# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Introduction to People's Daily Dataset""" import logging import datasets _DESCRIPTION = """\ People's Daily NER Dataset is a commonly used dataset for Chinese NER, with text from People's Daily (人民日报), the largest official newspaper. The dataset is in BIO scheme. Entity types are: PER (person), ORG (organization) and LOC (location). """ _URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/People's%20Daily/" _TRAINING_FILE = "example.train" _DEV_FILE = "example.dev" _TEST_FILE = "example.test" class PeoplesDailyConfig(datasets.BuilderConfig): """BuilderConfig for People's Daily NER""" def __init__(self, **kwargs): """BuilderConfig for People's Daily NER. Args: **kwargs: keyword arguments forwarded to super. """ super(PeoplesDailyConfig, self).__init__(**kwargs) class PeoplesDailyNer(datasets.GeneratorBasedBuilder): """People's Daily NER dataset.""" BUILDER_CONFIGS = [ PeoplesDailyConfig( name="peoples_daily_ner", version=datasets.Version("1.0.0"), description="People's Daily NER dataset" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), } ), supervised_keys=None, homepage="https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily", ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logging.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: line_stripped = line.strip() if line_stripped == "": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: splits = line_stripped.split(" ") if len(splits) == 1: splits.append("O") tokens.append(splits[0]) ner_tags.append(splits[1]) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }