sim.remove_object(cls._particle_template) super()._clear() cls._particle_template = None cls._particle_contact_offset = None @classproperty def particle_contact_offset(cls): return cls._particle_contact_offset @classproperty def is_fluid(cls): return False @classmethod def _create_particle_prototypes(cls): # Load the particle template particle_template = cls._create_particle_template() og.sim.import_object(obj=particle_template, register=False) cls._particle_template = particle_template # Make sure there is no ambiguity about which mesh to use as the particle from this template assert len(particle_template.links) == 1, "GranularSystem particle template has more than one link" assert len(particle_template.root_link.visual_meshes) == 1, "GranularSystem particle template has more than one visual mesh" # Make sure template scaling is [1, 1, 1] -- any particle scaling should be done via cls.min/max_scale assert np.all(particle_template.scale == 1.0) # The prototype is assumed to be the first and only visual mesh belonging to the root link visual_geom = list(particle_template.root_link.visual_meshes.values())[0] # Copy it to the standardized prim path prototype_path = f"{cls.prim_path}/prototype0" lazy.omni.kit.commands.execute("CopyPrim", path_from=visual_geom.prim_path, path_to=prototype_path) # Wrap it with VisualGeomPrim with the correct scale prototype = VisualGeomPrim(prim_path=prototype_path, name=prototype_path) prototype.scale *= cls.max_scale prototype.visible = False lazy.omni.isaac.core.utils.semantics.add_update_semantics( prim=prototype.prim, semantic_label=cls.name, type_label="class", ) # Store the contact offset based on a minimum sphere # Threshold the lower-bound to avoid super small particles vertices = np.array(prototype.get_attribute("points")) * prototype.scale _, particle_contact_offset = trimesh.nsphere.minimum_nsphere(trimesh.Trimesh(vertices=vertices)) if particle_contact_offset < m.MIN_PARTICLE_CONTACT_OFFSET: prototype.scale *= m.MIN_PARTICLE_CONTACT_OFFSET / particle_contact_offset particle_contact_offset = m.MIN_PARTICLE_CONTACT_OFFSET cls._particle_contact_offset = particle_contact_offset return [prototype] @classmethod def _create_particle_template(cls): """ Creates the particle template to be used for this system. NOTE: The loaded particle template is expected to be a non-articulated, single-link object with a single visual mesh attached to its root link, since this will be the actual visual mesh used Returns: EntityPrim: Particle template that will be duplicated when generating future particle groups """ raise NotImplementedError() @classmethod def create( cls, name, particle_density, create_particle_template, scale=None, **kwargs, ): """ Utility function to programmatically generate monolithic fluid system classes. Args: name (str): Name of the system particle_density (float): Particle density for the generated system material_mtl_name (None or str): Material mdl preset name to use for generating this fluid material. NOTE: Should be an entry from OmniSurfacePresets.mdl, minus the "OmniSurface_" string. If None if specified, will default to the generic OmniSurface material create_particle_template (function): Method for generating the visual particle template that will be duplicated when generating groups of particles. Expected signature: create_particle_template(prim_path: str, name: str) --> EntityPrim where @prim_path and @name are the parameters to assign to the generated EntityPrim. NOTE: The loaded particle template is expected to be a non-articulated, single-link object with a single visual mesh attached to its root link, since this will be the actual visual mesh used scale (None or 3-array): If specified, sets the scaling factor for the particles' relative scale. Else, defaults to 1 **kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent the class attribute to modify and the values represent the functions / value to set (Note: These values should have either @classproperty or @classmethod decorators!) Returns: GranularSystem: Generated granular system class """ @classmethod def cm_create_particle_template(cls): return create_particle_template(prim_path=f"{cls.prim_path}/template", name=f"{cls.name}_template") # Add to any other params specified kwargs["_create_particle_template"] = cm_create_particle_template # Create and return the class return super().create( name=name, particle_density=particle_density, min_scale=scale, max_scale=scale, **kwargs, ) class Cloth(MicroParticleSystem): """ Particle system class to simulate cloth. """ @classmethod def remove_all_particles(cls): # Override base method since there are no particles to be deleted pass @classmethod def clothify_mesh_prim(cls, mesh_prim, remesh=True, particle_distance=None): """ Clothifies @mesh_prim by applying the appropriate Cloth API, optionally re-meshing the mesh so that the resulting generated particles are roughly @particle_distance apart from each other. Args: mesh_prim (Usd.Prim): Mesh prim to clothify remesh (bool): If True, will remesh the input mesh before converting it into a cloth particle_distance (None or float): If set and @remesh is True, specifies the absolute target distance between generated cloth particles. If None, a value is automatically chosen such that the generated cloth particles are roughly touching each other, given cls.particle_contact_offset and @mesh_prim's scale """ has_uv_mapping = mesh_prim.GetAttribute("primvars:st").Get() is not None if not remesh: # We always load into trimesh to remove redundant particles (since natively omni redundantly represents # the number of vertices as 6x the total unique number of vertices) tm = mesh_prim_to_trimesh_mesh(mesh_prim=mesh_prim, include_normals=True, include_texcoord=True, world_frame=False) texcoord = np.array(mesh_prim.GetAttribute("primvars:st").Get()) if has_uv_mapping else None else: # We will remesh in pymeshlab, but it doesn't allow programmatic construction of a mesh with texcoords so # we convert our mesh into a trimesh mesh, then export it to a temp file, then load it into pymeshlab scaled_world_transform = PoseAPI.get_world_pose_with_scale(mesh_prim.GetPath().pathString) # Convert to trimesh mesh (in world frame) tm = mesh_prim_to_trimesh_mesh(mesh_prim=mesh_prim, include_normals=True, include_texcoord=True, world_frame=True) # Tmp file written to: {tmp_dir}/{tmp_fname}/{tmp_fname}.obj tmp_name = str(uuid.uuid4()) tmp_dir = os.path.join(tempfile.gettempdir(), tmp_name) tmp_fpath = os.path.join(tmp_dir, f"{tmp_name}.obj") Path(tmp_dir).mkdir(parents=True, exist_ok=True) tm.export(tmp_fpath) # Start with the default particle distance particle_distance = cls.particle_contact_offset * 2 / 1.5 if particle_distance is None else particle_distance # Repetitively re-mesh at lower resolution until we have a mesh that has less than MAX_CLOTH_PARTICLES vertices for _ in range(10): ms = pymeshlab.MeshSet() ms.load_new_mesh(tmp_fpath) # Re-mesh based on @particle_distance - distance chosen such that at rest particles should be just touching # each other. The 1.5 magic number comes from the particle cloth demo from omni # Note that this means that the particles will overlap with each other, since at dist = 2 * contact_offset # the particles are just touching each other at rest avg_edge_percentage_mismatch = 1.0 # Loop re-meshing until average edge percentage is within error threshold or we reach the max number of tries for _ in range(5): if avg_edge_percentage_mismatch <= m.CLOTH_REMESHING_ERROR_THRESHOLD: break ms.meshing_isotropic_explicit_remeshing(iterations=5, adaptive=True, targetlen=pymeshlab.AbsoluteValue(particle_distance)) avg_edge_percentage_mismatch = abs(1.0 - particle_distance / ms.get_geometric_measures()["avg_edge_length"]) else: # Terminate anyways, but don't fail log.warn("The generated cloth may not have evenly distributed particles.") # Check if we have too many vertices cm = ms.current_mesh() if cm.vertex_number() > m.MAX_CLOTH_PARTICLES: # We have too many vertices, so we will re-mesh again particle_distance *= np.sqrt(2) # halve the number of vertices log.warn(f"Too many vertices ({cm.vertex_number()})! Re-meshing with particle distance {particle_distance}...") else: break else: raise ValueError(f"Could not remesh with less than MAX_CLOTH_PARTICLES ({m.MAX_CLOTH_PARTICLES}) vertices!") # Re-write data to @mesh_prim new_faces = cm.face_matrix() new_vertices = cm.vertex_matrix() new_normals = cm.vertex_normal_matrix() texcoord = np.array(cm.wedge_tex_coord_matrix()) if has_uv_mapping else None tm = trimesh.Trimesh( vertices=new_vertices, faces=new_faces, vertex_normals=new_normals, ) # Apply the inverse of the world transform to get the mesh back into its local frame tm.apply_transform(np.linalg.inv(scaled_world_transform)) # Update the mesh prim face_vertex_counts = np.array([len(face) for face in tm.faces], dtype=int) mesh_prim.GetAttribute("faceVertexCounts").Set(face_vertex_counts) mesh_prim.GetAttribute("points").Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(tm.vertices)) mesh_prim.GetAttribute("faceVertexIndices").Set(tm.faces.flatten()) mesh_prim.GetAttribute("normals").Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(tm.vertex_normals)) if has_uv_mapping: mesh_prim.GetAttribute("primvars:st").Set(lazy.pxr.Vt.Vec2fArray.FromNumpy(texcoord)) # Convert into particle cloth lazy.omni.physx.scripts.particleUtils.add_physx_particle_cloth( stage=og.sim.stage, path=mesh_prim.GetPath(), dynamic_mesh_path=None, particle_system_path=cls.system_prim_path, spring_stretch_stiffness=m.CLOTH_STRETCH_STIFFNESS, spring_bend_stiffness=m.CLOTH_BEND_STIFFNESS, spring_shear_stiffness=m.CLOTH_SHEAR_STIFFNESS, spring_damping=m.CLOTH_DAMPING, self_collision=True, self_collision_filter=True, ) # Disable welding because it can potentially make thin objects non-manifold auto_particle_cloth_api = lazy.pxr.PhysxSchema.PhysxAutoParticleClothAPI(mesh_prim) auto_particle_cloth_api.GetDisableMeshWeldingAttr().Set(True) @classproperty def _pbd_material_kwargs(cls): return dict( friction=m.CLOTH_FRICTION, drag=m.CLOTH_DRAG, lift=m.CLOTH_LIFT, ) @classproperty def _register_system(cls): # We should register this system since it's an "actual" system (not an intermediate class) return True @classproperty def particle_contact_offset(cls): return m.CLOTH_PARTICLE_CONTACT_OFFSET @classproperty def state_size(cls): # Default is no state return 0 @classmethod def _dump_state(cls): # Empty by default return dict() @classmethod def _load_state(cls, state): # Nothing by default pass @classmethod def _serialize(cls, state): # Nothing by default return np.array([], dtype=float) @classmethod def _deserialize(cls, state): # Nothing by default return dict(), 0
76,701
Python
43.490719
183
0.645089
StanfordVL/OmniGibson/omnigibson/action_primitives/action_primitive_set_base.py
import inspect from abc import ABCMeta, abstractmethod from enum import IntEnum from typing import List from future.utils import with_metaclass from omnigibson import Environment from omnigibson.robots import BaseRobot from omnigibson.scenes.interactive_traversable_scene import InteractiveTraversableScene from omnigibson.tasks.task_base import BaseTask REGISTERED_PRIMITIVE_SETS = {} class ActionPrimitiveError(ValueError): class Reason(IntEnum): # A primitive could not be executed because a precondition was not satisfied, e.g. PLACE was called without an # object currently in hand. PRE_CONDITION_ERROR = 0 # A sampling error occurred: e.g. a position to place an object could not be found, or the robot could not # find a pose near the object to navigate to. SAMPLING_ERROR = 1 # The planning for a primitive failed possibly due to not being able to find a path. PLANNING_ERROR = 2 # The planning for a primitive was successfully completed, but an error occurred during execution. EXECUTION_ERROR = 3 # The execution of the primitive happened correctly, but while checking post-conditions, an error was found. POST_CONDITION_ERROR = 4 def __init__(self, reason: Reason, message, metadata=None): self.reason = reason self.metadata = metadata if metadata is not None else {} super().__init__(f"{reason.name}: {message}. Additional info: {metadata}") class ActionPrimitiveErrorGroup(ValueError): def __init__(self, exceptions: List[ActionPrimitiveError]) -> None: self._exceptions = tuple(exceptions) submessages = [f"Attempt {i}: {e}" for i, e in enumerate(exceptions)] submessages = "\n\n".join(submessages) message = "An error occurred during each attempt of this action.\n\n" + submessages super().__init__(message) @property def exceptions(self): return self._exceptions class BaseActionPrimitiveSet(with_metaclass(ABCMeta, object)): def __init_subclass__(cls, **kwargs): """ Registers all subclasses as part of this registry. This is useful to decouple internal codebase from external user additions. This way, users can add their custom primitive set by simply extending this class, and it will automatically be registered internally. This allows users to then specify their primitive set directly in string-from in e.g., their config files, without having to manually set the str-to-class mapping in our code. """ if not inspect.isabstract(cls): REGISTERED_PRIMITIVE_SETS[cls.__name__] = cls def __init__(self, env): self.env : Environment = env @property def robot(self): # Currently returns the first robot in the environment, but can be scaled to multiple robots # by creating multiple action generators and passing in a robot index etc. return self.env.robots[0] @abstractmethod def get_action_space(self): """Get the higher-level action space as an OpenAI Gym Space object.""" pass @abstractmethod def apply(self, action): """ Apply a primitive action. Given a higher-level action in the same format as the action space (e.g. as a number), generates a sequence of lower level actions (or raise ActionPrimitiveError). The action will get resolved and passed into apply_ref. """ pass @abstractmethod def apply_ref(self, action, *args): """ Apply a primitive action by reference. Given a higher-level action from the corresponding action set enum and any necessary arguments, generates a sequence of lower level actions (or raise ActionPrimitiveError) """ pass
3,867
Python
38.070707
118
0.681148
StanfordVL/OmniGibson/omnigibson/action_primitives/symbolic_semantic_action_primitives.py
""" WARNING! A set of action primitives that work without executing low-level physics but instead teleporting objects directly into their post-condition states. Useful for learning high-level methods. """ from aenum import IntEnum, auto import numpy as np from omnigibson.robots.robot_base import BaseRobot from omnigibson.systems.system_base import REGISTERED_SYSTEMS from omnigibson.transition_rules import REGISTERED_RULES, TransitionRuleAPI from omnigibson import object_states from omnigibson.action_primitives.action_primitive_set_base import ActionPrimitiveError, ActionPrimitiveErrorGroup from omnigibson.action_primitives.starter_semantic_action_primitives import StarterSemanticActionPrimitives from omnigibson.objects import DatasetObject class SymbolicSemanticActionPrimitiveSet(IntEnum): _init_ = 'value __doc__' GRASP = auto(), "Grasp an object" PLACE_ON_TOP = auto(), "Place the currently grasped object on top of another object" PLACE_INSIDE = auto(), "Place the currently grasped object inside another object" OPEN = auto(), "Open an object" CLOSE = auto(), "Close an object" TOGGLE_ON = auto(), "Toggle an object on" TOGGLE_OFF = auto(), "Toggle an object off" SOAK_UNDER = auto(), "Soak the currently grasped object under a fluid source." SOAK_INSIDE = auto(), "Soak the currently grasped object inside the fluid within a container." WIPE = auto(), "Wipe the given object with the currently grasped object." CUT = auto(), "Cut (slice or dice) the given object with the currently grasped object." PLACE_NEAR_HEATING_ELEMENT = auto(), "Place the currently grasped object near the heating element of another object." NAVIGATE_TO = auto(), "Navigate to an object" RELEASE = auto(), "Release an object, letting it fall to the ground. You can then grasp it again, as a way of reorienting your grasp of the object." class SymbolicSemanticActionPrimitives(StarterSemanticActionPrimitives): def __init__(self, env): super().__init__(env) self.controller_functions = { SymbolicSemanticActionPrimitiveSet.GRASP: self._grasp, SymbolicSemanticActionPrimitiveSet.PLACE_ON_TOP: self._place_on_top, SymbolicSemanticActionPrimitiveSet.PLACE_INSIDE: self._place_inside, SymbolicSemanticActionPrimitiveSet.OPEN: self._open, SymbolicSemanticActionPrimitiveSet.CLOSE: self._close, SymbolicSemanticActionPrimitiveSet.TOGGLE_ON: self._toggle_on, SymbolicSemanticActionPrimitiveSet.TOGGLE_OFF: self._toggle_off, SymbolicSemanticActionPrimitiveSet.SOAK_UNDER: self._soak_under, SymbolicSemanticActionPrimitiveSet.SOAK_INSIDE: self._soak_inside, SymbolicSemanticActionPrimitiveSet.WIPE: self._wipe, SymbolicSemanticActionPrimitiveSet.CUT: self._cut, SymbolicSemanticActionPrimitiveSet.PLACE_NEAR_HEATING_ELEMENT: self._place_near_heating_element, SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO: self._navigate_to_obj, SymbolicSemanticActionPrimitiveSet.RELEASE: self._release, } def apply_ref(self, prim, *args, attempts=3): """ Yields action for robot to execute the primitive with the given arguments. Args: prim (SymbolicSemanticActionPrimitiveSet): Primitive to execute args: Arguments for the primitive attempts (int): Number of attempts to make before raising an error Returns: np.array or None: Action array for one step for the robot tto execute the primitve or None if primitive completed Raises: ActionPrimitiveError: If primitive fails to execute """ assert attempts > 0, "Must make at least one attempt" ctrl = self.controller_functions[prim] if any(isinstance(arg, BaseRobot) for arg in args): raise ActionPrimitiveErrorGroup([ ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot call a symbolic semantic action primitive with a robot as an argument." ) ]) errors = [] for _ in range(attempts): # Attempt success = False try: yield from ctrl(*args) success = True except ActionPrimitiveError as e: errors.append(e) try: # Settle before returning. yield from self._settle_robot() except ActionPrimitiveError: pass # Stop on success if success: return raise ActionPrimitiveErrorGroup(errors) def _open_or_close(self, obj, should_open): if self._get_obj_in_hand(): raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot open or close an object while holding an object", {"object in hand": self._get_obj_in_hand().name}, ) if object_states.Open not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not openable.", {"target object": obj.name} ) # Don't do anything if the object is already closed and we're trying to close. if should_open == obj.states[object_states.Open].get_value(): return # Set the value obj.states[object_states.Open].set_value(should_open) # Settle yield from self._settle_robot() if obj.states[object_states.Open].get_value() != should_open: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "The object did not open or close as expected. Maybe try again", {"target object": obj.name, "is it currently open": obj.states[object_states.Open].get_value()}, ) def _grasp(self, obj: DatasetObject): """ Yields action for the robot to navigate to object if needed, then to grasp it Args: DatasetObject: Object for robot to grasp Returns: np.array or None: Action array for one step for the robot to grasp or None if grasp completed """ # Don't do anything if the object is already grasped. obj_in_hand = self._get_obj_in_hand() if obj_in_hand is not None: if obj_in_hand == obj: return else: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot grasp when your hand is already full", {"target object": obj.name, "object currently in hand": obj_in_hand.name}, ) # Get close # yield from self._navigate_if_needed(obj) # Perform forced assisted grasp obj.set_position(self.robot.get_eef_position(self.arm)) self.robot._establish_grasp(self.arm, (obj, obj.root_link), obj.get_position()) # Execute for a moment yield from self._settle_robot() # Verify if self._get_obj_in_hand() is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "Grasp completed, but no object detected in hand after executing grasp", {"target object": obj.name}, ) if self._get_obj_in_hand() != obj: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "An unexpected object was detected in hand after executing grasp. Consider releasing it", {"expected object": obj.name, "actual object": self._get_obj_in_hand().name}, ) def _release(self): if not self._get_obj_in_hand(): raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot release an object if you're not already holding an object", ) self.robot.release_grasp_immediately() yield from self._settle_robot() def _toggle(self, obj, value): if self._get_obj_in_hand(): raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot toggle an object while holding an object", {"object in hand": self._get_obj_in_hand()}, ) if object_states.ToggledOn not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not toggleable.", {"target object": obj.name} ) if obj.states[object_states.ToggledOn].get_value() == value: return # Call the setter obj.states[object_states.ToggledOn].set_value(value) # Yield some actions yield from self._settle_robot() # Check that it actually happened if obj.states[object_states.ToggledOn].get_value() != value: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "The object did not toggle as expected - maybe try again", {"target object": obj.name, "is it currently toggled on": obj.states[object_states.ToggledOn].get_value()} ) def _place_with_predicate(self, obj, predicate, near_poses=None, near_poses_threshold=None): """ Yields action for the robot to navigate to the object if needed, then to place it Args: obj (StatefulObject): Object for robot to place the object in its hand on predicate (object_states.OnTop or object_states.Inside): Determines whether to place on top or inside Returns: np.array or None: Action array for one step for the robot to place or None if place completed """ obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping an object first to place it somewhere." ) # Find a spot to put it obj_pose = self._sample_pose_with_object_and_predicate(predicate, obj_in_hand, obj, near_poses=near_poses, near_poses_threshold=near_poses_threshold) # Get close, release the object. # yield from self._navigate_if_needed(obj, pose_on_obj=obj_pose) yield from self._release() # Actually move the object to the spot and step a bit to settle it. obj_in_hand.set_position_orientation(*obj_pose) yield from self._settle_robot() if not obj_in_hand.states[predicate].get_value(obj): raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Failed to place object at the desired place (probably dropped). The object was still released, so you need to grasp it again to continue", {"dropped object": obj_in_hand.name, "target object": obj.name} ) def _soak_under(self, obj): # Check that our current object is a particle remover obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping a soakable object first." ) # Check that the target object is a particle source if object_states.ParticleSource not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not a particle source, so you can not soak anything under it.", {"target object": obj.name} ) # Check if the target object has any particles in it producing_systems = {ps for ps in REGISTERED_SYSTEMS.values() if obj.states[object_states.ParticleSource].check_conditions_for_system(ps)} if not producing_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object currently is not producing any particles - try toggling it on.", {"target object": obj.name} ) # Check that the current object can remove those particles if object_states.Saturated not in obj_in_hand.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The currently grasped object cannot soak particles.", {"object in hand": obj_in_hand.name} ) supported_systems = { x for x in producing_systems if obj_in_hand.states[object_states.ParticleRemover].supports_system(x) } if not supported_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object only contains particles that this object cannot soak.", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object is producing": sorted(x.name for x in producing_systems), "particles the grasped object can remove": sorted([x for x in obj_in_hand.states[object_states.ParticleRemover].conditions.keys()]) } ) currently_removable_systems = { x for x in supported_systems if obj_in_hand.states[object_states.ParticleRemover].check_conditions_for_system(x) } if not currently_removable_systems: # TODO: This needs to be far more descriptive. raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is covered by some particles that this object can normally soak, but needs to be in a different state to do so (e.g. toggled on, soaked by another fluid first, etc.).", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object is producing": sorted(x.name for x in producing_systems), } ) # If so, remove the particles. for system in currently_removable_systems: obj_in_hand.states[object_states.Saturated].set_value(system, True) def _soak_inside(self, obj): # Check that our current object is a particle remover obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping a soakable object first." ) # Check that the target object is fillable if object_states.Contains not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not fillable by particles, so you can not soak anything in it.", {"target object": obj.name} ) # Check if the target object has any particles in it contained_systems = {ps for ps in REGISTERED_SYSTEMS.values() if obj.states[object_states.Contains].get_value(ps.states)} if not contained_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object currently does not contain any particles.", {"target object": obj.name} ) # Check that the current object can remove those particles if object_states.Saturated not in obj_in_hand.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The currently grasped object cannot soak particles.", {"object in hand": obj_in_hand.name} ) supported_systems = { x for x in contained_systems if obj_in_hand.states[object_states.ParticleRemover].supports_system(x) } if not supported_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object only contains particles that this object cannot soak.", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object contains": sorted(x.name for x in contained_systems), "particles the grasped object can remove": sorted([x for x in obj_in_hand.states[object_states.ParticleRemover].conditions.keys()]) } ) currently_removable_systems = { x for x in supported_systems if obj_in_hand.states[object_states.ParticleRemover].check_conditions_for_system(x) } if not currently_removable_systems: # TODO: This needs to be far more descriptive. raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is covered by some particles that this object can normally soak, but needs to be in a different state to do so (e.g. toggled on, soaked by another fluid first, etc.).", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object contains": sorted(x.name for x in contained_systems), } ) # If so, remove the particles. for system in currently_removable_systems: obj_in_hand.states[object_states.Saturated].set_value(system, True) def _wipe(self, obj): # Check that our current object is a particle remover obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping a wiping tool (particle remover) first to wipe an object." ) # Check that the target object is coverable if object_states.Covered not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not coverable by any particles, so there is no need to wipe it.", {"target object": obj.name} ) # Check if the target object has any particles on it covering_systems = {ps for ps in REGISTERED_SYSTEMS.values() if obj.states[object_states.Covered].get_value(ps.states)} if not covering_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not covered by any particles.", {"target object": obj.name} ) # Check that the current object can remove those particles if object_states.ParticleRemover not in obj_in_hand.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The currently grasped object is not a particle remover.", {"object in hand": obj_in_hand.name} ) supported_systems = { x for x in covering_systems if obj_in_hand.states[object_states.ParticleRemover].supports_system(x) } if not supported_systems: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is covered only by particles that this cleaning tool cannot remove.", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object is covered by": sorted(x.name for x in covering_systems), "particles the grasped object can remove": sorted([x for x in obj_in_hand.states[object_states.ParticleRemover].conditions.keys()]) } ) currently_removable_systems = { x for x in supported_systems if obj_in_hand.states[object_states.ParticleRemover].check_conditions_for_system(x) } if not currently_removable_systems: # TODO: This needs to be far more descriptive. raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is covered by some particles that this cleaning tool can normally remove, but needs to be in a different state to do so (e.g. toggled on, soaked by another fluid first, etc.).", { "target object": obj.name, "cleaning tool": obj_in_hand.name, "particles the target object is covered by": sorted(x.name for x in covering_systems), } ) # If so, remove the particles. for system in currently_removable_systems: obj_in_hand.states[object_states.Covered].set_value(system, False) def _cut(self, obj): # Check that our current object is a slicer obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping a cutting tool first to slice an object." ) if "slicer" not in obj_in_hand._abilities: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The current object is not a cutting tool.", {"object in hand": obj_in_hand.name} ) # Check that the target object is sliceable if "sliceable" not in obj._abilities and "diceable" not in obj._abilities: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not sliceable or diceable.", {"target object": obj.name} ) # Get close # yield from self._navigate_if_needed(obj) # TODO: Do some more validation added_obj_attrs = [] removed_objs = [] output = REGISTERED_RULES["SlicingRule"].transition({"sliceable": [obj]}) added_obj_attrs += output.add removed_objs += output.remove TransitionRuleAPI.execute_transition(added_obj_attrs=added_obj_attrs, removed_objs=removed_objs) yield from self._settle_robot() def _place_near_heating_element(self, heat_source_obj): obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping an object first to place it somewhere." ) if object_states.HeatSourceOrSink not in heat_source_obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The target object is not a heat source or sink.", {"target object": heat_source_obj.name} ) if heat_source_obj.states[object_states.HeatSourceOrSink].requires_inside: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "The heat source object has no explicit heating element, it just requires the cookable object to be placed inside it.", {"target object": heat_source_obj.name} ) # Get the position of the heat source on the thing we're placing near heating_element_positions = np.array([link.get_position() for link in heat_source_obj.states[object_states.HeatSourceOrSink].links.values()]) heating_distance_threshold = heat_source_obj.states[object_states.HeatSourceOrSink].distance_threshold # Call place-with-predicate yield from self._place_with_predicate(heat_source_obj, object_states.OnTop, near_poses=heating_element_positions, near_poses_threshold=heating_distance_threshold) def _wait_for_cooked(self, obj): # Check that the current object is cookable if object_states.Cooked not in obj.states: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Target object is not cookable.", {"target object": obj.name} ) # Keep waiting as long as the thing is warming up. prev_temp = obj.states[object_states.Temperature].get_value() while not obj.states[object_states.Cooked].get_value(): # Pass some time for _ in range(10): yield from self._empty_action() # Check that we are still heating up new_temp = obj.states[object_states.Temperature].get_value() if new_temp - prev_temp < 1e-2: raise ActionPrimitiveError( ActionPrimitiveError.PRE_CONDITION_ERROR, "Target object is not currently heating up.", {"target object": obj.name} ) def _navigate_to_pose(self, pose_2d): """ Yields the action to navigate robot to the specified 2d pose Args: pose_2d (Iterable): (x, y, yaw) 2d pose Returns: np.array or None: Action array for one step for the robot to navigate or None if it is done navigating """ robot_pose = self._get_robot_pose_from_2d_pose(pose_2d) self.robot.set_position_orientation(*robot_pose) yield from self._settle_robot()
26,260
Python
45.64476
212
0.614966
StanfordVL/OmniGibson/omnigibson/action_primitives/starter_semantic_action_primitives.py
""" WARNING! The StarterSemanticActionPrimitive is a work-in-progress and is only provided as an example. It currently only works with Fetch and Tiago with their JointControllers set to delta mode. See provided tiago_primitives.yaml config file for an example. See examples/action_primitives for runnable examples. """ from functools import cached_property import inspect import logging import random from aenum import IntEnum, auto from math import ceil import cv2 from matplotlib import pyplot as plt import gym import numpy as np from scipy.spatial.transform import Rotation, Slerp import omnigibson as og import omnigibson.lazy as lazy from omnigibson import object_states from omnigibson.action_primitives.action_primitive_set_base import ActionPrimitiveError, ActionPrimitiveErrorGroup, BaseActionPrimitiveSet from omnigibson.controllers import JointController, DifferentialDriveController from omnigibson.macros import create_module_macros from omnigibson.utils.object_state_utils import sample_cuboid_for_predicate from omnigibson.objects.object_base import BaseObject from omnigibson.robots import BaseRobot, Fetch, Tiago from omnigibson.tasks.behavior_task import BehaviorTask from omnigibson.utils.motion_planning_utils import ( plan_base_motion, plan_arm_motion, plan_arm_motion_ik, set_base_and_detect_collision, detect_robot_collision_in_sim ) import omnigibson.utils.transform_utils as T from omnigibson.utils.control_utils import IKSolver from omnigibson.utils.grasping_planning_utils import ( get_grasp_poses_for_object_sticky, get_grasp_position_for_open ) from omnigibson.controllers.controller_base import ControlType from omnigibson.utils.control_utils import FKSolver from omnigibson.utils.ui_utils import create_module_logger from omnigibson.objects.usd_object import USDObject m = create_module_macros(module_path=__file__) m.DEFAULT_BODY_OFFSET_FROM_FLOOR = 0.05 m.KP_LIN_VEL = 0.3 m.KP_ANGLE_VEL = 0.2 m.MAX_STEPS_FOR_SETTLING = 500 m.MAX_CARTESIAN_HAND_STEP = 0.002 m.MAX_STEPS_FOR_HAND_MOVE_JOINT = 500 m.MAX_STEPS_FOR_HAND_MOVE_IK = 1000 m.MAX_STEPS_FOR_GRASP_OR_RELEASE = 250 m.MAX_STEPS_FOR_WAYPOINT_NAVIGATION = 500 m.MAX_ATTEMPTS_FOR_OPEN_CLOSE = 20 m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_WITH_OBJECT_AND_PREDICATE = 20 m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_NEAR_OBJECT = 200 m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_IN_ROOM = 60 m.PREDICATE_SAMPLING_Z_OFFSET = 0.02 m.GRASP_APPROACH_DISTANCE = 0.2 m.OPEN_GRASP_APPROACH_DISTANCE = 0.4 m.DEFAULT_DIST_THRESHOLD = 0.05 m.DEFAULT_ANGLE_THRESHOLD = 0.05 m.LOW_PRECISION_DIST_THRESHOLD = 0.1 m.LOW_PRECISION_ANGLE_THRESHOLD = 0.2 m.TIAGO_TORSO_FIXED = False m.JOINT_POS_DIFF_THRESHOLD = 0.005 m.JOINT_CONTROL_MIN_ACTION = 0.0 m.MAX_ALLOWED_JOINT_ERROR_FOR_LINEAR_MOTION = np.deg2rad(45) log = create_module_logger(module_name=__name__) def indented_print(msg, *args, **kwargs): log.debug(" " * len(inspect.stack()) + str(msg), *args, **kwargs) class RobotCopy: """A data structure for storing information about a robot copy, used for collision checking in planning.""" def __init__(self): self.prims = {} self.meshes = {} self.relative_poses = {} self.links_relative_poses = {} self.reset_pose = { "original": ([0, 0, -5.0], [0, 0, 0, 1]), "simplified": ([5, 0, -5.0], [0, 0, 0, 1]), } class PlanningContext(object): """ A context manager that sets up a robot copy for collision checking in planning. """ def __init__(self, robot, robot_copy, robot_copy_type="original"): self.robot = robot self.robot_copy = robot_copy self.robot_copy_type = robot_copy_type if robot_copy_type in robot_copy.prims.keys() else "original" self.disabled_collision_pairs_dict = {} def __enter__(self): self._assemble_robot_copy() self._construct_disabled_collision_pairs() return self def __exit__(self, *args): self._set_prim_pose(self.robot_copy.prims[self.robot_copy_type], self.robot_copy.reset_pose[self.robot_copy_type]) def _assemble_robot_copy(self): if m.TIAGO_TORSO_FIXED: fk_descriptor = "left_fixed" else: fk_descriptor = "combined" if "combined" in self.robot.robot_arm_descriptor_yamls else self.robot.default_arm self.fk_solver = FKSolver( robot_description_path=self.robot.robot_arm_descriptor_yamls[fk_descriptor], robot_urdf_path=self.robot.urdf_path, ) # TODO: Remove the need for this after refactoring the FK / descriptors / etc. arm_links = self.robot.manipulation_link_names if m.TIAGO_TORSO_FIXED: assert self.arm == "left", "Fixed torso mode only supports left arm!" joint_control_idx = self.robot.arm_control_idx["left"] joint_pos = np.array(self.robot.get_joint_positions()[joint_control_idx]) else: joint_combined_idx = np.concatenate([self.robot.trunk_control_idx, self.robot.arm_control_idx[fk_descriptor]]) joint_pos = np.array(self.robot.get_joint_positions()[joint_combined_idx]) link_poses = self.fk_solver.get_link_poses(joint_pos, arm_links) # Set position of robot copy root prim self._set_prim_pose(self.robot_copy.prims[self.robot_copy_type], self.robot.get_position_orientation()) # Assemble robot meshes for link_name, meshes in self.robot_copy.meshes[self.robot_copy_type].items(): for mesh_name, copy_mesh in meshes.items(): # Skip grasping frame (this is necessary for Tiago, but should be cleaned up in the future) if "grasping_frame" in link_name: continue # Set poses of meshes relative to the robot to construct the robot link_pose = link_poses[link_name] if link_name in arm_links else self.robot_copy.links_relative_poses[self.robot_copy_type][link_name] mesh_copy_pose = T.pose_transform(*link_pose, *self.robot_copy.relative_poses[self.robot_copy_type][link_name][mesh_name]) self._set_prim_pose(copy_mesh, mesh_copy_pose) def _set_prim_pose(self, prim, pose): translation = lazy.pxr.Gf.Vec3d(*np.array(pose[0], dtype=float)) prim.GetAttribute("xformOp:translate").Set(translation) orientation = np.array(pose[1], dtype=float)[[3, 0, 1, 2]] prim.GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation)) def _construct_disabled_collision_pairs(self): robot_meshes_copy = self.robot_copy.meshes[self.robot_copy_type] # Filter out collision pairs of meshes part of the same link for meshes in robot_meshes_copy.values(): for mesh in meshes.values(): self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] = [m.GetPrimPath().pathString for m in meshes.values()] # Filter out all self-collisions if self.robot_copy_type == "simplified": all_meshes = [mesh.GetPrimPath().pathString for link in robot_meshes_copy.keys() for mesh in robot_meshes_copy[link].values()] for link in robot_meshes_copy.keys(): for mesh in robot_meshes_copy[link].values(): self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += all_meshes # Filter out collision pairs of meshes part of disabled collision pairs else: for pair in self.robot.disabled_collision_pairs: link_1 = pair[0] link_2 = pair[1] if link_1 in robot_meshes_copy.keys() and link_2 in robot_meshes_copy.keys(): for mesh in robot_meshes_copy[link_1].values(): self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += [m.GetPrimPath().pathString for m in robot_meshes_copy[link_2].values()] for mesh in robot_meshes_copy[link_2].values(): self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += [m.GetPrimPath().pathString for m in robot_meshes_copy[link_1].values()] # Filter out colliders all robot copy meshes should ignore disabled_colliders = [] # Disable original robot colliders so copy can't collide with it disabled_colliders += [link.prim_path for link in self.robot.links.values()] filter_categories = ["floors"] for obj in og.sim.scene.objects: if obj.category in filter_categories: disabled_colliders += [link.prim_path for link in obj.links.values()] # Disable object in hand obj_in_hand = self.robot._ag_obj_in_hand[self.robot.default_arm] if obj_in_hand is not None: disabled_colliders += [link.prim_path for link in obj_in_hand.links.values()] for colliders in self.disabled_collision_pairs_dict.values(): colliders += disabled_colliders class StarterSemanticActionPrimitiveSet(IntEnum): _init_ = 'value __doc__' GRASP = auto(), "Grasp an object" PLACE_ON_TOP = auto(), "Place the currently grasped object on top of another object" PLACE_INSIDE = auto(), "Place the currently grasped object inside another object" OPEN = auto(), "Open an object" CLOSE = auto(), "Close an object" NAVIGATE_TO = auto(), "Navigate to an object (mostly for debugging purposes - other primitives also navigate first)" RELEASE = auto(), "Release an object, letting it fall to the ground. You can then grasp it again, as a way of reorienting your grasp of the object." TOGGLE_ON = auto(), "Toggle an object on" TOGGLE_OFF = auto(), "Toggle an object off" class StarterSemanticActionPrimitives(BaseActionPrimitiveSet): def __init__(self, env, add_context=False, enable_head_tracking=True, always_track_eef=False, task_relevant_objects_only=False): """ Initializes a StarterSemanticActionPrimitives generator. Args: env (Environment): The environment that the primitives will run on. add_context (bool): Whether to add text context to the return value. Defaults to False. enable_head_tracking (bool): Whether to enable head tracking. Defaults to True. always_track_eef (bool, optional): Whether to always track the end effector, as opposed to switching between target object and end effector based on context. Defaults to False. task_relevant_objects_only (bool): Whether to only consider objects relevant to the task when computing the action space. Defaults to False. """ log.warning( "The StarterSemanticActionPrimitive is a work-in-progress and is only provided as an example. " "It currently only works with Fetch and Tiago with their JointControllers set to delta mode." ) super().__init__(env) self.controller_functions = { StarterSemanticActionPrimitiveSet.GRASP: self._grasp, StarterSemanticActionPrimitiveSet.PLACE_ON_TOP: self._place_on_top, StarterSemanticActionPrimitiveSet.PLACE_INSIDE: self._place_inside, StarterSemanticActionPrimitiveSet.OPEN: self._open, StarterSemanticActionPrimitiveSet.CLOSE: self._close, StarterSemanticActionPrimitiveSet.NAVIGATE_TO: self._navigate_to_obj, StarterSemanticActionPrimitiveSet.RELEASE: self._execute_release, StarterSemanticActionPrimitiveSet.TOGGLE_ON: self._toggle_on, StarterSemanticActionPrimitiveSet.TOGGLE_OFF: self._toggle_off, } # Validate the robot assert isinstance(self.robot, (Fetch, Tiago)), "StarterSemanticActionPrimitives only works with Fetch and Tiago." assert isinstance(self.robot.controllers["base"], (JointController, DifferentialDriveController)), \ "StarterSemanticActionPrimitives only works with a JointController or DifferentialDriveController at the robot base." self._base_controller_is_joint = isinstance(self.robot.controllers["base"], JointController) if self._base_controller_is_joint: assert self.robot.controllers["base"].control_type == ControlType.VELOCITY, \ "StarterSemanticActionPrimitives only works with a base JointController with velocity mode." assert not self.robot.controllers["base"].use_delta_commands, \ "StarterSemanticActionPrimitives only works with a base JointController with absolute mode." assert self.robot.controllers["base"].command_dim == 3, \ "StarterSemanticActionPrimitives only works with a base JointController with 3 dof (x, y, theta)." self.arm = self.robot.default_arm self.robot_model = self.robot.model_name self.robot_base_mass = self.robot._links["base_link"].mass self.add_context = add_context self._task_relevant_objects_only = task_relevant_objects_only self._enable_head_tracking = enable_head_tracking self._always_track_eef = always_track_eef self._tracking_object = None self.robot_copy = self._load_robot_copy() def _postprocess_action(self, action): """Postprocesses action by applying head tracking and adding context if necessary.""" if self._enable_head_tracking: action = self._overwrite_head_action(action) if not self.add_context: return action stack = inspect.stack() action_type = "manip:" context_function = stack[1].function for frame_info in stack[1:]: function_name = frame_info.function # TODO: Make this stop at apply_ref if function_name in ["_grasp", "_place_on_top", "_place_or_top", "_open_or_close"]: break if "nav" in function_name: action_type = "nav" context = action_type + context_function return action, context def _load_robot_copy(self): """Loads a copy of the robot that can be manipulated into arbitrary configurations for collision checking in planning.""" robot_copy = RobotCopy() robots_to_copy = { "original": { "robot": self.robot, "copy_path": "/World/robot_copy" } } if hasattr(self.robot, 'simplified_mesh_usd_path'): simplified_robot = { "robot": USDObject("simplified_copy", self.robot.simplified_mesh_usd_path), "copy_path": "/World/simplified_robot_copy" } robots_to_copy['simplified'] = simplified_robot for robot_type, rc in robots_to_copy.items(): copy_robot = None copy_robot_meshes = {} copy_robot_meshes_relative_poses = {} copy_robot_links_relative_poses = {} # Create prim under which robot meshes are nested and set position lazy.omni.usd.commands.CreatePrimCommand("Xform", rc['copy_path']).do() copy_robot = lazy.omni.isaac.core.utils.prims.get_prim_at_path(rc['copy_path']) reset_pose = robot_copy.reset_pose[robot_type] translation = lazy.pxr.Gf.Vec3d(*np.array(reset_pose[0], dtype=float)) copy_robot.GetAttribute("xformOp:translate").Set(translation) orientation = np.array(reset_pose[1], dtype=float)[[3, 0, 1, 2]] copy_robot.GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation)) robot_to_copy = None if robot_type == "simplified": robot_to_copy = rc['robot'] og.sim.import_object(robot_to_copy) else: robot_to_copy = rc['robot'] # Copy robot meshes for link in robot_to_copy.links.values(): link_name = link.prim_path.split("/")[-1] for mesh_name, mesh in link.collision_meshes.items(): split_path = mesh.prim_path.split("/") # Do not copy grasping frame (this is necessary for Tiago, but should be cleaned up in the future) if "grasping_frame" in link_name: continue copy_mesh_path = rc['copy_path'] + "/" + link_name copy_mesh_path += f"_{split_path[-1]}" if split_path[-1] != "collisions" else "" lazy.omni.usd.commands.CopyPrimCommand(mesh.prim_path, path_to=copy_mesh_path).do() copy_mesh = lazy.omni.isaac.core.utils.prims.get_prim_at_path(copy_mesh_path) relative_pose = T.relative_pose_transform(*mesh.get_position_orientation(), *link.get_position_orientation()) relative_pose = (relative_pose[0], np.array([0, 0, 0, 1])) if link_name not in copy_robot_meshes.keys(): copy_robot_meshes[link_name] = {mesh_name: copy_mesh} copy_robot_meshes_relative_poses[link_name] = {mesh_name: relative_pose} else: copy_robot_meshes[link_name][mesh_name] = copy_mesh copy_robot_meshes_relative_poses[link_name][mesh_name] = relative_pose copy_robot_links_relative_poses[link_name] = T.relative_pose_transform(*link.get_position_orientation(), *self.robot.get_position_orientation()) if robot_type == "simplified": og.sim.remove_object(robot_to_copy) robot_copy.prims[robot_type] = copy_robot robot_copy.meshes[robot_type] = copy_robot_meshes robot_copy.relative_poses[robot_type] = copy_robot_meshes_relative_poses robot_copy.links_relative_poses[robot_type] = copy_robot_links_relative_poses og.sim.step() return robot_copy def get_action_space(self): # TODO: Figure out how to implement what happens when the set of objects in scene changes. if self._task_relevant_objects_only: assert isinstance(self.env.task, BehaviorTask), "Activity relevant objects can only be used for BEHAVIOR tasks" self.addressable_objects = sorted(set(self.env.task.object_scope.values()), key=lambda obj: obj.name) else: self.addressable_objects = sorted(set(self.env.scene.objects_by_name.values()), key=lambda obj: obj.name) # Filter out the robots. self.addressable_objects = [obj for obj in self.addressable_objects if not isinstance(obj, BaseRobot)] self.num_objects = len(self.addressable_objects) return gym.spaces.Tuple( [gym.spaces.Discrete(self.num_objects), gym.spaces.Discrete(len(StarterSemanticActionPrimitiveSet))] ) def get_action_from_primitive_and_object(self, primitive: StarterSemanticActionPrimitiveSet, obj: BaseObject): assert obj in self.addressable_objects primitive_int = int(primitive) return primitive_int, self.addressable_objects.index(obj) def _get_obj_in_hand(self): """ Get object in the robot's hand Returns: StatefulObject or None: Object if robot is holding something or None if it is not """ obj_in_hand = self.robot._ag_obj_in_hand[self.arm] # TODO(MP): Expose this interface. return obj_in_hand def apply(self, action): # Decompose the tuple action_idx, obj_idx = action # Find the target object. target_obj = self.addressable_objects[obj_idx] # Find the appropriate action generator. action = StarterSemanticActionPrimitiveSet(action_idx) return self.apply_ref(action, target_obj) def apply_ref(self, prim, *args, attempts=3): """ Yields action for robot to execute the primitive with the given arguments. Args: prim (StarterSemanticActionPrimitiveSet): Primitive to execute args: Arguments for the primitive attempts (int): Number of attempts to make before raising an error Yields: np.array or None: Action array for one step for the robot to execute the primitve or None if primitive completed Raises: ActionPrimitiveError: If primitive fails to execute """ assert attempts > 0, "Must make at least one attempt" ctrl = self.controller_functions[prim] errors = [] for _ in range(attempts): # Attempt success = False try: yield from ctrl(*args) success = True except ActionPrimitiveError as e: errors.append(e) try: # If we're not holding anything, release the hand so it doesn't stick to anything else. if not self._get_obj_in_hand(): yield from self._execute_release() except ActionPrimitiveError: pass try: # Make sure we retract the arm after every step yield from self._reset_hand() except ActionPrimitiveError: pass try: # Settle before returning. yield from self._settle_robot() except ActionPrimitiveError: pass # Stop on success if success: return raise ActionPrimitiveErrorGroup(errors) def _open(self, obj): yield from self._open_or_close(obj, True) def _close(self, obj): yield from self._open_or_close(obj, False) def _open_or_close(self, obj, should_open): # Update the tracking to track the eef. self._tracking_object = self.robot if self._get_obj_in_hand(): raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot open or close an object while holding an object", {"object in hand": self._get_obj_in_hand().name}, ) # Open the hand first yield from self._execute_release() for _ in range(m.MAX_ATTEMPTS_FOR_OPEN_CLOSE): try: # TODO: This needs to be fixed. Many assumptions (None relevant joint, 3 waypoints, etc.) if should_open: grasp_data = get_grasp_position_for_open(self.robot, obj, should_open, None) else: grasp_data = get_grasp_position_for_open(self.robot, obj, should_open, None, num_waypoints=3) if grasp_data is None: # We were trying to do something but didn't have the data. raise ActionPrimitiveError( ActionPrimitiveError.Reason.SAMPLING_ERROR, "Could not sample grasp position for target object", {"target object": obj.name}, ) relevant_joint, grasp_pose, target_poses, object_direction, grasp_required, pos_change = grasp_data if abs(pos_change) < 0.1: indented_print("Yaw change is small and done,", pos_change) return # Prepare data for the approach later. approach_pos = grasp_pose[0] + object_direction * m.OPEN_GRASP_APPROACH_DISTANCE approach_pose = (approach_pos, grasp_pose[1]) # If the grasp pose is too far, navigate yield from self._navigate_if_needed(obj, pose_on_obj=grasp_pose) yield from self._move_hand(grasp_pose, stop_if_stuck=True) # We can pre-grasp in sticky grasping mode only for opening if should_open: yield from self._execute_grasp() # Since the grasp pose is slightly off the object, we want to move towards the object, around 5cm. # It's okay if we can't go all the way because we run into the object. yield from self._navigate_if_needed(obj, pose_on_obj=approach_pose) if should_open: yield from self._move_hand_linearly_cartesian(approach_pose, ignore_failure=False, stop_on_contact=True, stop_if_stuck=True) else: yield from self._move_hand_linearly_cartesian(approach_pose, ignore_failure=False, stop_if_stuck=True) # Step once to update empty_action = self._empty_action() yield self._postprocess_action(empty_action) for i, target_pose in enumerate(target_poses): yield from self._move_hand_linearly_cartesian(target_pose, ignore_failure=False, stop_if_stuck=True) # Moving to target pose often fails. This might leave the robot's motors with torques that # try to get to a far-away position thus applying large torques, but unable to move due to # the sticky grasp joint. Thus if we release the joint, the robot might suddenly launch in an # arbitrary direction. To avoid this, we command the hand to apply torques with its current # position as its target. This prevents the hand from jerking into some other position when we do a release. yield from self._move_hand_linearly_cartesian( self.robot.eef_links[self.arm].get_position_orientation(), ignore_failure=True, stop_if_stuck=True ) if should_open: yield from self._execute_release() yield from self._move_base_backward() except ActionPrimitiveError as e: indented_print(e) if should_open: yield from self._execute_release() yield from self._move_base_backward() else: yield from self._move_hand_backward() if obj.states[object_states.Open].get_value() != should_open: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "Despite executing the planned trajectory, the object did not open or close as expected. Maybe try again", {"target object": obj.name, "is it currently open": obj.states[object_states.Open].get_value()}, ) # TODO: Figure out how to generalize out of this "backing out" behavior. def _move_base_backward(self, steps=5, speed=0.2): """ Yields action for the robot to move base so the eef is in the target pose using the planner Args: steps (int): steps to move base speed (float): base speed Returns: np.array or None: Action array for one step for the robot to move base or None if its at the target pose """ for _ in range(steps): action = self._empty_action() action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0 action[self.robot.base_control_idx[0]] = -speed yield self._postprocess_action(action) def _move_hand_backward(self, steps=5, speed=0.2): """ Yields action for the robot to move its base backwards. Args: steps (int): steps to move eef speed (float): eef speed Returns: np.array or None: Action array for one step for the robot to move hand or None if its at the target pose """ for _ in range(steps): action = self._empty_action() action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0 action[self.robot.controller_action_idx["arm_{}".format(self.arm)][0]] = -speed yield self._postprocess_action(action) def _move_hand_upward(self, steps=5, speed=0.1): """ Yields action for the robot to move hand upward. Args: steps (int): steps to move eef speed (float): eef speed Returns: np.array or None: Action array for one step for the robot to move hand or None if its at the target pose """ # TODO: Combine these movement functions. for _ in range(steps): action = self._empty_action() action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0 action[self.robot.controller_action_idx["arm_{}".format(self.arm)][2]] = speed yield self._postprocess_action(action) def _grasp(self, obj): """ Yields action for the robot to navigate to object if needed, then to grasp it Args: StatefulObject: Object for robot to grasp Returns: np.array or None: Action array for one step for the robot to grasp or None if grasp completed """ # Update the tracking to track the object. self._tracking_object = obj # Don't do anything if the object is already grasped. obj_in_hand = self._get_obj_in_hand() if obj_in_hand is not None: if obj_in_hand == obj: return else: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "Cannot grasp when your hand is already full", {"target object": obj.name, "object currently in hand": obj_in_hand.name}, ) # Open the hand first yield from self._execute_release() # Allow grasping from suboptimal extents if we've tried enough times. grasp_poses = get_grasp_poses_for_object_sticky(obj) grasp_pose, object_direction = random.choice(grasp_poses) # Prepare data for the approach later. approach_pos = grasp_pose[0] + object_direction * m.GRASP_APPROACH_DISTANCE approach_pose = (approach_pos, grasp_pose[1]) # If the grasp pose is too far, navigate. yield from self._navigate_if_needed(obj, pose_on_obj=grasp_pose) yield from self._move_hand(grasp_pose) # We can pre-grasp in sticky grasping mode. yield from self._execute_grasp() # Since the grasp pose is slightly off the object, we want to move towards the object, around 5cm. # It's okay if we can't go all the way because we run into the object. indented_print("Performing grasp approach") yield from self._move_hand_linearly_cartesian(approach_pose, stop_on_contact=True) # Step once to update empty_action = self._empty_action() yield self._postprocess_action(empty_action) if self._get_obj_in_hand() is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "Grasp completed, but no object detected in hand after executing grasp", {"target object": obj.name}, ) yield from self._reset_hand() if self._get_obj_in_hand() != obj: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "An unexpected object was detected in hand after executing grasp. Consider releasing it", {"expected object": obj.name, "actual object": self._get_obj_in_hand().name}, ) def _place_on_top(self, obj): """ Yields action for the robot to navigate to the object if needed, then to place an object on it Args: obj (StatefulObject): Object for robot to place the object in its hand on Returns: np.array or None: Action array for one step for the robot to place or None if place completed """ yield from self._place_with_predicate(obj, object_states.OnTop) def _place_inside(self, obj): """ Yields action for the robot to navigate to the object if needed, then to place an object in it Args: obj (StatefulObject): Object for robot to place the object in its hand on Returns: np.array or None: Action array for one step for the robot to place or None if place completed """ yield from self._place_with_predicate(obj, object_states.Inside) def _toggle_on(self, obj): yield from self._toggle(obj, True) def _toggle_off(self, obj): yield from self._toggle(obj, False) def _toggle(self, obj, value): if obj.states[object_states.ToggledOn].get_value() == value: return # Put the hand in the toggle marker. toggle_state = obj.states[object_states.ToggledOn] toggle_position = toggle_state.get_link_position() yield from self._navigate_if_needed(obj, toggle_position) hand_orientation = self.robot.eef_links[self.arm].get_orientation() # Just keep the current hand orientation. desired_hand_pose = (toggle_position, hand_orientation) yield from self._move_hand(desired_hand_pose) if obj.states[object_states.ToggledOn].get_value() != value: raise ActionPrimitiveError( ActionPrimitiveError.Reason.POST_CONDITION_ERROR, "The object did not toggle as expected - maybe try again", {"target object": obj.name, "is it currently toggled on": obj.states[object_states.ToggledOn].get_value()} ) def _place_with_predicate(self, obj, predicate): """ Yields action for the robot to navigate to the object if needed, then to place it Args: obj (StatefulObject): Object for robot to place the object in its hand on predicate (object_states.OnTop or object_states.Inside): Determines whether to place on top or inside Returns: np.array or None: Action array for one step for the robot to place or None if place completed """ # Update the tracking to track the object. self._tracking_object = obj obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping an object first to place it somewhere." ) # Sample location to place object obj_pose = self._sample_pose_with_object_and_predicate(predicate, obj_in_hand, obj) hand_pose = self._get_hand_pose_for_object_pose(obj_pose) yield from self._navigate_if_needed(obj, pose_on_obj=hand_pose) yield from self._move_hand(hand_pose) yield from self._execute_release() if self._get_obj_in_hand() is not None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Could not release object - the object is still in your hand", {"object": self._get_obj_in_hand().name} ) if not obj_in_hand.states[predicate].get_value(obj): raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Failed to place object at the desired place (probably dropped). The object was still released, so you need to grasp it again to continue", {"dropped object": obj_in_hand.name, "target object": obj.name} ) yield from self._move_hand_upward() def _convert_cartesian_to_joint_space(self, target_pose): """ Gets joint positions for the arm so eef is at the target pose Args: target_pose (Iterable of array): Position and orientation arrays in an iterable for pose for the eef Returns: 2-tuple - np.array or None: Joint positions to reach target pose or None if impossible to reach target pose - np.array: Indices for joints in the robot """ relative_target_pose = self._get_pose_in_robot_frame(target_pose) joint_pos = self._ik_solver_cartesian_to_joint_space(relative_target_pose) if joint_pos is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PLANNING_ERROR, "Could not find joint positions for target pose. You cannot reach it. Try again for a new pose" ) return joint_pos def _target_in_reach_of_robot(self, target_pose): """ Determines whether the eef for the robot can reach the target pose in the world frame Args: target_pose (Iterable of array): Position and orientation arrays in an iterable for the pose for the eef Returns: bool: Whether eef can reach the target pose """ relative_target_pose = self._get_pose_in_robot_frame(target_pose) return self._target_in_reach_of_robot_relative(relative_target_pose) def _target_in_reach_of_robot_relative(self, relative_target_pose): """ Determines whether eef for the robot can reach the target pose where the target pose is in the robot frame Args: target_pose (Iterable of array): Position and orientation arrays in an iterable for pose for the eef Returns: bool: Whether eef can the reach target pose """ return self._ik_solver_cartesian_to_joint_space(relative_target_pose) is not None @cached_property def _manipulation_control_idx(self): """The appropriate manipulation control idx for the current settings.""" if isinstance(self.robot, Tiago): if m.TIAGO_TORSO_FIXED: assert self.arm == "left", "Fixed torso mode only supports left arm!" return self.robot.arm_control_idx["left"] else: return np.concatenate([self.robot.trunk_control_idx, self.robot.arm_control_idx[self.arm]]) # Otherwise just return the default arm control idx return np.concatenate([self.robot.trunk_control_idx, self.robot.arm_control_idx[self.arm]]) @cached_property def _manipulation_descriptor_path(self): """The appropriate manipulation descriptor for the current settings.""" if isinstance(self.robot, Tiago) and m.TIAGO_TORSO_FIXED: assert self.arm == "left", "Fixed torso mode only supports left arm!" return self.robot.robot_arm_descriptor_yamls["left_fixed"] # Otherwise just return the default arm control idx return self.robot.robot_arm_descriptor_yamls[self.arm] def _ik_solver_cartesian_to_joint_space(self, relative_target_pose): """ Get joint positions for the arm so eef is at the target pose where the target pose is in the robot frame Args: relative_target_pose (Iterable of array): Position and orientation arrays in an iterable for pose in the robot frame Returns: 2-tuple - np.array or None: Joint positions to reach target pose or None if impossible to reach the target pose - np.array: Indices for joints in the robot """ ik_solver = IKSolver( robot_description_path=self._manipulation_descriptor_path, robot_urdf_path=self.robot.urdf_path, reset_joint_pos=self.robot.reset_joint_pos[self._manipulation_control_idx], eef_name=self.robot.eef_link_names[self.arm], ) # Grab the joint positions in order to reach the desired pose target joint_pos = ik_solver.solve( target_pos=relative_target_pose[0], target_quat=relative_target_pose[1], max_iterations=100, ) return joint_pos def _move_hand(self, target_pose, stop_if_stuck=False): """ Yields action for the robot to move hand so the eef is in the target pose using the planner Args: target_pose (Iterable of array): Position and orientation arrays in an iterable for pose Returns: np.array or None: Action array for one step for the robot to move hand or None if its at the target pose """ yield from self._settle_robot() controller_config = self.robot._controller_config["arm_" + self.arm] if controller_config["name"] == "InverseKinematicsController": target_pose_relative = self._get_pose_in_robot_frame(target_pose) yield from self._move_hand_ik(target_pose_relative, stop_if_stuck=stop_if_stuck) else: joint_pos = self._convert_cartesian_to_joint_space(target_pose) yield from self._move_hand_joint(joint_pos) def _move_hand_joint(self, joint_pos): """ Yields action for the robot to move arm to reach the specified joint positions using the planner Args: joint_pos (np.array): Joint positions for the arm Returns: np.array or None: Action array for one step for the robot to move arm or None if its at the joint positions """ with PlanningContext(self.robot, self.robot_copy, "original") as context: plan = plan_arm_motion( robot=self.robot, end_conf=joint_pos, context=context, torso_fixed=m.TIAGO_TORSO_FIXED, ) # plan = self._add_linearly_interpolated_waypoints(plan, 0.1) if plan is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PLANNING_ERROR, "There is no accessible path from where you are to the desired joint position. Try again" ) # Follow the plan to navigate. indented_print("Plan has %d steps", len(plan)) for i, joint_pos in enumerate(plan): indented_print("Executing grasp plan step %d/%d", i + 1, len(plan)) yield from self._move_hand_direct_joint(joint_pos, ignore_failure=True) def _move_hand_ik(self, eef_pose, stop_if_stuck=False): """ Yields action for the robot to move arm to reach the specified eef positions using the planner Args: eef_pose (np.array): End Effector pose for the arm Returns: np.array or None: Action array for one step for the robot to move arm or None if its at the joint positions """ eef_pos = eef_pose[0] eef_ori = T.quat2axisangle(eef_pose[1]) end_conf = np.append(eef_pos, eef_ori) with PlanningContext(self.robot, self.robot_copy, "original") as context: plan = plan_arm_motion_ik( robot=self.robot, end_conf=end_conf, context=context, torso_fixed=m.TIAGO_TORSO_FIXED, ) # plan = self._add_linearly_interpolated_waypoints(plan, 0.1) if plan is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PLANNING_ERROR, "There is no accessible path from where you are to the desired joint position. Try again" ) # Follow the plan to navigate. indented_print("Plan has %d steps", len(plan)) for i, target_pose in enumerate(plan): target_pos = target_pose[:3] target_quat = T.axisangle2quat(target_pose[3:]) indented_print("Executing grasp plan step %d/%d", i + 1, len(plan)) yield from self._move_hand_direct_ik((target_pos, target_quat), ignore_failure=True, in_world_frame=False, stop_if_stuck=stop_if_stuck) def _add_linearly_interpolated_waypoints(self, plan, max_inter_dist): """ Adds waypoints to the plan so the distance between values in the plan never exceeds the max_inter_dist. Args: plan (Array of arrays): Planned path max_inter_dist (float): Maximum distance between values in the plan Returns: Array of arrays: Planned path with additional waypoints """ plan = np.array(plan) interpolated_plan = [] for i in range(len(plan) - 1): max_diff = max(plan[i+1] - plan[i]) num_intervals = ceil(max_diff / max_inter_dist) interpolated_plan += np.linspace(plan[i], plan[i+1], num_intervals, endpoint=False).tolist() interpolated_plan.append(plan[-1].tolist()) return interpolated_plan def _move_hand_direct_joint(self, joint_pos, stop_on_contact=False, ignore_failure=False): """ Yields action for the robot to move its arm to reach the specified joint positions by directly actuating with no planner Args: joint_pos (np.array): Array of joint positions for the arm stop_on_contact (boolean): Determines whether to stop move once an object is hit ignore_failure (boolean): Determines whether to throw error for not reaching final joint positions Returns: np.array or None: Action array for one step for the robot to move arm or None if its at the joint positions """ controller_name = f"arm_{self.arm}" use_delta = self.robot._controllers[controller_name].use_delta_commands action = self._empty_action() controller_name = "arm_{}".format(self.arm) action[self.robot.controller_action_idx[controller_name]] = joint_pos prev_eef_pos = np.zeros(3) for _ in range(m.MAX_STEPS_FOR_HAND_MOVE_JOINT): current_joint_pos = self.robot.get_joint_positions()[self._manipulation_control_idx] diff_joint_pos = np.array(current_joint_pos) - np.array(joint_pos) if np.max(np.abs(diff_joint_pos)) < m.JOINT_POS_DIFF_THRESHOLD: return if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False): return if np.max(np.abs(self.robot.get_eef_position(self.arm) - prev_eef_pos)) < 0.0001: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, f"Hand got stuck during execution." ) if use_delta: # Convert actions to delta. action[self.robot.controller_action_idx[controller_name]] = diff_joint_pos prev_eef_pos = self.robot.get_eef_position(self.arm) yield self._postprocess_action(action) if not ignore_failure: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Your hand was obstructed from moving to the desired joint position" ) def _move_hand_direct_ik(self, target_pose, stop_on_contact=False, ignore_failure=False, pos_thresh=0.04, ori_thresh=0.4, in_world_frame=True, stop_if_stuck=False): """ Moves the hand to a target pose using inverse kinematics. Args: target_pose (tuple): A tuple of two elements, representing the target pose of the hand as a position and a quaternion. stop_on_contact (bool, optional): Whether to stop the movement if the hand collides with an object. Defaults to False. ignore_failure (bool, optional): Whether to raise an exception if the movement fails. Defaults to False. pos_thresh (float, optional): The position threshold for considering the target pose reached. Defaults to 0.04. ori_thresh (float, optional): The orientation threshold for considering the target pose reached. Defaults to 0.4. in_world_frame (bool, optional): Whether the target pose is given in the world frame. Defaults to True. stop_if_stuck (bool, optional): Whether to stop the movement if the hand is stuck. Defaults to False. Yields: numpy.ndarray: The action to be executed by the robot controller. Raises: ActionPrimitiveError: If the movement fails and ignore_failure is False. """ # make sure controller is InverseKinematicsController and in expected mode controller_config = self.robot._controller_config["arm_" + self.arm] assert controller_config["name"] == "InverseKinematicsController", "Controller must be InverseKinematicsController" assert controller_config["mode"] == "pose_absolute_ori", "Controller must be in pose_absolute_ori mode" if in_world_frame: target_pose = self._get_pose_in_robot_frame(target_pose) target_pos = target_pose[0] target_orn = target_pose[1] target_orn_axisangle = T.quat2axisangle(target_pose[1]) action = self._empty_action() control_idx = self.robot.controller_action_idx["arm_" + self.arm] prev_pos = prev_orn = None for i in range(m.MAX_STEPS_FOR_HAND_MOVE_IK): current_pose = self._get_pose_in_robot_frame((self.robot.get_eef_position(), self.robot.get_eef_orientation())) current_pos = current_pose[0] current_orn = current_pose[1] delta_pos = target_pos - current_pos target_pos_diff = np.linalg.norm(delta_pos) target_orn_diff = (Rotation.from_quat(target_orn) * Rotation.from_quat(current_orn).inv()).magnitude() reached_goal = target_pos_diff < pos_thresh and target_orn_diff < ori_thresh if reached_goal: return if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False): return # if i > 0 and stop_if_stuck and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False): if i > 0 and stop_if_stuck: pos_diff = np.linalg.norm(prev_pos - current_pos) orn_diff = (Rotation.from_quat(prev_orn) * Rotation.from_quat(current_orn).inv()).magnitude() orn_diff = (Rotation.from_quat(prev_orn) * Rotation.from_quat(current_orn).inv()).magnitude() orn_diff = (Rotation.from_quat(prev_orn) * Rotation.from_quat(current_orn).inv()).magnitude() if pos_diff < 0.0003 and orn_diff < 0.01: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, f"Hand is stuck" ) prev_pos = current_pos prev_orn = current_orn action[control_idx] = np.concatenate([delta_pos, target_orn_axisangle]) yield self._postprocess_action(action) if not ignore_failure: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Your hand was obstructed from moving to the desired joint position" ) def _move_hand_linearly_cartesian(self, target_pose, stop_on_contact=False, ignore_failure=False, stop_if_stuck=False): """ Yields action for the robot to move its arm to reach the specified target pose by moving the eef along a line in cartesian space from its current pose Args: target_pose (Iterable of array): Position and orientation arrays in an iterable for pose stop_on_contact (boolean): Determines whether to stop move once an object is hit ignore_failure (boolean): Determines whether to throw error for not reaching final joint positions Returns: np.array or None: Action array for one step for the robot to move arm or None if its at the target pose """ # To make sure that this happens in a roughly linear fashion, we will divide the trajectory # into 1cm-long pieces start_pos, start_orn = self.robot.eef_links[self.arm].get_position_orientation() travel_distance = np.linalg.norm(target_pose[0] - start_pos) num_poses = np.max([2, int(travel_distance / m.MAX_CARTESIAN_HAND_STEP) + 1]) pos_waypoints = np.linspace(start_pos, target_pose[0], num_poses) # Also interpolate the rotations combined_rotation = Rotation.from_quat(np.array([start_orn, target_pose[1]])) slerp = Slerp([0, 1], combined_rotation) orn_waypoints = slerp(np.linspace(0, 1, num_poses)) quat_waypoints = [x.as_quat() for x in orn_waypoints] controller_config = self.robot._controller_config["arm_" + self.arm] if controller_config["name"] == "InverseKinematicsController": waypoints = list(zip(pos_waypoints, quat_waypoints)) for i, waypoint in enumerate(waypoints): if i < len(waypoints) - 1: yield from self._move_hand_direct_ik(waypoint, stop_on_contact=stop_on_contact, ignore_failure=ignore_failure, stop_if_stuck=stop_if_stuck) else: yield from self._move_hand_direct_ik( waypoints[-1], pos_thresh=0.01, ori_thresh=0.1, stop_on_contact=stop_on_contact, ignore_failure=ignore_failure, stop_if_stuck=stop_if_stuck ) # Also decide if we can stop early. current_pos, current_orn = self.robot.eef_links[self.arm].get_position_orientation() pos_diff = np.linalg.norm(np.array(current_pos) - np.array(target_pose[0])) orn_diff = (Rotation.from_quat(current_orn) * Rotation.from_quat(target_pose[1]).inv()).magnitude() if pos_diff < 0.005 and orn_diff < np.deg2rad(0.1): return if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False): return if not ignore_failure: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Your hand was obstructed from moving to the desired world position" ) else: # Use joint positions joint_space_data = [self._convert_cartesian_to_joint_space(waypoint) for waypoint in zip(pos_waypoints, quat_waypoints)] joints = list(self.robot.joints.values()) for joint_pos in joint_space_data: # Check if the movement can be done roughly linearly. current_joint_positions = self.robot.get_joint_positions()[self._manipulation_control_idx] failed_joints = [] for joint_idx, target_joint_pos, current_joint_pos in zip(self._manipulation_control_idx, joint_pos, current_joint_positions): if np.abs(target_joint_pos - current_joint_pos) > m.MAX_ALLOWED_JOINT_ERROR_FOR_LINEAR_MOTION: failed_joints.append(joints[joint_idx].joint_name) if failed_joints: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "You cannot reach the target position in a straight line - it requires rotating your arm which might cause collisions. You might need to get closer and retry", {"failed joints": failed_joints} ) # Otherwise, move the joint yield from self._move_hand_direct_joint(joint_pos, stop_on_contact=stop_on_contact, ignore_failure=ignore_failure) # Also decide if we can stop early. current_pos, current_orn = self.robot.eef_links[self.arm].get_position_orientation() pos_diff = np.linalg.norm(np.array(current_pos) - np.array(target_pose[0])) orn_diff = (Rotation.from_quat(current_orn) * Rotation.from_quat(target_pose[1]).inv()).magnitude() if pos_diff < 0.001 and orn_diff < np.deg2rad(0.1): return if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False): return if not ignore_failure: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Your hand was obstructed from moving to the desired world position" ) def _execute_grasp(self): """ Yields action for the robot to grasp Returns: np.array or None: Action array for one step for the robot to grasp or None if its done grasping """ for _ in range(m.MAX_STEPS_FOR_GRASP_OR_RELEASE): action = self._empty_action() controller_name = "gripper_{}".format(self.arm) action[self.robot.controller_action_idx[controller_name]] = -1.0 yield self._postprocess_action(action) def _execute_release(self): """ Yields action for the robot to release its grasp Returns: np.array or None: Action array for one step for the robot to release or None if its done releasing """ for _ in range(m.MAX_STEPS_FOR_GRASP_OR_RELEASE): action = self._empty_action() controller_name = "gripper_{}".format(self.arm) action[self.robot.controller_action_idx[controller_name]] = 1.0 yield self._postprocess_action(action) if self._get_obj_in_hand() is not None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "An object was still detected in your hand after executing release", {"object in hand": self._get_obj_in_hand().name}, ) def _overwrite_head_action(self, action): """ Overwrites camera control actions to track an object of interest. If self._always_track_eef is true, always tracks the end effector of the robot. Otherwise, tracks the object of interest or the end effector as specified by the primitive. Args: action (array) : action array to overwrite """ if self._always_track_eef: target_obj_pose = (self.robot.get_eef_position(), self.robot.get_eef_orientation()) else: if self._tracking_object is None: return action if self._tracking_object == self.robot: target_obj_pose = (self.robot.get_eef_position(), self.robot.get_eef_orientation()) else: target_obj_pose = self._tracking_object.get_position_orientation() assert self.robot_model == "Tiago", "Tracking object with camera is currently only supported for Tiago" head_q = self._get_head_goal_q(target_obj_pose) head_idx = self.robot.controller_action_idx["camera"] config = self.robot._controller_config["camera"] assert config["name"] == "JointController", "Camera controller must be JointController" assert config["motor_type"] == "position", "Camera controller must be in position control mode" use_delta = config["use_delta_commands"] if use_delta: cur_head_q = self.robot.get_joint_positions()[self.robot.camera_control_idx] head_action = head_q - cur_head_q else: head_action = head_q action[head_idx] = head_action return action def _get_head_goal_q(self, target_obj_pose): """ Get goal joint positions for head to look at an object of interest, If the object cannot be seen, return the current head joint positions. """ # get current head joint positions head1_joint = self.robot.joints["head_1_joint"] head2_joint = self.robot.joints["head_2_joint"] head1_joint_limits = [head1_joint.lower_limit, head1_joint.upper_limit] head2_joint_limits = [head2_joint.lower_limit, head2_joint.upper_limit] head1_joint_goal = head1_joint.get_state()[0][0] head2_joint_goal = head2_joint.get_state()[0][0] # grab robot and object poses robot_pose = self.robot.get_position_orientation() # obj_pose = obj.get_position_orientation() obj_in_base = T.relative_pose_transform(*target_obj_pose, *robot_pose) # compute angle between base and object in xy plane (parallel to floor) theta = np.arctan2(obj_in_base[0][1], obj_in_base[0][0]) # if it is possible to get object in view, compute both head joint positions if head1_joint_limits[0] < theta < head1_joint_limits[1]: head1_joint_goal = theta # compute angle between base and object in xz plane (perpendicular to floor) head2_pose = self.robot.links["head_2_link"].get_position_orientation() head2_in_base = T.relative_pose_transform(*head2_pose, *robot_pose) phi = np.arctan2(obj_in_base[0][2] - head2_in_base[0][2], obj_in_base[0][0]) if head2_joint_limits[0] < phi < head2_joint_limits[1]: head2_joint_goal = phi # if not possible to look at object, return current head joint positions else: default_head_pos = self._get_reset_joint_pos()[self.robot.controller_action_idx["camera"]] head1_joint_goal = default_head_pos[0] head2_joint_goal = default_head_pos[1] return [head1_joint_goal, head2_joint_goal] def _empty_action(self): """ Get a no-op action that allows us to run simulation without changing robot configuration. Returns: np.array or None: Action array for one step for the robot to do nothing """ action = np.zeros(self.robot.action_dim) for name, controller in self.robot._controllers.items(): joint_idx = controller.dof_idx action_idx = self.robot.controller_action_idx[name] if controller.control_type == ControlType.POSITION and len(joint_idx) == len(action_idx) and not controller.use_delta_commands: action[action_idx] = self.robot.get_joint_positions()[joint_idx] elif self.robot._controller_config[name]["name"] == "InverseKinematicsController": # overwrite the goal orientation, since it is in absolute frame. assert self.robot._controller_config["arm_" + self.arm]["mode"] == "pose_absolute_ori", "Controller must be in pose_absolute_ori mode" current_quat = self.robot.get_relative_eef_orientation() current_ori = T.quat2axisangle(current_quat) control_idx = self.robot.controller_action_idx["arm_" + self.arm] action[control_idx[3:]] = current_ori return action def _reset_hand(self): """ Yields action to move the hand to the position optimal for executing subsequent action primitives Returns: np.array or None: Action array for one step for the robot to reset its hand or None if it is done resetting """ controller_config = self.robot._controller_config["arm_" + self.arm] if controller_config["name"] == "InverseKinematicsController": indented_print("Resetting hand") reset_eef_pose = self._get_reset_eef_pose() try: yield from self._move_hand_ik(reset_eef_pose) except ActionPrimitiveError: indented_print("Could not do a planned reset of the hand - probably obj_in_hand collides with body") yield from self._move_hand_direct_ik(reset_eef_pose, ignore_failure=True, in_world_frame=False) else: indented_print("Resetting hand") reset_pose = self._get_reset_joint_pos()[self._manipulation_control_idx] try: yield from self._move_hand_joint(reset_pose) except ActionPrimitiveError: indented_print("Could not do a planned reset of the hand - probably obj_in_hand collides with body") yield from self._move_hand_direct_joint(reset_pose, ignore_failure=True) def _get_reset_eef_pose(self): # TODO: Add support for Fetch if self.robot_model == "Tiago": return np.array([0.28493954, 0.37450749, 1.1512334]), np.array([-0.21533823, 0.05361032, -0.08631776, 0.97123871]) else: return np.array([ 0.48688125, -0.12507881, 0.97888719]), np.array([ 0.61324748, 0.61305553, -0.35266518, 0.35173529]) def _get_reset_joint_pos(self): reset_pose_fetch = np.array( [ 0.0, 0.0, # wheels 0.0, # trunk 0.0, -1.0, 0.0, # head -1.0, 1.53448, 2.2, 0.0, 1.36904, 1.90996, # arm 0.05, 0.05, # gripper ] ) reset_pose_tiago = np.array([ -1.78029833e-04, 3.20231302e-05, -1.85759447e-07, 0.0, -0.2, 0.0, 0.1, -6.10000000e-01, -1.10000000e+00, 0.00000000e+00, -1.10000000e+00, 1.47000000e+00, 0.00000000e+00, 8.70000000e-01, 2.71000000e+00, 1.50000000e+00, 1.71000000e+00, -1.50000000e+00, -1.57000000e+00, 4.50000000e-01, 1.39000000e+00, 0.00000000e+00, 0.00000000e+00, 4.50000000e-02, 4.50000000e-02, 4.50000000e-02, 4.50000000e-02 ]) return reset_pose_tiago if self.robot_model == "Tiago" else reset_pose_fetch def _navigate_to_pose(self, pose_2d): """ Yields the action to navigate robot to the specified 2d pose Args: pose_2d (Iterable): (x, y, yaw) 2d pose Returns: np.array or None: Action array for one step for the robot to navigate or None if it is done navigating """ with PlanningContext(self.robot, self.robot_copy, "simplified") as context: plan = plan_base_motion( robot=self.robot, end_conf=pose_2d, context=context, ) if plan is None: # TODO: Would be great to produce a more informative error. raise ActionPrimitiveError( ActionPrimitiveError.Reason.PLANNING_ERROR, "Could not make a navigation plan to get to the target position" ) # self._draw_plan(plan) # Follow the plan to navigate. indented_print("Plan has %d steps", len(plan)) for i, pose_2d in enumerate(plan): indented_print("Executing navigation plan step %d/%d", i + 1, len(plan)) low_precision = True if i < len(plan) - 1 else False yield from self._navigate_to_pose_direct(pose_2d, low_precision=low_precision) def _draw_plan(self, plan): SEARCHED = [] trav_map = self.env.scene._trav_map for q in plan: # The below code is useful for plotting the RRT tree. SEARCHED.append(np.flip(trav_map.world_to_map((q[0], q[1])))) fig = plt.figure() plt.imshow(trav_map.floor_map[0]) plt.scatter(*zip(*SEARCHED), 5) fig.canvas.draw() # Convert the canvas to image img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) # Convert to BGR for cv2-based viewing. img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) cv2.imshow("SceneGraph", img) cv2.waitKey(1) def _navigate_if_needed(self, obj, pose_on_obj=None, **kwargs): """ Yields action to navigate the robot to be in range of the object if it not in the range Args: obj (StatefulObject): Object for the robot to be in range of pose_on_obj (Iterable): (pos, quat) Pose Returns: np.array or None: Action array for one step for the robot to navigate or None if it is done navigating """ if pose_on_obj is not None: if self._target_in_reach_of_robot(pose_on_obj): # No need to navigate. return elif self._target_in_reach_of_robot(obj.get_position_orientation()): return yield from self._navigate_to_obj(obj, pose_on_obj=pose_on_obj, **kwargs) def _navigate_to_obj(self, obj, pose_on_obj=None, **kwargs): """ Yields action to navigate the robot to be in range of the pose Args: obj (StatefulObject): object to be in range of pose_on_obj (Iterable): (pos, quat) pose Returns: np.array or None: Action array for one step for the robot to navigate in range or None if it is done navigating """ pose = self._sample_pose_near_object(obj, pose_on_obj=pose_on_obj, **kwargs) yield from self._navigate_to_pose(pose) def _navigate_to_pose_direct(self, pose_2d, low_precision=False): """ Yields action to navigate the robot to the 2d pose without planning Args: pose_2d (Iterable): (x, y, yaw) 2d pose low_precision (bool): Determines whether to navigate to the pose within a large range (low precision) or small range (high precison) Returns: np.array or None: Action array for one step for the robot to navigate or None if it is done navigating """ dist_threshold = m.LOW_PRECISION_DIST_THRESHOLD if low_precision else m.DEFAULT_DIST_THRESHOLD angle_threshold = m.LOW_PRECISION_ANGLE_THRESHOLD if low_precision else m.DEFAULT_ANGLE_THRESHOLD end_pose = self._get_robot_pose_from_2d_pose(pose_2d) body_target_pose = self._get_pose_in_robot_frame(end_pose) for _ in range(m.MAX_STEPS_FOR_WAYPOINT_NAVIGATION): if np.linalg.norm(body_target_pose[0][:2]) < dist_threshold: break diff_pos = end_pose[0] - self.robot.get_position() intermediate_pose = (end_pose[0], T.euler2quat([0, 0, np.arctan2(diff_pos[1], diff_pos[0])])) body_intermediate_pose = self._get_pose_in_robot_frame(intermediate_pose) diff_yaw = T.quat2euler(body_intermediate_pose[1])[2] if abs(diff_yaw) > m.DEFAULT_ANGLE_THRESHOLD: yield from self._rotate_in_place(intermediate_pose, angle_threshold=m.DEFAULT_ANGLE_THRESHOLD) else: action = self._empty_action() if self._base_controller_is_joint: direction_vec = body_target_pose[0][:2] / np.linalg.norm(body_target_pose[0][:2]) * m.KP_LIN_VEL base_action = [direction_vec[0], direction_vec[1], 0.0] action[self.robot.controller_action_idx["base"]] = base_action else: base_action = [m.KP_LIN_VEL, 0.0] action[self.robot.controller_action_idx["base"]] = base_action yield self._postprocess_action(action) body_target_pose = self._get_pose_in_robot_frame(end_pose) else: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Could not navigate to the target position", {"target pose": end_pose}, ) # Rotate in place to final orientation once at location yield from self._rotate_in_place(end_pose, angle_threshold=angle_threshold) def _rotate_in_place(self, end_pose, angle_threshold = m.DEFAULT_ANGLE_THRESHOLD): """ Yields action to rotate the robot to the 2d end pose Args: end_pose (Iterable): (x, y, yaw) 2d pose angle_threshold (float): The angle difference between the robot's current and end pose that determines when the robot is done rotating Returns: np.array or None: Action array for one step for the robot to rotate or None if it is done rotating """ body_target_pose = self._get_pose_in_robot_frame(end_pose) diff_yaw = T.quat2euler(body_target_pose[1])[2] for _ in range(m.MAX_STEPS_FOR_WAYPOINT_NAVIGATION): if abs(diff_yaw) < angle_threshold: break action = self._empty_action() direction = -1.0 if diff_yaw < 0.0 else 1.0 ang_vel = m.KP_ANGLE_VEL * direction base_action = [0.0, 0.0, ang_vel] if self._base_controller_is_joint else [0.0, ang_vel] action[self.robot.controller_action_idx["base"]] = base_action yield self._postprocess_action(action) body_target_pose = self._get_pose_in_robot_frame(end_pose) diff_yaw = T.quat2euler(body_target_pose[1])[2] else: raise ActionPrimitiveError( ActionPrimitiveError.Reason.EXECUTION_ERROR, "Could not rotate in place to the desired orientation", {"target pose": end_pose}, ) empty_action = self._empty_action() yield self._postprocess_action(empty_action) def _sample_pose_near_object(self, obj, pose_on_obj=None, **kwargs): """ Returns a 2d pose for the robot within in the range of the object and where the robot is not in collision with anything Args: obj (StatefulObject): Object to sample a 2d pose near pose_on_obj (Iterable of arrays or None): The pose to sample near Returns: 2-tuple: - 3-array: (x,y,z) Position in the world frame - 4-array: (x,y,z,w) Quaternion orientation in the world frame """ with PlanningContext(self.robot, self.robot_copy, "simplified") as context: for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_NEAR_OBJECT): if pose_on_obj is None: pos_on_obj = self._sample_position_on_aabb_side(obj) pose_on_obj = [pos_on_obj, np.array([0, 0, 0, 1])] distance = np.random.uniform(0.0, 5.0) yaw = np.random.uniform(-np.pi, np.pi) avg_arm_workspace_range = np.mean(self.robot.arm_workspace_range[self.arm]) pose_2d = np.array( [pose_on_obj[0][0] + distance * np.cos(yaw), pose_on_obj[0][1] + distance * np.sin(yaw), yaw + np.pi - avg_arm_workspace_range] ) # Check room obj_rooms = obj.in_rooms if obj.in_rooms else [self.env.scene._seg_map.get_room_instance_by_point(pose_on_obj[0][:2])] if self.env.scene._seg_map.get_room_instance_by_point(pose_2d[:2]) not in obj_rooms: indented_print("Candidate position is in the wrong room.") continue if not self._test_pose(pose_2d, context, pose_on_obj=pose_on_obj, **kwargs): continue return pose_2d raise ActionPrimitiveError( ActionPrimitiveError.Reason.SAMPLING_ERROR, "Could not find valid position near object.", {"target object": obj.name, "target pos": obj.get_position(), "pose on target": pose_on_obj} ) @staticmethod def _sample_position_on_aabb_side(target_obj): """ Returns a position on one of the axis-aligned bounding box (AABB) side faces of the target object. Args: target_obj (StatefulObject): Object to sample a position on Returns: 3-array: (x,y,z) Position in the world frame """ aabb_center, aabb_extent = target_obj.aabb_center, target_obj.aabb_extent # We want to sample only from the side-facing faces. face_normal_axis = np.random.choice([0, 1]) face_normal_direction = np.random.choice([-1, 1]) face_center = aabb_center + np.eye(3)[face_normal_axis] * aabb_extent * face_normal_direction face_lateral_axis = 0 if face_normal_axis == 1 else 1 face_lateral_half_extent = np.eye(3)[face_lateral_axis] * aabb_extent / 2 face_vertical_half_extent = np.eye(3)[2] * aabb_extent / 2 face_min = face_center - face_vertical_half_extent - face_lateral_half_extent face_max = face_center + face_vertical_half_extent + face_lateral_half_extent return np.random.uniform(face_min, face_max) # def _sample_pose_in_room(self, room: str): # """ # Returns a pose for the robot within in the room where the robot is not in collision with anything # Args: # room (str): Name of room # Returns: # 2-tuple: # - 3-array: (x,y,z) Position in the world frame # - 4-array: (x,y,z,w) Quaternion orientation in the world frame # """ # # TODO(MP): Bias the sampling near the agent. # for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_IN_ROOM): # _, pos = self.env.scene.get_random_point_by_room_instance(room) # yaw = np.random.uniform(-np.pi, np.pi) # pose = (pos[0], pos[1], yaw) # if self._test_pose(pose): # return pose # raise ActionPrimitiveError( # ActionPrimitiveError.Reason.SAMPLING_ERROR, # "Could not find valid position in the given room to travel to", # {"room": room} # ) def _sample_pose_with_object_and_predicate(self, predicate, held_obj, target_obj, near_poses=None, near_poses_threshold=None): """ Returns a pose for the held object relative to the target object that satisfies the predicate Args: predicate (object_states.OnTop or object_states.Inside): Relation between held object and the target object held_obj (StatefulObject): Object held by the robot target_obj (StatefulObject): Object to sample a pose relative to near_poses (Iterable of arrays): Poses in the world frame to sample near near_poses_threshold (float): The distance threshold to check if the sampled pose is near the poses in near_poses Returns: 2-tuple: - 3-array: (x,y,z) Position in the world frame - 4-array: (x,y,z,w) Quaternion orientation in the world frame """ pred_map = {object_states.OnTop: "onTop", object_states.Inside: "inside"} for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_WITH_OBJECT_AND_PREDICATE): _, _, bb_extents, bb_center_in_base = held_obj.get_base_aligned_bbox() sampling_results = sample_cuboid_for_predicate(pred_map[predicate], target_obj, bb_extents) if sampling_results[0][0] is None: continue sampled_bb_center = sampling_results[0][0] + np.array([0, 0, m.PREDICATE_SAMPLING_Z_OFFSET]) sampled_bb_orn = sampling_results[0][2] # Get the object pose by subtracting the offset sampled_obj_pose = T.pose2mat((sampled_bb_center, sampled_bb_orn)) @ T.pose_inv(T.pose2mat((bb_center_in_base, [0, 0, 0, 1]))) # Check that the pose is near one of the poses in the near_poses list if provided. if near_poses: sampled_pos = np.array([sampled_obj_pose[0]]) if not np.any(np.linalg.norm(near_poses - sampled_pos, axis=1) < near_poses_threshold): continue # Return the pose return T.mat2pose(sampled_obj_pose) # If we get here, sampling failed. raise ActionPrimitiveError( ActionPrimitiveError.Reason.SAMPLING_ERROR, "Could not find a position to put this object in the desired relation to the target object", {"target object": target_obj.name, "object in hand": held_obj.name, "relation": pred_map[predicate]}, ) # TODO: Why do we need to pass in the context here? def _test_pose(self, pose_2d, context, pose_on_obj=None): """ Determines whether the robot can reach the pose on the object and is not in collision at the specified 2d pose Args: pose_2d (Iterable): (x, y, yaw) 2d pose context (Context): Planning context reference pose_on_obj (Iterable of arrays): Pose on the object in the world frame Returns: bool: True if the robot is in a valid pose, False otherwise """ pose = self._get_robot_pose_from_2d_pose(pose_2d) if pose_on_obj is not None: relative_pose = T.relative_pose_transform(*pose_on_obj, *pose) if not self._target_in_reach_of_robot_relative(relative_pose): return False if set_base_and_detect_collision(context, pose): indented_print("Candidate position failed collision test.") return False return True @staticmethod def _get_robot_pose_from_2d_pose(pose_2d): """ Gets 3d pose from 2d pose Args: pose_2d (Iterable): (x, y, yaw) 2d pose Returns: 2-tuple: - 3-array: (x,y,z) Position in the world frame - 4-array: (x,y,z,w) Quaternion orientation in the world frame """ pos = np.array([pose_2d[0], pose_2d[1], m.DEFAULT_BODY_OFFSET_FROM_FLOOR]) orn = T.euler2quat([0, 0, pose_2d[2]]) return pos, orn def _get_pose_in_robot_frame(self, pose): """ Converts the pose in the world frame to the robot frame Args: pose_2d (Iterable): (x, y, yaw) 2d pose Returns: 2-tuple: - 3-array: (x,y,z) Position in the world frame - 4-array: (x,y,z,w) Quaternion orientation in the world frame """ body_pose = self.robot.get_position_orientation() return T.relative_pose_transform(*pose, *body_pose) def _get_hand_pose_for_object_pose(self, desired_pose): """ Gets the pose of the hand for the desired object pose Args: desired_pose (Iterable of arrays): Pose of the object in the world frame Returns: 2-tuple: - 3-array: (x,y,z) Position of the hand in the world frame - 4-array: (x,y,z,w) Quaternion orientation of the hand in the world frame """ obj_in_hand = self._get_obj_in_hand() assert obj_in_hand is not None # Get the object pose & the robot hand pose obj_in_world = obj_in_hand.get_position_orientation() hand_in_world = self.robot.eef_links[self.arm].get_position_orientation() # Get the hand pose relative to the obj pose hand_in_obj = T.relative_pose_transform(*hand_in_world, *obj_in_world) # Now apply desired obj pose. desired_hand_pose = T.pose_transform(*desired_pose, *hand_in_obj) return desired_hand_pose # Function that is particularly useful for Fetch, where it gives time for the base of robot to settle due to its uneven base. def _settle_robot(self): """ Yields a no op action for a few steps to allow the robot and physics to settle Returns: np.array or None: Action array for one step for the robot to do nothing """ for _ in range(30): empty_action = self._empty_action() yield self._postprocess_action(empty_action) for _ in range(m.MAX_STEPS_FOR_SETTLING): if np.linalg.norm(self.robot.get_linear_velocity()) < 0.01: break empty_action = self._empty_action() yield self._postprocess_action(empty_action)
84,553
Python
45.128751
183
0.605561
StanfordVL/OmniGibson/omnigibson/prims/entity_prim.py
import numpy as np import networkx as nx from functools import cached_property import omnigibson as og import omnigibson.lazy as lazy import omnigibson.utils.transform_utils as T from omnigibson.prims.cloth_prim import ClothPrim from omnigibson.prims.joint_prim import JointPrim from omnigibson.prims.rigid_prim import RigidPrim from omnigibson.prims.xform_prim import XFormPrim from omnigibson.utils.constants import PrimType, JointType, JointAxis from omnigibson.utils.ui_utils import suppress_omni_log from omnigibson.utils.usd_utils import PoseAPI from omnigibson.macros import gm, create_module_macros # Create settings for this module m = create_module_macros(module_path=__file__) # Default sleep threshold for all objects -- see https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/simulation-control/physics-settings.html?highlight=sleep#sleeping m.DEFAULT_SLEEP_THRESHOLD = 0.001 class EntityPrim(XFormPrim): """ Provides high level functions to deal with an articulation prim and its attributes/ properties. Note that this type of prim cannot be created from scratch, and assumes there is already a pre-existing prim tree that should be converted into an articulation! Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that by default, this assumes an articulation already exists (i.e.: load() will raise NotImplementedError)! Subclasses must implement _load() for this prim to be able to be dynamically loaded after this class is created. visual_only (None or bool): If specified, whether this prim should include collisions or not. Default is True. """ def __init__( self, prim_path, name, load_config=None, ): # Other values that will be filled in at runtime self._root_link_name = None # Name of the root link self._n_dof = None self._links = None self._joints = None self._materials = None self._visual_only = None self._articulation_tree = None self._articulation_view_direct = None # This needs to be initialized to be used for _load() of PrimitiveObject self._prim_type = load_config["prim_type"] if load_config is not None and "prim_type" in load_config else PrimType.RIGID assert self._prim_type in iter(PrimType), f"Unknown prim type {self._prim_type}!" # Run super init super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _initialize(self): # Run super method super()._initialize() # Set the default sleep threshold self.sleep_threshold = m.DEFAULT_SLEEP_THRESHOLD # Force populate inputs and outputs of the shaders of all materials # We suppress errors from omni.usd if we're using encrypted assets, because we're loading from tmp location, # not the original location with suppress_omni_log(channels=["omni.usd"]): for material in self.materials: material.shader_force_populate(render=False) # Initialize all the links for link in self._links.values(): link.initialize() # Update joint information self.update_joints() def _load(self): # By default, this prim cannot be instantiated from scratch! raise NotImplementedError("By default, an entity prim cannot be created from scratch.") def _post_load(self): # If this is a cloth, delete the root link and replace it with the single nested mesh if self._prim_type == PrimType.CLOTH: # Verify only a single link and a single mesh exists old_link_prim = None cloth_mesh_prim = None for prim in self._prim.GetChildren(): if prim.GetPrimTypeInfo().GetTypeName() == "Xform": assert old_link_prim is None, "Found multiple XForm links for a Cloth entity prim! Expected: 1" old_link_prim = prim for child in prim.GetChildren(): if child.GetPrimTypeInfo().GetTypeName() == "Mesh" and not child.HasAPI(lazy.pxr.UsdPhysics.CollisionAPI): assert cloth_mesh_prim is None, "Found multiple meshes for a Cloth entity prim! Expected: 1" cloth_mesh_prim = child # Move mesh prim one level up via copy, then delete the original link # NOTE: We copy because we cannot directly move the prim because it is ancestral # NOTE: We use this specific delete method because alternative methods (eg: "delete_prim") fail beacuse # the prim is ancestral. Note that because it is non-destructive, the original link prim path is still # tracked by omni, so we have to utilize a new unique prim path for the copied cloth mesh # See omni.kit.context_menu module for reference new_path = f"{self._prim_path}/{old_link_prim.GetName()}_cloth" lazy.omni.kit.commands.execute("CopyPrim", path_from=cloth_mesh_prim.GetPath(), path_to=new_path) lazy.omni.kit.commands.execute("DeletePrims", paths=[old_link_prim.GetPath()], destructive=False) # Setup links info FIRST before running any other post loading behavior # We pass in scale explicitly so that the generated links can leverage the desired entity scale self.update_links() # Optionally set the scale if "scale" in self._load_config and self._load_config["scale"] is not None: self.scale = self._load_config["scale"] # Prepare the articulation view. if self.n_joints > 0: # Import now to avoid too-eager load of Omni classes due to inheritance from omnigibson.utils.deprecated_utils import ArticulationView self._articulation_view_direct = ArticulationView(f"{self._prim_path}/{self.root_link_name}") # Set visual only flag # This automatically handles setting collisions / gravity appropriately per-link self.visual_only = self._load_config["visual_only"] if \ "visual_only" in self._load_config and self._load_config["visual_only"] is not None else False if self._prim_type == PrimType.CLOTH: assert not self._visual_only, "Cloth cannot be visual-only." assert len(self._links) == 1, f"Cloth entity prim can only have one link; got: {len(self._links)}" if gm.AG_CLOTH: self.create_attachment_point_link() # Globally disable any requested collision links for link_name in self.disabled_collision_link_names: self._links[link_name].disable_collisions() # Disable any requested collision pairs for a_name, b_name in self.disabled_collision_pairs: link_a, link_b = self._links[a_name], self._links[b_name] link_a.add_filtered_collision_pair(prim=link_b) # Run super super()._post_load() # Cache material information materials = set() material_paths = set() for link in self._links.values(): xforms = [link] + list(link.visual_meshes.values()) if self.prim_type == PrimType.RIGID else [link] for xform in xforms: if xform.has_material(): mat_path = xform.material.prim_path if mat_path not in material_paths: materials.add(xform.material) material_paths.add(mat_path) self._materials = materials def remove(self): # First remove all joints if self._joints is not None: for joint in self._joints.values(): joint.remove() # Then links if self._links is not None: for link in self._links.values(): link.remove() # Finally, remove this prim super().remove() def update_links(self): """ Helper function to refresh owned joints. Useful for synchronizing internal data if additional bodies are added manually """ # Make sure to clean up all pre-existing names for all links if self._links is not None: for link in self._links.values(): link.remove_names() # We iterate over all children of this object's prim, # and grab any that are presumed to be rigid bodies (i.e.: other Xforms) joint_children = set() links_to_create = {} for prim in self._prim.GetChildren(): link_cls = None link_name = prim.GetName() if self._prim_type == PrimType.RIGID and prim.GetPrimTypeInfo().GetTypeName() == "Xform": # For rigid body object, process prims that are Xforms (e.g. rigid links) link_cls = RigidPrim # Also iterate through all children to infer joints and determine the children of those joints # We will use this info to infer which link is the base link! for child_prim in prim.GetChildren(): if "joint" in child_prim.GetPrimTypeInfo().GetTypeName().lower(): # Store the child target of this joint relationships = {r.GetName(): r for r in child_prim.GetRelationships()} # Only record if this is NOT a fixed link tying us to the world (i.e.: no target for body0) if len(relationships["physics:body0"].GetTargets()) > 0: joint_children.add(relationships["physics:body1"].GetTargets()[0].pathString.split("/")[-1]) elif self._prim_type == PrimType.CLOTH and prim.GetPrimTypeInfo().GetTypeName() == "Mesh": # For cloth object, process prims that are Meshes link_cls = ClothPrim # Keep track of all the links we will create. We can't create that just yet because we need to find # the base link first. if link_cls is not None: links_to_create[link_name] = (link_cls, prim) # Infer the correct root link name -- this corresponds to whatever link does not have any joint existing # in the children joints valid_root_links = list(set(links_to_create.keys()) - joint_children) assert len(valid_root_links) == 1, f"Only a single root link should have been found for {self.name}, " \ f"but found multiple instead: {valid_root_links}" self._root_link_name = valid_root_links[0] if len(valid_root_links) == 1 else "base_link" # Now actually create the links self._links = dict() for link_name, (link_cls, prim) in links_to_create.items(): # Fixed child links of kinematic-only objects are not kinematic-only, to avoid the USD error: # PhysicsUSD: CreateJoint - cannot create a joint between static bodies, joint prim: ... link_load_config = { "kinematic_only": self._load_config.get("kinematic_only", False) if link_name == self._root_link_name else False, "remesh": self._load_config.get("remesh", True), } self._links[link_name] = link_cls( prim_path=prim.GetPrimPath().__str__(), name=f"{self._name}:{link_name}", load_config=link_load_config, ) def update_joints(self): """ Helper function to refresh owned joints. Useful for synchronizing internal data if additional bodies are added manually """ # Make sure to clean up all pre-existing names for all joints if self._joints is not None: for joint in self._joints.values(): joint.remove_names() # Initialize joints dictionary self._joints = dict() self.update_handles() # Handle case separately based on whether we are actually articulated or not if self._articulation_view and not self.kinematic_only: self._n_dof = self._articulation_view.num_dof # Additionally grab DOF info if we have non-fixed joints if self._n_dof > 0: for i in range(self._articulation_view._metadata.joint_count): # Only add the joint if it's not fixed (i.e.: it has DOFs > 0) if self._articulation_view._metadata.joint_dof_counts[i] > 0: joint_name = self._articulation_view._metadata.joint_names[i] joint_dof_offset = self._articulation_view._metadata.joint_dof_offsets[i] joint_path = self._articulation_view._dof_paths[0][joint_dof_offset] joint = JointPrim( prim_path=joint_path, name=f"{self._name}:joint_{joint_name}", articulation_view=self._articulation_view_direct, ) joint.initialize() self._joints[joint_name] = joint else: # TODO: May need to extend to clusters of rigid bodies, that aren't exactly joined # We assume this object contains a single rigid body self._n_dof = 0 assert self.n_joints == len(self._joints), \ f"Number of joints inferred from prim tree ({self.n_joints}) does not match number of joints " \ f"found in the articulation view ({len(self._joints)})!" self._update_joint_limits() self._compute_articulation_tree() def _update_joint_limits(self): """ Helper function to update internal joint limits for prismatic joints based on the object's scale """ # If the scale is [1, 1, 1], we can skip this step if np.allclose(self.scale, np.ones(3)): return prismatic_joints = {j_name: j for j_name, j in self._joints.items() if j.joint_type == JointType.JOINT_PRISMATIC} # If there are no prismatic joints, we can skip this step if len(prismatic_joints) == 0: return uniform_scale = np.allclose(self.scale, self.scale[0]) for joint_name, joint in prismatic_joints.items(): if uniform_scale: scale_along_axis = self.scale[0] else: assert not self.initialized, \ "Cannot update joint limits for a non-uniformly scaled object when already initialized." for link in self.links.values(): if joint.body0 == link.prim_path: # Find the parent link frame orientation in the object frame _, link_local_orn = link.get_local_pose() # Find the joint frame orientation in the parent link frame joint_local_orn = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(joint.get_attribute("physics:localRot0"))[[1, 2, 3, 0]] # Compute the joint frame orientation in the object frame joint_orn = T.quat_multiply(quaternion1=joint_local_orn, quaternion0=link_local_orn) # assert T.check_quat_right_angle(joint_orn), \ # f"Objects that are NOT uniformly scaled requires all joints to have orientations that " \ # f"are factors of 90 degrees! Got orn: {joint_orn} for object {self.name}" # Find the joint axis unit vector (e.g. [1, 0, 0] for "X", [0, 1, 0] for "Y", etc.) axis_in_joint_frame = np.zeros(3) axis_in_joint_frame[JointAxis.index(joint.axis)] = 1.0 # Compute the joint axis unit vector in the object frame axis_in_obj_frame = T.quat2mat(joint_orn) @ axis_in_joint_frame # Find the correct scale along the joint axis direction scale_along_axis = self.scale[np.argmax(np.abs(axis_in_obj_frame))] joint.lower_limit = joint.lower_limit * scale_along_axis joint.upper_limit = joint.upper_limit * scale_along_axis @property def _articulation_view(self): if self._articulation_view_direct is None: return None # Validate that the articulation view is initialized and that if physics is running, the # view is valid. if og.sim.is_playing() and self.initialized: assert self._articulation_view_direct.is_physics_handle_valid() and \ self._articulation_view_direct._physics_view.check(), \ "Articulation view must be valid if physics is running!" return self._articulation_view_direct @property def prim_type(self): """ Returns: str: Type of this entity prim, one of omnigibson.utils.constants.PrimType """ return self._prim_type @property def articulated(self): """ Returns: bool: Whether this prim is articulated or not """ # Note that this is not equivalent to self.n_joints > 0 because articulation root path is # overridden by the object classes return self.articulation_root_path is not None @property def articulation_root_path(self): """ Returns: None or str: Absolute USD path to the expected prim that represents the articulation root, if it exists. By default, this corresponds to self.prim_path """ return self._prim_path if self.n_joints > 0 else None @property def root_link_name(self): """ Returns: str: Name of this entity's root link """ return self._root_link_name @property def root_link(self): """ Returns: RigidPrim or ClothPrim: Root link of this object prim """ return self._links[self.root_link_name] @property def root_prim(self): """ Returns: UsdPrim: Root prim object associated with the root link of this object prim """ # The root prim belongs to the link with name root_link_name return self._links[self.root_link_name].prim @property def n_dof(self): """ Returns: int: number of DoFs of the object """ return self._n_dof @property def n_joints(self): """ Returns: int: Number of joints owned by this articulation """ if self.initialized: num = len(self._joints) else: # Manually iterate over all links and check for any joints that are not fixed joints! num = 0 children = list(self.prim.GetChildren()) while children: child_prim = children.pop() children.extend(child_prim.GetChildren()) prim_type = child_prim.GetPrimTypeInfo().GetTypeName().lower() if "joint" in prim_type and "fixed" not in prim_type: num += 1 return num @cached_property def n_fixed_joints(self): """ Returns: int: Number of fixed joints owned by this articulation """ # Manually iterate over all links and check for any joints that are not fixed joints! num = 0 children = list(self.prim.GetChildren()) while children: child_prim = children.pop() children.extend(child_prim.GetChildren()) prim_type = child_prim.GetPrimTypeInfo().GetTypeName().lower() if "joint" in prim_type and "fixed" in prim_type: num += 1 return num @property def n_links(self): """ Returns: int: Number of links owned by this articulation """ return len(list(self._links.keys())) @property def joints(self): """ Returns: dict: Dictionary mapping joint names (str) to joint prims (JointPrim) owned by this articulation """ return self._joints @property def links(self): """ Returns: dict: Dictionary mapping link names (str) to link prims (RigidPrim) owned by this articulation """ return self._links @cached_property def has_attachment_points(self): """ Returns: bool: Whether this object has any attachment points """ children = list(self.prim.GetChildren()) while children: child_prim = children.pop() children.extend(child_prim.GetChildren()) if "attachment" in child_prim.GetName(): return True return False def _compute_articulation_tree(self): """ Get a graph of the articulation tree, where nodes are link names and edges correspond to joint names, where the joint name is accessible on the `joint_name` data field of the edge, and the joint type on the `joint_type` field. """ G = nx.DiGraph() rename_later = {} # Add the links for link_name, link in self.links.items(): prim_path = link.prim_path G.add_node(prim_path) rename_later[prim_path] = link_name # Add the joints children = list(self.prim.GetChildren()) while children: child_prim = children.pop() children.extend(child_prim.GetChildren()) prim_type = child_prim.GetPrimTypeInfo().GetTypeName() if "Joint" in prim_type: # Get body 0 body0_targets = child_prim.GetRelationship("physics:body0").GetTargets() if not body0_targets: continue body0 = str(body0_targets[0]) # Get body 1 body1_targets = child_prim.GetRelationship("physics:body1").GetTargets() if not body1_targets: continue body1 = str(body1_targets[0]) # Assert both bodies in links if body0 not in G.nodes or body1 not in G.nodes: continue # Add the joint joint_type = JointType.get_type(prim_type.split("Physics")[-1]) G.add_edge(body0, body1, joint_name=child_prim.GetName(), joint_type=joint_type) # Relabel nodes to use link name instead of prim path nx.relabel_nodes(G, rename_later, copy=False) # Assert all nodes have in-degree of 1 except root in_degrees = {node: G.in_degree(node) for node in G.nodes} assert in_degrees[self.root_link_name] == 0, "Root link should have in-degree of 0!" assert all([in_degrees[node] == 1 for node in G.nodes if node != self.root_link_name]), \ "All non-root links should have in-degree of 1!" self._articulation_tree = G @property def articulation_tree(self): return self._articulation_tree @property def materials(self): """ Loop through each link and their visual meshes to gather all the materials that belong to this object Returns: set of MaterialPrim: a set of MaterialPrim that belongs to this object """ return self._materials @property def visual_only(self): """ Returns: bool: Whether this link is a visual-only link (i.e.: no gravity or collisions applied) """ return self._visual_only @visual_only.setter def visual_only(self, val): """ Sets the visaul only state of this link Args: val (bool): Whether this link should be a visual-only link (i.e.: no gravity or collisions applied) """ # Iterate over all owned links and set their respective visual-only properties accordingly for link in self._links.values(): link.visual_only = val # Also set the internal value self._visual_only = val def contact_list(self): """ Get list of all current contacts with this object prim Returns: list of CsRawData: raw contact info for this rigid body """ contacts = [] for link in self._links.values(): contacts += link.contact_list() return contacts def enable_gravity(self) -> None: """ Enables gravity for this entity """ for link in self._links.values(): link.enable_gravity() def disable_gravity(self) -> None: """ Disables gravity for this entity """ for link in self._links.values(): link.disable_gravity() def reset(self): """ Resets this entity to some default, pre-defined state """ # Make sure simulation is playing, otherwise, we cannot reset because physx requires active running # simulation in order to set joints assert og.sim.is_playing(), "Simulator must be playing in order to reset controllable object's joints!" # If this is a cloth, reset the particle positions if self.prim_type == PrimType.CLOTH: self.root_link.reset() # Otherwise, set all joints to have 0 position and 0 velocity if this object has joints elif self.n_joints > 0: self.set_joint_positions(positions=np.zeros(self.n_dof), drive=False) self.set_joint_velocities(velocities=np.zeros(self.n_dof), drive=False) def set_joint_positions(self, positions, indices=None, normalized=False, drive=False): """ Set the joint positions (both actual value and target values) in simulation. Note: only works if the simulator is actively running! Args: positions (np.ndarray): positions to set. This should be n-DOF length if all joints are being set, or k-length (k < n) if specific indices are being set. In this case, the length of @positions must be the same length as @indices! indices (None or k-array): If specified, should be k (k < n) length array of specific DOF positions to set. Default is None, which assumes that all joints are being set. normalized (bool): Whether the inputted joint positions should be interpreted as normalized values. Default is False drive (bool): Whether the positions being set are values that should be driven naturally by this entity's motors or manual values to immediately set. Default is False, corresponding to an instantaneous setting of the positions """ # Run sanity checks -- make sure that we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" # Possibly de-normalize the inputs if normalized: positions = self._denormalize_positions(positions=positions, indices=indices) # Set the DOF states if drive: self._articulation_view.set_joint_position_targets(positions, joint_indices=indices) else: self._articulation_view.set_joint_positions(positions, joint_indices=indices) PoseAPI.invalidate() def set_joint_velocities(self, velocities, indices=None, normalized=False, drive=False): """ Set the joint velocities (both actual value and target values) in simulation. Note: only works if the simulator is actively running! Args: velocities (np.ndarray): velocities to set. This should be n-DOF length if all joints are being set, or k-length (k < n) if specific indices are being set. In this case, the length of @velocities must be the same length as @indices! indices (None or k-array): If specified, should be k (k < n) length array of specific DOF velocities to set. Default is None, which assumes that all joints are being set. normalized (bool): Whether the inputted joint velocities should be interpreted as normalized values. Default is False drive (bool): Whether the velocities being set are values that should be driven naturally by this entity's motors or manual values to immediately set. Default is False, corresponding to an instantaneous setting of the velocities """ # Run sanity checks -- make sure we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" # Possibly de-normalize the inputs if normalized: velocities = self._denormalize_velocities(velocities=velocities, indices=indices) # Set the DOF states if drive: self._articulation_view.set_joint_velocity_targets(velocities, joint_indices=indices) else: self._articulation_view.set_joint_velocities(velocities, joint_indices=indices) def set_joint_efforts(self, efforts, indices=None, normalized=False): """ Set the joint efforts (both actual value and target values) in simulation. Note: only works if the simulator is actively running! Args: efforts (np.ndarray): efforts to set. This should be n-DOF length if all joints are being set, or k-length (k < n) if specific indices are being set. In this case, the length of @efforts must be the same length as @indices! indices (None or k-array): If specified, should be k (k < n) length array of specific DOF efforts to set. Default is None, which assumes that all joints are being set. normalized (bool): Whether the inputted joint efforts should be interpreted as normalized values. Default is False """ # Run sanity checks -- make sure we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" # Possibly de-normalize the inputs if normalized: efforts = self._denormalize_efforts(efforts=efforts, indices=indices) # Set the DOF states self._articulation_view.set_joint_efforts(efforts, joint_indices=indices) def _normalize_positions(self, positions, indices=None): """ Normalizes raw joint positions @positions Args: positions (n- or k-array): n-DOF raw positions to normalize, or k (k < n) specific positions to normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific positions to normalize. Default is None, which assumes the positions correspond to all DOF being normalized. Returns: n- or k-array: normalized positions in range [-1, 1] for the specified DOFs """ low, high = self.joint_lower_limits, self.joint_upper_limits mean = (low + high) / 2.0 magnitude = (high - low) / 2.0 return (positions - mean) / magnitude if indices is None else (positions - mean[indices]) / magnitude[indices] def _denormalize_positions(self, positions, indices=None): """ De-normalizes joint positions @positions Args: positions (n- or k-array): n-DOF normalized positions or k (k < n) specific positions in range [-1, 1] to de-normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific positions to de-normalize. Default is None, which assumes the positions correspond to all DOF being de-normalized. Returns: n- or k-array: de-normalized positions for the specified DOFs """ low, high = self.joint_lower_limits, self.joint_upper_limits mean = (low + high) / 2.0 magnitude = (high - low) / 2.0 return positions * magnitude + mean if indices is None else positions * magnitude[indices] + mean[indices] def _normalize_velocities(self, velocities, indices=None): """ Normalizes raw joint velocities @velocities Args: velocities (n- or k-array): n-DOF raw velocities to normalize, or k (k < n) specific velocities to normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific velocities to normalize. Default is None, which assumes the velocities correspond to all DOF being normalized. Returns: n- or k-array: normalized velocities in range [-1, 1] for the specified DOFs """ return velocities / self.max_joint_velocities if indices is None else \ velocities / self.max_joint_velocities[indices] def _denormalize_velocities(self, velocities, indices=None): """ De-normalizes joint velocities @velocities Args: velocities (n- or k-array): n-DOF normalized velocities or k (k < n) specific velocities in range [-1, 1] to de-normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific velocities to de-normalize. Default is None, which assumes the velocities correspond to all DOF being de-normalized. Returns: n- or k-array: de-normalized velocities for the specified DOFs """ return velocities * self.max_joint_velocities if indices is None else \ velocities * self.max_joint_velocities[indices] def _normalize_efforts(self, efforts, indices=None): """ Normalizes raw joint efforts @efforts Args: efforts (n- or k-array): n-DOF raw efforts to normalize, or k (k < n) specific efforts to normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific efforts to normalize. Default is None, which assumes the efforts correspond to all DOF being normalized. Returns: n- or k-array: normalized efforts in range [-1, 1] for the specified DOFs """ return efforts / self.max_joint_efforts if indices is None else efforts / self.max_joint_efforts[indices] def _denormalize_efforts(self, efforts, indices=None): """ De-normalizes joint efforts @efforts Args: efforts (n- or k-array): n-DOF normalized efforts or k (k < n) specific efforts in range [-1, 1] to de-normalize. In the latter case, @indices should be specified indices (None or k-array): If specified, should be k (k < n) DOF indices corresponding to the specific efforts to de-normalize. Default is None, which assumes the efforts correspond to all DOF being de-normalized. Returns: n- or k-array: de-normalized efforts for the specified DOFs """ return efforts * self.max_joint_efforts if indices is None else efforts * self.max_joint_efforts[indices] def update_handles(self): """ Updates all internal handles for this prim, in case they change since initialization """ assert og.sim.is_playing(), "Simulator must be playing if updating handles!" # Reinitialize the articulation view if self._articulation_view_direct is not None: self._articulation_view_direct.initialize(og.sim.physics_sim_view) # Update all links and joints as well for link in self._links.values(): if not link.initialized: link.initialize() link.update_handles() for joint in self._joints.values(): if not joint.initialized: joint.initialize() joint.update_handles() def get_joint_positions(self, normalized=False): """ Grabs this entity's joint positions Args: normalized (bool): Whether returned values should be normalized to range [-1, 1] based on limits or not. Returns: n-array: n-DOF length array of positions """ # Run sanity checks -- make sure we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" joint_positions = self._articulation_view.get_joint_positions().reshape(self.n_dof) # Possibly normalize values when returning return self._normalize_positions(positions=joint_positions) if normalized else joint_positions def get_joint_velocities(self, normalized=False): """ Grabs this entity's joint velocities Args: normalized (bool): Whether returned values should be normalized to range [-1, 1] based on limits or not. Returns: n-array: n-DOF length array of velocities """ # Run sanity checks -- make sure we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" joint_velocities = self._articulation_view.get_joint_velocities().reshape(self.n_dof) # Possibly normalize values when returning return self._normalize_velocities(velocities=joint_velocities) if normalized else joint_velocities def get_joint_efforts(self, normalized=False): """ Grabs this entity's joint efforts Args: normalized (bool): Whether returned values should be normalized to range [-1, 1] based on limits or not. Returns: n-array: n-DOF length array of efforts """ # Run sanity checks -- make sure we are articulated assert self.n_joints > 0, "Tried to call method not intended for entity prim with no joints!" joint_efforts = self._articulation_view.get_applied_joint_efforts().reshape(self.n_dof) # Possibly normalize values when returning return self._normalize_efforts(efforts=joint_efforts) if normalized else joint_efforts def set_linear_velocity(self, velocity: np.ndarray): """ Sets the linear velocity of the root prim in stage. Args: velocity (np.ndarray): linear velocity to set the rigid prim to, in the world frame. Shape (3,). """ self.root_link.set_linear_velocity(velocity) def get_linear_velocity(self): """ Gets the linear velocity of the root prim in stage. Returns: velocity (np.ndarray): linear velocity to set the rigid prim to, in the world frame. Shape (3,). """ return self.root_link.get_linear_velocity() def set_angular_velocity(self, velocity): """ Sets the angular velocity of the root prim in stage. Args: velocity (np.ndarray): angular velocity to set the rigid prim to, in the world frame. Shape (3,). """ self.root_link.set_angular_velocity(velocity) def get_angular_velocity(self): """Gets the angular velocity of the root prim in stage. Returns: velocity (np.ndarray): angular velocity to set the rigid prim to, in the world frame. Shape (3,). """ return self.root_link.get_angular_velocity() def get_relative_linear_velocity(self): """ Returns: 3-array: (x,y,z) Linear velocity of root link in its own frame """ return T.quat2mat(self.get_orientation()).T @ self.get_linear_velocity() def get_relative_angular_velocity(self): """ Returns: 3-array: (ax,ay,az) angular velocity of root link in its own frame """ return T.quat2mat(self.get_orientation()).T @ self.get_angular_velocity() def set_position_orientation(self, position=None, orientation=None): # If kinematic only, clear cache for the root link if self.kinematic_only: self.root_link.clear_kinematic_only_cache() # If the simulation isn't running, we should set this prim's XForm (object-level) properties directly if og.sim.is_stopped(): XFormPrim.set_position_orientation(self, position=position, orientation=orientation) # Delegate to RigidPrim if we are not articulated elif self._articulation_view is None: self.root_link.set_position_orientation(position=position, orientation=orientation) # Sim is running and articulation view exists, so use that physx API backend else: if position is not None: position = np.asarray(position)[None, :] if orientation is not None: orientation = np.asarray(orientation)[None, [3, 0, 1, 2]] self._articulation_view.set_world_poses(position, orientation) PoseAPI.invalidate() def get_position_orientation(self): # If the simulation isn't running, we should read from this prim's XForm (object-level) properties directly if og.sim.is_stopped(): return XFormPrim.get_position_orientation(self) # Delegate to RigidPrim if we are not articulated elif self._articulation_view is None: return self.root_link.get_position_orientation() # Sim is running and articulation view exists, so use that physx API backend else: positions, orientations = self._articulation_view.get_world_poses() return positions[0], orientations[0][[1, 2, 3, 0]] def set_local_pose(self, position=None, orientation=None): # If kinematic only, clear cache for the root link if self.kinematic_only: self.root_link.clear_kinematic_only_cache() # If the simulation isn't running, we should set this prim's XForm (object-level) properties directly if og.sim.is_stopped(): return XFormPrim.set_local_pose(self, position, orientation) # Delegate to RigidPrim if we are not articulated elif self._articulation_view is None: self.root_link.set_local_pose(position=position, orientation=orientation) # Sim is running and articulation view exists, so use that physx API backend else: if position is not None: position = np.asarray(position)[None, :] if orientation is not None: orientation = np.asarray(orientation)[None, [3, 0, 1, 2]] self._articulation_view.set_local_poses(position, orientation) PoseAPI.invalidate() def get_local_pose(self): # If the simulation isn't running, we should read from this prim's XForm (object-level) properties directly if og.sim.is_stopped(): return XFormPrim.get_local_pose(self) # Delegate to RigidPrim if we are not articulated elif self._articulation_view is None: return self.root_link.get_local_pose() # Sim is running and articulation view exists, so use that physx API backend else: positions, orientations = self._articulation_view.get_local_poses() return positions[0], orientations[0][[1, 2, 3, 0]] # TODO: Is the omni joint damping (used for driving motors) same as dissipative joint damping (what we had in pb)? @property def joint_damping(self): """ Returns: n-array: joint damping values for this prim """ return np.concatenate([joint.damping for joint in self._joints.values()]) @property def joint_lower_limits(self): """ Returns: n-array: minimum values for this robot's joints. If joint does not have a range, returns -1000 for that joint """ return np.array([joint.lower_limit for joint in self._joints.values()]) @property def joint_upper_limits(self): """ Returns: n-array: maximum values for this robot's joints. If joint does not have a range, returns 1000 for that joint """ return np.array([joint.upper_limit for joint in self._joints.values()]) @property def joint_range(self): """ Returns: n-array: joint range values for this robot's joints """ return self.joint_upper_limits - self.joint_lower_limits @property def max_joint_velocities(self): """ Returns: n-array: maximum velocities for this robot's joints """ return np.array([joint.max_velocity for joint in self._joints.values()]) @property def max_joint_efforts(self): """ Returns: n-array: maximum efforts for this robot's joints """ return np.array([joint.max_effort for joint in self._joints.values()]) @property def joint_position_limits(self): """ Returns: 2-tuple: - n-array: min joint position limits, where each is an n-DOF length array - n-array: max joint position limits, where each is an n-DOF length array """ return self.joint_lower_limits, self.joint_upper_limits @property def joint_velocity_limits(self): """ Returns: 2-tuple: - n-array: min joint velocity limits, where each is an n-DOF length array - n-array: max joint velocity limits, where each is an n-DOF length array """ return -self.max_joint_velocities, self.max_joint_velocities @property def joint_effort_limits(self): """ Returns: 2-tuple: - n-array: min joint effort limits, where each is an n-DOF length array - n-array: max joint effort limits, where each is an n-DOF length array """ return -self.max_joint_efforts, self.max_joint_efforts @property def joint_at_limits(self): """ Returns: n-array: n-DOF length array specifying whether joint is at its limit, with 1.0 --> at limit, otherwise 0.0 """ return 1.0 * (np.abs(self.get_joint_positions(normalized=True)) > 0.99) @property def joint_has_limits(self): """ Returns: n-array: n-DOF length array specifying whether joint has a limit or not """ return np.array([j.has_limit for j in self._joints.values()]) @property def disabled_collision_link_names(self): """ Returns: list of str: List of link names for this entity whose collisions should be globally disabled """ return [] @property def disabled_collision_pairs(self): """ Returns: list of (str, str): List of rigid body collision pairs to disable within this object prim. Default is an empty list (no pairs) """ return [] @property def scale(self): # For the EntityPrim (object) level, @self.scale represents the scale with respect to the original scale of # the link (RigidPrim or ClothPrim), which might not be uniform ([1, 1, 1]) itself. return self.root_link.scale / self.root_link.original_scale @scale.setter def scale(self, scale): # For the EntityPrim (object) level, @self.scale represents the scale with respect to the original scale of # the link (RigidPrim or ClothPrim), which might not be uniform ([1, 1, 1]) itself. # We iterate over all rigid bodies owned by this object prim and set their individual scales # We do this because omniverse cannot scale orientation of an articulated prim, so we get mesh mismatches as # they rotate in the world. for link in self._links.values(): link.scale = scale * link.original_scale @property def solver_position_iteration_count(self): """ Returns: int: How many position iterations to take per physics step by the physx solver """ return lazy.omni.isaac.core.utils.prims.get_prim_property(self.articulation_root_path, "physxArticulation:solverPositionIterationCount") if \ self.articulated else self.root_link.solver_position_iteration_count @solver_position_iteration_count.setter def solver_position_iteration_count(self, count): """ Sets how many position iterations to take per physics step by the physx solver Args: count (int): How many position iterations to take per physics step by the physx solver """ if self.articulated: lazy.omni.isaac.core.utils.prims.set_prim_property(self.articulation_root_path, "physxArticulation:solverPositionIterationCount", count) else: for link in self._links.values(): link.solver_position_iteration_count = count @property def solver_velocity_iteration_count(self): """ Returns: int: How many velocity iterations to take per physics step by the physx solver """ return lazy.omni.isaac.core.utils.prims.get_prim_property(self.articulation_root_path, "physxArticulation:solverVelocityIterationCount") if \ self.articulated else self.root_link.solver_velocity_iteration_count @solver_velocity_iteration_count.setter def solver_velocity_iteration_count(self, count): """ Sets how many velocity iterations to take per physics step by the physx solver Args: count (int): How many velocity iterations to take per physics step by the physx solver """ if self.articulated: lazy.omni.isaac.core.utils.prims.set_prim_property(self.articulation_root_path, "physxArticulation:solverVelocityIterationCount", count) else: for link in self._links.values(): link.solver_velocity_iteration_count = count @property def stabilization_threshold(self): """ Returns: float: threshold for stabilizing this articulation """ return lazy.omni.isaac.core.utils.prims.get_prim_property(self.articulation_root_path, "physxArticulation:stabilizationThreshold") if \ self.articulated else self.root_link.stabilization_threshold @stabilization_threshold.setter def stabilization_threshold(self, threshold): """ Sets threshold for stabilizing this articulation Args: threshold (float): Stabilization threshold """ if self.articulated: lazy.omni.isaac.core.utils.prims.set_prim_property(self.articulation_root_path, "physxArticulation:stabilizationThreshold", threshold) else: for link in self._links.values(): link.stabilization_threshold = threshold @property def is_asleep(self): """ Returns: bool: whether this entity is asleep or not """ # If we're kinematic only, immediately return False since it doesn't follow the sleep / wake paradigm if self.kinematic_only: return False else: return og.sim.psi.is_sleeping(og.sim.stage_id, lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.articulation_root_path)) \ if self.articulated else self.root_link.is_asleep @property def sleep_threshold(self): """ Returns: float: threshold for sleeping this articulation """ return lazy.omni.isaac.core.utils.prims.get_prim_property(self.articulation_root_path, "physxArticulation:sleepThreshold") if \ self.articulated else self.root_link.sleep_threshold @sleep_threshold.setter def sleep_threshold(self, threshold): """ Sets threshold for sleeping this articulation Args: threshold (float): Sleeping threshold """ if self.articulated: lazy.omni.isaac.core.utils.prims.set_prim_property(self.articulation_root_path, "physxArticulation:sleepThreshold", threshold) else: for link in self._links.values(): link.sleep_threshold = threshold @property def self_collisions(self): """ Returns: bool: Whether self-collisions are enabled for this prim or not """ assert self.articulated, "Cannot get self-collision for non-articulated EntityPrim!" return lazy.omni.isaac.core.utils.prims.get_prim_property(self.articulation_root_path, "physxArticulation:enabledSelfCollisions") @self_collisions.setter def self_collisions(self, flag): """ Sets whether self-collisions are enabled for this prim or not Args: flag (bool): Whether self collisions are enabled for this prim or not """ assert self.articulated, "Cannot set self-collision for non-articulated EntityPrim!" lazy.omni.isaac.core.utils.prims.set_prim_property(self.articulation_root_path, "physxArticulation:enabledSelfCollisions", flag) @property def kinematic_only(self): """ Returns: bool: Whether this object is a kinematic-only object (otherwise, it is a rigid body). A kinematic-only object is not subject to simulator dynamics, and remains fixed unless the user explicitly sets the body's pose / velocities. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics/rigid-bodies.html?highlight=rigid%20body%20enabled#kinematic-rigid-bodies for more information """ return self.root_link.kinematic_only @property def aabb(self): # If we're a cloth prim type, we compute the bounding box from the limits of the particles. Otherwise, use the # normal method for computing bounding box if self._prim_type == PrimType.CLOTH: particle_contact_offset = self.root_link.cloth_system.particle_contact_offset particle_positions = self.root_link.compute_particle_positions() aabb_lo, aabb_hi = np.min(particle_positions, axis=0) - particle_contact_offset, \ np.max(particle_positions, axis=0) + particle_contact_offset else: points_world = [link.collision_boundary_points_world for link in self._links.values()] all_points = np.concatenate([p for p in points_world if p is not None], axis=0) aabb_lo = np.min(all_points, axis=0) aabb_hi = np.max(all_points, axis=0) return aabb_lo, aabb_hi @property def aabb_extent(self): """ Get this xform's actual bounding box extent Returns: 3-array: (x,y,z) bounding box """ min_corner, max_corner = self.aabb return max_corner - min_corner @property def aabb_center(self): """ Get this xform's actual bounding box center Returns: 3-array: (x,y,z) bounding box center """ min_corner, max_corner = self.aabb return (max_corner + min_corner) / 2.0 def get_coriolis_and_centrifugal_forces(self, clone=True): """ Args: clone (bool): Whether to clone the underlying tensor buffer or not Returns: n-array: (N,) shaped per-DOF coriolis and centrifugal forces experienced by the entity, if articulated """ assert self.articulated, "Cannot get coriolis and centrifugal forces for non-articulated entity!" return self._articulation_view.get_coriolis_and_centrifugal_forces(clone=clone).reshape(self.n_dof) def get_generalized_gravity_forces(self, clone=True): """ Args: clone (bool): Whether to clone the underlying tensor buffer or not Returns: n-array: (N, N) shaped per-DOF gravity forces, if articulated """ assert self.articulated, "Cannot get generalized gravity forces for non-articulated entity!" return self._articulation_view.get_generalized_gravity_forces(clone=clone).reshape(self.n_dof) def get_mass_matrix(self, clone=True): """ Args: clone (bool): Whether to clone the underlying tensor buffer or not Returns: n-array: (N, N) shaped per-DOF mass matrix, if articulated """ assert self.articulated, "Cannot get mass matrix for non-articulated entity!" return self._articulation_view.get_mass_matrices(clone=clone).reshape(self.n_dof, self.n_dof) def get_jacobian(self, clone=True): """ Args: clone (bool): Whether to clone the underlying tensor buffer or not Returns: n-array: (N_links - 1 [+ 1], 6, N_dof [+ 6]) shaped per-link jacobian, if articulated. Note that the first dimension is +1 and the final dimension is +6 if the entity does not have a fixed base (i.e.: there is an additional "floating" joint tying the robot to the world frame) """ assert self.articulated, "Cannot get jacobian for non-articulated entity!" return self._articulation_view.get_jacobians(clone=clone).squeeze(axis=0) def get_relative_jacobian(self, clone=True): """ Args: clone (bool): Whether to clone the underlying tensor buffer or not Returns: n-array: (N_links - 1 [+ 1], 6, N_dof [+ 6]) shaped per-link relative jacobian, if articulated (expressed in this entity's base frame). Note that the first dimension is +1 and the final dimension is +6 if the entity does not have a fixed base (i.e.: there is an additional "floating" joint tying the robot to the world frame) """ jac = self.get_jacobian(clone=clone) ori_t = T.quat2mat(self.get_orientation()).T.astype(np.float32) tf = np.zeros((1, 6, 6), dtype=np.float32) tf[:, :3, :3] = ori_t tf[:, 3:, 3:] = ori_t return tf @ jac def wake(self): """ Enable physics for this articulation """ if self.articulated: prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.prim_path) og.sim.psi.wake_up(og.sim.stage_id, prim_id) else: for link in self._links.values(): link.wake() def sleep(self): """ Disable physics for this articulation """ if self.articulated: prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.prim_path) og.sim.psi.put_to_sleep(og.sim.stage_id, prim_id) else: for link in self._links.values(): link.sleep() def keep_still(self): """ Zero out all velocities for this prim """ self.set_linear_velocity(velocity=np.zeros(3)) self.set_angular_velocity(velocity=np.zeros(3)) for joint in self._joints.values(): joint.keep_still() # Make sure object is awake self.wake() def create_attachment_point_link(self): """ Create a collision-free, invisible attachment point link for the cloth object, and create an attachment between the ClothPrim and this attachment point link (RigidPrim). One use case for this is that we can create a fixed joint between this link and the world to enable AG fo cloth. During simulation, this joint will move and match the robot gripper frame, which will then drive the cloth. """ assert self._prim_type == PrimType.CLOTH, "create_attachment_point_link should only be called for Cloth" link_name = "attachment_point" stage = lazy.omni.isaac.core.utils.stage.get_current_stage() link_prim = stage.DefinePrim(f"{self._prim_path}/{link_name}", "Xform") vis_prim = lazy.pxr.UsdGeom.Sphere.Define(stage, f"{self._prim_path}/{link_name}/visuals").GetPrim() col_prim = lazy.pxr.UsdGeom.Sphere.Define(stage, f"{self._prim_path}/{link_name}/collisions").GetPrim() # Set the radius to be 0.03m. In theory, we want this radius to be as small as possible. Otherwise, the cloth # dynamics will be unrealistic. However, in practice, if the radius is too small, the attachment becomes very # unstable. Empirically 0.03m works reasonably well. vis_prim.GetAttribute("radius").Set(0.03) col_prim.GetAttribute("radius").Set(0.03) # Need to sync the extents extent = vis_prim.GetAttribute("extent").Get() extent[0] = lazy.pxr.Gf.Vec3f(-0.03, -0.03, -0.03) extent[1] = lazy.pxr.Gf.Vec3f(0.03, 0.03, 0.03) vis_prim.GetAttribute("extent").Set(extent) col_prim.GetAttribute("extent").Set(extent) # Add collision API to collision geom lazy.pxr.UsdPhysics.CollisionAPI.Apply(col_prim) lazy.pxr.UsdPhysics.MeshCollisionAPI.Apply(col_prim) lazy.pxr.PhysxSchema.PhysxCollisionAPI.Apply(col_prim) # Create a attachment point link link = RigidPrim( prim_path=link_prim.GetPrimPath().__str__(), name=f"{self._name}:{link_name}", ) link.disable_collisions() # TODO (eric): Should we disable gravity for this link? # link.disable_gravity() link.visible = False # Set a very small mass link.mass = 1e-6 link.density = 0.0 self._links[link_name] = link # Create an attachment between the root link (ClothPrim) and the newly created attachment point link (RigidPrim) attachment_path = self.root_link.prim.GetPath().AppendElementString("attachment") lazy.omni.kit.commands.execute("CreatePhysicsAttachment", target_attachment_path=attachment_path, actor0_path=self.root_link.prim.GetPath(), actor1_path=link.prim.GetPath()) def _dump_state(self): # We don't call super, instead, this state is simply the root link state and all joint states state = dict(root_link=self.root_link._dump_state()) joint_state = dict() for prim_name, prim in self._joints.items(): joint_state[prim_name] = prim._dump_state() state["joints"] = joint_state return state def _load_state(self, state): # Load base link state and joint states self.root_link._load_state(state=state["root_link"]) for joint_name, joint_state in state["joints"].items(): self._joints[joint_name]._load_state(state=joint_state) # Make sure this object is awake self.wake() def _serialize(self, state): # We serialize by first flattening the root link state and then iterating over all joints and # adding them to the a flattened array state_flat = [self.root_link.serialize(state=state["root_link"])] if self.n_joints > 0: state_flat.append( np.concatenate( [prim.serialize(state=state["joints"][prim_name]) for prim_name, prim in self._joints.items()] ) ) return np.concatenate(state_flat).astype(float) def _deserialize(self, state): # We deserialize by first de-flattening the root link state and then iterating over all joints and # sequentially grabbing from the flattened state array, incrementing along the way idx = self.root_link.state_size state_dict = dict(root_link=self.root_link.deserialize(state=state[:idx])) joint_state_dict = dict() for prim_name, prim in self._joints.items(): joint_state_dict[prim_name] = prim.deserialize(state=state[idx:idx+prim.state_size]) idx += prim.state_size state_dict["joints"] = joint_state_dict return state_dict, idx def _create_prim_with_same_kwargs(self, prim_path, name, load_config): # Subclass must implement this method for duplication functionality raise NotImplementedError("Subclass must implement _create_prim_with_same_kwargs() to enable duplication " "functionality for EntityPrim!")
65,273
Python
42.285146
192
0.61563
StanfordVL/OmniGibson/omnigibson/prims/material_prim.py
import numpy as np import asyncio import os import omnigibson as og import omnigibson.lazy as lazy from omnigibson.utils.physx_utils import bind_material from omnigibson.prims.prim_base import BasePrim class MaterialPrim(BasePrim): """ Provides high level functions to deal with a material prim and its attributes/ properties. If there is a material prim present at the path, it will use it. Otherwise, a new material prim at the specified prim path will be created. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @prim_path -- it will be ignored if it already exists. Subclasses should define the exact keys expected for their class. For this material prim, the below values can be specified: mdl_name (None or str): If specified, should be the name of the mdl preset to load (including .mdl). None results in default, "OmniPBR.mdl" mtl_name (None or str): If specified, should be the name of the mtl preset to load. None results in default, "OmniPBR" """ # Persistent dictionary of materials, mapped from prim_path to MaterialPrim MATERIALS = dict() @classmethod def get_material(cls, name, prim_path, load_config=None): """ Get a material prim from the persistent dictionary of materials, or create a new one if it doesn't exist. Args: name (str): Name for the object. prim_path (str): prim path of the MaterialPrim. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @prim_path -- it will be ignored if it already exists. Returns: MaterialPrim: Material prim at the specified path """ # If the material already exists, return it if prim_path in cls.MATERIALS: return cls.MATERIALS[prim_path] # Otherwise, create a new one and return it new_material = cls(prim_path=prim_path, name=name, load_config=load_config) cls.MATERIALS[prim_path] = new_material return new_material def __init__( self, prim_path, name, load_config=None, ): # Other values that will be filled in at runtime self._shader = None # Users of this material: should be a set of BaseObject and BaseSystem self._users = set() # Run super init super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _load(self): # We create a new material at the specified path mtl_created = [] lazy.omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniPBR.mdl" if self._load_config.get("mdl_name", None) is None else self._load_config["mdl_name"], mtl_name="OmniPBR" if self._load_config.get("mtl_name", None) is None else self._load_config["mtl_name"], mtl_created_list=mtl_created, ) material_path = mtl_created[0] # Move prim to desired location lazy.omni.kit.commands.execute("MovePrim", path_from=material_path, path_to=self._prim_path) # Return generated material return lazy.omni.isaac.core.utils.prims.get_prim_at_path(self._prim_path) @classmethod def clear(cls): cls.MATERIALS = dict() @property def users(self): """ Users of this material: should be a list of BaseObject and BaseSystem """ return self._users def add_user(self, user): """ Adds a user to the material. This can be a BaseObject or BaseSystem. Args: user (BaseObject or BaseSystem): User to add to the material """ self._users.add(user) def remove_user(self, user): """ Removes a user from the material. This can be a BaseObject or BaseSystem. If there are no users left, the material will be removed. Args: user (BaseObject or BaseSystem): User to remove from the material """ self._users.remove(user) if len(self._users) == 0: self.remove() def remove(self): # Remove from global sensors dictionary self.MATERIALS.pop(self._prim_path) # Run super super().remove() def _post_load(self): # run super first super()._post_load() # Add this material to the list of global materials self.MATERIALS[self._prim_path] = self # Generate shader reference self._shader = lazy.omni.usd.get_shader_from_material(self._prim) def bind(self, target_prim_path): """ Bind this material to an arbitrary prim (usually a visual mesh prim) Args: target_prim_path (str): prim path of the Prim to bind to """ bind_material(prim_path=target_prim_path, material_path=self.prim_path) async def _load_mdl_parameters(self, render=True): """ Loads MDL parameters internally so they can be accessed by our class instance Args: render (bool): If True, takes a rendering step before loading the mdl parameters. Note that a rendering step is necessary to load these parameters, though if a step has already occurred externally, no additional rendering step is needed """ if render: og.sim.render() await lazy.omni.usd.get_context().load_mdl_parameters_for_prim_async(self._shader) def shader_force_populate(self, render=True): """ Force populate inputs and outputs of the shader Args: render (bool): If True, takes a rendering step before force populating the inputs and outputs. Note that a rendering step is necessary to load these I/Os, though if a step has already occurred externally, no additional rendering step is needed """ assert self._shader is not None asyncio.run(self._load_mdl_parameters(render=render)) def shader_update_asset_paths_with_root_path(self, root_path): """ Similar to @shader_update_asset_paths, except in this case, root_path is explicitly provided by the caller. Args: root_path (str): root to be pre-appended to the original asset paths """ for inp_name in self.shader_input_names_by_type("SdfAssetPath"): inp = self.get_input(inp_name) # If the input doesn't have any path, skip if inp is None: continue original_path = inp.path if inp.resolvedPath == "" else inp.resolvedPath # If the input has an empty path, skip if original_path == "": continue new_path = os.path.join(root_path, original_path) self.set_input(inp_name, new_path) def get_input(self, inp): """ Grabs the input with corresponding name @inp associated with this material and shader Args: inp (str): Name of the shader input whose value will be grabbed Returns: any: value of the requested @inp """ return self._shader.GetInput(inp).Get() def set_input(self, inp, val): """ Sets the input with corresponding name @inp associated with this material and shader Args: inp (str): Name of the shader input whose value will be set val (any): Value to set for the input. This should be the valid type for that attribute. """ # Make sure the input exists first, so we avoid segfaults with "invalid null prim" assert inp in self.shader_input_names, \ f"Got invalid shader input to set! Current inputs are: {self.shader_input_names}. Got: {inp}" self._shader.GetInput(inp).Set(val) @property def is_glass(self): """ Returns: bool: Whether this material is a glass material or not """ return "glass_color" in self.shader_input_names @property def shader(self): """ Returns: Usd.Shade: Shader associated with this material """ return self._shader @property def shader_input_names(self): """ Returns: set: All the shader input names associated with this material """ return {inp.GetBaseName() for inp in self._shader.GetInputs()} def shader_input_names_by_type(self, input_type): """ Args: input_type (str): input type Returns: set: All the shader input names associated with this material that match the given input type """ return {inp.GetBaseName() for inp in self._shader.GetInputs() if inp.GetTypeName().cppTypeName == input_type} @property def diffuse_color_constant(self): """ Returns: 3-array: this material's applied (R,G,B) color """ return np.array(self.get_input(inp="diffuse_color_constant")) @diffuse_color_constant.setter def diffuse_color_constant(self, color): """ Args: color (3-array): this material's applied (R,G,B) color """ self.set_input(inp="diffuse_color_constant", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def diffuse_texture(self): """ Returns: str: this material's applied diffuse_texture filepath """ return self.get_input(inp="diffuse_texture").resolvedPath @diffuse_texture.setter def diffuse_texture(self, fpath): """ Args: str: this material's applied diffuse_texture filepath """ self.set_input(inp="diffuse_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def albedo_desaturation(self): """ Returns: float: this material's applied albedo_desaturation """ return self.get_input(inp="albedo_desaturation") @albedo_desaturation.setter def albedo_desaturation(self, desaturation): """ Args: desaturation (float): this material's applied albedo_desaturation """ self.set_input(inp="albedo_desaturation", val=desaturation) @property def albedo_add(self): """ Returns: float: this material's applied albedo_add """ return self.get_input(inp="albedo_add") @albedo_add.setter def albedo_add(self, add): """ Args: add (float): this material's applied albedo_add """ self.set_input(inp="albedo_add", val=add) @property def albedo_brightness(self): """ Returns: float: this material's applied albedo_brightness """ return self.get_input(inp="albedo_brightness") @albedo_brightness.setter def albedo_brightness(self, brightness): """ Args: brightness (float): this material's applied albedo_brightness """ self.set_input(inp="albedo_brightness", val=brightness) @property def diffuse_tint(self): """ Returns: 3-array: this material's applied (R,G,B) diffuse_tint """ return np.array(self.get_input(inp="diffuse_tint")) @diffuse_tint.setter def diffuse_tint(self, color): """ Args: color (3-array): this material's applied (R,G,B) diffuse_tint """ self.set_input(inp="diffuse_tint", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def reflection_roughness_constant(self): """ Returns: float: this material's applied reflection_roughness_constant """ return self.get_input(inp="reflection_roughness_constant") @reflection_roughness_constant.setter def reflection_roughness_constant(self, roughness): """ Args: roughness (float): this material's applied reflection_roughness_constant """ self.set_input(inp="reflection_roughness_constant", val=roughness) @property def reflection_roughness_texture_influence(self): """ Returns: float: this material's applied reflection_roughness_texture_influence """ return self.get_input(inp="reflection_roughness_texture_influence") @reflection_roughness_texture_influence.setter def reflection_roughness_texture_influence(self, prop): """ Args: prop (float): this material's applied reflection_roughness_texture_influence proportion """ self.set_input(inp="reflection_roughness_texture_influence", val=prop) @property def reflectionroughness_texture(self): """ Returns: None or str: this material's applied reflectionroughness_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="reflectionroughness_texture") return None if inp is None else inp.resolvedPath @reflectionroughness_texture.setter def reflectionroughness_texture(self, fpath): """ Args: fpath (str): this material's applied reflectionroughness_texture fpath """ self.set_input(inp="reflectionroughness_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def metallic_constant(self): """ Returns: float: this material's applied metallic_constant """ return self.get_input(inp="metallic_constant") @metallic_constant.setter def metallic_constant(self, constant): """ Args: constant (float): this material's applied metallic_constant """ self.set_input(inp="metallic_constant", val=constant) @property def metallic_texture_influence(self): """ Returns: float: this material's applied metallic_texture_influence """ return self.get_input(inp="metallic_texture_influence") @metallic_texture_influence.setter def metallic_texture_influence(self, prop): """ Args: prop (float): this material's applied metallic_texture_influence """ self.set_input(inp="metallic_texture_influence", val=prop) @property def metallic_texture(self): """ Returns: None or str: this material's applied metallic_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="metallic_texture") return None if inp is None else inp.resolvedPath @metallic_texture.setter def metallic_texture(self, fpath): """ Args: fpath (str): this material's applied metallic_texture fpath """ self.set_input(inp="metallic_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def specular_level(self): """ Returns: float: this material's applied specular_level """ return self.get_input(inp="specular_level") @specular_level.setter def specular_level(self, level): """ Args: level (float): this material's applied specular_level """ self.set_input(inp="specular_level", val=level) @property def enable_ORM_texture(self): """ Returns: bool: this material's applied enable_ORM_texture """ return self.get_input(inp="enable_ORM_texture") @enable_ORM_texture.setter def enable_ORM_texture(self, enabled): """ Args: enabled (bool): this material's applied enable_ORM_texture """ self.set_input(inp="enable_ORM_texture", val=enabled) @property def ORM_texture(self): """ Returns: None or str: this material's applied ORM_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="ORM_texture") return None if inp is None else inp.resolvedPath @ORM_texture.setter def ORM_texture(self, fpath): """ Args: fpath (str): this material's applied ORM_texture fpath """ self.set_input(inp="ORM_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def ao_to_diffuse(self): """ Returns: float: this material's applied ao_to_diffuse """ return self.get_input(inp="ao_to_diffuse") @ao_to_diffuse.setter def ao_to_diffuse(self, val): """ Args: val (float): this material's applied ao_to_diffuse """ self.set_input(inp="ao_to_diffuse", val=val) @property def ao_texture(self): """ Returns: None or str: this material's applied ao_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="ao_texture") return None if inp is None else inp.resolvedPath @ao_texture.setter def ao_texture(self, fpath): """ Args: fpath (str): this material's applied ao_texture fpath """ self.set_input(inp="ao_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def enable_emission(self): """ Returns: bool: this material's applied enable_emission """ return self.get_input(inp="enable_emission") @enable_emission.setter def enable_emission(self, enabled): """ Args: enabled (bool): this material's applied enable_emission """ self.set_input(inp="enable_emission", val=enabled) @property def emissive_color(self): """ Returns: 3-array: this material's applied (R,G,B) emissive_color """ return np.array(self.get_input(inp="emissive_color")) @emissive_color.setter def emissive_color(self, color): """ Args: color (3-array): this material's applied emissive_color """ self.set_input(inp="emissive_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def emissive_color_texture(self): """ Returns: None or str: this material's applied emissive_color_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="emissive_color_texture") return None if inp is None else inp.resolvedPath @emissive_color_texture.setter def emissive_color_texture(self, fpath): """ Args: fpath (str): this material's applied emissive_color_texture fpath """ self.set_input(inp="emissive_color_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def emissive_mask_texture(self): """ Returns: None or str: this material's applied emissive_mask_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="emissive_mask_texture") return None if inp is None else inp.resolvedPath @emissive_mask_texture.setter def emissive_mask_texture(self, fpath): """ Args: fpath (str): this material's applied emissive_mask_texture fpath """ self.set_input(inp="emissive_mask_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def emissive_intensity(self): """ Returns: float: this material's applied emissive_intensity """ return self.get_input(inp="emissive_intensity") @emissive_intensity.setter def emissive_intensity(self, intensity): """ Args: intensity (float): this material's applied emissive_intensity """ self.set_input(inp="emissive_intensity", val=intensity) @property def enable_opacity(self): """ Returns: bool: this material's applied enable_opacity """ return self.get_input(inp="enable_opacity") @enable_opacity.setter def enable_opacity(self, enabled): """ Args: enabled (bool): this material's applied enable_opacity """ self.set_input(inp="enable_opacity", val=enabled) @property def enable_opacity_texture(self): """ Returns: bool: this material's applied enable_opacity_texture """ return self.get_input(inp="enable_opacity_texture") @enable_opacity_texture.setter def enable_opacity_texture(self, enabled): """ Args: enabled (bool): this material's applied enable_opacity_texture """ self.set_input(inp="enable_opacity_texture", val=enabled) @property def opacity_constant(self): """ Returns: float: this material's applied opacity_constant """ return self.get_input(inp="opacity_constant") @opacity_constant.setter def opacity_constant(self, constant): """ Args: constant (float): this material's applied opacity_constant """ self.set_input(inp="opacity_constant", val=constant) @property def opacity_texture(self): """ Returns: None or str: this material's applied opacity_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="opacity_texture") return None if inp is None else inp.resolvedPath @opacity_texture.setter def opacity_texture(self, fpath): """ Args: fpath (str): this material's applied opacity_texture fpath """ self.set_input(inp="opacity_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def opacity_mode(self): """ Returns: int: this material's applied opacity_mode """ return self.get_input(inp="opacity_mode") @opacity_mode.setter def opacity_mode(self, mode): """ Args: mode (int): this material's applied opacity_mode """ self.set_input(inp="opacity_mode", val=mode) @property def opacity_threshold(self): """ Returns: float: this material's applied opacity_threshold """ return self.get_input(inp="opacity_threshold") @opacity_threshold.setter def opacity_threshold(self, threshold): """ Args: threshold (float): this material's applied opacity_threshold """ self.set_input(inp="opacity_threshold", val=threshold) @property def bump_factor(self): """ Returns: float: this material's applied bump_factor """ return self.get_input(inp="bump_factor") @bump_factor.setter def bump_factor(self, factor): """ Args: factor (float): this material's applied bump_factor """ self.set_input(inp="bump_factor", val=factor) @property def normalmap_texture(self): """ Returns: None or str: this material's applied normalmap_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="normalmap_texture") return None if inp is None else inp.resolvedPath @normalmap_texture.setter def normalmap_texture(self, fpath): """ Args: fpath (str): this material's applied normalmap_texture fpath """ self.set_input(inp="normalmap_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def detail_bump_factor(self): """ Returns: float: this material's applied detail_bump_factor """ return self.get_input(inp="detail_bump_factor") @detail_bump_factor.setter def detail_bump_factor(self, factor): """ Args: factor (float): this material's applied detail_bump_factor """ self.set_input(inp="detail_bump_factor", val=factor) @property def detail_normalmap_texture(self): """ Returns: None or str: this material's applied detail_normalmap_texture fpath if there is a texture applied, else None """ inp = self.get_input(inp="detail_normalmap_texture") return None if inp is None else inp.resolvedPath @detail_normalmap_texture.setter def detail_normalmap_texture(self, fpath): """ Args: fpath (str): this material's applied detail_normalmap_texture fpath """ self.set_input(inp="detail_normalmap_texture", val=lazy.pxr.Sdf.AssetPath(fpath)) @property def flip_tangent_u(self): """ Returns: bool: this material's applied flip_tangent_u """ return self.get_input(inp="flip_tangent_u") @flip_tangent_u.setter def flip_tangent_u(self, flipped): """ Args: flipped (bool): this material's applied flip_tangent_u """ self.set_input(inp="flip_tangent_u", val=flipped) @property def flip_tangent_v(self): """ Returns: bool: this material's applied flip_tangent_v """ return self.get_input(inp="flip_tangent_v") @flip_tangent_v.setter def flip_tangent_v(self, flipped): """ Args: flipped (bool): this material's applied flip_tangent_v """ self.set_input(inp="flip_tangent_v", val=flipped) @property def project_uvw(self): """ Returns: bool: this material's applied project_uvw """ return self.get_input(inp="project_uvw") @project_uvw.setter def project_uvw(self, projected): """ Args: projected (bool): this material's applied project_uvw """ self.set_input(inp="project_uvw", val=projected) @property def world_or_object(self): """ Returns: bool: this material's applied world_or_object """ return self.get_input(inp="world_or_object") @world_or_object.setter def world_or_object(self, val): """ Args: val (bool): this material's applied world_or_object """ self.set_input(inp="world_or_object", val=val) @property def uv_space_index(self): """ Returns: int: this material's applied uv_space_index """ return self.get_input(inp="uv_space_index") @uv_space_index.setter def uv_space_index(self, index): """ Args: index (int): this material's applied uv_space_index """ self.set_input(inp="uv_space_index", val=index) @property def texture_translate(self): """ Returns: 2-array: this material's applied texture_translate """ return np.array(self.get_input(inp="texture_translate")) @texture_translate.setter def texture_translate(self, translate): """ Args: translate (2-array): this material's applied (x,y) texture_translate """ self.set_input(inp="texture_translate", val=lazy.pxr.Gf.Vec2f(*np.array(translate, dtype=float))) @property def texture_rotate(self): """ Returns: float: this material's applied texture_rotate """ return self.get_input(inp="texture_rotate") @texture_rotate.setter def texture_rotate(self, rotate): """ Args: rotate (float): this material's applied texture_rotate """ self.set_input(inp="texture_rotate", val=rotate) @property def texture_scale(self): """ Returns: 2-array: this material's applied texture_scale """ return np.array(self.get_input(inp="texture_scale")) @texture_scale.setter def texture_scale(self, scale): """ Args: scale (2-array): this material's applied (x,y) texture_scale """ self.set_input(inp="texture_scale", val=lazy.pxr.Gf.Vec2f(*np.array(scale, dtype=float))) @property def detail_texture_translate(self): """ Returns: 2-array: this material's applied detail_texture_translate """ return np.array(self.get_input(inp="detail_texture_translate")) @detail_texture_translate.setter def detail_texture_translate(self, translate): """ Args: translate (2-array): this material's applied detail_texture_translate """ self.set_input(inp="detail_texture_translate", val=lazy.pxr.Gf.Vec2f(*np.array(translate, dtype=float))) @property def detail_texture_rotate(self): """ Returns: float: this material's applied detail_texture_rotate """ return self.get_input(inp="detail_texture_rotate") @detail_texture_rotate.setter def detail_texture_rotate(self, rotate): """ Args: rotate (float): this material's applied detail_texture_rotate """ self.set_input(inp="detail_texture_rotate", val=rotate) @property def detail_texture_scale(self): """ Returns: 2-array: this material's applied detail_texture_scale """ return np.array(self.get_input(inp="detail_texture_scale")) @detail_texture_scale.setter def detail_texture_scale(self, scale): """ Args: scale (2-array): this material's applied detail_texture_scale """ self.set_input(inp="detail_texture_scale", val=lazy.pxr.Gf.Vec2f(*np.array(scale, dtype=float))) @property def exclude_from_white_mode(self): """ Returns: bool: this material's applied excludeFromWhiteMode """ return self.get_input(inp="excludeFromWhiteMode") @exclude_from_white_mode.setter def exclude_from_white_mode(self, exclude): """ Args: exclude (bool): this material's applied excludeFromWhiteMode """ self.set_input(inp="excludeFromWhiteMode", val=exclude) @property def diffuse_reflection_weight(self): """ Returns: float: this material's applied diffuse_reflection_weight """ return self.get_input(inp="diffuse_reflection_weight") @diffuse_reflection_weight.setter def diffuse_reflection_weight(self, weight): """ Args: weight (float): this material's applied diffuse_reflection_weight """ self.set_input(inp="diffuse_reflection_weight", val=weight) @property def enable_specular_transmission(self): """ Returns: bool: this material's applied enable_specular_transmission """ return self.get_input(inp="enable_specular_transmission") @enable_specular_transmission.setter def enable_specular_transmission(self, enabled): """ Args: enabled (bool): this material's applied enable_specular_transmission """ self.set_input(inp="enable_specular_transmission", val=enabled) @property def specular_transmission_weight(self): """ Returns: float: this material's applied specular_transmission_weight """ return self.get_input(inp="specular_transmission_weight") @specular_transmission_weight.setter def specular_transmission_weight(self, weight): """ Args: weight (float): this material's applied specular_transmission_weight """ self.set_input(inp="specular_transmission_weight", val=weight) @property def diffuse_reflection_color(self): """ Returns: 3-array: this material's diffuse_reflection_color in (R,G,B) """ return np.array(self.get_input(inp="diffuse_reflection_color")) @diffuse_reflection_color.setter def diffuse_reflection_color(self, color): """ Args: color (3-array): this material's diffuse_reflection_color in (R,G,B) """ self.set_input(inp="diffuse_reflection_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def specular_reflection_color(self): """ Returns: 3-array: this material's specular_reflection_color in (R,G,B) """ return np.array(self.get_input(inp="specular_reflection_color")) @specular_reflection_color.setter def specular_reflection_color(self, color): """ Args: color (3-array): this material's specular_reflection_color in (R,G,B) """ self.set_input(inp="specular_reflection_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def specular_transmission_color(self): """ Returns: 3-array: this material's specular_transmission_color in (R,G,B) """ return np.array(self.get_input(inp="specular_transmission_color")) @specular_transmission_color.setter def specular_transmission_color(self, color): """ Args: color (3-array): this material's specular_transmission_color in (R,G,B) """ self.set_input(inp="specular_transmission_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def specular_transmission_scattering_color(self): """ Returns: 3-array: this material's specular_transmission_scattering_color in (R,G,B) """ return np.array(self.get_input(inp="specular_transmission_scattering_color")) @specular_transmission_scattering_color.setter def specular_transmission_scattering_color(self, color): """ Args: color (3-array): this material's specular_transmission_scattering_color in (R,G,B) """ self.set_input(inp="specular_transmission_scattering_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float))) @property def specular_reflection_ior_preset(self): """ Returns: int: this material's specular_reflection_ior_preset (int corresponding to enum) """ return self.get_input(inp="specular_reflection_ior_preset") @specular_reflection_ior_preset.setter def specular_reflection_ior_preset(self, preset): """ Args: preset (int): this material's specular_reflection_ior_preset (int corresponding to enum) """ self.set_input(inp="specular_reflection_ior_preset", val=preset) @property def enable_diffuse_transmission(self): """ Returns: float: this material's applied enable_diffuse_transmission """ return self.get_input(inp="enable_diffuse_transmission") @enable_diffuse_transmission.setter def enable_diffuse_transmission(self, val): """ Args: val (bool): this material's applied enable_diffuse_transmission """ self.set_input(inp="enable_diffuse_transmission", val=val) @property def glass_color(self): """ Returns: 3-array: this material's applied (R,G,B) glass color (only applicable to OmniGlass materials) """ assert self.is_glass, f"Tried to query glass_color shader input, " \ f"but material at {self.prim_path} is not an OmniGlass material!" return np.array(self.get_input(inp="glass_color")) @glass_color.setter def glass_color(self, color): """ Args: color (3-array): this material's applied (R,G,B) glass color (only applicable to OmniGlass materials) """ assert self.is_glass, f"Tried to set glass_color shader input, " \ f"but material at {self.prim_path} is not an OmniGlass material!" self.set_input(inp="glass_color", val=lazy.pxr.Gf.Vec3f(*np.array(color, dtype=float)))
36,853
Python
31.271454
122
0.595908
StanfordVL/OmniGibson/omnigibson/prims/__init__.py
from omnigibson.prims.prim_base import BasePrim from omnigibson.prims.cloth_prim import ClothPrim from omnigibson.prims.entity_prim import EntityPrim from omnigibson.prims.geom_prim import GeomPrim, VisualGeomPrim, CollisionGeomPrim, CollisionVisualGeomPrim from omnigibson.prims.joint_prim import JointPrim from omnigibson.prims.rigid_prim import RigidPrim from omnigibson.prims.xform_prim import XFormPrim
408
Python
50.124994
107
0.865196
StanfordVL/OmniGibson/omnigibson/prims/prim_base.py
from abc import ABC, abstractmethod import omnigibson as og import omnigibson.lazy as lazy from omnigibson.utils.python_utils import Serializable, UniquelyNamed, Recreatable from omnigibson.utils.sim_utils import check_deletable_prim from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) class BasePrim(Serializable, UniquelyNamed, Recreatable, ABC): """ Provides high level functions to deal with a basic prim and its attributes/ properties. If there is an Xform prim present at the path, it will use it. Otherwise, a new XForm prim at the specified prim path will be created. Note: the prim will have "xformOp:orient", "xformOp:translate" and "xformOp:scale" only post init, unless it is a non-root articulation link. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @prim_path -- it will be ignored if it already exists. Subclasses should define the exact keys expected for their class. """ def __init__( self, prim_path, name, load_config=None, ): self._prim_path = prim_path self._name = name self._load_config = dict() if load_config is None else load_config # Other values that will be filled in at runtime self._applied_visual_material = None self._loaded = False # Whether this prim exists in the stage or not self._initialized = False # Whether this prim has its internal handles / info initialized or not (occurs AFTER and INDEPENDENTLY from loading!) self._prim = None self._state_size = None self._n_duplicates = 0 # Simple counter for keeping track of duplicates for unique name indexing # Run super init super().__init__() # Run some post-loading steps if this prim has already been loaded if lazy.omni.isaac.core.utils.prims.is_prim_path_valid(prim_path=self._prim_path): log.debug(f"prim {name} already exists, skipping load") self._prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path=self._prim_path) self._loaded = True # Run post load. self._post_load() def _initialize(self): """ Initializes state of this object and sets up any references necessary post-loading. Should be implemented by sub-class for extended utility """ pass def initialize(self): """ Initializes state of this object and sets up any references necessary post-loading. Subclasses should implement / extend the _initialize() method. """ assert not self._initialized, \ f"Prim {self.name} at prim_path {self._prim_path} can only be initialized once! (It is already initialized)" self._initialize() # Cache state size self._state_size = len(self.dump_state(serialized=True)) self._initialized = True def load(self): """ Load this prim into omniverse, and return loaded prim reference. Returns: Usd.Prim: Prim object loaded into the simulator """ if self._loaded: raise ValueError(f"Cannot load prim {self.name} multiple times.") # Load prim self._prim = self._load() self._loaded = True # Run any post-loading logic self._post_load() return self._prim def _post_load(self): """ Any actions that should be taken (e.g.: modifying the object's properties such as scale, visibility, additional joints, etc.) that should be taken after loading the raw object into omniverse but BEFORE we initialize the object and grab its handles and internal references. By default, this is a no-op. """ pass def remove(self): """ Removes this prim from omniverse stage. """ if not self._loaded: raise ValueError("Cannot remove a prim that was never loaded.") # Remove prim if it can be deleted if check_deletable_prim(self.prim_path): lazy.omni.isaac.core.utils.prims.delete_prim(self.prim_path) # Also clear the name so we can reuse this later self.remove_names() def _load(self): """ Loads the raw prim into the simulator. Any post-processing should be done in @self._post_load() """ raise NotImplementedError() @property def loaded(self): return self._loaded @property def initialized(self): return self._initialized @property def state_size(self): # This is the cached value return self._state_size @property def prim_path(self): """ Returns: str: prim path in the stage. """ return self._prim_path @property def name(self): """ Returns: str: unique name assigned to this prim """ return self._name @property def prim(self): """ Returns: Usd.Prim: USD Prim object that this object holds. """ return self._prim @property def property_names(self): """ Returns: set of str: Set of property names that this prim has (e.g.: visibility, proxyPrim, etc.) """ return set(self._prim.GetPropertyNames()) @property def visible(self): """ Returns: bool: true if the prim is visible in stage. false otherwise. """ return lazy.pxr.UsdGeom.Imageable(self.prim).ComputeVisibility(lazy.pxr.Usd.TimeCode.Default()) != lazy.pxr.UsdGeom.Tokens.invisible @visible.setter def visible(self, visible): """ Sets the visibility of the prim in stage. Args: visible (bool): flag to set the visibility of the usd prim in stage. """ imageable = lazy.pxr.UsdGeom.Imageable(self.prim) if visible: imageable.MakeVisible() else: imageable.MakeInvisible() return def is_valid(self): """ Returns: bool: True is the current prim path corresponds to a valid prim in stage. False otherwise. """ return lazy.omni.isaac.core.utils.prims.is_prim_path_valid(self.prim_path) def change_prim_path(self, new_prim_path): """ Moves prim from the old path to a new one. Args: new_prim_path (str): new path of the prim to be moved to. """ lazy.omni.isaac.core.utils.prims.move_prim(path_from=self.prim_path, path_to=new_prim_path) self._prim_path = new_prim_path self._prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(self._prim_path) return def get_attribute(self, attr): """ Get this prim's attribute. Should be a valid attribute under self._prim.GetAttributes() Returns: any: value of the requested @attribute """ return self._prim.GetAttribute(attr).Get() def set_attribute(self, attr, val): """ Set this prim's attribute. Should be a valid attribute under self._prim.GetAttributes() Args: attr (str): Attribute to set val (any): Value to set for the attribute. This should be the valid type for that attribute. """ self._prim.GetAttribute(attr).Set(val) def get_property(self, prop): """ Sets property @prop with value @val Args: prop (str): Name of the property to get. See Raw USD Properties in the GUI for examples of property names Returns: any: Property value """ self._prim.GetProperty(prop).Get() def set_property(self, prop, val): """ Sets property @prop with value @val Args: prop (str): Name of the property to set. See Raw USD Properties in the GUI for examples of property names val (any): Value to set for the property. Should be valid for that property """ self._prim.GetProperty(prop).Set(val) def get_custom_data(self): """ Get custom data associated with this prim Returns: dict: Dictionary of any custom information """ return self._prim.GetCustomData() def _create_prim_with_same_kwargs(self, prim_path, name, load_config): """ Generates a new instance of this prim's class with specified @prim_path, @name, and @load_config, but otherwise all other kwargs should be identical to this instance's values. Args: prim_path (str): Absolute path to the newly generated prim name (str): Name for the newly created prim load_config (dict): Keyword-mapped kwargs to use to set specific attributes for the created prim's instance Returns: BasePrim: Generated prim object (not loaded, and not initialized!) """ return self.__class__( prim_path=prim_path, name=name, load_config=load_config, ) def duplicate(self, prim_path): """ Duplicates this object, and generates a new instance at @prim_path. Note that the created object is automatically loaded into the simulator, but is NOT initialized until a sim step occurs! Args: prim_path (str): Absolute path to the newly generated prim Returns: BasePrim: Generated prim object """ new_prim = self._create_prim_with_same_kwargs( prim_path=prim_path, name=f"{self.name}_copy{self._n_duplicates}", load_config=self._load_config, ) og.sim.import_object(new_prim, register=False) # Increment duplicate count self._n_duplicates += 1 # Set visibility new_prim.visible = self.visible return new_prim
10,456
Python
32.732258
177
0.605681
StanfordVL/OmniGibson/omnigibson/prims/geom_prim.py
from functools import cached_property import numpy as np import trimesh import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import gm from omnigibson.prims.xform_prim import XFormPrim from omnigibson.utils.python_utils import assert_valid_key from omnigibson.utils.usd_utils import PoseAPI, mesh_prim_shape_to_trimesh_mesh import omnigibson.utils.transform_utils as T class GeomPrim(XFormPrim): """ Provides high level functions to deal with a geom prim and its attributes / properties. If there is an geom prim present at the path, it will use it. By default, a geom prim cannot be directly created from scratch.at Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. For this mesh prim, the below values can be specified: """ def __init__( self, prim_path, name, load_config=None, ): # Run super method super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _load(self): # This should not be called, because this prim cannot be instantiated from scratch! raise NotImplementedError("By default, a geom prim cannot be created from scratch.") def _post_load(self): # run super first super()._post_load() # By default, GeomPrim shows up in the rendering. self.purpose = "default" def duplicate(self, prim_path): # Cannot directly duplicate a mesh prim raise NotImplementedError("Cannot directly duplicate a geom prim!") @property def purpose(self): """ Returns: str: the purpose used for this geom, one of {"default", "render", "proxy", "guide"} """ return self.get_attribute("purpose") @purpose.setter def purpose(self, purpose): """ Sets the purpose of this geom Args: purpose (str): the purpose used for this geom, one of {"default", "render", "proxy", "guide"} """ self.set_attribute("purpose", purpose) @property def color(self): """ Returns: None or 3-array: If set, the default RGB color used for this visual geom """ if self.has_material(): return self.material.diffuse_color_constant else: color = self.get_attribute("primvars:displayColor") return None if color is None else np.array(color)[0] @color.setter def color(self, rgb): """ Sets the RGB color of this visual mesh Args: 3-array: The default RGB color used for this visual geom """ if self.has_material(): self.material.diffuse_color_constant = rgb else: self.set_attribute("primvars:displayColor", np.array(rgb)) @property def opacity(self): """ Returns: None or float: If set, the default opacity used for this visual geom """ if self.has_material(): return self.material.opacity_constant else: opacity = self.get_attribute("primvars:displayOpacity") return None if opacity is None else np.array(opacity)[0] @opacity.setter def opacity(self, opacity): """ Sets the opacity of this visual mesh Args: opacity: The default opacity used for this visual geom """ if self.has_material(): self.material.opacity_constant = opacity else: self.set_attribute("primvars:displayOpacity", np.array([opacity])) @property def points(self): """ Returns: np.ndarray: Local poses of all points """ # If the geom is a mesh we can directly return its points. mesh = self.prim mesh_type = mesh.GetPrimTypeInfo().GetTypeName() if mesh_type == "Mesh": # If the geom is a mesh we can directly return its points. return np.array(self.prim.GetAttribute("points").Get()) else: # Return the vertices of the trimesh return np.array(mesh_prim_shape_to_trimesh_mesh(mesh).vertices) @property def points_in_parent_frame(self): points = self.points if points is None: return None position, orientation = self.get_local_pose() scale = self.scale points_scaled = points * scale points_rotated = np.dot(T.quat2mat(orientation), points_scaled.T).T points_transformed = points_rotated + position return points_transformed @property def aabb(self): world_pose_w_scale = PoseAPI.get_world_pose_with_scale(self.prim_path) # transform self.points into world frame points = self.points points_homogeneous = np.hstack((points, np.ones((points.shape[0], 1)))) points_transformed = (points_homogeneous @ world_pose_w_scale.T)[:,:3] aabb_lo = np.min(points_transformed, axis=0) aabb_hi = np.max(points_transformed, axis=0) return aabb_lo, aabb_hi @property def aabb_extent(self): """ Bounding box extent of this geom prim Returns: 3-array: (x,y,z) bounding box """ min_corner, max_corner = self.aabb return max_corner - min_corner @property def aabb_center(self): """ Bounding box center of this geom prim Returns: 3-array: (x,y,z) bounding box center """ min_corner, max_corner = self.aabb return (max_corner + min_corner) / 2.0 @cached_property def extent(self): """ Returns: np.ndarray: The unscaled 3d extent of the mesh in its local frame. """ points = self.points return np.max(points, axis=0) - np.min(points, axis=0) class CollisionGeomPrim(GeomPrim): def __init__( self, prim_path, name, load_config=None, ): # Store values created at runtime self._collision_api = None self._mesh_collision_api = None self._physx_collision_api = None self._applied_physics_material = None # Run super method super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _post_load(self): # run super first super()._post_load() # By default, CollisionGeomPrim does not show up in the rendering. self.purpose = "guide" # Create API references self._collision_api = lazy.pxr.UsdPhysics.CollisionAPI(self._prim) if \ self._prim.HasAPI(lazy.pxr.UsdPhysics.CollisionAPI) else lazy.pxr.UsdPhysics.CollisionAPI.Apply(self._prim) self._physx_collision_api = lazy.pxr.PhysxSchema.PhysxCollisionAPI(self._prim) if \ self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxCollisionAPI) else lazy.pxr.PhysxSchema.PhysxCollisionAPI.Apply(self._prim) # Optionally add mesh collision API if this is a mesh if self._prim.GetPrimTypeInfo().GetTypeName() == "Mesh": self._mesh_collision_api = lazy.pxr.UsdPhysics.MeshCollisionAPI(self._prim) if \ self._prim.HasAPI(lazy.pxr.UsdPhysics.MeshCollisionAPI) else lazy.pxr.UsdPhysics.MeshCollisionAPI.Apply(self._prim) # Set the approximation to be convex hull by default self.set_collision_approximation(approximation_type="convexHull") @property def collision_enabled(self): """ Returns: bool: Whether collisions are enabled for this collision mesh """ return self.get_attribute("physics:collisionEnabled") @collision_enabled.setter def collision_enabled(self, enabled): """ Sets whether collisions are enabled for this mesh Args: enabled (bool): Whether collisions should be enabled for this mesh """ # Currently, trying to toggle while simulator is playing while using GPU dynamics results in a crash, so we # assert that the sim is stopped here if self._initialized and gm.USE_GPU_DYNAMICS: assert og.sim.is_stopped(), "Cannot toggle collisions while using GPU dynamics unless simulator is stopped!" self.set_attribute("physics:collisionEnabled", enabled) # TODO: Maybe this should all be added to RigidPrim instead? def set_contact_offset(self, offset): """ Args: offset (float): Contact offset of a collision shape. Allowed range [maximum(0, rest_offset), 0]. Default value is -inf, means default is picked by simulation based on the shape extent. """ self._physx_collision_api.GetContactOffsetAttr().Set(offset) return def get_contact_offset(self): """ Returns: float: contact offset of the collision shape. """ return self._physx_collision_api.GetContactOffsetAttr().Get() def set_rest_offset(self, offset): """ Args: offset (float): Rest offset of a collision shape. Allowed range [-max_float, contact_offset. Default value is -inf, means default is picked by simulatiion. For rigid bodies its zero. """ self._physx_collision_api.GetRestOffsetAttr().Set(offset) return def get_rest_offset(self): """ Returns: float: rest offset of the collision shape. """ return self._physx_collision_api.GetRestOffsetAttr().Get() def set_torsional_patch_radius(self, radius): """ Args: radius (float): radius of the contact patch used to apply torsional friction. Allowed range [0, max_float]. """ self._physx_collision_api.GetTorsionalPatchRadiusAttr().Set(radius) return def get_torsional_patch_radius(self): """ Returns: float: radius of the contact patch used to apply torsional friction. Allowed range [0, max_float]. """ return self._physx_collision_api.GetTorsionalPatchRadiusAttr().Get() def set_min_torsional_patch_radius(self, radius): """ Args: radius (float): minimum radius of the contact patch used to apply torsional friction. Allowed range [0, max_float]. """ self._physx_collision_api.GetMinTorsionalPatchRadiusAttr().Set(radius) return def get_min_torsional_patch_radius(self): """ Returns: float: minimum radius of the contact patch used to apply torsional friction. Allowed range [0, max_float]. """ return self._physx_collision_api.GetMinTorsionalPatchRadiusAttr().Get() def set_collision_approximation(self, approximation_type): """ Args: approximation_type (str): approximation used for collision. Can be one of: {"none", "convexHull", "convexDecomposition", "meshSimplification", "sdf", "boundingSphere", "boundingCube"} If None, the approximation will use the underlying triangle mesh. """ assert self._mesh_collision_api is not None, "collision_approximation only applicable for meshes!" assert_valid_key( key=approximation_type, valid_keys={"none", "convexHull", "convexDecomposition", "meshSimplification", "sdf", "boundingSphere", "boundingCube"}, name="collision approximation type", ) # Make sure to add the appropriate API if we're setting certain values if approximation_type == "convexHull" and not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxConvexHullCollisionAPI): lazy.pxr.PhysxSchema.PhysxConvexHullCollisionAPI.Apply(self._prim) elif approximation_type == "convexDecomposition" and not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxConvexDecompositionCollisionAPI): lazy.pxr.PhysxSchema.PhysxConvexDecompositionCollisionAPI.Apply(self._prim) elif approximation_type == "meshSimplification" and not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxTriangleMeshSimplificationCollisionAPI): lazy.pxr.PhysxSchema.PhysxTriangleMeshSimplificationCollisionAPI.Apply(self._prim) elif approximation_type == "sdf" and not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxSDFMeshCollisionAPI): lazy.pxr.PhysxSchema.PhysxSDFMeshCollisionAPI.Apply(self._prim) elif approximation_type == "none" and not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxTriangleMeshCollisionAPI): lazy.pxr.PhysxSchema.PhysxTriangleMeshCollisionAPI.Apply(self._prim) if approximation_type == "convexHull": pch_api = lazy.pxr.PhysxSchema.PhysxConvexHullCollisionAPI(self._prim) # Also make sure the maximum vertex count is 60 (max number compatible with GPU) # https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics/rigid-bodies.html#collision-settings if pch_api.GetHullVertexLimitAttr().Get() is None: pch_api.CreateHullVertexLimitAttr() pch_api.GetHullVertexLimitAttr().Set(60) self._mesh_collision_api.GetApproximationAttr().Set(approximation_type) def get_collision_approximation(self): """ Returns: str: approximation used for collision, could be "none", "convexHull" or "convexDecomposition" """ assert self._mesh_collision_api is not None, "collision_approximation only applicable for meshes!" return self._mesh_collision_api.GetApproximationAttr().Get() def apply_physics_material(self, physics_material, weaker_than_descendants=False): """ Used to apply physics material to the held prim and optionally its descendants. Args: physics_material (PhysicsMaterial): physics material to be applied to the held prim. This where you want to define friction, restitution..etc. Note: if a physics material is not defined, the defaults will be used from PhysX. weaker_than_descendants (bool, optional): True if the material shouldn't override the descendants materials, otherwise False. Defaults to False. """ if self._binding_api is None: if self._prim.HasAPI(lazy.pxr.UsdShade.MaterialBindingAPI): self._binding_api = lazy.pxr.UsdShade.MaterialBindingAPI(self.prim) else: self._binding_api = lazy.pxr.UsdShade.MaterialBindingAPI.Apply(self.prim) if weaker_than_descendants: self._binding_api.Bind( physics_material.material, bindingStrength=lazy.pxr.UsdShade.Tokens.weakerThanDescendants, materialPurpose="physics", ) else: self._binding_api.Bind( physics_material.material, bindingStrength=lazy.pxr.UsdShade.Tokens.strongerThanDescendants, materialPurpose="physics", ) self._applied_physics_material = physics_material return def get_applied_physics_material(self): """ Returns the current applied physics material in case it was applied using apply_physics_material or not. Returns: PhysicsMaterial: the current applied physics material. """ if self._binding_api is None: if self._prim.HasAPI(lazy.pxr.UsdShade.MaterialBindingAPI): self._binding_api = lazy.pxr.UsdShade.MaterialBindingAPI(self.prim) else: self._binding_api = lazy.pxr.UsdShade.MaterialBindingAPI.Apply(self.prim) if self._applied_physics_material is not None: return self._applied_physics_material else: physics_binding = self._binding_api.GetDirectBinding(materialPurpose="physics") path = physics_binding.GetMaterialPath() if path == "": return None else: self._applied_physics_material = lazy.omni.isaac.core.materials.PhysicsMaterial(prim_path=path) return self._applied_physics_material class VisualGeomPrim(GeomPrim): pass class CollisionVisualGeomPrim(CollisionGeomPrim, VisualGeomPrim): def _post_load(self): # run super first super()._post_load() # The purpose should be default, not guide as set by CollisionGeomPrim # this is to make sure the geom is visualized, even though it's also collidable self.purpose = "default"
17,061
Python
38.133027
148
0.624465
StanfordVL/OmniGibson/omnigibson/prims/rigid_prim.py
from functools import cached_property from scipy.spatial import ConvexHull, QhullError import numpy as np import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import gm, create_module_macros from omnigibson.prims.xform_prim import XFormPrim from omnigibson.prims.geom_prim import CollisionGeomPrim, VisualGeomPrim from omnigibson.utils.constants import GEOM_TYPES from omnigibson.utils.sim_utils import CsRawData from omnigibson.utils.usd_utils import PoseAPI, get_mesh_volume_and_com, check_extent_radius_ratio import omnigibson.utils.transform_utils as T from omnigibson.utils.ui_utils import create_module_logger # Create module logger log = create_module_logger(module_name=__name__) # Create settings for this module m = create_module_macros(module_path=__file__) m.DEFAULT_CONTACT_OFFSET = 0.001 m.DEFAULT_REST_OFFSET = 0.0 class RigidPrim(XFormPrim): """ Provides high level functions to deal with a rigid body prim and its attributes/ properties. If there is an prim present at the path, it will use it. Otherwise, a new XForm prim at the specified prim path will be created. Notes: if the prim does not already have a rigid body api applied to it before it is loaded, it will apply it. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @prim_path -- it will be ignored if it already exists. For this joint prim, the below values can be specified: scale (None or float or 3-array): If specified, sets the scale for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling. mass (None or float): If specified, mass of this body in kg density (None or float): If specified, density of this body in kg / m^3 visual_only (None or bool): If specified, whether this prim should include collisions or not. Default is True. kinematic_only (None or bool): If specified, whether this prim should be kinematic-only or not. """ def __init__( self, prim_path, name, load_config=None, ): # Other values that will be filled in at runtime self._rigid_prim_view_direct = None self._cs = None # Contact sensor interface self._body_name = None self._visual_only = None self._collision_meshes = None self._visual_meshes = None # Caches for kinematic-only objects # This exists because RigidPrimView uses USD pose read, which is very slow self._kinematic_world_pose_cache = None self._kinematic_local_pose_cache = None # Run super init super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _post_load(self): # Create the view # Import now to avoid too-eager load of Omni classes due to inheritance from omnigibson.utils.deprecated_utils import RigidPrimView self._rigid_prim_view_direct = RigidPrimView(self._prim_path) # Set it to be kinematic if necessary kinematic_only = "kinematic_only" in self._load_config and self._load_config["kinematic_only"] self.set_attribute("physics:kinematicEnabled", kinematic_only) self.set_attribute("physics:rigidBodyEnabled", not kinematic_only) # run super first super()._post_load() # Apply rigid body and mass APIs if not self._prim.HasAPI(lazy.pxr.UsdPhysics.RigidBodyAPI): lazy.pxr.UsdPhysics.RigidBodyAPI.Apply(self._prim) if not self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxRigidBodyAPI): lazy.pxr.PhysxSchema.PhysxRigidBodyAPI.Apply(self._prim) if not self._prim.HasAPI(lazy.pxr.UsdPhysics.MassAPI): lazy.pxr.UsdPhysics.MassAPI.Apply(self._prim) # Only create contact report api if we're not visual only if not self._visual_only: lazy.pxr.PhysxSchema.PhysxContactReportAPI(self._prim) if \ self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxContactReportAPI) else \ lazy.pxr.PhysxSchema.PhysxContactReportAPI.Apply(self._prim) # Store references to owned visual / collision meshes # We iterate over all children of this object's prim, # and grab any that are presumed to be meshes self.update_meshes() # Possibly set the mass / density if not self.has_collision_meshes: # A meta (virtual) link has no collision meshes; set a negligible mass and a zero density (ignored) self.mass = 1e-6 self.density = 0.0 elif "mass" in self._load_config and self._load_config["mass"] is not None: self.mass = self._load_config["mass"] if "density" in self._load_config and self._load_config["density"] is not None: self.density = self._load_config["density"] # Set the visual-only attribute # This automatically handles setting collisions / gravity appropriately self.visual_only = self._load_config["visual_only"] if \ "visual_only" in self._load_config and self._load_config["visual_only"] is not None else False # Create contact sensor self._cs = lazy.omni.isaac.sensor._sensor.acquire_contact_sensor_interface() # self._create_contact_sensor() def _initialize(self): # Run super method first super()._initialize() # Initialize all owned meshes for mesh_group in (self._collision_meshes, self._visual_meshes): for mesh in mesh_group.values(): mesh.initialize() # Get contact info first if self.contact_reporting_enabled: self._cs.get_rigid_body_raw_data(self._prim_path) # Grab handle to this rigid body and get name self.update_handles() self._body_name = self.prim_path.split("/")[-1] def remove(self): # First remove the meshes if self._collision_meshes is not None: for collision_mesh in self._collision_meshes.values(): collision_mesh.remove() # Make sure to clean up all pre-existing names for all visual_meshes if self._visual_meshes is not None: for visual_mesh in self._visual_meshes.values(): visual_mesh.remove() # Then self super().remove() def update_meshes(self): """ Helper function to refresh owned visual and collision meshes. Useful for synchronizing internal data if additional bodies are added manually """ # Make sure to clean up all pre-existing names for all collision_meshes if self._collision_meshes is not None: for collision_mesh in self._collision_meshes.values(): collision_mesh.remove_names() # Make sure to clean up all pre-existing names for all visual_meshes if self._visual_meshes is not None: for visual_mesh in self._visual_meshes.values(): visual_mesh.remove_names() self._collision_meshes, self._visual_meshes = dict(), dict() prims_to_check = [] coms, vols = [], [] for prim in self._prim.GetChildren(): prims_to_check.append(prim) for child in prim.GetChildren(): prims_to_check.append(child) for prim in prims_to_check: mesh_type = prim.GetPrimTypeInfo().GetTypeName() if mesh_type in GEOM_TYPES: mesh_name, mesh_path = prim.GetName(), prim.GetPrimPath().__str__() mesh_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path=mesh_path) is_collision = mesh_prim.HasAPI(lazy.pxr.UsdPhysics.CollisionAPI) mesh_kwargs = {"prim_path": mesh_path, "name": f"{self._name}:{'collision' if is_collision else 'visual'}_{mesh_name}"} if is_collision: mesh = CollisionGeomPrim(**mesh_kwargs) # We also modify the collision mesh's contact and rest offsets, since omni's default values result # in lightweight objects sometimes not triggering contacts correctly mesh.set_contact_offset(m.DEFAULT_CONTACT_OFFSET) mesh.set_rest_offset(m.DEFAULT_REST_OFFSET) self._collision_meshes[mesh_name] = mesh volume, com = get_mesh_volume_and_com(mesh_prim) # We need to transform the volume and CoM from the mesh's local frame to the link's local frame local_pos, local_orn = mesh.get_local_pose() vols.append(volume * np.product(mesh.scale)) coms.append(T.quat2mat(local_orn) @ (com * mesh.scale) + local_pos) # If the ratio between the max extent and min radius is too large (i.e. shape too oblong), use # boundingCube approximation for the underlying collision approximation for GPU compatibility if not check_extent_radius_ratio(mesh_prim): log.warning(f"Got overly oblong collision mesh: {mesh.name}; use boundingCube approximation") mesh.set_collision_approximation("boundingCube") else: self._visual_meshes[mesh_name] = VisualGeomPrim(**mesh_kwargs) # If we have any collision meshes, we aggregate their center of mass and volume values to set the center of mass # for this link if len(coms) > 0: com = (np.array(coms) * np.array(vols).reshape(-1, 1)).sum(axis=0) / np.sum(vols) self.set_attribute("physics:centerOfMass", lazy.pxr.Gf.Vec3f(*com)) def enable_collisions(self): """ Enable collisions for this RigidPrim """ # Iterate through all owned collision meshes and toggle on their collisions for col_mesh in self._collision_meshes.values(): col_mesh.collision_enabled = True def disable_collisions(self): """ Disable collisions for this RigidPrim """ # Iterate through all owned collision meshes and toggle off their collisions for col_mesh in self._collision_meshes.values(): col_mesh.collision_enabled = False def update_handles(self): """ Updates all internal handles for this prim, in case they change since initialization """ # We only do this for non-kinematic objects, because while the USD APIs for kinematic-only # and dynamic objects are the same, physx tensor APIs do NOT exist for kinematic-only # objects, meaning initializing the view actively breaks the view. if not self.kinematic_only: self._rigid_prim_view_direct.initialize(og.sim.physics_sim_view) def contact_list(self): """ Get list of all current contacts with this rigid body Returns: list of CsRawData: raw contact info for this rigid body """ # Make sure we have the ability to grab contacts for this object contacts = [] if self.contact_reporting_enabled: raw_data = self._cs.get_rigid_body_raw_data(self._prim_path) for c in raw_data: # convert handles to prim paths for comparison c = [*c] # CsRawData enforces body0 and body1 types to be ints, but we want strings c[2] = self._cs.decode_body_name(c[2]) c[3] = self._cs.decode_body_name(c[3]) contacts.append(CsRawData(*c)) return contacts def set_linear_velocity(self, velocity): """ Sets the linear velocity of the prim in stage. Args: velocity (np.ndarray): linear velocity to set the rigid prim to. Shape (3,). """ self._rigid_prim_view.set_linear_velocities(velocity[None, :]) def get_linear_velocity(self): """ Returns: np.ndarray: current linear velocity of the the rigid prim. Shape (3,). """ return self._rigid_prim_view.get_linear_velocities()[0] def set_angular_velocity(self, velocity): """ Sets the angular velocity of the prim in stage. Args: velocity (np.ndarray): angular velocity to set the rigid prim to. Shape (3,). """ self._rigid_prim_view.set_angular_velocities(velocity[None, :]) def get_angular_velocity(self): """ Returns: np.ndarray: current angular velocity of the the rigid prim. Shape (3,). """ return self._rigid_prim_view.get_angular_velocities()[0] def set_position_orientation(self, position=None, orientation=None): # Invalidate kinematic-only object pose caches when new pose is set if self.kinematic_only: self.clear_kinematic_only_cache() if position is not None: position = np.asarray(position)[None, :] if orientation is not None: assert np.isclose(np.linalg.norm(orientation), 1, atol=1e-3), \ f"{self.prim_path} desired orientation {orientation} is not a unit quaternion." orientation = np.asarray(orientation)[None, [3, 0, 1, 2]] self._rigid_prim_view.set_world_poses(positions=position, orientations=orientation) PoseAPI.invalidate() def get_position_orientation(self): # Return cached pose if we're kinematic-only if self.kinematic_only and self._kinematic_world_pose_cache is not None: return self._kinematic_world_pose_cache pos, ori = self._rigid_prim_view.get_world_poses() assert np.isclose(np.linalg.norm(ori), 1, atol=1e-3), \ f"{self.prim_path} orientation {ori} is not a unit quaternion." pos = pos[0] ori = ori[0][[1, 2, 3, 0]] if self.kinematic_only: self._kinematic_world_pose_cache = (pos, ori) return pos, ori def set_local_pose(self, position=None, orientation=None): # Invalidate kinematic-only object pose caches when new pose is set if self.kinematic_only: self.clear_kinematic_only_cache() if position is not None: position = np.asarray(position)[None, :] if orientation is not None: orientation = np.asarray(orientation)[None, [3, 0, 1, 2]] self._rigid_prim_view.set_local_poses(position, orientation) PoseAPI.invalidate() def get_local_pose(self): # Return cached pose if we're kinematic-only if self.kinematic_only and self._kinematic_local_pose_cache is not None: return self._kinematic_local_pose_cache positions, orientations = self._rigid_prim_view.get_local_poses() positions = positions[0] orientations = orientations[0][[1, 2, 3, 0]] if self.kinematic_only: self._kinematic_local_pose_cache = (positions, orientations) return positions, orientations @property def _rigid_prim_view(self): if self._rigid_prim_view_direct is None: return None # Validate that the if physics is running, the view is valid. if not self.kinematic_only and og.sim.is_playing() and self.initialized: assert self._rigid_prim_view_direct.is_physics_handle_valid() and \ self._rigid_prim_view_direct._physics_view.check(), \ "Rigid prim view must be valid if physics is running!" assert not (og.sim.is_playing() and not self._rigid_prim_view_direct.is_valid), \ "Rigid prim view must be valid if physics is running!" return self._rigid_prim_view_direct @property def body_name(self): """ Returns: str: Name of this body """ return self._body_name @property def collision_meshes(self): """ Returns: dict: Dictionary mapping collision mesh names (str) to mesh prims (CollisionMeshPrim) owned by this rigid body """ return self._collision_meshes @property def visual_meshes(self): """ Returns: dict: Dictionary mapping visual mesh names (str) to mesh prims (VisualMeshPrim) owned by this rigid body """ return self._visual_meshes @property def visual_only(self): """ Returns: bool: Whether this link is a visual-only link (i.e.: no gravity or collisions applied) """ return self._visual_only @property def has_collision_meshes(self): """ Returns: bool: Whether this link has any collision mesh """ return len(self._collision_meshes) > 0 @visual_only.setter def visual_only(self, val): """ Sets the visaul only state of this link Args: val (bool): Whether this link should be a visual-only link (i.e.: no gravity or collisions applied) """ # Set gravity and collisions based on value if val: self.disable_collisions() self.disable_gravity() else: self.enable_collisions() self.enable_gravity() # Also set the internal value self._visual_only = val @property def volume(self): """ Note: Currently it doesn't support Capsule type yet Returns: float: total volume of all the collision meshes of the rigid body in m^3. """ # TODO (eric): revise this once omni exposes API to query volume of GeomPrims return sum(get_mesh_volume_and_com(collision_mesh.prim, world_frame=True)[0] for collision_mesh in self._collision_meshes.values()) @volume.setter def volume(self, volume): raise NotImplementedError("Cannot set volume directly for an link!") @property def mass(self): """ Returns: float: mass of the rigid body in kg. """ mass = self._rigid_prim_view.get_masses()[0] # Fallback to analytical computation of volume * density if mass == 0: return self.volume * self.density return mass @mass.setter def mass(self, mass): """ Args: mass (float): mass of the rigid body in kg. """ self._rigid_prim_view.set_masses([mass]) @property def density(self): """ Returns: float: density of the rigid body in kg / m^3. """ mass = self._rigid_prim_view.get_masses()[0] # We first check if the mass is specified, since mass overrides density. If so, density = mass / volume. # Otherwise, we try to directly grab the raw usd density value, and if that value does not exist, # we return 1000 since that is the canonical density assigned by omniverse if mass != 0.0: density = mass / self.volume else: density = self._rigid_prim_view.get_densities()[0] if density == 0.0: density = 1000.0 return density @density.setter def density(self, density): """ Args: density (float): density of the rigid body in kg / m^3. """ self._rigid_prim_view.set_densities([density]) @property def kinematic_only(self): """ Returns: bool: Whether this object is a kinematic-only object (otherwise, it is a rigid body). A kinematic-only object is not subject to simulator dynamics, and remains fixed unless the user explicitly sets the body's pose / velocities. See https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics/rigid-bodies.html?highlight=rigid%20body%20enabled#kinematic-rigid-bodies for more information """ return self.get_attribute("physics:kinematicEnabled") @property def solver_position_iteration_count(self): """ Returns: int: How many position iterations to take per physics step by the physx solver """ return self.get_attribute("physxRigidBody:solverPositionIterationCount") @solver_position_iteration_count.setter def solver_position_iteration_count(self, count): """ Sets how many position iterations to take per physics step by the physx solver Args: count (int): How many position iterations to take per physics step by the physx solver """ self.set_attribute("physxRigidBody:solverPositionIterationCount", count) @property def solver_velocity_iteration_count(self): """ Returns: int: How many velocity iterations to take per physics step by the physx solver """ return self.get_attribute("physxRigidBody:solverVelocityIterationCount") @solver_velocity_iteration_count.setter def solver_velocity_iteration_count(self, count): """ Sets how many velocity iterations to take per physics step by the physx solver Args: count (int): How many velocity iterations to take per physics step by the physx solver """ self.set_attribute("physxRigidBody:solverVelocityIterationCount", count) @property def stabilization_threshold(self): """ Returns: float: threshold for stabilizing this rigid body """ return self.get_attribute("physxRigidBody:stabilizationThreshold") @stabilization_threshold.setter def stabilization_threshold(self, threshold): """ Sets threshold for stabilizing this rigid body Args: threshold (float): stabilizing threshold """ self.set_attribute("physxRigidBody:stabilizationThreshold", threshold) @property def is_asleep(self): """ Returns: bool: whether this rigid prim is asleep or not """ # If we're kinematic only, immediately return False since it doesn't follow the sleep / wake paradigm return False if self.kinematic_only \ else og.sim.psi.is_sleeping(og.sim.stage_id, lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.prim_path)) @property def sleep_threshold(self): """ Returns: float: threshold for sleeping this rigid body """ return self.get_attribute("physxRigidBody:sleepThreshold") @sleep_threshold.setter def sleep_threshold(self, threshold): """ Sets threshold for sleeping this rigid body Args: threshold (float): Sleeping threshold """ self.set_attribute("physxRigidBody:sleepThreshold", threshold) @property def ccd_enabled(self): """ Returns: bool: whether CCD is enabled or not for this link """ return self.get_attribute("physxRigidBody:enableCCD") @ccd_enabled.setter def ccd_enabled(self, enabled): """ Args: enabled (bool): whether CCD should be enabled or not for this link """ self.set_attribute("physxRigidBody:enableCCD", enabled) @property def contact_reporting_enabled(self): """ Returns: bool: Whether contact reporting is enabled for this rigid prim or not """ return self._prim.HasAPI(lazy.pxr.PhysxSchema.PhysxContactReportAPI) def _compute_points_on_convex_hull(self, visual): """ Returns: np.ndarray or None: points on the convex hull of all points from child geom prims """ meshes = self._visual_meshes if visual else self._collision_meshes points = [] for mesh in meshes.values(): mesh_points = mesh.points_in_parent_frame if mesh_points is not None and len(mesh_points) > 0: points.append(mesh_points) if not points: return None points = np.concatenate(points, axis=0) try: hull = ConvexHull(points) return points[hull.vertices, :] except: # Handle the case where a convex hull cannot be formed (e.g., collinear points) # return all the points in this case return points @cached_property def visual_boundary_points_local(self): """ Returns: np.ndarray: local coords of points on the convex hull of all points from child geom prims """ return self._compute_points_on_convex_hull(visual=True) @property def visual_boundary_points_world(self): """ Returns: np.ndarray: world coords of points on the convex hull of all points from child geom prims """ local_points = self.visual_boundary_points_local if local_points is None: return None return self.transform_local_points_to_world(local_points) @cached_property def collision_boundary_points_local(self): """ Returns: np.ndarray: local coords of points on the convex hull of all points from child geom prims """ return self._compute_points_on_convex_hull(visual=False) @property def collision_boundary_points_world(self): """ Returns: np.ndarray: world coords of points on the convex hull of all points from child geom prims """ local_points = self.collision_boundary_points_local if local_points is None: return None return self.transform_local_points_to_world(local_points) @property def aabb(self): position, _ = self.get_position_orientation() hull_points = self.collision_boundary_points_world if hull_points is None: # When there's no points on the collision meshes return position, position aabb_lo = np.min(hull_points, axis=0) aabb_hi = np.max(hull_points, axis=0) return aabb_lo, aabb_hi @property def aabb_extent(self): """ Get this xform's actual bounding box extent Returns: 3-array: (x,y,z) bounding box """ min_corner, max_corner = self.aabb return max_corner - min_corner @property def aabb_center(self): """ Get this xform's actual bounding box center Returns: 3-array: (x,y,z) bounding box center """ min_corner, max_corner = self.aabb return (max_corner + min_corner) / 2.0 @property def visual_aabb(self): hull_points = self.visual_boundary_points_world assert hull_points is not None, "No visual boundary points found for this rigid prim" # Calculate and return the AABB aabb_lo = np.min(hull_points, axis=0) aabb_hi = np.max(hull_points, axis=0) return aabb_lo, aabb_hi @property def visual_aabb_extent(self): """ Get this xform's actual bounding box extent Returns: 3-array: (x,y,z) bounding box """ min_corner, max_corner = self.visual_aabb return max_corner - min_corner @property def visual_aabb_center(self): """ Get this xform's actual bounding box center Returns: 3-array: (x,y,z) bounding box center """ min_corner, max_corner = self.visual_aabb return (max_corner + min_corner) / 2.0 def enable_gravity(self): """ Enables gravity for this rigid body """ self._rigid_prim_view.enable_gravities() def disable_gravity(self): """ Disables gravity for this rigid body """ self._rigid_prim_view.disable_gravities() def wake(self): """ Enable physics for this rigid body """ prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.prim_path) og.sim.psi.wake_up(og.sim.stage_id, prim_id) def sleep(self): """ Disable physics for this rigid body """ prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(self.prim_path) og.sim.psi.put_to_sleep(og.sim.stage_id, prim_id) def clear_kinematic_only_cache(self): """ Clears the internal kinematic only cached pose. Useful if the parent prim's pose changes without explicitly calling this prim's pose setter """ assert self.kinematic_only self._kinematic_local_pose_cache = None self._kinematic_world_pose_cache = None def _dump_state(self): # Grab pose from super class state = super()._dump_state() state["lin_vel"] = self.get_linear_velocity() state["ang_vel"] = self.get_angular_velocity() return state def _load_state(self, state): # Call super first super()._load_state(state=state) # Set velocities if not kinematic self.set_linear_velocity(np.array(state["lin_vel"])) self.set_angular_velocity(np.array(state["ang_vel"])) def _serialize(self, state): # Run super first state_flat = super()._serialize(state=state) return np.concatenate([ state_flat, state["lin_vel"], state["ang_vel"], ]).astype(float) def _deserialize(self, state): # Call supermethod first state_dic, idx = super()._deserialize(state=state) # We deserialize deterministically by knowing the order of values -- lin_vel, ang_vel state_dic["lin_vel"] = state[idx: idx+3] state_dic["ang_vel"] = state[idx + 3: idx + 6] return state_dic, idx + 6
30,312
Python
36.562577
192
0.611342
StanfordVL/OmniGibson/omnigibson/prims/cloth_prim.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omnigibson.lazy as lazy from omnigibson.macros import create_module_macros, gm from omnigibson.prims.geom_prim import GeomPrim from omnigibson.systems import get_system import omnigibson.utils.transform_utils as T from omnigibson.utils.sim_utils import CsRawData from omnigibson.utils.usd_utils import array_to_vtarray, mesh_prim_to_trimesh_mesh, sample_mesh_keypoints from omnigibson.utils.python_utils import classproperty import omnigibson as og import numpy as np from collections.abc import Iterable # Create settings for this module m = create_module_macros(module_path=__file__) # Subsample cloth particle points to boost performance m.N_CLOTH_KEYPOINTS = 1000 m.KEYPOINT_COVERAGE_THRESHOLD = 0.75 m.N_CLOTH_KEYFACES = 500 class ClothPrim(GeomPrim): """ Provides high level functions to deal with a cloth prim and its attributes/ properties. If there is an prim present at the path, it will use it. Otherwise, a new XForm prim at the specified prim path will be created. Notes: if the prim does not already have a cloth api applied to it before it is loaded, it will apply it. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @prim_path -- it will be ignored if it already exists. For this joint prim, the below values can be specified: scale (None or float or 3-array): If specified, sets the scale for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling. mass (None or float): If specified, mass of this body in kg """ def __init__( self, prim_path, name, load_config=None, ): # Internal vars stored self._centroid_idx = None self._keypoint_idx = None self._keyface_idx = None # Run super init super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _post_load(self): # run super first super()._post_load() # Make sure flatcache is not being used -- if so, raise an error, since we lose most of our needed functionality # (such as R/W to specific particle states) when flatcache is enabled assert not gm.ENABLE_FLATCACHE, "Cannot use flatcache with ClothPrim!" self._mass_api = lazy.pxr.UsdPhysics.MassAPI(self._prim) if self._prim.HasAPI(lazy.pxr.UsdPhysics.MassAPI) else \ lazy.pxr.UsdPhysics.MassAPI.Apply(self._prim) # Possibly set the mass / density if "mass" in self._load_config and self._load_config["mass"] is not None: self.mass = self._load_config["mass"] # Clothify this prim, which is assumed to be a mesh ClothPrim.cloth_system.clothify_mesh_prim(mesh_prim=self._prim, remesh=self._load_config.get("remesh", True)) # Track generated particle count positions = self.compute_particle_positions() self._n_particles = len(positions) # Sample mesh keypoints / keyvalues and sanity check the AABB of these subsampled points vs. the actual points success = False for i in range(10): self._keypoint_idx, self._keyface_idx = sample_mesh_keypoints( mesh_prim=self._prim, n_keypoints=m.N_CLOTH_KEYPOINTS, n_keyfaces=m.N_CLOTH_KEYFACES, seed=i, ) keypoint_positions = positions[self._keypoint_idx] keypoint_aabb = keypoint_positions.min(axis=0), keypoint_positions.max(axis=0) true_aabb = positions.min(axis=0), positions.max(axis=0) overlap_vol = max(min(true_aabb[1][0], keypoint_aabb[1][0]) - max(true_aabb[0][0], keypoint_aabb[0][0]), 0) * \ max(min(true_aabb[1][1], keypoint_aabb[1][1]) - max(true_aabb[0][1], keypoint_aabb[0][1]), 0) * \ max(min(true_aabb[1][2], keypoint_aabb[1][2]) - max(true_aabb[0][2], keypoint_aabb[0][2]), 0) true_vol = np.product(true_aabb[1] - true_aabb[0]) if true_vol == 0.0 or overlap_vol / true_vol > m.KEYPOINT_COVERAGE_THRESHOLD: success = True break assert success, f"Did not adequately subsample keypoints for cloth {self.name}!" # Compute centroid particle idx based on AABB aabb_min, aabb_max = np.min(positions, axis=0), np.max(positions, axis=0) aabb_center = (aabb_min + aabb_max) / 2.0 dists = np.linalg.norm(positions - aabb_center.reshape(1, 3), axis=-1) self._centroid_idx = np.argmin(dists) def _initialize(self): super()._initialize() # TODO (eric): hacky way to get cloth rendering to work (otherwise, there exist some rendering artifacts). self._prim.CreateAttribute("primvars:isVolume", lazy.pxr.Sdf.ValueTypeNames.Bool, False).Set(True) self._prim.GetAttribute("primvars:isVolume").Set(False) # Store the default position of the points in the local frame self._default_positions = np.array(self.get_attribute(attr="points")) @property def visual_aabb(self): return self.aabb @property def visual_aabb_extent(self): return self.aabb_extent @property def visual_aabb_center(self): return self.aabb_center @classproperty def cloth_system(cls): return get_system("cloth") @property def n_particles(self): """ Returns: int: Number of particles owned by this cloth prim """ return self._n_particles @property def kinematic_only(self): """ Returns: bool: Whether this object is a kinematic-only object. For ClothPrim, always return False. """ return False def compute_particle_positions(self, idxs=None): """ Compute individual particle positions for this cloth prim Args: idxs (n-array or None): If set, will only calculate the requested indexed particle state Returns: np.array: (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame """ t, r = self.get_position_orientation() r = T.quat2mat(r) s = self.scale # Don't copy to save compute, since we won't be returning a reference to the underlying object anyways p_local = np.array(self.get_attribute(attr="points"), copy=False) p_local = p_local[idxs] if idxs is not None else p_local p_world = (r @ (p_local * s).T).T + t return p_world def set_particle_positions(self, positions, idxs=None): """ Sets individual particle positions for this cloth prim Args: positions (n-array): (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame idxs (n-array or None): If set, will only set the requested indexed particle state """ n_expected = self._n_particles if idxs is None else len(idxs) assert len(positions) == n_expected, \ f"Got mismatch in particle setting size: {len(positions)}, vs. number of expected particles {n_expected}!" r = T.quat2mat(self.get_orientation()) t = self.get_position() s = self.scale p_local = (r.T @ (positions - t).T).T / s # Fill the idxs if requested if idxs is not None: p_local_old = np.array(self.get_attribute(attr="points")) p_local_old[idxs] = p_local p_local = p_local_old self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(p_local)) @property def keypoint_idx(self): """ Returns: n-array: (N,) array specifying the keypoint particle IDs """ return self._keypoint_idx @property def keyface_idx(self): """ Returns: n-array: (N,) array specifying the keyface IDs """ return self._keyface_idx @property def faces(self): """ Grabs particle indexes defining each of the faces for this cloth prim Returns: np.array: (N, 3) numpy array, where each of the N faces are defined by the 3 particle indices corresponding to that face's vertices """ return np.array(self.get_attribute("faceVertexIndices")).reshape(-1, 3) @property def keyfaces(self): """ Grabs particle indexes defining each of the keyfaces for this cloth prim. Total number of keyfaces is m.N_CLOTH_KEYFACES Returns: np.array: (N, 3) numpy array, where each of the N keyfaces are defined by the 3 particle indices corresponding to that face's vertices """ return self.faces[self._keyface_idx] @property def keypoint_particle_positions(self): """ Grabs individual keypoint particle positions for this cloth prim. Total number of keypoints is m.N_CLOTH_KEYPOINTS Returns: np.array: (N, 3) numpy array, where each of the N keypoint particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame """ return self.compute_particle_positions(idxs=self._keypoint_idx) @property def centroid_particle_position(self): """ Grabs the individual particle that was pre-computed to be the closest to the centroid of this cloth prim. Returns: np.array: centroid particle's (x,y,z) cartesian coordinates relative to the world frame """ return self.compute_particle_positions(idxs=[self._centroid_idx])[0] @property def particle_velocities(self): """ Grabs individual particle velocities for this cloth prim Returns: np.array: (N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z) cartesian coordinates with respect to the world frame. """ # the velocities attribute is w.r.t the world frame already return np.array(self.get_attribute(attr="velocities")) @particle_velocities.setter def particle_velocities(self, vel): """ Set the particle velocities of this cloth Args: np.array: (N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z) cartesian coordinates with respect to the world frame """ assert vel.shape[0] == self._n_particles, \ f"Got mismatch in particle setting size: {vel.shape[0]}, vs. number of particles {self._n_particles}!" # the velocities attribute is w.r.t the world frame already self.set_attribute(attr="velocities", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(vel)) def compute_face_normals(self, face_ids=None): """ Grabs individual face normals for this cloth prim Args: face_ids (None or n-array): If specified, list of face IDs whose corresponding normals should be computed If None, all faces will be used Returns: np.array: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z) cartesian coordinates with respect to the world frame. """ faces = self.faces if face_ids is None else self.faces[face_ids] points = self.compute_particle_positions(idxs=faces.flatten()).reshape(-1, 3, 3) return self.compute_face_normals_from_particle_positions(positions=points) def compute_face_normals_from_particle_positions(self, positions): """ Grabs individual face normals for this cloth prim Args: positions (n-array): (N, 3, 3) array specifying the per-face particle positions Returns: np.array: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z) cartesian coordinates with respect to the world frame. """ # Shape [F, 3] v1 = positions[:, 2, :] - positions[:, 0, :] v2 = positions[:, 1, :] - positions[:, 0, :] normals = np.cross(v1, v2) return normals / np.linalg.norm(normals, axis=1).reshape(-1, 1) def contact_list(self, keypoints_only=True): """ Get list of all current contacts with this cloth body Args: keypoints_only (bool): If True, will only check contact with this cloth's keypoints Returns: list of CsRawData: raw contact info for this cloth body """ contacts = [] def report_hit(hit): contacts.append(CsRawData( time=0.0, # dummy value dt=0.0, # dummy value body0=self.prim_path, body1=hit.rigid_body, position=pos, normal=np.zeros(3), # dummy value impulse=np.zeros(3), # dummy value )) return True positions = self.keypoint_particle_positions if keypoints_only else self.compute_particle_positions() for pos in positions: og.sim.psqi.overlap_sphere(ClothPrim.cloth_system.particle_contact_offset, pos, report_hit, False) return contacts def update_handles(self): # no handles to update pass @property def volume(self): mesh = mesh_prim_to_trimesh_mesh(self.prim, include_normals=False, include_texcoord=False, world_frame=True) return mesh.volume if mesh.is_volume else mesh.convex_hull.volume @volume.setter def volume(self, volume): raise NotImplementedError("Cannot set volume directly for a link!") @property def mass(self): """ Returns: float: mass of the rigid body in kg. """ # We have to read the mass directly in the cloth prim return self._mass_api.GetMassAttr().Get() @mass.setter def mass(self, mass): """ Args: mass (float): mass of the rigid body in kg. """ # We have to set the mass directly in the cloth prim self._mass_api.GetMassAttr().Set(mass) @property def density(self): raise NotImplementedError("Cannot get density for ClothPrim") @density.setter def density(self, density): raise NotImplementedError("Cannot set density for ClothPrim") @property def body_name(self): """ Returns: str: Name of this body """ return self.prim_path.split("/")[-1] def get_linear_velocity(self): """ Returns: np.ndarray: current average linear velocity of the particles of the cloth prim. Shape (3,). """ return np.array(self._prim.GetAttribute("velocities").Get()).mean(axis=0) def get_angular_velocity(self): """ Returns: np.ndarray: zero vector as a placeholder because a cloth prim doesn't have an angular velocity. Shape (3,). """ return np.zeros(3) def set_linear_velocity(self, velocity): """ Sets the linear velocity of all the particles of the cloth prim. Args: velocity (np.ndarray): linear velocity to set all the particles of the cloth prim to. Shape (3,). """ vel = self.particle_velocities vel[:] = velocity self.particle_velocities = vel def set_angular_velocity(self, velocity): """ Simply returns because a cloth prim doesn't have an angular velocity Args: velocity (np.ndarray): linear velocity to set all the particles of the cloth prim to. Shape (3,). """ return def wake(self): # TODO (eric): Just a pass through for now. return @property def bend_stiffness(self): """ Returns: float: spring bend stiffness of the particle system """ return self.get_attribute("physxAutoParticleCloth:springBendStiffness") @bend_stiffness.setter def bend_stiffness(self, bend_stiffness): """ Args: bend_stiffness (float): spring bend stiffness of the particle system """ self.set_attribute("physxAutoParticleCloth:springBendStiffness", bend_stiffness) @property def damping(self): """ Returns: float: spring damping of the particle system """ return self.get_attribute("physxAutoParticleCloth:springDamping") @damping.setter def damping(self, damping): """ Args: damping (float): spring damping of the particle system """ self.set_attribute("physxAutoParticleCloth:springDamping", damping) @property def shear_stiffness(self): """ Returns: float: spring shear_stiffness of the particle system """ return self.get_attribute("physxAutoParticleCloth:springShearStiffness") @shear_stiffness.setter def shear_stiffness(self, shear_stiffness): """ Args: shear_stiffness (float): spring shear_stiffness of the particle system """ self.set_attribute("physxAutoParticleCloth:springShearStiffness", shear_stiffness) @property def stretch_stiffness(self): """ Returns: float: spring stretch_stiffness of the particle system """ return self.get_attribute("physxAutoParticleCloth:springStretchStiffness") @stretch_stiffness.setter def stretch_stiffness(self, stretch_stiffness): """ Args: stretch_stiffness (float): spring stretch_stiffness of the particle system """ self.set_attribute("physxAutoParticleCloth:springStretchStiffness", stretch_stiffness) @property def particle_group(self): """ Returns: int: Particle group this instancer belongs to """ return self.get_attribute(attr="physxParticle:particleGroup") @particle_group.setter def particle_group(self, group): """ Args: group (int): Particle group this instancer belongs to """ self.set_attribute(attr="physxParticle:particleGroup", val=group) def _dump_state(self): # Run super first state = super()._dump_state() state["particle_group"] = self.particle_group state["n_particles"] = self.n_particles state["particle_positions"] = self.compute_particle_positions() state["particle_velocities"] = self.particle_velocities return state def _load_state(self, state): # Run super first super()._load_state(state=state) # Sanity check the identification number and particle group assert self.particle_group == state["particle_group"], f"Got mismatch in particle group for this cloth " \ f"when loading state! Should be: {self.particle_group}, got: {state['particle_group']}." # Set values appropriately self._n_particles = state["n_particles"] # Make sure the loaded state is a numpy array, it could have been accidentally casted into a list during # JSON-serialization self.particle_velocities = np.array(state["particle_velocities"]) if not isinstance(state["particle_velocities"], np.ndarray) else state["particle_velocities"] self.set_particle_positions(positions=np.array(state["particle_positions"]) if not isinstance(state["particle_positions"], np.ndarray) else state["particle_positions"]) def _serialize(self, state): # Run super first state_flat = super()._serialize(state=state) return np.concatenate([ state_flat, [state["particle_group"], state["n_particles"]], state["particle_positions"].reshape(-1), state["particle_velocities"].reshape(-1), ]).astype(float) def _deserialize(self, state): # Run super first state_dict, idx = super()._deserialize(state=state) particle_group = int(state[idx]) n_particles = int(state[idx + 1]) # Sanity check the identification number assert self.particle_group == particle_group, f"Got mismatch in particle group for this particle " \ f"instancer when deserializing state! Should be: {self.particle_group}, got: {particle_group}." # De-compress from 1D array state_dict["particle_group"] = particle_group state_dict["n_particles"] = n_particles # Process remaining keys and reshape automatically keys = ("particle_positions", "particle_velocities") sizes = ((n_particles, 3), (n_particles, 3)) idx += 2 for key, size in zip(keys, sizes): length = np.product(size) state_dict[key] = state[idx: idx + length].reshape(size) idx += length return state_dict, idx def reset(self): """ Reset the points to their default positions in the local frame, and also zeroes out velocities """ if self.initialized: self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray.FromNumpy(self._default_positions)) self.particle_velocities = np.zeros((self._n_particles, 3))
22,311
Python
36.311037
176
0.622653
StanfordVL/OmniGibson/omnigibson/prims/xform_prim.py
from collections.abc import Iterable import numpy as np import omnigibson as og from omnigibson.macros import gm import omnigibson.lazy as lazy from omnigibson.prims.prim_base import BasePrim from omnigibson.prims.material_prim import MaterialPrim from omnigibson.utils.transform_utils import quat2euler from omnigibson.utils.usd_utils import PoseAPI import omnigibson.utils.transform_utils as T from scipy.spatial.transform import Rotation as R from omnigibson.macros import gm import trimesh.transformations class XFormPrim(BasePrim): """ Provides high level functions to deal with an Xform prim and its attributes/ properties. If there is an Xform prim present at the path, it will use it. Otherwise, a new XForm prim at the specified prim path will be created when self.load(...) is called. Note: the prim will have "xformOp:orient", "xformOp:translate" and "xformOp:scale" only post init, unless it is a non-root articulation link. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. For this xform prim, the below values can be specified: scale (None or float or 3-array): If specified, sets the scale for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling. """ def __init__( self, prim_path, name, load_config=None, ): # Other values that will be filled in at runtime self._binding_api = None self._material = None self._collision_filter_api = None self.original_scale = None # Run super method super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _load(self): return og.sim.stage.DefinePrim(self._prim_path, "Xform") def _post_load(self): # run super first super()._post_load() # Make sure all xforms have pose and scaling info self._set_xform_properties() # Cache the original scale from the USD so that when EntityPrim sets the scale for each link (Rigid/ClothPrim), # the new scale is with respect to the original scale. XFormPrim's scale always matches the scale in the USD. self.original_scale = np.array(self.get_attribute("xformOp:scale")) # Create collision filter API self._collision_filter_api = lazy.pxr.UsdPhysics.FilteredPairsAPI(self._prim) if \ self._prim.HasAPI(lazy.pxr.UsdPhysics.FilteredPairsAPI) else lazy.pxr.UsdPhysics.FilteredPairsAPI.Apply(self._prim) # Create binding API self._binding_api = lazy.pxr.UsdShade.MaterialBindingAPI(self.prim) if \ self._prim.HasAPI(lazy.pxr.UsdShade.MaterialBindingAPI) else lazy.pxr.UsdShade.MaterialBindingAPI.Apply(self.prim) # Grab the attached material if it exists if self.has_material(): material_prim_path = self._binding_api.GetDirectBinding().GetMaterialPath().pathString material_name = f"{self.name}:material" material = MaterialPrim.get_material(prim_path=material_prim_path, name=material_name) assert material.loaded, f"Material prim path {material_prim_path} doesn't exist on stage." material.add_user(self) self._material = material # Optionally set the scale and visibility if "scale" in self._load_config and self._load_config["scale"] is not None: self.scale = self._load_config["scale"] def remove(self): # Remove the material prim if one exists if self._material is not None: self._material.remove_user(self) # Remove the prim super().remove() def _set_xform_properties(self): current_position, current_orientation = self.get_position_orientation() properties_to_remove = [ "xformOp:rotateX", "xformOp:rotateXZY", "xformOp:rotateY", "xformOp:rotateYXZ", "xformOp:rotateYZX", "xformOp:rotateZ", "xformOp:rotateZYX", "xformOp:rotateZXY", "xformOp:rotateXYZ", "xformOp:transform", ] prop_names = self.prim.GetPropertyNames() xformable = lazy.pxr.UsdGeom.Xformable(self.prim) xformable.ClearXformOpOrder() # TODO: wont be able to delete props for non root links on articulated objects for prop_name in prop_names: if prop_name in properties_to_remove: self.prim.RemoveProperty(prop_name) if "xformOp:scale" not in prop_names: xform_op_scale = xformable.AddXformOp(lazy.pxr.UsdGeom.XformOp.TypeScale, lazy.pxr.UsdGeom.XformOp.PrecisionDouble, "") xform_op_scale.Set(lazy.pxr.Gf.Vec3d([1.0, 1.0, 1.0])) else: xform_op_scale = lazy.pxr.UsdGeom.XformOp(self._prim.GetAttribute("xformOp:scale")) if "xformOp:translate" not in prop_names: xform_op_translate = xformable.AddXformOp( lazy.pxr.UsdGeom.XformOp.TypeTranslate, lazy.pxr.UsdGeom.XformOp.PrecisionDouble, "" ) else: xform_op_translate = lazy.pxr.UsdGeom.XformOp(self._prim.GetAttribute("xformOp:translate")) if "xformOp:orient" not in prop_names: xform_op_rot = xformable.AddXformOp(lazy.pxr.UsdGeom.XformOp.TypeOrient, lazy.pxr.UsdGeom.XformOp.PrecisionDouble, "") else: xform_op_rot = lazy.pxr.UsdGeom.XformOp(self._prim.GetAttribute("xformOp:orient")) xformable.SetXformOpOrder([xform_op_translate, xform_op_rot, xform_op_scale]) self.set_position_orientation(position=current_position, orientation=current_orientation) new_position, new_orientation = self.get_position_orientation() r1 = R.from_quat(current_orientation).as_matrix() r2 = R.from_quat(new_orientation).as_matrix() # Make sure setting is done correctly assert np.allclose(new_position, current_position, atol=1e-4) and np.allclose(r1, r2, atol=1e-4), \ f"{self.prim_path}: old_pos: {current_position}, new_pos: {new_position}, " \ f"old_orn: {current_orientation}, new_orn: {new_orientation}" def has_material(self): """ Returns: bool: True if there is a visual material bound to this prim. False otherwise """ material_path = self._binding_api.GetDirectBinding().GetMaterialPath().pathString return False if material_path == "" else True def set_position_orientation(self, position=None, orientation=None): """ Sets prim's pose with respect to the world frame Args: position (None or 3-array): if specified, (x,y,z) position in the world frame Default is None, which means left unchanged. orientation (None or 4-array): if specified, (x,y,z,w) quaternion orientation in the world frame. Default is None, which means left unchanged. """ current_position, current_orientation = self.get_position_orientation() position = current_position if position is None else np.array(position, dtype=float) orientation = current_orientation if orientation is None else np.array(orientation, dtype=float) assert np.isclose(np.linalg.norm(orientation), 1, atol=1e-3), \ f"{self.prim_path} desired orientation {orientation} is not a unit quaternion." my_world_transform = T.pose2mat((position, orientation)) parent_prim = lazy.omni.isaac.core.utils.prims.get_prim_parent(self._prim) parent_path = str(parent_prim.GetPath()) parent_world_transform = PoseAPI.get_world_pose_with_scale(parent_path) local_transform = np.linalg.inv(parent_world_transform) @ my_world_transform self.set_local_pose(*T.mat2pose(local_transform)) def get_position_orientation(self): """ Gets prim's pose with respect to the world's frame. Returns: 2-tuple: - 3-array: (x,y,z) position in the world frame - 4-array: (x,y,z,w) quaternion orientation in the world frame """ return PoseAPI.get_world_pose(self._prim_path) def set_position(self, position): """ Set this prim's position with respect to the world frame Args: position (3-array): (x,y,z) global cartesian position to set """ self.set_position_orientation(position=position) def get_position(self): """ Get this prim's position with respect to the world frame Returns: 3-array: (x,y,z) global cartesian position of this prim """ return self.get_position_orientation()[0] def set_orientation(self, orientation): """ Set this prim's orientation with respect to the world frame Args: orientation (4-array): (x,y,z,w) global quaternion orientation to set """ self.set_position_orientation(orientation=orientation) def get_orientation(self): """ Get this prim's orientation with respect to the world frame Returns: 4-array: (x,y,z,w) global quaternion orientation of this prim """ return self.get_position_orientation()[1] def get_rpy(self): """ Get this prim's orientation with respect to the world frame Returns: 3-array: (roll, pitch, yaw) global euler orientation of this prim """ return quat2euler(self.get_orientation()) def get_2d_orientation(self): """ Get this prim's orientation on the XY plane of the world frame. This is obtained by projecting the forward vector onto the XY plane and then computing the angle. """ fwd = R.from_quat(self.get_orientation()).apply([1, 0, 0]) fwd[2] = 0. # If the object is facing close to straight up, then we can't compute a 2D orientation # in that case, we return zero. if np.linalg.norm(fwd) < 1e-4: return 0. fwd /= np.linalg.norm(fwd) return np.arctan2(fwd[1], fwd[0]) def get_local_pose(self): """ Gets prim's pose with respect to the prim's local frame (its parent frame) Returns: 2-tuple: - 3-array: (x,y,z) position in the local frame - 4-array: (x,y,z,w) quaternion orientation in the local frame """ pos, ori = lazy.omni.isaac.core.utils.xforms.get_local_pose(self.prim_path) return pos, ori[[1, 2, 3, 0]] def set_local_pose(self, position=None, orientation=None): """ Sets prim's pose with respect to the local frame (the prim's parent frame). Args: position (None or 3-array): if specified, (x,y,z) position in the local frame of the prim (with respect to its parent prim). Default is None, which means left unchanged. orientation (None or 4-array): if specified, (x,y,z,w) quaternion orientation in the local frame of the prim (with respect to its parent prim). Default is None, which means left unchanged. """ properties = self.prim.GetPropertyNames() if position is not None: position = lazy.pxr.Gf.Vec3d(*np.array(position, dtype=float)) if "xformOp:translate" not in properties: lazy.carb.log_error( "Translate property needs to be set for {} before setting its position".format(self.name) ) self.set_attribute("xformOp:translate", position) if orientation is not None: orientation = np.array(orientation, dtype=float)[[3, 0, 1, 2]] if "xformOp:orient" not in properties: lazy.carb.log_error( "Orient property needs to be set for {} before setting its orientation".format(self.name) ) xform_op = self._prim.GetAttribute("xformOp:orient") if xform_op.GetTypeName() == "quatf": rotq = lazy.pxr.Gf.Quatf(*orientation) else: rotq = lazy.pxr.Gf.Quatd(*orientation) xform_op.Set(rotq) PoseAPI.invalidate() if gm.ENABLE_FLATCACHE: # If flatcache is on, make sure the USD local pose is synced to the fabric local pose. # Ideally we should call usdrt's set local pose directly, but there is no such API. # The only available API is SetLocalXformFromUsd, so we update USD first, and then sync to fabric. xformable_prim = lazy.usdrt.Rt.Xformable(lazy.omni.isaac.core.utils.prims.get_prim_at_path(self.prim_path, fabric=True)) assert not xformable_prim.HasWorldXform(), "Fabric's world pose is set for a non-rigid prim which is unexpected. Please report this." xformable_prim.SetLocalXformFromUsd() return def get_world_scale(self): """ Gets prim's scale with respect to the world's frame. Returns: np.ndarray: scale applied to the prim's dimensions in the world frame. shape is (3, ). """ prim_tf = lazy.pxr.UsdGeom.Xformable(self._prim).ComputeLocalToWorldTransform(lazy.pxr.Usd.TimeCode.Default()) transform = lazy.pxr.Gf.Transform() transform.SetMatrix(prim_tf) return np.array(transform.GetScale()) @property def scaled_transform(self): """ Returns the scaled transform of this prim. """ return PoseAPI.get_world_pose_with_scale(self._prim_path) def transform_local_points_to_world(self, points): return trimesh.transformations.transform_points(points, self.scaled_transform) @property def scale(self): """ Gets prim's scale with respect to the local frame (the parent's frame). Returns: np.ndarray: scale applied to the prim's dimensions in the local frame. shape is (3, ). """ return np.array(self.get_attribute("xformOp:scale")) @scale.setter def scale(self, scale): """ Sets prim's scale with respect to the local frame (the prim's parent frame). Args: scale (float or np.ndarray): scale to be applied to the prim's dimensions. shape is (3, ). Defaults to None, which means left unchanged. """ scale = np.array(scale, dtype=float) if isinstance(scale, Iterable) else np.ones(3) * scale scale = lazy.pxr.Gf.Vec3d(*scale) properties = self.prim.GetPropertyNames() if "xformOp:scale" not in properties: lazy.carb.log_error("Scale property needs to be set for {} before setting its scale".format(self.name)) self.set_attribute("xformOp:scale", scale) @property def material(self): """ Returns: None or MaterialPrim: The bound material to this prim, if there is one """ return self._material @material.setter def material(self, material): """ Set the material @material for this prim. This will also bind the material to this prim Args: material (MaterialPrim): Material to bind to this prim """ self._binding_api.Bind(lazy.pxr.UsdShade.Material(material.prim), bindingStrength=lazy.pxr.UsdShade.Tokens.weakerThanDescendants) self._material = material def add_filtered_collision_pair(self, prim): """ Adds a collision filter pair with another prim Args: prim (XFormPrim): Another prim to filter collisions with """ # Add to both this prim's and the other prim's filtered pair self._collision_filter_api.GetFilteredPairsRel().AddTarget(prim.prim_path) prim._collision_filter_api.GetFilteredPairsRel().AddTarget(self._prim_path) def remove_filtered_collision_pair(self, prim): """ Removes a collision filter pair with another prim Args: prim (XFormPrim): Another prim to remove filter collisions with """ # Add to both this prim's and the other prim's filtered pair self._collision_filter_api.GetFilteredPairsRel().RemoveTarget(prim.prim_path) prim._collision_filter_api.GetFilteredPairsRel().RemoveTarget(self._prim_path) def _dump_state(self): pos, ori = self.get_position_orientation() return dict(pos=pos, ori=ori) def _load_state(self, state): self.set_position_orientation(np.array(state["pos"]), np.array(state["ori"])) def _serialize(self, state): return np.concatenate([state["pos"], state["ori"]]).astype(float) def _deserialize(self, state): # We deserialize deterministically by knowing the order of values -- pos, ori return dict(pos=state[0:3], ori=state[3:7]), 7
17,280
Python
41.669136
145
0.631771
StanfordVL/OmniGibson/omnigibson/prims/joint_prim.py
from collections.abc import Iterable import numpy as np import omnigibson as og import omnigibson.lazy as lazy from omnigibson.macros import create_module_macros from omnigibson.prims.prim_base import BasePrim from omnigibson.utils.usd_utils import PoseAPI, create_joint from omnigibson.utils.constants import JointType, JointAxis from omnigibson.utils.python_utils import assert_valid_key import omnigibson.utils.transform_utils as T from omnigibson.controllers.controller_base import ControlType # Create settings for this module m = create_module_macros(module_path=__file__) m.DEFAULT_MAX_POS = 1000.0 m.DEFAULT_MAX_PRISMATIC_VEL = 1.0 m.DEFAULT_MAX_REVOLUTE_VEL = 15.0 m.DEFAULT_MAX_EFFORT = 100.0 m.INF_POS_THRESHOLD = 1e5 m.INF_VEL_THRESHOLD = 1e5 m.INF_EFFORT_THRESHOLD = 1e10 m.COMPONENT_SUFFIXES = ["x", "y", "z", "rx", "ry", "rz"] # TODO: Split into non-articulated / articulated Joint Prim classes? # TODO: Add logic for non Prismatic / Revolute joints (D6, spherical) class JointPrim(BasePrim): """ Provides high level functions to deal with a joint prim and its attributes/ properties. If there is an joint prim present at the path, it will use it. Otherwise, a new joint prim at the specified prim path will be created when self.load(...) is called. Note: the prim will have "xformOp:orient", "xformOp:translate" and "xformOp:scale" only post init, unless it is a non-root articulation link. Args: prim_path (str): prim path of the Prim to encapsulate or create. name (str): Name for the object. Names need to be unique per scene. load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. For this joint prim, the below values can be specified: joint_type (str): If specified, should be the joint type to create. Valid options are: {"Joint", "FixedJoint", "PrismaticJoint", "RevoluteJoint", "SphericalJoint"} (equivalently, one of JointType) body0 (None or str): If specified, should be the absolute prim path to the parent body that this joint is connected to. None can also be valid, which corresponds to cases where only a single body may be specified (e.g.: fixed joints) body1 (None or str): If specified, should be the absolute prim path to the child body that this joint is connected to. None can also be valid, which corresponds to cases where only a single body may be specified (e.g.: fixed joints) articulation (None or int): if specified, should be handle to pre-existing articulation. This will enable additional features for this joint prim, e.g.: polling / setting this joint's state. Note that in this case, the joint must already exist prior to this class instance. Default is None, which corresponds to a non-articulated joint. """ def __init__( self, prim_path, name, load_config=None, articulation_view=None, ): # Grab dynamic control reference and set properties self._articulation_view_direct = articulation_view # Other values that will be filled in at runtime self._joint_type = None self._control_type = None self._driven = None # The following values will only be valid if this joint is part of an articulation self._n_dof = None # The number of degrees of freedom this joint provides self._joint_idx = None # The index of this joint in the parent articulation's joint array self._joint_dof_offset = None # The starting index of the DOFs for this joint in the parent articulation's DOF array self._joint_name = None # The name of this joint in the parent's articulation tree # Run super method super().__init__( prim_path=prim_path, name=name, load_config=load_config, ) def _load(self): # Make sure this joint isn't articulated assert not self.articulated, "Joint cannot be created, since this is an articulated joint! We are assuming" \ "the joint already exists in the stage." # Define a joint prim at the current stage prim = create_joint( prim_path=self._prim_path, joint_type=self._load_config.get("joint_type", JointType.JOINT), ) return prim def _post_load(self): # run super first super()._post_load() # Check whether this joint is driven or not self._driven = self._prim.HasAPI(lazy.pxr.UsdPhysics.DriveAPI) # Add joint state API if this is a revolute or prismatic joint self._joint_type = JointType.get_type(self._prim.GetTypeName().split("Physics")[-1]) if self.is_single_dof: # We MUST already have the joint state API defined beforehand in the USD # This is because physx complains if we try to add physx APIs AFTER a simulation step occurs, which # happens because joint prims are usually created externally during an EntityPrim's initialization phase assert self._prim.HasAPI(lazy.pxr.PhysxSchema.JointStateAPI), \ "Revolute or Prismatic joints must already have JointStateAPI added!" # Possibly set the bodies if "body0" in self._load_config and self._load_config["body0"] is not None: self.body0 = self._load_config["body0"] if "body1" in self._load_config and self._load_config["body1"] is not None: self.body1 = self._load_config["body1"] def _initialize(self): # Always run super first super()._initialize() # Update the joint indices etc. self.update_handles() # Get control type if self.articulated: control_types = [] stiffnesses, dampings = self._articulation_view.get_gains(joint_indices=self.dof_indices) for i, (kp, kd) in enumerate(zip(stiffnesses[0], dampings[0])): # Infer control type based on whether kp and kd are 0 or not, as well as whether this joint is driven or not # TODO: Maybe assert mutual exclusiveness here? if not self._driven: control_type = ControlType.NONE elif kp == 0.0: control_type = ControlType.EFFORT if kd == 0.0 else ControlType.VELOCITY else: control_type = ControlType.POSITION control_types.append(control_type) # Make sure all the control types are the same -- if not, we had something go wrong! assert len(set(control_types)) == 1, f"Got multiple control types for this single joint: {control_types}" self._control_type = control_types[0] def update_handles(self): """ Updates all internal handles for this prim, in case they change since initialization """ # It's a bit tricky to get the joint index here. We need to find the first dof at this prim path # first, then get the corresponding joint index from that dof offset. self._joint_dof_offset = list(self._articulation_view._dof_paths[0]).index(self._prim_path) joint_dof_offsets = self._articulation_view._metadata.joint_dof_offsets # Note that we are finding the last occurrence of the dof offset, since that corresponds to the joint index # The first occurrence can be a fixed link that is 0-dof, meaning the offset will be repeated. self._joint_idx = next(i for i in reversed(range(len(joint_dof_offsets))) if joint_dof_offsets[i] == self._joint_dof_offset) self._joint_name = self._articulation_view._metadata.joint_names[self._joint_idx] self._n_dof = self._articulation_view._metadata.joint_dof_counts[self._joint_idx] def set_control_type(self, control_type, kp=None, kd=None): """ Sets the control type for this joint. Args: control_type (ControlType): What type of control to use for this joint. Valid options are: {ControlType.POSITION, ControlType.VELOCITY, ControlType.EFFORT} kp (None or float): If specified, sets the kp gain value for this joint. Should only be set if setting ControlType.POSITION kd (None or float): If specified, sets the kd gain value for this joint. Should only be set if setting ControlType.VELOCITY """ # Sanity check inputs assert_valid_key(key=control_type, valid_keys=ControlType.VALID_TYPES, name="control type") if control_type == ControlType.POSITION: assert kp is not None, "kp gain must be specified for setting POSITION control!" assert kd is None, "kd gain must not be specified for setting POSITION control!" kd = 0.0 elif control_type == ControlType.VELOCITY: assert kp is None, "kp gain must not be specified for setting VELOCITY control!" assert kd is not None, "kd gain must be specified for setting VELOCITY control!" kp = 0.0 else: # Efforts assert kp is None, "kp gain must not be specified for setting EFFORT control!" assert kd is None, "kd gain must not be specified for setting EFFORT control!" kp, kd = 0.0, 0.0 # Set values kps = np.full((1, self._n_dof), kp) kds = np.full((1, self._n_dof), kd) self._articulation_view.set_gains(kps=kps, kds=kds, joint_indices=self.dof_indices) # Update control type self._control_type = control_type @property def _articulation_view(self): if self._articulation_view_direct is None: return None # Validate that the articulation view is initialized and that if physics is running, the # view is valid. if og.sim.is_playing() and self.initialized: assert self._articulation_view_direct.is_physics_handle_valid() and \ self._articulation_view_direct._physics_view.check(), \ "Articulation view must be valid if physics is running!" return self._articulation_view_direct @property def body0(self): """ Gets this joint's body0 relationship. Returns: None or str: Absolute prim path to the body prim to set as this joint's parent link, or None if there is no body0 specified. """ targets = self._prim.GetRelationship("physics:body0").GetTargets() return targets[0].__str__() if len(targets) > 0 else None @body0.setter def body0(self, body0): """ Sets this joint's body0 relationship. Args: body0 (str): Absolute prim path to the body prim to set as this joint's parent link. """ # Make sure prim path is valid assert lazy.omni.isaac.core.utils.prims.is_prim_path_valid(body0), f"Invalid body0 path specified: {body0}" self._prim.GetRelationship("physics:body0").SetTargets([lazy.pxr.Sdf.Path(body0)]) @property def body1(self): """ Gets this joint's body1 relationship. Returns: None or str: Absolute prim path to the body prim to set as this joint's child link, or None if there is no body1 specified. """ targets = self._prim.GetRelationship("physics:body1").GetTargets() return targets[0].__str__() @body1.setter def body1(self, body1): """ Sets this joint's body1 relationship. Args: body1 (str): Absolute prim path to the body prim to set as this joint's child link. """ # Make sure prim path is valid assert lazy.omni.isaac.core.utils.prims.is_prim_path_valid(body1), f"Invalid body1 path specified: {body1}" self._prim.GetRelationship("physics:body1").SetTargets([lazy.pxr.Sdf.Path(body1)]) @property def local_orientation(self): """ Returns: 4-array: (x,y,z,w) local quaternion orientation of this joint, relative to the parent link """ # Grab local rotation to parent and child links quat0 = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(self.get_attribute("physics:localRot0"))[[1, 2, 3, 0]] quat1 = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(self.get_attribute("physics:localRot1"))[[1, 2, 3, 0]] # Invert the child link relationship, and multiply the two rotations together to get the final rotation return T.quat_multiply(quaternion1=T.quat_inverse(quat1), quaternion0=quat0) @property def joint_name(self): """ Returns: str: Name of this joint """ return self._joint_name @property def joint_type(self): """ Gets this joint's type (ignoring the "Physics" prefix) Returns: JointType: Joint's type. Should be one corresponding to: {JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_FIXED, JOINT_SPHERICAL} """ return self._joint_type @property def driven(self): """ Returns: bool: Whether this joint can be driven by a motor or not """ return self._driven @property def control_type(self): """ Gets the control types for this joint Returns: ControlType: control type for this joint """ return self._control_type @property def max_velocity(self): """ Gets this joint's maximum velocity Returns: float: maximum velocity for this joint """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" # We either return the raw value or a default value if there is no max specified raw_vel = self._articulation_view.get_max_velocities(joint_indices=self.dof_indices)[0][0] default_max_vel = m.DEFAULT_MAX_REVOLUTE_VEL if self.joint_type == JointType.JOINT_REVOLUTE else m.DEFAULT_MAX_PRISMATIC_VEL return default_max_vel if raw_vel is None or np.abs(raw_vel) > m.INF_VEL_THRESHOLD else raw_vel @max_velocity.setter def max_velocity(self, vel): """ Sets this joint's maximum velocity Args: vel (float): Velocity to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_max_velocities(np.array([[vel]]), joint_indices=self.dof_indices) @property def max_effort(self): """ Gets this joint's maximum effort Returns: float: maximum effort for this joint """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" # We either return the raw value or a default value if there is no max specified raw_effort = self._articulation_view.get_max_efforts(joint_indices=self.dof_indices)[0][0] return m.DEFAULT_MAX_EFFORT if raw_effort is None or np.abs(raw_effort) > m.INF_EFFORT_THRESHOLD else raw_effort @max_effort.setter def max_effort(self, effort): """ Sets this joint's maximum effort Args: effort (float): effort to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_max_efforts(np.array([[effort]]), joint_indices=self.dof_indices) @property def stiffness(self): """ Gets this joint's stiffness Returns: float: stiffness for this joint """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" stiffnesses = self._articulation_view.get_gains(joint_indices=self.dof_indices)[0] return stiffnesses[0][0] @stiffness.setter def stiffness(self, stiffness): """ Sets this joint's stiffness Args: stiffness (float): stiffness to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_gains(kps=np.array([[stiffness]]), joint_indices=self.dof_indices) @property def damping(self): """ Gets this joint's damping Returns: float: damping for this joint """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" dampings = self._articulation_view.get_gains(joint_indices=self.dof_indices)[1] return dampings[0][0] @damping.setter def damping(self, damping): """ Sets this joint's damping Args: damping (float): damping to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_gains(kds=np.array([[damping]]), joint_indices=self.dof_indices) @property def friction(self): """ Gets this joint's friction Returns: float: friction for this joint """ return self._articulation_view.get_friction_coefficients(joint_indices=self.dof_indices)[0][0] \ if og.sim.is_playing() else self.get_attribute("physxJoint:jointFriction") @friction.setter def friction(self, friction): """ Sets this joint's friction Args: friction (float): friction to set """ self.set_attribute("physxJoint:jointFriction", friction) if og.sim.is_playing(): self._articulation_view.set_friction_coefficients(np.array([[friction]]), joint_indices=self.dof_indices) @property def lower_limit(self): """ Gets this joint's lower_limit Returns: float: lower_limit for this joint """ # TODO: Add logic for non Prismatic / Revolute joints (D6, spherical) # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" # We either return the raw value or a default value if there is no max specified raw_pos_lower, raw_pos_upper = self._articulation_view.get_joint_limits(joint_indices=self.dof_indices).flatten() return -m.DEFAULT_MAX_POS \ if raw_pos_lower is None or raw_pos_lower == raw_pos_upper or np.abs(raw_pos_lower) > m.INF_POS_THRESHOLD \ else raw_pos_lower @lower_limit.setter def lower_limit(self, lower_limit): """ Sets this joint's lower_limit Args: lower_limit (float): lower_limit to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_joint_limits(np.array([[lower_limit, self.upper_limit]]), joint_indices=self.dof_indices) @property def upper_limit(self): """ Gets this joint's upper_limit Returns: float: upper_limit for this joint """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" # We either return the raw value or a default value if there is no max specified raw_pos_lower, raw_pos_upper = self._articulation_view.get_joint_limits(joint_indices=self.dof_indices).flatten() return m.DEFAULT_MAX_POS \ if raw_pos_upper is None or raw_pos_lower == raw_pos_upper or np.abs(raw_pos_upper) > m.INF_POS_THRESHOLD \ else raw_pos_upper @upper_limit.setter def upper_limit(self, upper_limit): """ Sets this joint's upper_limit Args: upper_limit (float): upper_limit to set """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" self._articulation_view.set_joint_limits(np.array([[self.lower_limit, upper_limit]]), joint_indices=self.dof_indices) @property def has_limit(self): """ Returns: bool: True if this joint has a limit, else False """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" return np.all(np.abs(self._articulation_view.get_joint_limits(joint_indices=self.dof_indices)) < m.INF_POS_THRESHOLD) @property def axis(self): """ Gets this joint's axis Returns: str: axis for this joint, one of "X", "Y, "Z" """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" return self.get_attribute("physics:axis") @axis.setter def axis(self, axis): """ Sets this joint's axis Args: str: axis for this joint, one of "X", "Y, "Z" """ # Only support revolute and prismatic joints for now assert self.is_single_dof, "Joint properties only supported for a single DOF currently!" assert axis in JointAxis, f"Invalid joint axis specified: {axis}!" self.set_attribute("physics:axis", axis) @property def n_dof(self): """ Returns: int: Number of degrees of freedom this joint has """ return self._n_dof @property def dof_indices(self): """ Returns: list of int: Indices of this joint's DOFs in the parent articulation's DOF array """ assert self.articulated, "Can only get DOF indices for articulated joints!" return list(range(self._joint_dof_offset, self._joint_dof_offset + self._n_dof)) @property def articulated(self): """ Returns: bool: Whether this joint is articulated or not """ return self._articulation_view is not None @property def is_revolute(self): """ Returns: bool: Whether this joint is revolute or not """ return self._joint_type == JointType.JOINT_REVOLUTE @property def is_single_dof(self): """ Returns: bool: Whether this joint has a single DOF or not """ return self._joint_type in {JointType.JOINT_REVOLUTE, JointType.JOINT_PRISMATIC} def get_state(self, normalized=False): """ (pos, vel, effort) state of this joint Args: normalized (bool): If True, will return normalized state of this joint, where pos, vel, and effort values are in range [-1, 1]. Returns: 3-tuple: - n-array: position of this joint, where n = number of DOF for this joint - n-array: velocity of this joint, where n = number of DOF for this joint - n-array: effort of this joint, where n = number of DOF for this joint """ # Make sure we only call this if we're an articulated joint assert self.articulated, "Can only get state for articulated joints!" # Grab raw states pos = self._articulation_view.get_joint_positions(joint_indices=self.dof_indices)[0] vel = self._articulation_view.get_joint_velocities(joint_indices=self.dof_indices)[0] effort = self._articulation_view.get_applied_joint_efforts(joint_indices=self.dof_indices)[0] # Potentially normalize if requested if normalized: pos, vel, effort = self._normalize_pos(pos), self._normalize_vel(vel), self._normalize_effort(effort) return pos, vel, effort def get_target(self, normalized=False): """ (pos, vel) target of this joint Args: normalized (bool): If True, will return normalized target of this joint Returns: 2-tuple: - n-array: target position of this joint, where n = number of DOF for this joint - n-array: target velocity of this joint, where n = number of DOF for this joint """ # Make sure we only call this if we're an articulated joint assert self.articulated, "Can only get targets for articulated joints!" # Grab raw states targets = self._articulation_view.get_applied_actions() pos = targets.joint_positions[0][self.dof_indices] vel = targets.joint_velocities[0][self.dof_indices] # Potentially normalize if requested if normalized: pos, vel = self._normalize_pos(pos), self._normalize_vel(vel) return pos, vel def _normalize_pos(self, pos): """ Normalizes raw joint positions @pos Args: pos (n-array): n-DOF raw positions to normalize Returns: n-array: n-DOF normalized positions in range [-1, 1] """ low, high = self.lower_limit, self.upper_limit mean = (low + high) / 2.0 magnitude = (high - low) / 2.0 pos = (pos - mean) / magnitude return pos def _denormalize_pos(self, pos): """ De-normalizes joint positions @pos Args: pos (n-array): n-DOF normalized positions in range [-1, 1] Returns: n-array: n-DOF de-normalized positions """ low, high = self.lower_limit, self.upper_limit mean = (low + high) / 2.0 magnitude = (high - low) / 2.0 pos = pos * magnitude + mean return pos def _normalize_vel(self, vel): """ Normalizes raw joint velocities @vel Args: vel (n-array): n-DOF raw velocities to normalize Returns: n-array: n-DOF normalized velocities in range [-1, 1] """ return vel / self.max_velocity def _denormalize_vel(self, vel): """ De-normalizes joint velocities @vel Args: vel (n-array): n-DOF normalized velocities in range [-1, 1] Returns: n-array: n-DOF de-normalized velocities """ return vel * self.max_velocity def _normalize_effort(self, effort): """ Normalizes raw joint effort @effort Args: effort (n-array): n-DOF raw effort to normalize Returns: n-array: n-DOF normalized effort in range [-1, 1] """ return effort / self.max_effort def _denormalize_effort(self, effort): """ De-normalizes joint effort @effort Args: effort (n-array): n-DOF normalized effort in range [-1, 1] Returns: n-array: n-DOF de-normalized effort """ return effort * self.max_effort def set_pos(self, pos, normalized=False, drive=False): """ Set the position of this joint in metric space Args: pos (float or n-array of float): Set the position(s) for this joint. Can be a single float or 1-array of float if the joint only has a single DOF, otherwise it should be an n-array of floats. normalized (bool): Whether the input is normalized to [-1, 1] (in this case, the values will be de-normalized first before being executed). Default is False drive (bool): Whether the joint should be driven naturally via its motor to the position being set or whether it should be instantaneously set. Default is False, corresponding to an instantaneous setting of the position """ # Sanity checks -- make sure we're the correct control type if we're setting a target and that we're articulated assert self.articulated, "Can only set position for articulated joints!" if drive: assert self._driven, "Can only use set_pos with drive=True if this joint is driven!" assert self._control_type == ControlType.POSITION, \ "Trying to set joint position target, but control type is not position!" # Standardize input pos = np.array([pos]) if self._n_dof == 1 and not isinstance(pos, Iterable) else np.array(pos) # Potentially de-normalize if the input is normalized if normalized: pos = self._denormalize_pos(pos) # Set the DOF(s) in this joint if not drive: self._articulation_view.set_joint_positions(positions=pos, joint_indices=self.dof_indices) PoseAPI.invalidate() # Also set the target self._articulation_view.set_joint_position_targets(positions=pos, joint_indices=self.dof_indices) def set_vel(self, vel, normalized=False, drive=False): """ Set the velocity of this joint in metric space Args: vel (float or n-array of float): Set the velocity(s) for this joint. Can be a single float or 1-array of float if the joint only has a single DOF, otherwise it should be an n-array of floats. normalized (bool): Whether the input is normalized to [-1, 1] (in this case, the values will be de-normalized first before being executed). Default is False drive (bool): Whether the joint should be driven naturally via its motor to the velocity being set or whether it should be instantaneously set. Default is False, corresponding to an instantaneous setting of the velocity """ # Sanity checks -- make sure we're the correct control type if we're setting a target and that we're articulated assert self.articulated, "Can only set velocity for articulated joints!" if drive: assert self._driven, "Can only use set_vel with drive=True if this joint is driven!" assert self._control_type == ControlType.VELOCITY, \ f"Trying to set joint velocity target for joint {self.name}, but control type is not velocity!" # Standardize input vel = np.array([vel]) if self._n_dof == 1 and not isinstance(vel, Iterable) else np.array(vel) # Potentially de-normalize if the input is normalized if normalized: vel = self._denormalize_vel(vel) # Set the DOF(s) in this joint if not drive: self._articulation_view.set_joint_velocities(velocities=vel, joint_indices=self.dof_indices) # Also set the target self._articulation_view.set_joint_velocity_targets(velocities=vel, joint_indices=self.dof_indices) def set_effort(self, effort, normalized=False): """ Set the effort of this joint in metric space Args: effort (float or n-array of float): Set the effort(s) for this joint. Can be a single float or 1-array of float if the joint only has a single DOF, otherwise it should be an n-array of floats. normalized (bool): Whether the input is normalized to [-1, 1] (in this case, the values will be de-normalized first before being executed). Default is False """ # Sanity checks -- make sure that we're articulated (no control type check like position and velocity # because we can't set effort targets) and that we're driven assert self.articulated, "Can only set effort for articulated joints!" # Standardize input effort = np.array([effort]) if self._n_dof == 1 and not isinstance(effort, Iterable) else np.array(effort) # Potentially de-normalize if the input is normalized if normalized: effort = self._denormalize_effort(effort) # Set the DOF(s) in this joint self._articulation_view.set_joint_efforts(efforts=effort, joint_indices=self.dof_indices) def keep_still(self): """ Zero out all velocities for this prim """ self.set_vel(np.zeros(self.n_dof)) # If not driven, set torque equal to zero as well if not self.driven: self.set_effort(np.zeros(self.n_dof)) def _dump_state(self): pos, vel, effort = self.get_state() if self.articulated else (np.array([]), np.array([]), np.array([])) target_pos, target_vel = self.get_target() if self.articulated else (np.array([]), np.array([])) return dict( pos=pos, vel=vel, effort=effort, target_pos=target_pos, target_vel=target_vel, ) def _load_state(self, state): if self.articulated: self.set_pos(state["pos"], drive=False) self.set_vel(state["vel"], drive=False) if self.driven: self.set_effort(state["effort"]) if self._control_type == ControlType.POSITION: self.set_pos(state["target_pos"], drive=True) elif self._control_type == ControlType.VELOCITY: self.set_vel(state["target_vel"], drive=True) def _serialize(self, state): return np.concatenate([ state["pos"], state["vel"], state["effort"], state["target_pos"], state["target_vel"], ]).astype(float) def _deserialize(self, state): # We deserialize deterministically by knowing the order of values -- pos, vel, effort return dict( pos=state[0:self.n_dof], vel=state[self.n_dof:2*self.n_dof], effort=state[2*self.n_dof:3*self.n_dof], target_pos=state[3*self.n_dof:4*self.n_dof], target_vel=state[4*self.n_dof:5*self.n_dof], ), 5*self.n_dof def duplicate(self, prim_path): # Cannot directly duplicate a joint prim raise NotImplementedError("Cannot directly duplicate a joint prim!")
34,732
Python
39.623392
132
0.62179
StanfordVL/OmniGibson/omnigibson/configs/turtlebot_nav.yaml
env: action_frequency: 60 # (int): environment executes action at the action_frequency rate physics_frequency: 60 # (int): physics frequency (1 / physics_timestep for physx) device: null # (None or str): specifies the device to be used if running on the gpu with torch backend automatic_reset: false # (bool): whether to automatic reset after an episode finishes flatten_action_space: false # (bool): whether to flatten the action space as a sinle 1D-array flatten_obs_space: false # (bool): whether the observation space should be flattened when generated use_external_obs: false # (bool): Whether to use external observations or not initial_pos_z_offset: 0.1 external_sensors: null # (None or list): If specified, list of sensor configurations for external sensors to add. Should specify sensor "type" and any additional kwargs to instantiate the sensor. Each entry should be the kwargs passed to @create_sensor, in addition to position, orientation render: viewer_width: 1280 viewer_height: 720 scene: type: InteractiveTraversableScene scene_model: Rs_int trav_map_resolution: 0.1 default_erosion_radius: 0.0 trav_map_with_objects: true num_waypoints: 1 waypoint_resolution: 0.2 load_object_categories: null not_load_object_categories: null load_room_types: null load_room_instances: null seg_map_resolution: 0.1 scene_source: OG include_robots: true robots: - type: Turtlebot obs_modalities: [scan, rgb, depth] scale: 1.0 self_collision: false action_normalize: true action_type: continuous sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController objects: [] task: type: PointNavigationTask robot_idn: 0 floor: 0 initial_pos: null initial_quat: null goal_pos: null goal_tolerance: 0.36 # turtlebot bodywidth goal_in_polar: false path_range: [1.0, 10.0] visualize_goal: true visualize_path: false n_vis_waypoints: 25 reward_type: geodesic termination_config: max_collisions: 500 max_steps: 500 fall_height: 0.03 reward_config: r_potential: 1.0 r_collision: 0.1 r_pointgoal: 10.0
2,478
YAML
31.618421
307
0.668281
StanfordVL/OmniGibson/omnigibson/configs/fetch_behavior.yaml
env: action_frequency: 60 # (int): environment executes action at the action_frequency rate physics_frequency: 60 # (int): physics frequency (1 / physics_timestep for physx) device: null # (None or str): specifies the device to be used if running on the gpu with torch backend automatic_reset: false # (bool): whether to automatic reset after an episode finishes flatten_action_space: false # (bool): whether to flatten the action space as a sinle 1D-array flatten_obs_space: false # (bool): whether the observation space should be flattened when generated use_external_obs: false # (bool): Whether to use external observations or not initial_pos_z_offset: 0.1 external_sensors: # (None or list): If specified, list of sensor configurations for external sensors to add. Should specify sensor "type" and any additional kwargs to instantiate the sensor. Each entry should be the kwargs passed to @create_sensor, in addition to position, orientation - sensor_type: VisionSensor modalities: [rgb, depth] sensor_kwargs: image_height: 128 image_width: 128 local_position: [0, 0, 1.0] local_orientation: [0.707, 0.0, 0.0, 0.707] render: viewer_width: 1280 viewer_height: 720 scene: type: InteractiveTraversableScene scene_model: Rs_int trav_map_resolution: 0.1 default_erosion_radius: 0.0 trav_map_with_objects: true num_waypoints: 1 waypoint_resolution: 0.2 not_load_object_categories: null load_room_types: null load_room_instances: null seg_map_resolution: 0.1 scene_source: OG include_robots: true robots: - type: Fetch obs_modalities: [scan, rgb, depth] scale: 1.0 self_collision: false action_normalize: true action_type: continuous grasping_mode: physical rigid_trunk: false default_trunk_offset: 0.365 default_arm_pose: diagonal30 default_reset_mode: tuck sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController arm_0: name: InverseKinematicsController gripper_0: name: MultiFingerGripperController mode: binary camera: name: JointController use_delta_commands: False objects: [] task: type: BehaviorTask activity_name: prepare_sea_salt_soak activity_definition_id: 0 activity_instance_id: 0 predefined_problem: null online_object_sampling: false debug_object_sampling: null highlight_task_relevant_objects: false termination_config: max_steps: 500 reward_config: r_potential: 1.0
2,875
YAML
32.057471
307
0.662261
StanfordVL/OmniGibson/omnigibson/configs/default_cfg.yaml
env: action_frequency: 60 # (int): environment executes action at the action_frequency rate physics_frequency: 60 # (int): physics frequency (1 / physics_timestep for physx) device: null # (None or str): specifies the device to be used if running on the gpu with torch backend render: viewer_width: 1280 viewer_height: 720 scene: type: Scene robots: [] objects: [] task: type: DummyTask
452
YAML
22.842104
125
0.643805
StanfordVL/OmniGibson/omnigibson/configs/fetch_primitives.yaml
env: action_frequency: 30 # (int): environment executes action at the action_frequency rate physics_frequency: 120 # (int): physics frequency (1 / physics_timestep for physx) device: null # (None or str): specifies the device to be used if running on the gpu with torch backend automatic_reset: false # (bool): whether to automatic reset after an episode finishes flatten_action_space: false # (bool): whether to flatten the action space as a sinle 1D-array flatten_obs_space: false # (bool): whether the observation space should be flattened when generated use_external_obs: false # (bool): Whether to use external observations or not initial_pos_z_offset: 0.1 external_sensors: null # (None or list): If specified, list of sensor configurations for external sensors to add. Should specify sensor "type" and any additional kwargs to instantiate the sensor. Each entry should be the kwargs passed to @create_sensor, in addition to position, orientation render: viewer_width: 1280 viewer_height: 720 scene: type: InteractiveTraversableScene scene_model: Rs_int trav_map_resolution: 0.1 default_erosion_radius: 0.0 trav_map_with_objects: true num_waypoints: 1 waypoint_resolution: 0.2 load_object_categories: null not_load_object_categories: null load_room_types: null load_room_instances: null load_task_relevant_only: false seg_map_resolution: 0.1 scene_source: OG include_robots: false robots: - type: Fetch obs_modalities: [scan, rgb, depth] scale: 1.0 self_collisions: true action_normalize: false action_type: continuous grasping_mode: sticky rigid_trunk: false default_trunk_offset: 0.365 default_arm_pose: diagonal30 controller_config: base: name: DifferentialDriveController arm_0: name: InverseKinematicsController command_input_limits: default command_output_limits: - [-0.2, -0.2, -0.2, -0.5, -0.5, -0.5] - [0.2, 0.2, 0.2, 0.5, 0.5, 0.5] mode: pose_absolute_ori kp: 300.0 gripper_0: name: JointController motor_type: position command_input_limits: [-1, 1] command_output_limits: null use_delta_commands: true camera: name: JointController use_delta_commands: False objects: [] task: type: DummyTask scene_graph: egocentric: true full_obs: true only_true: true merge_parallel_edges: false
2,579
YAML
33.864864
307
0.65917
StanfordVL/OmniGibson/omnigibson/configs/sensors/scan.yaml
# Example ScanSensor sensor config # See omnigibson/sensors/__init__/create_sensor and omnigibson/sensors/scan_sensor for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: sensor_config: ScanSensor: modalities: [scan, occupancy_grid] # if specified, this will override the values in robots_config["obs_modalities"] enabled: true noise_type: null noise_kwargs: null sensor_kwargs: # Basic LIDAR kwargs min_range: 0.05 max_range: 10.0 horizontal_fov: 360.0 vertical_fov: 1.0 yaw_offset: 0.0 horizontal_resolution: 1.0 vertical_resolution: 1.0 rotation_rate: 0.0 draw_points: false draw_lines: false # Occupancy Grid kwargs occupancy_grid_resolution: 128 occupancy_grid_range: 5.0 occupancy_grid_inner_radius: 0.5 occupancy_grid_local_link: null
1,043
YAML
33.799999
122
0.66443
StanfordVL/OmniGibson/omnigibson/configs/sensors/vision.yaml
# Example VisionSensor sensor config # See omnigibson/sensors/__init__/create_sensor and omnigibson/sensors/vision_sensor for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: sensor_config: VisionSensor: modalities: [rgb, depth] # if specified, this will override the values in robots_config["obs_modalities"] enabled: true noise_type: null noise_kwargs: null sensor_kwargs: image_height: 128 image_width: 128
597
YAML
41.714283
112
0.730318
StanfordVL/OmniGibson/omnigibson/configs/controllers/joint.yaml
# Example Joint control config (shown for arm control) # See omnigibson/controllers/joint_controller for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: controller_config: arm: name: JointController motor_type: velocity command_input_limits: default command_output_limits: default use_delta_commands: false
479
YAML
35.923074
91
0.757829
StanfordVL/OmniGibson/omnigibson/configs/controllers/dd.yaml
# Example Differential Drive control config (shown for base control) # See omnigibson/controllers/dd_controller for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: controller_config: base: name: DifferentialDriveController command_input_limits: default command_output_limits: default
443
YAML
43.399996
91
0.785553
StanfordVL/OmniGibson/omnigibson/configs/controllers/multi_finger_gripper.yaml
# Example Multi Finger Gripper control config (shown for arm control) # See omnigibson/controllers/parallel_jaw_gripper_controller for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: controller_config: arm: name: MultiFingerGripperController motor_type: position command_input_limits: default command_output_limits: default mode: binary open_qpos: null closed_qpos: null limit_tolerance: 0.01
582
YAML
37.866664
91
0.745704
StanfordVL/OmniGibson/omnigibson/configs/controllers/null_gripper.yaml
# Example Null Gripper control config (shown for gripper control) # See omnigibson/controllers/null_gripper_controller for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: controller_config: gripper: name: NullJointController # no other args to specify (this is a dummy controller)
434
YAML
47.333328
91
0.78341
StanfordVL/OmniGibson/omnigibson/configs/controllers/ik.yaml
# Example IK config (shown for arm control) # See omnigibson/controllers/ik_controller for docstring of arguments # Arguments below are the arguments that should be specified by external user (other kwargs # used in constructor are generated automatically at runtime) robot: controller_config: arm: name: InverseKinematicsController command_input_limits: default command_output_limits: - [-0.2, -0.2, -0.2, -0.5, -0.5, -0.5] - [0.2, 0.2, 0.2, 0.5, 0.5, 0.5] kv: 2.0 mode: pose_delta_ori smoothing_filter_size: 2 workspace_pose_limiter: null joint_range_tolerance: 0.01
638
YAML
36.588233
91
0.669279
StanfordVL/OmniGibson/omnigibson/configs/robots/husky.yaml
# Example Husky config robot: name: Husky action_type: continuous action_normalize: true proprio_obs: - joint_qpos - joint_qvel reset_joint_pos: null base_name: null scale: 1.0 self_collision: false sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: JointController
479
YAML
18.999999
27
0.624217
StanfordVL/OmniGibson/omnigibson/configs/robots/freight.yaml
# Example Freight config robot: name: Freight action_type: continuous action_normalize: true proprio_obs: - dd_base_lin_vel - dd_base_ang_vel reset_joint_pos: null base_name: null scale: 1.0 self_collision: false sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController
505
YAML
20.083332
39
0.635644
StanfordVL/OmniGibson/omnigibson/configs/robots/fetch.yaml
# Example Fetch config robot: name: Fetch action_type: continuous action_normalize: true proprio_obs: - eef_0_pos - eef_0_quat - trunk_qpos - arm_0_qpos_sin - arm_0_qpos_cos - gripper_0_qpos - grasp_main reset_joint_pos: null base_name: null scale: 1.0 self_collision: true grasping_mode: physical rigid_trunk: false default_trunk_offset: 0.365 default_arm_pose: vertical sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController arm_0: name: InverseKinematicsController gripper_0: name: MultiFingerGripperController camera: name: JointController
839
YAML
20.538461
40
0.64124
StanfordVL/OmniGibson/omnigibson/configs/robots/turtlebot.yaml
# Example Turtlebot config robot: name: Turtlebot action_type: continuous action_normalize: true proprio_obs: - dd_base_lin_vel - dd_base_ang_vel reset_joint_pos: null base_name: null scale: 1.0 self_collision: false sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController
509
YAML
20.249999
39
0.638507
StanfordVL/OmniGibson/omnigibson/configs/robots/locobot.yaml
# Example Locobot config robot: name: Locobot action_type: continuous action_normalize: true proprio_obs: - dd_base_lin_vel - dd_base_ang_vel reset_joint_pos: null base_name: null scale: 1.0 self_collision: false sensor_config: VisionSensor: sensor_kwargs: image_height: 128 image_width: 128 ScanSensor: sensor_kwargs: min_range: 0.05 max_range: 10.0 controller_config: base: name: DifferentialDriveController
505
YAML
20.083332
39
0.635644
StanfordVL/OmniGibson/omnigibson/termination_conditions/timeout.py
from omnigibson.termination_conditions.termination_condition_base import FailureCondition class Timeout(FailureCondition): """ Timeout (failure condition) Episode terminates if max_step steps have passed Args: max_steps (int): Maximum number of episode steps before timeout occurs """ def __init__(self, max_steps=500): # Store internal vars self._max_steps = max_steps # Run super super().__init__() def _step(self, task, env, action): # Terminate if number of steps passed exceeds threshold return env.episode_steps >= self._max_steps
627
Python
26.304347
89
0.658692
StanfordVL/OmniGibson/omnigibson/termination_conditions/falling.py
from omnigibson.termination_conditions.termination_condition_base import FailureCondition class Falling(FailureCondition): """ Falling (failure condition) used for any navigation-type tasks Episode terminates if the robot falls out of the world (i.e.: falls below the floor height by at least @fall_height Args: robot_idn (int): robot identifier to evaluate condition with. Default is 0, corresponding to the first robot added to the scene fall_height (float): distance (m) > 0 below the scene's floor height under which the the robot is considered to be falling out of the world """ def __init__(self, robot_idn=0, fall_height=0.03): # Store internal vars self._robot_idn = robot_idn self._fall_height = fall_height # Run super init super().__init__() def _step(self, task, env, action): # Terminate if the specified robot is falling out of the scene robot_z = env.scene.robots[self._robot_idn].get_position()[2] return robot_z < (env.scene.get_floor_height() - self._fall_height)
1,124
Python
37.793102
116
0.662811
StanfordVL/OmniGibson/omnigibson/termination_conditions/__init__.py
from omnigibson.termination_conditions.termination_condition_base import REGISTERED_TERMINATION_CONDITIONS, \ REGISTERED_SUCCESS_CONDITIONS, REGISTERED_FAILURE_CONDITIONS, BaseTerminationCondition from omnigibson.termination_conditions.falling import Falling from omnigibson.termination_conditions.max_collision import MaxCollision from omnigibson.termination_conditions.point_goal import PointGoal from omnigibson.termination_conditions.predicate_goal import PredicateGoal from omnigibson.termination_conditions.reaching_goal import ReachingGoal from omnigibson.termination_conditions.timeout import Timeout
613
Python
67.222215
109
0.880914
StanfordVL/OmniGibson/omnigibson/termination_conditions/reaching_goal.py
from omnigibson.termination_conditions.termination_condition_base import SuccessCondition import omnigibson.utils.transform_utils as T class ReachingGoal(SuccessCondition): """ ReachingGoal (success condition) used for reaching-type tasks Episode terminates if reaching goal is reached within @distance_tol by the @robot_idn robot's base Args: Args: robot_idn (int): robot identifier to evaluate point goal with. Default is 0, corresponding to the first robot added to the scene distance_tol (float): Distance (m) tolerance between goal position and @robot_idn's robot eef position that is accepted as a success """ def __init__(self, robot_idn=0, distance_tol=0.5): self._robot_idn = robot_idn self._distance_tol = distance_tol # Run super init super().__init__() def _step(self, task, env, action): # Terminate if point goal is reached (distance below threshold) return T.l2_distance(env.scene.robots[self._robot_idn].get_eef_position(), task.goal_pos) < \ self._distance_tol
1,120
Python
36.366665
111
0.675893
StanfordVL/OmniGibson/omnigibson/termination_conditions/point_goal.py
from omnigibson.termination_conditions.termination_condition_base import SuccessCondition import omnigibson.utils.transform_utils as T class PointGoal(SuccessCondition): """ PointGoal (success condition) used for PointNavFixed/RandomTask Episode terminates if point goal is reached within @distance_tol by the @robot_idn robot's base Args: robot_idn (int): robot identifier to evaluate point goal with. Default is 0, corresponding to the first robot added to the scene distance_tol (float): Distance (m) tolerance between goal position and @robot_idn's robot base position that is accepted as a success distance_axes (str): Which axes to calculate distances when calculating the goal. Any combination of "x", "y", and "z" is valid (e.g.: "xy" or "xyz" or "y") """ def __init__(self, robot_idn=0, distance_tol=0.5, distance_axes="xyz"): self._robot_idn = robot_idn self._distance_tol = distance_tol self._distance_axes = [i for i, axis in enumerate("xyz") if axis in distance_axes] # Run super init super().__init__() def _step(self, task, env, action): # Make sure task is of type PointNavigation -- we import at runtime to avoid circular imports from omnigibson.tasks.point_navigation_task import PointNavigationTask assert isinstance(task, PointNavigationTask), \ f"Cannot use {self.__class__.__name__} with a non-PointNavigationTask task instance!" # Terminate if point goal is reached (distance below threshold) return T.l2_distance(task.get_current_pos(env)[self._distance_axes], task.get_goal_pos()[self._distance_axes]) \ < self._distance_tol
1,748
Python
48.971427
120
0.677918
StanfordVL/OmniGibson/omnigibson/termination_conditions/termination_condition_base.py
from abc import ABCMeta, abstractmethod from omnigibson.utils.python_utils import classproperty, Registerable REGISTERED_TERMINATION_CONDITIONS = dict() REGISTERED_SUCCESS_CONDITIONS = dict() REGISTERED_FAILURE_CONDITIONS = dict() def register_success_condition(cls): if cls.__name__ not in REGISTERED_SUCCESS_CONDITIONS: REGISTERED_SUCCESS_CONDITIONS[cls.__name__] = cls def register_failure_condition(cls): if cls.__name__ not in REGISTERED_FAILURE_CONDITIONS: REGISTERED_FAILURE_CONDITIONS[cls.__name__] = cls class BaseTerminationCondition(Registerable, metaclass=ABCMeta): """ Base TerminationCondition class Condition-specific _step() method is implemented in subclasses """ def __init__(self): # Initialize internal vars that will be filled in at runtime self._done = None @abstractmethod def _step(self, task, env, action): """ Step the termination condition and return whether the episode should terminate. Overwritten by subclasses. Args: task (BaseTask): Task instance env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment Returns: bool: whether environment should terminate or not """ raise NotImplementedError() def step(self, task, env, action): """ Step the termination condition and return whether the episode should terminate. Args: task (BaseTask): Task instance env (Environment): Environment instance action (n-array): 1D flattened array of actions executed by all agents in the environment Returns: 2-tuple: - bool: whether environment should terminate or not - bool: whether a success was reached under this termination condition """ # Step internally and store the done state internally as well self._done = self._step(task=task, env=env, action=action) # We are successful if done is True AND this is a success condition success = self._done and self._terminate_is_success return self._done, success def reset(self, task, env): """ Termination condition-specific reset Args: task (BaseTask): Task instance env (Environment): Environment instance """ # Reset internal vars self._done = None @property def done(self): """ Returns: bool: Whether this termination condition has triggered or not """ assert self._done is not None, "At least one step() must occur before done can be calculated!" return self._done @property def success(self): """ Returns: bool: Whether this termination condition has been evaluated as a success or not """ assert self._done is not None, "At least one step() must occur before success can be calculated!" return self._done and self._terminate_is_success @classproperty def _terminate_is_success(cls): """ Returns: bool: Whether this termination condition corresponds to a success """ raise NotImplementedError() @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("BaseTerminationCondition") return classes @classproperty def _cls_registry(cls): # Global registry global REGISTERED_TERMINATION_CONDITIONS return REGISTERED_TERMINATION_CONDITIONS class SuccessCondition(BaseTerminationCondition): """ Termination condition corresponding to a success """ def __init_subclass__(cls, **kwargs): # Register as part of locomotion controllers super().__init_subclass__(**kwargs) register_success_condition(cls) @classproperty def _terminate_is_success(cls): # Done --> success return True @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("SuccessCondition") return classes class FailureCondition(BaseTerminationCondition): """ Termination condition corresponding to a failure """ def __init_subclass__(cls, **kwargs): # Register as part of locomotion controllers super().__init_subclass__(**kwargs) register_failure_condition(cls) @classproperty def _terminate_is_success(cls): # Done --> not success return False @classproperty def _do_not_register_classes(cls): # Don't register this class since it's an abstract template classes = super()._do_not_register_classes classes.add("FailureCondition") return classes
5,049
Python
30.962025
114
0.643494
StanfordVL/OmniGibson/omnigibson/termination_conditions/max_collision.py
from omnigibson.termination_conditions.termination_condition_base import FailureCondition from omnigibson.object_states.contact_bodies import ContactBodies class MaxCollision(FailureCondition): """ MaxCollision (failure condition) used for navigation tasks Episode terminates if the robot has collided more than max_collisions_allowed times Note that we ignore collisions with any floor objects. Args: robot_idn (int): robot identifier to evaluate collision checking with. Default is 0, corresponding to the first robot added to the scene ignore_self_collisions (bool): Whether to ignore robot self-collisions or not max_collisions (int): Maximum number of collisions allowed for any robots in the scene before a termination is triggered """ def __init__(self, robot_idn=0, ignore_self_collisions=True, max_collisions=500): self._robot_idn = robot_idn self._ignore_self_collisions = ignore_self_collisions self._max_collisions = max_collisions self._n_collisions = 0 # Run super init super().__init__() def reset(self, task, env): # Call super first super().reset(task, env) # Also reset collision counter self._n_collisions = 0 def _step(self, task, env, action): # Terminate if the robot has collided more than self._max_collisions times robot = env.robots[self._robot_idn] floors = list(env.scene.object_registry("category", "floors", [])) ignore_objs = floors if self._ignore_self_collisions is None else floors + [robot] in_contact = len(env.robots[self._robot_idn].states[ContactBodies].get_value(ignore_objs=tuple(ignore_objs))) > 0 self._n_collisions += int(in_contact) return self._n_collisions > self._max_collisions
1,855
Python
42.16279
121
0.68248
StanfordVL/OmniGibson/omnigibson/termination_conditions/predicate_goal.py
from bddl.activity import evaluate_goal_conditions from omnigibson.termination_conditions.termination_condition_base import SuccessCondition class PredicateGoal(SuccessCondition): """ PredicateGoal (success condition) used for BehaviorTask Episode terminates if all the predicates are satisfied Args: goal_fcn (method): function for calculating goal(s). Function signature should be: goals = goal_fcn() where @goals is a list of bddl.condition_evaluation.HEAD -- compiled BDDL goal conditions """ def __init__(self, goal_fcn): # Store internal vars self._goal_fcn = goal_fcn self._goal_status = None # Run super super().__init__() def reset(self, task, env): # Run super first super().reset(task, env) # Reset status self._goal_status = {"satisfied": [], "unsatisfied": []} def _step(self, task, env, action): # Terminate if all goal conditions are met in the task done, self._goal_status = evaluate_goal_conditions(self._goal_fcn()) return done @property def goal_status(self): """ Returns: dict: Current goal status for the active predicate(s), mapping "satisfied" and "unsatisfied" to a list of the predicates matching either of those conditions """ return self._goal_status
1,417
Python
29.826086
114
0.631616
StanfordVL/OmniGibson/omnigibson/object_states/sliceable.py
import numpy as np from omnigibson.object_states.object_state_base import BaseObjectRequirement class SliceableRequirement(BaseObjectRequirement): """ Class for sanity checking objects that request the "sliceable" ability """ @classmethod def is_compatible(cls, obj, **kwargs): # Avoid circular imports from omnigibson.objects.dataset_object import DatasetObject # Make sure object is dataset object if not isinstance(obj, DatasetObject): return False, f"Only compatible with DatasetObject, but {obj} is of type {type(obj)}" # Check to make sure object parts are properly annotated in this object's metadata if not obj.metadata["object_parts"]: return False, f"Missing required metadata 'object_parts'." return True, None @classmethod def is_compatible_asset(cls, prim, **kwargs): # Check to make sure object parts are properly annotated in this object's metadata metadata = prim.GetCustomData().get("metadata", dict()) if not metadata.get("object_parts", None): return False, f"Missing required metadata 'object_parts'." return True, None
1,198
Python
37.677418
97
0.683639
StanfordVL/OmniGibson/omnigibson/object_states/adjacency.py
from collections import namedtuple import numpy as np import omnigibson as og from omnigibson.macros import create_module_macros from omnigibson.object_states.aabb import AABB from omnigibson.object_states.object_state_base import AbsoluteObjectState from omnigibson.utils.sampling_utils import raytest_batch, raytest from omnigibson.utils.constants import PrimType # Create settings for this module m = create_module_macros(module_path=__file__) m.MAX_DISTANCE_VERTICAL = 5.0 m.MAX_DISTANCE_HORIZONTAL = 5.0 # How many 2-D bases to try during horizontal adjacency check. When 1, only the standard axes will be considered. # When 2, standard axes + 45 degree rotated will be considered. The tried axes will be equally spaced. The higher # this number, the lower the possibility of false negatives in Inside and NextTo. m.HORIZONTAL_AXIS_COUNT = 5 AxisAdjacencyList = namedtuple("AxisAdjacencyList", ("positive_neighbors", "negative_neighbors")) def flatten_planes(planes): # Converts the body-by-plane logic to a flat body-by-axis setup, # for when we don't care about the axes' relationship with each other. return (axis for axes_by_plane in planes for axis in axes_by_plane) def get_equidistant_coordinate_planes(n_planes): """Given a number, sample that many equally spaced coordinate planes. The samples will cover all 360 degrees (although rotational symmetry is assumed, e.g. if you take into account the axis index and the positive/negative directions, only 1/4 of the possible coordinate (1 quadrant, np.pi / 2.0) planes will be sampled: the ones where the first axis' positive direction is in the first quadrant). Args: n_planes (int): number of planes to sample Returns: 3D-array: (n_planes, 2, 3) array where the first dimension is the sampled plane index, the second dimension is the axis index (0/1), and the third dimension is the 3-D world-coordinate vector corresponding to the axis. """ # Compute the positive directions of the 1st axis of each plane. first_axis_angles = np.linspace(0, np.pi / 2, n_planes) first_axes = np.stack( [np.cos(first_axis_angles), np.sin(first_axis_angles), np.zeros_like(first_axis_angles)], axis=1 ) # Compute the positive directions of the 2nd axes. These axes are # orthogonal to both their corresponding first axes and to the Z axis. second_axes = np.cross([0, 0, 1], first_axes) # Return the axes in the shape (n_planes, 2, 3) return np.stack([first_axes[:, None, :], second_axes[:, None, :]], axis=1) def compute_adjacencies(obj, axes, max_distance, use_aabb_center=True): """ Given an object and a list of axes, find the adjacent objects in the axes' positive and negative directions. If @obj is of PrimType.CLOTH, then adjacent objects are found with respect to the @obj's centroid particle position Args: obj (StatefulObject): The object to check adjacencies of. axes (2D-array): (n_axes, 3) array defining the axes to check in. Note that each axis will be checked in both its positive and negative direction. use_aabb_center (bool): If True and @obj is not of PrimType.CLOTH, will shoot rays from @obj's aabb center. Otherwise, will dynamically compute starting points based on the requested @axes Returns: list of AxisAdjacencyList: List of length len(axes) containing the adjacencies. """ # Get vectors for each of the axes' directions. # The ordering is axes1+, axis1-, axis2+, axis2- etc. directions = np.empty((len(axes) * 2, 3)) directions[0::2] = axes directions[1::2] = -axes # Prepare this object's info for ray casting. if obj.prim_type == PrimType.CLOTH: ray_starts = np.tile(obj.root_link.centroid_particle_position, (len(directions), 1)) else: aabb_lower, aabb_higher = obj.states[AABB].get_value() object_position = (aabb_lower + aabb_higher) / 2.0 ray_starts = np.tile(object_position, (len(directions), 1)) if not use_aabb_center: # Dynamically compute start points by iterating over the directions and pre-shooting rays from # which to shoot back from # For a given direction, we go in the negative (opposite) direction to the edge of the object extent, # and then proceed with an additional offset before shooting rays shooting_offset = 0.01 direction_half_extent = directions * (aabb_higher - aabb_lower).reshape(1, 3) / 2.0 pre_start = object_position.reshape(1, 3) + (direction_half_extent + directions * shooting_offset) pre_end = object_position.reshape(1, 3) - direction_half_extent idx = 0 obj_link_paths = {link.prim_path for link in obj.links.values()} def _ray_callback(hit): # Check for self-hit -- if so, record the position and terminate early should_continue = True if hit.rigid_body in obj_link_paths: ray_starts[idx] = np.array(hit.position) should_continue = False return should_continue for ray_start, ray_end in zip(pre_start, pre_end): raytest( start_point=ray_start, end_point=ray_end, only_closest=False, callback=_ray_callback, ) idx += 1 # Prepare the rays to cast. ray_endpoints = ray_starts + (directions * max_distance) # Cast time. prim_paths = obj.link_prim_paths ray_results = raytest_batch( ray_starts, ray_endpoints, only_closest=False, ignore_bodies=prim_paths, ignore_collisions=prim_paths ) # Add the results to the appropriate lists # For now, we keep our result in the dimensionality of (direction, hit_object_order). # We convert the hit link into unique objects encountered objs_by_direction = [] for results in ray_results: unique_objs = set() for result in results: # Check if the inferred hit object is not None, we add it to our set obj_prim_path = "/".join(result["rigidBody"].split("/")[:-1]) obj = og.sim.scene.object_registry("prim_path", obj_prim_path, None) if obj is not None: unique_objs.add(obj) objs_by_direction.append(unique_objs) # Reshape so that these have the following indices: # (axis_idx, direction-one-or-zero, hit_idx) objs_by_axis = [ AxisAdjacencyList(positive_neighbors, negative_neighbors) for positive_neighbors, negative_neighbors in zip(objs_by_direction[::2], objs_by_direction[1::2]) ] return objs_by_axis class VerticalAdjacency(AbsoluteObjectState): """ State representing the object's vertical adjacencies. Value is a AxisAdjacencyList object. """ def _get_value(self): # Call the adjacency computation with th Z axis. bodies_by_axis = compute_adjacencies(self.obj, np.array([[0, 0, 1]]), m.MAX_DISTANCE_VERTICAL, use_aabb_center=False) # Return the adjacencies from the only axis we passed in. return bodies_by_axis[0] @classmethod def get_dependencies(cls): deps = super().get_dependencies() deps.add(AABB) return deps # Nothing needs to be done to save/load adjacency since it will happen due to pose caching. class HorizontalAdjacency(AbsoluteObjectState): """ State representing the object's horizontal adjacencies in a preset number of directions. The HorizontalAdjacency state returns adjacency lists for equally spaced coordinate planes. Each plane consists of 2 orthogonal axes, and adjacencies are checked for both the positive and negative directions of each axis. The value of the state is List[List[AxisAdjacencyList]], where the list dimensions are m.HORIZONTAL_AXIS_COUNT and 2. The first index is used to choose between the different planes, the second index to choose between the orthogonal axes of that plane. Given a plane/axis combo, the item in the list is a AxisAdjacencyList containing adjacencies in both directions of the axis. If the idea of orthogonal bases is not relevant (and your use case simply requires checking adjacencies in each direction), the flatten_planes() function can be used on the state value to reduce the output to List[AxisAdjacencyList], a list of adjacency lists for all 2 * m.HORIZONTAL_AXIS_COUNT directions. """ def _get_value(self): coordinate_planes = get_equidistant_coordinate_planes(m.HORIZONTAL_AXIS_COUNT) # Flatten the axis dimension and input into compute_adjacencies. bodies_by_axis = compute_adjacencies(self.obj, coordinate_planes.reshape(-1, 3), m.MAX_DISTANCE_HORIZONTAL, use_aabb_center=True) # Now reshape the bodies_by_axis to group by coordinate planes. bodies_by_plane = list(zip(bodies_by_axis[::2], bodies_by_axis[1::2])) # Return the adjacencies. return bodies_by_plane @classmethod def get_dependencies(cls): deps = super().get_dependencies() deps.add(AABB) return deps # Nothing needs to be done to save/load adjacency since it will happen due to pose caching.
9,467
Python
41.267857
137
0.672652
StanfordVL/OmniGibson/omnigibson/object_states/frozen.py
import numpy as np from omnigibson.macros import create_module_macros from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin from omnigibson.object_states.temperature import Temperature # Create settings for this module m = create_module_macros(module_path=__file__) m.DEFAULT_FREEZE_TEMPERATURE = 0.0 # When an object is set as frozen, we will sample it between # the freeze temperature and these offsets. m.FROZEN_SAMPLING_RANGE_MAX = -10.0 m.FROZEN_SAMPLING_RANGE_MIN = -50.0 class Frozen(AbsoluteObjectState, BooleanStateMixin): def __init__(self, obj, freeze_temperature=m.DEFAULT_FREEZE_TEMPERATURE): super(Frozen, self).__init__(obj) self.freeze_temperature = freeze_temperature @classmethod def get_dependencies(cls): deps = super().get_dependencies() deps.add(Temperature) return deps def _set_value(self, new_value): if new_value: temperature = np.random.uniform( self.freeze_temperature + m.FROZEN_SAMPLING_RANGE_MIN, self.freeze_temperature + m.FROZEN_SAMPLING_RANGE_MAX, ) return self.obj.states[Temperature].set_value(temperature) else: # We'll set the temperature just one degree above freezing. Hopefully the object # isn't in a fridge. return self.obj.states[Temperature].set_value(self.freeze_temperature + 1.0) def _get_value(self): return self.obj.states[Temperature].get_value() <= self.freeze_temperature @staticmethod def get_texture_change_params(): # Increase all channels by 0.3 (to make it white) albedo_add = 0.3 # No final scaling diffuse_tint = (1.0, 1.0, 1.0) return albedo_add, diffuse_tint # Nothing needs to be done to save/load Frozen since it will happen due to temperature caching.
1,910
Python
34.388888
99
0.676963